CHEM60001:
 Advanced Chemistry Topics 1 - Pericyclic Reactions

LECTURE 5
Cycloaddition Reactions

Alan C. Spivey
a.c.spivey@imperial.ac.uk

Imperial College London

Format \& scope of lecture 5

- Cycloaddition reactions
- Diels-Alder reaction
- Rates
- Regioselectivity
- Stereoselectivity - the endo 'rule'
- 1,3-Dipolar cycloadditions
- Ozonolysis
- Azomethine ylides
- Nitrones in synthesis

Key further reading:

- BOOK: Clayden, Greeves \& Warren, Organic Chemistry, $2^{\text {nd }}$ Ed.,
- Chapter 34-pericyclic reactions 1 -cycloadditions
- WEB: Pericyclic Reactions - https://www.stereoelectronics.org/webPR/PR home.html
- Chapter 2 - The $[4 \pi+2 \pi]$ cycloaddition (Diels-Alder reaction)

The Diels-Alder reaction

Nobel Prize 1950 - The [4+2] cycloaddition reaction:

Otto Diels (1876-1954)

Kurt Alder (1902-1958)

The Diels-Alder reaction - summary

Overall synthetic characteristics - summary:

- Reaction rates: dependent on the HOMO-LUMO energy gap
- Therefore varies as a function of reaction partner electronics
- 'Normal' electron demand: accelerated by having an EDG on the diene \& an EWG on the dienophile (cf. A vs. B vs. C/D)
- 'Inverse' electron demand: accelerated by having an EWG on the diene \& an EDG on the dienophile
- Reaction regioselectivity: dependent on the coefficients (=sizes) of the HOMO \& LUMO reacting orbitals
- can usually be anticipated by considering the 'polarisation' of the reaction partners
- ortho and para products tend to predominate (cf. Ei vs Eii)
- rate \& selectivity often increased by catalysis
- Reaction stereoselectivity: dependent on secondary orbital interactions
- endo products formed preferentially for normal electron demand reactions (i.e. involving EWG π-conjugated alkene dienophiles) (see: F)

(i) without catalysis
(ii) with AlCl_{3}

F

The Diels-Alder reaction - rate of reaction

Reaction rates:

- Reactivity is controlled by the relative energies of the FMOs
- The key interaction is between the HOMO of one reactant and the LUMO of the other reactant
- the closer the two interacting orbitals are in energy the faster the reaction rate (cf. Klopman-Salem equation, lecture 1)
- consequently, 2 important types can be identified:

- Recall from Lecture 1:
-
-

inverse electron demand
EWG (Z-substituents) lower HOMO \& LUMO energies EDG (X-substituents) raise HOMO \& LUMO energies conjugating systems (C-substituents) raise HOMO \& lower LUMO

- Catalysis of 'normal' electron demand Diels-Alder reactions is generally by 'LUMO-lowering' catalysis': - i.e., interaction of catalyst with a carbonyl conjugated to an alkene in the dienophile

The Diels-Alder reaction - regioselectivity

Regioselectivity - the simple but approximate method using polarities

- The regioselectivity of Diels-Alder reactions is controlled by the relative sizes of the coefficients on the reactioncontrolling HOMO and LUMO orbitals.
- For most synthetically useful D-A reactions, the outcome can also be predicted/rationalised by considering the resonance-based polarities of the two partners, e.g.

- However, sometimes simple consideration of polarities (predicted using resonance principles) does NOT give the correct prediction.
- These 'exceptions' are generally reactions with large HOMO-LUMO energy differences (i.e. ones with slow rates/low yields), e.g.

The Diels-Alder reaction - regioselectivity

Regioselectivity - the less intuitive but reliable method using FMO orbital coefficients

- If we calculate (or can estimate) the relative sizes of the coefficients on the reaction-controlling HOMO and LUMO orbitals then we can predict regiselectivities reliably.
- We are looking to match large-large and small-small coefficients.
- $\mathrm{Z}=\mathrm{EWG}$ (e.g. $\mathrm{CO}_{2} \mathrm{Me}$), $\mathrm{X}=\mathrm{EDG}$ (e.g. OMe), $\mathrm{C}=$ conjugating group (vinyl, phenyl)

Substituted dienophile orbital coefficients

HOMOs

1-Substituted diene orbital coefficients

HOMOs

2-Substituted diene orbital coefficients

HOMOs

LUMOs

LUMOs

The Diels-Alder reaction - regioselectyivity

Regioselectivity - the less intuitive but most reliable method using FMO orbital coefficients

- We can now re-analyse the three Diels-Alder reactions we examined previously using the polarity approach.
- Recall for the 2 cases for which polarity analysis worked:

- ... and for the case where polarity analysis failed:

- ...the FMO orbital coefficient method correctly predicts the regiochemical outcome.

Diels-Alder regioselectivity - dienophile polarity

- Estimating orbital coefficients:
- How does an EWG substituent on a dienophile change orbital coefficients?
- Consider acrolein as an average of allyl cation and butadiene:

- In the presence of a Lewis acid (e.g. AICl_{3}) acrolein will have more allyl cation character and hence the C-terminus coefficient of the LUMO will be larger, leading
 to greater selectivity (as well as a higher rate).

Diels-Alder regioselectivity - diene polarity

- Estimating orbital coefficients:
- How does an EDG substituent on a diene change orbital coefficients?
- consider 1-methoxybutadiene as an average of butadiene and a pentadienyl anion:

- HOMO of diene has a large orbital coefficient at the end of the diene.

The Diels-Alder reaction - stereoselectivity

- The endo-product is generally the major with dienophiles containing π-conjugation (e.g. a Z substituent)

\square Secondary orbital overlap is a simple explanation for the kinetic preference for the endo-adduct

FMO approach

■ Reversibility (as in D-A reactions with furan) can lead to the thermodynamically preferred exo adduct

exo-thermodynamic

The Diels-Alder reaction - stereoselectivity

Drawing and working out stereochemistry for Diels-Alder reactions

 \rightarrow

endo

Draw diene and dienophile in appropriate 3D arrangement

Decorate with substituents \& draw arrows to form bonds

Draw product in 3D-arrangement like starting materials

Rotate to flat and transcribe stereochemistry

The 1,3-Dipolar cycloaddition reaction

"In 2000 I was the Dean at LMU and was moderating the Festkolloquium on the occasion of Rolf's 80th birthday. Looking in the audience with distinguished guests, I commented that we have an Olah reagent, a Wittig-Horner reaction, a Hünig base, a Schlosser base, and so on. I do not remember all the other prominent chemists who were in the audience. And then I asked the question, "Has anybody heard of a Huisgen reagent or Huisgen reaction?" and gave the answer, "It is due to your perfectionism that nobody knows about such a reaction, dear Professor Huisgen, because from the beginning you have created the term "1,3-Dipolar Cycloaddition."I then continued that this term is misleading anyway, because most "1,3-dipoles" do not really have 1,3-dipolar character and suggested to speak about "Huisgen reactions" instead. Unsuccessful: The term "1,3-Dipolar Cycloaddition" is so firmly established and "Huisgen reaction" will not be able to replace it." Herbert Mayr

Rolf Huigsen (1920-2020)

IMAGE: https://onlinelibrary.wiley.com/doi/full/10.1002/ange.202003034

1,3-Dipolar cycloaddition reactions - summary

Overall synthetic characteristics - summary:

- 1,3-Dipolar cycloadditions are 6 electron [$\pi_{4 s}+\pi_{2 s}$] concerted pericyclic reactions:
- sometimes referred to as [3+2]-cycloadditions - this refers to the number of ATOMS (not electrons)

- There are 2 main classes of dipoles used in 1,3-dipolar cycloadditions:

TRIGONAL 1,3-DIPOLES

notes

- 3 atom $/ 4 \pi$ electron species
- central atom $\neq \mathrm{C}$
- always have formal charges
- charges @ 1,2- NOT 1,3-positions
- linear are: sp-sp-sp²
- trigonal are $\mathrm{sp}^{2}-\mathrm{sp}^{2}-\mathrm{sp}^{2}$
- no correlation between reactivity \& geometry
- retrosynthetic 'signature' is ≥ 2 adjacent heteroatoms in the ring
- Most multiple bonds can act as dipolarophiles:
- BUT normally a $\mathrm{C}=\mathrm{C}$ bond...

$$
\mathrm{C}=\mathrm{C} \quad \mathrm{C} \equiv \mathrm{C} \quad \mathrm{C}=\mathrm{O} \quad \mathrm{C}=\mathrm{N} \quad \mathrm{C} \equiv \mathrm{~N}
$$

1,3-Dipolar cycloaddition reactions - rates of reaction

Reaction rates:

- Reactivity is controlled by relative energies of FMOs
- The key interaction is between the HOMO of one reactant and the LUMO of the other reactant
- the closer the two interacting orbitals are in energy the faster the reaction rate
- consequently, 2 important types can be identified:

Regiochemistry:

- Controlled by the coefficients of the FMOs, but like for the Diels-Alder reaction, can be approximated by examining the polarity of the components
- However, sterics can override e.g.:

nitrile oxide
(1,3-dipole)
alkyne
(dipolarophile)

3,5-\& 3,4-di-substituted
isoxazoles

1,3-Dipolar cycloaddition reactions - 1,3-dipoles
$\square \mathrm{sp}^{2}$-hybridized central atom

azomethine ylid azomethine imine carbonyl oxide carbonyl ylid

 nitrone ozone

- sp-hybridized central atom

	$\mathrm{R}=\stackrel{\oplus}{=}{ }^{+}-{ }_{0}^{\Theta}$		$\mathrm{R}=\stackrel{\oplus}{\mathrm{N}}-\stackrel{\ominus}{\mathrm{N}} \mathrm{H}$	$\stackrel{\Theta}{\mathrm{N}=\mathrm{N}_{\mathrm{N}}^{+}=\mathrm{N}^{\mathrm{R}}}$	$\mathrm{N} \equiv \stackrel{\oplus}{\mathrm{~N}}-\stackrel{\Theta}{-}$
nitrile ylids	nitrile oxides	diazoalkanes	nitrile imines	alkyl azides	nitrous oxide

1,3-Dipolar cycloaddition: ozonolysis

W-H approach

1,3-Dipolar cycloaddition: azomethine ylid formation

W-H approach

1,3-Dipolar cycloadditions in synthesis - nitrones

■ Nitrones are readily formed between aldehydes and substituted hydroxylamines

Fuchs J. Am. Chem. Soc. 2006, 128, 12656 [DOI]

