Geometric Quantization of Hamiltonian Mechanics

James Waldron

September 25, 2009

Abstract

We describe the symplectic geometry underlying the geometrical formulation of classical mechanics and how this is used to formulate the problem of quantization in a precise way. We describe prequantization and the use of real polarizations, and explain why a further construction is needed to give the correct Hilbert space.

Contents

1 Introduction 6
2 From Classical to Quantum Mechanics 7
2.1 Dirac's rules 7
2.2 Canonical Quantization 7
2.3 Geometrical Quantization 8
3 Geometry and Mechanics 8
3.1 Symplectic Vector Spaces 8
3.1.1 Definition 8
3.1.2 Examples 9
3.1.3 Frames 10
3.1.4 Canonical Transformations and orientation 10
3.2 Symplectic Manifolds 11
3.2.1 Definition 11
3.2.2 Cotangent bundles 11
3.2.3 Symplectic Potentials 13
3.2.4 Canonical coordinates 14
3.2.5 Integration 15
3.3 Hamiltonian Vector Fields and Flows 15
3.3.1 Hamiltonian Vector Fields 15
3.3.2 Hamiltonian Flows 16
3.3.3 The Lie Algebra of Hamiltonian Vector Fields 17
3.4 Poisson Brackets 18
3.4.1 Definition 18
3.4.2 The Lie Algebra of Smooth Functions 19
3.4.3 $C^{\infty}(\mathcal{M})$ and $V_{H}(\mathcal{M})$ 20
4 Geometric Formulation of Classical Mechanics 20
4.1 Constructing Phase Space 20
4.1.1 Velocity Phase Space 21
4.2 Hamiltonian Systems 22
4.2.1 Constituents 22
4.2.2 Dynamics 22
4.2.3 Classical Observables 23
4.3 Quantization 24
4.3.1 General Symplectic Manifolds 24
5 Prequantization 24
5.1 The Hilbert Space of Functions $\mathcal{H}_{\mathbb{C}}$ 24
5.1.1 Constructing $\mathcal{H}_{\mathbb{C}}$ 24
5.1.2 The $\left(V_{H}(\mathcal{M}),[],\right)$ representation 25
5.1.3 The trick 26
5.2 Complex Line Bundles 27
5.2.1 Sections and One Forms 27
5.2.2 Connections 28
5.2.3 Changing sections 29
5.2.4 $U(1)$ Transition Functions 30
5.2.5 The curvature of ∇ on L 33
5.3 The Pre Quantum Bundle B 33
5.3.1 Summary of previous section 33
5.3.2 The pre quantum Hilbert space \mathcal{H}_{B} 34
5.3.3 Prequantization of observables 35
5.4 Existence and Uniqueness of B 36
5.5 Examples 37
6 Polarizations 38
6.1 Identifying sections $s(q)$ 38
6.2 Distributions 39
6.2.1 Distributions on \mathcal{M} 39
6.2.2 Polarized Sections 41
6.3 Real Polarizations 42
6.3.1 The Vertical Polarization 42
6.3.2 Other Real Polarizations 43
6.3.3 Polynomial Observables 43
7 Full Quantization 45
7.1 Operators 45
7.2 The Hilbert Space \mathcal{H} 47
7.2.1 Problems with Polarized Sections 47
8 Concluding Remarks 47

1 Introduction

In the early part of the twentieth century Quantum Mechanics was discovered and it soon became clear that this new theory could provide explanaitions for many phenomena unnacounted for by classical physics, and also make extremlely accurate predictions of the outcomes of experiments testing the behaviour of matter at small scales. However, due to the abstract nature of the theory, quantum theories were often arrived at by starting with a classical theory and then "quantizing" it. Since different versions of quantum mechanics existed - those of Heisenberg and Schrodinger among others, it was not clear how well defined the idea of quantisation was.

Later, Dirac put quantum mechanics on a more rigourous, axiomatic footing and showed that the different quantum mechanics were just different representations of the same underlying theory. He also described the similarities between classical and quantum mechanics, in particular the similarity between poisson brackets and commutators. With these ideas, Dirac gave a set of rules that the quantisation of a classical theory should satisfy, which we give in section 2. This led to canonical quantisation, which has been used successfuly in many different situations from quantum field theory to condensed matter physics.

However, thare are several issues with canonical quantisation, mostly mathematical but also some philosophical - its not clear to what extent the quantisation of a particular classical system is unique. Geometric Quantization is an attempt at making quantization a rigorous mathematical process. The aim of this work is to describe the framework in which geometric quantisation works, and the basics of how it works as applied to non relativistic Hamiltonian mechanics.

The main sources used were $[1,2,3,4,8,11]$ in roughly equal amounts. However, since it is the classic reference on the subject I have mostly defined things as in [11]. I have tried throughout to include details of derivations that are not present in the texts, and also to give some original examples and proofs in order to demonstrate my understanding of the material.

2 From Classical to Quantum Mechanics

2.1 Dirac's rules

Any quantization approach has the same aim - to associate self adjoint (or symmetric) operators \widehat{f} (which represent quantum observables) acting on some a Hilbert space \mathcal{H} (which is the quantum phase space) to each classical observable f, that is to each function of the positions and momenta of the particles in the system. The rules given by Dirac are:[5]

1. The map $f \rightarrow \widehat{f}$ is linear over \mathbb{R}
2. The constant function $f(p, q)=1$ is mapped to the multiplication operator 1
3. The operators \widehat{f} are symmetric
4. If $\{f, g\}=h$ then $[\widehat{f}, \widehat{g}]=\widehat{f} \widehat{g}-\widehat{g} \widehat{f}=-i \hbar \widehat{h}$

Where $\{f, g\}$ is the Poisson bracket of f with g.

2.2 Canonical Quantization

If, in generalized coordinates there are n momenta p_{a} and n positions q^{a}, canonical quantization works by assigning:

$$
\begin{aligned}
& \hat{q}^{a}=q^{a} \\
& \widehat{p}_{a}=-i \hbar \partial / \partial q^{a}
\end{aligned}
$$

Other observables can then be expressed as polynomials in p_{a} and q^{a} and quantized using the rules above. This satisfies Dirac's rules but has several problems.

Firstly, canonical quantization does not determine the Hilbert space - on what space do the operators act? Experiments have shown that in the case of a single particle in 3 dimensions the "correct" Hilbert space is $L^{2}\left(\mathbb{R}^{3}\right)$ -
the space of square integrable functions complex functions on \mathbb{R}^{3}, with the inner product:

$$
\langle\psi, \phi\rangle=\psi^{*} \phi d^{3} x
$$

In general the answer to this question is not clear.
Secondly, the choice of operator ordering is left undetermined since at the classical level the observables commute, e.g.

$$
\begin{aligned}
& \widehat{\left(p_{a} q^{b}\right)}=-i \hbar\left(q^{b \partial} / \partial q^{a}+\delta_{b}^{a}\right) \\
& \widehat{\left(q^{b} p_{a}\right)}=-i \hbar q^{b \partial} / \partial q^{a}
\end{aligned}
$$

This problem can be fixed by agreeing on a convention, e.g. put all momentum operators on the right, but this seems very unnatural.

Thirdly, why choose the canonical choices for \widehat{p}_{a} and \widehat{q}^{a} ? They satisfy the rules, but to what extent are they unique choice?

Finally, classical Hamiltonian mechanics is invariant under canonical transformations, but its clear that canonical quantization fixes a particular set of p 's and q 's and so breaks this.

2.3 Geometrical Quantization

In geometric quantization all the elements of the quantization - the Hilbert space, its inner product and the operators are constructed in a natural, coordinate independent way from the classical theory. We'll see that it successfully satisfies the Dirac's rules, but unfortunately without modification may give the wrong theory. It turns out that the quantization rules are not restrictive enough - they don't determine the quantum theory exactly.

3 Geometry and Mechanics

3.1 Symplectic Vector Spaces

3.1.1 Definition

A Symplectic vector space is a pair (V, ω) where V is a vector space over some field \mathbb{F} (which here will always be \mathbb{R} or \mathbb{C}) and ω is an antisymmetric,
non degenerate bilinear form on V, i.e.

$$
\begin{aligned}
\omega: V \times V & \rightarrow \mathbb{F} \\
\omega(X, Y) & =-\omega(Y, X) \\
\omega(\alpha X+\beta Y, Z) & =\alpha \omega(X, Y)+\beta \omega(X, Z)
\end{aligned}
$$

$\forall X, Y, Z \in V$ and $\forall \alpha, \beta \in \mathbb{F}$. [11] If V is finite dimensional then the following two notions of non-degeneracy are equivalent:

$$
\begin{aligned}
\omega: V & \rightarrow V^{*} \\
X & \mapsto \omega(X, \bullet)
\end{aligned}
$$

is an isomorphism, or that

$$
\operatorname{det}\left(\omega_{i j}\right) \neq 0
$$

where $\left(\omega_{i j}\right)$ is the matrix representation of ω with respect to some basis of V.

An antisymmetric matrix is always similar to a matrix of one of the forms:

$$
\left(\begin{array}{ccc}
0 & -1_{n \times n} & 0 \\
1_{n \times n} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { or }\left(\begin{array}{cc}
0 & -1_{n \times n} \\
1_{n \times n} & 0
\end{array}\right)
$$

depending on whether it is $2 n+1$ or $2 n$ dimensional respectively ($-1_{n \times n}$ is the $n \times n$ identity matrix). Therefore, the non-degeneracy condition implies that any symplectic vector space is even dimensional - since the first matrix has zero determinant.

3.1.2 Examples

1. For example, let V be an 2 n-dimensional real vector space with some basis $\left\{e_{i} \mid i=1,2, \ldots, 2 n\right\}$ and ω some bilinear form on V. Then:

$$
\begin{aligned}
\omega(X, Y) & =X^{i} Y^{j} \omega\left(e_{i}, e_{j}\right) \\
& =X^{i} Y^{j} \omega_{i j}
\end{aligned}
$$

and (V, ω) is a symplectic vector space if $\left(\omega_{i j}\right)$ is antisymmetric and non-degenerate.
2. The canonical example of a symplectic manifold will be a cotangent bundle, $T^{*} Q$, for some manifold Q. In this case, the tangent space $T_{m} Q$ at some point $m \in Q$ has the following structure: Let W be some n-dimensional real vector space and let $V=W^{*} \oplus W$. We can make V into a symplectic vector space:

$$
\begin{align*}
\omega(X, Y) & =\omega((p, q),(p \prime, q \prime)) \tag{1}\\
& \equiv \frac{1}{2}\left(p\left(q^{\prime}\right)-p \prime(q)\right)
\end{align*}
$$

where $X=(p, q)$ and $Y=(p \prime, q \prime)$ for some $p, p \prime \in W^{*}$ and $q, q \prime \in W$. [11]

3.1.3 Frames

It is very use full to use a particular kind of basis, $\left\{e^{i}, f_{j} \mid i, j=1, \ldots, n\right\}$, to span some 2 n dimensional (V, ω), called a symplectic frame, if it satisfies:

$$
\begin{aligned}
\omega\left(e^{i}, e^{j}\right) & =0 \\
\omega\left(f_{i}, f_{j}\right) & =0 \\
\omega\left(e^{i}, f_{j}\right) & =\frac{1}{2} \delta_{j}^{i}
\end{aligned}
$$

This always exists, although it is not unique. [11] If $W \equiv \operatorname{span}\left\{e^{i}\right\}$ and $S \equiv \operatorname{span}\left\{f_{j}\right\}$ then $V \equiv S \oplus W$ and we can use ω to map S to W^{*} isomorphically:

$$
\begin{array}{rll}
\omega: S & \rightarrow W^{*} \\
X & \mapsto 2 \omega(X, \bullet)
\end{array}
$$

We see that all symplectic vector spaces (V, ω) can be described in the canonical way as $V=W^{*} \oplus W$ with ω as in equation (1).

3.1.4 Canonical Transformations and orientation

A linear map from a symplectic vector space to itself is called a canonical transformation if it preserves the symplectic structure, i.e. :

$$
\begin{aligned}
\rho: V & \rightarrow V \\
\omega(\rho X, \rho Y) & =\omega(X, Y)
\end{aligned}
$$

$\forall X, Y \in V .[11]$ The maps ρ have unit determinant so V has a natural orientation.

3.2 Symplectic Manifolds

3.2.1 Definition

A symplectic manifold is a pair (\mathcal{M}, ω), where \mathcal{M} is a smooth manifold and ω is a closed, non-degenerate 2-form globally defined on \mathcal{M}, [11] i.e.

$$
\begin{aligned}
\omega & \in \Omega^{2}(\mathcal{M}) \\
d \omega & =0
\end{aligned}
$$

As for symplectic vector spaces, if \mathcal{M} is finite dimensional there are two equivalent notions of non-degeneracy:

$$
\begin{aligned}
\omega: T_{m} \mathcal{M} & \rightarrow T_{m}^{*} \mathcal{M} \\
X & \mapsto \omega_{m}(X, \quad \bullet) \\
& =i_{X} \omega
\end{aligned}
$$

is an isomorphism $\forall m \in \mathcal{M}$, where ω_{m} is ω restricted to some point $m \in \mathcal{M}$ and $i_{X} \omega$ is the interior product of X with ω, or that

$$
\operatorname{det}\left(\omega_{m i j}\right) \neq 0
$$

$\forall m \in \mathcal{M}$, where $\left(\omega_{m i j}\right)$ are the components of ω_{m}.
The tangent spaces of \mathcal{M} become symplectic vector spaces $\left(T_{m} \mathcal{M}, \omega_{m}\right)$ and so symplectic manifolds are always even dimensional.

For example, a real symplectic vector space (V, ω) can be made into a real symplectic manifold. Let V be 2 n dimensional and $\left\{e^{i}, f_{j} \mid i, j=1, \ldots, n\right\}$ be a symplectic frame. Then if $X \in V, X=\widetilde{X}^{i} f_{i}+X_{i} e^{i}$ for some scalars $X=\widetilde{X}^{i}, X_{j} \in \mathbb{R}$. Therefore, ($\left.\widetilde{X}^{i}, X_{j} \mid-\infty<\widetilde{X}^{i}, X_{j}<+\infty\right)$ are global coordinates on V, and V as a manifold is diffeomorphic to $\mathbb{R}^{2 n}$ as a manifold. The symplectic form on V is then $d \widetilde{X}^{i} \wedge d X_{i}$.

3.2.2 Cotangent bundles

Any Cotangent Bundle can be made into a symplectic manifold by choosing a certain 2 form constructed from the bundle structure. If Q is some real n-dimensional manifold then $T^{*} Q$, its cotangent bundle, is a 2 n -dimensional
manifold. It is a fibre bundle over Q where the fibre at $q \in Q$ is $T_{q}^{*} Q$, the cotangent space at Q, so $T^{*} Q$ is the set:

$$
T^{*} Q=\left\{(p, q) \mid q \in Q, p \in T_{q}^{*} Q\right\}
$$

If (q^{a}) are some local coordinates on some open set in Q, then $\left(p_{a}, q^{b}\right)$ are local coordinates on $T^{*} Q$, where $p=p_{a} d q^{a}$ so that $\left(p_{a}\right)$ are the components of p relative to the dual basis $d q^{a}$ of the coordinate basis $\partial / \partial q^{a} .[3,2]$

A 1-form, called the canonical 1-form, can be constructed in a coordinate independent way. Let π be the projection from the bundle $T^{*} Q$ down to its base space Q :

$$
\begin{aligned}
\pi: T^{*} Q & \rightarrow Q \\
(p, q) & \mapsto q
\end{aligned}
$$

For each point $m=(p, q) \in T^{*} Q$ we can define a 1-form $\theta_{m} \in T_{m}^{*}\left(T^{*} Q\right)$ in the following way:

$$
\begin{equation*}
\theta_{m}(X)=p\left(\pi_{*} X\right) \tag{2}
\end{equation*}
$$

where $X \in T_{m}\left(T^{*} Q\right)$ and π_{*} is the push forward of π :

$$
\begin{align*}
\pi_{*}: T_{m}\left(T^{*} Q\right) & \rightarrow T_{\pi(m)} Q \tag{3}\\
X & \mapsto\left(\pi_{*} X\right)
\end{align*}
$$

The coordinate expression of (3) is:

$$
\begin{aligned}
\widetilde{X}^{a \partial} / \partial p^{a}+X^{a} \partial / \partial q^{a} & \mapsto \partial q^{a}(\pi(m)) / \partial p_{b} \widetilde{X}^{b \partial} / \partial q^{a}+\partial q^{a}(\pi(m)) / \partial q^{b} X^{b} \partial / \partial q^{a} \\
& =0+\delta_{b}^{a} X^{b} \partial / \partial q^{a} \\
& =X^{a \partial} / \partial q^{a}
\end{aligned}
$$

The coordinate expression of (2) is then:

$$
\begin{aligned}
\left(\widetilde{\theta}_{m a} d p_{a}+\theta_{m a} d q^{a}\right)\left(\widetilde{X}^{b} \partial / \partial p^{b}+X^{b \partial} / \partial q^{b}\right) & =p_{a} d q^{a}\left(X^{b \partial} / \partial q^{b}\right) \\
\widetilde{\theta}_{m a} \widetilde{X}^{b}+\theta_{m a} X^{a} & =p_{a} X^{a}
\end{aligned}
$$

If this is true $\forall X \in T_{m}\left(T^{*} Q\right)$ then we find $\widetilde{\theta}_{m a}=0$ and $\theta_{m a}=p_{a}$, so that:

$$
\begin{equation*}
\theta_{m}=p_{a} d q^{a} \tag{4}
\end{equation*}
$$

We can then construct a 1 -form $\theta \in \Omega^{1}\left(T^{*} Q\right)$ by setting $\theta(m) \equiv \theta_{m}$, and θ will be smooth as p_{a} is a smooth function on $T^{*} Q$.

The exterior derivative of the canonical one form is ω, the canonical 2-form:

$$
\begin{align*}
\omega & \equiv d \theta \\
& =d p_{a} \wedge d q^{a} \tag{5}
\end{align*}
$$

Since ω is exact it is closed $-d \omega=d^{2} \theta=0$. If we make coordinates:

$$
\left(y^{\alpha} \mid \alpha=1, \ldots, 2 n, y^{\alpha}=p_{a} \text { for } \alpha=a, y^{\alpha}=q^{a} \text { for } \alpha=a+n\right)
$$

then relative to the basis $d y^{\alpha}, \omega$ has components:

$$
\omega_{\alpha \beta}=\left(\begin{array}{cc}
0 & 1_{n \times n} \\
-1_{n \times n} & 0
\end{array}\right)
$$

so ω is non-degenerate and $\left(T^{*} Q, \omega\right)$ is a symplectic manifold. We will see in section 4 that cotangent bundles are a natural way to describe the phase space of a classical system.

3.2.3 Symplectic Potentials

Any symplectic manifold (\mathcal{M}, ω) has a symplectic 2-form ω that is closed, but it will not be exact in general. This will depend on the cohomology of \mathcal{M}. However, by Poincare's Lemma ω will be locally exact - there always exits a neighborhood U of any point $m \in \mathcal{M}$ and a 1-form θ_{U} defined on U such that:

$$
\left.\omega\right|_{U}=d \theta
$$

and θ is then a symplectic potential.[11] But, θ is only defined up to the addition of a closed 1-form:

$$
\begin{aligned}
\omega & =d \theta \\
& =d(\theta+\sigma) \text { if } d \sigma=0
\end{aligned}
$$

This will be important in pre-quantization, see section (5). An interesting result restricts the cohomology of compact symplectic manifolds without boundary. Let $\omega^{n} \equiv \omega \wedge \omega \wedge \ldots \wedge \omega$, let (\mathcal{M}, ω) be a compact symplectic manifold without boundary and assume that there exists a globally defined symplectic potential, so that $\omega=d \theta$, then:

$$
\begin{aligned}
\mathcal{M} \omega^{n} & =\mathcal{M} d \theta \wedge \omega^{n-1} \\
& =\mathcal{M} d \theta \wedge \omega^{n-1}+\mathcal{M} \theta \wedge d \omega \wedge \omega^{n-2}+\mathcal{M} \theta \wedge \omega \wedge d \omega \wedge \omega^{n-3}+\ldots \\
& =\mathcal{M} d\left(\theta \wedge \omega^{n-1}\right) \\
& =\partial \mathcal{M} \theta \wedge \omega^{n-1} \\
& =0
\end{aligned}
$$

since $\partial \mathcal{M}=0$. But, ω^{n} is a positive volume form so the left hand side is non-vanishing and there is a contradiction. Therefore, compact symplectic manifolds without boundary must have non-trivial second de Rham cohomology groups. (The argument does not extend to non-compact \mathcal{M} as ω is nowhere vanishing so has non-compact support and therefore Stokes's theorem doesn't apply). This result has consequences for the the pre quantization of symplectic manifolds representing internal degrees of freedom.

3.2.4 Canonical coordinates

The natural notion of "sameness" for symplectic manifolds of that of a canonical diffeomorphism. Let $\left(\mathcal{M}_{1}, \omega_{1}\right)$ and $\left(\mathcal{M}_{2}, \omega_{2}\right)$ be symplectic manifolds, then a diffeomorphism ρ is canonical if:

$$
\begin{aligned}
\rho: \mathcal{M}_{1} & \rightarrow \mathcal{M}_{2} \\
\rho^{*}\left(\omega_{2}\right) & =\omega_{1}
\end{aligned}
$$

where ρ^{*} is the pullback of ρ. [11]
A result known as Darboux's theorem shows that all symplectic manifolds are locally the same as a cotangent bundle of the same dimension. More precisely, if (\mathcal{M}, ω) is a symplectic manifold of dimension $2 n$, and $m \in \mathcal{M}$, then there is a neighborhood U of m, and coordinates $\left(p_{a}, q^{b}\right)$ on U, where $a, b=1, \ldots, n$, such that ω can be written as in (5) :

$$
\omega=d p_{a} \wedge d q^{a} \text { on } \mathrm{U}
$$

and $\left(p_{a}, q^{b}\right)$ are then canonical coordinates. (So on a cotangent bundle $T^{*} Q$ all coordinates $\left(p_{a}, q^{b}\right)$ constructed from coordinates $\left(q^{a}\right)$ on Q are canonical). Given any two points $m_{1} \in \mathcal{M}_{1}$ and $m_{2} \in \mathcal{M}_{2}$ there always exists a local canonical diffeomorphism mapping a neighborhood of m_{1} to one of m_{2}. The significance of this is twofold. Firstly, in the context of Geometric Quantization this allows us to study the quantization of arbitrary symplectic manifolds in terms of a local structure which is well understood - that of a cotangent bundle. Secondly, from a purely mathematical point of view we see that symplectic manifolds have no local geometric invariants, other than their dimension. [3]

Note that this does not mean that locally defined symplectic potentials necessarily have the form of a canonical 1-form $p_{a} d q^{a}$, e.g. :

$$
\begin{aligned}
d p_{a} \wedge d q^{a} & =1 / 2\left(d p_{a} \wedge d q^{a}-d q^{a} \wedge d p_{a}\right) \\
& =d p_{a} \wedge d q^{a}-1 / 2\left(d p_{a} \wedge d q^{a}+d q^{a} \wedge d p_{a}\right) \\
& =d\left(p_{a} d q^{a}\right)-1 / 2 d\left(p_{a} d q^{a}+q^{a} d p_{a}\right)
\end{aligned}
$$

3.2.5 Integration

Taking the $2 n$ form $\omega^{n}=\omega \wedge \omega \wedge \ldots \wedge \omega$ gives us a volume form on (\mathcal{M}, ω) since \mathcal{M} has a natural orientation. [2] This will allow us to construct an inner product later.

3.3 Hamiltonian Vector Fields and Flows

The geometrical formulation of classical mechanics relies on using the natural symplectic structure on the phase space of the system to relate functions with vector fields in a coordinate independent way.

3.3.1 Hamiltonian Vector Fields

Let $f \in C_{\mathcal{M}}^{\infty}$ be a smooth function on a symplectic manifold (\mathcal{M}, ω). The Hamiltonian Vector Field of f is defined by the equation:[4]

$$
\begin{equation*}
i_{X_{f}}(\omega)=-d f \tag{6}
\end{equation*}
$$

This equation defines X_{f} uniquely, as can be seen from its local coordinate form. Let $\left(p_{a}, q^{b}\right)$ be local canonical coordinates, then (6) reads:

$$
\begin{aligned}
\omega\left(X_{f}, \bullet\right) & =-d f \\
d p_{a} \wedge d q^{a}\left(\widetilde{X}_{f}^{b \partial} / \partial p^{b}+X_{f}^{b} \partial / \partial q^{b}\right) & =-\partial f / \partial p^{a} d p^{a}-\partial f / \partial q^{a} d q^{a} \\
\widetilde{X}_{f}^{a} d q^{a}-X_{f}^{a} d p^{a} & =-\partial f / \partial q^{a} d q^{a}-\partial f / \partial p^{a} d p^{a}
\end{aligned}
$$

and so X_{f} can be written locally as:

$$
\begin{equation*}
X_{f}=\partial f / \partial p^{a} \partial / \partial q^{a}-\partial f / \partial q^{a} \partial / \partial p^{a} \tag{7}
\end{equation*}
$$

A general vector field X is called Hamiltonian if there exists a smooth function f such that $X=X_{f}$. We call the set of Hamiltonian vector fields $V_{H}(\mathcal{M})$.

3.3.2 Hamiltonian Flows

The symplectic structure also allows us to associate a flow on \mathcal{M} to each smooth function f - we define the Hamiltonian Flow of f, denoted ρ_{f}, to be the flow of X_{f}. Let γ be an integral curve of X_{f} :

$$
\begin{aligned}
\gamma:(a, b) \subset \mathbb{R} & \rightarrow \mathcal{M} \\
\gamma(s) & \mapsto m(s) \\
\left.\frac{d \gamma}{d s}\right|_{m} & =\left.X_{f}\right|_{m} \quad \forall m \in \mathcal{M}
\end{aligned}
$$

In local canonical coordinates this means:

$$
\frac{d q^{a}(\gamma)}{d s} \partial / \partial q^{a}+\frac{d p_{a}(\gamma)}{d s} \partial / \partial p^{a}=\partial f / \partial p^{a} \partial / \partial q^{a}-\partial f / \partial q^{a} \partial / \partial p^{a}
$$

and so, along the integral curves of X_{f} we have:

$$
\begin{align*}
& \frac{d q^{a}(\gamma)}{d s}=\partial f / \partial p^{a} \\
& \frac{d p_{a}(\gamma)}{d s}=-\partial f / \partial q^{a} \tag{8}
\end{align*}
$$

which we recognize as Hamilton's equations, see section (4). The integral curves of X_{f} are therefore solutions of Hamilton's equations for the function f. The flow of X_{f} is then:

$$
\begin{aligned}
\rho_{f}:\left(s_{1}, s_{2}\right) \subset \mathbb{R} \times \mathcal{M} & \rightarrow \mathcal{M} \\
(s, m) & \mapsto \gamma_{f, m}(s)
\end{aligned}
$$

where $\gamma_{f, m}$ is the integral curve of X_{f} starting at m, i.e. the solution of (8) with initial condition $\gamma_{f, m}(0)=m$. Unless \mathcal{M} is compact, the map ρ_{f} will in general only be defined for some subset $\left(s_{1}, s_{2}\right)$ of \mathbb{R}. It therefore generates local diffeomorphisms of \mathcal{M}.

Using the identity $\mathcal{L}_{X} \alpha=d i_{X} \alpha+i_{X} d \alpha$ [8], which holds for all vector fields X and forms α, we see that:

$$
\begin{aligned}
\mathcal{L}_{X_{f}} \omega & =d i_{X_{f}} \omega+i_{X_{f}} d \omega \\
& =d(-d f)+0 \\
& =0
\end{aligned}
$$

From the definition of the Lie derivative; [8]

$$
\mathcal{L}_{X_{f}} \omega(m)=\underline{\lim _{\epsilon \rightarrow 0}} \frac{1}{\epsilon}\left(\rho_{X_{f}(\epsilon)}^{*}\left(\left.\omega\right|_{\rho_{X_{f}(\epsilon)(m)}}\right)-\left.\omega\right|_{m}\right)
$$

we see that the vanishing of the Lie derivative of ω along X_{f} is equivalent to ω being invariant under the flow $\rho_{X_{f}}$;

$$
\rho_{X_{f}}^{*}: \omega \mapsto \omega
$$

and so the Hamiltonian flow of f generates local canonical diffeomorphisms.

3.3.3 The Lie Algebra of Hamiltonian Vector Fields

Given two Hamiltonian vector fields X_{f} and X_{g}, any linear combination is also Hamiltonian:

$$
\begin{aligned}
i_{\alpha X_{f}+\beta X_{g}}(\omega) & =\alpha i_{X_{f}}(\omega)+\beta i_{X_{g}}(\omega) \\
& =-\alpha d f-\beta d g \\
& =-d(\alpha f+\beta g)
\end{aligned}
$$

where $\alpha, \beta \in \mathbb{R}$. Therefore, $V_{H}(\mathcal{M})$ is a subspace of $V(\mathcal{M})$. We'll show in section (3.4.2) that $V_{H}(\mathcal{M})$ is in fact a sub algebra.

3.4 Poisson Brackets

Poisson brackets are a key feature of the standard Hamiltonian description of classical dynamics. They allow us to express the change of an observable under time evolution, (or more generally under the evolution generated by any other observable) in a concise way. Poisson brackets also provide a simple way of relating symmetries and conserved quantities. As discussed in section 2 they are the key structure identified by Dirac in his attempt to axiomatise quantization.

The geometric formulation of mechanics gives a coordinate independent, entirely geometric definition of the Poisson bracket. This allows quantization to be formulated in a coordinate independent way.

3.4.1 Definition

We define the Poisson bracket as a map from pairs of smooth functions to smooth functions:[4]

$$
\begin{align*}
\{,\}: C_{\mathcal{M}}^{\infty} \times C_{\mathcal{M}}^{\infty} & \rightarrow C_{\mathcal{M}}^{\infty} \tag{9}\\
(f, g) & \mapsto\{f, g\} \equiv \omega\left(X_{f}, X_{g}\right)
\end{align*}
$$

The bracket can also be defined equivalently as $X_{f}(g)$:

$$
\begin{aligned}
X_{f}(g) & =d g\left(X_{f}\right) \\
& =-i_{X_{g}} \omega\left(X_{f}\right) \\
& =-\omega\left(X_{g,} X_{f}\right) \\
& =\omega\left(X_{f,} X_{g}\right)
\end{aligned}
$$

and so:

$$
\begin{equation*}
\{f, g\} \equiv \omega\left(X_{f}, X_{g}\right)=X_{f}(g) \tag{10}
\end{equation*}
$$

Using (10) we can derive the coordinate form of the Poisson bracket:

$$
\begin{aligned}
X_{f}(g) & =\left(\partial f / \partial p^{a} \partial / \partial q^{a}-\partial f / \partial q^{a} \partial / \partial p^{a}\right)(g) \\
& =\partial f / \partial p^{a} \partial g / \partial q^{a}-\partial f / \partial q^{a} \partial g / \partial p^{a}
\end{aligned}
$$

which we recognize as the usual Poisson bracket of f with g in Hamiltonian mechanics.

3.4.2 The Lie Algebra of Smooth Functions

From the definition of the Poisson bracket (9) its obviously antisymmetric - due to the antisymmetry of ω. Using the following properties of the Lie derivative,[8]we can show that it also satisfies the Jacobi identity:

$$
\begin{aligned}
i_{[X, Y]} \alpha & =\mathcal{L}_{X}\left(i_{Y} \alpha\right)-\mathcal{L}_{Y}\left(i_{X} \alpha\right) \\
\mathcal{L}_{[X, Y]} T & =\mathcal{L}_{X} \mathcal{L}_{Y} T-\mathcal{L}_{Y} \mathcal{L}_{X} T
\end{aligned}
$$

which hold for all $X, Y \in V(\mathcal{M}), \alpha \in \Omega^{p}(\mathcal{M})$ and tensor fields T. Let $X_{f}, X_{g} \in V_{H}(\mathcal{M})$, then using the first identity identity:

$$
\begin{aligned}
\left.i_{\left[X_{f}, X_{g}\right.}\right]^{\omega} & =\mathcal{L}_{X_{f}}\left(i_{X_{g}} \omega\right)-\mathcal{L}_{X_{g}}\left(i_{X_{f}} \omega\right) \\
& =\mathcal{L}_{X_{f}}(-d g)-\mathcal{L}_{X_{g}}(-d f) \\
& =\left(i_{X_{f}} d+d i_{X_{f}}\right)(-d g)-\left(i_{X_{g}} d+d i_{X_{g}}\right)(-d f) \\
& =-d\left(i_{X_{f}} d g\right)+d\left(i_{X_{g}} d f\right) \\
& =-d\{f, g\}
\end{aligned}
$$

Comparing this with (6) we see that:

$$
\begin{equation*}
\left[X_{f}, X_{g}\right]=X_{\{f, g\}} \tag{11}
\end{equation*}
$$

This shows that the set of Hamiltonian vector fields $V_{H}(\mathcal{M})$ is closed under the Lie bracket, and so is a sub Lie algebra of the algebra of vector fields. We'll refer to it as $\left(V_{H}(\mathcal{M}),[],\right)$.

Now, let $f, g, h \in C^{\infty}(\mathcal{M})$ then using the second identity:

$$
\begin{aligned}
\mathcal{L}_{\left[X_{f}, X_{g}\right]} h & =\mathcal{L}_{X_{f}} \mathcal{L}_{X_{g}} h-\mathcal{L}_{X_{g}} \mathcal{L}_{X_{f}} h \\
\mathcal{L}_{X_{\{f, g\}}} h & =\mathcal{L}_{X_{f}} X_{g}(h)-\mathcal{L}_{X_{g}} X_{f}(h) \\
X_{\{f, g\}}(h) & =\mathcal{L}_{X_{f}}\{g, h\}-\mathcal{L}_{X_{g}}\{f, h\} \\
\{\{f, g\}, h\} & =\{f,\{g, h\}\}-\{g\{f, h\}\}
\end{aligned}
$$

and so we have:

$$
\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0
$$

which is the Jacobi identity. The set of smooth functions on \mathcal{M} is therefore a Lie algebra under the Poisson bracket. We'll refer to this as $\left(C^{\infty}(\mathcal{M}),\{\},\right)$.

3.4.3 $C^{\infty}(\mathcal{M})$ and $V_{H}(\mathcal{M})$

The relationship between the two Lie algebras discussed is important in geometric quantization. The equation defining Hamiltonian vector fields, (6) gives us a map from one Lie algebra to the other:

$$
\begin{aligned}
\left(C^{\infty}(\mathcal{M}),\{,\}\right) & \rightarrow\left(V_{H}(\mathcal{M}),[,]\right) \\
f & \mapsto X_{f}
\end{aligned}
$$

As discussed above, the map is linear. The identity (11) then shows that its a homomorphism:

$$
\{f, g\} \quad \mapsto \quad X_{\{f, g\}}=\left[X_{f}, X_{g}\right]
$$

From (7), the coordinate expression of the Hamiltonian vector field of f, we see that X_{f} is the zero vector field iff all the derivatives of f vanish everywhere. The kernel of the homomorphism is therefore the set of constant functions on \mathcal{M}, which is isomorphic to \mathbb{R}, and so by the standard isomorphism theorem:[11]

$$
\left(C^{\infty}(\mathcal{M}),\{,\}\right) / \mathbb{R} \cong\left(V_{H}(\mathcal{M}),[,]\right)
$$

It is this isomorphism, and the relation (11) that leads to it, that underlay geometric quantization. Notice that we are already seeing a correspondence between Poisson brackets and commutators, even at the classical level.

4 Geometric Formulation of Classical Mechanics

4.1 Constructing Phase Space

As mentioned in section (3), cotangent bundles are a natural way to describe the phase space of classical systems. Our starting point for quantization will always be a classical Hamiltonian theory, but we first try explain why cotangent bundles can be arrived at by considering Lagrangian mechanics and the Legendre transform.

4.1.1 Velocity Phase Space

In either the Lagrangian or Hamiltonian formulations of mechanics, we start with a configuration space, Q. This is the space of positions of the particles, so for a standard system in 3 dimensions with no constraints this will be $\mathbb{R}^{3 n}$. Since classical mechanics can be formulated using generalized coordinates (as opposed to some fixed Euclidean coordinate system), it makes sense to think of Q as a manifold. $\mathbb{R}^{3 n}$ has the obvious atlas consisting of the global chart $\left(\mathbb{R}^{3 n}, i_{d}\right)$, where i_{d} is the identity map from $\mathbb{R}^{3 n}$ to itself. Generalized coordinates systems then make up the complete atlas of all possible charts compatible with $\left(\mathbb{R}^{3 n}, i_{d}\right)$.

In a more general situation, the particles' positions will be confined in some way, so Q will be some $3 n$ dimensional manifold. For example, if the theory describes a single particle attached to one end of a light rigid rod of length r , the other end fixed at some point, then Q would be S^{1}.

The Lagrangian is a function of the particles positions and velocities, so we need to construct the space of positions and velocities from Q. Take some point $q_{0} \in Q$ and consider some curve $\gamma(t)$ through q_{0}. Let $q_{0} \in U \subset Q$ for some chart (U, ϕ), so that q_{0} has coordinates $\phi\left(q_{0}\right)=\left(q_{0}^{1}, \ldots, q_{0}^{N}\right)$, and parametrize γ such that $\gamma\left(t_{o}\right)=q_{0}$. The tangent vector to γ at q_{0} is then:

$$
\begin{aligned}
& \left.\frac{d}{d t}\right|_{q_{0}} \in T_{q_{0}} Q \\
& \left.\frac{d}{d t}\right|_{q_{0}}=\left.\frac{d q^{a}(\gamma(t))}{d t}\right|_{t_{0}} \partial / \partial q^{a}
\end{aligned}
$$

If we identify the parameter t with actual time, then $\gamma(t)$ describes the path of the particles, and the components of $\left.\frac{d}{d t}\right|_{q_{0}}$ are their generalized velocities. The set of all possible generalized velocity vectors through q_{0} is then $T_{q_{0}} Q$.

If we take $T Q$, the tangent bundle of Q, it has local coordinates $\left(q^{a}, v^{b}\right)$, where $v=v^{a} \partial /\left.\partial q^{a}\right|_{q_{0}}$ is a tangent vector at some point $q_{0} \in Q$, so that the coordinates v^{b} are the coordinates of tangent vectors. Therefore, $T Q$ is the space of all position, velocity pairs. We'll call $T Q$ the velocity phase space. In the case of some unconstrained 3 dimensional system, we recover the velocity phase space we'd expect:

$$
\begin{aligned}
T\left(\mathbb{R}^{3 n}\right) & =\mathbb{R}^{3 n} \times \mathbb{R}^{3 n} \\
& =\mathbb{R}^{6 n}
\end{aligned}
$$

as $\mathbb{R}^{3 n}$ can be covered by a single chart, so the transition function between the fib res $T_{q} Q \cong \mathbb{R}^{3 n}$ are trivial and so $T\left(\mathbb{R}^{3 n}\right)$ is a trivial bundle.

Since the Lagrangian is a real function of the positions and velocities, we see that a Lagrangian system consists of a configuration space Q and some real function $L \in C^{\infty}(T(Q))$. Its possible to then describe the Legendre transform in a coordinate independent way by mapping $T Q$ to $T^{*} Q$. We can imagine momenta as co vectors since $p(v)=m v^{2}=2 K E$ and so momenta map velocity vectors to real numbers.

4.2 Hamiltonian Systems

4.2.1 Constituents

In the geometric formulation, a Hamiltonian system consist of a pair (Q, h) , where Q is some real n-dimensional manifold, and h is the Hamiltonian, a real function on the cotangent bundle of $Q:[2]$

$$
h: T^{*} Q \rightarrow \mathbb{R}
$$

As described in section 3.2.2, the cotangent bundle $T^{*} Q$ can be made into a symplectic manifold in a natural way, by constructing the canonical one form θ and then taking its exterior derivative to give a symplectic structure ω. In local canonical coordinates:

$$
\begin{aligned}
\theta & =p_{a} d q^{a} \\
\omega & =d p_{a} \wedge d q^{a}
\end{aligned}
$$

From now on, cotangent bundles will be always considered as symplectic manifolds $\left(T^{*} Q, \omega\right)$.

4.2.2 Dynamics

Using the results derived in section 3 we can describe the dynamical evolution of the classical system. If $m \in T^{*} Q$ then it specifies some possible state of the system; $m=(p(m), q(m))$ so it specifies the position and momenta of all the particles. The dynamics are then described by identifying the
parametrization of curves in $T^{*} Q$ with time. Using equations (7) and (8) The Hamiltonian vector field X_{h} of the Hamiltonian h is:

$$
X_{h}=\partial h / \partial p^{a} \partial / \partial q^{a}-\partial h / \partial q^{a \partial} / \partial p^{a}
$$

and along its integral curves:

$$
\begin{aligned}
& \frac{d q^{a}}{d t}=\partial h / \partial p^{a} \\
& \frac{d p_{a}}{d t}=-\partial h / \partial q^{a}
\end{aligned}
$$

which are Hamilton's equations. The integral curves of h are therefore the possible trajectories of the system under time evolution. Given some initial point m, the equations can be solved uniquely (at least in some neighborhood of m a solution always exists and is unique by the standard existence and uniqueness theorems for pde's [1]) In general, time evolution is thus described by the Hamiltonian flow of h :

$$
\begin{equation*}
\rho_{h}:(t, m) \quad \mapsto \quad \gamma_{h, m}(t) \tag{12}
\end{equation*}
$$

Given a state of the system $m \in T * Q$, (12) then gives the state of the system at all future times t.

Its interesting to note that since $\left(T^{*} Q, \omega\right)$ is constructed canonically from Q, and the flow of h is then determined by X_{f}, Hamiltonian dynamics is essentially contained in the equation defining Hamiltonian vector fields:

$$
i_{X_{f}} \omega=-d f
$$

4.2.3 Classical Observables

A classical observable is some real valued function of the particles positions and momenta, so in the geometric formulation they are functions $f \in C^{\infty}\left(T^{*} Q\right)$. We saw in section 3.4 that given some symplectic manifold \mathcal{M}, the set $C^{\infty}(\mathcal{M})$ is a Lie algebra under the Poisson bracket $\{$,$\} .$ Given some classical system with phase space $T^{*} Q$, the observables therefore form a Lie algebra, denoted $\left(C^{\infty}(\mathcal{M}),\{\},\right)$, which we shall call the algebra of classical observables.

4.3 Quantization

We can now give a precise definition of the quantization of a symplectic manifold: It is a Representation of the algebra of classical observables $\left(C^{\infty}(\mathcal{M}),\{\},\right)$ CONSISTING OF SYMMETRIC OPERATORS ACTING on a Hilbert space.

4.3.1 General Symplectic Manifolds

Quantization can be applied to any symplectic manifold, not just cotangent bundles and Hamiltonian systems. We'll try to be as general as possible in our description, but the focus will be on cotangent bundles.

5 Prequantization

Prequantization is an attempt at quantizing symplectic manifolds. We shall see that it succeeds in satisfying the axioms outlined earlier. However, comparison with the canonical quantization of a simple example shows that it gives the wrong quantum theory in the physical sense.

5.1 The Hilbert Space of Functions $\mathcal{H}_{\mathbb{C}}$

5.1.1 Constructing $\mathcal{H}_{\mathbb{C}}$

As discussed in section 3.2.5, the symplectic form ω on a symplectic manifold (\mathcal{M}, ω) gives an orientation and volume element, the Louisville measure:[11]

$$
\begin{aligned}
\epsilon & =\left(\frac{1}{2 \pi n}\right)^{n} \omega^{n} \\
& =\left(\frac{1}{2 \pi n}\right)^{n} d p_{1} \wedge \ldots \wedge d p_{n} \wedge d q^{1} \wedge \ldots \wedge d q^{n}
\end{aligned}
$$

This allows us to define an inner product on $C_{\mathbb{C}}^{\infty}(\mathcal{M})$, the set of smooth complex valued functions on \mathcal{M} :

$$
\begin{aligned}
\langle,\rangle: C_{\mathbb{C}}^{\infty}(\mathcal{M}) \times C_{\mathbb{C}}^{\infty}(\mathcal{M}) & \rightarrow \mathbb{C} \\
(\psi, \phi) & \mapsto\langle\psi, \phi\rangle \\
\langle\psi, \phi\rangle & \equiv \mathcal{M}^{*} \phi \epsilon
\end{aligned}
$$

We then take $L^{2}(\mathcal{M})$, the vector space of complex functions square integrable with respect to the Louisville measure:[11]

$$
L^{2}(\mathcal{M}) \equiv\left\{\psi \in C_{\mathbb{C}}^{\infty}(\mathcal{M}) \mid\langle\psi, \psi\rangle<\infty\right\}
$$

This is a Hilbert space, constructed entirely from the classical structure (as opposed to some arbitrary choice of Hilbert space) and so is our starting point for quantization. We will call $L^{2}(\mathcal{M})$ the Hilbert space of functions, denoted $\mathcal{H}_{\mathbb{C}}$:

$$
\mathcal{H}_{\mathbb{C}} \equiv L^{2}(\mathcal{M})
$$

5.1.2 The $\left(V_{H}(\mathcal{M}),[],\right)$ representation

The homomorphism from $\left(C^{\infty}(\mathcal{M}),\{\},\right)$ to $\left(V_{H}(\mathcal{M}),[],\right)$ suggests that we try to quantize \mathcal{M} by associating to each $f \in C^{\infty}(\mathcal{M})$ a vector field in $V_{H}(\mathcal{M})$, which then acts on the Hilbert space $\mathcal{H}_{\mathbb{C}}$ as a derivative operator:[11]

$$
\begin{align*}
\mathcal{P}: C^{\infty}(\mathcal{M}) & \rightarrow V_{H}(\mathcal{M}) \subset \mathcal{O}\left(\mathcal{H}_{\mathbb{C}}\right) \\
f & \mapsto \hat{f} \tag{13}\\
\widehat{f} & \equiv-i \hbar X_{f}
\end{align*}
$$

We will call \widehat{f} the Prequantization of the classical observable f.
Since the map $f \mapsto X_{f}$ is linear over \mathbb{R}, then so is $f \mapsto \widehat{f}$:

$$
\begin{aligned}
\mathcal{P}(\alpha f+\beta g) & =-i \hbar X_{(\alpha f+\beta g)} \\
& =-i \hbar\left(\alpha X_{f}+\beta X_{g}\right) \\
& =\widehat{f}+\widehat{g}
\end{aligned}
$$

The operators \widehat{f} are symmetric:

$$
\begin{aligned}
\langle\psi, \widehat{f} \phi\rangle & =-i \hbar_{\mathcal{M}} \psi^{*} X_{f}(\phi) \epsilon \\
& =-i \hbar_{\mathcal{M}} \psi^{*} \mathcal{L}_{X_{f}}(\phi) \epsilon \\
& =-i \hbar\left[\mathcal{M} \mathcal{L}_{X_{f}}\left(\psi^{*} \phi \epsilon\right)-\mathcal{M} \mathcal{L}_{X_{f}}\left(\psi^{*}\right) \phi \epsilon-\mathcal{M} \psi^{*} \phi \mathcal{L}_{X_{f}}(\epsilon)\right] \\
& =-i \hbar\left[\mathcal{M} \mathcal{L}_{X_{f}}\left(\psi^{*} \phi \epsilon\right)-\mathcal{M} \mathcal{L}_{X_{f}}\left(\psi^{*}\right) \phi \epsilon-\left(\frac{1}{2 \pi n}\right)^{n} \mathcal{M} \psi^{*} \phi \mathcal{L}_{X_{f}}\left(\omega^{n}\right)\right] \\
& =\mathcal{M} i \hbar X_{f}\left(\psi^{*}\right) \phi \epsilon \\
& =\mathcal{M}\left(-i \hbar X_{f} \psi\right)^{*} \phi \epsilon \\
& =\langle\widehat{f} \psi, \phi\rangle
\end{aligned}
$$

where the first term in line four vanishes as it leads to boundary terms and $\partial \mathcal{M}=0$, and the third term vanishes because $\mathcal{L}_{X_{f}}(\omega)=0$. The identity (11) ensures that condition four is satisfied:

$$
\begin{aligned}
-i \hbar \mathcal{P}(\{f, g\}) & =(-i \hbar)^{2} X_{\{f, g\}} \\
& =(-i \hbar)^{2}\left[X_{f}, X_{g}\right] \\
& =\left[-i \hbar X_{f},-i \hbar X_{g}\right] \\
& =[\widehat{f}, \widehat{g}]
\end{aligned}
$$

However, if f is the constant function $f(m)=1$ on \mathcal{M} then X_{f} is zero and so f is mapped to the zero operator. The map \mathcal{P} therefore fails to satisfy all four quantization conditions, and we need to try something else.

5.1.3 The trick

Choose some symplectic potential $\theta \in \Omega^{1}(U)$, where $U \subset \mathcal{M}$. Then we can quantize observables restricted to U, by defining:

$$
\begin{equation*}
\widehat{f}=-i \hbar X_{f}-\theta\left(X_{f}\right)+f \tag{14}
\end{equation*}
$$

which we can also write as:

$$
\begin{aligned}
\widehat{f}(\psi) & =-i \hbar\left(i_{X_{f}}(d \psi)-\frac{i}{\hbar} i_{X_{f}} \theta \psi\right)+f \psi \\
& =-i \hbar i_{X_{f}}\left((d \psi)-\frac{i}{\hbar} \theta \psi\right)+f \psi \\
& =-i \hbar i_{X_{f}}\left(d-\frac{i}{\hbar} \theta\right) \psi+f \psi
\end{aligned}
$$

This choice satisfies all the quantization conditions (we show this in section 5.3 in a more general way). But, this only quantizes observables on $U \subset \mathcal{M}$, and we could have chosen some other symplectic potential. Only if ω is exact, does this quantize all observables on \mathcal{M}. However, even in this case, θ is not determined exactly. If we are quanitizing some Hamiltonian system (as opposed to some arbitary symplectic manifold) then \mathcal{M} is a cotangent bundle $T^{*} Q$ and we can choose θ as the canonical one form. However, the above construction can be adapted to quantize a large class of symplectic manifolds, by formulating (14) in a global, coordinate independent way. Its worth doing this to see whether there are other quantization's of $T^{*} Q$.

If we consider the action of \widehat{f} on some function $\psi \in \mathcal{H}_{\mathbb{C}}$:

$$
\begin{equation*}
\widehat{f}(\psi)=-i \hbar\left(X_{f}(\psi)-\frac{i}{\hbar} \theta\left(X_{f}\right) \psi\right)+f \psi \tag{15}
\end{equation*}
$$

we see that $\widehat{f}(\psi)$ has $U(1)$ gauge covariance (similar to e.g. the covariant derivative in the abelian Higgs model) - it transforms covariantly under the following transformations:[11]

$$
\begin{aligned}
\theta & \mapsto \quad \theta^{\prime} \equiv \theta+d u \\
\psi & \mapsto \quad \psi^{\prime} \equiv e^{i u / \hbar} \psi
\end{aligned}
$$

where $u \in C^{\infty}(\mathcal{M})$.

$$
\begin{aligned}
\widehat{f}^{\prime}\left(\psi^{\prime}\right) & =\left[-i \hbar X_{f}-\theta\left(X_{f}\right)-d u\left(X_{f}\right)+f\right] e^{i u / \hbar} \psi \\
& =X_{f}(u) e^{i u / \hbar} \psi-e^{i u / \hbar} i \hbar X_{f}(\psi)-e^{i u / \hbar} \theta\left(X_{f}\right) \psi-e^{i u / \hbar} d u\left(X_{f}\right) \psi+e^{i u / \hbar} f \psi \\
& =e^{i u / \hbar}\left(-i \hbar X_{f}(\psi)-\theta\left(X_{f}\right) \psi+f \psi\right) \\
& =e^{i u / \hbar} \widehat{f}(\psi)
\end{aligned}
$$

This means that choosing a different symplectic potential θ^{\prime} and mapping all the functions ψ to $e^{i u / \hbar} \psi$ is consistent. In general, gauge theories can be globally described by a principal G bundle, where G is the gauge group. The $U(1)$ covariance of $\widehat{f}(\psi)$ therefore suggests a $U(1)\left(S^{1}\right.$ with group multiplication) bundle over \mathcal{M}. Instead, we can use the associated vector bundle to formulate the gauge theory, which is a one dimensional vector bundle with typical fibre \mathbb{C}. [8]

5.2 Complex Line Bundles

We describe the necessary facts about complex line bundles. All definitions in this section are taken from [11] but we have filled in many missing details in the derivations.

5.2.1 Sections and One Forms

A complex line bundle over \mathcal{M} is a fibre bundle $L \rightarrow \mathcal{M}$ where the typical fibre is the vector space \mathbb{C} so that the fibre at a point $m \in \mathcal{M}$ is a vector
space $V_{m} \cong \mathbb{C}$. If L is trivial then:

$$
L=\mathcal{M} \times \mathbb{C}
$$

otherwise it just has this structure locally. We denote the projection from L to \mathcal{M} as, π, local trivializations by $\left(U_{i}, \tau_{i}\right)$, the set of smooth sections of L as $C_{L}^{\infty}(\mathcal{M})$ and the set of L valued one-forms on \mathcal{M} as $\Omega_{L}^{1}(\mathcal{M})$:

$$
\pi: L \rightarrow \mathcal{M}
$$

$$
\begin{aligned}
\tau_{i}: U_{i} \times \mathbb{C} & \rightarrow \pi^{-1}\left(U_{i}\right) \subset L \\
C_{L}^{\infty}(\mathcal{M}) \ni s: \mathcal{M} & \rightarrow L \\
\pi_{\circ} s & =i d_{\mathcal{M}} \\
\Omega_{L}^{1}(\mathcal{M}) \ni \alpha: V(\mathcal{M}) & \rightarrow C_{L}^{\infty}(\mathcal{M})
\end{aligned}
$$

If L is trivial then $C_{L}^{\infty}(\mathcal{M})$ and $\Omega_{L}^{1}(\mathcal{M})$ are $C_{\mathbb{C}}^{\infty}(\mathcal{M})$ and $\Omega_{\mathbb{C}}^{1}(\mathcal{M})$, the sets of complex functions and one forms respectively.

5.2.2 Connections

A connection ∇ on L is a map:

$$
\begin{aligned}
\nabla: C_{L}^{\infty}(\mathcal{M}) & \rightarrow \Omega_{L}^{1}(\mathcal{M}) \\
\nabla\left(s_{1}+s_{2}\right) & =\nabla s_{1}+\nabla s_{2} \\
\nabla(\psi s) & =(d \psi) s+\psi \nabla s
\end{aligned}
$$

where $\psi \in C_{\mathbb{C}}(\mathcal{M})$. Given some local trivialization $\left(U_{i}, \tau_{i}\right)$, we can define its associated unit section, $s_{i} \in C_{L}^{\infty}(U)$ and its potential 1-form, $\Theta_{i} \in \Omega_{\mathbb{C}}^{1}(U)$

$$
\begin{aligned}
s_{i}(m) & \equiv \tau_{i}(m, 1) \\
\nabla s_{i} & =-i \Theta_{i} s_{i}
\end{aligned}
$$

The local trivialization restricts to a isomorphism when some point $m \in U$ is fixed:

$$
\tau_{i}(m,): \mathbb{C} \rightarrow V_{m}
$$

and since \mathbb{C} and V_{m} are one dimensional it must be of the form:

$$
\tau_{i}(m,)(\alpha)=\Gamma(m) \alpha
$$

for some non-vanishing constant Γ (if Γ was zero then $\tau(m$,) would not be $1-2-1$), and so unit sections are non-vanishing. This allows us to describe the action of the connection on arbitrary sections in the following way: let $s \in C_{L}^{\infty}(U)$ be some section on U, then since s_{i} is non-vanishing, $s=\psi s_{i}$ for some function $\psi \in C_{\mathbb{C}}^{\infty}(\mathcal{M})$, which we call its local representative:

$$
s(m)=\tau_{i}(m, \psi(m))
$$

We use the notation $\nabla_{X} \equiv i_{X} \nabla$ for $X \in V(\mathcal{M})$ then:

$$
\begin{aligned}
\nabla_{X} s & =i_{X}\left((d \psi) s_{i}-i \psi \Theta_{i} s_{i}\right) \\
& =X(\psi) s_{i}-i \Theta_{i}(X) \psi s_{i} \\
& =\left(X(\psi)-i \Theta_{i}(X) \psi\right) s_{i}
\end{aligned}
$$

We can also write this as:

$$
\nabla_{X} s=i_{X}\left(d-i \Theta_{i}\right) \psi s_{i}
$$

and so the action of the connection on a section can be described entirely in terms of its local representative:

$$
\nabla \psi s_{i}=\left[\left(d-i \Theta_{i}\right) \psi\right] s_{i}
$$

5.2.3 Changing sections

The gauge covariance seen in $\widehat{f}(\psi)$ in equation (15) is described by the way that the potential one form changes under a change of local trivialization. If we have two local sections $\left(U_{i}, \tau_{i}\right)$ and $\left(U_{j}, \tau_{j}\right)$, where $U_{i} \cap U_{j} \neq \emptyset$, then since their unit sections s_{i} and s_{j} are non-vanishing, we can define the transition function $c_{j i}$:

$$
s_{i}=c_{j i} s_{j}
$$

where $c_{j i}$ is some complex function defined on $U_{i} \cap U_{j}$. We find that $s_{i}=$ $c_{j i} s_{j}=c_{j i} c_{i j} s_{i}$, and so, $c_{j i} c_{i j}=1$. We can use this and the properties of the connection to find the difference between the two potentials:

$$
\begin{aligned}
\nabla s_{i} & =\nabla c_{j i} s_{j} \\
-i \Theta_{i} s_{i} & =\left(d c_{j i}\right) s_{j}+c_{j i} \nabla s_{j} \\
-i c_{j i} \Theta_{i} s_{j} & =\left(d c_{j i}\right) s_{j}-i c_{j i} \Theta_{j} s_{j} \\
-i c_{j i}\left(\Theta_{i}-\Theta_{j}\right) s_{j} & =\left(d c_{j i}\right) s_{j}
\end{aligned}
$$

and so:

$$
\begin{equation*}
\Theta_{i}=\Theta_{j}+i \frac{\left(d c_{j i}\right)}{c_{j i}} \tag{16}
\end{equation*}
$$

5.2.4 $U(1)$ Transition Functions

The functions $c_{j i} \in C_{\mathbb{C}}^{\infty}\left(U_{i} \cap U_{j}\right)$ are complex valued so can be written in the form:

$$
c_{j i}(m)=r_{j i}(m) e^{i \phi_{j i}(m)}
$$

where $r_{j i}, \phi_{j i} \in C^{\infty}(\mathcal{M})$. By introducing extra structure on the bundle L, we can normalize these. A Hermitian Structure (,) on L is an assignment of an inner product to each fibre in the bundle:

$$
(,)_{m}: V_{m} \times V_{m} \rightarrow \mathbb{C}
$$

such that the inner products together form a smooth map from L to \mathbb{C} :

$$
\begin{aligned}
(,): L & \rightarrow \mathbb{C} \\
v & \mapsto(v, v)_{m}
\end{aligned}
$$

where m is chosen for each $v \in L$ such that $v \in V_{m}$. The Hermitian structure allows us to take inner products between sections:

$$
\begin{aligned}
(,): C_{L}^{\infty}(\mathcal{M}) \times C_{L}^{\infty}(\mathcal{M}) & \rightarrow C_{\mathbb{C}}^{\infty}(\mathcal{M}) \\
\left(s_{1}, s_{2}\right)(m) & \equiv\left(s_{1}(m), s_{2}(m)\right)_{m}
\end{aligned}
$$

Now, let s_{i} be the unit section of some local trivialization $\left(U_{i}, \tau_{i}\right)$, then define:

$$
f_{i} \equiv\left(s_{i}, s_{i}\right)
$$

Since (,) is an inner product so is non-degenerate and s_{i} is non-vanishing, f_{i} must be non-vanishing, and since for each $m, f_{i}(m)$ is the norm of some vector in V_{m}, f_{i} must be real. We can then construct a new local trivialization $\left(U_{i}, \tau_{i}^{\prime}\right)$ with a unit section s_{i}^{\prime} :

$$
\begin{aligned}
\tau_{i}^{\prime}: U_{i} \times \mathbb{C} & \rightarrow \pi^{-1}\left(U_{i}\right) \\
\tau_{i}^{\prime}(m, \alpha) & \equiv\left(f_{i}\right)^{-1 / 2} \tau_{i}(m, \alpha) \\
s_{i}^{\prime}(m) & =\tau_{i}^{\prime}(m, 1) \\
& =\left(f_{i}\right)^{-1 / 2} \tau_{i}(m, 1) \\
& =\left(f_{i}\right)^{-1 / 2} s_{i}
\end{aligned}
$$

The unit section s_{i}^{\prime} is then normalized:

$$
\begin{aligned}
\left(s_{i}^{\prime}, s_{i}^{\prime}\right) & =\left(\left(f_{i}\right)^{-1 / 2} s_{i},\left(f_{i}\right)^{-1 / 2} s_{i}\right) \\
& =f_{i}^{-1}\left(s_{i}, s_{i}\right) \\
& =1
\end{aligned}
$$

If we choose local trivializations covering \mathcal{M} that have unit sections satisfying this, then the transition functions between them will be normalized:

$$
\begin{aligned}
1 & =\left(s_{i}, s_{i}\right) \\
& =\left(c_{j i} s_{j}, c_{j i} s_{j}\right) \\
& =\left|c_{j i}\right|^{2}\left(s_{j}, s_{j}\right) \\
& =\left|c_{j i}\right|^{2}
\end{aligned}
$$

The transition functions are then of the form:

$$
\begin{equation*}
c_{j i}(m)=e^{i \phi_{j i}(m)} \tag{17}
\end{equation*}
$$

If the following identity holds:

$$
i_{X} d\left(s_{1}, s_{2}\right)=\left(\nabla_{X} s_{1}, s_{2}\right)+\left(s_{1}, \nabla_{X} s_{2}\right)
$$

for all $X \in V(\mathcal{M})$ and $s_{1}, s_{2} \in C_{L}^{\infty}(\mathcal{M})$ then $($,$) is compatible with \nabla$. Then the choice of trivializations will also make the connection potential
real:

$$
\begin{aligned}
i_{X} d\left(s_{i}, s_{i}\right) & =\left(\nabla_{X} s_{i}, s_{i}\right)+\left(s_{i}, \nabla s_{i}\right) \\
i_{X} d(1) & =\left(-i \Theta_{i}(X) s_{i}, s_{i}\right)+\left(s_{i},-i \Theta_{i}(X) s_{i}\right) \\
0 & =i \Theta_{i}^{*}(X)\left(s_{i}, s_{i}\right)-i \Theta_{i}(X)\left(s_{i}, s_{i}\right) \\
0 & =i\left(\Theta_{i}^{*}(X)-\Theta_{i}(X)\right)
\end{aligned}
$$

which is true $\forall X \in V(\mathcal{M})$ so that we must have $\Theta_{i}=\Theta_{i}^{*}$ and so:

$$
\Theta_{i} \in \Omega^{1}(\mathcal{M})
$$

Using equations (16) and (17) we see that under a change of trivialization the potential will now change as:

$$
\begin{aligned}
\Theta_{i} & =\Theta_{j}+i \frac{\left(d c_{j i}\right)}{c_{j i}} \\
& =\Theta_{j}+i d\left(e^{i \phi_{j i}}\right)\left(e^{i \phi_{j i}}\right)^{-1} \\
& =\Theta_{j}-\left(d \phi_{j i}\right) e^{i \phi_{j i}}\left(e^{i \phi_{j i}}\right)^{-1} \\
& =\Theta_{j}-d \phi_{j i}
\end{aligned}
$$

We know that $c_{i j} c_{j i}=1$ so:

$$
\begin{aligned}
c_{i j} & =c_{j i}^{-1} \\
e^{i \phi_{i j}} & =e^{-i \phi_{j i}}
\end{aligned}
$$

and therefore the functions $\phi_{i j}$ are related as:

$$
\phi_{i j}=-\phi_{j i}
$$

If s is a section then its local representative ψ depends on local trivialization chosen:

$$
\begin{aligned}
s & =\psi_{i} s_{i} \\
& =\psi_{j} s_{j} \\
& =\psi_{j} c_{i j} s_{i}
\end{aligned}
$$

and so local representatives change as:

$$
\psi_{i}=c_{i j} \psi_{j}
$$

Combining these results, we find that under a change of local trivialization from $\left(U_{j}, \tau_{j}\right)$ to $\left(U_{i}, \tau_{i}\right)$ the potential one form and local representatives of sections change as:

$$
\begin{aligned}
\Theta_{i} & =\Theta_{j}+d \phi_{i j} \\
\psi_{i} & =e^{i \phi_{i j}} \psi_{j}
\end{aligned}
$$

which we recognize as $U(1)$ gauge transformations.

5.2.5 The curvature of ∇ on L

The curvature of the connection ∇ is a 2 -form $\Omega \in \Omega^{2}(\mathcal{M})$ defined locally as:

$$
\Omega \equiv d \Theta_{i}
$$

on U_{i}, the domain of some local trivialization $\left(U_{i}, \tau_{i}\right)$ with potential Θ_{i}. It is actually independent of the trivialization chosen, and satisfies the following identity:

$$
\begin{equation*}
\Omega(X, Y) s=i\left(\nabla_{X} \nabla_{Y} s-\nabla_{Y} \nabla_{X} s-\nabla_{[X, Y]} s\right) \tag{18}
\end{equation*}
$$

for all $X, Y \in V(\mathcal{M})$ and $s \in C_{L}^{\infty}(\mathcal{M})$. We will use this identity several times.

5.3 The Pre Quantum Bundle B

5.3.1 Summary of previous section

Collecting together the results of section 5.2 , if L is a Hermitian line bundle on a manifold \mathcal{M}, with a compatible connection ∇, then in a local trivialization $\left(U_{i}, \tau_{i}\right), \nabla$ acts on sections as:

$$
\nabla \psi s_{i}=\left[\left(d-i \Theta_{i}\right) \psi\right] s_{i}
$$

and if we change to a different trivialization $\left(U_{j}, \tau_{j}\right)$, potential one form and local representatives change as:

$$
\begin{aligned}
\Theta_{j} & =\Theta_{i}+d \phi_{j i} \\
\psi_{j} & =e^{i \phi_{j i}} \psi_{i}
\end{aligned}
$$

Therefore, in order to describe:

$$
\widehat{f}(\psi)=-i \hbar i_{X_{f}}\left(d-\frac{i}{\hbar} \theta\right) \psi+f \psi
$$

in a global way, we need a Hermitian line bundle on \mathcal{M} with a compatible connection such that:

$$
\Theta_{i}=\frac{1}{\hbar} \theta
$$

locally, which means the curvature must be:

$$
\Omega=\frac{1}{\hbar} \omega
$$

If such a bundle exists, we call it a pre quantum bundle, and label it B.

5.3.2 The pre quantum Hilbert space \mathcal{H}_{B}

Given a pre quantum bundle B over a symplectic manifold \mathcal{M} we can construct a Hilbert space called the pre quantum Hilbert space, \mathcal{H}_{B}. As discussed in section 5.2 , the Hermitian structure on B gives a map on the space of smooth sections of B :

$$
\begin{aligned}
(,): C_{B}^{\infty}(\mathcal{M}) \times C_{B}^{\infty}(\mathcal{M}) & \rightarrow C_{\mathbb{C}}^{\infty}(\mathcal{M}) \\
\left(s_{1}, s_{2}\right) & \mapsto\left(s_{1}(m), s_{2}(m)\right)_{m}
\end{aligned}
$$

We can use this to put an inner product on $C_{B}^{\infty}(\mathcal{M})$:

$$
\begin{aligned}
\langle,\rangle: C_{B}^{\infty}(\mathcal{M}) \times C_{B}^{\infty}(\mathcal{M}) & \rightarrow \mathbb{C} \\
\left\langle s_{1}, s_{2}\right\rangle & =\mathcal{M}\left(s_{1}, s_{2}\right) \epsilon
\end{aligned}
$$

The pre quantum Hilbert space is then the space of square integrable sections of B :

$$
\mathcal{H}_{\mathrm{B}} \equiv L^{2}(B) \equiv\left\{s \in C_{B}^{\infty}(\mathcal{M}) \mid\langle s, s\rangle<\infty\right\}
$$

If B is trivial and so can be covered by a single local trivialization $\left(U_{i}, \tau_{i}\right)$, and ψ_{1}, ψ_{2} are the local representatives of s_{1}, s_{2} on U_{i} then the inner product is:

$$
\begin{aligned}
\left\langle s_{1}, s_{2}\right\rangle & =\mathcal{M}\left(s_{1}, s_{2}\right) \epsilon \\
& =\mathcal{M}\left(\psi_{1} s_{i}, \psi_{2} s_{i}\right) \epsilon \\
& =\mathcal{M} \psi_{1}^{*} \psi_{2}\left(s_{i}, s_{i}\right) \epsilon \\
& =\mathcal{M} \psi_{1}^{*} \psi_{2} \epsilon
\end{aligned}
$$

and $C_{B}^{\infty}(\mathcal{M})=C_{\mathbb{C}}^{\infty}(\mathcal{M})$, so that in this case:

$$
\begin{aligned}
L^{2}(B) & =L^{2}(\mathcal{M}) \\
\mathcal{H}_{\mathrm{B}} & =\mathcal{H}_{\mathbb{C}}
\end{aligned}
$$

5.3.3 Prequantization of observables

We can now quantize \mathcal{M} by mapping observables to operators on \mathcal{H}_{B} :

$$
\begin{aligned}
C^{\infty}(\mathcal{M}) & \rightarrow \mathcal{O}\left(H_{\mathrm{B}}\right) \\
f & \mapsto \widehat{f}
\end{aligned}
$$

where \widehat{f} is now globally defined as:

$$
\widehat{f}=-i \hbar \nabla_{X_{f}}+f
$$

Since the map $f \rightarrow X_{f}$ and the interior product is linear, $f \mapsto \widehat{f}$ is linear:

$$
\begin{aligned}
\nabla_{X_{\alpha f+\beta g}} & =i_{X_{\alpha f+\beta g}} \nabla \\
& =i_{\left(\alpha X_{f}+\beta X_{g}\right)} \nabla \\
& =\left(\alpha i_{X_{f}}+\beta i_{X_{g}}\right) \nabla \\
& =\alpha \nabla_{X_{f}}+\beta \nabla_{X_{g}}
\end{aligned}
$$

Secondly, $X_{f}=0$ for constant functions, so if $f(m)=1$ we have:

$$
\widehat{1}=1
$$

Thirdly, \widehat{f} is symmetric:

$$
\begin{aligned}
\left\langle s_{1}, \widehat{f} s_{2}\right\rangle & =\mathcal{M}\left(s_{1},-i \hbar \nabla_{X_{f}} s_{2}+f s_{2}\right) \epsilon \\
& =\mathcal{M}\left[-i \hbar\left(s_{1}, \nabla_{X_{f}} s_{2}\right)+\left(s_{1}, f s_{2}\right)\right] \epsilon \\
& =\mathcal{M}\left[-i \hbar\left[i_{X_{f}} d\left(s_{1}, s_{2}\right)-\left(\nabla_{X_{f}} s_{1}, s_{2}\right)\right]+\left(f s_{1}, s_{2}\right)\right] \epsilon \\
& =\mathcal{M}\left[\left(-i \hbar \nabla_{X_{f}} s_{1}+f s_{1}, s_{2}\right)\right] \epsilon-i \hbar_{\mathcal{M}} i_{X_{f}} d\left(s_{1}, s_{2}\right) \epsilon \\
& =\mathcal{M}\left[\left(\widehat{f} s_{1}, s_{2}\right)\right] \epsilon-i \hbar_{\mathcal{M}} i_{X_{f}} d\left(s_{1}, s_{2}\right) \epsilon
\end{aligned}
$$

where we have used the fact that ∇ is compatible with (,). The second term then vanishes because $\mathcal{L}_{X_{f}} \omega=0$:

$$
\begin{aligned}
\mathcal{M}^{i_{X_{f}}} d\left(s_{1}, s_{2}\right) \epsilon & =\mathcal{M} \mathcal{L}_{X_{f}}\left[d\left(s_{1}, s_{2}\right)\right] \epsilon \\
& =\mathcal{M} \mathcal{L}_{X_{f}}\left[d\left(s_{1}, s_{2}\right) \epsilon\right] \\
& =0
\end{aligned}
$$

Finally, by using the fact that $\frac{1}{\hbar} \omega$ satisfies the curvature identity (18) we see that this satisfies the last quantization condition:

$$
\begin{aligned}
{[\hat{f}, \widehat{g}] } & =\left[-i \hbar \nabla_{X_{f}}+f,-i \hbar \nabla_{X_{g}}+g\right] \\
& =(-i \hbar)^{2}\left[\nabla_{X_{f}} \nabla_{X_{g}}-\nabla_{X_{g}} \nabla_{X_{f}}\right]-i \hbar\left[d g\left(X_{f}\right)-d f\left(X_{g}\right)\right] \\
& =(-i \hbar)^{2}\left[-\frac{i}{\hbar} \omega\left(X_{f}, X_{g}\right)+\nabla_{\left[X_{f}, X_{g}\right]}\right]-i \hbar[\{g, f\}-\{f, g\}] \\
& =(-i \hbar)^{2}\left[-\frac{i}{\hbar}\{f, g\}+\nabla_{\left.X_{\{f, g\}}\right]}\right]-2 i \hbar\{f, g\} \\
& =-i \hbar\left[-i \hbar \nabla_{X_{\{f, g\}}}+\{f, g\}\right]
\end{aligned}
$$

(Some terms cancel or are zero). Prequantization therefore satisfies all the quantization conditions set out earlier. However, we shall see that this fails to agree with canonical quantization for a theory where we know the "correct" quantization from actual physics.

5.4 Existence and Uniqueness of B

If \mathcal{M} is a cotangent bundle $T^{*} Q$ then the obvious choice for B always exists:

$$
\begin{aligned}
B & =\mathcal{M} \times \mathbb{C} \\
(\alpha, \beta) & =\alpha^{*} \beta \\
\nabla & =d-\frac{i}{\hbar} \theta
\end{aligned}
$$

where θ is the canonical one form. It is true in general that if the base space of a fibre bundle is contractible, then the bundle is trivial. This means that this choice of B is unique if $T^{*} Q$ has trivial homotopy, i.e. :

$$
\pi_{1}\left(T^{*} Q\right)=\{e\}
$$

If $T^{*} Q$ is also path connected then this condition is that $T^{*} Q$ is simply connected.[8] In general, there might not exist a pre quantum bundle on a symplectic manifold (\mathcal{M}, ω), see [11]

5.5 Examples

If we take the classical theory of a single particle in 3 dimensions canonical quantization gives a Hilbert space and operators representing momentum and position:

$$
\begin{aligned}
\mathcal{H} & =L^{2}\left(\mathbb{R}^{3}\right) \\
\psi & =\psi(q) \\
\widehat{p}_{a} & =-i \hbar \partial / \partial q^{a} \\
\hat{q}^{a} & =q^{a} \\
{\left[\widehat{p}_{a}, \hat{q}^{b}\right] } & =-i \hbar \delta_{a}^{b}
\end{aligned}
$$

The symplectic phase space is the cotangent bundle of \mathbb{R}^{3} :

$$
T \mathbb{R}^{3}=\mathbb{R}^{6}
$$

It can be covered by a single canonical coordinate system, $\left(p_{a}, q^{b}\right)$. Since \mathbb{R}^{6} is simply connected the trivial choice for B is unique:

$$
B=\mathbb{R}^{6} \times \mathbb{C}
$$

As discussed earlier, since B is trivial $\mathcal{H}_{P}=\mathcal{H}_{\mathbb{C}}$ and so the pre quantum Hilbert space is:

$$
\begin{aligned}
\mathcal{H}_{P} & =L^{2}\left(\mathbb{R}^{6}\right) \\
\psi & =\psi(p, q)
\end{aligned}
$$

and the connection acts as:

$$
\nabla_{X} \psi=X(\psi)-\frac{i}{\hbar} \theta(X) \psi
$$

If we calculate the operators \widehat{p}_{a} and \widehat{q}^{a} we find:

$$
\begin{aligned}
\widehat{p}_{a} & =-i \hbar X_{p_{a}}-\theta\left(X_{p_{a}}\right)+p_{a} \\
& =-i \hbar \partial / \partial q^{a}-p_{b} d q^{b}\left(\partial / \partial q^{a}\right)+p_{a} \\
& =-i \hbar \partial / \partial q^{a}-p_{a}+p_{a} \\
& =-i \hbar \partial / \partial q^{a} \\
\widehat{q}^{a} & =-i \hbar X_{q^{a}}-\theta\left(X_{q^{a}}\right)+q^{a} \\
& =i \hbar \partial / \partial p_{a}-p_{b} d q^{b}\left(\partial / \partial p_{a}\right)+q^{a} \\
& =i \hbar \partial / \partial p_{a}+q^{a}
\end{aligned}
$$

So Prequantization does not produce the correct quantum theory. The Hilbert space contains functions of position and momentum, and the operator corresponding to q^{a} is wrong. However, on restriction to functions $\psi(q)$ the derivative term in \widehat{q}^{a} gives zero so can be dropped and we recover the correct form of the operator. What we have to do therefore, is construct a new Hilbert space containing functions of q only. In the general case, we therefore have to restrict to functions of half the coordinates of \mathcal{M}, and in order to do this in a coordinate independent and consistent way, we have to introduce a polarization on \mathcal{M}.

6 Polarizations

6.1 Identifying sections $s(q)$

If a section $s \in C_{B}^{\infty}(\mathcal{M})$ doesn't depend on the p coordinates then, in any local trivialization $\left(U_{i}, \tau_{i}\right)$ its local representative ψ_{i} should satisfy:

$$
\partial / \partial p_{a}\left(\psi_{i}\right)=0
$$

Since $\theta\left(\partial / \partial p_{a}\right)=0$ this is the same as:

$$
\begin{aligned}
0 & =\partial / \partial p_{a}\left(\psi_{i}\right) \\
& =\partial / \partial p_{a}\left(\psi_{i}\right) s_{i}-i \theta\left(\partial / \partial p_{a}\right) \psi_{i} s_{i} \\
& =\nabla_{\partial / \partial p_{a}} s
\end{aligned}
$$

We can therefore identify sections $s=s(q)$ in a global way by the condition:

$$
\nabla_{X} s=0
$$

for all vector fields which can be locally expressed as $X^{a \partial} / \partial p_{a}$. These vector fields form a sub-bundle of the tangent bundle of \mathcal{M}, which "polarizes" the sections. We describe this more precisely in the next section.

6.2 Distributions

6.2.1 Distributions on \mathcal{M}

A real polarization starts with the idea of a real distribution, which is a subbundle of the tangent bundle $T \mathcal{M}$. If P is a real distribution then its a bundle:[11]

$$
\begin{aligned}
P & \rightarrow & \mathcal{M} \\
P_{m} & \subset & T_{m} \mathcal{M}
\end{aligned}
$$

P picks out certain vector fields and functions on \mathcal{M}, those which are tangent to and constant on P, defined respectively as:[11]

$$
\begin{aligned}
V_{P}(\mathcal{M}) & \equiv\left\{X \in V(\mathcal{M}) \mid X(m) \in P_{m}\right\} \\
C_{P}^{\infty}(\mathcal{M}) & \equiv\left\{f \in C^{\infty}(\mathcal{M})|d f|_{P}=0\right\}
\end{aligned}
$$

The condition $\left.d f\right|_{P}=0$ is the same as $d f(X)=0 \forall X \in V_{P}(\mathcal{M})$. The subspaces P_{m} have to be such that they vary smoothly as m varies so that $V_{P}(\mathcal{M})$ does contain actual vector fields.

We would like to be able to describe P in terms of coordinates on \mathcal{M}, which can be done if P is integrable. This means that each P_{m} is the tangent space of some sub manifold of \mathcal{M}. Let \mathcal{M} be N dimensional, then since $P \subset T \mathcal{M}$ the fibres P_{m} must be $N-k$ dimensional for some $0 \leq k \leq N$. If P is integrable then for every point $m \in \mathcal{M}$ we can find local coordinates x^{α} :

$$
x^{\alpha}=\left(x^{1}, x^{2}, \ldots, x^{k+1}, x^{k+2}, \ldots, x^{N}\right)
$$

where fixing the values $x^{k+1}, x^{k+2}, \ldots, x^{N}$ gives a sub manifold of \mathcal{M} with tangent spaces P_{m}.

For example, let $\mathcal{M}=\mathbb{R}^{3}$ with global coordinates (x, y, z), and let $P \rightarrow$ \mathbb{R}^{3} be a distribution on \mathcal{M} where P_{m} is defined by:

$$
P_{m}=\left\{V \in T_{m} \mathbb{R}^{3}\left|V=X^{\partial} / \partial x\right|_{m}\right\}
$$

If we choose two constants $c_{1}, c_{2} \in \mathbb{R}$ then we can define a sub manifold $\Lambda_{c_{1}, c_{2}}$ of \mathbb{R}^{3} given by:

$$
\Lambda_{c_{1}, c_{2}}=\left\{p \in \mathbb{R}^{3} \mid p=\left(x, c_{1}, c_{2}\right)\right\}
$$

$\Lambda_{c_{1}, c_{2}}$ is the image of an embedding γ of \mathbb{R} into \mathbb{R}^{3} :

$$
\begin{aligned}
\gamma: \mathbb{R} & \rightarrow \Lambda_{c_{1}, c_{2}} \subset \mathbb{R}^{3} \\
x & \mapsto\left(x, c_{1}, c_{2}\right)
\end{aligned}
$$

The tangent spaces of \mathbb{R} are then pushed forward into subspaces of the tangent spaces of \mathbb{R}^{3} :

$$
\begin{aligned}
\gamma_{*}: T_{x} \mathbb{R} & \rightarrow T_{\left(x, c_{1}, c_{2}\right)} \mathbb{R}^{3} \\
X^{\partial} / \partial x & \mapsto X^{\partial x} / \partial x^{\partial} / \partial x+\partial c_{1} / \partial x^{\partial} / \partial y+\partial c_{2} / \partial x^{\partial} / \partial z \\
& =X^{\partial} / \partial x
\end{aligned}
$$

and so we see that:

$$
P_{\left(x, c_{1}, c_{2}\right)}=\gamma_{*}\left(T_{x} \mathbb{R}\right)
$$

P is therefore an integral distribution, and the embedded sub manifolds $\Lambda_{c_{1}, c_{2}}$ are then called the leaves of P. (In general the leaves only need be immersed sub manifolds - the map γ may be 2-1 but the push forwards of the tangent spaces are 1-1).

It turns out that a distribution is integrable $i f f$ the Lie bracket closes on the set of tangent vector fields, so that $V_{P}(\mathcal{M})$ is a sub algebra of $V(\mathcal{M})$:[1]

$$
[X, Y] \in V_{P}(\mathcal{M}) \quad \forall X, Y \in V_{P}(\mathcal{M})
$$

Its possible to place restrictions on the subspaces P_{m}. If V is a symplectic vector space with symplectic form ω then a subspace $W \subset V$ is called Lagrangian if:[11]

$$
\omega(X, Y)=0 \quad \forall X, Y \in W
$$

A distribution P on \mathcal{M} is called Lagrangian if for every $m \in \mathcal{M}, P_{m}$ is a Lagrangian subspace of $T_{m} \mathcal{M}$ (with respect to the symplectic form ω restricted to $T_{m} \mathcal{M}$). Then we have:

$$
\omega(X, Y)=0 \quad \forall X, Y \in V_{P}(\mathcal{M})
$$

6.2.2 Polarized Sections

We saw that in the Prequantization of \mathbb{R}^{3} we can identify sections $s=s(q)$ by the condition:

$$
\nabla_{X} s=0
$$

for all vector fields $X=\partial / \partial p^{a}$. We can formulate this idea in a more general way using distributions.

Let B be a pre quantum bundle on a symplectic manifold \mathcal{M} and consider some distribution P on \mathcal{M} and the set of sections $P(B) \subset C_{B}^{\infty}(\mathcal{M})$ defined by:

$$
P(B) \equiv\left\{s \in C_{B}^{\infty}(\mathcal{M}) \mid \nabla_{X} s=0 \forall X \in V_{P}(\mathcal{M})\right\}
$$

We call $P(B)$ the set of P polarized sections. Let $X, Y \in V_{P}(\mathcal{M})$ then using the curvature identity (18) satisfied by ω :

$$
\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}\right) s=\left(-\frac{i}{\hbar} \omega(X, Y)+\nabla_{[X, Y]}\right) s
$$

If $s \in P(B)$ the left hand side is zero so we must have:

$$
\nabla_{[X, Y]} s-\frac{i}{\hbar} \omega(X, Y) s=0
$$

This will always be satisfied if the two terms are individually zero, so that $\forall X, Y \in V_{P}(\mathcal{M}):$

$$
\begin{align*}
{[X, Y] } & \in V_{P}(\mathcal{M}) \tag{19}\\
\omega(X, Y) & =0
\end{align*}
$$

Therefore, if there exists any polarized sections, so that $P(B) \neq \emptyset$, the conditions (19) must be satisfied which means that P is integrable and Lagrangian. Such a distribution is called a Real Polarization.

6.3 Real Polarizations

6.3.1 The Vertical Polarization

As described above, a real polarization P on a symplectic manifold \mathcal{M} is an integrable Lagrangian distribution on \mathcal{M}. The canonical example is the vertical polarization of a cotangent bundle. Let $T^{*} Q$ be a cotangent bundle, then we can construct a real polarization by taking the cotangent spaces $T_{q}^{*} Q$ as the leaves. Each $T_{q}^{*} Q$ is a surface of constant q which diffeomorphic to \mathbb{R}^{n}, where n is the dimension of Q. Taking canonical coordinates $\left(p_{a}, q^{b}\right)$ on $T^{*} Q$ and coordinates $\left(x_{a}\right)$ on \mathbb{R}^{n}, the cotangent spaces are embedded as:

$$
\begin{aligned}
\gamma: \mathbb{R}^{n} & \rightarrow T_{q}^{*} Q \subset T^{*} Q \\
x_{a} & \mapsto\left(x_{a}, q^{b}\right)
\end{aligned}
$$

and so the pushed forward tangent spaces are:

$$
\begin{aligned}
\gamma_{*}: T_{x} \mathbb{R}^{n} & \rightarrow T_{(x, q)}\left(T^{*} Q\right) \\
X^{a \partial} / \partial x^{a} & \mapsto X^{a}\left(\partial p_{b} / \partial x^{a \partial} / \partial p_{b}+\partial q^{b} / \partial x^{a} \partial / \partial q^{b}\right) \\
& =X^{a \partial} / \partial p_{a}
\end{aligned}
$$

The vertical polarization therefore consists of "momentum vector fields" and:

$$
V_{P}(\mathcal{M})=\left\{X \in V(\mathcal{M})\left|X_{m}=X^{a \partial} / \partial p_{a}\right|_{m}\right\}
$$

It is integrable and Lagrangian since:

$$
\begin{aligned}
{\left[X^{a} \partial / \partial p_{a}, Y^{b} \partial / \partial p_{b}\right] } & =\left(X^{a} \frac{\partial Y^{b}}{\partial p_{a}}-Y^{a} \frac{\partial X^{b}}{\partial p_{a}}\right) \partial / \partial p_{b} \in V_{P}(\mathcal{M}) \\
\omega(X, Y) & =d p_{a} \wedge d q^{a}\left(X^{a \partial} / \partial p_{a}, Y^{b \partial} / \partial p_{b}\right) \\
& =X^{a} Y^{b}\left[d p_{a} \otimes d q^{a}\left(\partial / \partial p_{a}, \partial / \partial p_{b}\right)-d q^{a} \otimes d p_{a}\left(\partial / \partial p_{a}, \partial / \partial p_{b}\right)\right] \\
& =0
\end{aligned}
$$

The canonical one form gives zero on restriction to P :

$$
\begin{aligned}
\theta(X) & =p_{a} d q^{a}\left(X^{a \partial} / \partial p_{a}\right) \\
& =0
\end{aligned}
$$

The set of polarized sections $P(B)$ then contains sections which can be locally expressed as functions of q alone, so the vertical polarization gives a coordinate independent way of imposing what we need.

6.3.2 Other Real Polarizations

It turns out that the conditions a real polarization must satisfy are very restrictive, so that there are not many possibilities, and locally they all have the structure of vertical polarizations. More precisely, given a real polarization P there exists a neighborhood of each point $m \in \mathcal{M}$ with canonical coordinates $\left(p_{a}, q^{b}\right)$ and a symplectic potential θ such that around m, P_{n} consists of the "vertical vectors" spanned by $\left\{\partial / \partial p_{a}\right\}$ and $\left.\theta\right|_{P}=0$. These coordinates and the potential θ are then "adapted" to P. [11]

We can use this to show that for any polarization:

$$
f \in C_{P}^{\infty}(\mathcal{M}) \quad \text { iff } \quad X_{f} \in V_{P}(\mathcal{M})
$$

Let $f \in C_{P}^{\infty}(\mathcal{M})$ then for any $X \in V_{P}(\mathcal{M})$:

$$
\begin{aligned}
0 & =X(f) \\
& =X^{a} \partial f / \partial p_{a}
\end{aligned}
$$

and so f must be of the form:

$$
\begin{aligned}
\partial f / \partial p_{a} & =0 \\
f & =f(q)
\end{aligned}
$$

and the Hamiltonian vector field of f is:

$$
X_{f}=-\partial f / \partial q^{a} \partial / \partial p_{a} \in V_{P}(\mathcal{M})
$$

Conversely, let $X_{f} \in V_{P}(\mathcal{M})$ then simply looking at the form of X_{f} :

$$
X_{f}=\partial f / \partial p_{a} \partial / \partial q^{a}-\partial f / \partial q^{a} \partial / \partial p_{a}
$$

we see that $\partial f / \partial p_{a}=0$ and so $f \in C_{P}^{\infty}(\mathcal{M})$.

6.3.3 Polynomial Observables

We shall see later that only certain observables map polarized sections to other polarized sections, but this actually has another geometric origin.

Given an observable $f \in C^{\infty}(\mathcal{M})$ it generates a flow through its Hamiltonian vector field X_{f}, which acts as local differemorphisms on \mathcal{M}. This maps $T \mathcal{M}$ to itself in the following way:

$$
\begin{aligned}
T \mathcal{M} & \rightarrow T \mathcal{M} \\
\left(m, T_{m} \mathcal{M}\right) & \mapsto\left(\rho_{X_{f}}(m), \rho_{X_{f} *} T_{m} \mathcal{M}\right)
\end{aligned}
$$

We can ask the question, which observables "preserve" a polarization P, i.e. for all $m \in \mathcal{M}$:

$$
\rho_{X_{f^{*}}}\left(P_{m}\right) \subset P_{\rho_{X_{f}}(m)}
$$

which is the same as:

$$
\rho_{X_{f^{*}}}(X) \in V_{P}(\mathcal{M}) \quad \forall X \in V_{P}(\mathcal{M})
$$

Choose some point $m \in \mathcal{M}$ and say that for some choice of parameter t :

$$
\begin{aligned}
\rho_{X_{f}}(t, m) & =n \\
\rho_{X_{f}, t *}: T_{m} \mathcal{M} & \rightarrow T_{n} \mathcal{M}
\end{aligned}
$$

and also, for convenience let t be small enough that m and n can be covered by some canonical coordinates $\left(p_{a}, q^{b}\right)$ adapted to P. We can then write the push forward of $Y \in P_{m}$ as:

$$
Y^{a \partial} /\left.\partial p_{a}\right|_{m} \mapsto Y^{a}\left(\partial p(n)_{b} / \partial p^{a} \partial /\left.\partial p_{b}\right|_{n}+\partial q(n)^{b} / \partial p^{a} \partial /\left.\partial q^{b}\right|_{n}\right)
$$

If the result is a vector in $V_{P}(\mathcal{M})$ then the second term must be zero, so:

$$
\partial q(n)^{a} / \partial p_{b}=0
$$

The coordinates $q(n)^{a}$ of n are determined by Hamilton's equations which describe the flow of f :

$$
\frac{d q^{a}}{d t}=\frac{\partial f}{\partial p_{a}}
$$

Therefore, we must have:

$$
\frac{\partial^{2} f}{\partial p_{a} \partial p_{b}}=0
$$

So if an observable f preserves a polarization P, then in any adapted coordinates it must be linear in the momentum coordinates and so of the form:

$$
f=v^{a}(q) p_{a}+u(q)
$$

[11]We denote the set of observables preserving P by $S_{P}(\mathcal{M})$:

$$
S_{P}(\mathcal{M}) \equiv\left\{f \in C^{\infty}(\mathcal{M}) \mid f=v^{a}(q) p_{a}+u(q)\right\}
$$

Note that the functions constant along P are of the form $f(q)$ so that:

$$
C_{P}^{\infty}(\mathcal{M}) \subset S_{P}(\mathcal{M})
$$

7 Full Quantization

We have seen that if a symplectic manifold \mathcal{M} is is pre quantized with pre quantum bundle B its possible to single out sections of the pre quantum bundle depending only on the position coordinates by introducing a polarization, P, which determines a set of polarized sections $P(B) \subset C_{B}^{\infty}(\mathcal{M})$. Its natural to then try and construct the quantum Hilbert space as:

$$
\mathcal{H}=\mathcal{H}_{B} \cap P(B)
$$

But, we shall see that this doesn't quite work and must be modified.

7.1 Operators

If we are going to construct the quantum Hilbert space in some way from polarized sections $P(B)$ then its clear that any operators we let act on $P(B)$ must map it to itself. We will call the set of these operators $\mathcal{O}(P(B))$. If \widehat{f}
is such an operator, then for all $X \in V_{P}(\mathcal{M})$ and $s \in P(B)$ we must have:

$$
\begin{aligned}
0 & =\nabla_{X}(\widehat{f s}) \\
& =\nabla_{X}\left(-i \hbar \nabla_{X_{f}} s+f s\right) \\
& =\left(-i \hbar \nabla_{X} \nabla_{X_{f}}+X(f)+f \nabla_{X}\right) s \\
& =\left[-i \hbar\left(-\frac{i}{\hbar} \omega\left(X, X_{f}\right)+\nabla_{X_{f}} \nabla_{X}+\nabla_{\left[X, X_{f}\right]}\right)+X(f)+f \nabla_{X}\right] s \\
& \left.=--i \hbar\left(-\frac{i}{\hbar} X(f)+\nabla_{X_{f}} \nabla_{X}+\nabla_{\left[X, X_{f}\right]}\right)+X(f)+f \nabla_{X}\right] s \\
& \left.=-\left(-i \hbar \nabla_{X_{f}} \nabla_{X}+f \nabla_{X}\right)-i \hbar \nabla_{\left[X, X_{f}\right]}\right] s \\
& =f \nabla_{X} s-i \hbar \nabla_{\left[X, X_{f}\right]} s \\
& =-i \hbar \nabla_{\left[X, X_{f}\right]} s
\end{aligned}
$$

Therefore:

$$
\left[X, X_{f}\right] \in V_{P}(\mathcal{M})
$$

If we choose $X=\partial / \partial p_{a}$ then:

$$
\begin{aligned}
{\left[\partial / \partial p_{a}, X_{f}\right] } & =\left[\partial / \partial p_{a}, \partial f / \partial p_{b} \partial / \partial q^{b}-\partial f / \partial q^{b} \partial / \partial p_{b}\right] \\
& =\partial^{2} f / \partial p_{a} \partial p_{b} \partial / \partial q^{b}-\partial^{2} f / \partial p_{a} \partial q^{b \partial} / \partial p_{b}
\end{aligned}
$$

and so f satisfies:

$$
\partial^{2} f / \partial p_{a} \partial p_{b}=0
$$

which we recognize from section 6.3 .3 as the condition for f to preserve P. The set of operators that map $P(B)$ to itself is therefore the set of operators corresponding to observables that preserve the polarization:

$$
\mathcal{O}(P(B))=\left\{\widehat{f}=-i \hbar \nabla_{X_{f}}+f \mid f \in S_{P}(\mathcal{M})\right\}
$$

This means we are reduced to only constructing observables of the form:

$$
f=v^{a}(q) p_{a}+u(q)
$$

The Hamiltonian vector field of such a function is:

$$
X_{f}=v^{a} \partial / \partial q^{a}-\left(p_{a} \partial v^{a} / \partial q^{b} \partial / \partial q^{b}+\partial u / \partial q^{b}\right) \partial / \partial p_{b}
$$

The operator \widehat{f} then acts on $s \in P(B)$ as:

$$
\begin{aligned}
-i \hbar \nabla_{X_{f}} s+f s & =\left(-i \hbar v^{a} \partial / \partial q^{a}-p_{a} v^{a}\right) s+\left(v^{a} p_{a}+u\right) s \\
& =\left[-i \hbar v^{a}(q)^{\left.\partial / \partial q^{a} \psi_{i}+u(q) \psi_{i}\right] s_{i}}\right.
\end{aligned}
$$

in some local trivialization.

7.2 The Hilbert Space \mathcal{H}

7.2.1 Problems with Polarized Sections

The problem with the definition:

$$
\mathcal{H}=\mathcal{H}_{B} \cap P(B)
$$

is that $\mathcal{H}=\emptyset$! There are no polarized square integrable sections because the inner product will diverge as we're integrating freely over the momentum coordinates $\left(p_{a}\right)$ which span all of \mathbb{R}^{4}. In the case of $\mathcal{M}=T^{*} \mathbb{R}^{n}$ this is easily seen as:

$$
\begin{aligned}
\langle s, s\rangle & =\mathbb{R}^{2 n}(s, s) \epsilon \\
& =\mathbb{R}^{2 n}|\psi(q)|^{2} \epsilon \\
& =\left(\mathbb{R}^{n}|\psi(q)|^{2} d^{n} q\right)\left(\mathbb{R}^{n} d^{n} p\right)
\end{aligned}
$$

The solution to this problem is to construct an inner product defined by integration over Q. In order to do this, we have to consider objects which are "square roots" of n-forms on Q, so that when squared they give a volume form which can be integrated. This is called half-density quantization.

8 Concluding Remarks

We have seen that Prequantization satisfies Dirac's rules given at the beginning of this work, but the construction has to be altered on physical grounds by introducing a polarization. The final stage is the use of half densities, or one of the other methods that can be used e.g. metaplectic structures and kahler polarizations, see [11]. If I had more time I would have liked to have described some of these techniques.

I would like to thank Prof Hull for supervising this project.

References

[1] R. Abraham, J. E. Marsden, Foundations of Mechanics, Second Edition, Benjamin/Cummings
[2] V. I. Arnold, Mathematical Methods of Classical Mechanics, SpringerVerlag
[3] J. Baez, Lectures on Classical Mechanics, lecture notes available at http://math.ucr.edu/home/baez/classical/
[4] M. Blau, Symplectic Geometry and Geometric Quantization, lecture notes available at http://www.blau.itp.unibe.ch/Lecturenotes.html
[5] P. A. M. Dirac, The Principles of Quantum Mechanics, Fourth Edition, Oxford
[6] B. Hall, Lie Groups, Lie Algebras and Representations, Springer
[7] I. Madsen, J. Tornehave, From Calculus to Cohomology, Cambridge
[8] M. Nakahara, Geometry, Topology and Physics, Second Edition, Taylor \& Francis
[9] W. G. Ritter, Geometric Quantization, math-ph/0208008
[10] W. Rudin, Functional Analysis, TMH Edition, Tata McGraw-Hill Publishing
[11] N. M. J. Woodhouse, Geometric Quantization, Second Edition, Oxford

