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”Experience is the name everyone gives to their mistakes”.

Oscar Wilde.
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Abstract

This paper is a self-contained review of M-theory, with a special focus on its non-perturbative

formulation, M(atrix) theory. For this to be accessible to everyone, we start with an overview of

string theory and superstrings, from which we need to know the different features to understand

the matrix models. We introduce some basics notions of noncommutative geometry, which is used

in the construction of M(atrix) theory. We also cover the lowenergy limit of M-theory: 11D su-

pergravity. Finally, we present some recent applications of the M(atrix) models: noncommutative

gravity.
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1 Introduction

String theory first appeared as an attempt to describe hadronic particles, sensitive to the strong in-

teraction. Indeed, the coupling constant of strong interactions increase with the distance between

the particles. As an analogy, one can imagine two balls related by a string. As long as we take the

particles away, the tension of the string increases with distance, and the balls seem to be attracted

by each other, just like the strong interaction coupling constant does with two particles. So the par-

ticles were replaced by uni-dimensional objects: strings.Unfortunately, it turns out that the theory

contains tachyons (particles with imaginary mass) and spin-2 particles, and that it has to live in a

26-dimensional spacetime. For these reasons, string theory was superseded by Quantum Chromody-

namics (QCD), as a gauge theory for the strong interaction.,based on the symmetry groupSU(2).

However, some people noticed that the theory contained the spin-2 graviton, which is the the gauge

boson of gravity. Thus, the theory called Bosonic String Theory was thought to be a good candidate

as a theory unifying gravity and quantum mechanics. Two problems remained: the presence of tachy-

onic particles and the absence of fermions in the theory, which are very important since they are the

main component of the matter (electrons, quarks...). The solutions to both problems was found in a

new symmetry that relates bosons and fermions: Supersymmetry (SUSY). The bosonic string theory

evolved to a superstring theory, and, in mid80’s, became the main candidate for a superunification

theory, instead of11-dimensional supergravity, which has been developed in themeantime. Both

fermions and bosons were now present in the spectrum, free oftachyon. The dimension of the super-

symmetric spacetime was reduced to 10. There are 5 types of such consistent superstrings theories

called Type I, Type IIA, Type IIB, HeteroticSO(32) and HeteroticE8 × E8, which were thought to

be all independent. However, in 1995, it was discovered thatthey are all related by symmetries called

dualities, and are actually limits of one underlying theoryliving in 11 dimensions: M-theory [59]. We

know very little about it, and the full theory is yet to be constructed. The only facts that we know are

that it is the strong limit coupling of Type IIA, its low energy limit is the 11-dimensional Supergravity

(supersymmetric theory of gravitation) and that it contains no strings but supermembranes, which are

extended dimensional objects (hypersurfaces) with one-timelike dimension. M-theory is therefore not

a string theory.

The attempts to describe the M-theory in a non-perturbativeway can be reduced to two approaches:

the AdS/CFT correspondence and the M(atrix) theory.
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The AdS/CFT correspondance, where AdS stands for Anti-de Sitter and CFT stands for Conformal

Field Theory, states that a 10-dimensional superstring theory involving an Anti-de Sitter spacetime

and a 4-dimensional supersymmetric Yang-Mills (SYM) theory, with maximalN = 4 supersymme-

try, are equivalent. This equivalence is somehow surprising since it relates a theory which contains

gravity to a theory which doesn’t, and in particular non-perturbative problems in Yang-Mills theory

to problems in classical superstrings or supergravity. Hence, the great advantage of this correspon-

dence is that we might be able to relate the solution of an ”easily solvable” problem on one side, to a

”harder” problem on the other side.

As useful as this equivalence might be, it doesn’t provide a formulation of M-theory. The main

candidate for this, are the so-called matrix theories. The first model that has been developed by Banks,

Fischler, Shenker and Susskind [5] is called M(atrix) theory or BFSS model. This model is based on

a conjecture that grew out from the observation that theD-brane action is similar the 10-dimensional

SYM action. First, the theory is compactified in a spacelike directionx11 with compactification radius

R. The momentump11 is quantized in units of1
R

. Thus an integerN = p11R is defined. It is argued

that in theN → ∞, objects with vanishing and negativep11 decouple. Since the only objects in Type

IIA which carry p11 are theD0-branes, M-theory in the IMF should be a theory ofN D0-branes in

the limit of largeN . The exact formulation of the conjecture is:

M-theory in the infinite momentum frame (IMF) is exactly equivalent to theN → ∞ limit of 0-branes

supersymmetric matrix quantum mechanics, described by the10-dimensionalU(N) SYMN = 1,

reduced to 0+1 dimension,

where the IMF is a frame where the physics has been highly boosted in one direction. According to

them, if the conjecture is correct, this would be the first non-perturbative formulation of a quantum

theory which includes gravity.

Other models were suggested: the IKKT model, which is obtained by the reduction of 10-dimensional

SYM to a point, and is a non-perturbative formulation of TypeIIB superstrings. This model is the

prime candidate for the emergent noncommutative gravity, discussed later.

The Non-abelian Born-Infield (NBI) model differs slightly from IKKT, by the dynamical degrees of

freedom. In the IKKT, the size of the matrices were considered to be variable, whereas in the NBI

model, the size is set and only the components of the matrix can fluctuate. This modification was

introduced to calculate interaction betweenD-branes.
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M(atrix) theory, provides a formulation of M-theory. If this correct, the compactification of this

model should lead to a non-perturbative matrix formulationof type IIA superstrings, since type IIA is

obtained from M-theory when compactifed on a circle. The idea is to compactify the9th dimension,

instead of the11th in M(atrix) theory, to get type IIA. Then, we see that SYM should provide a light-

front description of type IIA superstring theory. Because we are now interpreting dimension9 as the

dimension of M-theory which is compactified, the fundamental objects which carry the momentum

p are no longerD0-branes butD1-branes (orD-strings) with longitudinal momentumN
R

. Dijkgraaf,

Verlinde and Verlinde first argued that 2 dimensional SYM in the largeN limit should correspond to

light-front IIA superstring theory.

In order to make this paper as self-contained as possible, westart with a review of the bosonic string,

superstrings, dualities etc..., so the reader doesn’t needto have studied string theory before.

The third chapter presents the different matrix models developed: the BFFS, IKKT and NBI models.

After having constructed the actions, we analyse the solutions and we discuss their symmetries. We

show how they are related to each other via compactification on a circle, on a torus and on a non-

commutative torus. Finally, we talk about the non-perturbative description of type IIA superstrings,

developed from the BFSS model by Dijkgraaf, Verlinde and Verlinde.

The fourth chapter, is on noncommutative geometry, which isthe geometry of M(atrix) theory. Since

this is a rather complicated domain of pure mathematics, we present only some points relevant for our

purpose, like the derivation of noncommutative Yang-Millstheory from ordinary Yang-Mills, how

they are related by the Seiberg-Witten map and how matrix models can be obtained from them.

As we said before, one of the only things we know about M-theory is its low energy limit 11-

dimensional Supergravity. Thus, we present in the fifth chapter, how to construct the Lagrangian

of this theory, and we derive the equations of motion for the graviton, the gravitino and the 3-form

potential.

Finally, as a conclusion, we talk about recent developmentsand the applications of the M(atrix) model

to cosmology with the presentation of a noncommutative emergent gravity.

An appendix on differential forms can be found at the end, since we use this formalism to simplify

the expression of some the equations in supergravity, whichare derived in more detail right after.
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2 String theories, dualities and D-branes

This section is made for the good understanding of the M(atrix) model. We cover all the fundamental

ideas, from classical string theory to D-branes. Finally, an alternative to M(atrix) theory, the AdS/CFT

correspondance, the only other non-pertubative aspect of M-theory, is briefly presented.

2.1 The bosonic string

To write the bosonic string action, we use the analogy of the point particle. To do that, we consider

p-branes, which are the fundamental p-dimensional objects.A particle would then be a 0-brane, a

string a1-brane and so forth.

2.1.1 The point particle action

The action of a point particle in aD-dimensionnal space time is simply given by:

S = −m
∫
ds = −m

∫ √
−ηµνẊµẊνdτ (1)

where the dot represents the derivative respect toτ . The signature of the metric is(−,+, ....,+), the

indices run between0 andD− 1 since we are in D dimensions. A particle sweeps out a line in space

time, which is called the particle worldline, as shown in:

0X

X1

X2

τ
Xµ(τ)

τ

Figure 1:A particle worldline. The functionXµ(τ) embeds the worldline in spacetime.

As we said before, a particle is a0-brane, so by analogy, we can construct a generalised actionfor

p-brane in ap + 1-dimensional space time:

S = −Tp
∫
dµp (2)
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Tp is called the brane tension and it’s equal to1
2πα′ andα′ is related to the string lengthls byα′ = l2s

2
.

dµp is the(p + 1)-dimensional volume element, which is just a generalization of the point particle

1-dimensionalds, given by:

dµp =
√
−hdp+1σ (3)

whereh = det(hαβ), hαβ = γµν∂αX
µ∂βX

ν andα, β = 0, ..., p.

2.1.2 The Nambu-Goto and Polyakov action

Since a string is a 1-brane, it sweeps out a 2-dimensional surface in Minkowski spacetime (γµν = ηµν),

just like a particle sweeps out a line. This surface is calledthe world sheet of the string and is

parametrised by 2 coordinatesσ0 = τ andσ1 = σ, as it’s shown in:

0X

X1

X2

σ

τ

0 π

Xµ(τ,σ)τ

σ

Figure 2:The string worldsheet. The functionXµ(τ, σ) embeds the worldsheet in spacetime.

Usinghαβ = γµν∂αX
µ∂βX

ν , we can writehαβ as:

hαβ =




Ẋ2 ẊX ′

ẊX ′ X ′




By taking the determinant of it, we can write the action for a string from the p-brane action:

S = −T
∫
dσdτ

√
(ẊX ′)2 − Ẋ2X ′2 (4)

X ′ is the derivative respect toσ andẊ is the derivative respect toτ . This action is called the Nambu-

Goto action. The problem with this action is that the square root makes the quantization hard. To get

get rid of this problem, we use the Polyakov action, which is classically equivalent to the Nambu-Goto

action and much easier to quantize. For this, we introduce the worlsheet metricgαβ(σ, τ). The action

then becomes:
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S = −T
∫
dτdσ

√−ggαβhαβ = −T
∫
dτdσ

√−ggαβ∂αXµ∂βX
νηµν (5)

We see that the square root isn’t here anymore and a new field apeared,gαβ. One should be careful

with the notation,gαβ is the worldsheet metric, whereasηµν is the spacetime metric.

The Polyakov action is invariant under:

• The Poincaré group:

Xµ → X ′µ = Λµ
νX

ν + aµ (6)

• The Weyl transformation:

gαβ → g′αβ = eφgαβ (7)

• A reparametrization of the coordinatesσα → σ′α(σα). This symmetry is a diffeomorphism (an

isomorphism for smooth manifolds. It is an invertible function that maps one differentiable manifold

to another, such that both the function and its inverse are smooth).

2.1.3 Equations of motion

We are going to solve the equation of motion for the Polyakov action, and show that it is indeed

equivalent to the Nambu-Goto action.

First, let’s find the equation of motion forXµ. Using the Euler-Lagrange equation, and noticing that

the action depends only on the derivative ofXµ, we have:

∂α

( ∂L
∂(∂αXµ)

)
= 0

The equation of motion forXµ is then:

∂α(
√−ggαβ∂βXµ) = 0 (8)

When we vary the action respect to the induced metricgαβ, we have:

δS = −T
∫
dτdσ

[
δ(
√−g)gαβ∂αXµ∂βX

ν +
√−gδgαβ∂αXµ∂βX

ν
]
ηµν (9)
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Using the identityδ(
√−g) = −1

2

√−ggαβδgαβ, we find the equation of motion forgαβ:

∂αX∂βX =
1

2
gαβg

ρσ∂ρX∂σX (10)

We can see that if we plug this result back in the Polyakov action, we recover the Nambu-Goto action.

This equation gives:

Tαβ ≡ ∂αX∂βX − 1

2
gαβg

ρσ∂ρX∂σX = 0 (11)

which is the energy-momentum tensor on the (1+1)-dimensional worldsheet. The conditionTαβ = 0

is called the Virasoro constraint. It is a conserve current associated to the translation symmetry of the

action.

2.1.4 Boundary conditions and solutions

In order to have well defined solutions, we need to precise theboundary conditions. We set the

induced metric to be flat (due to a conformal invariance of theaction). Since there two types of

strings, closed and open, we have different boundary conditions. We want the action to be invariant

under the shiftsXµ → Xµ + δXµ. Then, when we vary the action, we have an additional boundary

term:

δS = T

∫
dτdσ(ηαβ∂α∂βX

µ)δXµ − T

∫
dτ

[
X ′
µδX

µ
]σ=2π

σ=0
(12)

We want this term to vanish, so we have:

Closed strings: They sweeps out a cylinder in spacetime, so the boundary condition should be:

Xµ(τ, σ) = Xµ(τ, σ + 2π) (13)

Open strings: Here, there are two choices of boundary conditions;

• Neumann boundary conditions: X ′µ(τ, σ)
∣∣
σ=0,2π

= 0. It means that the string can end anywhere in

spacetime.

• Dirichlet boundary conditions: Ẋµ(τ, σ)
∣∣
σ=0,2π

= 0. Integrating this condition overτ , sets the

spacetime location on where the string ends. Therefore, this is equivalent to fixing the endpoints of

the string, and we haveδXµ(τ, σ)
∣∣
σ=0,2π

= 0. We will see later that the string ends on aDp-brane,
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which is a hypersurface withp space-like dimensions, and one time-like dimension.

2π0 < σ <σ

τ τ

0 π

Figure 3:The worlsheet of an open string (left) and of a closed string (right).

The solution of the equation of motion�Xµ = ∂α∂αX
µ = ∂2

∂τ2 − ∂2

∂σ2 = 0, is, in the most general

case:

Xµ(τ, σ) = Xµ
R(τ − σ) +Xµ

L(τ + σ) (14)

whereXµ
R is a wave moving towards more positiveσ andXµ

L is a wave moving towards more negative

σ. For open strings, the left-moving and right-moving waves are related to each other by the boundary

conditions at the end points. The closed string has no endpoints, so we work with the periodic con-

ditions defined above. Then to describe properly closed string we need to compactify the worldsheet

coordinateσ.

To solve the equations of motions, we introduce the light-cone coordinatesξ± = τ±σ and∂± = ∂
∂ξ±

.

The equation of motion becomes:

∂+∂−X
µ = 0 (15)

and the general solution then is:

Xµ(τ, σ) = Xµ
R(ξ−) +Xµ

L(ξ+) (16)

Whenσ → σ+ 2π, ξ+ andξ− increase and decrease respectively by2π. The periodicity condition of

the closed string gives:

Xµ
R(ξ−) +Xµ

L(ξ+) = Xµ
R(ξ− − 2π) +Xµ

L(ξ+ + 2π) (17)
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By simply putting theξ+ on the right-hand side and theξ− on the left-hand side, we have:

Xµ
R(ξ−) −Xµ

R(ξ− − 2π) = +Xµ
L(ξ+ + 2π) −Xµ

L(ξ+) (18)

The modification is quite simple but we can now see that both waves are dependent of each other.

Since theξ’s are independent , it means that both sides of the equation (which are the derivatives of

X respect toξ±) must vanish. So, they are periodic functions with period2π, and we can write the

mode expansions: 



dXµ
L(ξ+)

dξ+
=

√
α′

2

∑

n∈Z

α̃µne
−ınξ+

dXµ
R(ξ−)

dξ−
=

√
α′

2

∑

n∈Z

αµne
−ınξ−

Whereα̃µn andαµn represent the oscillatory modes of the string satisfying:

(α̃µn)
∗ = α̃µ−n , (αµn)

∗ = αµ−n

When one integrates these equations:





Xµ
R(ξ−) = 1

2
xµ0 +

√
α′

2
αµ0ξ

− + ı
√

α′

2

∑

n 6=0

αµn
n
e−ınξ

−

Xµ
L(ξ+) = 1

2
xµ0 +

√
α′

2
α̃µ0ξ

+ + ı
√

α′

2

∑

n 6=0

α̃µn
n
e−ınξ

+

(19)

The constraint given by (18 yields to:

2π

√
α′

2
α̃µ0 = 2π

√
α′

2
αµ0

and therefore:

α̃µ0 = αµ0 (20)

The final solution for a closed string is:

Xµ(τ, σ) = xµ0 +
√

2α′αµ0 τ + ı

√
α′

2

∑

n 6=0

e−ınτ

n
(α̃µne

−ınσ + αµne
ınσ) (21)
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With the definition ofP µ
α (τ, σ) = δS

δẊµ
= T∂αX

µ, we can relate the momentumP µ
0 to αµ0 with:

P µ
0 (τ, σ) = TẊµ =

∫ 2π

0

dσ
1

2πα′ Ẋ
µ(τ, σ) =

∫ 2π

0

dσ
1

2πα′ (
√

2α′αµ0 + ...) =

√
2

α′α
µ
0 (22)

where the dots are the terms that vanish when we integrate. Wehave the relation

αµ0 =

√
α′

2
P µ

0 (23)

The solution for the open string is obtained from the closed string solution by imposing an extra

conditionXµ(τ, σ) = Xµ(τ,−σ). In terms ofξ±, we have:





Xµ
R(ξ−) = 1

2
xµ0 − 1

2
x′µ0 +

√
α′

2
αµ0ξ

− + ı
√

α′

2

∑

n 6=0

αµn
n
e−ınξ

−

Xµ
L(ξ+) = 1

2
xµ0 + 1

2
x′µ0 +

√
α′

2
αµ0ξ

+ + ı
√

α′

2

∑

n 6=0

αµn
n
e−ınξ

+

(24)

wherex′µ0 is an arbitrary integration constant. We find:

Xµ(τ, σ) = xµ0 +
√

2α′αµ0τ + ı
√

2α′
∑

n 6=0

αµn
n
e−ınτ cos(nσ) (25)

with

αµ0 =
√

2α′P µ
0 (26)

In the light-cone coordinates, the Virasoro constraints (11) gives for the closed string:

T+− = T−+ = 0

T++(ξ+) =
1

2
(∂+X

µ
L)2 =

1

2

∞∑

m=−∞

∞∑

n=−∞
α̃n−m · α̃me2ınξ

+

=
∞∑

n=−∞
L̃ne

2ınξ+ = 0

T−−(ξ−) =
1

2
(∂−X

µ
R)2 =

1

2

∞∑

m=−∞

∞∑

n=−∞
αn−m · αme2ınξ

−

=
∞∑

n=−∞
Lne

2ınξ− = 0 (27)

For the open string, we only have the constraints with untilded quantities.
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2.1.5 Quantization and the string spectrum

The pattern we follow to quantize the bosonic string is similar to the one used ion quantum field

theory, for the quantization of the scalar field. With (22), we calculate the Poisson bracket:

{
P µ(σ, τ), P ν(σ′, τ)

}
=

{
Xµ(σ, τ), Xν(σ′, τ)

}
= 0 (28)

{
P µ(σ, τ), Xν(σ′, τ)

}
= ηµνδ(σ − σ′) (29)

In terms ofα̃µn andαµn, we have:

{
α̃µm, α̃

ν
n} =

{
αµm, α

ν
n} = ımηµνδm+n,0 (30)

{
αµm, α̃

ν
n} = 0 (31)

Now that we have the Poisson brackets, all we need to quantized the theory is to replace them by

commutators as{· · · } → ı [· · · ]. By defining the annihilation operatoraµm = 1√
m
αµm and the creation

operatora†µm = 1√
m
αµ−m like in classical quantum mechanics, we have:

[
aµm, a

†ν
n

]
=

[
ãµm, ã

†ν
n

]
= ηµνδm,n (32)

[
Xµ
α , P

ν
β

]
= ıηµνδαβ (33)

Since this is an ensemble of harmonic oscillators, the Fock space is built by applying the creation

operator on the ground state satisfying:

〈0|0〉 = 1

aµm|0〉 = 0

|n〉 =
((aµm)†)n√

n!
|0〉

and

aµm(aµm)† = n|n〉

17



〈m|n〉 = δnm

There is however a problem in the construction when we look at
[
a0
m, a

†0
m

]
= −1. This creates states

with negative norms, which make the theory inconsistent since we would have a non-unitary theory

(with negative probabilities). The Visaroso constraints get ride of these states in the string spectrum.

One can also specify the momentumkµ which is the eigenvalue ofP µ
0 , carried by the state:

|φ〉 = a†ν1n1
a†ν2n2

...a†νn
nn

|k; 0〉

We now express the Hamiltonian in terms ofL andL̃. It is given by:

H =

∫ π

0

dσ(ẊµP
µ
0 − L) =

T

2

∫ π

0

dσ(Ẋ2 +X ′2) (34)

When we insert the mode expansions we find for the closed string:

H =
∞∑

n=−∞
(α−n · αn + α̃−n · α̃n) = L̃0 + L0 (35)

and for the open string:

H =
1

2

∞∑

n=−∞
(α−n · αn) = L0 (36)

The Visaroso operatorsLm in quantum theory are defined by their normal-ordered expression (we

place all lowering operators to the right):

Lm =
1

2

∞∑

n=−∞
: αm−n · αn :

Because of (30), onlyL0 = 1
2
α2

0 +
∑∞

n=1 α−n ·αn is affected by the normal ordering. The commutator

of two oscillators is a (positive) constant. Therefore, thegeneral form of a quantum version ofL0 will

defer from the normal ordered one by a constanta: L0 −→ L0 −a. We now define the physical states

|phys〉 of the full Hilbert space, the states which obey the quantum version of the Visaroso constraint,

and we have:

(L0 − a)|phys〉 = 0 (37)

Ln|phys〉 = 0 (38)
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The Lorentz invariance implies that the massive modes form arepresentation of the Lorentz group

SO(D− 1) and the massless modes form a representation of the Lorentz groupSO(D − 2).

• The open string spectrum

The mass of the open string is given bym2 = −P 2
0 . With (37), (26), and the expression ofL0, we

get:

m2 = −P 2
0 = − 1

2α′α
2
0 =

1

α′

( ∞∑

n=1

α−n · αn − a
)

=
1

α′ (N − a) (39)

whereN ∈ N is called the level number.

Ground state: N = 0. This state is realized when all the oscillators are in vaccum and it’s given by

|k; 0〉. The mass of this state is:

m2 = − a

α′ (40)

This state describes a tachyon (a particle travelling faster than the speed of light), since the mass is

imaginary. This is where we see that the bosonic string is nota consistent theory since the vaccum is

unstable.

First excited state: N = 1. The only way to get the first excited state is to applyαµ−1 on the vacuum:

|k〉 = αµ−1|k; 0〉

The mass is given by

m2 =
1

α′ (1 − a) (41)

The indexµ takes its values in the(D − 2) transverse coordinates (see 3.6). Thus, the stateαµ−1|k; 0〉

belongs to a vector representation ofSO(24). Since Lorentz invariance requires the mass to be equal

to zero, we finda = 1.

Second excited state: N = 2. We can obtain this state by either:

|k1〉 = αµ−2|k; 0〉

which has 24 states, or

|k2〉 = αµ−1α
ν
−1|k; 0〉

which has24·25
2

= 300 states. The total number of states is the number of states of atraceless second-
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rank tensor ofSO(25), which correspond to aspin = 2 particle. Sincea = 1, any state withN > 2

have positive mass.

• The closed string spectrum

The spectrum of the right-moving modes of closed string is the same as the open string and the closed

string states are tensor products of left-movers and right-movers. For the left-moving modes, we have

the extra condition:

(L0 − a)|phys〉 = (L̃0 − a)|phys〉 = 0 (42)

Adding and subtracting them, gives the quantum constraints:

(L0 + L̃0 − 2)|phys〉 = 0

(L0 − L̃0)|phys〉 = 0 (43)

where we seta = 1. This lead us to the mass relation:

m2 =
4

α′ (N − 1)

with

N = Ñ (44)

Ground state: N = 0. The ground state|k; 0〉 has a mass:

m2 = − 4

α′

which is again a tachyon.

First excited state: N = 1. The state which is massless, is:

|k〉 = αµ−1|k; 0〉 ⊗ α̃ν−1|k; 0〉 (45)

It has242 = 576 states. This tensor contain a symmetric and traceless part that transforms under

SO(24). It is a masslessspin = 2 particle: the graviton.
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There is two big problems with the boconic string;

Firstly, both open and closed string spectrum contain a tachyon, which violate causality and unitarity.

Secondly none of the spectrum contain fermion, which is a bitof a problem since fermions are very

important in physics.

Then, one need a new symmetry to make fermions appear from bosons. This is where supersymmetry

arise, and therefore we define supersymmetric strings: superstrings.

2.2 Superstrings

Supersymmetry (SUSY), although it hasn’t been observed yet, is a very powerful symmetry. Indeed,

it makes string theory consistent since the spectrum of the strings contain fermions, and is free of

tachyon. SUSY, which has been first discovered in the contextof string theory and then adapted to

four-dimensional particles, was introduced in two different equivalent ways1:

• The Ramond-Neveu-Schwarz (RNS) formalism, which is the original approach and which uses

two-dimensional world-sheet supersymmetry. In this case,the world-sheet action takes the form:

S = −T
2

∫
d2ξ(∂aX

µ∂aXµ − ıψ
µ
ρa∂aψµ)

This is the approach we will use afterwards to calculate the mode expansions and the spectrum of

superstrings.

• The Green-Schwarz (GS) formalism, which uses a map that embeds the string world sheet into

superspace instead of just spacetime in the bosonic string.Therefore, the advantage is to make

the spacetime supersymmetry obvious since the superspace is supersymmetric by definition, and it

doesn’t require the GSO projection, needed in theRNS superstring to get ride of the tachyons. How-

ever, the quantization of the theory is much harder and hasn’t been totally fulfilled yet.

2.2.1 The type of superstrings

There are five different types of superstring theories, all living in 10 dimensions. Type I and both

heterotic theories haveN = 1 SUSY whereas types IIA and IIB haveN = 2 SUSY.

1It might be possible that the two approaches are actually notexactly equivalent
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• Type I: This is the first superstrings theory. It is only one which contains both closed and open

strings, but they aren’t oriented (they have the same chirality). The symmetry gauge group isSO(32).

• Type IIA: For closed strings, there are two ways to choose thechiralities of the left and right moving

modes. If we choose the chiralities to be of opposite signs, then we have type IIA. It containsDp-

branes withp even. it is the strong limit coupling of Type IIA

• Type IIB: This is obtained by chosing the same chirality for the modes. It containsDp-branes with

p odd.

• HeteroticE8 × E8 andSO(32): The heterotic strings theories are the most promising in discribing

the physical world. The original thing here is that it uses the formalism of both 26-dimensional

bosonic string for the left-moving modes, and 10-dimensional superstrings for the right moving

modes. The gauge groups naturally appear when we compactifythe extra dimensions. The only

possible tori which have the required properties for the theory to be consistent must have the Lie

algebraE8 × E8 or SO(32).

2.2.2 Dualities

• T-duality: This duality, which is a perturbative duality, relates two different theories that were

thought to be unrelated, by saying that the geometry of the extra dimensions are physically equivalent.

Every theories that are related by this duality should actually be considered as only one. It relatesR

to R̃ = l2s
R

. For open strings, it interchanges the usual Neumann boundary conditions with Dirichlet

boundary conditions. The types of superstring related by the T-duality are:

T : IIA↔ IIB

T : E8 ×E8 ↔ SO(32)

• S-duality: Also called Strong/weak duality, it is a dualitythat relates the string coupling constant

gs to g̃s = 1
gs

. This is therefore a non-perturbative duality and allows toget non-perturbative results

from a perturbative analysis. The different theories related by S-duality are:

S : IIA↔ E8 ×E8
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S : I ↔ SO(32)

S : IIB ↔ IIB

We show in the next chapter, how T-duality arises from closedand open strings, and how in the case

of open strings, it implies the existence of D-branes.

2.3 RNS superstring

The study of superstring theory is not much different from the bosonic string, and we are going to

follow the exact same pattern.

I recall the action of the RNS superstring given earlier:

S = −T
2

∫
d2ξ(∂aX

µ∂aXµ − ıψ
µ
ρa∂aψµ) (46)

whereρa(a = 0, 1) are 2-dimensional Dirac matrices and satisfy the algebra{ρa, ρb} = 2ηab. We

have included Majorana spinors which belong to the representation of the Lorentz groupSO(1, 9)

(since we are in 10 dimensions). This action is invariant under translations and supersymmetry trans-

formations:

δǫX
µ = ǫψµ

δǫψ
µ = ρa∂aX

µǫ (47)

whereǫ is the parameter of the supersymmetry group transformations and is an infinitesimal Majorana

spinor.

The bosonic fieldsXµ still possess the commutation relation (29), and the spinors statisfy the anti-

commutation relation{ψµ, ψν} = 0. The spinorψ is a Majorana spinor and has two components

ψµ =



ψµ−

ψµ+




We have the conditionψ∗ = ψ in order to keep the action real. The fermionic part of the action
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written in terms of the spinor components is:

ψ
µ
ρa∂aψµ = ψµ−∂+ψ

µ
− + ψµ+∂−ψ

µ
+ (48)

The equation of motion are in fact the massless Dirac equations:

∂+ψ
µ
− = ∂−ψ

µ
+ = 0 (49)

whereψµ− is the the right-mover andψµ+ is the the left-mover and satisfy the anticommutation relation:

{ψµ±(σ, τ), ψν±(σ′, τ)} = πηµνδ(+,−)δ(σ − σ′) (50)

Like the bosonic string, we have the Virasoro constraints. We still have the current associated to the

translation invariance, but since we have a new (super)symmetry, we have an additional current , as-

sociated to the invariance of the action under supersymmetry transformations (47). Their expressions

are:

Tab = ∂aX
µ∂bX

µ +
1

4
ψ
µ
ρa∂bψµ +

1

4
ψ
µ
ρb∂aψµ − (trace)

Ja =
1

2
ρbρaψµ∂bX

µ (51)

When we use the light cone coordinates, we findT+− andT−+ identically equal to zero and the

non-zero components of both currents are:





T++ = ∂+X∂+X + ı
2
ψ+∂+ψ+ = 0

T−− = ∂−X∂−X + ı
2
ψ−∂−ψ− = 0

(52)





J+ = ψµ+∂+Xµ = 0

J− = ψµ−∂−Xµ = 0

(53)

24



2.3.1 Boundary conditions and solutions

Lets now find the expression of the mode expansion of the strings. When we vary the action (46)

respect toψ− andψ+, we find that it vanishes if they respect the Dirac equation given above and we

have the condition:

δS =

∫
d2σ

[
ψ+δψ+ − ψ−δψ−

]
σ=2π

−
[
ψ+δψ+ − ψ−δψ−

]
σ=0

= 0 (54)

Open strings. There are two possibilities, corresponding to the two endsof the strings:

ψµ+(σ, τ) = ±ψµ−(σ + 2π, τ) (55)

The sign is a matter of convention, so we can set the sign atσ = 0 to be+. At the end of the string,

there are still two possible choices:

• Ramond (R) sector: ψµ+|σ=2π = ψµ−|σ=2π. This gives the fermions.

• Neveu-Schwarz (RS) sector: ψµ+|σ=2π = −ψµ−|σ=2π. This gives the bosons.

Given the two different types of boundary conditions, we then have two different ways to expand the

spinor fields in Fourier series:

R :






ψµ−(σ, τ) = 1√
2

∑

r∈Z

bµr e
−ır(τ−σ)

ψµ+(σ, τ) = 1√
2

∑

r∈Z

bµr e
−ır(τ+σ)

(56)

NS :






ψµ−(σ, τ) = 1√
2

∑

r∈Z+1/2

bµr e
−ır(τ−σ)

ψµ+(σ, τ) = 1√
2

∑

r∈Z+1/2

bµr e
−ır(τ+σ)

(57)

Closed strings. The boundary conditions, like the open string, give two fermionic modes; left-moving

sectorψµ+ and right-moving sectorψµ−. There are two possibilities for periodic conditions to make the

boundary term (54) vanish:

ψµ±(σ, τ) = ±ψµ±(σ + 2π, τ) (58)

A positive sign gives periodic boundary condtions whereas anegative sign gives antiperiodic bound-
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ary conditions. We can decide to give the left or right mover either periodic (R) or antiperiodic (RS)

conditions. Thus we have for the right-mover of the closed string:

or





ψµ−(σ, τ) =
∑

r∈Z

bµr e
−2ır(τ−σ) (R)

ψµ−(σ, τ) =
∑

r∈Z+1/2

bµr e
−2ır(τ−σ) (NS)

(59)

and for the left-mover:

or





ψµ+(σ, τ) =
∑

r∈Z

b̃µr e
−2ır(τ+σ) (R)

ψµ+(σ, τ) =
∑

r∈Z+1/2

b̃µr e
−2ır(τ+σ) (NS)

(60)

Since we can pair together any of the sectors, we have four different combinations for the closed

string, and their correspondant particle states:

R-R: Bosonic

NS-NS: Bosonic

R-NS: Fermionic

NS-R : Fermionic

2.3.2 Quantization and the superstring spectrum

Now we need to do the canonical quantization of the superstring since we have only classical su-

persymmetric strings. The procedure is similar to the bosonic string quantization. The oscillatory

modes in the expansion obey the same comutation relation (32) as the bosonic string. Similarly, for

the fermions the anticommutation relation (50) becomes in terms of the oscillatory modesbµr :

{bµr , bνs} = ηµνδ(r+s,0) (61)

One should be careful with the (same) notation we’ve been using and not be confused with the Poisson

brackets for classical bosonic fields, and anticommutatorsfor both classical and quantized spinor

fields.

26



One can also notice that, like in the bosonic string, we have negative norm states because of the

spacetime metric (η00 = −1).

We now calculate the expressions of the constraints (52) and(53) in terms of the oscillatory modeaµm

andbµr :





T++ =

∞∑

n=−∞

[1

2

∞∑

m=−∞
α̃n−m · α̃m +

1

4

∑

r

(2r − n)̃bn−r · b̃r
]
e−2ınξ− =

∞∑

n=−∞
L̃ne

−2ınξ−

T−− =

∞∑

n=−∞

[1

2

∞∑

m=−∞
αn−m · αm +

1

4

∑

r

(2r − n)bn−r · br
]
e−2ınξ− =

∞∑

n=−∞
Lne

−2ınξ−
(62)





J+ =
∑

r

[ ∞∑

m=−∞
α̃m · b̃r−m

]
e−2ırξ− =

∑

r

G̃re
−2ırξ−

J− =
∑

r

[ ∞∑

m=−∞
αm · br−m

]
e−2ırξ− =

∑

r

Gre
−2ırξ−

(63)

This is used to determine the string mass like in the bosonic string case. The physical states|phys〉

satisfy the conditions:

(L0 − a)|phys〉 = 0

Ln|phys〉 = 0

Gr|phys〉 = 0 (64)

wherea is equal to0 in theR sector and1
2

in theNS sector. The first one gives the mass:

m2 =
1

α′

[( ∞∑

n=1

α−n · αn +
∑

r>0

rb−r · br
)
− a

]
=

1

α′ (N − a) (65)

To construct the spectrum, we have to consider theR andNS sectors independently. The ground

state|0〉 must be annihilated by the annihilation operator in both sectors:

αµm|0〉 = bµr |0〉 = 0 for r,m > 0 (66)

Open string spectrum in the NS sector
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Ground state:N = 0. The ground state has a mass:

m2 = − 1

2α′ (67)

which is a tachyon. It is a unique ground state which corresponds to a state of spin0. The excited

states are obtained by acting raising operators and are alsobosons.

First excited state:N = 1
2
. The reason why this state isN = 1

2
and not1 is because to construct the

first excited state we need to apply the raising operator withthe smallest valuer or n. Then the good

operator isbµ−1/2 and the state is massless. It is a vector ofSO(8).

Open string spectrum in the R sector

With (61) we get{bµ0 , bν0} = ηµν , which is similar to the10-dimensional Dirac algebra{Γµ,Γν} =

2ηµν , up to factor2. Hence, We definebµ0 = 1√
2
Γµ and conclude that all the states that these operators

act on are10-dimensional spinors and then are fermions.

Ground state:N = 0. To analyze the ground state, we have to take into account thesupercurrent

constraintJ− (63) and the last condition in (64). The zero mode part of it (r = 0) obviously obeys:

G0|phys〉 = 0

with G0 = α0 · b0 +
∑

n 6=0

α−n · bn. Since we have identifiedbµ with Γµ andαµ0 with pµ0 , and since the

physical fermionic ground state|0f〉 is defined by (66), we find that it satisfies the10-dimensional

massless Dirac equation:

α0 · b0|0f〉 = 0 (68)

Then, the fermionic ground state is a massless Dirac spinor in 10 dimensions. The ground state in the

R sector is a 32-component spinor sinceb0 is a32 × 32 matrix. In ten dimensions, one can impose

both Majorana (spinor equal to his complex conjugate) and Weyl condition on spinors. Then, there are

two different ground states which have two possible chiralities and then is degenerate. This condition

gives rise of two different theories as we will see afterwards.

First excited state:N = 1. Here since the value ofr andn are the same, the first excited state is

obtained by applying eitherα−1 or b−1 on the ground state. The state has a massm2 = 1
α′ .
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2.3.3 The GSO projection

We said at the start of this section that supersymmetry get rid of the problems encountered in the

bosonic string. This is not quite done yet because although we do have fermions and bosons, the

ground state of theNS sector is a tachyon. Besides, one can see that the spectrum isnot spacetime

supersymmetric since there is no fermion with the same mass as the tachyon. An operation which

consists of projecting the spectrum in a particular allow usto remove the tachyon from the spectrum.

This operation is called theGSO projection notedPGSO was introduced by Gliozzi, Schrek and

Olive. The physical states|phys〉 are replaced byPGSO|phys〉.

NS sector

In this sector, the projector is defined with:

PGSO =
1

2

(
1 − (−1)F

)
(69)

whereF =
∞∑

r=1/2

b−r · br is called fermion number operator. This is different from zero only if F is

odd. Then, the projector keep only states with an odd number of b’s and remove those with an even

number. The ground state which has no an even numberF is eliminated, and the first excited state

becomes the ground state withm2 = 0.

R sector

The expression of the projector is the same as before, but thedefinition ofF changes:

PGSO =
1

2

(
1 − (−1)F

)
(70)

where(−1)F = ±Γ11 · (−1)
P

r>1 b−r ·br is called Klein operator andΓ11 = Γ0Γ1...Γ9, (Γ11)2 = 1 and

{Γµ,Γ11} = 0. The spinors that satisfy:

Γ11ψ = ±ψ (71)

are said to have positive or negative chirality and the chirality operator isP± = 1 ± Γ11.

The ”new” ground state (NS) bosonbµ−1/2|0〉 is massless and hasD − 2 = 8 polarizations (corre-

sponding to the number of transverse dimensions in the DLCQ see 3.6). The ground state (R) fermion
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|0f〉 is a massless Majorana-Weyl spinor and has1
4
2D/2 = 8 polarisations (a fermion inD dimensions

has2D/2 components and the Majorana and Weyl conditions each dividethe number of components

by 2). Hence the number of fermions and bosons are the same, asrequired by supersymmetry, have

the same mass and then form a supermultiplet.

Closed string spectrum

As mentioned before, there are4 possible sectors:NS −NS,NS −R,R−NS andR−R. We can

choose the right and left movingR sectors ground sates to have the same or opposite chirality.This

correspond to2 different theories:

• Type IIB: We define the type IIB theory with the left and right moving sector ground states to have

the same chirality, chosen to be positive. Therefore the twoR sectors have the same parity. Let us

denoted them by|0f〉+R. In this case, the ground state (massless) in the type IIB closed string spectrum

are given in theR −R sector, by the tensor product of the ground state in theR sector with itself:

|0f〉+R ⊗ |0f〉+R (72)

In theNS − NS sector, the ground state is the tensor product of the ”new” ground statẽbi−1/2|0〉NS
(after the GSO projection got rid of the tachyon) with itself:

b̃i−1/2|0〉NS ⊗ bj−1/2|0〉NS (73)

In theNS − R sector, the ground state is the tensor product of the ”new” ground state in theNS

sector and the ground state in theR sector:

b̃i−1/2|0〉NS ⊗ |0f〉+R (74)

In theR − NS sector, the ground state is the tensor product of the ground state in theR sector and

the ”new” ground state in theNS sector:

|0f〉+R ⊗ bi−1/2|0〉NS (75)

All these states are massless.
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• Type IIA: The left and right movingR sector ground states are chosen to have opposite chiralities.

The massless states in the spectrum are in theR−R sector the tensor product of the two ground state

both in theR sector, but with opposite chirality:

|0f〉−R ⊗ |0f〉+R (76)

In theNS −NS sector, the ground state is the same as in type IIB:

b̃i−1/2|0〉NS ⊗ bj−1/2|0〉NS (77)

In theNS − R sector, the ground state is the tensor product of the ”new” ground state in theNS

sector and the ground state in theR sector with positive chirality.

b̃i−1/2|0〉NS ⊗ |0f〉+R (78)

In theR − NS sector, the ground state is the tensor product of the ground state in theR sector with

negative chirality, and the ”new” ground state in theNS sector:

|0f〉−R ⊗ bi−1/2|0〉NS (79)

The massless spectrum of each Type II closed string contain2 Majorana-Weyl gravitinos and therefore

they formN = 2 multiplets. There are64 states in each of the four massless sectors:

• NS-NS: This sector is the same for both type IIA and IIB. The spectrum contains a scalar called

dilaton (one state), an antisymmetric2-form gauge field (n = 8×7
2

= 28 states) and a symmetric

traceless rank-2 tensor, the graviton (n = 10×7
2

= 35 states).

• NS-R andR-NS: Each of these sectors contain a spin3/2 gravitino (n = 8×7×6
6

= 56 states) and a

spin1/2 fermion called dilatino (8 states). In IIB, the2 gravitinos have the same chirality, whereas in

IIA they have opposite chirality.

•R-R: These states are bosons, obtained by tensoring a pair of Majorana-Weyl spinors. In the IIA

case, the2 Majorana-Weyl spinors have opposite chirality and one obtains a1-form (vector) gauge

field (8 states) and a3-form gauge field (56 states). In the IIB case the2 Majorana-Weyl spinors have
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the same chirality and one obtains a0-form (scalar) gauge field (1 state), a2-form gauge field (28

states) and a4-form gauge field with a self-dual field strength (35 states). Because of the self duality

of the field strength, the number of states is divided by2.

Everything is summarize in the following:

NS-NS R-R

IIA gµν , φ, Bµν A
(1)
µ , A

(3)
µνρ

IIB gµν , φ, Bµν A(0), A
(2)
µν , A

(4)
µνρσ

2.4 M-theory

2.4.1 Relations to superstrings theories and supergravity

The following drawing shows pretty much everything we know about M-theory which is an 11-

dimensional theory.

II AII B HE HO I

M
strong/weak strong/weak

S
1 S1/ Z2

T T

Figure 4:Relation between M-theory and Superstrings theories.

◦ M-theory with a longitudinal coordinatex11 compactified on a circleS1 gives the 10-dimensional

Type IIA string theory. We also say that it is the strong coupling limit of Type IIA and Heterotic

E8 × E8

◦11-dimensional supergravity is the low energy limit of M-theory.

◦ M-theory compactified on a torus is dual to Type IIB compactified on a circle.

◦ In the non-compactified limit, it doesn’t contain strings, but a three-form gauge fieldA3 and M-

branes. Such fields can couple to the M-branes, electricallyto aM2-brane (2-dimensional super-

membrane), and magnetically to aM5-brane. From its relationship with supergravity, it must also

contain the graviton (bosonic field with44 components), the gravitino (fermionic field with128 com-

ponents) and the3-form potential (bosonic field with84 components).
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2.4.2 D-Branes

We just show here how T-duality imply the existence of D-branes. In the next chapter, we’ll present

some aspects of D-brane dynamics.

T-duality for closed strings Before talking about T-duality, we need to introduce the notion of

winding number. This notion appears when we compactify the parameterσ of the string on a circle

to get a cylinder.

The periodic condition then becomes:

Xµ(τ, σ + 2π) = Xµ(τ, σ) + 2πmR (80)

whereR is the radius of the cylinder on which the string is compactified on, andm is the winding

number which correspond to the number of time we wind the string around. Since the cylinder is

oriented,m can be negative. One can define the winding numberw = mR
α′ and get:

Xµ(τ, σ + 2π) = Xµ(τ, σ) + 2πα′w (81)

The expansion (19) still holds, butα0 is not equal tõα0 anymore. (81) gives the new condition:

2π

√
α′

2
α̃0 = 2π

√
α′

2
α0 + 2πα′w =⇒ α̃0 − α0 =

√
2α′w (82)

For non-compact closed string we find the momentum:

p =
1

2πα′

∫ 2π

0

dσ(Ẋµ
L + Ẋµ

R) =
1√
2α′

(α0 + α̃0) (83)

The full coordinateX(τ, σ) is:

X(τ, σ) = x0 + α′pτ + α′wσ + ı

√
α′

2

∑

n 6=0

e−ınτ

n
(α̃ne

−ınσ + αne
ınσ) (84)

33



Solving (82) and (83) simultaneously, we get:





α0 =
√

α′

2
(p− w)

α̃0 =
√

α′

2
(p+ w)

(85)

The mass of a given string state is given by(α0)
2 + (α̃0)

2. Let us consider now the operatore−ıap

which translates states along the directionx by a distancea. If one decides to compactifyx9, thenx9

lives on a circle of radiusR, the translation operator that translate by2πR has no effect on the states.

Thus,e−ı2πRp is a unit operator, and then the states have momentum alongx that is quantized and

take values:

p =
n

R
, n ∈ Z (86)

Using this result, (85) can be written as:






α0 =
√

α′

2
( n
R
− mR

α′ )

α̃0 =
√

α′

2
( n
R

+ mR
α′ )

(87)

The T-duality is now obvious; (87) is invariant under the simultaneous exchanges:

n↔ m , R↔ R′ =
α′

R
(88)

T-duality for open strings Here again, the expansion (25) still holds, and the momentump is

quantized in the same way as the closed stringp = n
R

. With (24), we defineX̃µ(τ, σ) as:

X̃µ(τ, σ) = Xµ
L(τ, σ) −Xµ

R(τ, σ)

and find:

X̃µ(τ, σ) = x′µ0 +
√

2α′αµ0σ +
√

2α′αµ0
∑

n 6=0

αµn
n
e−ınτ sin(nσ) (89)

For (25), we had the boundary condition∂σXµ(τ, σ)
∣∣
σ=0,2π

= 0, which is Neumann. For (89), the

boundary condition is no longer Neumann, but Dirichlet since we have∂τ X̃µ(τ, σ)
∣∣
σ=0,2π

= 0. In

other words, a Neumann boundary condition forX is equivalent to a Dirichlet boundary condition for

X̃.
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When we compare:

X̃µ(τ, 2π) − X̃µ(τ, 0) =
√

2α′αµ0π = 2πα′p = 2πα′ n

R
(90)

and

Xµ(τ, 2π) −Xµ(τ, 0) = 2πRn (91)

we see that̃X andX, are equivalent underR ↔ R′ = α′

R
. Therefore, we can conclude that the T-

duality swaps the boundary conditions of a string. We have compactified only one dimension. So the

string ends are free to move in any of [(p+1)-1]-dimensions which are not T-dualized. They constitute

a p-dimensional hypersurface calledDp-brane.

Figure 5:Open strings ending on aDp-brane

2.5 A non-perturbative formulations of M-theory: the AdS/CFT correspon-

dance

We briefly present some aspects of the AdS/CFT duality. Before talking about the correspondance,

we introduce the notion of Conformal Field Theory (CFT) and Anti-de Sitter (AdS) space.

2.5.1 Conformal field theory

A conformal field theory is a field theory which is invariant under conformal transformations. A

conformal transformation is used to transform an infinity space into a compact space. One can see it

as a stereographic projection:

The physical manifold̃S is essentially the stereographic projection of the compactmanifoldS. It

conserves the metric up to a scale. We also call it conformal compactification. The metrics associated
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~SS i
Figure 6:The stereographic projection ofS3 in R3

to each manifolds are related by a conformal factorω(x) which to be determinated by the equation

ḡµν = ω2(x)gµν , whereḡµν is the metric corresponding to the flat space andg, the metric of the

compactified space. One should not make the confusion between a conformal compactification and

the Weyl transformation, where the factorω does not depend on the coordinates.

As an example, we calculate the conformal factor of the transformationR
3 → S

3.

The standard metric ofS3 is:

h = dψ2 + sin2 ψdθ2 + sin2 ψ sin2 θdϕ2 (92)

The metric ofR3 is h̄ = dx2 + dy2 + dz2 in Cartesian coordinates. In spherical coordinates it’s:

h̄ = dr2 + r2dθ2 + r2 sin2 θdϕ2 (93)

With 0 6 ψ 6 π, 0 6 ϕ 6 2π, 0 6 θ 6 π

We can see that to statisfied the conformal equation,r must be a function ofψ. Hence:r = r(ψ) and

dr = r′dψ

ω−2(r′2dψ2 + r2dθ2 + r2 sin2 θdϕ2) = dψ2 + sin2 ψdθ2 + sin2 ψ sin2 θdϕ2 (94)





ω−2r′2 = 1

ω−2r2 = sin2 ψ

(95)
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By solving this equation we get the value ofr = k tan ψ
2
, with k ∈ R. Thanks to the system, we can

haveω:

ω−2 =
sin2 ψ

r2

ω =
r

sinψ
=
k tan ψ

2

sinψ
=

k

1 + cosψ
(96)

An example of conformally invariant field theory is Yang-Mills theory. It is also invariant in its

quantum version if we have the conditions ofN = 4 in 4-dimensions.

2.5.2 Anti-de Sitter space

An AdS space is a maximally symmetric (same number of symmetries as ordinary Euclidean space)

spacetime geometry, with negative scalar curvature and isometrySO(2, p). It is the Lorentzian ana-

logue of p-dimensional hyperbolic space (Riemannian manifold with constant sectional curvature -1).

On the(p+ 3)-dimensional space with the metric:

ds2 = −dX2
0 − dX2

p+2 +

p+1∑

i=1

X2
i (97)

the(p+ 2)-dimensionalAdSp+2 can be represented by the hyperboloid:

R2 = X2
0 +X2

p+2 −
p+1∑

i=1

X2
i (98)

With the coordinate transformation:

X0 = R cosh ρ cos τ

Xi = R sinh ρΩi

Xp+2 = R cosh ρ sin τ (99)
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ρ= ρ=8 8

τ

Figure 7:AdSp+2 space as a hyperboloid inR2,p+1, with closed timelike curves along theτ direction.

whereρ > 0 and0 6 τ 6 2π, the metric onAdSp+2 is:

ds2 = R2(− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2) (100)

We see that whenρ = 0. A serie expansion leads to a metric with the topology ofS1 × Rp+1:

ds2 = R2(−dτ 2 + dρ2 + ρ2dΩ2)

We introduce another coordinateθ: tan θ = sinh ρ, with 0 6 θ 6 π
2
, and transform the metric to get:

ds2 =
R2

cos2 θ
(−dτ 2 + dθ2 + sin2 θdΩ2) (101)

We see that the metric is conformally related to the Einsteinstatic universe. Therefore,AdSp+2 can be

conformally mapped into one-half (sinceθ 6 π
2
) of the whole Einstein static universe. We need to set

the boundary condition atθ = π
2

to make the Cauchy problem (initial data value problem) wellposed.

In general, if a spacetime can be conformally compactified into a region which has the same boundary

structure as one-half Einstein static universe (has a metric of the form like (101)), the spacetime is

called asymptotically AdS.

2.5.3 The correspondence

The AdS/CFT (also called Maldacena) correspondance [36] [60] states that there is a complete equiv-

alence between conformally invariant quantum field theories and superstrings theory in a special
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spacetime geometry. A collection of a large numberN of coincidentp-branes produces a spacetime

geometry with a horizon (like a black hole horizon). Near thehorizon, this geometry can be approx-

imated by a product of an anti-de Sitter space and a compact manifold (like a sphere). The main

example of this correspondence is obtained by consideringN coincidentD3-branes in the type IIB

superstring theory. Then, we have the equivalence between:

• N = 4 SYM theory in 4-dimensions, with gauge groupSU(N) and coupling constantgYM , which

is a gauge theory known to be conformally invariant in3 + 1 dimensions.

• The type IIB superstring theory in 10 dimensions, onAdS5 ×S5, where bothAdS5 andS5 have the

same radius and where the string coupling isgs = g2
YM .

One of the feature of the duality is the identification of the isometry group of AdS to the conformal

symmetry group of the flat space.

(a) (b) (c)

Figure 8:From left: Single D-brane; well separated D-branes; coincident D-branes

The AdS/CFT conjecture is that type IIB, in theAdS5 × S5 background is dual toN = 4,D = 3 + 1

SYM with gauge groupSU(N). I present here how the conjecture arises:

The brane action is defined on the3 + 1 dimensional brane worldvolume of Type IIB superstring

theory, and it contains theN = 4 SYM Lagrangian, which is known to be conformally invariant.For

aD3-brane, the action is:

ds2 = f−1/2(−dt2 + dx2
1 + dx2

2 + dx2
3) + f 1/2(dr2 + r2dΩ2

5)

f = 1 +
R4

r4
(102)

with R4 = 4πgsα
′2N .
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In the near horizon region wherer ≪ R, f can be aproximate byf = R4

r4
, and the metric becomes:

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
R2

r2
dr2 +R2dΩ2

5 (103)

Which is exactly the geometry ofAdS5 × S5.

We have just presented here the general idea of AdS/CFT and how the correspondence arose in the

first place. It is a very wide subject and it exists much more correspondences in addition to the

one presented here. Although it has been proved to be very useful, is not the only non-perturbative

formulation of M-theory. We now turn to the main subject; theM(atrix) models, an alternative to

AdS/CFT. Although they don’t have the same properties, we will see at the end of the chapter what

are the connections between them.

3 M(atrix) models

We said earlier that M-theory doesn’t contain strings but M2- and M5-branes, which make the theory

very complicated. However, one great conjecture states that M-theory reduces to a simple matrix

model, which is a supersymmetric quantum theory with matrixdegrees of freedom. In the case of

the BFFS model, these degrees of freedom turn out to beD0-branes. We review the different models

BFSS, IKKT, and NBI, how they are related to each other, how noncommutative geometry arises from

these relations and what are the connections to AdS/CFT.

3.1 The BFSS model

This model which has been the first to be developed by Banks, Fischler, Shenker and Susskind [5], is

based on the idea that M-theory can be described in the infinite momentum frame (IMF) by a theory

where the only dynamical degree of freedom areD0-branes. The key idea is to interpret the9 space

dimensions (theX i fields) of theD0-brane matrix model as the transverse dimensions of an eleven

dimensional theory in the IMF. We start by introducing the IMF and the D-brane effective action.

Then, the appearance ofD0-branes as dynamical degree of freedom is discussed.
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3.1.1 The Infinite Momentum Frame (IMF)

This frame was introduced by Weinberg, to simplify problemsin perturbative quantum field theory.

It is a frame which is highly boosted in the momentumP direction until it becomes much larger than

any other momenta in the problem.

In M-theory, we separate the components of the eleven dimensional coordinates in three parts:

xµ = (t, xi, x11) (104)

wherei = 1, ..., 9. This coordinates are called the transverse coordinates and sometimes written as

x⊥. We compactify the longitudinal coordinatex11 on a circle:

x11 = x11 + 2πR (105)

Since in the IMF we boost along longitudinal momentump11, the great advantage is that only positive

p11 matter whereas the zero or negative ones do not appear. However, a boost is not a symmetry of

Lorentz invariant theories which have been compactified in the direction of the boost, so the Lorentz

invariance in M(atrix) theory is no longer explicit, if still present. We have the same condition (86) as

before, due to the compactification:

p11 =
N

R
(106)

with N an integer stricly positive. In order to recover the 11-dimensional M-theory we need to un-

compactify, with the conditions:

R → ∞ and
N

R
→ ∞ (107)

The other great advantage of working in the IMF is that it has atransverse Galilean symmetry, which

leads to a nonrelativistic form of the equations. For example, the Galilean transformation for trans-

verse momenta is

pi → pi + p11vi (108)

and the energy of a massless particle boosted in the longitudinal directionx11 is E =
p2
⊥

2p11
. We see

that the longitudinal momentump11 plays the role of the mass in the IMF Galilean theory.
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3.1.2 M-theory, Type IIA and the conjecture

By definition, 10-dimensional Type IIA is equivalent to 11-dimensional M-theory with a dimension

compactified on a circle with the radius of compactificationR → 0. Given this relationship, one can

relates objects in both theories to each other. The correspondances include the following:

1. The string coupling constant is related to the radius of compactification by:

R = g2/3lp = gls (109)

2. The photon of IIA in the R-R sector is the photon called Kaluza-Klein photongµ11 which arises

from the compactification in eleven dimensional supergravity.

3. The only objects in the theory which carry R-R photon charge are theD0-branes. They are point

particles (in 10D) which carry longitudinal momentumpD0
11 = 1

R
.

Consequently,D0-branes are good candidates to be the dynamical degrees of freedom (parton) of

M-theory in the IMF. Since the dynamics of D-branes is governed the reduction of SYM theory to

p + 1 dimensions (or by the Dirac-Born-Infield action in a purely bosonic theory), a collection ofN

D0-branes is described by10-dimensionalU(N) SYM reduced to0 + 1 dimensions, i.e. byN × N

hermitian matrix quantum mechanics. The conjecture follows:

M-theory in the infinite momentum frame (IMF) is exactly equivalent to theN → ∞ limit of D0-

branes supersymmetric matrix quantum mechanics, described by the 10-dimensionalU(N) SYMN =

1, reduced to 0+1 dimension.

3.1.3 D-Brane action from dimensional reduction of10D Super Yang-Mills

It was shown by Leigh that the equation of motion for aD-brane in a purely bosonic theory are

precisely those of the Dirac-Born-Infield action. The electrodynamics on a fluctuatingDp-brane, in

an arbitrary background, is described by the action:

SDBI = −Tp
gs

∫
dp+1ξ

√
−det(gαβ +Bαβ + 2πα′Fαβ) (110)

wheregαβ andBαβ are the pull-backs of the spacetime supergravity fields to theDp-brane world-

volume. If we make some assumptions, this action can be simplified. We considerBαβ = 0, the
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spacetime background flat so thatgµν = ηµν and the geometry of the brane flat as well. The pull-back

of the metric on theDp-brane is now:

gαβ ≃ ηαβ + ∂αX
a∂βXa (111)

and the DBI action (110) becomes:

SDBI = −Tp(2πα
′)2

4gs

∫
dp+1ξ

[
FαβF

αβ +
2

(2πα′)2
∂αX

a∂βXa −
Tp
gs

+ o(F 4)
]

(112)

where(α, β) = 0, ..., p anda = (p + 1), ..., (D − 1).

This is the action for aU(1) gauge theory in(p + 1) dimensions with(9 − p) scalar fieldsXa. It is

actually the action that would result from the dimensional reduction to(p+ 1) dimensions of abelian

Yang-Mills theory in 10 dimensions with action:

SYM = − 1

4g2
YM

∫
d10xFµνF

µν (113)

if we identify the coupling constants:

g2
YM =

gs
Tp(2πα′)2

(114)

This lead us a generalization to a non-abelian supersymmetric case:

The low energy dynamics ofN parallel coincidentDp-branes in flat space is described in static gauge

by the dimensional reduction to(p+1)-dimensions ofN = 1 supersymmetric Yang-Mills theory with

gauge groupU(N) in ten dimensions, with action:

SSYM =
1

4g2
YM

∫
d10x Tr

[
− FµνF

µν + 2ı ψγµDµψ
]

(115)

where the covariant derivative isDµψ = ∂µψ − ı[Aµ, ψ], ψ is a Majorana-Weyl spinor ofSO(1, 9)

in 10 dimensions, and the field strength isFµν = ∂µAν − ∂νAµ − ı[Aµ, Aν ]. This action is invariant

under SUSY transformations:

δǫAµ =
ı

2
ǭΓµψ (116)
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δǫψ = −1

2
Fµν [Γ

µ,Γν ]ǫ (117)

Now we can construct a SYM theory inp + 1 dimensions, which is theDp-brane action, by dimen-

sional reduction of the10-dimensional SYM. This is done by assuming that all the fieldsAµ are

independent of coordinatesp+1, ..., 9. Then, the10D fieldAµ decomposes into(p+1)-dimensional

U(N) gauge fieldAm with m = 0, ..., p, and and9 − p scalar fieldsX i, with transverse indices

i = p+ 1, ..., 9. If we consider the bosonic part of (115), we get that the strength field tensor decom-

poses as:

F 2
µν = F 2

mn + F 2
mj + F 2

ij (118)

On the brane, there is no dependance on theX i, so the derivatives in thei direction vanish:

Fmn = ∂mAn − ∂nAm + ı[Am, An] (119)

Fmj = ∂mXj + ı[Am, Xj] ≡ DmXj (120)

Fij = ı[Xi, Xj ] (121)

We get:

SDp = −Tpgs(2πα
′)2

4

∫
dp+1ξ Tr

[
FmnF

mn + 2DmX
iDmXi + [Xi, Xj]

2
]

+ fermions (122)

3.1.4 D0-Brane mechanics

From the previous subsection, we know that the dynamics ofN D0-branes in the low energy limit

in flat 10-dimensional spacetime is the dimensional reduction ofN = 1 SYM in 10 dimensions to

0 + 1 dimension. The10 dimensional gauge fieldAµ splits into9 transverse scalarsXm, and one

dimensional gauge fieldA0. We get a supersymmetric matrix quantum mechanics forX i’s andθ’s in

the adjoint representation ofU(N) with the Lagrangian:

LD0 =
1

2gs
√
α′
Tr

[
D0X

iD0X
i + 2θ⊤D0θ −

1

2
[X i, Xj]2 − 2θ⊤γi[θ,X

i]
]

(123)

where we have used the following:
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ψ =



θ

0


, is a Majorana-Weyl spinor andθ is a real 16 components spinor. The gamma matricesΓµ

are real symmetric16 × 16 of SO(1, 9) given by:

Γ0 =




0 −1

1 0


 Γi =




0 γi

γi 0




From (119), (120) and (121), we had:

Fij = ı[Xi, Xj] F0j = ∂0Xj + ı[A0, Xj] ≡ D0Xj (124)

Djθ = ı[Xi, θ] D0θ = ∂0θ + ı[A0, θ] (125)

Changing the units to those wherels ≡
√
α′ = 1 andlp = 1, and introducing:

Y i =
X i

g
1/3
s

(126)

which is more convenient for the 11-dimensional interpretation, (123) becomes:

LD0 = Tr
( 1

2R11
DtY

iDtY
i − 1

4
R11[Y

i, Y j]2 − θ⊤Dtθ −R11θ
⊤γi[θ, Y

i]
)

(127)

whereDt = ∂t + ıA0. One can simplify (123) by choosing the gaugeA0 = 0. The Hamiltonian,

written in11 dimensions, associated to (128) is:

HD0 = R11 Tr
[1

2
ΠiΠi +

1

4
[Y i, Y j ]2 + θ⊤γi[θ, Y

i]
]

(128)

whereΠ is the canonical conjugate toY , and half of theθ’s are canonical conjugate momenta of the

other half.
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3.1.5 M(atrix) theory objects: supergravitons and membranes

• Supergravitons The simplest states of the Hamiltonian is when the matricesY i are diagonal

with only one nonvanishing component and allθ’s equal to zero. Then we get:

E =
R

2
p2
i =

p2
i

2p11

(129)

wherepi is the energy eigenvalue ofΠi. This corresponds to a singleD0-brane. Each of these states

are accompanied by the fermionic superpartners and they form a representation of the algebra of16

θ’s with 216/2 = 28 = 256 components. This is exactly the number of states of the supergraviton in

11D supergravity arising from the graviton, the 3-form and the gravitino (256=44+84+128).

A more general eigenstate has a form of the diagonalN ×N matrix:

Y i =




Y i
(1)

. . .

Y i
(N)




(130)

where the diagonal matrix elements are the coordinates of theD0-branes. It describes a state ofN

supergravitons, where the matricesY k areNk × Nk matrices and the longitudinal momentum of the

kth graviton isp = Nk/R.

• Membranes Since M-theory is the strong coupling of type IIA, it must have membranes in

its spectrum. We use two different ways to show of membranes are obtained from the M(atrix) model

action (128).

First, we see how we can get the supermembrane action from theD0-brane action. It was Townsend

who first pointed out the connection between these two and said that a membrane should be considered

as a collection ofD0-branes. To make this connection, we use the following:

We begin with a pair of unitary operatorU , V with the relations:

UV = e
2ıπ
N V U

UN = 1, V N = 1 (131)
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U andV may be written as exponential of canonical variablesp andq:

U = eıp, V = eıq (132)

satisfying the commutation relation:

[q, p] =
2ıπ

N
(133)

They can be represented on aN dimensional Hilbert space, where they form a basis such thatany

matrixZ can be written as:

Z =
N∑

n,m=1

ZnmU
mV m (134)

One can interpret these coordinates in terms of the quantum mechanics of particles, with coordinates

p q, on a torus. Therefore, due to the commutation relation ofp andq, the space is sometimes called

”noncommuting torus”. In the limit of largeN , the noncommuting torus behaves like a phase space,

and we have the correspondance between the two spaces:

∗ The trace of an operator is replaced byN times the integral over the torus:

TrA→ N

∫
dpdqA(p, q) (135)

∗ The commutator of two operators is replaced by1/N times the Poisson brackets:

[A,B] → 1

N
{A,B} =

1

N
(∂qA∂pB − ∂qB∂pA) (136)

If one promotesY i andθ of (128) as operators depending onp andq and operates the changes, one

gets the Lagrangian:

L =
p11

2

∫
dpdq(Ẏ i(p, q))2 − 1

p11

∫
dpdq(∂qY

i∂pY
j − ∂qY

j∂pY
i)2 + fermions (137)

and the Hamiltonian:

H =
1

2p11

∫
dpdqΠ2

i (p, q) +
1

p11

∫
dpdq(∂qY

i∂pY
j − ∂qY

j∂pY
i)2 + fermions (138)
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which exactly the Hamiltonian for the11D supermembrane in the IMF [58].

Another way to see the emergence of membrane is from the classical equations of motion:

[Y µ, [Y µ, Y ν ]] = 0 , [Xµ, γµθα] = 0 (139)

An infinite membrane stretched out in the8, 9 plane is given by:

Y 8 = R8

√
Np , Y 9 = R9

√
Nq (140)

and all other Y’s andθ’s are equal to zero.p and q are infinite dimensional matrices (N → ∞)

satisfying (133), andR8 andR9 are the compactification radii. Since the commutator ofY 8 andY 9

is equal to a complex number, the equations (139) are satisfied.

One can compute the tension of the brane in both M(atrix) and M-theory, to check whether they

match, which could be a first step in the proof of the conjecture. The calculation done in [5], shows

that the tensions actually agree.

3.1.6 The symmetries

The Hamiltonian (128) has a Galilean symmetry, which one cansee by defining the center of mass of

the system by:

Y (c.m.) =
1

N
TrY (141)

A translation is defined byY → Y + cI, wherec is a constant (adding a multiple of the identity

to Y ).This has no effect on the commutator because the identityI commutes with allY , and has no

effect on the equations of motion. Similarly, the Hamiltonian has a rotation invariance. The center of

mass momentum is defined by:

P (c.m.) = TrΠ =
N

R
Ẏ (c.m.) (142)
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With the expression ofp11 = N
R

, the momentum reads2:

P (c.m.) = p11Ẏ (c.m.) (143)

A Galilean boost is defined bẏY → Ẏ + cI, wherec is a constant (adding a multiple of the identity

to Ẏ ). This once again has no effect on the equation of motion. Hence, the whole Hamiltonian has a

full Galilean invariance.

The Lorentz invariance is broken because a boost is not a symmetry of the IMF. In M(atrix) theory,

it has not been proved yet, and there are actually very littleevidence of it. However, in [6] the model

has been used to describe the properties of the Schwarzschild black holes in7 + 1 dimensions, by

describing it as a Boltzmann gas made ofD0-branes. Compactified onT 3 and with the assumption

N ∼ S, it properly describes the energy-entropy relation and theHawking temperature. Their results

actually rely on the Lorentz invariance of Matrix model, which is investigated further in details in

[23]. They consider the Hawking radiation in Matrix model for the caseN ≫ S, and get the correct

evaporation rate of the black hole. Their result about Hawking radiation is independent of the boost

parameter, and thus, gives support of the Lorentz invariance of the Matrix model.

Also, in [3], they present a formulation of a matrix model which manifestly possesses the general

coordinate invariance when they identify the large N matrices with differential operators. In order

to build a matrix model which has the local Lorentz invariance, they investigate how theSO(1, 9)

Lorentz symmetry and theU(N) gauge symmetry are mixed together. They find that the bosonicpart

of the model reproduces the Einstein gravity in the classical low-energy limit. Finally, they give a

proposal to build a matrix model which hasN = 2 SUSY and reduces to the type IIB supergravity in

the classical low-energy limit.

3.2 The IKKT model

We saw that BFSS provides a nonperturbative description of M-theory. Another model was introdced

in [26] to describe type IIB. We show how this model has been constructed.

2Note that the expression of P(c.m.) is of the formp = mv, sincep11 plays the role of the mass. The Galilean form of
this relation is due to the IMF formulation.
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3.2.1 The action

As we said before, a consequence of the opposite chiralitiesin the theories is the difference ofD-

branes we find. In type IIA we haveDp-branes withp even and in type IIB we haveDp-branes with

p odd. The analogue of theD0-brane is theD-instanton (p = −1). Since the Lagrangian in BFSS is

expressed in terms ofD0-branes, one can expect to be able to formulate the fundamental Lagrangian

of IKKT in terms ofD-instanton i.e by10-dimensional SYM reduced to a point.

The starting point is obviously the Nambu-Goto form of the Green-Schwartz action of type IIB su-

perstring theory:

SGS = −T
∫
d2σ

[√
−(ǫab∂aX̃µ∂bX̃ν)2 + 2ıǫab∂aX̃

µΨγµ∂bΨ
]

(144)

ψ is a Majorana spinor with 16 components andµ = 0, ..., 9. This action can be written [41] in the so

called Schild form:

SSchild =

∫
d2σ

[
α
( 1

4
√
g
{X̃µ, X̃ν}2 − ı

2
Ψγµ{X̃µ,Ψ}

)
+ β

√
g
]

(145)

where{X̃µ, X̃ν} are the poisson brackets defined by:

{X̃µ, X̃ν} = ǫab∂aX̃
µ∂bX̃

ν (146)

One can show that this action is classically equivalent to the Green-Schwartz action by calculating

the equation of motion for
√
g. By solving the Euler-Lagrange equation we have:

− α

4(
√
g)2

(ǫab∂aX̃
µ∂bX̃

ν)2 + β = 0

and by isolating
√
g

√
g =

1

2

√
α

β

√
(ǫab∂aX̃µ∂bX̃ν)2 (147)

we recover the GS action if we plug this in the Schild action. The IKKT model is obtained from the

Schild action (145) by replacing the bosonicX̃µ(σ
0, σ1) and fermionicΨα(σ

0, σ1) fields by hermitian

N dimensional matrices. We denoteXab
µ the bosonic matrices andψabα the fermionic matrices. In the
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limit where N is large, we have the correspondance:

ı{., .} ⇒ [., .] (148)

and ∫
d2σ

√
g ⇒ Tr (149)

Hence, the action of the IKKT model is:

S = α Tr
[
− 1

4
[Xµ, Xν ]2 − 1

2
ψ
α
γµαβ

[
Xµ, ψ

β
] ]

+ βN (150)

where the dynamical variable isN (the size of the matrices), and is the analogue of
√
g in the Schild

action (145). It means that the size of the matrix is not fixed.The bosonic part of this action can be

obtained from a matrix model developed in the 80’s by Eguchi and Kawai3 [21]. The IKKT model

can also be obtained by reducing SYM in 10 dimensions to a point.

3.2.2 Symmetries

Since IKKT model is constructed from10 dimensional SYM, it has many inherent symmetries coming

from SYM theory, and is invariant under:

◦ Shifts:

Xµ → Xµ + aµI (151)

whereaµ is a c-number

◦ SO(10) transformations (rotations):

Xµ → Λµ
νXν (152)

whereΛ is a generator of the groupSO(10). We will see later how this property leads us to the BFSS

model.

◦ SU(N) gauge symmetry:

Xµ → U−1XµU (153)

3The action of the Eguchi-Kawai model isS = − 1

4

∑
µ,ν

Tr(UµUνU−1

µ
U−1

ν
− I). By settingUµ = exp(aXµ) and

taking the limita → 0, one obtains the bosonic part of IKKT.
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whereU is a generator of the gauge groupSU(N).

◦ Supersymmetry transformations:

δQ1Xµ = ǭγµψ , δQ2Xµ = 0 (154)

δQ1ψ = [Xµ, Xν ]γ
µνǫ , δQ2ψ = η (155)

whereǫ andη are the parameters of the SUSY transformations.

3.2.3 Classical solutions

The equation of motion for the Schild action whenΨ = 0 are:

{X̃µ, {X̃µ, X̃ν}} = 0 , {X̃µ, γµΨα} = 0 (156)

The equation of motion for the IKKT model can be obtained either by operating the previous changes,

or by solving the Euler-Lagrange equation. In both case we find:

[Xµ, [Xµ, Xν ]] = 0 , [Xµ, γµψα] = 0 (157)

To solve the equation of motion, one can see that (157) are similar to (139) for the BFSS model. Then,

they have solutions of the same form (140), associated to static D-strings along the1st axis.

Xµ =
( T

2π
q,
L

2π
p, 0, ...., 0

)
, ψα = 0 (158)

wherep andq areN × N matrices statisfying the commutation relation (133). Thissolution is for

one string. The case of two parallel staticD-strings separated by a distanceb along the second axis is

obtained by consideringXµ’s as matrices with two diagonal blocks:

X0 =




T
2π
q 0

0 T
2π
q


 , X1 =




L
2π
p 0

0 L
2π
p


 X2 =




b
2

0

0 − b
2



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The generalization for oneDp-brane withp > 1 is:

Xµ =
( T

2π
q1,

L

2π
p1, ....,

T

2π
q p+1

2
,
L

2π
p p+1

2
, 0, ...., 0

)
, ψα = 0 (159)

where there arep+1
2

pairs of operatorp, q. The solution for multi-brane can be obtained similarly as

for two staticD-strings.

3.3 The NBI model

This model gives a description of Type IIB superstrings, just like the IKKT model. The necessity of

introducing another model describing the same things comesfrom the calculation of the interaction

betweenDp-branes using solution (159). The results reproduce those from superstring calculations

only at large distances. The modification of the IKKT model [22] is the introduction of a new dynam-

ical variable replacingN : an hermitian matrixY ab with positive eigenvalues, which is the analogue

of
√
g is the Schild action. The integration over this new variableY ab yields to the non-abelian Born-

Infield action (NBI) which reproduces the Nambu-Goto version of the Green-Schwarz action of IIB

(144).

3.3.1 The action

In the IKKT model, the size ofY ab is set to beN and only the element of the matrix fluctuate. From

the Schild action (145):

Scl = −α Tr
[1

4
Y −1[Xµ, Xν]

2 +
1

2
ψγµ[Xµ, ψ]

]
+ β Tr Y (160)

The equation of motion forY ab:

α

4

(
Y −1[Xµ, Xν ]

2Y −1
)

ab
+ β δab = 0 (161)

yields to the solution of (160):

Y =
1

2

√
α

β

√
−[Xµ, Xν ]2 (162)

We see that (162) is very similar to (147). This is how we see thatY is the equivalent to
√
g. Putting
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(162) into (160) gives the non-abelian Born-Infield (NBI) action:

SclNBI =
√
αβ Tr

[√
−[Xµ, Xν ]2 −

α

2
ψγµ[Xµ, ψ]

]
(163)

The NBI matrix model action is defined by the action:

SNBI = −α Tr
[1

4
Y −1[Xµ, Xν]

2 +
1

2
ψγµ[Xµ, ψ]

]
+ V (Y ) (164)

whereY is a hermitianN ×N matrix with positive eigenvalues, and the potentialV is:

V (Y ) = β Tr Y + (N − 1

2
) Tr ln(Y )

The action is invariant under SUSY transformations:

δǫψ =
ı

4

{
Y −1, [Xµ, Xν ]

}
γµνǫ

δǫXµ = ıǫγµψ (165)

One can prove that this model reproduces the Nambu-Goto version of the Green-Schwarz action of

type IIB superstrings (144) [35, 22].

3.3.2 D-brane solutions

The equations of motion ofXµ andψα of the action (163) are:

[
Xµ,

{
Y −1, [Xµ, Xν]

}]
= 0 , [Xµ, γ

µψα] = 0 (166)

The solutions of the NBI matrix model are of the same form (159) as the IKKT model.
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3.4 Relation between the models

The relation between the IKKT and the NBI models has been discussed in the previous subsection

is quite straightforward. We now turn to the relation to BFSSand IKKT4. Since BFSS describesM-

theory, and IKKT describes type IIB, one might ask whether the two models are related, just as the two

superstring theories are. The relation actually is that when we compactify on a circle the Euclidean

version of IKKT model, it gives the BFFS model at finite temperature. The compactification of matrix

models has been studied in the first place by Connes, Douglas and Schwarz [15].

3.4.1 Compactification on a circle

When we compactify on a circle in theX i direction, one should have the gauge equivalence:

UX iU−1 = X i + 2πRiI ; UXjU−1 = Xj ; UψαU−1 = ψα (167)

whereRi is the radius of compactification andU is the unitary matrix of the gauge group transfor-

mation. These equation can’t be satisfied unlessX i andψα aren’t finite matrices but operators in an

infinite-dimensional Hilbert spaceH. The solutions are:

X i = Ai(σ) + 2ıπRi
∂

∂σ
; Xj = Aj(σ) ; ψα = Ψα(σ) (168)

(Uf)(σ) = eıσf(σ) (169)

where0 6 σ 6 2π is the coordinate compactified onS1 andAi’s andΨ’s are hermitian operators in

H.

The reasons why we consider an Euclidean version of the modelare:

∗ The BFSS model is obtained by a reduction of the 10-dimensional SYM to 0 + 1 dimension. This

breaks the Lorentz invarianceSO(1, 9), and the theory is only invariant under the little groupSO(9),

which corresponds to spatial rotations.

∗ The IKKT model is obtained by a reduction of the 10-dimensional SYM to 0 + 0 dimension (a

point), and the theory is invariant underSO(1, 9).

4A numerical approach, using the Monte Carlo simulation, hasbeen used in [31] to find a relation between the two
models, by identifying them to two other models which are equivalent: EK (Eguchi-Kawai) and cQEK (continuum
quenched EK) models [25].
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Taking the Euclidean version of IKKT allow us to use theR
10 metric and thus, have aSO(10) sym-

metry group. This way, one can compactify in any directionX i (with i=0, ..., 9) and end up the same

symmetry group as BFSS,SO(9). From the IKKT action (150), one can insert the solutions (168)

and (169) with the timeX0 compactified onS1:

S = C

∫
dσTr

[
2

9∑

i=1

(∇0A
i)2 +

9∑

i,j=1

[Ai, Aj ]2 + 2Ψασ0
αβ∇0Ψ

β + 2
9∑

i=1

Ψασiαβ [A
i,Ψβ]

]
(170)

C is a constant, and(∇0)f(σ) = ıR0
∂
∂σ

+[A0, f ](σ). This is an action of a matrix quantum mechanics

with compact Euclidean time direction. One can see that it’svery similar to the BFSS action. In fact,

it is equivalent to BFSS quantum mechanics at finite temperature.

This can be easily generalized to the compactifiation of morethan one dimension on a torus. This is

how noncommutative geometry arises.

3.4.2 Compactification on a torusT 2

The torus appears when we compactify more than one dimension. In a general case, the correspon-

dence between a torus and spheres isT d ≃ (S1)d. If one compactifiesX1 andX2, the new set of

equations follows from (176):

U1X
1U−1

1 = X1 + 2πR1I ; U1X
iU−1

1 = X i ; U1ψ
αU−1

1 = ψα (171)

U2X
2U−1

2 = X2 + 2πR2I ; U2X
iU−1

2 = X i ; U2ψ
αU−1

2 = ψα (172)

whereRi’s are the radii of compactification. From these equations, it follows thatU1U2U
−1
1 U−1

2

commutes withX i’s andψα’s. Then, it can be written as a scalar operator:

U1U2 = λU2U1 (173)
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whereλ = e2ıπθ is a complex constant. Ifλ = 1, U1 andU2 commute, and then we have about a

commutative torus. The solutions of (171) and (172) follow from (169):

X1 = A1(σ1, σ2) + 2ıπR1
∂

∂σ1
; X2 = A2(σ1, σ2) + 2ıπR2

∂

∂σ2
; X i = Ai(σ1, σ2) (174)

ψα = Ψα(σ1, σ2) ; (Ukf)(σ1, σ2) = eıσ
k

f(σ1, σ2) (175)

with i 6= 1, 2, k = 1, 2. The coordinates compactified on the torusT 2 take values between0 and2π.

3.4.3 Compactification on a noncommutative torusT dθ

If one wants to compactifyd dimensions in aD-dimensional Hilbert spaceH, we will get a torusT d

with the equations:

UjX
kU−1

j = Xk + 2πRkIδ
k
j ; UjX

kU−1
l = X l ; Ujψ

αU−1
j = ψα (176)

wherej, k = 1, ..., d andl = D− d, ..., D. The solutions are a generalization of (174) and (175), and

the following relation still holds:

UjUk = e2ıπθ
jk

UkUj (177)

Like in the previous section, the parameter in the relation can be set to be equal to1, so we get a

commutative torus. However, if it is different from1, the torus will be noncommutative, caracterized

by the parameterθ, which is a constantd × d antisymmetric matrix. One can restrict the action of

either BFSS or IKKT to be solution of (176). This leads to SYM on a noncommutative torus [34].

3.5 Relation to AdS/CFT

In AdS/CFT we derived field theories from string theories by considering their largeN limit. It has

been shown in [36] that they contain in their Hilbert space excitations describing supergravity, and

conjectured that the field theories are dual to the full quantum string theory on various spacetime.

This duality can be used to give a definition of M-theory on flatspacetime as the largeN limit of

the field theories. Since the field theories can be defined non-perturbatively, this definition of M-

theory is non-perturbative. The most obvious difference with M(atrix) theory is with the signification
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of N . In AdS/CFT, theN is related to the curvature and the size of the space where thetheory is

defined, whereas, in M(atrix) theory, it is interpreted as the momentum along a compact direction.

However, in both cases, in the largeN limit, we get flat and non-compact spaces. One of the crucial

difference is that in AdS/CFT, it is much more clear how to recover supergravity in the largeN limit.

In M(atrix) theory, it hasn’t been established yet whether the model is consistent with 11-dimensional

supergravity. Since the Yang-Mills matrix model is defined in only 10 dimensions, it is not evident

that it is the appropriate theory to describe 11-dimensional supergravity. However, 10-dimensional

IIA supergravity is the dimensional reduction of 11-dimensional supergravity, so one can investigate

if we can get IIA supergravity from Matrix string theory (see3.7), which is itself obtained from

M(atrix) theory. See [9] and [43] for an extension of AdS/CFTcorrespondence to the Matrix model

of D-particles in the largeN limit (generalized AdS/CFT correspondence). This could lead to a map

between the two theories and enable us to take advantage of both approaches by using new tools from

one description to be used in the other.

3.6 A better BFSS model

The BFSS model presented at the beginning of this chapter is supposed to described all the physics

contained in M-theory. However, there are some restrictions in it. First, it has to be formulated in the

IMF frame. Also, the dimensions of the matrices have to be taken to infinity. Another formulation

proposed by Susskind [50] allows to get rid of the infinite value ofN , if, instead of the IMF, one works

in the DLCQ (Discrete Light-Cone Quantization) framework.The constraints on SYM implied by the

dualities of M-theory, which were supposed to be true only for largeN are in fact also true forN finite

as long as we work in the context of DLCQ. The IMF and DLCQ are considered to be similar when

N → ∞, but whenN is finite, they are different. In the DLCQ framework, the coordinate which is

compactified is not the space-like coordinatex11, but the light-like coordinatex− = 1√
2
(t−x11). Then,

the quantized momentum isp− = N
R

. The new conjecture is that M-theory in the DLCQ is exactly

described byU(N) SYM, with N finite. To check the conjecture, one can work on perturbative or

non-perturbatives evidences [11].

58



������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

������������������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������������������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

x

t xx+ -

Figure 9:Change of variables to the light cone frame for the position and time coordinates.
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Figure 10:Change of variables to the light cone frame for the momentum and energy coordinates.

3.7 M(atrix) string theory

An interesting feature of M(atrix) theory is that with a few modifications, it can be used to give a

nonperturbative definition of string theory. If we considerM(atrix) theory compactified in dimension

9 on a circle, we have a SYM theory in1 + 1 dimensions. In the BFSS model, this corresponds to

M-theory compactified onT 2.

From the Hamiltonian for the BFSS model, we are going to derive the Hamiltonian for the matrix

string theory. We start from (128), which I recall for convenience:

HD0 = R11 Tr
[1

2
ΠiΠi +

1

4
[Y i, Y j ]2 + θ⊤γi[θ, Y

i]
]

(178)

wherei = 1, ..., 9. Type IIA is obtained from M-theory via the compactificationof the 11th dimension

(conventionally) on a circleS1. Since the BFSS model describes M-theory, we need to compactify

one transverse dimension of the BFSS Hamiltonian to be able to find a M(atrix) model for Type IIA.

We compactify the9th dimension on a circle of radiusR9. We apply aT -duality transformation

along theS1 directions, so we can identifyY 9 with the covariant derivativeR9Dσ, whereσ is the

compactified coordinate running from0 to2π. The conjugate momentum is identified with the electric
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fieldE = R9Π9. This leads to the new Hamiltonian:

H =
R11

2π

∫
dσ

R9
Tr

[1

2
ΠiΠi +

R2
9

4
(DY i)2 +R9θ

⊤Dθ+
1

2R2
9

E2 +
1

4
[Y i, Y j ]2 + θ⊤γi[θ, Y

i]
]

(179)

wherei = 1, ..., 8. If we rescale the coordiantes asY i → R
−1/2
9 Y i, we get:

H =
R11

2π

∫
dσ Tr

[1

2
ΠiΠi +

1

4
(DY i)2 + θ⊤Dθ +

1

R3
9

(E2 + [Y i, Y j ]2) +
1

R
3/2
9

θ⊤γi[θ, Y
i]
]

(180)

Once again, Type IIA is obtained from M-theory from compactifying the 11th dimension, which

relates the string coupling constantgs to the radiusR11 by gs = (R11/lp)
3/2. Since in the M(atrix)

model, the11th dimension is already compactified, we needed to compactify the 9th one. So, to

arrive to a matrix string point of view, we need to interchange the role of the9th and 11th direction,

by defining the string scalels =
√
α′ and string coupling constantgs in terms ofR9 and the 11-

dimensional Planck lengthlp by:

R9 = gsls, lp = g1/3
s ls (181)

or gs = (R9/lp)
3/2. From this we obtain the final result in string units wherels = 1:

H =
R11

2π

∫
dσ Tr

[1

2
ΠiΠi +

1

4
(DY i)2 + θ⊤Dθ +

1

g2
s

(E2 + [Y i, Y j ]2) +
1

gs
θ⊤γi[θ, Y

i]
]

(182)

The8 scalar fieldsY i’s and the8 fermionic fieldsθ areN×N hermitian matrices. The fields transform

under the representation of the symmetry groupSO(8) of transversal rotations. This Hamiltonian is

of the form of the Green-Schwarz light-front string Hamiltonian of Type IIA, except that the fields are

represented by non-commuting matrices. The eigenvalues ofmatrix coordinateY i are the coordinates

of the fundamental Type IIA string, since in the original BFSS model, they represented the coordinates

of theD0-branes.T -duality transformation along theS1 directions, turned theD0-brane, from the

BFSS model, into Type IIAD-strings.
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4 Noncommutative geometry

The idea of noncommutative geometry is the replacement of the commutative algebra of function

on a manifold by a noncommutative deformation of it. To make this construction, we start from a

definition given to some geometric notion using algebra of functions with commutative geometry,

and we replace these notions by noncommutative algebra. This type of geometry was introduced

by von Neumann as ”pointless geometry” because in a quantum phase space, points are replaced by

cells of size~. The points of a quantized spacetime become fuzzy and are replaced with cells whose

size is set by the noncommutative length scaleθ. A string is replaced by a certain finite number of

elementary volumes of ”fuzz”, each of which can contain one quantum mode. After defining the

new noncommutative operations and constructing noncommutative Yang-Mills, we show how to get

M(atrix) models from a noncommutative geometric approach.

4.1 Formalism

Let’s consider two fieldsφ andψ. A noncommutative field theory can be seen as a deformation ofa

classical quantum field theory by using the star product instead of the point product:

φ(x) ·ψ(x) =⇒ φ(x)⋆ψ(x) = e
ı
2
θij ∂

∂ξi
∂

∂ζi φ(x+ξ)ψ(x+ζ)|ξ=ζ=0 = φ(x) ·ψ(x)+
ı

2
θij∂iφ∂jψ+o(θ2)

(183)

This product is associative but obviously not commutative.Geometrically, the star product can be

seen as generating a deformation of the ordinary canonical transformations, induced byθ. If we setθ

to zero, we recover normal geometry. The commutation relation are:

[xµ, xν ]⋆ = xµ ⋆ xν − xν ⋆ xµ = ıθµν (184)

[xµ, pν ]⋆ = ı~δµν (185)

[pµ, pν]⋆ = 0 (186)
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Whereθµν is a real antisymmetric matrix. In general, given any ordinary field theory, one obtains a

noncommutative field theory by replacing all the dot products by star products

4.2 Yang-Mills, Noncommutative Yang-Mills and the appearance of matrices

Yang-Mills is the name given to non-abelian theories that have been constructed from abelian elec-

tromagnetic Maxwell’s theory. The Maxwell equations are:

∂µF
µν = −jν

∂µ(∗F µν) = 0 (187)

which are obtained from the action:

S =

∫
d4x

(
− 1

4
F µνFµν

)
(188)

with the field strengthFµν = ∂µAν − ∂νAµ. This theory has the symmetry groupU(1) which is

abelian. In electrodynamics, we have the scalar fieldsφ action:

S =

∫
d4x

(
∂µφ

∗∂µφ− V (φ∗, φ)
)

(189)

Which is also invariant underU(1) and transforms as:

φ→ φ′ = e−ıαφ (190)

φ∗ → φ′∗ = eıαφ∗ (191)

Whereα is the parameter of the group. This action is actually invariant only in the case of a global

symmetry, whereα doesn’t depend on the coordiatesxµ. To make the action invariant under local

transformation, one needs to introduce covariant derivatives:

∂µφ→ Dµφ = ∂µφ+ ıeAµφ (192)

∂µφ
∗ → Dµφ

∗ = ∂µφ
∗ − ıeAµφ

∗ (193)
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where there is a coupling between the magnetic potentialAµ and the scalar fieldsφ. e is the coupling

constant, andAµ has to transforms as:

Aµ → A′
µ =

1

e
∂µα(x) (194)

One can obtain the field strengthFµν by taking the commutator of the covariant derivatives:

[Dµ, Dν ] = ıeFµν (195)

We now turn to non-abelian groups, with gauge groupSU(N), where the fields transform under the

transformation rules:

φa → φ′
a = U b

aφb

(φa)∗ → (φ′a)∗ = (φb)∗(Ua
b )

† (196)

whereU is a element of the group. For a local symmetry invariance, the generalisation of the abelian

transformations are:

∂µφa → Dµφa = ∂µφa − ıgAkµ(T
k)baφb (197)

Akµ → (Akµ)
′ =

[
U(AkµT

k − ı

g
U−1∂µU)U−1

]b

a

(198)

whereg is called Yang-Mills coupling andT i’s are the generators of the group, forming the algebra

of the group:
[
T i, T j

]
= ıf ijkT k (199)

The action is then invariant under the transformations (196). Since the symmetry is local,U is:

U b
a =

[
exp(ıǫk(x)T k)

]b
a

(200)

where ǫi(x) are the group parameters. The Yang-Mills field strength is again obtained from the

commutator of the covariant derivatives:

[Dµ, Dν ] = −ıg
(
∂µA

i
ν − ∂νA

i
µ − ıg

[
Aiµ, A

j
ν

] )
(T i)ab (201)
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where we have:

F i
µν = ∂µA

i
ν − ∂νA

i
µ − ıg

[
Aiµ, A

j
ν

]
(202)

F i
µν which transforms asδǫiF i

µν = −ı
[
F i
µν , ǫ

i
]

under the gauge transformation:

δǫiA
i
µ = ∂µǫ

i − ı
[
Aiµ, ǫ

i
]

(203)

allows us to write the generalisation of the Maxwell action for a non-abelian gauge group:

S =

∫
d4x

(
− 1

4
F iµνF i

µν

)
(204)

and the Maxwell becomes:

DµF
iµν = −Jµ

Dµ(∗F iµν) = 0 (205)

Now that we have constructed the Yang-Mills action for a non-abelian gauge group, we just need to

replace the dot product by the star product to obtain the expression of noncommutative Yang-Mills:

SNYM =

∫
Tr

(
− 1

4
F̂ µνF̂µν

)
(206)

where the field strength is given by:

F̂µν = ∂µÂν − ∂νÂµ − ı[Âµ, Âν ]⋆ = ∂µÂν − ∂νÂµ − ı[Âµ, Âν ] + o(θ, (∂Â)2) (207)

and its variation̂δbǫiF̂
i
µν = −ı

[
F̂ i
µν , ǫ̂

i
]
. We can expando(θ, (∂Â)2) to the first order inθ:

o(θ, (∂Â)2) =
1

2
θρσ(∂ρÂµ∂σÂν − ∂ρÂν∂σÂµ) + o(θ2)

This action is invariant under the transformation:

Âµ −→ U ⋆ Âµ ⋆ U
−1 + ıU ⋆ ∂µU

−1 (208)
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with

U(xµ) = eıθ
−1
µν a

µxν

(209)

andU ⋆ U−1 = U−1 ⋆ U = I.

4.2.1 The Seiberg-Witten map

Now that we have a noncommutative generalization of gauge theories, we can work out the relation-

ship with string theory. It turns out that noncommutative gauge theories arising from open strings the-

ory imply that open string theory can always be thought of giving rise to ordinary gauge theory. One

can see here a contradiction but in 1999, Seiberg and Witten [44] proposed a map that relates ordinary

Yang-Mills vector potentialAµ with parameterǫ and gauge transformation (203), to noncommutative

Yang-Mills vector potential̂Aµ(Aµ) with parameter̂ǫi(Aµ, ǫi) and gauge transformation:

δ̂bǫiÂµ = ∂̂µǫ̂
i + ıÂµ ⋆ ǫ̂

i − ıǫ̂i ⋆ Âµ (210)

such that we have:

Âµ(Aµ) + δ̂Âµ(Aµ) = Âµ(A+ δA) (211)

We writeÂµ(Aµ) = Aµ + A′
µ(Aµ) andǫ̂i(Aµ, ǫi) = ǫi + ǫ′i(ǫi, Aµ), with A′ andǫ′ function ofA and

ǫ of orderθ. When we expand (211) in power ofθ using (183), we find:

A′
µ(Aµ+δǫiAµ)−A′

µ(Aµ)−∂µǫi−ı [ǫ′, Aµ]−ı
[
ǫi, A′

µ

]
= −1

2
θρσ(∂ρǫ

i∂σAµ+∂σAµ∂ρǫ
i)+o(θ2) (212)

The solution of this equation to the first order inθ = δθ is:






Âµ(Aµ) − Aµ = −1
4
δθρσ{Aρ, ∂σAµ + Fσµ}

ǫ̂i(Aµ, ǫ
i) = 1

4
δθρσ{∂ρǫi, Aσ}

(213)

where{....} are anticommutators. From this we get the first order relation between field strength:

F̂µν − Fµν =
1

4
δθρσ

(
2{Fµρ, Fνσ} − {Aρ, DσFµν + ∂σFµν}

)
(214)
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These equations are called the Seiberg-Witten equations and are differential equation determining the

map to all orders inθ.

For a rank one gauge field with constantF we have:

δF̂ = −F̂ δθF̂ (215)

which has the solution:

F̂ = (1 + Fθ)−1F (216)

Deformation of gravity can be induced from a noncommutativegauge theory with position-dependent

noncommutativityθµν(xµ) using this map.

4.2.2 The appearance of matrices from NYM

It was noticed that gravity is contained in the dynamics of noncommutative gauge theory through

the observation that spacetime translations of noncommutative gauge fields are equivalent to gauge

transformations. From (208), (209), and the identityeık·x ⋆ ϕ(xµ) ⋆ e−ık·x = ϕ(xµ − θµνkν), we find:

Aµ(x
µ) −→ Aµ(x

µ + aµ) − θ−1
µν a

ν (217)

Sinceaν is a constant shift, the noncommutativity of the field strength (207) disappear. Hence, the

translation symmetry is a gauge symmetry and noncommutative gauge theories provide toy models

of general relativity (simplified set of equations that can be used to understand a mechanism that is

also useful in the non-simplified theory).

In order to identify the gravity gauge theory, we need to formulate the noncommutative gauge theory

in an independent spacetime coordinates background. Then we introduce covariant coordinates:

Xµ = θ−1
µν x

ν + Aµ (218)

that we use to rewrite (207) as:

Fµν = −ı [Xµ, Xν ]⋆ + θ−1
µν (219)
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We can use this to rewrite the NYM action (206) as:

S = −1

4
Tr

(
− ı [Xµ, Xν ] + θ−1

µν

)2

(220)

This action is expressed in terms of operatorsXµ which are no longer regarded as position coordinates

since we are not in a spacetime background. It is totally spacetime independent andXµ are abstract

objects of an infinite-dimensional (since we have no restriction onµ) matrix algebra. It is therefore

called a Matrix model. We can get the equations of motions:

[Xµ, [Xµ, Xν ]] = 0 (221)

with the vacuum solution (Aµ = 0) satisfying:

[Xµ, Xν ] = −ıθ−1
µν (222)

One can notice that the equation of motion (221) is similar tothe equation of motion (157) for the

IKKT matrix model. If one setsθ = 0, we have from (220) a matrix model for a commutative YM

theory:

S =
1

4
Tr

(
[Xµ, Xν ] [Xµ, Xν ]

)
(223)

This model will be used later on in the construction of the Emergent noncommutative gravity. One

can also construct the BFSS and IKKT model independently of string theory, from a noncommutative

approach [46].

5 Low energy limit of M-theory: 11D supergravity

This theory was built in the late70’s by Cremmer, Julia and Schrerk [17], as an attempt for a grand

unified theory. The first superstring revolution in the mid80’s saw this theory abandoned for super-

string theory. But, during the second superstring revolution in mid 90’s, it was discovered that the

strong coupling limit is11-dimensional supergravity. We present how the Lagrangian was originally

constructed , as well as the derivation of the equations of motion. To avoid any too complicated

calculation, the most important results are given here, andthe details are explained in appendix C.
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5.1 The construction of the Lagrangian

Since supergravity is the unification of general relativityand supersymmetry, it must contains the

graviton, which is aspin = 2 boson, and its superpartner, the gravitino, which is aspin = 3
2

fermion.

Thus the natural starting point for the action is the Einstein-Hilbert action and the Rarita-Schwinger

action (which is the equivalent of the Dirac equation but fors = 3
2

particles):

S1 =

∫
dxD

√
g
[1

4
R +

1

2
ψµΓ

µνρDν(ω)ψρ

]
(224)

TheΓµνρ are the 32 dimensional Pauli matrices and satisfy the 11 dimensional Clifford algebra:

{Γµ,Γν} = 2ηµνI32

Γµ1...µn = Γ[µ1Γµ2 ...Γµn]

The covariant derivative is given by:

Dν(ω)ψµ = ∂νψµ −
1

4
ωνab Γ

abψµ

This action is invariant under the SUSY transformations:

δQψµ = Dµ(ω)ǫ (225)

δQe
a
µ = ǫΓaψµ =⇒ δQgµν = δQ(ηabe

a
µe
b
ν) = 2ǫΓµψν

where we have used the tetrad basisea = eaµdx
µ. When we vary the action we get:

δQS =

∫
dxD

√
g
[1

2
(Rµν −

1

2
gµνR)ǫΓ(µψν) − 1

2
(Rµν −

1

2
gµνR)ǫΓ(µψν)

]
δQg

µν (226)

which is identically equal to zero. We have used the symmetryof the Riemmann tensor (Rµ[ναβ]=0).

Then, we have proved that the variation of the action (224) isequal to zero. However, a third order

fermionic term has been neglected. We need to add an additional term to cancel them. The good one
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is the kinetic term for the three form potentialCµνρ:

S2 =

∫
dxD

√
g
[
− 1

4 · 48
GµνρσG

µνρσ
]

(227)

whereGµνρσ = 4∂[µCνρσ]. By rewriting this as:

− 1

4 · 48
GµνρσG

µνρσ = − 1

4 · 48
GµνρσGαβγδg

µαgνβgργgσδ

we see that, according to the variation law (225), we are going to get a new contribution− 1
24
ǭΓµψν(G)2

µν .

There is two indices ofG contracted by the variation of
√
g (see (C.2.1)). We must balance this addi-

tional term by adding something involvingG with two indices contracted with an unknown quantity

X: ψµ(XG)µρψρ. We then should modify the SUSY transformation ofψµ as:

δQψµ = Dµ(ω)ǫ+ (ZG)µǫ ≡ D̂µ(ω)ǫ (228)

WhereZ is the unknown quantity that contracts3 indices ofG. The action now looks like:

S3 =

∫
dxD

√
g
[1

4
R +

1

2
ψµΓ

µνρDν(ω)ψρ −
1

4 · 48
ψµ(XG)µρψρ −

1

4 · 48
GµνρσG

µνρσ
]

(229)

The method to find the expression of(XG)µρ is to write down all the possible terms consistent with

the tensor structure with two free indicesµν. TheΓ matrices andgµν are the objects used for the

construction since they can raise and lower indices. We consider Gαβγδ with its all four indices.

First, we contract all of them. We need two free, so we have twopossible terms:gµνΓαβγδGαβγδ

or ΓµναβγδG
αβγδ. If we contract two of them, we simply haveΓαβGµναβ . If we contract 3, we

haveΓµαβγG
ναβγ which can be decomposed into symmetric and antisymmetric parts in µν. After

reorganizing this we have:

(XG)µν = a Γ(µ
αβγG

ν)αβγ + b gµνΓαβγδG
αβγδ

︸ ︷︷ ︸
symmetric

+ c ΓµναβγδG
αβγδ + d ΓαβG

µναβ + e Γ[µ
αβγG

ν]αβγ

︸ ︷︷ ︸
antisymmetric

(230)

wherea, b, c, d, e are real constants. It turns out that the only remaining constants arec = − 1
8·4! and
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d = − 12
8·4! , and therefore we have the expression of(XG)µν :

(XG)µν = − 1

8 · 4!
ΓµναβγδG

αβγδ − 12

8 · 4!
ΓαβG

µναβ (231)

The same analysis for(ZG)µ gives:

(ZG)µ = − 1

2 · 144
ΓαβγδµGαβγδ +

8

2 · 144
ΓαβγδδαµG

αβγδ (232)

The variation (228) is now:

δQψµ = Dµǫ−
1

2 · 144

(
Γαβγδµ − 8Γβγδδαµ

)
ǫGαβγδ (233)

We now perform the variation of (229) to see wether everything cancels out and if we have a consistent

action. We consider only the new termsψµ(XG)µρψρ andGµνρσG
µνρσ:

δQS3 =

∫
dxD

[
δQ

(
−

√
g

4 · 48
GµνρσG

µνρσ
)

︸ ︷︷ ︸
I

+ δQ

( √
g

4 · 48
ψµ(XG)µρψρ

)

︸ ︷︷ ︸
II

]
(234)

δQ(S3)I = δQ

(
−

√
g

4 · 48
GµνρσG

µνρσ
)

= − 1

4 · 48
G2 δQ(

√
g)+

√
g δQ

(
− 1

4 · 48
GµνρσGαβγδg

αµgβνgγρgδσ
)

(235)

with (246) and (225) we find:

δQ(S3)I = − 1

24

(
(G2)µν −

1

8
G2gµν

)
ǫ Γ(µψν) (236)

We must calculate the variation of̄ψ in order to be able to find the variation of(S3)II . With:

δQψ̄µ = (Dµǫ)
⊤Γ0 +

1

2 · 144
ǭ
(
Γαβγδµ + 8Γβγδδαµ

)
Gαβγδ (237)

we find:

δ(S3)II = − 2

3 · 32 · (12)3

[
ǭ
(
Γρσητ µ + 8Γσητδρµ

)
Γµξν

(
Γρσητ ξ − 8Γσητ δρξ

)
ψν

]
GρσητGαβγδ (238)
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After some calculation using identities of the Clifford algebra of the gamma matrices (see [37]), we

find that the variation of the total actionS3 (229) does not vanish, and we have the left term:

δQS3 =

∫
dDx

[ 9

4 · (12)4
ǫα1...α4β1...β4µνρGα1...α4Gβ1...β4 ǭ Γ[µνψρ]

]
(239)

Once again, we need to balance this undesired term by adding something new. Based on the form of

(301), one makes the ansatz of the compensating term, calledthe Chern-Simons term:

SCS =

∫
dDx

[ 1

4 · (12)4
ǫα1...α4β1...β4µνρGα1...α4Gβ1...β4 Cµνρ

]
(240)

with a super-transformation of the potential satisfying:

δQCµνρ = a ǭ Γ[µνψρ] (241)

with a ∈ R. When we perform the variation of the CS term, one finds:

δQSCS =

∫
dDx

[ 3

4 · (12)4
ǫα1...α4β1...β4µνρGα1...α4Gβ1...β4 a ǭ Γ[µνψρ]

]
(242)

which is identical to (301). If one setsa = 3, the actionS = S3 + SCS vanishes, and the total

Lagrangian of 11-dimensional Supergravity finally reads:

L =
1

4
eR+

1

2
eψ̄µΓ

µνρDν

(
ω + ω̂

2

)
ψρ −

1

4 · 48
eGµνρσG

µνρσ

− 1

4 · 48
e
(
ψ̄µΓ

µναβγδψν + 12 ψ̄αΓγδψβ
) (Gαβγδ +Gαβγδ

2

)

+
1

4 · 1442
ǫα1...α4β1...β4µνρGα1...α4Gβ1...β4Cµνρ . (243)

where we added the fermionic terms and used the notations:

ωµab = ω
(0)
µab + 1

4

[
ψ̄αΓµab

αβψβ − 2
(
ψ̄µΓbψa − ψ̄µΓaψb + ψ̄bΓµψa

)]

Ĝµνρσ = Gµνρσ + 6ψ̄[µΓνρψσ] ω̂µab = ωµab − 1
4
ψ̄αΓµab

αβψβ
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5.2 Equation of motion

5.2.1 Gravitongµν

We now derive the equation of motion for the graviton. The action to be considered here is the

Einstein-Hilbert action coupled to the field strengthGµνρσ. Therefore, we should expect to find the

Einstein equation plus an additional term:

S =

∫
dDx

√
gR − 1

48

∫
dDx

√
geGµνρσG

µνρσ = S + S ′ (244)

• Let us consider first the variation of the Einstein-Hilbert action:

δS =

∫
dDx

[
δ(
√
g)gµνRµν +

√
gδ(gµν)Rµν +

√
ggµνδRµν

]
(245)

Using the identity:

δ(
√
g) =

1

2

1√
g
δg =

1

2

1√
g
ggjkδgjk =

1

2

√
ggjkδgjk = −1

2

√
ggjkδgjk (246)

We find:

δS =

∫
dDx

√
g
[
− 1

2
gµνR +Rµν

]
δgµν +

∫
dDx

√
ggµνδRµν (247)

We see that the first term is the Einstein tensor. Therefore, we want the second term to vanish. Using

Stoke’s theorem, one can show that the termδRµν does not contribute (see appendix C).

• Using the variationδ
√
g, given above, we write the variation of the second part of theaction:

δS ′ = − e

48

∫
dDx

[
− 1

2

√
ggαβGµνρσG

µνρσ + 4
√
gGανρσG

νρσ
β

]
δgαβ (248)

The equation of motion for the whole action now reads:

Rαβ −
1

2
gαβR =

e

48

[
− 1

2
gαβGµνρσG

µνρσ + 4
√
gGανρσG

νρσ
β

]
(249)

By contracting this withgβα, we get:

R =
e

144
GµνρσG

µνρσ (250)
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5.2.2 3-form potentialCµνρ

The part of the supergravity action involving the 3-form potentialCµνρ is:

L =
1

48
GµνρσG

µνρσ +
1

1442
ǫα1...α4β1...β4γ1γ2γ3Gα1...α4Gβ1...β4Gγ1γ2γ3 (251)

To find the equation of motion, one can solve the Euler-Lagrange equation ∂L
∂Cijk

− ∂ξ
[

∂L
∂(∂ξCijk)

]
= 0.

Using the following identities:
∂Gµνρσ

∂(∂ξCijk)
= δξijkµνρσ (252)

and

δα1...α4
β1...β4

Gβ1...β4 = 4!Gα1...α4 (253)

we have the equation of motion:

∂ξG
ξijk +

18

1442
ǫα1...α4β1...β4ijkGα1...α4Gβ1...β4 = 0 (254)

This equation of motion can be expressed in a simpler form using the language of forms (totally anti-

symmetric tensors). I recall some of the definitions and properties of this language in the appendix

B. The first term∂ξGijk must be of the form∗d(∗G) since we want to rewrite the equation in term

of three form (number of free indices). Indeed,G is a4-form. Since we are in 11 dimensions,∗G is

a 11 − 4 = 7-form. (d ∗ G) is a8-form and so(∗d ∗ G) is a 3-form. Starting from the coordinates

generalizationG = 1
4!
Gµ1µ2µ3µ4dx

µ1 ∧ ... ∧ dxµ4 , and usingǫν1...ν11ǫ
α1α2α3ν4...ν11 = −8!δα1α2α3

ν1ν2ν3
, we

end up with:

∗d(∗G)ν1ν2ν3 = ∂ξGξν1ν2ν3 (255)

Doing the same analysis, we find that the second term should bewritten as∗(G ∧G):

[
∗ (G ∧G)

]
ν1ν2ν3

=
1

4!
ǫν1ν2ν3α1...α4β1...β4G

α1...α4Gβ1...β4 (256)

Using (255) and (256), we can rewrite the equation of motion as follow:

d(∗G) +
1

2
G ∧G = 0 (257)
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5.2.3 Gravitinoψµ

The part of the Lagrangian involving the gravitino is:

L =
1

2
ψ̄µΓ

µνρDν

(ω + ω̂

2

)
ψρ −

1

4 · 48

(
ψ̄µΓ

µναβγδψν + 12ψ̄αΓγδψβ
)(
Ĝαβγδ − 3ψ̄[αΓβγψδ]

)
(258)

When we solve the Euler-Lagrange equation forψ̄ andψ, we find the equation of motion:

0 =
1

2

[
ΓξνρDν(ω̂) − 1

96

(
Γξραβγδ + 12δξαΓγδδ

ρ
β

)
Ĝαβγδ

]
ψρ

− 1

64
ΓξνρΓabψρψ̄αΓ

αβ
νabψβ +

1

64
Γξβνabψβψ̄µΓ

µνρΓabψρ

+
1

64

(
Γξναβγδψνψ̄

[αΓβγψδ] − δξ[αΓβγψδ]ψ̄µΓ
µναβγδψν

)
(259)

We find that the last four terms vanish using the Cremmer-Julia-Scherk Fierz identity:

1

8
Γµναβγδ ψνψ̄α Γβγ − 1

8
Γβγ ψνψ̄α Γµναβγδ

− 1

4
Γµναβδψνψ̄αΓβ +

1

4
Γβψνψ̄αΓ

µναβδ

− 2 gβ[αΓδµν]ψνψ̄αΓβ − 2 Γβψνψ̄αg
β[αΓδµν]

+ 2 gβ[αΓδµν] ψ̄αΓβψν = 0 (260)

and using the identity:

3
(
Γµραβγδ + 12δµαΓγδδ

ρ
β

)
ψρĜ

αβγδ = Γµνρ
(
Γαβγδν − 8Γβγδδαν

)
ψρĜαβγδ (261)

the equation of motion can be written is a simple form:

ΓµνρD̂νψρ = 0 (262)

where the covariant derivative is:

D̂νψρ = Dν(ω̂)ψρ −
1

2 · 144

(
Γαβγδν − 8Γβγδδαν

)
ψρĜαβγδ
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6 Discussion

The relationship between matrix theory and noncommutativegeometry is not very clear and is still an

active area of research. There is a lot of aspects of both theories that we couldn’t cover due to a lack

of time. In [46], they show how to get BFSS and IKKT directly from noncommutative geometry. The

solution of 11-dimenional gravity supergravity, can be found in [20] for theM2-brane and in [24] for

theM5-brane. In [37], they show how to get Type IIA superstrings from 11-dimensional supergrav-

ity, and they calculate intersectingM5-M5 branes solutions. A very little progress has been made

recently in ”pure” models of M-theory or string theory in general. However, their applications to other

fields has been investigated especially in cosmology for thestudy of black holes for example [6] [23].

In [40] they propose an alternative model of inflation based on a recent formulation in terms of coher-

ent states of noncommutative quantum field theory. A very recent model has been proposed, based

on the IKKT model [33] [47] [48] [49] called emergent noncommutative gravity. They show that the

Yang-Mills matrix model action for noncommutativeU(N) gauge theory (223), describresSU(N)

gauge theory coupled to gravity. Those kind of models have noncommutative branes as solutions,

which, when embedded inR10, give rise to a dynamical effective metric, governing the dynamics of

the fields on the brane. The resulting geometry is therefore dynamical governed by the matrix model

and its effective action which contains the Einstein-Hilbert term. One can say that gravity emerges

from noncommutative gauge theory. Having an effective metric simplifies the quantization, since,

the metric is not the fundamental degree of freedom. What is quantized is the matrix model action

rather than the Einstein-Hilbert action. As we saw in this paper, different models can be obtained from

NYM. But there is a prime candidate as a model for an emergent noncommutative gravity. Indeed, the

theory is expected to be finite leading to the identification of the Planck scale, and therefore provide

a well-defined quantum theory of fundamental interactions including gravity. This is possible in the

case of maximally supersymmetry, which is the IKKT model in10 dimensions. The strong point of

this model is that it solves the cosmological constant problem since the results they obtain are in good

agreement with observation, which hasn’t been the case so far. On the other hand, an analog of the

Schwarzschild solution is yet to be found.

75



A Useful identities

• δ(√−g) = −1
2

√−ggαβδgαβ • ∂Gµνρσ

∂(∂ξCijk)
= δξijkµνρσ • δα1...α4

β1...β4
Gβ1...β4 = 4!Gα1...α4

• ǫν1...ν11ǫα1α2α3ν4...ν11 = −8!δα1α2α3
ν1ν2ν3

•D[µDν]ǫ = 1
8
Rαβ
µνΓαβǫ • Γjǫ = (−1)

(j+1)j
2 ǭΓj

• 3
(
Γµραβγδ + 12δµαΓγδδ

ρ
β

)
ψρĜ

αβγδ = Γµνρ
(
Γαβγδν − 8Γβγδδαν

)
ψρĜαβγδ

• 1
8
Γµναβγδ ψνψ̄α Γβγ − 1

8
Γβγ ψνψ̄α Γµναβγδ

− 1
4
Γµναβδψνψ̄αΓβ + 1

4
Γβψνψ̄αΓ

µναβδ

− 2 gβ[αΓδµν]ψνψ̄αΓβ − 2 Γβψνψ̄αg
β[αΓδµν]

+ 2 gβ[αΓδµν] ψ̄αΓβψν = 0 (Cremmer-Julia-Scherk Fierz identity)

• Γaj ...a1Γb1...bk =
min(j,k)∑
l=0

l!




j

l







k

l


 δ

[a1
[b1

· · · δal

bl
Γaj ...al+1]

bl+1...bk ]

• ψµΓ(j)ǫ = −(−1)
j(j+1)

2 ǫΓ(j)ψµ • eık·x ⋆ ϕ(xµ) ⋆ e−ık·x = ϕ(xµ − θµνkν)

B The language of Differential Forms

B.1 Wedge product

Given ap-form and aq-form, we can construct a(p + q)-form using the wedge productA ∧ B by

taking the antisymmetrized tensor product:

(A ∧ B)µ1...µ(p+q)
=

(p+ q)!

p!q!
A[µ1...µp

Bµp+1...µp+q] (263)

For example, if we have two 1-forms we have

Aµ ∧Bν = AµBν − AνBµ = 2A[µBν] (264)

We also have the following properties:

A ∧B = (−1)p+qB ∧A
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A ∧ (B ∧ C) = (A ∧ B) ∧ C

ωµ1...µp ∧ ωµ1...µp = 0 (265)

if p is odd. The coordinates generalisation of ap-form is:

ω =
1

p!
ωµ1...µpdx

µ1 ∧ ... ∧ dxµp (266)

B.2 Exterior derivative

The exterior derivatived allows us to differentiate ap-form to obtain a (p+ 1)-form as follow:

(dA)µ1...µp+1 = (p+ 1)∂[µ1
Aµ2...µp+1] (267)

It satisfies the Leibniz rule:

d(ω ∧ ξ) = (dω) ∧ ξ + (−1)pω ∧ (dξ) (268)

whereξ is ap-form, and the property

d2A = d(dA) = 0 (269)

for any form.

B.3 Hodge duality

We define the hodge star operator on aD-dimensional manifold as a map fromp-forms to (D − p)-

forms:

(∗A)µ1...µD−p
=

1

p!
ǫν1...νp
µ1...νD−p

Aν1...νp (270)

(∗ ∗ A) = (−1)s+p(D−p)A (271)

For example, the hodge dual of the field strengthFµν is:

∗Fµν =
1

2
ǫαβµνFαβ =

1

2
ǫµναβF

αβ (272)
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C Supergravity calculations

C.1 The construction of the Lagrangian

Einstein-Hilbert and Rarita-Schwinger action:

S1 =

∫
dxD

√
g
[1

4
R +

1

2
ψµΓ

µνρDν(ω)ψρ

]
(273)

TheΓµνρ are the 32 dimensional Pauli matrices and satisfy the 11 dimensional Clifford algebra:

{Γµ,Γν} = 2ηµνI32

Γµν = Γ[µΓν]

The gamma matrices can be expressed with the Pauli matricesτi:

Γ0 = −ıτ2 ⊗ I ⊗ I ⊗ I ⊗ τ3 , Γ1 = τ2 ⊗ τ2 ⊗ τ2 ⊗ τ2 ⊗ τ1

Γ2 = −τ2 ⊗ I ⊗ τ1 ⊗ τ2 ⊗ τ1 , Γ3 = −τ2 ⊗ I ⊗ τ3 ⊗ τ2 ⊗ τ1

Γ4 = −τ2 ⊗ τ1 ⊗ τ2 ⊗ I ⊗ τ1 , Γ5 = −τ2 ⊗ τ3 ⊗ τ2 ⊗ I ⊗ τ1

Γ6 = −τ2 ⊗ τ2 ⊗ I ⊗ τ1 ⊗ τ1 , Γ7 = −τ2 ⊗ τ2 ⊗ I ⊗ τ3 ⊗ τ1

Γ8 = −τ2 ⊗ I ⊗ I ⊗ I ⊗ τ2 , Γ9 = τ1 ⊗ I16

Γ10 = τ3 ⊗ I16

The covariant derivative is given by:

Dν(ω)ψµ = ∂νψµ −
1

4
ωνab Γ

abψµ

This action is invariant under the SUSY transformations:

δQψµ = Dµ(ω)ǫ (274)
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δQe
a
µ = ǫΓaψµ =⇒ δQgµν = δQ(ηabe

a
µe
b
ν) = 2ǫΓµψν

When we vary the action we get:

δQS1 =

∫
dxD

√
g
[1

4
(Rµν −

1

2
gµνR)δQg

µν +
1

2
δQψµΓ

µνρDν(ω)ψρ −
1

2
ψµΓ

µνρDν(ω)δQψρ

+
3

2
ψ[µδQg

µαΓνραDν(ω)ψρ

]
(275)

The derivation of the first part of the variation (Einstein equation) is derived in the section (C.2.1).

The last term involves fermionic fields to the third order, which are gonna be cancelled by terms yet

to be added to the action. We can neglect them for the time being. Let’s calculate the second term,

rewritten with (274) as1
2
DµǫΓ

µνρDν(ω)ψρ. By integrating by parts:

∫
dxD

√
g
[1

2
DµǫΓ

µνρDν(ω)ψρ

]
=

1

2
ǭΓµνρDν(ω)ψρ+

∫
dxD

√
g
[
−1

2
ǭΓµνρDµ(ω)Dν(ω)ψρ

]
(276)

On the right-hand side, only the second term remains. Using the identity:

D[µDν]ǫ =
1

8
Rµν

αβΓαβǫ

and the fact that (276) is antisymmetric in[µν], (276) becomes:

∫
dxD

√
g
[1

2
DµǫΓ

µνρDν(ω)ψρ

]
=

∫
dxD

√
g
[
− 1

16
Rµν

αβ ǭΓµνρΓαβψρ

]
(277)

We can expand (277) using the Clifford algebra identity:

Γaj ...a1Γb1...bk =

min(j,k)∑

l=0

l!




j

l







k

l


 δ

[a1
[b1

· · · δal

bl
Γaj ...al+1]

bl+1...bk ] . (278)

With this, we have:

Rµν
αβ ǭΓµνρΓαβψρ = Rµν

αβ ǭ
[
Γαβ

µνρ + 6δ
[ρ
[αΓ

µν]
β] + 6δ

[ρ
[αδ

ν
β]Γ

µ]
]
ψρ
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Rµν
αβ ǭΓµνρΓαβψρ = Rµν

αβ ǭ
[
Γαβ

µνρ + 6δ
[ρ
[αΓ

µν]
β]

]
ψρ + ǭ

[
4Rµ

ρΓµ − 2RΓρ
]
ψρ

Rµν
αβ ǭΓµνρΓαβψρ = Rµν

αβ ǭ
[
Γαβ

µνρ + 6δ
[ρ
[αΓ

µν]
β]

]
ψρ + 4

[
Rµρ − 1

2
Rgµρ

]
ǭΓµψρ

The second term finally reads:

∫
dxD

√
g
[1

2
DµǫΓ

µνρDν(ω)ψρ

]
=

∫
dxD

√
g
[
− 1

16
Rαβ
µν ǭ

[
Γµνραβ +6δ

[ρ
[αΓ

µν]
β]

]
ψρ−

1

4

[
Rµρ−1

2
Rgµρ

]
ǭΓµψρ

]

(279)

Doing the same calculation with the third term−1
2
ψµΓ

µνρDν(ω)δQψρ, we have a similar result:

∫
dxD

√
g
[
−1

2
ψµΓ

µνρDν(ω)Dρ(ω)ǫ
]

=

∫
dxD

√
g
[
− 1

16
Rαβ
νρ ψ̄µ

[
Γµνραβ +6δ

[ρ
[αΓ

µν]
β]

]
ǫ−1

4

[
Rρµ−1

2
Rgρµ

]
ψ̄µΓρǫ

]

(280)

We need to switch the position of theǫ andψ to compare them. Then with the identity:

ψµΓ
(j)ǫ = −(−1)

j(j+1)
2 ǫΓ(j)ψµ (281)

and by adding them, we find:

∫
dxD

√
g
[1

2
DµǫΓ

µνρDν(ω)ψρ −
1

2
ψµΓ

µνρDν(ω)Dρ(ω)ǫ
]

=

∫
dxD

√
g
[ 1

16
(−1 − 1)Rµναβ ǭΓ

µναβψρ

− 6

16
(1 − 1)Rαβ

µν ǭδ
[ρ
[αΓ

µν]
β] ψρ

−1

4
(−1 − 1)

[
Rµρ − 1

2
Rgµρ

]
ǭΓµψρ

]

The second line obviously vanishes as well as the first one dueto the symmetry of the Riemmann

tensor (Rµ[ναβ]=0). Putting altogether in the variation (275), we get:

δQS =

∫
dxD

√
g
[1

2
(Rµν −

1

2
gµνR)ǫΓ(µψν) − 1

2
(Rµν −

1

2
gµνR)ǫΓ(µψν)

]
δQg

µν (282)

The term to add in order to cancel out third order fermionic terms is the kinetic term for the three

form potentialCµνρ:

S2 =

∫
dxD

√
g
[
− 1

4 · 48
GµνρσG

µνρσ
]

(283)
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whereGµνρσ = 4∂[µCνρσ]. By rewriting this as:

− 1

4 · 48
GµνρσG

µνρσ = − 1

4 · 48
GµνρσGαβγδg

µαgνβgργgσδ

we get a new contribution− 1
24
ǭΓµψν(G)2

µν , that we must balance withG with two indices contracted

with an unknown quantityX: ψµ(XG)µρψρ. We then should modify the SUSY transformation ofψµ

as:

δQψµ = Dµ(ω)ǫ+ (ZG)µǫ ≡ D̂µ(ω)ǫ (284)

The action now looks like:

S3 =

∫
dxD

√
g
[1

4
R +

1

2
ψµΓ

µνρDν(ω)ψρ −
1

4 · 48
ψµ(XG)µρψρ −

1

4 · 48
GµνρσG

µνρσ
]

(285)

(XG)µν is given by:

(XG)µν = − 1

8 · 4!
ΓµναβγδG

αβγδ − 12

8 · 4!
ΓαβG

µναβ (286)

and(ZG)µ is:

(ZG)µ = − 1

2 · 144
ΓαβγδµGαβγδ +

8

2 · 144
ΓαβγδδαµG

αβγδ (287)

The variation (284) is now:

δQψµ = Dµǫ−
1

2 · 144

(
Γαβγδµ − 8Γβγδδαµ

)
ǫGαβγδ (288)

The variation of the new termsψµ(XG)µρψρ andGµνρσG
µνρσ reads:

δS3 =

∫
dxD

[
δQ

(
−

√
g

4 · 48
GµνρσG

µνρσ
)

︸ ︷︷ ︸
I

+ δQ

( √
g

4 · 48
ψµ(XG)µρψρ

)

︸ ︷︷ ︸
II

]
(289)

δ(S3)I = δQ

(
−

√
g

4 · 48
GµνρσG

µνρσ
)

= − 1

4 · 48
G2 δQ(

√
g)+

√
g δQ

(
− 1

4 · 48
GµνρσGαβγδg

αµgβνgγρgδσ
)

(290)
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with (307) and (274) we find:

δ(S3)I = − 1

4 · 48
G2

(
− 1

2

√
g gµν2 ǫ Γ(µψν)

)
− 4

4 · 48
(G2)µν2 ǫ Γ(µψν)

δ(S3)I = − 1

24

(
(G2)µν −

1

8
G2gµν

)
ǫ Γ(µψν) (291)

The variation of(S3)II is:

δ(S3)II = − 1

4 · 48
δQ

(
ψµΓ

µναβγδψν + 12ψ
α
Γγδψβ

)
Gαβγδ (292)

We lower the indices of theψ andψ with the metricg and we expand the variation:

δ(S3)II = − 1

4 · 48

[
δQψµ

(
Γµναβγδψν + 12gµ[αΓγδψβ]

)
−

(
ψµΓ

µναβγδ + 12ψ̄[αΓγδgβ]ν
)
δQψν

]
Gαβγδ

(293)

It is more complicated because we have to determine the variation of ψ̄, using the variation (284):

δQψ̄µ = δQ

(
ψ⊤
µ Γ0

)
=

(
δQψµ

)⊤
Γ0 =

(
Dµǫ−

1

2 · 144
[Γαβγδµ − 8Γβγδδαµ ]Gαβγδǫ

)⊤
Γ0 (294)

= (Dµǫ)
⊤Γ0 − 1

2 · 144

(
Γαβγδǫ− 8Γβγδδαµǫδ

α
µ

)
Gαβγδ (295)

δQψ̄ is determined using the identity:

Γjǫ = (−1)
(j+1)j

2 ǭΓj (296)

wherej is a number of indices, and is equal to:

δQψ̄µ = (Dµǫ)
⊤Γ0 +

1

2 · 144
ǭ
(
Γαβγδµ + 8Γβγδδαµ

)
Gαβγδ (297)

Using (288) and (297), (293) is now:

δ(S3)II = − 1

32 · (12)3

[
ǭ
(
Γρσητ µ + 8Γσητ δρµ

)(
Γµναβγδ + 12gµ[αΓγδψβ]ν

)
ψν

−ψν
(
Γµναβγδ − 12gν[αΓγδgβ]µ

)(
Γρσητ µ − 8Γσητδρµ

)
ǫ
]
GρσητGαβγδ (298)
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Using the identity:

(Γαβγδν + 8 Γβγδηνα)Γ
µνρ Gαβγδ = 3 (Γµραβγδ + 12 δµα Γγδ δ

ρ
β)G

αβγδ (299)

(298) becomes:

δ(S3)II = − 1

3 · 32 · (12)3

[
ǭ
(
Γρσητ µ + 8Γσητ δρµ

)
Γµξν

(
Γρσητ ξ − 8Γσητδρξ

)
ψν

+ψν

(
Γρσητ ξ + 8Γσητ δρξ

)
Γνξµ

(
Γρσητ µ − 8Γσητ δρµ

)
ǫ
]
GρσητGαβγδ (300)

The variation of the total actionS3 (229) does not vanish and the remaining term is:

δQS3 =

∫
dDx

[ 9

4 · (12)4
ǫα1...α4β1...β4µνρGα1...α4Gβ1...β4 ǭ Γ[µνψρ]

]
(301)

To balance it, one makes the ansatz of the compensating term,called the Chern-Simons term:

SCS =

∫
dDx

[ 1

4 · (12)4
ǫα1...α4β1...β4µνρGα1...α4Gβ1...β4 Cµνρ

]
(302)

with the super-transformation of the potential satisfying:

δQCµνρ = 3 ǭ Γ[µνψρ] (303)

The total actionS = S3 + SCS vanishes, and the final Lagrangian of 11-dimensional Supergravity

reads:

L =
1

4
eR+

1

2
eψ̄µΓ

µνρDν

(
ω + ω̂

2

)
ψρ −

1

4 · 48
eGµνρσG

µνρσ

− 1

4 · 48
e
(
ψ̄µΓ

µναβγδψν + 12 ψ̄αΓγδψβ
) (Gαβγδ +Gαβγδ

2

)

+
1

4 · 1442
ǫα1...α4β1...β4µνρGα1...α4Gβ1...β4Cµνρ . (304)
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with the following notations:

Dν(ω)ψµ = ∂νψµ − 1

4
ωνab Γ

ab ψµ

Gµνρσ = 4 ∂[µCνρσ]

Ĝµνρσ = Gµνρσ + 6 ψ̄[µΓνρψσ]

ωµab = ω
(0)
µab +

1

4

[
ψ̄αΓµab

αβψβ − 2
(
ψ̄µΓbψa − ψ̄µΓaψb + ψ̄bΓµψa

) ]

ω̂µab = ωµab − 1

4
ψ̄α Γµab

αβ ψβ

C.2 Equation of motion

C.2.1 Graviton gµν

We vary the Einstein-Hilbert action coupled to the field strengthGµνρσ:

S =

∫
dDx

√
gR − 1

48

∫
dDx

√
geGµνρσG

µνρσ = S + S ′ (305)

• Let’s consider first the variation of the Einstein-Hilbert action:

δS =

∫
dDx

[
δ(
√
g)gµνRµν +

√
gδ(gµν)Rµν +

√
ggµνδRµν

]
(306)

Using the identity:

δ(
√
g) =

1

2

1√
g
δg =

1

2

1√
g
ggjkδgjk =

1

2

√
ggjkδgjk = −1

2

√
ggjkδgjk (307)

We find:

δS =

∫
dDx

√
g
[
− 1

2
gµνR +Rµν

]
δgµν +

∫
dDx

√
ggµνδRµν (308)

The second term must vanish. To prove this we calculate the variation of the Ricci tensor given by:

Rµν = Rρ
µρν = Γλµν,λ − Γλµλ,ν + ΓλλρΓ

ρ
νµ − ΓλνρΓ

ρ
λµ (309)
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δRµν becomes:

δRµν = ∂λδΓ
λ
µν − ∂νδΓ

λ
µλ + δΓλλρΓ

ρ
νµ + ΓλλρδΓ

ρ
νµ − δΓλνρΓ

ρ
λµ − ΓλνρδΓ

ρ
λµ (310)

The variationδΓµνρ is the difference of two connections, and therefore is itself a tensor. We can thus

take its covariant derivative:

∇λ(δΓ
ρ
νµ) = ∂λ(δΓ

ρ
νµ) + ΓρλσδΓ

σ
νµ − ΓσλνδΓ

ρ
σµ − ΓσλµδΓ

ρ
νσ (311)

Then, the variation of the Riemann tensor is:

δRρ
µλν = ∇λ(δΓ

ρ
νµ) −∇ν(δΓ

ρ
λµ) (312)

and the contribution of this term in the action is written as:

δS =

∫
dDx

√
g∇σ

[
gµν(δΓσµν) − gµσ(δΓλλµ)

]
(313)

But this is an integral with respect to the natural volulme element of the covariant divergence of a

vector. So, by Stoke’s theorem, this is equal to a boundary contribution at infinity, which is equal to

zero since we make the variation of the action vanish at infinity. Then, the term fromδRµν does not

contribute.

• Using the variationδ
√
g, given above, we write the variation of the second part of theaction:

δS ′ = − e

48

∫
dDx

[
δ
√
gGµνρσG

µνρσ +
√
gδ(GµνρσG

µνρσ)
]

= − e

48

∫
dDx

[
− 1

2

√
ggαβGµνρσG

µνρσ + 4
√
gGανρσG

νρσ
β

]
δgαβ (314)

The equation of motion for the whole action now reads:

Rαβ −
1

2
gαβR =

e

48

[
− 1

2
gαβGµνρσG

µνρσ + 4
√
gGανρσG

νρσ
β

]
(315)
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By contracting this withgβα, we obtain:

R =
e

144
GµνρσG

µνρσ (316)

C.2.2 3-form potentialCµνρ

The part of the supergravity action involving the 3-form potentialCµνρ is:

L =
1

48
GµνρσG

µνρσ +
1

1442
ǫα1...α4β1...β4γ1γ2γ3Gα1...α4Gβ1...β4Gγ1γ2γ3 (317)

To find the equation of motion, one can solve the Euler-Lagrange equation ∂L
∂Cijk

− ∂ξ
[

∂L
∂(∂ξCijk)

]
= 0.

Using the following identities:
∂Gµνρσ

∂(∂ξCijk)
= δξijkµνρσ (318)

and

δα1...α4
β1...β4

Gβ1...β4 = 4!Gα1...α4 (319)

we have the equation of motion:

0 =
1

1442
εα1...α4β1...β4γ1γ2γ3 Gα1...α4 Gβ1...β4 δ

ijk
γ1γ2γ3

− ∂

∂xξ

[
− 1

48

{
δξijkµνρσ G

µνρσ + gµτ1gντ2gρτ3gστ4Gµνρσ δ
ξijk
τ1...τ4

}

+
2

1442
εα1...α4β1...β4γ1γ2γ3 δξijkα1...α4

Gβ1...β4 Cγ1γ2γ3

]

0 = ∂ξG
ξijk +

3!

1442
εα1...α4β1...β4ijkGα1...α4 Gβ1...β4

− 2

1442
εα1...α4β1...β4γ1γ2γ3 δξijkα1...α4

Gβ1...β4 ∂ξCγ1γ2γ3︸ ︷︷ ︸
since dG=0

0 = ∂ξG
ξijk +

3!

1442
εα1...α4β1...β4ijkGα1...α4 Gβ1...β4

+
2 · 4!

1442
εβ1...β4ξγ1γ2γ3ijkGβ1...β4 ∂ξCγ1γ2γ3︸ ︷︷ ︸

∂[ξCγ1γ2γ3]

(320)
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and then:

∂ξG
ξijk +

18

1442
ǫα1...α4β1...β4ijkGα1...α4Gβ1...β4 = 0 (321)

The first term∂ξGijk must be of the form∗d(∗G):

G =
1

4!
Gµ1µ2µ3µ4dx

µ1 ∧ ... ∧ dxµ4

(∗G)µ5...µ11 =
1

4!
ǫµ5...µ11µ1...µ4G

µ1...µ4

d(∗G)ν1...ν8 = 8∂[ν1

1

4!
ǫν2...ν8]α1...α4

Gα1...α4

∗d(∗G)ν1ν2ν3 =
1

8!
ǫν1...ν118∂

[ν4
1

4!
ǫν5...ν11]α1...α4Gα1...α4

∗d(∗G)ν1ν2ν3 =
1

7!4!
ǫν1...ν11ǫ

α1...α4[ν5...ν11∂ν4]Gα1...α4

∗d(∗G)ν1ν2ν3 =
1

7!3!
ǫν1...ν11ǫ

α1α2α3ν4...ν11
1

8
∂ν4Gα1...α4

∗d(∗G)ν1ν2ν3 = ∂ξGξν1ν2ν3 (322)

sinceǫν1...ν11ǫ
α1α2α3ν4...ν11 = −8!δα1α2α3

ν1ν2ν3 .

The second term should be written as∗(G ∧G):

G ∧G =
1

(4!)2
Gα1...α4Gβ1...β4dx

α1 ∧ ... ∧ dxα4 ∧ dxβ1 ∧ ... ∧ dxβ4

[
∗ (G ∧G)

]
ν1ν2ν3

=
1

4!
ǫν1ν2ν3α1...α4β1...β4G

α1...α4Gβ1...β4 (323)

Using all this, we can rewrite the equation of motion as follow:

∗d(∗G) + (4!)2(
18

1442
) ∗ (G ∧G) = 0

d(∗G) +
1

2
G ∧G = 0 (324)
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C.2.3 Gravitino ψµ

The part of the Lagrangian involving the gravitino is:

L =
1

2
ψ̄µΓ

µνρDν

(ω + ω̂

2

)
ψρ −

1

4 · 48

(
ψ̄µΓ

µναβγδψν + 12ψ̄αΓγδψβ
)(
Ĝαβγδ − 3ψ̄[αΓβγψδ]

)
(325)

We are going to solve the Euler-Lagrange equation forψ̄, which reduces to

∂L
∂ψ̄ξ

= 0

. Let split the Lagrangian as:





L = L1 + L2

L1 = 1
2
ψ̄µΓ

µνρDν

(
ω+ω̂

2

)
ψρ

L2 = − 1
4·48

(
ψ̄µΓ

µναβγδψν + 12ψ̄αΓγδψβ
)(
Ĝαβγδ − 3ψ̄[αΓβγψδ]

)
(326)

We first considerL2. With ∂ψ̄µ

∂ψ̄ξ
= δξα and the notations given earlier, we directly get:

∂L2

∂ψ̄ξ
= − 1

4 · 48

(
Γξναβγδψν + 12δξαΓγδψβ

)(
Ĝαβγδ − 3ψ̄[αΓβγψδ]

)
(327)

− 3

4 · 48
δξ[αΓβγψδ]

(
ψ̄µΓ

µναβγδψν + 12ψ̄αΓγδψβ
)

ForL1, we first need to expand it, to make all theψ’s appear (one can also use the chain rule):

Dν

(ω + ω̂

2

)
ψρ = ∂νψρ−

1

4

[
ω

(0)
νab+

1

4

(
ψαΓ

αβ
νabψβ−2(ψνΓbψa−ψνΓaψb+ψbΓνψa)

)]
Γabψρ+

1

32
ψαΓ

αβ
νabψβΓ

abψρ

When we multiply by1
2
ψ̄µΓ

µνρ, we get:

L1 =
1

2
ψ̄µΓ

µνρ∂νψρ−
1

8
ψ̄µΓ

µνρ
[
ω

(0)
νab−

1

2
(ψνΓbψa−ψνΓaψb+ψbΓνψa)+

1

8
ψαΓ

αβ
νabψβ

]
Γabψρ (328)
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By taking the derivative of this, we find:

∂L1

∂ψξ
=

1

2
Γξνρ∂νψρ −

1

8
Γξνρ

[
ω

(0)
νab −

1

2
(ψνΓbψa − ψνΓaψb + ψbΓνψa) +

1

8
ψαΓ

αβ
νabψβ

]
Γabψρ

− 1

64
ψ̄µΓ

µνρΓξβνabψβΓ
abψρ

−1

8
(ψ̄µΓ

µνρ)
[
− 1

2
∂ξ̄(ψνΓbψa − ψνΓaψb + ψbΓνψa)Γ

abψρ

]
(329)

When we calculate the equation of motion forψ, we find that, combine to the equation of motion for

ψ̄, the last part of (329) vanishes, and the rest can be written in a condensed form:

∂L
∂ψξ

=
1

2
Γξνρ

[
Dν(ω̂) − 1

32
ψαΓ

αβ
νabψβΓ

ab
]
ψρ +

1

64
Γξβνabψβψ̄µΓ

µνρΓabψρ (330)

Putting everything together

0 =
1

2
Γξνρ

[
Dν(ω̂) − 1

32
ψαΓ

αβ
νabψβΓ

ab
]
ψρ +

1

64
Γξβνabψβψ̄µΓ

µνρΓabψρ

− 1

4 · 48

(
Γξναβγδψν + 12δξαΓγδψβ

)(
Ĝαβγδ − 3ψ̄[αΓβγψδ]

)

− 3

4 · 48
δξ[αΓβγψδ]

(
ψ̄µΓ

µναβγδψν + 12ψ̄αΓγδψβ
)

and by re-ordering the terms, we have the equation of motion:

0 =
1

2

[
ΓξνρDν(ω̂) − 1

96

(
Γξραβγδ + 12δξαΓγδδ

ρ
β

)
Ĝαβγδ

]
ψρ

− 1

64
ΓξνρΓabψρψ̄αΓ

αβ
νabψβ +

1

64
Γξβνabψβψ̄µΓ

µνρΓabψρ

+
1

64

(
Γξναβγδψνψ̄

[αΓβγψδ] − δξ[αΓβγψδ]ψ̄µΓ
µναβγδψν

)
(331)

The last four terms vanish using the Cremmer-Julia-Scherk Fierz identity:

1

8
Γµναβγδ ψνψ̄α Γβγ − 1

8
Γβγ ψνψ̄α Γµναβγδ

− 1

4
Γµναβδψνψ̄αΓβ +

1

4
Γβψνψ̄αΓ

µναβδ

− 2 gβ[αΓδµν]ψνψ̄αΓβ − 2 Γβψνψ̄αg
β[αΓδµν]

+ 2 gβ[αΓδµν] ψ̄αΓβψν = 0 (332)
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and with the identity:

3
(
Γµραβγδ + 12δµαΓγδδ

ρ
β

)
ψρĜ

αβγδ = Γµνρ
(
Γαβγδν − 8Γβγδδαν

)
ψρĜαβγδ (333)

the equation of motion can be written is a simple form:

ΓµνρD̂νψρ = 0 (334)

where we have used:

D̂νψρ = Dν(ω̂)ψρ −
1

2 · 144

(
Γαβγδν − 8Γβγδδαν

)
ψρĜαβγδ
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