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Abstract

Introducing Quantum Geometry as a consequence of the quantisation pro-

cedure of loop quantum gravity. By recasting general relativity in terms of

1
2 -flat connections, specified by the Holst’s Modification to the Palatini ac-

tion, we can recast general relativity as a gauge theory. By preforming a 3+1

split of space-time a Legendre transformation can be preformed to give an

expression of the Hamiltonian, in terms of the configuration variables, and

the Vector, Gauss and Hamiltonian constraints on it. The system is then

quantised by refined algebraic quantisation; a suitable choice of polarisation

is chosen and by smearing the phase space variables a suitable representa-

tion of the Poisson algebra is constructed. Lattice gauge theory is applied on

graphs and the quantum configuration space and the Hilbert space, which ad-

mits a spin decomposition, is constructed. The conjugate momentum defines

an operator which, its representation, defines the Kinematical Hilbert space.

The constraint operators, that generate symmetries and diffeomorphism, are

constructed on the kinematical Hilbert space. The geometrical operators are

constructed and their corresponding eigenvalues approximate to the contin-

uum theory.
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1 Introduction

1.1 Two Great Theories

An artist on a stationary and stable backdrop works to produce an elegant work of

art. Well what if the backdrop was no longer stationary but moving, accelerating;

what if the back drop was no longer stable but changing with each brush stroke.

How then is the picture that the artist draws different to what we see? Now given

the complete picture it becomes very difficult to trace back to see what strokes the

artist made. This is the great challenge that physicist face today, tracing back from

the big picture to the very fundamental forces that make it, every day physicist

around the world step closer and closer to a grand unified theory.

1.1.1 Geometry

In standard Euclidean geometry we work with a flat stable background, with forces,

this gives rise to classical physics, and more importantly Newtons idea of gravity.

Everything then becomes set and predictable; we can observe the motion of the

moon around the earth and the earth around the sun. However we can introduce

a single photon into the system and observe the unexplainable, a photon does not

have to travel in a straight line in Euclidean geometry. The idea to expand outside

Euclidean geometry came around the mid-19th century with the work of Bernhard

Riemann who suggested that the background space need not be flat. He managed to

generalise geometry on to any manifold and thus lay the ground work for Einstein

to formulate his theory.

His use of manifolds introduced the notion of differential geometry in order to

relate a point on the overlap of two charts with different coordinates. This opened

a whole new branch of mathematics. Differential forms defined by Elie Cartan are

used to express differential equations independent of the coordinates and it also

4



carries to manifolds the notion of gradient, divergence and curl. A differential form

is an anti-symmetric tensor of the type (0, r), a 0-form is a scalar field and then

depending on its degree, r, an r-th order differentiable equation. Then the calculus

of differentiable forms, or exterior calculus, can be used to manipulate forms without

the use of a metric. Then the exterior derivative can be defined on a form increasing

the form to an r + 1 differentiable equation. Then the exterior derivative of a 0-

form yields a vector and exterior derivative of a 1-form yields a tensor. This can be

related to vector calculus because the exterior derivative of a 1-form is the curl of a

vector and the exterior derivative of a 0-form is the gradient of the function (scalar

vector).

1.1.2 General Relativity

General relativity changes the view of Newtonian gravity; it enables the mathemat-

ical description of gravity and its effects in the universe. By doing so it can describe

the motions of the planets, by accurately calculating the shortest distance from A

to B in curved space-time, rather than the circular motion describe by Newtonian

mechanics[3]. This required Einstein to view geometry in a different way without a

flat stable background, all of a sudden the world that we live in does not appear to

be as flat as we first thought. However this also begs the question if the space we

live in is curved then how accurate is π because the paper we draw the circle is not

flat. It is like drawing a circle on a ball or on the inside of a ball and calculating the

value of π. We get round this problem because the space-time is endowed with a

manifold structure, more specifically a Riemannian manifold, and as a result locally

the manifold may look like Euclidean space but globally it may not.

It was Riemann who first suggested that the geometry of space may have a more

direct physical meaning, which general relativity is a very good example of this[1].

Matter curves space-time, it mere presence changes the area around it. Matter tells
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space-time how to bend and space-time tells matter how to move - John Wheeler.

This lead Einstein to regard gravity not as a force but as a manifestation of space-

time geometry. It is in fact that gravity is geometry. Classical general relativity uses

the language of Riemannian geometry to describe the kinematics of a system [4].

However as we attempt to combine general relativity with quantum mechanics a new

type of language much be used, one that incorporates the curvature of space-time

and its quantum effect.

1.1.3 Quantum Mechanics

Quantum theory first came about when Max Planck published his formula for the

distribution of energy as a function of frequency in black body radiation, in which

a new fundamental constant was introduced - Planck’s Constant, h. This meant

that energy came in discrete packets and each packet of energy had a frequency. At

the time energy was thought to be continuous and now we find that it quantised,

which manifest itself in the absorption and emission of matter, hence Quantum

Mechanics.[5]

Since then it has been implemented in everyday life from electronic equipment

such as macro processors to flat screen televisions. It has enabled us to go from

the wave like nature of light to the photon, and it works both ways. We can take

a discrete system and approximate it to a continuous system, which is easily shown

by the wave like nature of electrons. However due to the wave like nature of the

electron it would make it difficult to confine it to a specific volume in space, even

from a particle point of view this is still the case. If we confine an electron in a re-

gion of space1 and attempted to know its exact location by the emission/absorption

of a photon by the electron. We find that the electron will either recoil due to the

emission/absorption of the photon or change it energy level because of it, therefore

1By localising the electron in an infinite potential well.

6



up to a point we can no longer be certain of it position or its momentum. Heisen-

berg’s Uncertainty principle exists between any non-commuting variables, not just

for position and momentum by also time and energy; if the electron does recoil

then we can find out how much if we know the time off emission and the energy of

the photon. The main advantage of this is quantum tunneling where the electron

can ‘borrow’ an amount of energy of a specific amount of time in order to ‘tunnel’

through a potential well.

1.2 Quantum Field Theory

At the time quantum theory and general relativity were both taking off and it was

soon realised that two theories were very much incompatible. On one hand you

have the elegance of general relativity and on the other you have the chaotic world

of quantum theory, general relativity depends on continuous variables and quantum

mechanics depends on discrete variables.

In order to begin combining these two theories2 we must first incorporate Special

Relativity and Quantum Mechanics, the result is Quantum Field Theory[6]. This

union has many interesting effects; E = mc2 allows particle annihilation and creation

and Heisenberg’s uncertainty principle allows creation of particles for a short period

of time in a vacuum.

Quantum field theory has allowed us to delve deeper into the atoms that make

up the universe and helps us accurately observe, predict and explain the out comes

in a particle accelerator. It can successfully explain the fundamental forces of nature

except gravity. This is mainly due to the coupling constant having negative dimen-

sions and therefore non-renormalisable [7]. Quantum field theory also explains why

the electromagnetic force is both attractive and repulsive and why gravity is only

attractive.

2General Relativity and Quantum Mechanics
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1.2.1 Why Masses Attract

Attraction and repulsion in quantum electrodynamics is a result of charge conser-

vation, ∂µJµ(x) = 0 the effective action is written as 3:

S =
1

2

∫
(d4k)

(2π)4
Jµ(k)∗

(−gµν + (kµkν)/m
2)

(k2 −m2 + iε)
Jµ(k) (1.1)

With charge conservation it becomes 4:

S =
1

2

∫
(d4k)

(2π)4
Jµ(k)∗

1

(k2 + iε)
Jµ(k) (1.2)

Now the potential energy between like charges is positive and hence why like charges

repel. If we write the current as, Jµ = Jµ+− J
µ
−, then the effective becomes negative

which means that the potential between opposite charges is negative and hence

opposite charges attract. [6]

The stress-energy tensor, which describes how space-time is disturbed at a point,

is the gravitational equivalent of the current in electromagnetism. Since this is a

second rank tensor it means the Graviton must be a massless spin 2 boson. The

effective action of a massive spin 2 vector boson is:

S = −1

2

∫
(d4k)

(2π)4
T µν(k)∗

(GµλGνσ +GµσGνλ)− 2
3
GµνGλσ

(k2 −m2 + iε)
Tµν(k) (1.3)

As before we impose the conservation of energy and momentum by

∂µT
µν(x) = 0 and we get:

S =
1

2

∫
(d4k)

(2π)4
T 00(k)∗

(1 + 1)− 2
3

(k2 −m2 + iε)
T00(k) (1.4)

3The derivation used in [6] is for a massive vector boson were mass will be set to zero at the
end.

4W(J)instead of S in [6]
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Which is always greater than 1 and therefore the potential will always be negative

and hence masses will attract and as a result why space-time only has positive

curvature.[6]

1.2.2 Inconsistencies

The inconsistencies in general relativity are due to its prediction of space-time sin-

gularities, black holes and big bang singularities. Where the density of matter and

the curvature of space-time tend to infinity, such infinities have no room in a fun-

damental theory and hence general relativity is seen as a classical approximation to

a unified theory. Hence the need for a quantum theory of gravity as it could avoid

these singularities in a similar way as quantum mechanics explains the stability of

atoms.[17]

The main inconsistency of the quantum theory arises from the Einstein equa-

tions,

Rµν −
1

2
Rgµν = κTµν(g) (1.5)

where geometry and matter are coupled together. The energy-momentum tensor

is governed by quantum field theory due to vacuum fluctuations, and as a result

as we move in to the quantum world this is replaced by the vacuum expectation

value, T̂µν(g0)5. Then the inconsistency arises due to the dependence of the energy-

momentum tensor on the metric, because g0 6= g. As a result it becomes almost

impossible to obtain a field theory when the metric is dynamical even more so when

the metric is dependent on the field itself. Therefore we are forced to consider

background independent theories or by summing over all possible backgrounds6.

However the resulting theory is non-renormalisable and is no longer background

independent, which is the ultimate goal of the theory.

5The operator is one acting on a Hilbert space hence expectation values are taken.
6the total metric is a sum of the Mankowski metric and the perturbations of gravity[17]
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1.3 The Continuum Nature of Physics

At the macroscopic level and above we find that quantisation of parameters is not

necessary since the discrete steps are many and close together, so a continuous ap-

proximation is much better suited, but does not work in the quantum world[1].

Since the birth of Quantum mechanics Planck’s constant has been the major factor

in quantisation, it has been used to describe the smallest energy packet per sec-

ond. However when combined with other fundamental constants it produces a new

constant called the Planck length7,

`P =

√
~G
c3
≈ 10−33cm (1.6)

The Planck length current is conjectured to be the smallest distance measurable

however the obvious question arises ’What is the physics like below the Planck

length?’ So far the physics well above this scale is well tested but as the physics

approaches the Planck length quantisation is required. Quantisation of energy has

been successful however it is necessary to quantise space-time? From Heisenberg’s

uncertainty relation we can see that physically there is a limit to how much we can

measure distances and momentum, this is ultimately due to the Planck’s constant.

So what happens then between the intervals of the Planck length? We could try to

probe this region with a highly energetic photon but due to quantum indeterminacy

this will yield no information, the photon that energetic would create a Planck

particle8. As a result it would be unable to escape the gravitational pull of the

Planck particle. Hence to understand the dynamics at the Planck length we must

first understand the geometry of space-time at this length.[25]

7~ is h
2π , G is Newton’s gravitational constant and c is the speed of light.

8Where the Compton wavelength of the particle is roughly equal to the Schwarzschild radius
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2 Quantum Geometry

2.1 Why is Quantum Geometry?

The impact that general relativity has made has completely changed our concept

of gravity; from Newton’s idea about a physical interacting planets to Einstein’s

theory of mass causing curvature. One of the main point of general relativity is that

gravity is geometry; it is no longer just the interaction of two masses attracting but

the motion due to the curvature of space-time. This opens the philosophical debate

on weather matter exist due to the curvature of space-time or does matter curve

space-time.

General relativity states that the geometry of space-time is dynamical and as a

result its formalism was due to a specific formalism of quantum gravity, loop quan-

tum gravity. From the equation (1.5), attempts to quantise the energy-momentum

tensor has resulted in an ambiguous metric, however we can use the operator versions

of the geometrical tensors and this yields the quantum Einstein equations.

R̂µν −
1

2
R̂ĝµν = κT̂µν(ĝ) (2.1)

where the left hand side is the quantisation of geometry and the right hand side is

the quantisation of matter.

2.2 Approach to Canonical Quantum Gravity

The formalism of quantum geometry was a bi-product of the loop quantum gravity

theory, it began with Ashtekar reformulating general relativity in terms of connec-

tions, more specifically half-flat connections. This meant that general relativity

can then be approximated to a gauge theory and therefore attempt quantisation

by construction of the Hamiltonian system, where the variables are the tetrads and
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connections. The Hamiltonian can be derived from a Legendre transformation and

then the system can be quantised by the process of refined algebraic quantisation.

The quantisation process involves construction of the Poisson sub-algebra, which is

constructed on a lattice type structure using graphs. Then we consider its represen-

tations on the kinematical Hilbert space, we find that there is a unique decomposition

of the Hilbert space due to the use of the half-flat connections. The spin network

decomposition arises due to the decomposition of the kinematical Hilbert space as a

sum of Hilbert spaces of each lattice or graph9. Then the construction and regular-

isation of the geometrical operators can be done on the kinematical Hilbert space.

Then we can impose the constraint of the Hamiltonian system on these operators

and construct the dynamics of the system.

Quantum geometry, or more accurately quantum Riemannian geometry, is the

mathematical framework of quantum gravity just as differential geometry provides

a basic mathematical framework to formulate modern gravity theories. Quantum

geometry provides the necessary techniques in the quantum domain. [26]

9If we consider many charts on a manifold then each chat can locally be approximated to flat
space or in our case an individual lattice/graph. Then by considering the union of all charts we
can generate a complete picture of the manifold
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3 The Connection Theory of Relativity

3.1 Metrics and Connections

General relativity is the only fundamental force that has a dependence on the metric

and hence the connection. As a result it makes sense to recast general relativity so

that the metric and the connection become the basic variables in the theory. We find

that general relativity as a theory of connections actually resembles a gauge theory

and the description of gravitational interactions is similar to the other fundamental

forces of nature. This theory was only discovered recently, in the last 25 years,

however Einstein and Schrödinger both gave the reformulation many years earlier

but then later abandon the idea due to a more complicated basic equations and a

more complicated metric.[1]

Riemann geometry, the language of general relativity, uses the metric and con-

nection to define distance and curvature within a manifold. In the specific case

of general relativity the usual notions of defining distance change hence the need

to have a metric and a connection. The connection is defined to be the parallel

transport of the objects10 along a curve but in general if the curve is closed, i.e. a

loop, then the object does not return to its original position. In fact it is rotated by

a unitary matrix,where this unitary matrix is a measure of curvature in the region

enclosed by the closed curve. [1] Therefore we can use the connection as an indepen-

dent variable rather then before where we used the metric which gives a connection,

the Levi-Civita connection. In the case that a Riemannian manifold has vanishing

torsion11 we obtain classical Newtonian gravity, the metric connection then becomes

the Levi-Civita connection12.

10vectors, tensors...etc.
11Torison is the antisymmetric part of the connection and characterises the twisting of the tetrads

along a curve.
12This is just a symmetric part of the connection[12]
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3.2 Palatini Action and the Symplectic Structure of Phase

Space

The Palatini framework assumes that the metric and connection are basic and inde-

pendent and the corresponding Palatini action writes the traditional Einstein-Hilbert

action in terms of tetrads and differential forms. This makes it easier when per-

forming differential calculations on a manifold as we can take advantage of the back-

ground independence of the differential forms. We begin by defining a 4-dimensional

manifoldM with a fixed orientation and a system of one-forms that provide a basis

for the co-tangent space, these basis one-forms are known as co-tetrads or co-frame

fields13.

The Palatini action is given by,

S(p)(e
I
µ, ω

I
µJ) =

1

4κ

∫
M
εIJKLe

I
µ ∧ eJν ∧ ΩKL

µ (3.1)

where κ = 8πG and εIJKL defines the orientation of the manifold. The co-tetrads,

eIµ determine the metric, gµν = ηIJe
I
µe
J
ν where ηIJ is the fixed metric14. ΩKL is the

curvature 2-form defined by the second cartan structure equation,

ΩI
µJ = dωIµJ + ωIµK ∧ ωKµJ (3.2)

where ωIµJ is the spin connected 1-form. In the case of vanishing Torsion the first

cartan structure becomes,

0 = deIµ + ωIµJ ∧ eJµ (3.3)

13I, J,K, . . . represent the internal indices of the tetrad and µ, ν, . . . represent the space-time
indices

14Lorentz metric


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, or Riemann metric,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.
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which implies that ωIµJ is dependent on eIµ, the co-tetrad.

We can reduce the Palatini action to the more familiar Einstein-Hilbert action

by going from the non-coordinate basis to the coordinate ones.

S(H)(e
I
µ, ω

I
µJ(e)) =

1

2κ

∫
M

√
−det(g) d4x gµνRµν (3.4)

where gµνRµν = R is the Ricci Scalar and
√
−det(g) d4x = εIJKLe

I
µ ∧ eJν which is

the volume element15.

Holst modified version of the Palatini action (3.1) results in the configuration

variable being real. When Ashtekar presented his variables they made the Hamilto-

nian constraint much simpler than that of the AMD method, however this introduced

a complex phase space action. Further work by Samuel, Jacobson and Smolin re-

sulted in Barbero theorising and defining new variables based on Ashtekar’s ones.

Unfortunately this did not work, but it lead Holst to follow Barbero formalism and

modify the action by solving for the rotational part of the spin-connection[8]. The

actual modification is very similar to that of the modification to the action in the

Yang-Mills theory, and as such the addition of the extra term does not change the

equations of motion. Also the actual Holst modification is always zero because it

satisfies the Cartan structure equation and due to vanishing Torsion it will therefore

yield the Einstein-Hilbert action.[4]

The action with Holst’s modification is give by,

S(H) = S(P ) −
1

2κγ

∫
M
eI ∧ eJ ∧ ΩIJ (3.5)

where γ is the Barbero-Immirzi16. We also find that γ is analogous to the θ-

15The coordinate differentials, dx, dy . . . etc. are usually held within the differential forms them-
selves.

16in [8] parameter and for applications in quantum theory γ is non-zero this is given as α and
in [9] it is given as 1

β
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parameter in quantum chromodynamics. the term in the Palatini action ΩIJ is

the dual operator of ΩIJ and hence defined by,

γΩIJ = γ ∗ ΩIJ =
γ

2
εKLIJ ΩKL (3.6)

We continue by defining a symplectic structure17 of the covariant phase space,

this will enable us to define a half-flat connection. The symplectic form, Ω, is a

closed differentiable 2-form that is non-degenerate18.[12] A symplectic 2-form can

expressed as the exterior derivative of a one-form, θ,

θ = qµdp
µ (3.7)

which yields the following properties of Ω.

dΩ = d2θ = 0 (3.8)

Ωp(Xp, Yp) = 0 ∀ Yp ε Tp(M)⇒ Xp = 0 (3.9)

in [13] we find that the symplectic one-form, θ, is defined through the calculations

of variations on the Lagrangian, since, L = L(e, A), then the symplectic one-form

is given by:

θ =

∫
M

∂L
∂ωIµJ

∧ deIµ (3.10)

and using the equation (3.8) the symplectic two-form is defined by,

Ω = d(

∫
M

∂L
∂ωIµJ

∧ deIµ) (3.11)

17the generalises the Hamiltonian description of classical systems there by making it coordinate
independent.

18In classical mechanics it is given by the cartan wedge product between the exterior derivative
of the phase space variables dq ∧ dp
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using the formula,

d(χ ∧ dω) = dχ ∧ dω + (−1)qχ ∧ d2ω19 (3.12)

and the property from (3.8) we find that the symplectic two-from becomes,

Ω =

∫
M

d

[
∂L
∂ωIµJ

]
∧ deIµ (3.13)

Therefore the variables in the phase space will be based on the co-tetrad and ∂L
∂ωIµJ

.

Using this and (3.6) the definition of 1
2
-flat connections can be used to construct

a background independent theory.

3.3 1
2 Flat Connections

The variables in the phase space now become the tetrad, eIµ, and the 1
2

flat connec-

tion, ω
(+)
IJ , which is defined as,

ω
(+)
IJ =

1

2
ωIJ − γ ∗ ωIJ (3.14)

Now ω
(+)
IJ is the anti-self dual20 part of ωIJ . We can also define ΣIJ

(+) to be the

(anti)-self dual part of eI ∧ eJ ,

ΣIJ
(+) =

1

2
(eI ∧ eJ − γ ∗ eK ∧ el) (3.15)

The Holst action then simplifies down to,

S(H)(e
I , ω

(+)
IJ ) = − 1

κγ

∫
M

ΣIJ
(+) ∧ Ω

(+)
IJ (3.16)

19χ is a q-form
20self dual if γ = −1 and anti-self dual if γ = 1
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where Ω
(+)
IJ is the curvature of ω

(+)
IJ and defined as,

Ω
I(+)
µJ = dω

I(+)
µJ + ω

I(+)
µK ∧ ω

K(+)
µJ (3.17)

The phase space, Γ, is the Hamiltonian phase space of the theory and as such

it has a specific definition of the symplectic two-form,

Ω = dpµ ∧ dqµ (3.18)

which implies that our definition of the symplectic two-form can be written in term

of the phase space variables (P a
IJ , A

IJ)21. Hence,

Ω =

∫
M

dP a
IJ ∧ dAIJa (3.19)

we can define in terms of co-tetrads and 1
2
-flat connections,

Ω = − 2

κγ

∫
M

dΣIJ
(+) ∧ dω

(+)
IJ

22 (3.20)

where A is defined as the pull back of ω and p is defined as,

P a
IJ = − 1

2κγ
ηabcΣ

(+)
bcIJ (3.21)

Now we can use these new conical variables to define a new action, an action that

is now base on 1
2

flat connections.

21AIJ is the configuration variable and P aIJ is the conjugate momentum
22Note that Ω is still a two-form because we are taking exterior derivative of functions, i.e. the

coefficients of their respective forms. The result is a one-form, and a two-form is generated when
you have the exterior product of two one-forms.
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3.4 Hamiltonian Formalism of Relativity

Now that the action has been defined using 1
2

flat connections we can now formulate

a Hamiltonian system given in the language of gauge theory. However the theory

is currently a Lagrangian one and therefore we must perform a Legendre trans-

formation in order to calculate the Hamiltonian and hence derive the Hamiltonian

theory.

In order to perform a Legendre transformation we must first introduce a foliation

in space-time and we must fix our notation of time due to the nature of general

relativity. Time is dependent on the geometry of space-time and as a result it

is represented by a dynamical vector field, the integral curves of this vector field

intersect the foliation only once. Lie derivatives with respect to the vector field will

replace usual time derivatives.[11]

We decompose the time evolution vector field, T µ, into its normal and tangential

parts.

T µ = Nnµ +Nµ (3.22)

where nµ is the normal basis23, N is the lapse function and Nµ is the called the

shift vector field. The lapse function ‘pushes’ time in the normal direction and the

shift vector field ‘pushes’ time in the tangential direction. We can now use these

functions to project out the tangential and normal components time in the tetrads,

co-frame fields.

Now we can use nµ and the spatial metric,

hµν = gµν − nµnν (3.23)

to project out the parts of the fields that are normal and tangential to the foliation.

This essentially splits the field into normal and tangential parts of time but this

23Normal to the foliation.
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does not change the action or any resultant physics as this is just a projection24.

We can also used these to give a more formal definition to the lapse functions and

the shift vector field, [14]

N = gµνt
µnν (3.24)

Nµ = hµν t
ν (3.25)

since Nµnµ = 0.

The spatial metric acting on the co-tetrads can be incorporated into the con-

jugate momentum, P a
IJ , and as a result the conjugate momentum is based on the

spatial projection of space-time. It is related by,

− Tr
(
P aP b

)
= P a

IJP
bIJ =

1

κ2
(det h)hab (3.26)

where hab the 3-metric.

Now we can construct the action in terms of the Hamiltonian variables,

S =

∫
dt

∫
M

d3x(P a
IJLTAIJa −H(+)) (3.27)

where the Hamiltonian density, H(+),is defined as,

H(+) = −
(
ω

(+)
IJ · t

)
GIJ +NaC(+)

a +NC(+) (3.28)

with,

GIJ = DaP a
IJ = ∂aP

a
IJ + AKaIP

a
JK + AKaJP

a
IK (3.29a)

C(+)
a = P b

IJF
IJ
ab (3.29b)

24This is quite similar to projecting out a vector, we are changing the basis into parts that are
tangential to time and normal to time, this can only be done because we have expressed time as a
dynamical vector field.
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C(+) = − κ√
|det q|

P aJ
J P bK

J F I
abK (3.29c)

where F IJ
ab is the curvature of AIJa , defined by, F = dA+ A ∧ A.

Note that ω
(+)
IJ · t, Na and N are the Lagrange multipliers and variations of the

action with respect to these multipliers yields the following constraints,

GIJ = 0; C(+)
a = 0; and C(+) = 0 (3.30)

Due to the use of 1
2
-flat connection we find that we have casted general relativity

as a gauge theory and as a result it contains a group structure which is similar to

SU(2)25 and AIJa plays the role of the SU(2) connection. [4]

The constraints in the equations (3.29) generate transformations in the groups

structure:

• GIJ generates internal gauge transformations.

• C(+)
a generates diffeomorphism on M.

• C(+) generates evolutions along Nnµ.

These constraints become important during quantisation the gauge and diffeo-

morphism constraints are kinematical gauge symmetries and operate at fixed time

hence kinematical. However the last constraint is the Hamiltonian constraint and it

is used to describe the dynamics of the system.

3.5 Gauge Fixing

It is convenient to preform a partial gauge fixing. We define an internal vector field,

nI ∈ M , then we can define a projection operator, qIi
26, on to the sub-space of M

25SU(2) is for the Riemannian case, which we are deriving, however the group structure is
actually the spin group SO+ (η) (which is isomorphic to SU(2)).

26i, j, . . . represent spatial indices
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that is orthogonal to nI . This vector field is used to define the unit normal to the

foliation,

nα = nIeαI (3.31)

Then using the projection operator we can define the fixed metric on M ,

ηij = qIi q
J
j ηIJ (3.32)

Now the internal group structure is now defined by the subgroup based on ηij, which

leaves nI invariant. Now each co-tetrad defines a co-triad, which is the projection

of the tetrad onto M ,

eia = eIαq
I
i q
α
a (3.33)

the induced metric on M is given by,

qab = eiae
j
bηij (3.34)

Then the half flat connected one-form, ωIJα
(+)

, on M defines a connected one-form,

Γia, on M , throught the equation,

∂ae
j
b − Γcabe

j
c + εjklΓ

k
ae
l
b = 0 (3.35)

where εijk = qiIq
j
Jq

k
Kn

LεLIJK . ωIJα
(+)

also defines extrinsic curvature,

Ki
a = qiIq

α
aω

IJ
α

(+)
nJ (3.36)

then the conjugate momentum on M can be expressed as,

P a
i =

1

2κγ
ejbe

k
cη

abcεijk (3.37)
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and the configuration variable can also be re-defined as,

Aia = Γia − σγKi
a (3.38)

where σ is the signature of the fixed metric, ηij. In Lorentzian general relativity the

connection is complex valued and the structure group is non-compact this creates

a few problems and in order to resolve these problems was to do a partial gauge

fixing. The result is the projection on to the spatial part of M, M . As a result the

structure group becomes compact and the connection is also real valued, only if we

deal with real values of γ. Unfortunately this means that the expressions for the

constraints and the Poisson algebra become more complex,[4]

Gi = DaP a
i = ∂aP

a
i + εkijA

j
aP

a
k (3.39a)

Ca = P b
i F

i
ab −

σ − γ2

σγ
Ki
aGi (3.39b)

C = − κγ2

2
√
|det q|

P a
i P

b
j ε
ij
k F

k
ab + (γ2 − σ)κ∂a

(
P a
i√
|det q|

)
Gi (3.39c)

It is important to note the difference between AIJa and Aia. A
IJ
a is the pull back

to M of the space-time connection AIJα , where as Aia is the connection defined by

the spin connection and extrinsic curvature. The extrinsic curvature is the spatial

projection of ωIJα
(+)

and the spin connection is defined through the spatial triad.

[27]

The configuration variable AIJa has , 3 × 3 = 9 degrees of freedom (3 internal

and 3 space) and equations in (3.29) gives us 1 + 3 + 3 = 7 constraints. This leaves

2 degrees of freedom, which variations of the action with respect to,AIJa , and,P a
IJ ,

yield the 2 equation of motion to take up the remaining 2 degrees of freedom.
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3.6 The AMD Formalism

For the last 35 years efforts to formulate quantum general relativity has been slowed

down by the Arnowitt-Deser-Misner (AMD) formalism, in particular the lack of

mathematics on quantising the AMD formalism. The 3 + 1 split was introduced in

the AMD method however the variables used in the formalism was the metric and its

corresponding extrinsic curvature and as a result the number of degrees of freedom

did not balance out. However due to Ashtekar reformulating the connection theory

of gravity has lead him and others to express general relativity as a gauge theory,

and mathematical techniques in quantising a gauge theory have been around since

Dirac and therefore it has lead to a steady progress in this field.
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4 Refined Algebraic Quantisation

Refined algebraic quantisation was originally considered by Dirac and then generlised

by Giulini and Marolf. [16] [15]

Refined algebraic quantisation allows quantisation of a Hamiltonian system with

only first class constraints27. Now the main idea of quantisation is that certain

equations of motion (the constraints of a gauge system) need not be imposed directly

at the operator level, but should be imposed as conditions that select certain physical

states.[15]

The starting point is to have a classical system with a constrained phase space,

Γ, and a symplectic one-form, ω, on Γ, which defines a Poisson bracket on the phase

space. In order to quantise such a system there is a method based on the main

ideas of [15] and summarised in [17] and for completeness the main points are listed

below.

4.1 9 Steps to Algebraic Quantisation

1. Phase Space and Constraints

To begin we require a system defined by a Hamiltonian, H, with its set of first

class constraints and a phase space is also required.

2. Polarisation

In order to quantise the phase space we must choose a suitable polarisation ,

we have to choose a sub-space known as the configuration space. This config-

uration space must have the following properties:

(a) The configuration space, A, should be large enough so that any function

that is described on the space may be represented by A elements.

27General relativity has already been reformulated into a Hamiltonian system in section 3 but it
is also only has first class constraints due to the equations in (3.30) are 0. i.e. the Poisson brackets
between the constraints vanish.
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(b) The coordinates of A must have a vanishing Poisson brackets.

(c) A should be closed under complex conjugation. [16]

The polarisation is how we split the symplectic manifold into the configuration

variable and the momentum variable. Some choices of the variables make the

equations of motion much simpler therefore our choice of polarisation will mean

that our choice of phase space variables would yield the simpler equations of

motion.

3. Poisson Sub-Algebra

We must define the sub-algebra by defining a space of smooth function, C∞ (C),

and a space of smooth vector fields, V∞ (C), on C. The pair C∞ (C)× V∞ (C)

forms a lie sub-algebra defined with elements of the functions, f , and vectors,

v. The sub-algebra is denoted, B.

4. Representation Theory of ∗-Algebra

We consider irreducible representations of the Poisson sub-algebra as linear

operators on the kinematical Hilbert space. We define the quantum configu-

ration space based on graphs, then consider its representation on the Hilbert

space. This can only be done by define a measure on the Hilbert space which

is an invariant volume element. This is to give our Hilbert space background

independence.

5. Kinematical Representation

We chose suitable kinematical representation of the Hilbert space, that is the

construction of the constraint operators on a dense domain with in the kine-

matical Hilbert space. The operators in this dense domain and their adjoints

leave this space invariant, it is typically a space of smooth functions which are

defined by the configuration variables.
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6. Constraints

Then the constraint operators are used to generate gauge invariant states hence

we impose them on the quantum system.

4.2 Construction of Poisson Sub-algebra

4.2.1 Polarisation

We have already defined in section 3 the Hamiltonian and the set of first class

constraints. The variables Aia and P a
i are used to define the phase space, where Aia

is the SU(2) connection in M and P a
i is a vector density over M. These variables are

our current choice of polarisation. The configuration space is, A, which is the space

of all suitably regular SU(2) connections on M. [17]

4.2.2 Smearing Functions

Now we have chosen the polarisation we can go onto define the Poisson sub-algebra,

to do this we must define a space of smooth function, C∞ (A), and smooth vectors,

V ∞ (A), on the configuration space, A. At the moment it is not clear as to what

smooth or differentiable means on the configuration space, as a result the config-

uration space must be given some form of manifold structure. A suitable choice

would be to model the manifold structure on a Banach space28, mainly due to it

relation to Hilbert spaces and it make an easier transition from the configuration

space to the Hilbert space. However this creates a problem by use of this definition

due to the configuration variable no longer being diffeomorphic, and this is because

of it’s functional derivative29 is proportional to a δ function. In order to preserve

28A Banach space are defined as complete normed vector spaces.[18]
29A function is differentiable at a point in A if there exists a bounded linear function, which is

nothing more than a functional derivative.
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homeomorphism and diffeomorphism AIJa must be smeared with a test function:

F [A] =

∫
d3xF a

IJ(x)AIJa (4.1)

where F a
IJ is a smooth test function. Unfortunately this functions makes it difficult

to construct SU(2) invariant functions from them, but the theory is very similar to

the canonical quantum Yang-Mills gauge theory and as a result a uniques solution

was found using Holonomy algebra. [17]

4.2.3 Holonomies

If we have a Riemannian manifold M with a connection, ∇, we can consider a set

of closed curves, c, at a point, p, and the parallel transport of a vector along those

closed curves. We find that the initial vector is not the same as the final vector, as

a result we can define a map or a group of maps that transform the initial vectors

to the final vectors along the closed curves. The set of transformation is called the

holonomy group. The reason for the transformation is due to the curvature is the

manifold30 and the holonomy essentially describes the curvature of the connection,

which means that it is background independent.[12]

In order to use holonomy we must first specify a principle fiber bundle31 to

which the one-form,A(c), which is a pull-back of a tensor on the fiber bundle to M.

Now on bundles holonomy can be used to define group elements using the connected

one-form, A(c), as a result the equation is obtained.

gc = Pe(−
∮
c A(c)dx) (4.2)

30Consider a vector on a sphere, then move it along the sphere in any direction. Depending on
the path the vector has been parallel transported the new vector will not be the same as the one
you started with.

31see section 4.3.1 for definition.
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where P denotes path ordering. The trace of the integral yield Wilson loops func-

tions, which are gauge invariant functions if c is a closed curve. It is this use of

holonomies in the theory is the reason why quantum general relativity is labeled

Loop Quantum gravity.

Holonomy is the geometrical consequence of curvature of the connection and

as a result we can see how these functions change within the manifold, M. Given a

curve, c from point t1 to t2 then the parallel transport is defined by the differential

equation.

dhc,A(t)

dt
h = hc,A(t)Aai (c(t))

τj
2
ċa(t) (4.3)

where A ∈ A, hc,A are elements of SU(2)32, τj are the SU(2) generators and Ai (c(t))

is the connection. Due to hc,A being a holonomy it has the initial condition hc,A(0) =

1. The unique solution to equation (4.3) is,

A(c) = hc,A(1) ∈ SU(2) (4.4)

The holonomy at point, A ∈ M , along a curve,c, is A(c) which corresponds to an

SU(2) element hc,A(1) where hc,A is a set of functions that map the curve to SU(2)

elements.

We can see from equation (4.2) that holonomy actually smears33 Aia only in one

dimension, but in order to obtain a well defined Poisson algebra we require smooth

functions of AIJa . However this is not necessary if we smear the conjugate momentum

variable as well.[17]

32As defined by the The Berger classification
33Smearing is a process used to remove delta functions to ensure that the connection is differen-

tially smooth.
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4.2.4 Smearing Fields

If we smear the conjugate momentum variable34 then we must do so along two di-

mensions in order to ensure that Poisson algebra does not depend on a δ-distribution

function. In order to smear the function we take its dual,

Σ = εP = ∗P (4.5)

and integrate over a surface, S,

E(S) =

∫
S

fiΣ
i (4.6)

where S is a two-dimensional open surface.

Now if we continue to calculate the naive Poisson bracket between momentum

variables with respect to two smearing fields, we find that it is not zero.

{P [S, f ], P [S, g]} 6= 0 (4.7)

This is to ensure that the Jacobi identity between A(e), P [S, f ]andP [S, g] is equal to

0. In order to get round this problem we have to relate the momentum variable to a

smooth vector field, V∞ (C), by doing so the Poisson bracket becomes well defined35.

[21]

Since the configuration space has the group structure of SU(2) and it’s phase

space defined as a co-tangent bundle. That means that every smooth function,

f , on the configuration space defines a configuration variable on the phase space.

Also every smooth vector field, X i, on the configuration space defines a momentum

34In the Yang-Mills theory this is denoted as electric field
35In fact this was only considered while imposing refined algebraic quantisation on the theory
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variable on the phase space,

PX = X ipi (4.8)

On a co-tangent bundle the Poisson brackets between the configuration and

momentum variables mirrors the action of the vector field on the function. [4]

{PX , f} = −LXf and {PX , PY } = −P[X,Y ] (4.9)

Now the lie algebra of functions and vector fields on the configuration space

is now defined and as a result the lie algebra between the momentum and config-

uration observables are also defined. As we move to the quantum theory we find

that configuration operators are associated with the smooth functions, C∞, in the

configuration space and the momentum operators are associated with the smooth

vector fields, V∞, also in the configuration space. The lie bracket between functions

and vector spaces is defined as:

[(f ′, PX), (f ′, PX′)] = (PX′ · f − PX · f ′, [PX′ , PX ]) (4.10)

The phase space will consist of the conjugate momentum and the configuration

variable (Aia, P
a
i ) where Aia ∈ A is the 1

2
-flat connection it is smeared along the

curve, e, to become the configuration observable A(e) ∈ C∞, which is the holonomy

of the connection along the curve, e.

P a
i is the conjugate momentum variable and it is analogous to the Yang-Mills

electric field. This is smeared along a surface, S, with a continuous function, fi to

give the momentum observable P [S, fi] ∈ V∞, the momentum observable is defined

on the configuration space as a vector field.

The Poisson brackets between the configuration observables vanishes amongst

themselves, this is due to the configuration space being defined as a co-tangent
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bundle. The Poisson bracket between the configuration observable, A(e), and the

momentum observable, P [S, fi], is given as,

{A(e), P [S, fi]} = κ

∫
d3f ia(x)

δA(e)

δAIJa (x)
(4.11)

which is given in [21] as,

{Ae, P [S, fi]} = −κ
2
f i(q)Tr

[
A(

1

2
,
1

2
)τ i
]

+
κ

2
f i(p)Tr

[
τ iA(1, 0)

]
(4.12)

where p and q are where the surface, S, and the curve, e, intercept. A(1
2
, 1

2
) denote

the start and end of the closed curve. This is given for the example in the paper

however it can be seen here that a generlised and more simplified version can be

defined in [4] as,

{A(e), P [S, fi]} = −
[
κ(S, e)

2

]
×

 A(e)τ ifi(p) if p is the source of e

−fi(p)τ iA(e) if p is the target of e
(4.13)

where the function κ(S, e) denotes the intersection of e and S,

κ(S, e) =


0, if e ∩ S or e ∩ S = e

κ, if e lies above S

−κ, if e lies below S

(4.14)

We have smeared the conjugate momentum in two dimensions but can we do it

in 3 dimensions? Unfortunately this is not the case due to an integral over the the

extra dimension and therefore the algebra would not be closed. [17]
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4.3 Representation of ∗-Algebra

We find that during the quantisation process our Hilbert space ,the representation

of our algebra, can be decomposed into Spin states, this is due to defining the

momentum variable as a vector field in the configuration space, equation (4.8). As

a result the vector field can then be defined as a left invariant or a right invariant

vector field36. Then the corresponding momentum functions can be defined in terms

of the left and right invariant vector fields. These functions are just generlised

angular momentum functions in SU(2) and as a result the Hilbert space exhibits a

spin network decomposition. [4]

4.3.1 Gauge Theory on Connections

Before we consider the decomposition of the Hilbert space we must ensure that the

theory is gauge invariant, this means that the configuration space must be gauge

invariant in order to generate the Hilbert space.

If M is our manifold the we can define a principle bundle37 B(M,G) over M.

The exist a vertical subspace VuB which is a subspace of the tangent space TuB

which is tangent Gp at u, where u ∈ B(M,G) and p is its projection form B(M,G)

to M . We denote VuB as G, the group of local gauge transformations. Then the

quotient space A/G serves as the physical configurations space of classical gauge

theory. [23]

4.3.2 Gauge Theory on Graphs

If we compare our theory to lattice gauge theory we are missing a very important

object, the lattice! Now with hindsight we can see that our Hilbert space can be

decomposed as a spin network decomposition; graphs are used to represent those

36This is due to the vector field being defined on the configuration space which is a lie group
37A principle bundle has a fiber bundle which is identical to a structure group G. [12]
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spin states.

A graph, γ is a set of edges and vertices and has the following properties38:

1. every edge e ∈ γ is diffeomorphic with closed interval [1, 0]

2. the intersection of two different edges e1 ∩ e2 is a vertex.

3. every edge is connected at at both ends with another element of, γ39.

By definition of a graph we can see that it also generates our ‘lattice’ in the com-

parison with lattice gauge theory, where each vertex represents a point or node and

each edge is equivalent to the lattice spacing.

A graph, γ′ can be larger than another graph, γ if every edge, e, can be written

as a union of several edges, e′. It is this property that will create some difficulty

when constructing the Hilbert space.

By restricting the bundle B(M,G) to be a bundle over a graph, γ, then the Bγ

becomes the space for γ, and we can further restrict the bundle over each edge, e,

in each graph.

Bγ =
⋃
e∈γ

Be (4.15)

Then for every edge there exist a smooth connection Ae on Be, if e is oriented then

Ae is the parallel transport over the edge.[23]

We can restrict the configuration space, A, to a configuration space over γ, Aγ,

then we can define a 1-1 map,

πγ : A → Aγ (4.16)

This map can be used to define a projection between the configuration spaces be-

tween different graphs,

pγγ′ : Aγ → Aγ′ (4.17)

38As defined in [23]
39This is to ensure that the graph is closed.
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Then we can take the projective limit of (4.17) by considering all graphs, this is

denoted the quantum configuration space, Ā.

The connection, A ∈ A, defines a point, Aγ ∈ Aγ, then the collection of points,

Aγ for all graphs defines a quantum connection, (Aγ)∀γ = Ā, in the quantum con-

figuration space, Ā ∈ Ā. [23]

Since the configuration space, A, is the space of smooth connections, A on the

bundle, B, and by restricting the bundle we can restrict the configuration space and

hence the connections to be smooth connections, Aγ ∈ Aγ, on Bγ.

4.3.3 Quantum Configuration Space

The group for local gauge transformations is defined above and for each graph

it is Gγ, however we can restrict this to a subgroup, Ĝγ, where all local gauge

transformations are the identity in B at the vertices of γ. Now the configuration

space, Aγ, is infinite dimensional due to redundancies when preforming a local gauge

transformation along the edges of the graph. [4] To remove these redundancies

we must generate the quantum configuration space, Āγ, for a smooth quantum

connection Āγ ∈ Āγ . This can be done by defining Āγ to be a quotient space,

Āγ = Aγ/Ĝγ (4.18)

By definition of a principle bundle [12] there exists a map between the bundle

and it structure group, G, as a result there also is a map between the configuration

space and the structure group, [23]

Λe : Ae → G and Λγ : Aγ → Gn (4.19)

where n is the number of edges in the graph, γ. Every element, Ae ∈ Ae, maps to

a corresponding element in G, which is just the parallel transport, A(e), along the
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edge, e. By definition of quotient group there exist a projective map, [23]

pγ : A → Aγ/Ĝγ (4.20)

By combining with (4.19) we can define a surjective map between Āγ and Gn [4]

p−1
γ · Λγ = IE : Āγ → Gn; IE(Āγ) =

(
Āγ(e1), . . . , Āγ(en)

)
(4.21)

4.3.4 Hilbert Space

Given a smooth complex function, φ on Gn can use the inverse of the map in (4.19)

to define a function Φγ on Aγ.

Φγ(A) = φ (A(e1), . . . , A(en)) (4.22)

The space for such functions is denoted as Cylγ, and they are cylindrical functions

over γ40. Combining this equation with the map (4.21) creates an isomorphism

between the space for the cylindrical functions and its quantum counterpart, Cylγ.

Now since the configuration space is modeled on a Banach space, and with the

cyclic representation of the functions, the Hilbert space can be identified with a

Lebesgue space; Hγ = L2(Āγ, dµ0
γ), where µ0

γ is the measure on Āγ.

Now using the map (4.21) we can define functions, Ψ on the quantum configu-

ration space, Āγ, as the pull back of the cylindrical functions, ψ, on Gn.

Ψ = I∗Eψ (4.23)

Then functions on the quantum configuration space are states on the Hilbert space

40These cylindrical functions that are the smooth functions required to define the sub-algebra
from the configuration space, stated in point 3 of section 4.1

36



and as a result the inner product can be written as, [4]

〈Ψ,Φ〉 =

∫
Gn
dµ0

Hψ̄φ (4.24)

where µ0
H is the Haar measure on Gn.

now we can extend this to the quantum configuration space, Ā, by taking the

projective limit in section 4.3.2. By doing so the set of Haar measure, µ0
H , on Āγ

define a Borel measure, µ0, on Ā.

4.3.5 Spin Decomposition of Hilbert Space

Roger Penrose introduced the notion of a spin network decomposition, which was

at the time his attempt to produce a combinatorial approach to space-time rather

than that of manifolds. His definition involved the use of graph theory, which is

equivalent to lattice gauge theory where the graph play the part of the lattice.[22]

Now we can decompose the Hilbert space as a sum of sub-spaces, which are

based on each graph. But the Hilbert spaces for the graphs are not orthogonal to

each other. As a result we can define a Hilbert space, M′
γ, for each graph, which

is orthogonal to a mutual Hilbert space, Hγ̄ = Hγ̄′ , where both Hilbert space are

sub-spaces of Hγ. [22]

Now the Hilbert space can be decomposed as,

H = ⊕γ H′γ (4.25)

We define irreducible representations of G to the edges and vertices, where each

is non-trivial; j’ as the set of edges in γ and l’ the set of vertices in γ. Then the

Hilbert space is given by,

H′γ = ⊕j′,l′ H′γ, j′,l′ (4.26)
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When the group g =SU(2) then j and l become half-integers or spins, in that

case we can define operators much like the angular momentum operators in quantum

mechanics.

4.3.6 Kinematical Hilbert Space

The representation of the algebra is given as operators on the kinematical Hilbert

space. Currently our Hilbert space is H = ⊕ : Hγ, j,l, which can be further defined

as Hγ = ⊕Hj,l.

Now we can define operators in the structure group and using the map (4.21)

the Hilbert space can be decomposed to,

Hγ = L2
(
Āγ, dµ0

γ

)
= ⊗n HG

γ = ⊗n L2
(
G, dµ0

H

)
(4.27)

where n is the number of edges in the graph and dµ0
H is the Haar measure on

G. Then the operators defined on HG
γ can be naturally extended to operators on

HAγ = L2 (Aγ, dµγ).

First the operators on the structure group are defined then it can be extended

to the quantum configuration space by the maps previously defined.

A configuration variable is defined by a smooth function, f(G), on G then it

corresponding operator is defined as,

f̂(G)ψ(g) = f(G)(g) ψ(g) (4.28)

where g ∈ G

The momentum operator, defined to each momentum function, is given as,

Ĵ
(X)
(G) ψ(g) = i

[
LXψ(g) +

1

2
(divX)ψ(g)

]
(4.29)
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where divX is the divergence of X with respect to an invariant volume form. Then

the commutators between the operators mirror their classical counterparts defined

in (4.9). The momentum operator can be redefined to the right and left parts, when

the vector field is either left invariant or right invariant to the structure group G.

L̂i = Ĵ
(L)
i and R̂i = Ĵ

(R)
i (4.30)

Now using the map (4.21) we can extend these operators to the Hilbert space

Hγ = L2
(
Āγ, dµγ

)
.

Ĵ
(v,e)
i Ψ = I∗E

[(
1⊗ . . .⊗ 1⊗ Ĵi ⊗ 1⊗ . . .⊗ 1

)
ψ
]

(4.31)

where Ĵ
(G)
i is either left or right invariant if the vertex, v, is the source or target of

the edge, e, respectively. The edge determines which space the operators act on and

the vertex determines if the vector field is either left or right invariant. [4]

Now we can define the operators on the quantum configuration space. The

configuration variables are represented by cylindrical functions, f on Ā, with corre-

sponding operator f̂ ,

f̂ψ(Ā) = f(Ā) ψ(Ā) (4.32)

because this operator act via multiplication it is similar to the operator acting on

G. The the momentum operator, which are based on the momentum observable, is

defined as,

P̂(S,f)Ψ(Ā) = i~
{
P (S, f),Ψ(Ā)

}
(4.33)

where the bracket is defined as,

{
P (S, f),Ψ(Ā)

}
=
∑
e

[
∂Ψ(Āe)

∂Āe

{
P (S, f), Āe)

}]
(4.34)

39



where Ae is the holonomy along the edge and the bracket is defined in equation

(4.13). If Ψ are cylindrical functions then the operator can be defined as,

P̂(S,f)Ψ(Ā) =
~
2

∑
v

fi(v)

[∑
eatv

κ(S, e)Ĵ
(v,e)
i Ψ

]
(4.35)

The momentum is a true derivative operator and only self-adjoint if the measure

is invariant under translations in SU(2). The operator the defines an irreducible

representation of the algebra on the kinematical Hilbert space Hkin. [4]
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5 Quantum Kinematics

5.1 Constraint Operators

Having now constructed a suitable representation of the kinematical Hilbert space

we can apply the constraints and generate the corresponding operators that generate

the symmetries.

5.1.1 Vector Constraint

Under the SU(2) group transformations the spatial diffeomorphism can be defined

as

φ · Ā(e) = Ā
(
φ−1(e)

)
(5.1)

φ is a bundle for automorphism of the principle fiber bundle, B, and the equation

ensure that the states, Ā(e), are invariant to these automorphisms, in the case that

they are the states as Yang-Mill diffeomorphism. [24]

We can define a group , Diff(M), as a group of analytical diffeomorphisms, and

each element φ of this group naturally defines an isomorphism in the space Cyl. The

operator that generates the spatial diffeomorphism can only do so if the measure is

invariant to the diffeomorphism, then its map is,

V̂φ : Diff(M) → B(Hkin); φ→ V̂ (φ) (5.2)

and the operator is defined

V̂φΨ̄(Ā(e)) = Ψ̄(φ · Ā(e)) = Ψ̄(Ā(φ−1e)) (5.3)

Diff(M) is a sub-space of all diffeomorphisms in the manifold, M , it allow a point

to move around a neighborhood non-trivially (and trivially every where else in the
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manifold). [4]

5.1.2 Gauss Constraint

Under the SU(2) group transformations the gauge transformations can be defined

as

ḡ · Ā(e) = g(b(e))Ā(e) (g(f(e)))−1 (5.4)

where b(e) and f(e) are the beginning and end of the edge respectively. ḡ is G-valued

functions on M and exists within the group for the local gauge transformations Ḡ,

defined by the quotient space,

Ḡ = G/G0 (5.5)

this is the group for the local gauge transformations in Ā.

The operator that generates the gauge transformations can only do so if the

measure on Ā is invariant under Ḡ, then its map is,

Ûḡ : Ḡ → B(Hkin); ḡ → Û(ḡ) (5.6)

and the operator is defined

ÛḡΦ̄(Ā(e)) = Ψ̄(ḡ · Ā(e)) = Ψ̄(g(b(e))Ā(e) (g(f(e)))−1) (5.7)

So far the only state in Hkin that is both gauge and diffeomorphism invariant is

Ψ(Ā) = 1, which can be thought of as the ground state. Since the momentum

operator is a true derivative operator acting it on the ground state annihilates it.

Elements of the Cyl represent excited ‘states’, because these excitations are only

1-dimensional then the quantum geometry is said to be polymer like. [4]
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5.2 Quantum Kinematical Geometric Operators

All the geometrical operators that are defined are required to have the following

basic definitions. [19]

1. The operator should be self-adjoint due to classical observables being real-

valued

2. The operator should be well defined on a dense subspace, D = Cyl(Ā) of Hkin

3. The operator should be diffeomorphism covariant and independent of back-

ground fields used in regularisation.

Unfortunately due to time constraints only the area and volume operators are

discussed here. The kinematical operators are not Dirac observables as they do not

commute with the diffeomorphism operator. Their geometrical meaning of these op-

erators is to parametrise the dense domain with specific eigenvalues of area and vol-

ume. This is defined thought matter which allows them to commute with the diffeo-

morphism constraint operator. [28] The background independence means that one

cannot readily define geometrical objects, however we can construct them through

the symmetries and the dynamics of the system.

5.2.1 Area Operator

When we smeared our momentum variables over an area, S, was never fully defined.

S is a close finite surface without a boundary such that the closure of S in M is

compact. Then the area of S can be well defined as a real-valued function on the

full phase. The phase space is based on the triads, Ea
i

41 and hence given as,

AS =

∫
S

dx1 ∧ dx2
[
Ea

3E
3a
] 1

2 (5.8)

41Eai = sqrtdet(q)eai
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The problem here is that the expression involves square-roots of the triads which

if we replace the triad with an operator valued distribution, (5.12), it would become

badly divergent. Therefore we have to regularise this operator valued distribution

by smearing it with respect to a function and split the integrand. [19]

The smearing of the triad has been done in section 4.2.4 but in order to split

the integrand the test function must be 2 dimensional, therefore we define it as,

fε(x, y) = lim
x→∞

∫
S

d2yfε(x
1, x2; y1, y2)g(y1, y2) = g(x1, x2) (5.9)

then in the limit that ε→ 0 the test function tends to a delta function.

The smeared triad then becomes,

[
E3
i

]
f

(x) =

∫
S

d2yfε(x, y)E3
i (y) (5.10)

The area operator can then be redefined in terms of the smeared triads.

[
ÂS

]
f

=

∫
S

d2x
[[
E3
i

]
f

(x)
[
E3i
]
f

(x)
] 1

2
(5.11)

To go over to the quantum theory we want to replace the triad with its operator

valued distribution,

E3
i → Ê3

i = −i~G δ

δAia(x)
(5.12)

This means that in order to ensure that the triad operator is well defined we would

have to smear the connections, which we have already done in section 4.2.3. The

holonomy for a smooth connection A ∈ A is equivalent to the group values for a

generlised connection Ā ∈ Ā, essentially given a generlised connection there exist a

smooth connection for any given graph,

Ā(ek) = hk[A] = Pe−
∫
ek
A

(5.13)
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then this operator acting on the function, (4.21),

[
Ê3
i

]
f

(x) ·Ψγ(Ā) = −iG~
N∑
I=1

∫
S

d2yfε(x, y)

(
∂Ā(ek)

∂Aia(y)

)(
∂ψ

∂Ā(ek)

)
(5.14)

where,

∂Ā(ek)

∂Aia(y)
=

∫ 1

0

dtė3
I(t)δ(y

1, e1
I(t))δ(y

2, e2
I(t))δ(0, e

3
I(t))

(
hI(1, t)τ

ihI(t, 0)
)( ∂ψ

∂Ā(ek)

)
(5.15)

Due to the delta distributions in the equation the operator becomes a distribution

valued operator, to make it into a genuine operator we have to define a similar

function to (4.14) in order to simplify the equation to consider those edges only

intersect the surface, S,

[
Ê3
i

]
f

(x) ·Ψγ =
i`2
p

2

N∑
I=1

κIfε(x, eI(0))X i
I · ψ(Ā(e1), · · · , Ā(eN)) (5.16)

where X is either a left invariant or right invariant vector field depending if the

edges are outgoing or incoming respectivly,

LiI · ψ(Ā(e1), · · · , Ā(eN)) =
(
Ā(eI)τ

i
)( ∂ψ

∂Ā(ek)

)
(5.17)

Ri
I · ψ(Ā(e1), · · · , Ā(eN)) =

(
−τ iĀ(eI)

)( ∂ψ

∂Ā(ek)

)
(5.18)

Now we can use this to define the integrand,

[
Ê3
i

]
f

(x)
[
Ê3i
]
f

(x) ·Ψγ = −
il4p
4

[∑
I,J

κ(I, J)fε(x, vαI )fε(x, vαJ )Xj
JX

i
I

]
Ψγ (5.19)

where
[
Ê3
i

]
f

(x)
[
Ê3i
]
f

(x) is defined to be the smeared operator of the determinant

of the intrinsic metric on S, [ĝS]f (x). , vαI is the vertex that the edge, eI intersects
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S and κ(I, J) is then defined by,

κ(I, J) =


0, eI and eJ do not intersect S

+1, eI and eJ lies on the same side as S

−1, eI and eJ lies on the opposite sides as S

(5.20)

As ε gets smaller we find that fε(x, vαI )fε(x, vαJ ) is zero unless vαI = vαJ . Since we

defined,
[
Ê3
i

]
f

(x), as a real valued self-adjoint operator hence it square root will be

well defined. [19]

√̂
gS(x) =

i`2
P

2

∑
α

δ(2)(x, vα)

[∑
Iα,Jα

κ(Iα, Jα)Xj
Jα
X i
Iα

] 1
2

Ψγ (5.21)

Then plunging this in to the equation (5.8), the area operator becomes,

ÂS ·Ψγ =
`2
P

2

∑
α

[∑
Iα,Jα

κ(Iα, Jα)X i
IαX

j
Jα

] 1
2

·Ψγ (5.22)

We can define a vertex laplacian operator,

∆S,vα = κ(Iα, Jα)X i
IαX

j
Jα

(5.23)

associated with a surface S and a vertex v, this is the laplacian operator on the

kinematical Hilbert space and the area operator can be given as,

ÂS =
`2
P

2

∑
v∈S

√
−∆S,v (5.24)

The laplacian is defined in terms of the momentum operator defined in equation

(4.31), which can itself be split into up and down operators,

−∆S,v =
(
Ĵ

(d)i
S,v − Ĵ

(u)i
S,v

)2

= 2
(
Ĵ

(d)i
S,v

)2

+ 2
(
Ĵ

(u)i
S,v

)2

−
(
Ĵ

(u+d)i
S,v

)2

(5.25)
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the up and down operators identify those edges and are above or below the surface

S. The eigenvalues of the laplacian can be calculated, which is trivial since the

operators are angular momentum operators,

λS,v = 2jd(jd + 1) + 2ju(ju + 1)− 2ju+d(ju+d + 1) (5.26)

hence the eigenvalues of the area operator, ÂS, are given by,

aS =
`2
P

2

∑
α

[
2jdα(jdα + 1) + 2juα(juα + 1)− 2ju+d

α (ju+d
α + 1)

] 1
2 (5.27)

Then the ‘ground state’ can be calculated when jd = 0, jU = 1
2

and jd+u = 1
2
,

aS =
`2
P

2

√
j(h+ 1) =

√
3

4
`2
P (5.28)

We see that the eigenvalues of the area operator become large very quickly

and the spaces between each eigenvalue decreases exponentially, therefore it can be

approximated to the continuum theory of physics. It is background independent

therefore it is diffeomorphism covariant and it is gauge invariant.

5.2.2 Volume Operator

On Riemann structures the volume of a region, R, is given by,

VR =

∫
R

d3x
√
q =

∫
R

d3x
√
|detE| (5.29)

where, R, is a fixed open region on M , also this region is based on a single coordinate

system, xa. The operator defined in the region can be summed over all regions in

M regardless of the choice of R and how we split it.[20]

If we fix coordinates, xa, in a region R and cover it with a set of cells, C, and
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each cell is oriented such that the sides are parallel to the coordinate planes. Then

within every cube,C, has three 2-surfaces, s = (S1, S2, S3), then a partition, P , of

the region can be defined as the pair of cells and 2-surfaces,(C, s). Then the triad

can be smeared along each of these surfaces and the smeared metric is,

qc[Ẽ] =
1

3!
εijkηabcẼ

i
SaẼ

j
Sb
Ẽk
Sc (5.30)

where,

Ẽi
S =

1

2

∫
S

eiabdx
a ∧ dxb (5.31)

and the determinant is given by |qc(t)|
L6
c

, where L6
c is the size of the cell, and it is

associated with a small positive ε such that the volume of the cell is less than ε. The

volume of the region associated with a partition is given by,

V PR [Ẽ] =
∑
C∈ C

√∣∣∣qc(Ẽ)
∣∣∣ (5.32)

Then as ε→ 0 the volume of each cell does as well then,

V PεR → VR (5.33)

then the metric operator of the smeared triads based on the cells is given by,

q̂c[Ẽ] =
1

48
εijkηabc

∑
x1∈Sa

∑
x2∈Sb

∑
x3∈Sc

∑
[e1],[e2],[e3]

κa([e1])κb([e2])κc([e3])J ix1,e1
J jx2,e2

Jkx3,e3

(5.34)

where κd ([e]) = κSd

In order to define the volume operator q̂c is required to be a self adjoint operator.

Although J is a self adjoint operator the combination J ix1,e1
J jx2,e2

Jkx3,e3
is not self-

adjoint because the angular momentum like operators do not commute with each

other. However due to the κ the operators for like edges are zero hence the equation
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(5.34) is self adjoint because J commutes for distinct edges, therefore we can define

a regularised volume operator as,

V̂ PR =
∑
C

|q̂C |
1
2 (5.35)

In the classical theory we can remove the regulator by taking the limit when ε→ 0,

however the limiting procedure cannot be done in the quantum theory because we

have to define the restrictions on the partition, P .

To remove the regulator we must first fix a graph on the region then allow the

partition depend on the graph then take the limit, which works if each vertex of the

graph is contained in the interior of each cell. The 2-surfaces s = (S1, S2, S3) cut the

cube into two disjointed parts and then at the point at which all three 2-surfaces

meet we define it as a vertex.[4] However if the graph does not intersect all the

2-surfaces then the cell does not have a vertex.

If we act the operator on a function, Ψγ ∈ CylR(γ), then if a cell does not contain

a vertex then q̂C ·Ψγ = 0, this is due to the antisymmetry of ηabc. [20] Alternatively

if a cell does contain a vertex then,

q̂c[Ẽ] =
1

48
εijkεabc

∑
I,J,K

κa([eI ])κ
b([eJ ])κc([eK ])J iv,eIJ

j
v,e2

Jkv,eK (5.36)

where I, J,K label edges passing through the vertex. Then in the limit that ε→ 0,

εabcκ
a([eI ])κ

b([eJ ])κc([eK ]) = κ ([eI ], [eJ ], [eK ]) (5.37)

where κ [(eI), (eJ), (eK)] vanishes if any of the edges lie in the same or opposite oc-

tants42.[20] The limiting procedure carries the memory of the partition, however this

can be removed by averaging the regularised operators with respect to background

42The splitting of a cube into eight equal parts around the center
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structures, the resultant operator is qavc . In order to average this operator we must

first consider a second coordinate system centered at the vertex. Then the action of

a general linear group, GL+(3)43, relates the two coordinate system44. The diagonal

subgroup of diag rescales the coordinates leaving κa [eI ] unchanged. Therefore to re-

move background dependence we consider the co-set space GL(+)(3)/diag, denoted

as S, to average κ [(eI), (eJ), (eK)].

To construct the background independent volume operator we have to average

q̂c over the space S. The second coordinate system xa(θ), which is defined by the

action of GL+(3) on θA ∈ S. Then we can construct the partition of the region

based on these new coordinates, P(θ), then the corresponding metric operator is

q̂θC . These operators can be averaged on S with a suitable probability measure on

S. Then we define a normalised function µ(θ) such that,

∫
S

d6θµ(θ) = 1 (5.38)

Then the average is given by,

q̂avC ·Ψγ =

∫
S

d6θµ(θ)q̂θC ·Ψγ =
1

48

∑
I,J,K

κavεijkJ
i
v,eI

J jv,e2J
k
v,eK
·Ψγ (5.39)

where,

κav ([eI ], [eJ ], [eK ]) =

∫
S

d6θµ(θ)κ ([eI ], [eJ ], [eK ], θ) (5.40)

If there exist a normalised measure on S then the κav must be of the type,

κav ([eI ], [eJ ], [eK ]) = κµε([e1], [e2], [e3]) (5.41)

43The (+) denotes the use of half-flat connections.
44The second coordinate system must yield the same κ for all edges passing though the vertex
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where ε([e1], [e2], [e3])is the orientation function,

ε([e1], [e2], [e3]) =


0, If the tangent directions are linearly dependent

1, If the tangent directions orientated positively

−1, If the tangent directions orientated negatively

(5.42)

where the tangent directions are oriented by a germ at e at a point x in M , so,

∫
S

d6θµ(θ)κ ([eI ], [eJ ], [eK ], θ) = κ0ε ([eI ], [eJ ], [eK , θ]) (5.43)

where κ0 is a constant. With the average metric operator we can construct the

average volume operator, V̂ av
R ,

V̂R ·Ψγ = κ0

∑
v

√
q̂v ·Ψγ (5.44)

where,

q̂v ·Ψγ =
1

48
εijk

∑
e,e′,e′′

ε(e, e′, e′′)J ix,eJ
j
x,e′J

k
x,e′′ ·Ψγ (5.45)

Then volume element operator is defined as,

√̂
q(x) ·Ψγ = κ0

∑
v

δ(3)(x, v)
√
|q̂x| ·Ψγ (5.46)

when on H,

V̂R =

∫
R

d3x
√̂
q(x) (5.47)

By inspection we find that the volume operator is gauge invariant to diffeomor-

phism of M . So far in current research the eigenvalues and eigenvectors for the

volume operator has only been calculated for specific cases,
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6 Conclusions

As with any canonical formalism we expect the theory to give us a picture, or ideas

to the physical implications to the theory rather than actual numerical calculations

involved. So even though we have managed to define operators for area and volume

but their physical meaning is not clear. The eigenvalues of the area operator (5.27)

give the value for an area encompassed by all graphs. If we only consider one graph

the the space of that graph occupies a volume and an area where the graph intersects

the open 2-surface S, the area of intersection then takes discrete values. Essentially

we are taking our system or space and calculating the area when it intersects another

area that exists through the system/space. The larger the intersection the more

values the area can take and we can see that the eigenvalues become large very

quickly and hence can be approximated to the continuum theory nature of physics.

Analysis of the volume operator is much the same to that of the area operator

however there is a major difference. The difference is how we measure the volume.

With the area we have the open 2-surface and we consider the intersection of that

to essentially measure the area spanned by the graph. The same should apply to

volume operator as we should consider the intersection between the graph and an

open 3-volume. The triads have been smeared two-dimensionally and cannot be

smeared in three dimensions. So the alternative is to generate a volume from 3 2-

surfaces and consider it intersection with the graph but then how should we interpret

the corresponding eigenvalues? I believe that the solution lies in the smearing of the

triads and, although we cannot smear in 3-dimensions, we can smear with respect

to a function and an area. Then we might be able to use this to generate a volume

and then construct a new volume operator.

It is important to note that this entire theory is based on the Hamiltonian

formalism of loop quantum gravity, a formalism that involves a 3 + 1 split of space-

time. Although this is used to study the time evolution of a system it is in fact
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that the evolution of time is dependent on the system. However our notion of time

is part of the background geometry of space-time and as a result it will make it

very difficult to construct a background independent theory and consider its time

evolution. I believe the process may be easier, but more difficult conceptually, if we

regard space-time as a moving entity. If space is moving at the same ‘rate’ as time,

therefore we consider both evolutions in space-time rather than just focusing on the

time evolution of a system. This may be the reason why physics breaks down at the

Planck length because we consider the time evolution of a singularity rather than it

space-time evolution.

The dynamics of quantum geometry provides a mathematical arena to formulate

a non-perturbative dynamics of candidate quantum theories of gravity without any

reference to a background. [26] Although not discussed in this report it is the main

application for quantum geometry, we can construct a system and impose the gauss

and vector constraints and the system becomes gauge invariant and diffeomorphic.

Then we could also impose the Hamiltonian constraint, which describes the time

evolution of a background independent system. It is the dynamic of the theory

that yield interesting results. Its applications in quantum cosmology and entropy

calculations provide new avenues of discovery that were previously not considered.

For a quick and insightful discussion read [26]

The questions quantum geometry should be able to answer can be summarised

in [29]. It explains how quantum geometry can be used to explain, in slightly more

detail, singularities and the big bang. Also the theory should be able to approximate

to the continuous space-time at the macro level. As the space-time gets many

orders of magnitude large than the Planck length the number of eigenvalues increases

dramatically and the spaces between each eigenvalue decreases exponentially. As a

result we can apply the continuum approximation early on, i.e. well before the

macro level.

53



It is still difficult to conceptualise the discrete nature of the geometry and the

role it plays in our universe, however these fundamental ideas open up an interesting

area of physics namely background independence. An important step would be to

construct background independent quantum field theory and analysis its dynamics.

A few papers do attempt to construct a background independent scalar field [30]

[31]. It would be interesting to see what type of predictions does make mainly

regarding vacuum energy and its link to geometry.
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