
Imperial College London

Department of Theoretical Physics

New Examples of

PT -Symmetry Breaking

For Quantum Systems

James McHugh

September 2009

Supervised by Carl M. Bender

Submitted in part fulfilment of the requirements for the degree of
Masters of Science in Theoretical Physics of Imperial College London

and the Diploma of Imperial College London



For John McClane.

“I am so clever that sometimes I don’t understand a single
word of what I am saying.“ - Oscar Wilde

Acknowledgements I would like to thank D.W. Hook for many use-
ful discussions and P. Gorman, J. Marcq and M. Delph for many useless
discussions.

i



Abstract

An overview of the theory of PT -symmetric quantum mechanics and some
of its applications and consequence is provided. The classical counterpart
of PT -symmetric quantum theories is discussed, with the novel classical
phenomenon of spontaneous PT - symmetry breaking highlighted.

A Runge-Kutta routine is developed to examine the spectrum of quan-
tum Hamiltonians. This routine is then extended and applied to a class of
PT -symmetric Hamiltonians, reproducing an already known result. The
routine is ultimately applied to the quantum equivalent of the classical sys-
tems which exhibit spontaneous PT - symmetry breaking, and a quantum
counterpart to this phenomenon is observed.
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1 Introduction

The study of PT -symmetric quantum mechanics originates from the study
of the eigenspectrum of the Hamiltonian H = p̂2 + ix̂2 + igĥ3. This Hamil-
tonian arises in the context of the Yang-Lee edge singularity [1] [2] [3]. In
the strong-coupling limit this Hamiltonian becomes

H = p̂2 + ix̂3 (1.1)

Some early numerical work by Bessis and Zinn-Justin in 1993 had indi-
cated that a portion of the eigenvalue spectrum for this Hamiltonian was
real. It was then speculated that the spectrum might be entirely real,

In 1998 it was discovered by Bender and Boettcher that this was the case,
that the spectrum of 1.1 was real, and that the aforementioned Hamiltonian
was but one of an entire family of non-Hermitian Hamiltonians displaying
a real eigenvalue spectrum. [4]

H = p̂2 + x2(ix)ε (1.2)

For ε = 1 this expression becomes equation 1.1.
It was argued that the reality of the eigenspectra of these Hamiltonians

was a direct result of their symmetry under the PT operator, representing
space-time reflections of the sysem, and that the condition of PT symmetry
could replace the requirement that a Hamiltonian be Dirac Hermitian.

This requirement may be seen as desirable as it is more physically trans-
parent than the traditional property of Hermiticity, which is an entirely
mathematical constraint. This also brings to light the possibility of new
theories which were previously thought to be unphysical in the Hermitian
formulation of quantum mechanics, as it was thought that a non-Hermitian
Hamiltonian would give rise to complex energy levels and a non-unitary
time evolution. We will see that this is not the case if we make suitable
modifications to our theory. Due to this many Hamiltonians which had pre-
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viously been disregarded have become an avenue for the investigation for
novel new theories. [5]

The structure of this dissertation is as follows. In chapter 2 we will provide
a brief overview of the development and chief properties of PT symmetric
quantum mechanics, some of its potential applications.

In chapter 3 we discuss the classical counterparts of PT symmetric quan-
tum theories, these are the classical motion of a particle in the complex
plane subject to the complex force law of a PT -symmetric Hamiltonian.
In chapter 4 we begin to develop the numerical techniques which may be
employed to examine the spectra of classes of PT -symmetric Hamiltonians.

In chapter 5 an unusual set of behaviours for the classical systems re-
viewed in 3 is discussed. The correspondence between the classical and
quantum regimes is explored, on the basis of which it is decided to apply
the numerical techniques developed in 4 in the previously unexamined quan-
tum scenario. In chapter 6 the previously observed numerical result for the
class of Hamiltonians we are observing is reproduced, and the behaviour
of other PT -symmetric Hamiltonians is reviewed. In chapter 7 these tech-
niques are applied to the quantum analogue of the phenomena outlined in
chapter 5, the results of which are detailed and commented upon.

Finally, in chapter 8 we comment upon our results and indicate some
potentially fruitful avenues for future investigation.
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2 PT Symmetric Quantum

Mechanics

2.1 The Hamiltonian in Quantum Mechanics

Since this subject relies heavily on the role of the Hamiltonian, and on
the extension of the normal properties assumed of a Hamiltonian, we will
first give a short discussion of the role that is played by the Hamiltonian
in traditional quantum mechanics, and on some other aspects of quantum
mechanics.

In traditional textbook quantum mechanics, the Hamiltonian plays three
vital roles in our theory: it specifies the spectrum of energy eigenvalues
which the theory may possess, it defines the time evolution of the system,
and it enumerates the symmetries of the theory through its commutation
relations with the various operators associated to those symmetries. We
give a brief overview of these properties in this section.

The time-dependent Schrodinger equation stipulates that

−i~∂|ψ〉
∂t

= Ĥ|ψ〉

And it follows that

ψ(t) = ψ(t0)e−iHt

From which we can deduce the form of the time evolution operator, U(t)

U(t) = e−iĤt

As ever, the probability of getting a certain result for a measurement is
associated with a particular operator. The eigenvectors of these operators
span the Hilbert space of the system. When we perform a measurement
upon the system we will measure it to be in a state with the eigenvalue
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associated to a certain eigenvector with probability ∝ 〈ei|ei〉, where |ei〉 is
the eigenvector associated with the eigenvalue i, and by 〈|〉 we refer to a
map from the Hilbert Space and it’s dual space into the real numbers.s

As the eigenvectors span the Hilbert space, we can write any state as
a linear combination of them. If we normalise our state we require that
〈ψ|ψ〉 = 1, that is, that the total probability of measuring the state to be in
any eigenstate is equal to one. We can then reason that the time evolution
of our system must be unitary. [6] [7] That is,

U(t)U †(t) = I (2.1)

where by U † we mean ordinary Hermitian conjugation. That is, we take
the complex conjugate of the components of the matrix of the operator
represented in some basis and then transpose the resulting matrix. If the
operator U is unitary then the absolute value of the state vector is preserved
under time evolution, and so probability is conserved.

In traditional quantum mechanics we stipulate that the Hamiltonian be
Hermitian as an axiom of the theory. If we require this property of our
theory, we can guarantee that we have unitary time evolution of the states
of the system as well as an entirely real spectrum for the energy eigenstates.

We can see that unitary time evolution follows as

U(t)U †(t) = e−iHt0eiH
†t0 = e−i(H−H

†)t0 = I (2.2)

and since we have required that H = H† the product of U and U † is the
identity.

Finally, as the Hamiltonian operator defines the time evolution of the
system any operation under which the system is invariant will commute
with the Hamiltonian.

2.2 The PT operator.

Before defining PT symmetry, we must first discuss how the P and T
operators will act on the Hilbert space of a quantum theory.
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2.2.1 Properties of the P and T operators

The parity and time-reversal operators are discrete orthogonal transforma-
tions. These transformations are not rotations, that is, the determinant
of the operators is −1 - in other words, they describe reflections of our
coordinate systems. From this statement we can immediately deduce that

P2 = T 2 = I

The parity operator P maps a spatial 3-vector ~x to −~x, It follows that
both the position vector, ~x and the momentum vector, ~p, are negated, as
momentum is the mass times the time derivative of the position.

In a quantum mechanical system, the position and momentum are repre-
sented by operators:

p̂|ψ〉 = p|ψ〉 and x̂|ψ〉 = x|ψ〉

Where x̂ and p̂ represent operators on the Hilbert space of the system and
x and p respresent their respective eigenvalues. Given the classical behaviour
of the P operator we expect that upon applying a parity transformation to
our Hilbert space, the eigenvalues of the respective operators will be negated.
So, we apply P to the system, and the operators and vectors are changed
as follows.

|ψ〉 → P|ψ〉 = |ψ′〉
x̂ → Px̂P = x̂′

p̂ → P p̂P = p̂′

To reproduce the classical behaviour we expect that

x̂′|ψ′〉 = −x|ψ′〉

From which we can deduce that under the P transformation, the x̂ oper-
ator becomes x̂′ = Px̂P = −x̂

(Px̂P)P|ψ〉 = −Px̂P2|ψ〉
= −Px̂I|ψ〉
= −Px|ψ〉
= −x|ψ′〉
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So we can see that we can only get the sort of behaviour we expect if x̂
and p̂ transform in the following way

Px̂P = −x̂
P p̂P = −p̂

Similary, the T transformation classically maps the time t to -t. ~x is then
mapped to ~x, and ~p is mapped to −~p, as ~p is the time derivative of the
position vector. This leads us to conclude that x̂ and p̂ transform as follows

T x̂T = x̂

T p̂T = −p̂

However, there is one important caveat here! The quantum theory must
remain invariant under these transformations. In particular, the commuta-
tion relation for the p̂ and x̂ operators must be invariant. After all, we have
only specified a change of coordinates here, so the relationship between x̂

and p̂ operators must remain the same.
The commutation relation demands that

[x̂, p̂] = −i~I

After the T transformation this becomes:

[x̂′, p̂′] = [T x̂T , T p̂T ]
= (T x̂T )(T p̂T )− (T p̂T )(T x̂T )
= −x̂p̂+ p̂x̂

= −[x̂, p̂] = i~I

So in order to preserve the commutation relations we demand that under
the T transformation i → -i. When this is the case we say that the T
operator is antilinear.

In short, we see that P is linear and inverts the sign of the x̂ and p̂ oper-
ators. T is anti-linear, reversing the sign of the p̂ operator and performing
complex conjugation. [8]

The behaviour of the PT operator may be arrived at from iterated ap-
plication of the above rules.
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PT x̂PT = −x̂
PT p̂PT = p̂

We can also see that the P and T operators must commute with each
other. because they implement reflections of orthogonal coordinates.

[P, T ] = 0

2.2.2 PT symmetry.

In order to discuss PT symmetric quantum theories, we must first define
the notion of PT symmetry. In analogy to the case of Dirac Hermiticity,
we define a PT symmetric Hamiltonian as one which satisfies:

H = HPT (2.3)

Where HPT = (PT )H(PT ). That is, when we apply the P and T
transformations to the Hilbert space, the Hamiltonian is unchanged.

The condition that H = HPT also implies that the H operator commutes
with the PT operator. Given that (PT )−1 = PT ,

H = (PT )H(PT )
HPT = PT H

HPT − PT H = 0

So we see that [H,PT ] = 0.

2.3 Reality of Eigenvalues

Having defined the notion of a PT symmetric Hamiltonian we will now show
what this condition implies for the the eigenvalue spectrum of a Hamiltonian
which obeys this symmetry.

First we will show that the eigenvalues of the PT operator have a modulus
equal to one and hence are phase factors. We act upon the state ψ with the
PT operator

PT ψ = λψ
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This gives us some unspecified eigenvalue which is in principle complex.
Using the fact that (PT )2 = I and that [P, T ] = 0

(PT )(PT )ψ = (PT )λψ = ψ

inserting (PT )2:

ψ = PT λ(PT )2ψ
ψ = (PT )λ(PT )(PT ψ)
ψ = (PT λPT )(PT )ψ

And so we see that

λ∗PT ψ = λ∗λψ = |λ|2ψ

That is

ψ = |λ|2ψ

We may therefore deduce that |λ|2 = 1 and hence that λ = eiθ.
Referring to the Schrodinger equation

Hψ = Eψ

Inserting (PT )2 and applying the PT operator

(PT )Hψ = (PT )E(PT )2ψ
HPT ψ = Hλψ

Hλψ = (PT EPT )(PT ψ)
λ(Hψ) = λEψ = E∗λψ

using the same reasoning as above. It follows that E = E∗ and therefore
E ∈ R.

However, this proof is not completely general. As we shall see, the family
of Hamiltonians in equation 1.2 lack a real spectrum for ε < 0, although the
Hamiltonian itself remains PT symmetric in this regime. We have assumed
that the eigenvectors of the Hamiltonian are also eigenvectors of the PT
operator. Because PT is not a linear operator - the T operator is antilinear
- this is not necessarily the case. We are assured that the eigenvalues of a
non-Hermitian Hamiltonian will be real only if the eigenstates corresponding
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to these eigenvalues are also PT eigenstates. The Hamiltonian will remain
PT -symmetric, but the eigenstates of that Hamiltonian may or may not
respect PT symmetry.

So, to determine if the eigenvalues of a particular PT -symmetric Hamil-
tonian are real, that is, to say whether there is a real spectrum for a given
value of ε we must ascertain whether the PT symmetry of that Hamiltonian
is broken or unbroken. It is extremely difficult to determine this in general,
and it was not until 2001 in the work of Dorey et al. that this was possible.
[8] [9].

2.4 Other properties of PT -symmetric Quantum

Mechanics

As we have seen, aside from defining the energy eigenvalues for a quantum
system, the Hamiltonian also determines the time evolution of states, which
must be unitary. By introducing a new inner product on the Hilbert space
we can define PT -symmetric theories with unitary time evoluton.

If we proceed in analogy to Hermitian quantum mechanics and define the
inner product as

〈ψ|φ〉 =
∫
dxψPT (x)φ(x)

We run into the problem of having negative norm for some states. As the
norm of an eigenvector gives us the probability of measuring that eigenvec-
tor, this is not acceptable for a physical theory.

This problem is overcome by introducing a new operator called the C
operator, which is named in analogy to the charge conjugation operator of
quantum field theory. It expresses a symmetry between the positive and
negative norm states.

The norm then becomes the CPT inner product. That is

〈ψ|φ〉 =
∫
ψCPT (x)φ(x)

This is very different from traditional quantum mechanics. We do not
need to know the form of the Hamiltonian of a system to take the inner
product in that case, but in PT -symmetric quantum mechanics it is nec-
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essary to have H to do so. This is because H will tell us which of it’s
eigenstates has a negative norm, and hence give us the form of the inner
product.

In this context we must also modify the condition normally required of an
observable that it be a linear, self-adjoint operator A = A† on the Hilbert
space of the system. We replace this with AT = CPT ACPT , where AT

denotes the transpose of the operator in some basis. In the PT symmetric
case this guarantees that the expectation value of A for any state is real.

Calculating the C operator is non-trivial for a given Hamiltonian, It was
first calculated by Bender et al. [10] using a perturbative approach for the
Hamiltonian H = 1

2 p̂
2 + 1

2 x̂
2 + iεx̂3 in which ε is treated as a small parame-

ter. Though this approach was quite complicated, it lead to the realisation
that C could be expressed as eQ(x,p)P, where Q is a derivative operator.
Using this and a number of algebraic properties of the C operator, the C
operator has been calculated for a number of Hamiltonians [11] [12] [13] [14].

The concept of PT -symmetry is a subset of a more general set of mathemat-
ical theories known as Pseudo-Hermitian quantum theories. These theories
have arisen in the past as part of attempts to resolve problems that arise
when negative-norm states appear in some quantum field theories, such as
quantum electrodynamics,s as a result of renormalization. [15] [16] [17] [18]
[19].

An operator is pseudo-Hermitian when

A† = OAO

WhereO is a Hermitian operator which is called the intertwining operator.
For ordinary quantum mechanics O = I [20] [21] [22]. It has been observed
that the parity operator may be used as an intertwining operator because
it is Hermitian, and for the class of Hamiltonian given by equation 1.2 we
see that

H† = PHP

An overview of pseudo-Hermitian theory is given in [23].

PT -symmetric quantum mechanics can be extended to quantum field the-
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ory. The x̂ and p̂ operators are replaced by the field φ(~x, t) and its conjugate
π(~x, t). The P and T operators behave in an analagous fashion to the quan-
tum mechanical case.

In this context PT -symmetric theory leads to many interesting field the-
ories. A massive scalar field with a −gφ3 interaction term is interesting
because it can be renormalised perturbatively, but such theories are usually
thought to have a non-unitary time evolution, and to have an energy spec-
trum that is unbounded below. With the introduction of the C operator
this is no longer the case. [13] [24]

A PT -symmetric model −gφ4 theory may be able to describe the dy-
namics of the Higgs sector as a consequence of broken P symemtry. This
is a consequence of the PT -symmetric boundary conditions, and is not a
property of the Hamiltonian of the theory. This parity breaking gives the
system a nonzero vacuum expectation value without the need for sponta-
neous symmetry breaking. [25][26][27][28][29]

The Lee model is an interesting quantum field theory because its mass,
wave function and charge maybe be renormalised analytically. However,
when the renormalised coupling reaches a certain value, negative norm ghost
states appear. It can be shown that with the C operator these ghost states
become normal, positive norm states. [30]

As we shall see, to investigate the eigenvalue spectrum of a Hamiltonian
such as those of equation 1.2 it is necessary to extend the problem into
the complex plane. This being the case, the natural extension of PT -
symmetric quantum theory to the classical arena is the motion of a particle
in the complex plane subject to a PT -symmetric Hamiltonian.
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3 Complexified Classical

Mechanics

As we outlined in the previous chapter, the PT -symmetric but non Hermi-
tian Hamiltonians such as 1.2 have a real spectrum as long as their PT -
symmetry is unbroken.

We can investigate the corresponding classical theory by promoting the
real variables x and p to elements of the complex plane, x, p ∈ C, and
examining their behaviour subject to a PT -symmetric Hamiltonian.

This problem has been examined extensively for a number of systems. We
pay special attention to the classical theory of the family of Hamiltonians
given by equation 1.2. In this chapter we give a brief overview of progress
made in this field.

3.1 Hamiltons equations

We may examing the the trajectories of a classical particle subject to

H = p2 + x2(ix)ε

By solving Hamilton’s equations for the system.

dp

dt
= −∂H

∂x

dx

dt
=
∂H

∂p

Which gives us the rates of change of the canonical position and conjugate
momenta coordinates with respect to time.
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dx
dt = ∂H

∂p

= ∂
∂p(p2 + x2(ix)ε)

= 2p

(3.1)

dp
dt = −∂H

∂x

= − ∂
∂x(p2 + x2(ix)ε)

= − ∂
∂x(−i2x2(ix)ε

= i(2 + ε)(ix)1+ε

Noting that equation 3.1 gives us

p =
1
2
dx

dt

We can rewrite this pair of equation as

dp

dt
=

d

dt
(
1
2
dx

dt
)

dp

dt
=

1
2
d2x

dt2

2
dp

dt
=
d2x

dt2

2i(2 + ε)(ix)1+ε =
d2x

dt2

d2x

dt2
= 2(2 + ε)iεx1+ε

This is the complex force law for system [30]. It is the complex extension
of the regular force law for a particle whose phase space is the real line. To
examine the trajectories of these particles we have simply to numerically
integrate this system of equations, giving us the behaviour of p and x as a
function of t. As the initial conditions on x(0), p(0) may specify points in
the complex plane, and as the differential equation is complex, the paths
followed by these particles will generally be complex, parameterised by the
real variable t.

For most this review attention is restricted to systems which have real
values for energy, owing to the fact that in the quantum case we observe
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systems which have a real, discrete spectrum.

3.1.1 ε = 0

For ε = 0 we may choose the initial values to be the turning points (dxdt = 0).
In this case we are examining the behaviour of the harmonic oscillator, and
the particle will simply oscillate between the two turning points.

All points outside of the turning points and off the real are inside the
classically forbidden region. In complexified classical mechanics, however,
these regions of the complex plane are valid as initial positions. When we
choose a point which lies outside the classically allowed region we observe
trajectories which are ellipses with the foci being the turning points. Figure
3.1 illustrates some of these trajectories. All of these paths have the same
period as the particle oscillating between the real axis turning points, be-
cause we can always deform the contour in the complex plane into the one
which lies on the real line without crossing any extra branch points..

Figure 3.1: Trajectories of a classical particle for ε = 0. The particle either
oscillates between the pair of turning points or circles them in
ellipses with the turning points as the foci. These trajectories
all have the same period.

We observe also that these paths are PT -symmetric by which we mean
that, if we solve for the path numerically it can be seen that the resulting
set of points is symmetric upon reflection across the imaginary axis, an
operation which corresponds to PT symmetry, which is flipping the sign of
a complex number and then complex conjugating it.

14



a+ ib→ −a− ib→ −a+ ib

3.1.2 ε > 0

For ε = 1 there are three turning points which solve ix3 = 1. Two of these
points exist as a PT symmetric pair, the third point lies at x = i. A particle
starting on either of the PT symmetric pair will oscillate between them, and
will follow paths similar to the ellipses in the ε = 0 case when this is not
the case.

When x = i the particle will move up the imaginary axis to complex
infinity in a finite amount of time. A plot of some of these trajectories are
illustrated in figure 3.2.

Figure 3.2: Trajectories for a classical particle for ε = 1. In this case, there
is a set of orbits which oscillates between or around the PT -
symmetric pair of turning points. A particle which starts the
turning point which lies on the imaginary axis will reach complex
infinity in a finite time

For ε = 2 there are a pair of orbits which oscillate around the 4 turning
points above and below the real axis, in a similar manner to the ellipses
which we observer for ε = 0. Again, for clarity these orbits are illustrated
in figure 3.3.

We note that in general all of the orbits for all ε > 0 are closed and PT -
symmetric, except for certain integer values of ε. For these values there are
certain exceptional paths which tend to complex infinity in a finite amount

15



Figure 3.3: For ε = 2 there are four turning points. We now have two
different types of orbits. One is the set of trajectories which
travels directly between or oscillates around the pair of turning
points in the top half of the complex plane. There is another set
which acts similarly for the pair in the bottom half.

of time, such as the path at the x0 turning point for ε = 1. We also note that
in general for noninteger values of ε the trajectory of the particle traverses
a multisheeted Riemann surface. This is because the function will become
multivalued and a branch cut must be introduced to make the function
single valued.

3.1.3 ε < 0

The case where ε < 0 is especially interesting to us, as this corresponds to
the quantum case in which the eigenvalues of the Hamiltonian cease to be
real.

For ε = −0.2 the paths are still PT -symmetric, but they lie on different
sheets of the Riemann surface and are open orbits. One branch of the
path heads towards complex infinity as t → −∞,. The other branch tends
toward infinity as t→∞. We observe that in general a negative value of ε
implies open non-periodic paths, corresponding to the regime in which the
eigenvalues for the eigenvalue problem equation1.2 become complex.
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Figure 3.4: A classical orbit for ε = −0.2. In this case the oribits are not
periodic. They are open and travel towards complex infinity in
an infinite time.

3.1.4 Other Systems

The dynamics of various other systems have been investigated in the litera-
ture [31] [32]. These include the complex trajectories of a simple pendulum,
for which the variable θ is made complex and treated as x, and it’s canonical
conjugate dx

dt is treated as p. [33]
The study of complexified classical mechanics has lead to the investiga-

tion of the behaviour of the complex, PT -symmetric solutions to Euler’s
differetial equations [34] The beahviour of the kicked rotor and the double
pendulum, two chaotic systems, have also been investigated in the PT -
symmetric case, [35] as has the Korteweg-de Vries equation [36] [37].
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4 Runge-Kutta Methods and

Eigenvalue Problems

We would like to investigate the eigenvalue spectrum of the class of Hamil-
tonians given by the equation

p̂2ψ + x̂2(ix̂)εψ = Eψ

In the position space basis we replace x̂ for the coordinate variable x and
p̂ for −i ddx , and we get the linear second-order differential equation

−d
2ψ(x)
dx2

+ iεx2+εψ(x) = Eψ(x) (4.1)

This equation defines an eigenvalue problem. The equation 4.1 only has
a non-trivial solution (ψ 6= 0) for certain special value of E which are called
the eigenvalues [38]. These nontrivial solutions define a set of eigenvalues
En and their associated eigenfunctions ψn(x). When we say we want to
investigate the spectrum of a Hamiltonian, we mean that we want to discover
these special values of E for which equation 4.1 is satisfied.

To do so, we integrate 4.1 numerically, varying E until the eigenfunctions
satisfy a specific condition. This method of discerning the eigenvalue spec-
trum is called shooting. We will detail this method and the Runge-Kutta
algorithm used to perform the integration in this chapter.

4.1 Runge Kutta methods

A differential equation of order n is one in which the nth derivative of a
function of x depends both on the variable x and on the (n−1)th and lower
derivatives at y. That is,

dny

dxn
= f(x, y,

dy

dx
,
d2y

dx2
, ...,

d(n−1)y

dx(n−1)
)
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In general it is not always possible to solve such systems of equations
analytically. However in the case of first-order differential equations we
may arrive at solutions numerically through the application of the Runge-
Kutta methods, given some suitable initial conditions for a specified value
of x = a, by evaluating the function f(x, y) a number of times between xn

and xn+1 and assigning a suitable weight to each evaluation of the function.
Explicitly, a first-order differential equation is one for which n = 1, there-

fore

dy

dx
= f(x, y(x))

where f is some known function of the variable x and the function y.
Given y0, the value of y at x = x0, we would like to express the difference
between y1, which is the value of y at some known distance from y0, which
is called the stepsize of the algorithm, and y0 as some linear combination of
evaluations of f in the interval of x0 and x1.

y1 − y0 =
n∑
i=0

kifi

In this dissertation we will use the Runge-Kutta method of order 4. The
order of the method refers to how the difference between the numerical
approximation of y and the actual value of y at a specified point vary as a
function of the stepsize of the algorithm. For brevity, we only present here
a derivation of the Runge-Kutta method of order 2. The order 4 method is
derive in an analagous fashion. [39]

Observe that we may expand y around a point x0 as a Taylor series

y(x+ h) = y(x) + h
dy

dx
+ h2 d

2y

dx2
+O(h3)

Since we have defined dy
dx to be the function f(x, y(x)), we may therefore

write

y(x+ h) = y(x) + hf(x, y(x)) +
h2

2
d2y

dx2
+O(h3)

We may express d2y
dy2

as
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d2y
dx2 = d

dx
dy
dx

= d
dxf(x, y)

= ∂f
∂x + ∂f

∂y
∂y
∂x

So we write the Taylor expansion of y about x as

y(x+ h) = y(x) + hf(x, y) +
h2

2
(
∂f

∂x
+
∂f

∂y

∂y

∂x
) (4.2)

which is

y(x+ h) = y(x) +Ahf0 +Bhf1 (4.3)

where

f0 = f(x, y) f1 = f(x+ Ph, y +Qhf0)

We now solve for A,B, P and Q. First, note that we can exapand f1

about x, y as follows

f(x+ Ph, y +Qhf0) = f(x, y) + hP
∂f

∂x
+ hQ

∂f

∂y
f0 +O(h2)

Inserting this into equation [4.3]

y(x+ h) = y(x) +Ahf0 +Bh
(
f0 + Ph∂f∂x +Qh∂f∂y f0

)
+O(h3) (4.4)

We now match power of h and derivative terms between equations [4.2]
and [4.3] to find

(A+B)hf0 = hf0
h2

2

(
∂f
∂x + ∂f

∂y f(x, y)
)

= Bh
(
∂f
∂xPh+ ∂f

∂yQhf0

)
Which gives us the system of equations

A+B = 1 PB =
1
2

BQ =
1
2

Taking A = 0, B = 1 and P = Q = 1
2 . we arrive at the Runge-Kutta

method of order 2.
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y(x+ h) = y(x) + hf(x+
h

2
, y +

h

2
f(x, y))

A similar derivation gives us the Runge-Kutta method of order 4, for
which we approximate yn+1− yn =

∑4
i=1 kifi This may be expressed as the

following algorithm

k1 = f(xn, yn)
k2 = f(xn + 1

2h, yn + 1
2k1)

k3 = f(xn + 1
2h, yn + 1

2k2)
k4 = f(xn + h, yn + 1

2k3)

yn+1 = 1
6(k1 + 2k2 + 2k3 + k4)

We now need a set initial conditions x0, y0. Once these are defined we may
implement the algorithm iteratively to evaluate the function at an arbitrary
value of i. That is, at each step we solve for y(x0 + ih).

The numerical value of yi at each step should approximate the actual
value of y at this point, which we shall call Yi, to within an error which
varies with the stepsize within the order of O(h4), if the method really is
an order 4 method. That is, if our algorithm is correct and implemented
correctly, we expect that

√
(yi − Yi)2 < O(h4).

4.1.1 Testing our algorithm

To ensure that the algorithm we have outlined above is actually accurate to
order 4, we will apply it to some differential equation for which analytical
solutions can also be derived, and compare the results from the numerical
integration to the analytic solutions for various different values of h to ensure
that our error scales in the correct manner.

We will take our equation to be

u‘ + 4u = 0

we will also specify the value of the function at x = 0 to be

u(0) = 3

having specified this condition we can now solve analytically for u at every
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value for x.
We can deduce that u ∝ e−4x. That is, u = αe−4x, where α ∈ R is some

constant which uniquely determines the equation. We then solve for α by
applying the condition at x = 0.

u(0) = αe0 = 3

From which we can see that α = 3 and the correction solution for u is

u(x) = 3e−4x

The corresponding problem that we will solve numerically using the Runge-
Kutta method is

u0 = 3
x0 = 0

u‘(x, u) = −4u

Table 4.1: Error variation with stepsize.

u(1
2) - Numerical Error Stepsize # steps

0.406005867620201 1.791036× 10−8 0.01 50
0.406005850810721 1.100883× 10−9 0.0005 100
0.406005849778072 6.823396× 10−11 0.005 200
0.406005849714085 4.246887× 10−12 0.00125 400
0.406005849710103 2.648776× 10−13 0.000625 800
0.406005849709947 1.084487× 10−13 0.0005 1000
0.406005849709855 1.653785× 10−14 0.0003125 1600

Table 4.2: Variation in the error of the numerical approximation of u(1
2

as the stepsize is varied. The exact value for which is u(1
2) =

0.406005849709838

In table 4.2 we numerically integrated this equation from 0 to 1
2 using a

certan value for the stepsize, h. After doing this the value computed from
the numerical method was compared to the analytical value and the error
was calculated as the absolute value of the difference of the two. We then
halved the stepsize iteratively and compared the change in the error for each
value of the stepsize.

As it transpired the error scaled much as we would expect. Since we were
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halving for each evaluation and as the error ought to be proportional to
O(h4), we expect the error to be reduced by approximately 1

16 as we reduce
the stepsize by 1

2 . This is pretty much the behaviour we witnessed.

4.2 Second-order ODEs

We begin our discussion of second-order differential equations by noting the
definition of a coupled system of differential equations.

A coupled differential equation is one in which we have m differential
equations of order n. The nth derivative of each function is a function of
both the lower derivatives of the function itself as well as a function of the
lower derivative of the other differential equations with which it is coupled.

For example, for n = 1 and m = 2 we have two functions which we will
call u and v. The first derivative of u and of v are explicitly functions of

u′ = f(x, u(x), v(x))

v′ = g(x, u(x), v(x))

To solve a second order differential equations, in which the highest deriva-
tive is n = 2 is specificed as a function of dydx , y and x, we simply reformulate
the problem as a pair of coupled first order differential equations!

Specifically, we take an equation which is specified as

y′′ = f(y′, y, x)

and we make the replacement y′ → a. This equation then becomes

a′ = f(a, y, x)

y′ = a

which are a pair of coupled first order differential equations. Explicitly,
let’s rewrite the second-order differential equation

y′′ = f(y′, y, x) = 4y′ + 3y + x
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as a pair of coupled first order differential equations. Replacing y′ → a

this becomes

a′ = f(a, y, x) = 4a+ 3y + x

y′ = g(a, y, x) = a

We now simply apply the Runge-Kutta method to this pair of equations.
The only difference from the regular case being that we ae integrating two
equations, and that the current value of the slope is a function of an extra
variable - that is, it is a function of a/y as well as y/a.

And so we arrive at the correct algorithm for numerically integrating a
second-order differential equation:

k1 = f(xn, yn, y′n)
k2 = f(xn + 1

2h, yn + 1
2k1)

k3 = f(xn + 1
2h, yn + 1

2k2)
k4 = f(xn + h, yn + 1

2k3)

l1 = y′(xn, yn)
l2 = y′(xn + 1

2h, yn + 1
2k1)

l3 = y′(xn + 1
2h, yn + 1

2k2)
l4 = y′(xn + h, yn + 1

2k3)

yn+1 = 1
6(k1 + 2k2 + 2k3 + k4)

y′n+1 = 1
6(k1 + 2k2 + 2k3 + k4)

We only need specify the values of a(0), y(0) in order to solve these
equations numerically.

4.2.1 Testing Our Algorithm

We will now apply this method to a specific second-order differential equa-
tion for which we have an analytical answer.

y′′ + 4y + 3y = 0

with the conditions y(0) = 1 and y′(0) = 0. Solving the characteristc
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equation m2 +4m+3 we get roots of m = −1,−3. This gives us the generic
solution

y(x) = c1e
−x + c2e

−3x

From the conditions y(0) = 1 = c1 + c2 and y′(0) = −c1− 3c2 = 0 we can
solve for c1 and c2 given our initial conditions, c1 = −1

2 and c2 = 3
2 The

exact solutions are then given by

y(x) =
3
2
e−x − 1

2
e−3x

y′(x) = −3
2
e−x +

3
2
e−3x

We will solve the coupled pair of first-order differential equations

y′ = a

a′ = −4a− 3y
y(0) = 1
a(0) = 0

The scaling of the error for y and y′ is outlined in tables 4.4 and 4.6.

Table 4.3: Error variation with stepsize.

y(2) - Numerical Error Stepsize # steps
0.216564223679059 1.232192× 10−2 0.5 4
0.209087344854927 4.845044× 10−3 0.25 8
0.203887092654560 1.189054× 10−3 0.125 16
0.200574494975389 3.552083× 10−4 0.02 100
0.201760500175768 3.048591× 10−6 0.00005 40000
0.201762939018281 6.097483× 10−7 0.000001 200000 1

Table 4.4: The variation of the error with the stepsize for y(2) calcualted
numerically as pair of coupled first-order differential equations.
The analytical expression gives y(2) = 0.201763548766586

4.3 The WKB approximation

We see that we can now integrate a second-order differential equation as a
coupled pair of first-order differential equations, subject to suitable initial
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Table 4.5: Error variation with stepsize for the other case.

y′(2) - Numerical Error Stepsize # steps
-0.170551741168041 1.727943× 10−2 0.5 4
-0.188425146005614 9.802548× 10−3 0.25 8
-0.193974283966928 4.602296× 10−3 0.125 16
-0.198870728955586 4.140676× 10−4 0.02 100
-0.199283681351278 1.115239× 10−6 0.00005 40000
-0.199284573510217 2.230797× 10−7 0.000001 200000 1

Table 4.6: The variation of the error with the stepsize for y’(2) calcualted
numerically as pair of coupled first-order differential equations.
The analytical expression gives y′(2) = −0.199284796589920

conditions on the variables we are integrating. In order to apply this method
to the Schrodinger equation we need to derive the correct initial conditions
for the problem.

To do this, we appeal to WKB theory. The WKB method in general
is applicable to linear differential equations in which the highest derivative
of the equation is multiplied by a small parameter, β. This corresponds
to problems which exhibit highly oscillatory or exponential decaying be-
haviour. [38]

β
dny

dxn
+ a(x)

dn−1

dxn−1
+ ...+ k(x)

dy

dx
+m(x)y = 0 (4.5)

We may then assume that the solution to equation 4.5 is

y(x) ∝ exp(1
δ

∞∑
n=0

δnSn(x))

We may substitute this into the differential equation, cancel out the ex-
ponential terms and solve for the different terms in the expansion, δn.

Specifically, let us do this for the case of a second order differential equa-
tion whose highest derivative is multiplied by the parameter β2

β2 d
2y

dx2
= Q(x)y (4.6)

Plugging in y(x) = exp(1
δ

∑∞
n=0 δ

nSn(x)), we find
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d2y

dx2
=

d

dx
(
dy

dx
)

dy
dx = d

dx(exp(1
δ

∑∞
n=0 δ

nSn(x)))
= (1

δ

∑∞
n=0 δ

n dSn
dx (x))y(x)

Differentiating again and using the product rule

d2y
dx2 = d

dx(1
δ

∑∞
n=0 δ

n dSn
dx (x))y(x) + (1

δ

∑∞
n=0 δ

n dSn
dx (x)) dydx

= 1
δ

∑∞
n=0 δ

n d2Sn
dx2 (x))y(x) + (1

δ

∑∞
n=0 δ

n dSn
dx (x))(1

δ

∑∞
n=0 δ

n dSn
dx (x))y(x)

Placing this back into [ ] we find

β2

(
1
δ

∞∑
n=0

δnS′′n +
1
δ2

(
∞∑
n=0

δnS′n)2
)
y(x) = Q(x)y(x)

From which we can express Q(x) as

Q(x) = β2

(
1
δ

∞∑
n=0

δnS′′n +
1
δ2

(
∞∑
n=0

δnS′n)2
)

Expanding to leading order in δ we get the following explicit expression
for Q(x)

Q(x) = β2

(
1
δ

(S′′0 ) +
1
δ2

(S′0 + δS′1)(S′0 + δS′1)
)

We now take the limit of this expression as δ tends to zero

Q(x) =
β2

δ
S′′0 + β2S

′
0
2

δ2
+

2β2

δ
S′0S

′
1

In the limit δ → 0 the term ∝ 1
δ2

will grow quicker than the other terms
as the square of an infinitesimally small number is greater than the small
number itself.

So we have an expression of the from of

β2

δ2
S′20 ∝ Q(x)

As β2

δ2
is simply a constant number we can just choose some function

S0(x) such that β2

δ2
in this expression is equal to one, i.e., we just rescale
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our original expression giving us the exact expression

(
dS0

dx
)2 = Q(x)

The solution of which can trivially be seen to be

S0(x) =
∫ x

0

√
Q(s)ds

This approximation will soon be directly applied to the Schrodinger equa-
tion, as it is an equation of the form of 4.6 above, with the function Q(x)
equal to the potential term V (x) in the expression for the Hamiltonian.

4.4 The Harmonic Oscillator

Before solving equation 4.1 in the general case of arbitrary ε, we will demon-
strate how we arrive at the eigenvalue spectrum for the special case ε = 0.
In this instance the Hamiltonian 4.1 reduces to the harmonic oscillator prob-
lem.

− d2

dx2
ψ(x) + (x2 − E)ψ(x) = 0 (4.7)

To perform the integration of equation 4.7, we need to derive the correct
initial conditions for the problem. We can do this by appealing to the
WKB theory outlined above, and by requiring that the eigenfunctions of
the Hamiltonian satisfy certain boundary conditions.

4.4.1 Initial Conditions

Thanks to the WKB approximation we can write the solutions for ψ as

ψ(x) ∝ e
R x
0

√
V (s)ds

Performing the integral for V (s) = s2 we find∫ x

0

√
V (s)ds =

∫ x

0

√
(s2)ds

=
∫ x

0
±sds

=
±x2

2
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Therefore ψ(x) ∝ e±
x2

2 . Since we can see from 4.7 that any linear com-
bination of solutions to this equation is also a solution, we can see that if
ψ(x) is a solution, then so is aψ(x). That is, a solution is only a solution
up to a multiplicative constant. We are therefore free to assume any value
for ψ at our initial position x0.

If we assume that ψ(x0) = a it only remains to derive the correct initial
condition on ψ′(x). This follows from the condition of square integrability.
If the eigenfunctions of our Hamiltonian are not square integrable then they
do not define a Hilbert space and we cannot speak of quantum mechanics in
that space. To satisfy this condition we assume that ψ(x)→ 0 as |x| → ∞.
We can deduce from this the correct sign in the exponential term. That is,
ψ(x) ∝ e

−x2

2 .
This means that ψ′(x) is given by

dψ

dx
(x) ∝ d

dx
e
−x2

2 = −xe
−x2

2

This gives us the following set of initial conditions on the eigenfunctions

ψ(x0) = a

ψ′(x0) = −x0a

4.4.2 Shooting conditions

We can now integrate numerically for the wavefunction for different values
of E. Each E specifies a different differential equation, whether or not it
actually is a valid eigenvalue of the system. So how do we discern eigenvalues
from other values? Note that we cannot vary E and try to find soultions
which tend to 0 as we increase x. We must start at some positive value for
x and integrate inward from that point. This is because the solutions of the
differential equation are actually a lienar combination of an exponentially
growing and an exponentially dying part. If we integrate outwards the value
of ψ will always, given enough time, increase, as the integration routine will
see each solution as equally valid.

So, to find the eigenvalues, we find some condition that real solutions of
the equation ought to satisfy. In this case, we will use our numerical inte-
gration routine to obtain these values at the origin. Let’s call this property
A1 = A(E1) and A2 = A(E2), where A is evaluated at the origin. We will
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integrate inwards and obtain a numerical estimate of this property for two
guesses of the correct eigenvalue, E1 and E2. We then assume that A is a
linear function of E, and using this property we extrapolate an intelligent
next guess for the energy as

Enext =
E2A1 − E1A2

A1 −A2

This is the value of E for which A will be 0 if it were really a linear
function of E. It does not matter if it is not in fact a linear function of
E (which it almost certainly isn’t), it will still converge on the value for E
which minimises A in a number of iterations. We then replace one of the
old values, E1 or E2 with this guess, and iterate this process until we arrive
at a value for E for which the function A tends to 0.

A solution to the simple harmonic oscillator satisfies having either even
or odd parity. That is, a solution is either

ψ(−x) = ψ(x)

in which case it is even, or

ψ(−x) = −ψ(x)

in which case it is odd. We can then reason that in order to satisfy these
constraints, either the function itself must be 0 at the origin, or it’s first
derivative must be 0.

This is easy to justify. If the function is odd then we can see that it must
be equal to 0 at the origin, otherwise the function would be discontinuous
at that point, which cannot happen as the wavefunction is by definition
continuous.

For the case of even parity it is also easy to see. Firstly we note that the
derivative of an even function is an odd function.

f(x) = f(−x)

taking the derivative of both sides and writing a = −x for clarity

df

dx
=

d

dx
f(a)
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and using the chain rule for the right hand side

d

dx
f(a) =

da

dx

df

da
= −f ′(a) = −f ′(−x)

Therefore

f ′(−x) = −f ′(x)

Applying the same reasoning as before, i.e., that quantum mechanics
stipulates that the first derivative of the wavefunction must be continuous,
we arrive at the conclusion that the value of f ′(x) must be 0 at x = 0.
Figure 4.1 illustrates the situation pictorially.

Figure 4.1: The behaviour of odd and even parity harmonic oscillator eigen-
functions at the origin. (a) For the odd parity case, ψ(0) = 0
(b) For even parity solutions, ψ′(0) = 0 because ψ experiences
a turning point at the origin.

4.4.3 Numerical Vs. Analytical

Finally, we give a comparison of the first ten eigenvalue computed numeri-
cally versus the analytical expression for the harmonic oscillator eigenvalues,
which is given by En = 2n + 1, in order to give some idea of the accuracy
of the shooting algorithm.
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Table 4.7: Eigenvalue accuracy.

n En (numerical) En (analytical) Parity
0 1.00000000000000074942 1.0 EVEN
1 3.00000000000000538176 3.0 ODD
2 5.00000000000003683729 5.0 EVEN
3 7.00000000000010735640 7.0 ODD
4 9.00000000000023283805 9.0 EVEN
5 11.00000000000042862935 11.0 ODD

6 13.00000000000071049763 13.0 EVEN
7 15.00000000000109392703 15.0 ODD
8 17.00000000000159462547 17.0 EVEN
9 19.00000000000222813955 19.0 OD D
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5 Classical Spontaneous PT
symmetry breaking

In chapter 3 we summarised the behaviour of complexified classical systems
subject to a PT -symmetric Hamiltonian. We found that the orbits are
closed PT -symmetric subsets of the complex plane when the solutions obey
PT symmetry, ε > 0 for the Hamiltonians in equation 1.2. Conversely,
when the PT -symmetry of the solution is broken, the paths in the complex
plane are open orbits tending towards infinity, ε < 0.

It was first noticed in [40] that the paths taken by a classical particle
were highly sensitive to the values of ε and x(0), the initial position of
the particle. Varying either parameter slightly could give rise to orbits
with extremely complicated topologies which visited multiple sheets of the
Riemann surface. The period of these closed trajectories was observed to
be a wildly fluctuating function of ε.

We not that the period depends on the number of pairs of turning points
enclosed by the orbit, and on the number of times it encloses these pairs.
This is because every orbit can be deformed into a similar orbit which
connects two turning points and oscillates back and forth between them,
rather than one which encircles them.

We note that the turning points are the points where dx
dt = 0. Imposing

this condition on equation 1.2 and noting that we can always take E = 1 as
if this were not the case we could simply rescale x and t until it was true.
We find that the turning points are given by

1 + (ix)2+ε = 0

In general for value of ε /∈ Z, but for rational ε there are a finite number
of turning points on the Riemann surface. Following Bender and Darg [41],
we will label the turning points as follows
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x = exp

(
iπ

4N − ε
4 + 2ε

)
where N ∈ Z.
The turning points occur in PT symmetric pairs for values of N =

(−1, 0), (−2, 1) (−3, 2)... We will label these pairs of points using the integer
K, giving us the PT -symmetric pair of turning points (K,−K − 1). The
K = 0 pair of turning points represents the pair of turning points which we
analytically continue off the real axis.

For K 6= 0 the behaviour of the turning points is more complicated, as the
trajectory of the particle may now visit many pairs of turning points. In [41]
the behaviour of the period of these trajectories was observed for pairs of
turning points for which K 6= 0. Three regions of behaviour were observed
as ε was varied for the Kth pair of turning points. As ε was increased
from 0 the period slowly decreased in a continuous fashion. This behaviour
was observed until 1

K , at which point the period of the trajectory suddenly
became a choppy, wildly varying function of ε. When the value of ε was
greater than 4K the period began to decrease with increasing ε, displaying
very similar behaviour to that which was observed in the < 1

K region.
The explanation for the choppy variation of the orbit was found [41] to

be due to certain special orbits which exhibited broken PT symmetry. We
can see from figure II that there are regions where the period is a small
and slowly varying function of ε. These regions are bounded by values
of ε for which the period starts to become very long. Numerical studies
indicated that ε = p

q where p > 0 is an integer multiple of 4 and q is an
odd number, it was observed that the orbits followed by the particle were
not PT -symmetric. This phenomenon has been dubbed spontaneous PT
symmetry breaking. An example of one of the non-PT -symmetric orbits
which is responsible for this effect is displayed in figure [5.2]. It is generally
observed for these orbits that if we start the particle from a specific turning
point, it will run into the turning point which is the complex conjugate of the
turning point from which its trajectory started, preventing the orbit from
being PT -symmetric. The particle then oscillates back and forth between
this turning point and its complex conjugate.

For ε close to these special, non-PT -symmetric orbits, the turning points
of the Hamiltonian will have shifted slightly. When this occurs the particle
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Figure 5.1: Behaviour of period of the trajectory for the K = 1 pair of turn-
ing points as a function of ε. In region I the period is smoothly
varying. In region II it becomes choppy and discontinuous. In
region III it returns to the continuous behaviour of region I.
Reproduced from [41].

will now just miss the complex conjugate turning point which reflects its
trajectory in the special case of PT symmetry, before embarking on a much
longer trajectory in the complex plane before being reflected by a turning
point.

Until the discovery of these orbits it was thought that all closed periodic
orbits were PT symmetric. However, we now see that there exist sets of
orbits which are closed and periodic but which are not invariant under the
PT operator.

Note that this behaviour occurs only when K 6= 0. But many of the
numerical investigations of quantum systems carried out to date have been
conducted only for the standard K = 0 turning points. It is now natural
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Figure 5.2: A non-PT -symmetric orbit. It can be seen that this orbit is not
PT symmetric, as it is not symmetric upon reflection through
the imaginary axis.

to ask whether there is a quantum phenomenon corresponding to this novel
classical behaviour.

5.1 Bohr-Sommerfeld Quantization

As some motivation for the possibility of a quantum/classical correspon-
dence, we summarise what is generally known of the relationship between
the two regimes for the PT symmetric case.

We can apply the Bohr-Sommerfeld quantization conditions to these con-
tours. The Bohr-Sommerfeld condition takes the classical analysis of the
system and demands that the only valid solutions in the quantum scenario
are those solutions which are divisible by an integral number of de Broglie
wavelengths. That is ∮

C
dxp =

∮
C
dx
√
E − x2(ix)ε

Where C is the contour in the complex plane that defines the orbit of the
classical particle. This condition gives the system a set of quantized energy
levels indexed by the integer n as
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En = (n+
1
2

)π

We now have some intuition as to why our Hamiltonians behave the way
they do. In chapter 3 we saw that for ε > 0 the integration contour for this
integral is a well defined closed subset of the complex plane.

However, as illustrated in figure 3.4, when ε < 0 the paths the complex
particles follow and hence the countours they define for Bohr-Sommerfeld
quantization are open paths in the complex plane, along which the classical
particle approaches complex infinity in an infinite amount of time. Since
the integration contour is not closed for ε < 0 it is not possible to perform
this integral.

In [42] Bender and Hook constructed pairs of isospectral Hamiltonians,
that is, pairs of Hamiltonians having the same eigenvalue spectrum, one of
which possesed eigenfunctions that satisfied real differential equations and
whose boundary conditions could be defined along the real line. It’s corre-
sponding isospectral Hamiltonian satsifed a complex differential equation,
with boundary conditions defined in Stokes’ wedges in the complex plane.

In the classical limit it was observed for each closed periodic trajectory
of one of the Hamiltonians there existed a corresponding closed periodic
trajectory for its partner which possesed the same period. This appears
to be the classical counterpart of the quantum spectral equivalence. In
observing this equivalence it was impotant to note the number of times the
particle visited a specific sheet of the Riemann surface. This is because,
naively, the periods of these pairs of Hamiltonians may have appeared to be
dissimilar, but it was found that the particle may have to traverse the same
orbit a number of times on different sheets to revisit its starting point. Once
this was taken into account it could be seen that these pairs of Hamiltonians
had identical periods.

The general interpretation for this behaviour (see [34]) is that the classi-
cal particles are bound in a complex classical atom and cannot run off to
infinity. We can see then that only PT -symmetric orbits are physically rel-
evant, those corresponding to the case where the eigenvalues are real. This
being the case, we can now turn our attention to the central problem ex-
amined as part of this dissertation. As sets of closed, periodic, but nonPT
-symmetric solutions have been discovered in the classical scenario, what is
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the corresponding behaviour for the quantum system?
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6 Numerical Analysis of

Eigenvalue Spectra

Before investigating the quantum counterpart of the phenomena outlined
in chapter 5, we must extend our Runge-Kutta shooting method so that we
can obtain the eigenvalues for a general PT -symmetric Hamiltonian. We
will examine the eigenvalue spectra for the Hamiltonians of equation 1.2 for
the case K = 0, and compare our results to those already present in the
literature. We will then briefly summarise the literature documenting other
the eigenspectra of other classes of PT -symmetric Hamiltonians.

6.1 The p2 + x2(ix)ε Spectra

We have seen above how to integrate the differential equation 4.7 numeri-
cally. To extend these techniques to the more general case we must modify
our shooting methods and integration routine. We will see that in order to
impose the correct boundary conditions we must make the variable x com-
plex, and as the condition of P symmetry does not hold in this more general
case, we must derive a new shooting condition to distinguish the correct set
of eigenvalues En. The analytic continuation of eigenvalue problems relies
heavily on the work of Bender and Wu on divergent perturbation series [43],
[44], and a detailed description of how to analytically continue eigenvalue
problems is contained in the paper by Bender and Turbiner [45].

6.1.1 Stokes’ wedges

For the harmonic oscillator problem, the condition that ψ → 0 as |x| → ∞
along the real axis guarantees that we have quantized energy levels and that
the eigenfuctions of the Hamiltonian are square-integrable. This condition
is sufficient as long as −1 < ε < 2. For arbitrary real ε we must continue
the problem into the complex-x plane.
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The domain of the integral is redefined from being the real x-axis to a
contour in the complex-x plane, with the condition on this contour being
that it lies within a wedge of some opening angle in the complex plane.
The wedges place a restriction on the argument of x = reiθ as we tend
towards complex infinity. If ψ(x) = e−

R x
0

√
Q(s)ds, we can express this as

ψ(x) = ea+ib = eaeib. We can only guarantee that ψ → 0 for certain
values of the argument of x, as otherwise the value of b will ensure that the
asymptotic behaviour of ψ is oscillatory, and thus cannot tend to 0.

If we express this contour as

x(t) = r(t)eiθ(t)

Where the variable t parameterises the contour, then we say that ψ(x)→
0 as r → ∞ if θ1 < θ < θ2 as t → ∞. If this is the case we can then
impose the boundary condition that ψ approaches zero at the end points of
the contour. [4] This situation is depcited in figure [6.1].

For the Hamiltonians we are examining the centres of the Stokes’ wedges
inside which we can guarantee the wavefunction will tend to 0 are given by

θleft = −π +
ε

ε+ 4
π

2
θright = − ε

ε+ 4
π

2

Each of which has an opening angle of 2π
ε+4 .

As ε increases these wedges rotate downward from the simple harmonic
oscillator wedges which encompass the real line at ε = 0, As ε tends to
infinity, the opening angle of the wedge’s tends to 0 and the Stokes’ wedges
lie along the negative imaginary axis [46]. The eigenvalues are real and
positive and rise with increasing ε. In ε→∞ limit the eigenvalue problem
has no solutions, as the solution contour can be pushed off to infinity. In
this limit it has been observed that the eigenvalues all become infinite.

6.1.2 Shooting conditions

The condition that ψ(x) = 0 or ψ′(x) = 0, which we used to discern even
and odd parity solutions for the simple harmonic oscillator only holds when
we have symmetry under the P operator. We’ll need something more gen-
eral for the other differential equations we will be examining. Fortunately
there is also a condition that we can impose on more general solutions to
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Figure 6.1: Stokes’ wedges. As we increase ε above 0, the pair of Stokes’
wedges rotate downards towards the negative imaginary axis,
their opening angle decreasing as ε increases.

an eigenvalue equation. In the more general case we simply ask that the
wavefunction be continuous.

To ensure this we will integrate in from the left, and from the right, and
ensure that the resulting values of the wavefunction are continuous at the
origin. That is:

ψL(x)− ψR(x) = 0

However, there is a problem with this technique: any linear combination of
solutions to the Schrodinger equation is also a solution. Therefore multiple
of a solution is also a solution. Since we’ll be starting at two totally different
values of x and integrating into the origin, we have no way of guaranteeing
that the values of ψ when integrated inward from the left and from the right
are not multilpied by two totally different constants.

However, we can overcome this problem by noting that if ψ(x) is a solution
and we multiply it by c, then we have cψ(x). Taking the first derivative

cdψ

dx
= c

dψ

dx

so we can just divide out the constants. Our shooting condition becomes
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ψ′L(x)
ψL(x)

− ψ′R(x)
ψR(x)

= 0

We now repeat the procedure we used for the harmonic oscillator, taking
two initial guesses for E, integrating from the left, and the right, into the
origin for these values, and using the supposition that the difference between
these values is a linear function of E to extrapolate our next guess for energy.

6.1.3 Integrating in the complex plane

So we see that to solve the eigenvalue equation 1.2 for ε > 2 it is necessary
to continue the eigenvalue problem off the real axis and into the lower half
of the complex plane, with the condition that the eigenfunctions we are
examining tend to 0 as long as they lie asymptotically within a pair of
wedges in the complex plane, which lie at some angle and have some specified
opening angle.

Given this we can then guarantee that the function tends to 0 as the
distance from the origin tends towards ∞. This is necessary to ensure that
our theory be square-integrable and so we can interpret it in a probabalistic
manner.

However, we must be careful about performing a Runge-Kutta integration
in the complex plane. The integration scheme only works if we have one
independent variable. Naively, we have two in the complex case. However,
we will simply rewrite the position variable as x = reiθ.

In this case we will integrate along r and the factors involving θ will
simply become some phase factors multiplying the paired couple of complex
equations (four paired real equations).

d2ψ

dx2
=
d2r

dx2

d2ψ

dr2

dr

dx
=

1
dx
dr

dx

dr
=

d

dr
(reiθ) = eiθ

Therefore

d2ψ

dx2
= e−2iθ d

2ψ

dr2
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The full differential equation becomes

−e2iθ d
2ψ

dr2
+ (r2e2iθ)(ri)εeεiθ = Eψ

More concisely, this is

−e2iθ d
2ψ

dr2
+ iεr2+εe(2+ε)iθ = Eψ

Due to the fact that we are integrating in the real variable r, we must note
how this affects our shooting condition. The shooting condition is given by

ψ′L(x)
ψL(x)

− ψ′R(x)
ψR(x)

= 0

Where ψ′(x) refers to dψ
dx . However, we are integrating in r, and when we

recast the second-order complex differential equation as a pair of first-order
complex different equations, we will be solving for dψ

dr , not dψ
dx . However, we

can express ψ′(x) in terms of dψ
dr using the chain rule.

dψ

dx
=
dr

dx

dψ

dr
= e−iθ

dψ

dr

Evidently, the correct shooting condition in terms of our integration vari-
ables will become

e−iθleft
ψ′L(x)
ψL(x)

− e−iθright
ψ′R(x)
ψR(x)

= 0

Where we note that θleft 6= θright because they lie within two different
Stokes wedges, and by ψ′(x) we now mean dψ

dr .

6.1.4 Accuracy

We now have a method for investigating the spectra of the class of Hamil-
tonians given by equation 1.2.

Before we apply it we would like to ascertain the accuracy to which our
eigenvalues can be trusted. We checked the accuracy by varying both the
stepsize h and the initial value of the position, x0. Decreasing the former
and increasing the latter should give us more accurate estimations of the
eigenvalues. We can then infer that we may trust our numerical calculation
only as far as the last decimal point which still agrees with the more accurate
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estimation.
It was found that the accuracy decreased as n for the eigenvalue we were

finding increased. This is expected because higher eigenvalues correspond
to solutions to the equation which oscillate more rapidly as a function of
x. It can be seen that the n = 9 eigenvalue is approximtely 3 to 4 decimal
places less accurate than the n = 0 eigenvalue.

Some comparisons of the same eigenvalue calculated with different step-
sizes and initial x are contained in table 6.1.

Table 6.1: Eigenvalue accuracy.

n h |x0| E ε

0 0.0005 5 1.15626707198811263643 1
0 0.0005 10 1.15626707198810993395 1
0 0.0005 20 1.15626707198809715576 1
0 0.001 10 1.15626707198810399653 1
0 0.0001 10 1.15626707198811369559 1
0 0.00001 10 1.15626707198820403847 1
9 0.0005 5 37.46982535962504761232 1
9 0.0005 10 37.46982536165233967917 1
9 0.0005 20 37.46982536155963823196 1
9 0.01 10 37.47001136598030170827 1
9 0.001 10 37.46982537923672652164 1
9 0.0001 10 37.46982536052716726907 1

6.1.5 Results

Figure [6.2] shows a portion of the eigenvalue spectrum which we calculated
using our Runge-Kutta integration method. It can be seen that this work
reproduces the spectra calculated in the literature, a plot of which is shown
for comparison in figure [6.3].

As ε increases from 0 the eigenvalues increased and grew further far apart.
This behaviour persists for as far as could be examined using the Runge-
Kutta scheme implemented for this system, which is approximately ε = 5.5.
Above this value, the magnitude of ψ grew too high as we integrated to be
stored to long double accuracy.

When we investigated ε < 0 the eigenvalues follow the same pattern as
they do for ε > 0. That is, as we decrease from 0 the spectra grew closer
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Figure 6.2: Portion of the eigenvalue spectrum for the p̂2 + x̂2(ix)ε Hamil-
tonian

together. This behaviour persists until around ε = 0.75. At this point the
distinct real eigenvalues grow closer together, becoming the same eigenvalue,
before disappearing from the spectrum. This effect is indicative of the fact
that these pairs of eigenvalues are moving off the real line. At these points,
they split into complex conjugate pairs. .

6.2 Eigenvalue Spectra of other Hamiltonians

Finally, we present a brief overview of the studies that have been conducted
into the behaviour of the Eigenvalue spectra for some other classes of Hamil-
tonians. The Hamiltonians (1.2) we have studied in this dissertation are a
subset of a much larger class of Hamiltonians which are invariant under
the PT operator. Some insight into the behaviour of their spectra may
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Figure 6.3: A larger portion of the spectrum of the eigenvalue spectrum for
the p̂2 + x̂2(ix)ε Hamiltonian. Provided for comparison with 6.2.
Reproduced from [30].

prove insightful for understanding the case we investigated as part of this
dissertation.

6.2.1 The p̂2 + x4(ix)ε spectra

The wider class of Hamiltonians H = p2 +x2K(ix)ε were studied by Bender,
Boettcher and Meisinger in [46]. For the case K = 1 this becomes the class
of Hamiltonians we studied computationally in this dissertation. However,
when K 6= 1 there are a number of interesting effects which have been
observed and which are relevant to the content of this dissertation.

In this more general case, the Schrodinger equation in the coordinate-
space basis becomes
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−ψ′′(x) + (x2K(ix)ε − E)ψ(x) = 0

The centres of the Stokes’ wedges for this problem are now given by

θright = − επ

4K + 2ε+ 4
θleft = −π +

επ

4K + 2ε+ 4

which are again PT -symmetric.
The eigenvalue spectrum for p̂2 +x4(ix)ε as calculated in [46] is displayed

in figure 5. For ε > 0 the beaviour of the eigenvalues is the same as in the
case we have studied. That is, the eigenvalues increase monotonically with
ε. When ε ranges from -1 to 0 a finite of the eigenvalues are real, along
with an infinite set of complex conjugate pairs of eigenvalues due to PT
symmetry breaking.

Figure 6.4: Eigenvalue spectrum of the Hamiltonian p̂2 + x4(ix)ε. Repro-
duced from [46]

However, at ε = −1 the spectrum emerges from the complex plane and is
entirely real. After this point, the eigenvalues return to the complex plane
and continue to pinch off in pairs until there is only one eigenvalue left
as ε approaches −2. As the lowest eigenvalue approaches −2 it begins to
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diverge logarthimically. Once ε < −2 the Hamiltonians no longer exhibit a
spectrum with any real eigenvalues.

6.2.2 The p̂2 + x6(ix)ε spectra

When K = 2 these Hamiltonians become p̂2 + x6(ix)ε. Their spectra as a
function of ε is displayed in figure [6.5], which is also reproduce from [46]
The spectrum is similar to the case detailed in the previous subsection, but
there is now an extra phase transition.

For ε ≥ 0 the spectra grow and diverge with ε. As ε decreases below 0 the
eigenvalues again pinch off and enter the complex plane, the number of real
values decreasing in pairs as this happens. At ε = −1 and ε = −2 we again
see an entirely real spectrum briefly emerging from the complex plane. As ε
decreases below −2 the lowest eigenvalue again diverges logarithmically as
ε→ −3 . For ε ≤ −3 there are no real eigenvalues.

Figure 6.5: Eigenvalue spectrum of the Hamiltonian p̂2 + x6(ix)ε. Repro-
duced from [46].
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7 Quantum Spontaneous PT
Symmetry Breaking

We are now ready to present the results of this dissertation. We remind you
that the problem we have set out to investigate is to discover the quantum
counterpart of the classical phenomena observed by Bender and Darg [41]
described in chapter 5. We will see that there is a compelling correspondence
between the behaviour of the classical and quantum systems. We reiterate
that the form of this family of Hamiltonians is

H = p̂2 + x̂2(ix)ε (7.1)

7.1 Numerical evaluation of eigenvalue spectrum

at unconventional turning points

To examine the behaviour of these system we desire to investigate the eigen-
value spectrum of the Hamiltonians (7.1) for the unconventional turning
points indexed by the variable K. The program constructed to examine the
spectrum is capable of probing the eigenspectrum of (7.1) up to ε ∼ 5.5. The
exponential behaviour of the wavefunction means that ψ grows prohibitively
large when we try to integrate for ε above this value.

As the region of unusual behaviour is given by 1
K < ε < 4K, we only

expect to be able to fully examine the behaviour for K = 1. A partial
examination of the behaviour for the K = 2 case was also undertaken and
is summarised below.

In the quantum case the turning points correspond to the points where the
behaviour of the eigenfunctions transitions from being oscillatory to dying
off exponentially. Associated to each turning point in the classical scenario
is a Stokes wedge inside which, for the quantum problem, the function ψ(x)
for the differential equation 1.2 may be taken to tend to 0 asymptotically.
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We examined the eigenspectrum inside these Stokes wedges for various
value of ε. We note that although the eigenvalues En obtained here may
not be numerically precise for higher values of n, they do give an accurate
qualitative picture of the behaviour of the eigenvalues.

7.2 Spontenous PT symmetry breaking for the

K = 1 pair of turning points

For the K = 1 turning point the behaviour is detailed in figure [7.1]

Figure 7.1: The eigenvalue spectrum of the p̂2 + x̂2(ix)ε Hamiltonian for the
K = 1 turning points.

We note that the behaviour is qualitatively similar to the behaviour of the
family of Hamiltonians p2+x2K(ix)ε. We observe that the lowest eigenvalue
diverges logarithmically as ε approaches 1. Above this we observe that the
eigenvalues generally pinch off in pairs and enter the complex plane, except
for ε = 2, at which we point we observe the eigenspectrum briefly emerging
from the complex plane and becoming real. This is a phase transition as it
represents the brief reemergence of PT -symmetry for this value of ε.
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For ε = 3 it was observed that we could generally find eigenvalues of very
high n. For values close to this such as ε = 2.95, 3.05, we did not observe
eigenvalues of comparable energy. We conjecture that this implies that the
eigenvalue spectrum is again briefly real for ε = 3. Above this value we
believe that the spectrum continues to disappear into the complex plane.
We did not detail this behaviour as it occurs at very high value for E, at
which our program is no longer of reliable accuracy.

For ε > 4 we seem to observe an entirely real spectrum, the eigenvalues
become gradually becoming larger and growing apart from one another.

7.3 Spontenous PT symmetry breaking for the

K = 2 pair of turning points

Figure 7.2 depicts the behaviour of the eigenspectrum for the K = 2 pair
of turning points. Again, this behaviour is similar to the family of Hamil-
tonians p̂2 + x̂2K(ix)ε. The lowest eigenvalue diverges logarithmically as ε
approaches 3. For ε < 5.5 we observe eigenvalues disppearing into the com-
plex plane in much the same manner as we do for the K = 1 case. However,
at ε = 5 and ε = 4 we find that the eigenvalue spectrum again emerges from
the complex plane to be briefly real.

It is interesting that we observe two transitions in this case. It may be
the case that there is the appearance of real eigenvaluse for every integer
value of ε between 1

K and K. We can only speculate this is the case, as
it was not possible to investigate the K = 1 spectrum to sufficiently high
values of E, nor was it possible to investigate the K = 2 spectra for ε > 5.5,
both of which may have shed more light on the exact behaviour of the phase
transitions for these Hamiltonians.

We note that we could not discern any special behaviour of the eigen-
spectrum at either turning point for the ε = p

q , with p a multiple of 4, q
odd. It may be the case that this spontaneous breaking for certain value
of ε manifests itself as a general breakdown in the PT symmetry of the
corresponding quantum eigenspectrum.
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Figure 7.2: The eigenvalue spectrum of the p̂2 + x̂2(ix)ε Hamiltonian for the
K = 2 turning points.

Figure 7.3: A closer view of the eigenvalue spectrum of the p̂2 + x̂2(ix)ε

Hamiltonian for the K = 1 turning points, for ε between 4.8
and 5.6. This figure illustrates the temporary reemergence of
the eigenvalues from the complex plane.
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8 Conclusions

In this dissertation we have discussed the phenomenon of spontaneous PT -
symmetry breaking for the family of Hamiltonians (1.2). We have examined
the spectra of the corresponding eigenvalue problem, motivated by the cor-
respondence between classical and quantum systems. We have seen that
this motivation has proven to be justified. We have observed an unforseen
set of behaviours for the class of Hamiltonians (1.2). For the K 6= 0 turn-
ing points we observe numerous phase changes for the eigenstates of these
Hamiltonians, in the disappearance into and reemergence from the complex
plane of the eigenvalues. It may be speculated that these changes in phase
are in some way analagous to the breaking of PT symmetry for certain
special values of ε in the classical case.

It is undoubtedly the case that further numerical work in this area could
lead to very interesting results. More complete surveys of the eigenspectra
for K = 1 and K = 2, for higher values of ε and E may result in the
discovery of further interesting phenomeona. In particular, it would be
interesting to see if there is any correspondence between the behaviour of
the eigenvalues for the special rational values of ε which give rise to closed,
periodic classical orbits which do not exhibit PT -symmetry. Although these
spectra were examined for these values of ε as part of this dissertation, we
could not discern any special beahviour, but more intense numerical work
may reveal an interesting correspondence for those values.

We also note that it may be of interest to examine the classical trajectories
of the H = p̂2 + x̂2K(ix)ε Hamiltonians in the regions which exhibit similar
quantum behaviour to the Hamiltonians studied here at theK = 1, 2 turning
points. It may be the case that there is a similar choppy behaviour of the
period of these trajectories for those values of ε, representing the presence
of closed, broken PT orbits.
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A C Program Implementing First

Order Runge-Kutta Integration

#include <s t d i o . h>
#include <math . h>

long double u exact ( long double x ) ;
long double u prime ( long double x , long double u ) ;

int main ( void )
{
long double k1 , k2 , k3 , k4 ;
long double h = 0 .0003125 ;
long double x = 0 . 0 , u = 3 . 0 ;
int i = 0 ;

while ( i < 1600)
{

k1 = h ∗ u prime (x , u ) ;
k2 = h ∗ u prime ( x + h ∗0 . 5 , u + k1 ∗ 0 . 5 ) ;
k3 = h ∗ u prime ( x + h ∗0 . 5 , u + k2 ∗ 0 . 5 ) ;
k4 = h ∗ u prime ( x + h , u + k3 ) ;

u += ( k1 + k2 + k2 + k3 + k3 + k4 ) / 6 . 0 ;

x += h ;
i ++;
}

p r i n t f ( ”x : %Lf\n” , x ) ;
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p r i n t f ( ”u exact : %.15 Lf\n” , u exact ( x ) ) ;
p r i n t f ( ” u numer ica l : %.15 Lf\n” , u ) ;
p r i n t f ( ” e r r o r : %Le\n” , f a b s l ( u exact ( x ) − u ) ) ;

return 0 ;
}

long double u exact ( long double x )
{
return ( 3 . 0 ∗ expl (−4.0 ∗ x ) ) ;
}

long double u prime ( long double x , long double u)
{
return (−4.0 ∗ u ) ;
}
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B C Program Implementing

Second Order Runge-Kutta

Integration

#include <s t d i o . h>
#include <math . h>

long double a prime ( long double x , long double y , long double a ) ;

int main ( void )
{
long double k1 , k2 , k3 , k4 ;
long double l1 , l2 , l3 , l 4 ;
long double h = 0 . 0 2 ;
long double x = 0 . 0 , y = 1 . 0 , a = 0 . 0 ;
int i = 0 ;
long double y exact ;
long double a exact ;

while ( i < 100)
{

k1 = h ∗ a prime (x , y , a ) ;
l 1 = h ∗ a ;
k2 = h ∗ a prime ( x + h ∗0 . 5 , y + l 1 ∗0 . 5 , a + k1 ∗ 0 . 5 ) ;
l 2 = h ∗ ( a + h∗0 .5∗ k1 ) ;
k3 = h ∗ a prime ( x + h ∗0 . 5 , y + l 2 ∗0 . 5 , a + k2 ∗ 0 . 5 ) ;
l 3 = h ∗ ( a + h∗0 .5∗ k2 ) ;
k4 = h ∗ a prime ( x + h , y + l3 , a + k3 ) ;
l 4 = h ∗ ( a + h∗k3 ) ;
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a += ( k1 + k2 + k2 + k3 + k3 + k4 ) / 6 . 0 ;
y += ( l 1 + l 2 + l 2 + l 3 + l 3 + l 4 ) / 6 . 0 ;

x += h ;
i ++;
}

p r i n t f ( ”x : %.15 Lf\n” , x ) ;
y exact = ( 3 . 0 / 2 . 0 ) ∗ expl (−x ) − ( 1 . 0 / 2 . 0 ) ∗ expl (−3.0∗x ) ;
p r i n t f ( ”y :%.15 Lf\n” , y exact ) ;
p r i n t f ( ”y numerica l : %.15 Lf\n” , y ) ;
p r i n t f ( ” Error : %Le\n\n” , f a b s l ( y − y exact ) ) ;

a exac t = −(3 .0/2.0)∗ expl (−x ) + 3 . 0/ 2 . 0∗ expl (−3.0∗x ) ;
p r i n t f ( ”y ’ :%.15 Lf\n” , a exac t ) ;
p r i n t f ( ”y ’ numerica l : %.15 Lf\n” , a ) ;
p r i n t f ( ” Error : %Le\n\n” , f a b s l ( a − a exact ) ) ;

return 0 ;
}

long double a prime ( long double x , long double y , long double a )
{
return (−4.0 ∗ a − 3 .0 ∗ y ) ;
}
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C C Program Implementing a

Shooting Algorithm to Solve

Eigenvalue Differential

Equations

#include <s t d i o . h>
#include <math . h>
#include <complex . h>

#define l d c long double complex
#define pi 3 .14159265
#define e p s i l o n 0 .0

void r k i n t e g r a t e ( ldc x0 , ldc ∗y , ldc ∗z , long double h ,
long double E, long double theta , FILE ∗output ) ;
l dc F( long double r , long double theta , ldc ps i , l d c psipr ime ,
long double E) ;
ldc G( long double r , long double theta , ldc ps i , l d c psipr ime ,
long double E) ;
long double shoot ( long double E1 , long double E2 ,
long double A1 , long double A2 ) ;

int main ( void )
{
long double E1 = 17 .5 , E2 = 18 .0 , tempE ;
long double three = 3 . 0 ;
long double s t e p s i z e = 0 . 0 0 0 5 ;
long double t h e t a l e f t , t h e t a r i g h t ;
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l d c p s i 1 l e f t , p s i p r i m e 1 l e f t ;
l dc p s i 1 r i g h t , p s i p r i m e 1 r i g h t ;
ldc p s i 2 l e f t , p s i p r i m e 2 l e f t ;
l dc p s i 2 r i g h t , p s i p r i m e 2 r i g h t ;
ldc p s i 1 d i f f , p s i 2 d i f f ;
l dc x l e f t , x r i g h t ;

int i , loop ;

FILE ∗output

x r i g h t = 10 .0 ∗ cexp l ( I ∗ pi ∗ ( ( 4 . 0 ∗ 1 . 0 − e p s i l o n )/
( 4 . 0 + 2 .0∗ e p s i l o n ) ) ) ;

x l e f t = 10 .0 ∗ cexp l ( I ∗ pi ∗ ((4 .0∗ −2.0 − e p s i l o n )/
( 4 . 0 + 2 .0∗ e p s i l o n ) ) ) ;

t h e t a r i g h t = c a r g l ( x r i g h t ) ;
t h e t a l e f t = c a r g l ( x l e f t ) ;

loop = ( int ) x r i g h t / s t e p s i z e ;
loop++;

output = fopen ( ” output ” , ”w” ) ;

p s i 1 r i g h t = 1 . 0 ;
p s i p r i m e 1 r i g h t = −cpowl ( I , e p s i l o n )

∗ cpowl ( x r i gh t , ( 2 . 0 + e p s i l o n ) )∗ p s i 1 r i g h t ;
p s i 2 r i g h t = 1 . 0 ;
p s i p r i m e 2 r i g h t = −cpowl ( I , e p s i l o n )

∗ cpowl ( x r i gh t , ( 2 . 0 + e p s i l o n ) )∗ p s i 2 r i g h t ;

p s i 1 l e f t = 1 . 0 ;
p s i p r i m e 1 l e f t = −cpowl ( I , e p s i l o n )

∗ cpowl ( x l e f t , ( 2 . 0 + e p s i l o n ) )∗ p s i 1 l e f t ;
p s i 2 l e f t = 1 . 0 ;
p s i p r i m e 2 l e f t = −cpowl ( I , e p s i l o n )
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∗ cpowl ( x l e f t , ( 2 . 0 + e p s i l o n ) )∗ p s i 2 l e f t ;

for ( i = 0 ; i < 40 ; i++)
{

r k i n t e g r a t e ( x r i gh t , &p s i 1 r i g h t ,
&ps ip r ime1 r i gh t , −s t e p s i z e , E1 , t h e t a r i g h t , output ) ;
r k i n t e g r a t e ( x r i gh t , &p s i 2 r i g h t ,
&ps ip r ime2 r i gh t , −s t e p s i z e , E2 , t h e t a r i g h t , output ) ;
r k i n t e g r a t e ( x l e f t , &p s i 1 l e f t ,
&p s i p r i m e 1 l e f t , −s t e p s i z e , E1 , t h e t a l e f t , output ) ;
r k i n t e g r a t e ( x l e f t , &p s i 2 l e f t ,
&p s i p r i m e 2 l e f t , −s t e p s i z e , E2 , t h e t a l e f t , output ) ;

p s i 1 d i f f = cexp l (− I ∗ t h e t a l e f t ) ∗
( p s i p r i m e 1 l e f t / p s i 1 l e f t ) ;
p s i 1 d i f f −= cexp l (− I ∗ t h e t a r i g h t ) ∗
( p s i p r i m e 1 r i g h t / p s i 1 r i g h t ) ;
p s i 2 d i f f = cexp l (− I ∗ t h e t a l e f t ) ∗
( p s i p r i m e 2 l e f t / p s i 2 l e f t ) ;
p s i 2 d i f f −= cexp l (− I ∗ t h e t a r i g h t ) ∗
( p s i p r i m e 2 r i g h t / p s i 2 r i g h t ) ;

p r i n t f ( ”%d\ t \ t %.10 Lf\ t \ t %.10 Lf\n” , i +1, E1 , E2 ) ;

i f ( ! i snan (E1 ) )
{

tempE = E1 ;
E1 = shoot (E1 , E2 , cab s l ( p s i 1 d i f f ) , c ab s l ( p s i 2 d i f f ) ) ;
E2 = tempE ;
}

else

{
p r i n t f ( ”%.20 Lf\n” , E2 ) ;
return 0 ;
}
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p s i 1 r i g h t = 1 . 0 ;
p s i p r i m e 1 r i g h t = −cpowl ( I , e p s i l o n )
∗ cpowl ( x r i gh t , ( 2 . 0 + e p s i l o n ) )∗ p s i 1 r i g h t ;
p s i 2 r i g h t = 1 . 0 ;
p s i p r i m e 2 r i g h t = −cpowl ( I , e p s i l o n )
∗ cpowl ( x r i gh t , ( 2 . 0 + e p s i l o n ) )∗ p s i 2 r i g h t ;

p s i 1 l e f t = 1 . 0 ;
p s i p r i m e 1 l e f t = −cpowl ( I , e p s i l o n )
∗ cpowl ( x l e f t , ( 2 . 0 + e p s i l o n ) )∗ p s i 1 l e f t ;
p s i 2 l e f t = 1 . 0 ;
p s i p r i m e 2 l e f t = −cpowl ( I , e p s i l o n )
∗ cpowl ( x l e f t , ( 2 . 0 + e p s i l o n ) )∗ p s i 2 l e f t ;
}

p r i n t f ( ”%.20 Lf\n” , E1 ) ;

return 0 ;
}

void r k i n t e g r a t e ( ldc x0 , ldc ∗y , ldc ∗z , long double h ,
long double E, long double theta , FILE ∗output )
{

l d c k1 , k2 , k3 , k4 ;
ldc l1 , l2 , l3 , l 4 ;
l dc ps i , ps ipr ime ;
ldc x ;
long double r ;

int loop ;

r = cabs l ( x0 ) ;

p s i = ∗y ; ps ipr ime = ∗z ;
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for ( loop = 0 ; loop < 20000 ; loop++)
{

k1 = h ∗ F( r , theta , ps i , ps ipr ime , E) ;
l 1 = h ∗ G( r , theta , ps i , ps ipr ime , E) ;

k2 = h ∗ F( r + h ∗0 . 5 , theta , p s i + k1 ∗0 . 5 ,
ps ipr ime + l 1 ∗0 . 5 , E ) ;
l 2 = h ∗ G( r + h ∗0 . 5 , theta , p s i + k1 ∗0 . 5 ,
ps ipr ime + l 1 ∗0 . 5 , E ) ;

k3 = h ∗ F( r + h ∗0 . 5 , theta , p s i + k2 ∗0 . 5 ,
ps ipr ime + l 2 ∗0 . 5 , E ) ;
l 3 = h ∗ G( r + h ∗0 . 5 , theta , p s i + k2 ∗0 . 5 ,
ps ipr ime + l 2 ∗0 . 5 , E ) ;

k4 = h ∗ F( r + h , theta , p s i + k3 ,
ps ipr ime + l3 , E) ;
l 4 = h ∗ G( r + h , theta , p s i + k3 ,
ps ipr ime + l3 , E) ;

p s i += ( k1 + k2 + k2 + k3 + k3 + k4 ) / 6 . 0 ;
ps ipr ime += ( l 1 + l 2 + l 2 + l 3 + l 3 + l 4 ) / 6 . 0 ;
r += h ;
}

∗y = p s i ;
∗z = ps ipr ime ;
}

l d c F( long double r , long double theta , ldc ps i , l d c psipr ime ,
long double E)

{
return ps ipr ime ;
}

l d c G( long double r , long double theta , ldc ps i , l d c psipr ime ,
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long double E)
{

l d c r e t v a l ;
l dc x ;

x = r ∗ cexp l ( I ∗ theta ) ;

r e t v a l = ( cpowl (x , 2 . 0 ) ∗ cpowl ( I ∗x , e p s i l o n ) − E)∗ p s i ;
r e t v a l = r e t v a l ∗ cexp l ( 2 . 0∗ I ∗ theta ) ;

return r e t v a l ;
}

long double shoot ( long double E1 , long double E2 ,
long double A1 , long double A2)
{
long double E3 ;

E3 = (E2∗A1 − E1∗A2)/(A1−A2 ) ;

return E3 ;
}
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