Nuclear Thermal-Hydraulics

Problem Sheet I

1. Compute the Reynolds number for a 50 mm id pipe carrying water at a rate of $0.05 \mathrm{~m}^{3}$ per second. $(14,038,000)$
2. Compute the Reynolds number for a 500 mm id duct carrying CO 2 at a speed of 20 metres per second, at 900 k and 4 Mpa (6.09e6)
3. What is meant by 'friction factor'?
4. What is the pressure drop in:-
(i) A 25 mm id pipe, 100 m long, carrying water at a rate of $3 \mathrm{~m} \wedge 3$ per hour? (93 kPa)
(ii) A CO2 pipeline, 1.2 m id, 2 km long, moving at $20 \mathrm{~m} / \mathrm{s}$ at $300 \mathrm{~K}, 40$ bars. ($\mathrm{Re}=6.09 \mathrm{e} 6, \mathrm{f}=0.009$, $\mathrm{d} p=169 \mathrm{e} 3 \mathrm{~Pa}$)
5. Determine the hydraulic diameter of a typical flow passage in a PWR, with pin od 0.009500 , and a square pitch of $0.0126 \mathrm{~m}(0.011777 \mathrm{~m})$
6. What is the pressure drop per unit length in passing up such a channel under the following conditions:
Channel mass flow $0.336 \mathrm{~kg} / \mathrm{s}$, (300K water props) (8.05e3 Pa m ${ }^{-1}$)
7. Determine the hydraulic diameter of the AGR coolant passage defined below.

Channel id $=0.1900 \mathrm{~m}$
Clad od $=0.01525 \mathrm{~m}$
36 pins in cross section.
(0.03752m)
8. Compute the frictional pressure drop in the AGR passage above, under the following conditions:
Friction factor 4 times that for a smooth tube
Passage flow rate $13.36 \mathrm{~kg} / \mathrm{s}$
Mean temperature in channel 750K
$(\operatorname{Re} 8.0203 \mathrm{e}+05$, friction factor 0.0121 , frictional pressure drop $7.2918+04 \mathrm{~Pa})$

