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NTEC Module: Water Reactor 
Performance and Safety

Lecture 5: Introduction to two-phase flow

G. F. Hewitt

Imperial College London
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Two-phase flow regimes in vertical tubes

Wispy Annular

Flow

Annular

Flow

Churn

Flow

Slug or

Plug Flow

Bubble

Flow
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Forced convective boiling:
Regions of boiling and flow
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Introduction to nomenclature
New international nomenclature

(i) Capital letters:  M, mass

V, volume

Q, quantity of heat

(ii) Dotted variables: mass rate of flow

volume rate of flow

(iii) Lower case variables:  h, enthalpy

cp, specific heat

(iv) Lower case dotted variable: heat flux 

(per unit area)
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Definitions of quantities
Total mass rate of flow = 

Total mass rate of flow = 

Mass flux = 

Fraction of cross section occupied by gas phase (“void fraction”) = εG
Fraction occupied by liquid phase (holdup) = εL = (1- εG)

“Superficial velocity”: 

Velocities: Slip ratio:

gas

liquid

Total cross
section area = A
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Basic equations:
The homogeneous model: Introduction

Homogeneous flow model
• treats fluid as single fluid cf. single phase flow
• assumes equal velocities for two phases
Homogeneous density
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Basic equations: 
Homogeneous continuity (mass) equation

For channel element (Slide 5)
Rate of creation

of mass = 0 =
Mass outflow

rate -
Mass inflow

rate +
Mass storage

rate

 0 H
H H HU A z U A U A A z

z t

            

Rearranging gives:

U = total volume flux
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Basic equations: 
Homogeneous momentum equation

Rate of creation
of momentum =

Momentum
outflow rate -

Momentum
Inflow rate +

Momentum
storage rate

   

sum of forces on element

sum of forces to pressure gradient, gravity and wall shear

sin

fluid pressure (assumed constant over cros
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Rearranging gives homogeneous momentum equation:
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Basic equations: 
Homogeneous energy equation

Rate of creation
of energy = 0 =

Energy
outflow rate -

Energy
Inflow rate + Energy

storage rate

Rearranging gives homogeneous energy equation:

H v

e e qP p
U q

t z A t
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energy convected per unit mass of fluid sin
2

enthalpy 

internal energy of fluid

wall heat flux

volumetri
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Homogeneous model: 
Components of pressure gradient

 2

2

Homogeneous momentum equation (Slide 7)

/1
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For constant cross section and steady flow
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Total Frictional Acceleration Gravitational
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Frictional pressure drop calculation: 
Homogeneous model
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From slide 9
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Re  from standard curves

11
Re ,   (McAdams et al., 1942)

(usually very poor predictions)
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193 (1942)
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Basic equations:
Separated flow model: Introduction
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Two fluids flow in separate regions each

with a given but unequal velocity:

Thus: ,  1

Mean fluid density in element:
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Void fraction / slip ratio relationship:
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      (fraction of mass flow flowing as vapour)
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Basic equations:
Balance element for Separated flow model

Separated flow model (six 
equation model).  Main features:

• Two flow regions

• Continuity, momentum and 
(energy) balances written

• Equations written for each 
phase

• Equations may be summed 
to give overall balances.
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Conservation equations: 
Continuity equation for the liquid phase

   

 

 

1 1

1

1

0

L G L L G L e

L G L

L G

u A z u A m z
z

u A

A z
t

     

 

  

      
 

      


 (outflow)

(inflow)

(storage)

Rate of creation of mass = 0 = mass outflow rate – mass in flow rate
+ mass storage rate
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= void fraction

= liquid phase velocity

= cross sectional area

= rate of conversion of 
liquid to vapour per 
unit length
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Conservation equations: 
Continuity equation for the gas phase
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= void fraction

= liquid phase velocity

= cross sectional area

= rate of conversion of 
liquid to vapour per 
unit length 16

Conservation equations: 
Continuity equation: Liquid, gas, combined

   G G G G G eA u A m
t z
    

 
 



   1 1L G L L G eA u A m
t z
    
           



 1L L G G G Gm u u     

Simplifying from previous slide gives liquid phase continuity equation:

Similarly for gas phase:

Adding the equations and noting that:

We have:

    0TP A mA
t z
 

 
 



 1TP G G G L      
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Conservation equations: 
Momentum equation for liquid phase
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Rate of creation
of momentum =

Momentum
outflow rate -

Momentum
Inflow rate +

Momentum
storage rate

=
Sum of forces acting on control volume
(next slide)
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Momentum equation for liquid phase:
Forces on element of fluid

     1 1 1G G Gp A p A z p A
z

            

 1 Gp z A
z

        

 1 sinL Gg A z    

(Net pressure force on ends of element)

(Pressure force on resolved area of sloping liquid surface)

o i iP z P z    

(gravitational force)

(shear forces)

o

i




= wall shear stress

= interfacial shear stress
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Momentum equation for liquid phase:
Equating momentum creation with forces
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Momentum equation for gas phase:
(Similar derivation to that for liquid)
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Mixture momentum equation
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Adding the liquid (slide 19) and gas (slide 20) momentum equations we have:
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Mixture momentum equation: 
Alternative form

   1 1L L Gu m x    

 1L L G G G Gm u u     

G G Gu mx   

Putting:

Gives mixture momentum equation in form:
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For steady state flow in a duct of constant A:
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Combined conservation equations 
for separated flows
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Continuity:
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Momentum:
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Correlations for steady state channel flows 

(constant cross section)
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HOMOGENEOUS MODEL  correlation
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Frictional pressure gradient

Frictional pressure gradient in a round tube:

Pressure drop multipliers:
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Gravitational pressure gradient
Gravitational component of pressure gradient given by:  

Definition of slip ratio:

Void fraction/slip ratio relationship: 

Void fraction in homogeneous flow: 
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Typical correlation for void fraction
(Premoli et al , 1971)

28

Typical correlation for friction: 
Freidel, 1979
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Distribution of errors for Combination:
Premoli et al (1971)/Freidel (1979)

Expect large errors with empirical correlations
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Pressure drop in singularities:
Typical types of singularity
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Pressure drop in singularities:
Homogeneous model for singular pressure drops
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Phenomenological approach:
General principles

(1) Identify the type of interfacial distribution – i.e. FLOW 
REGIME

(2) Observe detailed phenomena and make appropriate 
measurements.

(3) Construct physical models of theoretical or semi-
theoretical type to describe the phenomena.

(4) Integrate the local models to achieve a complete system 
description.

Stages:
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Phenomenological approach:
Example: Annular flow I
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Phenomenological approach:
Example: Annular flow II

35

Phenomenological approach:
Example: Annular flow III
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Phenomenological approach:
Example: Annular flow IV
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Phenomenological approach:
Example: Annular flow V
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Phenomenological approach: Annular flow VI
Correlation for deposition rate

See Hewitt, Invited Lecture, ASME 1990, Winter Annual Meeting, Dallas

D = kC
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Phenomenological approach: Annular flow VII
Correlation for entrainment rate

critical film

           flow for onset

           of entrainment

LFCm 
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Phenomenological approach:
Example: Annular flow V

Prediction of Nigmatulin (1978) high pressure film flow data
(Hewitt & Govan, 1990)


