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Format & scope of lecture 5

• Cycloaddition reactions

– Diels-Alder reaction

• Rates

• Regioselectivity

• Stereoselectivity – the endo ‘rule’

– 1,3-Dipolar cycloadditions

• Ozonolysis

• Azomethine ylides

• Nitrones in synthesis

Key further reading:

• BOOK: Clayden, Greeves & Warren, Organic Chemistry, 2nd Ed., 

• Chapter 34 – pericyclic reactions 1 - cycloadditions

• WEB: Pericyclic Reactions - https://www.stereoelectronics.org/webPR/PR_home.html

• Chapter 2 – The [4p+2p] cycloaddition (Diels-Alder reaction)

https://bibliu.com/app/#/view/books/9780192518545/epub/OEBPS/toc.html
https://bibliu.com/app/#/view/books/9780192518545/epub/OEBPS/Chapter-34.html
https://www.stereoelectronics.org/webPR/PR_home.html
https://www.stereoelectronics.org/webPR/PR_02.html
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The Diels-Alder reaction

IMAGEs: https://en.wikipedia.org/wiki/Otto_Diels and https://en.wikipedia.org/wiki/Kurt_Alder

Otto Diels (1876-1954) Kurt Alder (1902-1958)

Nobel Prize 1950 – The [4+2] cycloaddition reaction:

https://en.wikipedia.org/wiki/Otto_Diels
https://en.wikipedia.org/wiki/Kurt_Alder


4The Diels-Alder reaction - summary 
Overall synthetic characteristics - summary:

• Reaction rates: dependent on the HOMO-LUMO energy gap
– Therefore varies as a function of reaction partner electronics

• ‘Normal’ electron demand: accelerated by having an EDG on the diene & an EWG on the dienophile (cf. A vs. B vs. C/D)

• ‘Inverse’ electron demand: accelerated by having an EWG on the diene & an EDG on the dienophile 

• Reaction regioselectivity: dependent on the coefficients (=sizes) of the HOMO & LUMO reacting orbitals
– can usually be anticipated by considering the ‘polarisation’ of the reaction partners

– ortho and para products tend to predominate (cf. Ei vs Eii)

– rate & selectivity often increased by catalysis 

• Reaction stereoselectivity: dependent on secondary orbital interactions  
– endo products formed preferentially  for normal electron demand reactions (i.e. involving EWG p-conjugated 

alkene dienophiles) (see: F)
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5The Diels-Alder reaction – rate of reaction

Reaction rates:
• Reactivity is controlled by the relative energies of the FMOs

• The key interaction is between the HOMO of one reactant and the LUMO of the other reactant
– the closer the two interacting orbitals are in energy the faster the reaction rate (cf. Klopman-Salem equation, lecture 1)

– consequently, 2 important types can be identified:

– Recall from Lecture 1: EWG (Z-substituents) lower HOMO & LUMO energies 

– EDG (X-substituents) raise HOMO & LUMO energies

– conjugating systems (C-substituents) raise HOMO & lower LUMO

• Catalysis of ‘normal’ electron demand Diels-Alder reactions is generally by ‘LUMO-lowering’ catalysis’:
– i.e., interaction of catalyst with a carbonyl conjugated to an alkene in the dienophile 
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The Diels-Alder reaction - regioselectivity

Regioselectivity – the simple but approximate method using polarities
• The regioselectivity of Diels-Alder reactions is controlled by the relative sizes of the coefficients on the reaction-

controlling HOMO and LUMO orbitals.

• For most synthetically useful D-A reactions, the outcome can also be predicted/rationalised by considering the 

resonance-based polarities of the two partners, e.g.

• However, sometimes simple consideration of polarities (predicted using resonance principles) does NOT give the 

correct prediction.

• These ‘exceptions’ are generally reactions with large HOMO-LUMO energy differences (i.e. ones with slow rates/low 

yields), e.g.



7

The Diels-Alder reaction - regioselectivity

Regioselectivity – the less intuitive but reliable method using FMO orbital coefficients
• If we calculate (or can estimate) the relative sizes of the coefficients on the reaction-controlling HOMO 

and LUMO orbitals then we can predict regiselectivities reliably.

• We are looking to match large-large and small-small coefficients.

• Z = EWG (e.g. CO2Me), X = EDG (e.g. OMe), C = conjugating group (vinyl, phenyl)
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The Diels-Alder reaction – regioselectyivity
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Regioselectivity – the less intuitive but most reliable method using FMO orbital coefficients
• We can now re-analyse the three Diels-Alder reactions we examined previously using the polarity approach.

• Recall for the 2 cases for which polarity analysis worked:

• …and for the case where polarity analysis failed:

• …the FMO orbital coefficient method correctly predicts the regiochemical outcome.
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Diels-Alder regioselectivity – dienophile polarity
• Estimating orbital coefficients:

• How does an EWG substituent on a dienophile change orbital coefficients?

• Consider acrolein as an average of allyl cation and butadiene:

• In the presence of a Lewis acid (e.g. AlCl3) acrolein

will have more allyl cation character and hence the

C-terminus coefficient of the LUMO will be larger, leading

to greater selectivity (as well as a higher rate).
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Diels-Alder regioselectivity – diene polarity

0.37 0.370.600.60

0.60 -0.60-0.370.37

0.60 0.60-0.37-0.37

0.37 -0.370.60-0.60

0.50 -0.500.50 -0.50

0.29 0.500.580.50 0.29

0.580.58 -0.58

0.50 0.50-0.50 -0.50

0.29 -0.500.58-0.50 0.29

0.45 -0.260.55

0.15 0.250.290.25

0.59 -0.48

0.55 0.55-0.44

0.33 -0.440.59-0.55

0.30

0.19

-0.19

-0.30

HOMO

LUMO

OMe

large

Energy

small

LUMOLUMO

HOMOHOMO

• Estimating orbital coefficients:

• How does an EDG substituent on a diene change orbital coefficients?

• consider 1-methoxybutadiene as an average of butadiene and a pentadienyl anion:

• HOMO of diene has a large orbital coefficient at the end of the diene.
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The Diels-Alder reaction - stereoselectivity
◼ The endo-product is generally the major with dienophiles containing p-conjugation (e.g. a Z substituent)
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◼ Secondary orbital overlap is a simple explanation for the kinetic preference for the endo-adduct 

◼ Reversibility (as in D-A reactions with furan) can lead to the thermodynamically preferred exo adduct
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The Diels-Alder reaction - stereoselectivity
◼ Drawing and working out stereochemistry for Diels-Alder reactions

OAc O

Me

H
BF3•OEt2,	50	°C

OAc

CHO

O

Me

H
H

H

OAc

H

H

H

O

Me

H
H

H

OAc

H

H

H

O

Me

H
H

H

OAc

H

H

H

1

2

3

4

5

6

1

2

3

4

5

6

OAc

CHO

Me

endo

Me

HH

H

OH

OAc

H

Me

H

H

H
H

OAc

CHO

Me

Draw diene and 
dienophile in 

appropriate 3D 
arrangement

Decorate with 
substituents & 
draw arrows to 

form bonds

Draw product in 
3D-arrangement 

like starting 
materials

Rotate to flat 
and transcribe 

stereochemistry

OH

OAc

H

Me

H

H

H



1313

The 1,3-Dipolar cycloaddition reaction

IMAGE: https://onlinelibrary.wiley.com/doi/full/10.1002/ange.202003034

Rolf Huigsen (1920-2020)

“In 2000 I was the Dean at LMU and was moderating the Festkolloquium on the occasion of Rolf's 80th birthday. Looking in the audience with distinguished guests, I 
commented that we have an Olah reagent, a Wittig–Horner reaction, a Hünig base, a Schlosser base, and so on. I do not remember all the other prominent chemists 
who were in the audience. And then I asked the question, ”Has anybody heard of a Huisgen reagent or Huisgen reaction?“ and gave the answer, ”It is due to your 
perfectionism that nobody knows about such a reaction, dear Professor Huisgen, because from the beginning you have created the term “1,3-Dipolar Cycloaddition.” I 
then continued that this term is misleading anyway, because most “1,3-dipoles” do not really have 1,3-dipolar character and suggested to speak about “Huisgen

reactions” instead. Unsuccessful: The term “1,3-Dipolar Cycloaddition” is so firmly established and “Huisgen reaction” will not be able to replace it.” Herbert Mayr

https://onlinelibrary.wiley.com/doi/full/10.1002/ange.202003034


141,3-Dipolar cycloaddition reactions - summary 
Overall synthetic characteristics - summary:

• 1,3-Dipolar cycloadditions are 6 electron [p4s + p2s] concerted pericyclic reactions:

• sometimes referred to as [3+2]-cycloadditions – this refers to the number of ATOMS (not electrons)

• There are 2 main classes of dipoles used in 1,3-dipolar cycloadditions:

• Most multiple bonds can act as dipolarophiles:

• BUT normally a C=C bond...
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1,3-Dipolar cycloaddition reactions – rates of reaction
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Reaction rates:
• Reactivity is controlled by relative energies of FMOs

• The key interaction is between the HOMO of one reactant and the LUMO of the other reactant
– the closer the two interacting orbitals are in energy the faster the reaction rate

– consequently, 2 important types can be identified:

Regiochemistry:
• Controlled by the coefficients of the FMOs, but like for the Diels-Alder reaction, can be approximated by examining the 

polarity of the components

• However, sterics can override e.g.:
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1,3-Dipolar cycloaddition reactions – 1,3-dipoles
◼ sp2-hybridized central atom
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1,3-Dipolar cycloaddition: ozonolysis
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1,3-Dipolar cycloaddition: azomethine ylid formation
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1,3-Dipolar cycloadditions in synthesis - nitrones
◼ Nitrones are readily formed between aldehydes and substituted hydroxylamines
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