

NTEC	2	Contonto
2012	37	Contents
• Eul	erian m	ultiphase flow equations
• For	ces on	a particle
• Boi	ling flo	ws
• Bul	oble siz	e distribution
• Co	njugate	heat transfer + boiling
• Co	upling v	vith neutronics

NTEC	6	Deiling two phase flows	
2012	37	Boiling two-phase flows	
• Phe	nomena i	in boiling two-phase flows in a vertical pipe are very complex.	• •
• Flow	w regime	s include: bubbly, slug, churn, annual, mist flows.	
• Nee boil	ed to cons ing bubbl	sider the complete range of flow regimes: from sub-cooled ly flow, through annual film boiling to post dry-out mist flow.	
• Moc hea	lelling ind t partitio	cludes: inter-phase forces, boiling heat and mass transfer, wall ning and inter-phase surface topology changes.	

NTEC 2012	7 37	Eulerian-Eulerian model		
• We res	conside olve and	r the phases are mixed on length scales smaller than we wish to can be treated as continuous fluids.		
Bot occ	h phases upied by	s coexist everywhere in the flow domain. The portion of volume y a phase is given by the volume fraction.		
• Thi	• This concept is called "Interpenetrating continua".			
• Cor pha	nservatio nse, heno	on equations for mass, momentum and energy are solved for each ce this is often called the Eulerian-Eulerian model.		

NTEC
20129
37Conservation of momentum• Conservation of momentum for phase k is:
$$\frac{\partial}{\partial t} (\alpha_k \rho_k u_k) + \nabla .(\alpha_k \rho_k u_k u_k)$$

 $= -\alpha_k \nabla p + \alpha_k \rho_k g + \nabla .\alpha_k (\tau_k + {\tau_k}^t) + M_k$
 p =pressure,
 M =sum of interfacial forces (drag, turbulence drag, lift, virtual mass) and
momentum transfer associated with mass transfer. $M = F_D + F_{TD} + F_L + F_{VM} + \sum_{j=1}^{N} (\dot{m}_{jk} u_j - \dot{m}_{kj} u_k)$

NTEC	12	Drag	g force on a pa	article
2012	37		, i	
• Dra	g force	on a particle, D, is usua	lly calculated from	:
	1		$u_r = u_c - u_d$	(Relative velocity)
D	$=\frac{1}{2}C_{I}$	$_{D}\rho_{c}A u_{r} u_{r}$	$A = \frac{\pi d^2}{4}$	(Projected area)
• Dra Re	e _d = $\frac{\rho_d}{\rho_d}$	cient, C _D , is a function $\frac{1}{\mu_r d}{\mu_c}$	of the particle Reyr	olds number.
Su	bscript	c=continuous phase, d=o	dispersed phase.	

NTEC14Drag coefficient for spherical particles201237Drag coefficient for spherical particles• Stokes's regime
$$C_D = \frac{24}{\text{Re}_d}$$
 $0 \le \text{Re}_d \le 0.2$ • Transition regime (Schiller-Naumann) $C_D = \frac{24}{\text{Re}_d} (1+0.15 \,\text{Re}_d^{0.687})$ $0 \le \text{Re}_d \le 1000$ • Newton's regime $C_D = 0.44$ $\text{Re}_d > 1000$

NTEC15Drag force of multiple particles201237Drag force of multiple particles• Number of particles per unit volume is
$$n = \frac{\alpha_d}{V_d} = \frac{\alpha_d}{\pi d^3/6}$$
• Total drag force per unit volume : $F_D = nD = \frac{3}{4} \frac{\alpha_d \rho_c C_D}{d} |u_r| u_r = A_D u_r$ $A_D = \frac{3}{4} \frac{\alpha_d \rho_c C_D}{d} |u_r|$ • Drag force coefficient, A_D , is used in turbulence models.

NTEC 2012	17 37	Multiphase turbulence
• Mu	tiphase	turbulence modelling is clearly a difficult subject and currently
not	very we	ell developed.
• Mo:	st freque	ently used model is the eddy viscosity model. k-epsilon model
(wi	th or wit	thout modifications) is applied to the continuous phase and some
alg	ebraic fo	ormulae for the dispersed phase.

NTEC 2012	18 37	Modified k- ϵ equations
• k-ε	equatio	ns solved for the continuous phase are:
$\frac{\partial}{\partial t} \alpha_c$	$ \rho_c k + abla $	$\nabla .\alpha_c \rho_c u_c k = \nabla \left(\frac{\alpha_c (\mu_c + \mu_c^t)}{\sigma_k} \nabla k \right) + \alpha_c (G - \rho_c \varepsilon) + S_{k2}$
$\frac{\partial}{\partial t} \alpha_c$	$ \rho_c \varepsilon + abla$	$\nabla \cdot \alpha_c \rho_c u_c \varepsilon = \nabla \cdot \left(\frac{\alpha_c (\mu_c + \mu_c^t)}{\sigma_{\varepsilon}} \nabla \varepsilon \right) + \alpha_c \frac{\varepsilon}{k} (C_1 G - C_2 \rho_c \varepsilon) + S_{\varepsilon 2}$
• Wh S_{k2} =	ere the $= -A_D - \frac{1}{\alpha}$	additional source terms due to drag between the phases are: $\frac{V_c^t}{(\alpha, \sigma)} (u_d - u_c) \nabla \alpha_d + 2A_D(C_t - 1)k$
$S_{\varepsilon 2}$ =	$=2A_D(C)$	$(\varepsilon_{t}^{\alpha} - 1)\varepsilon$

NTEC	19	Turkular er etnere in soutinusse akare
2012	37	l'urbuience stress in continuous phase
• Sim	nilar to s Itinuous	ingle phase flow model we define the turbulence stress in the phase as:
$\tau_c^t =$	$= \mu_c^t \bigg(\nabla$	$\left[u_{c}+\nabla u_{c}^{T}-\frac{2}{3}\nabla u_{c}I\right]-\frac{2}{3}\rho_{c}kI$
And	d the tur	bulent viscosity as:
μ_c^t	$=c_{\mu}\rho$	$c \frac{k^2}{\varepsilon}$

NTEC	20	Turbulance stress in dispersed phase
2012	37	rurbulence scress in dispersed phase
• We $ au_d^t$	define t $= \frac{\rho_d}{\rho_c} 0$	curbulence stress in dispersed phase relative to continuous phase: $C_t \tau_c^t$
• The of C_t	$= \frac{u_d}{u_c}$	ient C _t is the ratio of dispersed phase velocity fluctuation to that us phase:
• C _t = pha	1: turbu ase.	lence characteristics of dispersed phase identical to continuous

NTEC 2012	21 37	Turbulence drag force				
IntFlubet	 Interphase drag force includes a mean and a fluctuating component. Fluctuating component accounts for additional drag due to interaction between particles and turbulent eddies. 					
F_D	$=A_D u$	$u_r - A_D \frac{v_c^t}{\alpha_d \alpha_c \sigma_\alpha} \nabla \alpha_d$				
• Tui	rbulent F	Prandtl number usually set to 1.0.				
σ_{c}	a = 1.0					
• The fur	e turbule Iction of	ence drag force has the effect of dispersing the particles as particle concentration gradient.				

NTEC	28	Part 1	17 76 .	117 -	or tosting offect of O
2012	37	Dail	22-20:	147 Do	ar, testing effect of Q
		_			$\begin{array}{c c} D, & P_{41}K\Gamma(q,M_{2})T & T_{32}, \\ M/Tar(M^{2}-Cn) & M^{2} \\ \hline 1, 1/7, 10 & 1078 & 0, 4/2 & 50.3 \\ A & M_{2}M^{2} & 10947 & 0, 277 & 55.8 \end{array}$
Cases	P (bar)	G (kg/m² s)	Q (MW/m²)	Tsat- Tin (K)	1425 2123 4.13 583 × 1420 2014 4.72 545 O 1459 2012 2.21 553
22 🗆	147.9	1878	0.42	16.43	
23 Δ	147.4	1847	0.77	27.47	•4
24 •	147.5	2123	1.13	48.59	
25 ×	147.0	2014	1.72	63.38	
26 o	149.9	2012	2.21	144.51	
					-9,2 -9,1 67 0 XOTH 9,1

NTEC 2012	37 37	Summary
 Eul For Boi - 	erian mu Conserv ces on a Drag, b ling flow Bubble Conjuga	ultiphase flow equations: vation of mass, momentum and energy particles: uoyancy, lift, virtual mass, turbulent dispersion vs: size distribution ate heat transfer
-	Couplin	g with neutronics