NTEC Module: Water Reactor Performance and Safety Lecture 8: Loss-of-coolant accident (LOCA) phenomena

> G. F. Hewitt Imperial college London

Reactor Operational States

- NORMAL OPERATION: Operation at full power.
- OPERATIONAL TRANSIENTS: Startup and shutdown. On-line refuelling (AGR).
- UPSET CONDITIONS: Unexpected faults, e.g. turbine trips. Loss of offsite power.
- EMERGENCY CONDITIONS: Break in small pipe, relief valve stuck open etc.
- LIMITING FAULT CONDITIONS (DESIGN BASIS ACCIDENTS): Design to cope with by engineered safety systems, e.g. large pipe break.

2

Events in fuel element behaviour as temperature increases

Temperatu (°C)	Phenomenon
350	Approximate cladding temperature during power operation.
800 – 150	Cladding is perforated or swells as a result of rod internal gas pressure in the post-accident environment; some fission gases are released; solid reactions between stainless steels and Zircaloy begin; clad swelling may block some flow channels.
1450 – 150	Zircaloy steam reaction may produce energy in excess of decay heat; gas absorption embrittles Zircaloy, hydrogen formed. Steel alloy melts.
1550 - 165	Zircaloy-steam reaction may be autocatalytic unless Zircaloy is quenched by immersion.
1900	Zircaloy melts, fission product release from UO_2 becomes increasingly significant above 2150 K.
2700	UO ₂ and ZrO ₂ melt.

Conclusion

- Design over full range of operational states is vital.
- What seems to be the extreme case is sometimes not the most important (e.g. small break rather than large break LOCA's are worst case!)
- It is important to analyse and learn as much as possible from actual accidents.

19