CHEM60001: Advanced Chemistry Topics 1 - Pericyclic Reactions

LECTURE 3

The Woodward-Hoffmann Rules \& their Application
Alan C. Spivey
a.c.spivey@imperial.ac.uk

Imperial College London

Format \& scope of lecture 3

- The Woodward-Hoffmann Rules
- The rules
- Suprafacial and antarafacial terminology
- Selected applications of the Woodward-Hoffmann Rules
- Diels-Alder reactions
- [2+2]-cycloaddition reactions
- [3,3]- and [2,3]-sigmatropic rearrangements
- Electrocyclic ring-opening reactions
- Violations of the rules!

Key further reading:

- BOOK: Clayden, Greeves \& Warren, Organic Chemistry, $2^{\text {nd }}$ Ed.,
- Chapter 34-pericyclic reactions 1
- WEB: Pericyclic Reactions - https://www.stereoelectronics.org/webPR/PR home.html
- Chapter 1 - introduction to pericyclic reactions

The Woodward-Hoffmann rules

Robert Woodward (Harvard)

Roald Hoffmann (Cornell)

Vitamin B12 \& the Woodward-Hoffmann Rules

In the mid 1960's Robert Woodward (Harvard) and Albert Eschenmoser (ETH, Zurich) were working on the total synthesis of vitamin B12. During this work, Woodward encountered the following electrocyclic ring-closure reaction:

"The thermal reactions $(G=>H)$ and $(I=>J)$ established by our investigations took precisely the opposite stereochemical course to that which we had predicted"

- Woodward had anticipated that $\mathbf{G} \Rightarrow \mathbf{J}$ was more likely than $\mathbf{G} \Rightarrow \mathbf{H}$, and so was considerably surprised when the thermal reaction actually gave the latter and not the former and that photolysis of the undesired \mathbf{H} gave \mathbf{I}, which then did give the desired \mathbf{J} upon heating. What was going on?...
- For fascinating historical accounts see: Seeman J. Org. Chem. 2015, 80, 11632 [DOI], Seeman Chem. Eur. J. 2021, 27, 7000 [DOI], and Rzepa @https://www.ch.imperial.ac.uk/rzepa/blog/?p=8761

The Woodward-Hoffmann Rules

Correlation diagrams are useful for predicting which pericyclic reactions are allowed but are not easy to construct. Happily, they can be distilled into a simple rule:

A ground state (i.e. thermal) pericyclic reaction is symmetry allowed when the total number of $(4 q+$ $2)_{s}$ and (4r) ${ }_{\mathrm{a}}$ components is odd (where q and r must be integers).

A first electronically excited state (i.e. photochemical) pericyclic reaction is symmetry allowed when the total number of $(4 q+2)_{s}$ and $(4 r)_{a}$ components is even (where q and r must be integers).
's' = suprafacial [bond formation on the 'same' faces of a molecular 'component'] 'a' = antarafacial [bond formation on the 'opposite' faces of a molecular 'component']

T-suprafacial

IT-antarafacial

Selected applications of the W-H Rules

The W-H Rules: a Diels-Alder reaction

1. draw a 'curly arrow' mechanism

■ 2. identify 'components' (how many p/s electrons in each component)3. draw 3D orbital diagram to show approach and overlap of components

- 4. label components as suprafacial or antarafacial

■ 5. sum components according to W-H rule and decide whether thermally or photochemically allowed

Recommended method

Blue line representing impossible developing orbital overlap

The W-H Rules: a [2+2] cycloaddition

- 1. draw 'curly arrow' mechanism and identify 'components'
- 2. draw 3D orbital diagram to show approach and overlap of components

■ 3. label components as suprafacial or antarafacial

■ 4. sum components according to W-H rule and decide whether allowed or forbidden

The Woodward-Hoffmann rule gives you the symmetry allowed orbital overlap but you have to decide whether the overlap you have drawn is geometrically reasonable.

The W-H Rules: a [3,3]-sigmatropic rearrangement ${ }^{9}$

- 1. draw 'curly arrow' mechanism and identify 'components'2. draw 3D orbital diagram to show approach and
overlap of components3. label components as suprafacial or antarafacial

Claisen [3,3]-rearrangement4. sum components according to W-H rule and decide whether thermally or photochemically allowed

$$
\begin{aligned}
&(4 q+2)_{s}=3 \\
&(4 r)_{a}=0 \\
& \text { Total }=3 \text { oodd } \\
& \text { Thermally allowed }
\end{aligned}
$$

Claisen rearrangement via chair TS is allowed.

$(4 q+2)_{s}=3$
$(4 \mathrm{r})_{\mathrm{a}}=0$
Total $=\mathbf{3}=$ odd
Thermally allowed

The Woodward-Hoffmann rule does not tell us that the chair TS is lower in energy than the boat TS - you need to use your knowledge/intuition to decide this.

The W-H Rules: a [2,3]-sigmatropic rearrangement

- 1. draw 'curly arrow' mechanism and identify 'components'
- 2. draw 3D orbital diagram to show approach and overlap of components
- 3. label components as suprafacial or antarafacial

Allyl sulfoxide [2,3]-rearrangement

- 4. sum components according to W-H rule and decide whether allowed or forbidden

ω-suprafacial

ω-antarafacial

The W-H Rules: electrocyclic ring-opening

- 1. draw 'curly arrow' mechanism and identify 'components'
- 2. draw 3D orbital diagram to show approach and overlap of components
■ 3. label components as suprafacial or antarafacial
- 4. sum components according to W -H rule and decide whether thermally or photochemically allowed

Cyclobutene ring-opening

Both equally valid methods for this thermal case (products identical)
Thermal ring-opening is conrotatory; Photochemical ring-opening is disrotatory.

"Violations"

■ There is an entire chapter in "The Conservation of Orbital Symmetry" given over to violations of the Woodward-Hoffmann rules

12. Violations

There are none!
Nor can violations be expected of so fundamental a principle of maximum bonding. All the more is it then important to give consideration to some reactions which might appear on casual inspection to contravene orbital symmetry conservation.

■ It's great to be able to be so confident - but remember the rules only tell us whether there is a symmetry imposed barrier to a reaction - not what the mechanism actually is.

