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Abstract

This paper is a self-contained review of M-theory, with acsglfocus on its non-perturbative
formulation, M(atrix) theory. For this to be accessible w@myone, we start with an overview of
string theory and superstrings, from which we need to knawdifferent features to understand
the matrix models. We introduce some basics notions of nonuatative geometry, which is used
in the construction of M(atrix) theory. We also cover the lemergy limit of M-theory: 11D su-

pergravity. Finally, we present some recent applicatidriceM/(atrix) models: noncommutative

gravity.
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1 Introduction

String theory first appeared as an attempt to describe hadparticles, sensitive to the strong in-
teraction. Indeed, the coupling constant of strong intesas increase with the distance between
the particles. As an analogy, one can imagine two ballsaélay a string. As long as we take the
particles away, the tension of the string increases wittadie, and the balls seem to be attracted
by each other, just like the strong interaction couplingstant does with two particles. So the par-
ticles were replaced by uni-dimensional objects: strindsfortunately, it turns out that the theory
contains tachyons (particles with imaginary mass) and-2gparticles, and that it has to live in a
26-dimensional spacetime. For these reasons, stringyties superseded by Quantum Chromody-
namics (QCD), as a gauge theory for the strong interactitased on the symmetry groufi/(2).
However, some people noticed that the theory containedpime2sgraviton, which is the the gauge
boson of gravity. Thus, the theory called Bosonic Stringdrigevas thought to be a good candidate
as a theory unifying gravity and quantum mechanics. Twolerab remained: the presence of tachy-
onic particles and the absence of fermions in the theorychvlare very important since they are the
main component of the matter (electrons, quarks...). Thdisas to both problems was found in a
new symmetry that relates bosons and fermions: SupersyysiSY). The bosonic string theory
evolved to a superstring theory, and, in ngitls, became the main candidate for a superunification
theory, instead of 1-dimensional supergravity, which has been developed imtbantime. Both
fermions and bosons were now present in the spectrum, freeloyon. The dimension of the super-
symmetric spacetime was reduced to 10. There are 5 typeshbfcaunsistent superstrings theories
called Type |, Type lIA, Type 1IB, Heteroti€O(32) and HeterotidZ8 x E8, which were thought to
be all independent. However, in 1995, it was discovereditiet are all related by symmetries called
dualities, and are actually limits of one underlying theloring in 11 dimensions: M-theory [59]. We
know very little about it, and the full theory is yet to be ctrasted. The only facts that we know are
that it is the strong limit coupling of Type IIA, its low engrgimit is the 11-dimensional Supergravity
(supersymmetric theory of gravitation) and that it corgain strings but supermembranes, which are
extended dimensional objects (hypersurfaces) with aneltike dimension. M-theory is therefore not

a string theory.

The attempts to describe the M-theory in a non-perturbatae can be reduced to two approaches:

the AdS/CFT correspondence and the M(atrix) theory.
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The AdS/CFT correspondance, where AdS stands for Anti-tter@ind CFT stands for Conformal
Field Theory, states that a 10-dimensional superstringrshivolving an Anti-de Sitter spacetime
and a 4-dimensional supersymmetric Yang-Mills (SYM) thyearith maximal N = 4 supersymme-
try, are equivalent. This equivalence is somehow surggisince it relates a theory which contains
gravity to a theory which doesn’t, and in particular nontpdyative problems in Yang-Mills theory
to problems in classical superstrings or supergravity. ddethe great advantage of this correspon-
dence is that we might be able to relate the solution of anliesslvable” problem on one side, to a

"harder” problem on the other side.

As useful as this equivalence might be, it doesn't providermntilation of M-theory. The main
candidate for this, are the so-called matrix theories. Tserfiodel that has been developed by Banks,
Fischler, Shenker and Susskind [5] is called M(atrix) tyegmrBFSS model. This model is based on
a conjecture that grew out from the observation that/?herane action is similar the 10-dimensional
SYM action. First, the theory is compactified in a spacelikeationz!! with compactification radius
R. The momentunp,; is quantized in units oﬁ Thus an integeN = p,; R is defined. It is argued
that in theN — oo, objects with vanishing and negativg decouple. Since the only objects in Type
[IA which carry p;; are theDgy-branes, M-theory in the IMF should be a theory/éfDy-branes in
the limit of large N. The exact formulation of the conjecture is:

M-theory in the infinite momentum frame (IMF) is exactly eglent to theNV — oo limit of 0-branes
supersymmetric matrix quantum mechanics, described bgQ@kdimensional/(N) SYMN = 1,
reduced to 0+1 dimension

where the IMF is a frame where the physics has been highlytedas one direction. According to
them, if the conjecture is correct, this would be the first-penturbative formulation of a quantum
theory which includes gravity.

Other models were suggested: the IKKT model, which is okthby the reduction of 10-dimensional
SYM to a point, and is a non-perturbative formulation of Ty{# superstrings. This model is the
prime candidate for the emergent noncommutative gravisgussed later.

The Non-abelian Born-Infield (NBI) model differs slightlsoim IKKT, by the dynamical degrees of
freedom. In the IKKT, the size of the matrices were consideoebe variable, whereas in the NBI
model, the size is set and only the components of the matrixlaatuate. This modification was

introduced to calculate interaction betweBrbranes.



M(atrix) theory, provides a formulation of M-theory. If thicorrect, the compactification of this
model should lead to a non-perturbative matrix formulatbtype IlA superstrings, since type llA is
obtained from M-theory when compactifed on a circle. Thaigeto compactify théth dimension,
instead of thd 1th in M(atrix) theory, to get type IIA. Then, we see that SYMbshd provide a light-
front description of type IIA superstring theory. Becauseave now interpreting dimensi®mas the
dimension of M-theory which is compactified, the fundameatgects which carry the momentum
p are no longetDy-branes butD;-branes (orD-strings) with longitudinal momentu%. Dijkgraaf,
Verlinde and Verlinde first argued that 2 dimensional SYMha targeN limit should correspond to

light-front IIA superstring theory.

In order to make this paper as self-contained as possiblstavewith a review of the bosonic string,

superstrings, dualities etc..., so the reader doesn't tiekeave studied string theory before.

The third chapter presents the different matrix models ld@esl: the BFFS, IKKT and NBI models.
After having constructed the actions, we analyse the swiatand we discuss their symmetries. We
show how they are related to each other via compactificatioa oircle, on a torus and on a non-
commutative torus. Finally, we talk about the non-perttivieadescription of type IIA superstrings,

developed from the BFSS model by Dijkgraaf, Verlinde andivde.

The fourth chapter, is on noncommutative geometry, whi¢hesgeometry of M(atrix) theory. Since
this is a rather complicated domain of pure mathematics,re®ggnt only some points relevant for our
purpose, like the derivation of noncommutative Yang-Miligory from ordinary Yang-Mills, how

they are related by the Seiberg-Witten map and how matrixetsozhn be obtained from them.

As we said before, one of the only things we know about M-thasrits low energy limit 11-
dimensional Supergravity. Thus, we present in the fifth tdramow to construct the Lagrangian
of this theory, and we derive the equations of motion for trevigon, the gravitino and the 3-form

potential.

Finally, as a conclusion, we talk about recent developnmeamighe applications of the M(atrix) model

to cosmology with the presentation of a noncommutative gerérgravity.

An appendix on differential forms can be found at the end;esiwe use this formalism to simplify

the expression of some the equations in supergravity, wanellerived in more detail right after.



2 String theories, dualities and D-branes

This section is made for the good understanding of the M{atniodel. We cover all the fundamental
ideas, from classical string theory to D-branes. Finalyakernative to M(atrix) theory, the AAS/CFT

correspondance, the only other non-pertubative aspectthigdry, is briefly presented.

2.1 The bosonic string

To write the bosonic string action, we use the analogy of tiatgarticle. To do that, we consider
p-branes, which are the fundamental p-dimensional obje&tparticle would then be a 0-brane, a

string al-brane and so forth.

2.1.1 The point particle action

The action of a point particle in B-dimensionnal space time is simply given by:

S = —m/ds = —m/ \/ —nMVX”XVdT (2)

where the dot represents the derivative respect fbhe signature of the metric {s-, +, ...., +), the
indices run betweef and D — 1 since we are in D dimensions. A particle sweeps out a lineatesp

time, which is called the particle worldline, as shown in:
x° 7Z/
f xH
Tfj «ew,\(,g,

X2

xl

Figure 1:A particle worldline. The functiotk#(7) embeds the worldline in spacetime.

As we said before, a particle istabrane, so by analogy, we can construct a generalised dction

p-brane in @ + 1-dimensional space time:

S——1, / sy ?)
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T, is called the brane tension and it's equag}jg andc<’ is related to the string length by o = g

du, is the (p 4+ 1)-dimensional volume element, which is just a generaliratibthe point particle
1-dimensionalis, given by:

du, = V—hd"* o (3)

whereh = det(hag), hag = Vuw0aX"0sX" anda, 5 =0, ..., p.

2.1.2 The Nambu-Goto and Polyakov action

Since a string is a 1-brane, it sweeps out a 2-dimensionfalcin Minkowski spacetimey(,, = 1,.),
just like a particle sweeps out a line. This surface is cattesl world sheet of the string and is

parametrised by 2 coordinate® = 7 ando! = o, as it's shown in:

* Y

Figure 2:The string worldsheet. The functiof'(r, o) embeds the worldsheet in spacetime.

Usinghas = 7,0, X*03 X", we can writeh,g as:

X2 XX/
hes = |
XX X

By taking the determinant of it, we can write the action fotrang from the p-brane action:

S=-T / dadT\/ (XX')2 — X2X7 (4)

X' is the derivative respect toand X is the derivative respect ta This action is called the Nambu-
Goto action. The problem with this action is that the squact makes the quantization hard. To get
get rid of this problem, we use the Polyakov action, whicHassically equivalent to the Nambu-Goto
action and much easier to quantize. For this, we introdueevtirisheet metrig,s(co, 7). The action

then becomes:

11



S = —T/deU\/—ggo‘ﬁhag = —T/drda\/—ggo‘ﬁaaX‘L@gX”nW (5)

We see that the square root isn’'t here anymore and a new fieltreghg*®. One should be careful

with the notationg®” is the worldsheet metric, whereas, is the spacetime metric.
The Polyakov action is invariant under:

e The Poincaré group:

XF— X" = AP, XY + o (6)

e The Weyl transformation:

9aB — Gopg = €"Gap ()

e A reparametrization of the coordinate8 — o"(¢®). This symmetry is a diffeomorphism (an
isomorphism for smooth manifolds. It is an invertible funatthat maps one differentiable manifold

to another, such that both the function and its inverse aotm

2.1.3 Equations of motion

We are going to solve the equation of motion for the Polyaketvoa, and show that it is indeed

equivalent to the Nambu-Goto action.

First, let's find the equation of motion foX*. Using the Euler-Lagrange equation, and noticing that

the action depends only on the derivative’df, we have:

o (555 =

The equation of motion foX* is then:
0a(vV=99*"0sX") = 0 (8)
When we vary the action respect to the induced metti we have:

08 = —T/dea [5(\/—g)gaﬁ8aX“8gX” + \/—g5gaﬁ8aX“8ﬁX”] un 9)

12



Using the identitys (v/—g) = —3v/—99a309*°, we find the equation of motion fgr’:
1
8aX85X = Egagg”"ﬁpX&,X (10)

We can see that if we plug this result back in the Polyakowactie recover the Nambu-Goto action.

This equation gives:

1
Tup = 0aX05X — 39059"0,X0,X =0 (11)

which is the energy-momentum tensor on the (1+1)-dimeémnoridsheet. The conditiofi,s = 0
is called the Virasoro constraint. It is a conserve currgabaiated to the translation symmetry of the

action.

2.1.4 Boundary conditions and solutions

In order to have well defined solutions, we need to precisebthendary conditions. We set the
induced metric to be flat (due to a conformal invariance ofabton). Since there two types of
strings, closed and open, we have different boundary condit We want the action to be invariant
under the shifts\# — X* + §X*. Then, when we vary the action, we have an additional boyndar
term:

o=2m

5S =T / drdo (179,05 X )5 X" — T / dr [X@Xﬂ (12)

o=0
We want this term to vanish, so we have:

Closed stringsThey sweeps out a cylinder in spacetime, so the boundawittam should be:
XH*(r,0) = X*(1,0 + 27) (13)

Open stringsHere, there are two choices of boundary conditions;

e Neumann boundary condition&"*(r, o—)\g _ = 0. It means that the string can end anywhere in

=0,2

spacetime.

« Dirichlet boundary conditions X*(r, a)\ = 0. Integrating this condition over, sets the

o=0,2m

spacetime location on where the string ends. Thereforg jgtequivalent to fixing the endpoints of

the string, and we hav@&X*(r, a)}o _ = 0. We will see later that the string ends org-brane,

=0,2
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which is a hypersurface withspace-like dimensions, and one time-like dimension.

Figure 3:The worlsheet of an open string (left) and of a closed striigh).

The solution of the equation of motiadX* = 0%0, X* = aa_; - 88722 = 0, is, in the most general
case:

XH(r,0) = Xh(r—0)+ X (7 +0) (14)

whereX; is a wave moving towards more positivand. X is a wave moving towards more negative
o. For open strings, the left-moving and right-moving wavesralated to each other by the boundary
conditions at the end points. The closed string has no entipao we work with the periodic con-

ditions defined above. Then to describe properly closedgsttie need to compactify the worldsheet

coordinater.
To solve the equations of motions, we introduce the lighteccoordinates® = 74+ 0 andd,. = 85%.
The equation of motion becomes:
0;,0_-X"=0 (15)
and the general solution then is:
X1, 0) = XR(§7) + XL(€7) (16)

Wheno — o + 27, £, and¢_ increase and decrease respectivelRtbyThe periodicity condition of

the closed string gives:

Xp(§7) + X[(ET) = XR(€ —2m) + X[(¢T + 27) (17)

14



By simply putting theg™ on the right-hand side and tige on the left-hand side, we have:

Xp(67) = XR(§™ —2m) = +X[(6" +2m) — X[(&7) (18)

The modification is quite simple but we can now see that botveware dependent of each other.
Since thef’s are independent , it means that both sides of the equatibicli are the derivatives of
X respect tf.) must vanish. So, they are periodic functions with peiadand we can write the

mode expansions:

,u,
dng+ —\/720‘%%”5+

neL

dXM w—wmné_
d&* —\Vz Za

ne”Z

Wherea* anda represent the oscillatory modes of the string satisfying:

! — o Oég —mE~
X&) =tal + \/Yahe + 52?6 £
n#0 (19)

/ [ (6 +
M + + o] E n mé

The constraint given by (18 yields to:
/ /
274 | %&g =274/ %ag‘

g = ag (20)

and therefore:

The final solution for a closed string is:

—ino _|_ O[Zezna) (2 1)

X*(r, U)—x0+\/—a07+2\/7z

n#0

15



With the definition ofP¥ (7, 0) = 22 = 79, X*, we can relate the momentuRj§' to of with:

5X

. 2 1 . 2m 9
Py =TX!= d = —af
) (7.0) | dr ) = [ o (Vaia ) = e

where the dots are the terms that vanish when we integrat&.aWwethe relation

(22)

(23)

The solution for the open string is obtained from the closeithg solution by imposing an extra

conditionX*(r,0) = X*(1,—0). In terms of¢*, we have:

XB(E) = bal — ol + \ 5 obe + 0% Z 2o
XpE) =3ah+1 /“+\/7ag€++z\/72 n e mE"

n#0

wherez{' is an arbitrary integration constant. We find:

n
XH(1,0) = zf + V2a'afT + 1V 20/ Z Zn g=int cos(no)
n

n#0

with

= V2d'P}

In the light-cone coordinates, the Virasoro constrainig ¢iives for the closed string:
T+_ - T_+ == 0

T++(£ ) (8-1-)(‘u Z Z an m* ~m Zing = f: Ene2m§+ =0

T _(§&7) = (8 X“ Z Z Ay * Q€218 = i L,e*™ =0

For the open string, we only have the constraints with uetilquantities.
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2.1.5 Quantization and the string spectrum

The pattern we follow to quantize the bosonic string is samtb the one used ion quantum field

theory, for the quantization of the scalar field. With (22§ galculate the Poisson bracket:

{P"(o,7),P"(c',7)} = {X"(0,7), X" (c',7)} =0 (28)

{P"(o,7),X" (0", 7)} =0/"é(0 — o) (29)

In terms ofaX anda#, we have:

{ar av} = {ak, ot} = mn™ dmino (30)

{ah,ar} =0 (31)

Now that we have the Poisson brackets, all we need to qudntieetheory is to replace them by
commutators a$- - - } — ¢[- - -|. By defining the annihilation operataf, = ﬁaﬂm and the creation

operator* = \/Lma’im like in classical quantum mechanics, we have:

[0, al’] = [a%,a@] = 6 (32)
(X4, PY] = " dag (33)

Since this is an ensemble of harmonic oscillators, the Fpekes is built by applying the creation
operator on the ground state satisfying:

(0[0) =1

ap,|0) = 0

and



(m|n) = dnm

There is however a problem in the construction when we lodkiata/?] = —1. This creates states
with negative norms, which make the theory inconsistertesime would have a non-unitary theory
(with negative probabilities). The Visaroso constrairgs mde of these states in the string spectrum.

One can also specify the momentéfhwhich is the eigenvalue d?}’, carried by the state:
|¢) = al al?>..al¥ |k; 0)
We now express the Hamiltonian in termslofndL. It is given by:

T . T u .
H= / do(X, P} — L) = 3 / do(X? + X"?) (34)
0 0

When we insert the mode expansions we find for the closedystrin

[e.e]

H= > (a_p ay+ 0y 0y) = Lo+ Lo (35)
and for the open string:
1 o
H=2 _Z (ap - ay) = Ly (36)

The Visaroso operators,, in quantum theory are defined by their normal-ordered espragwe

place all lowering operators to the right):

Because of (30), only, = 102+ >"°7 | a_,, -, is affected by the normal ordering. The commutator

>
of two oscillators is a (positive) constant. Therefore,deaeral form of a quantum version bf will
defer from the normal ordered one by a constant, — L, — a. We now define the physical states
Iphys) of the full Hilbert space, the states which obey the quantarsien of the Visaroso constraint,
and we have:

(Lo — a)|phys) =0 (37)
L,|phys) =0 (38)

18



The Lorentz invariance implies that the massive modes forepeesentation of the Lorentz group

SO(D — 1) and the massless modes form a representation of the Lonentp §O(D — 2).

e The open string spectrum

The mass of the open string is given by = —PZ2. With (37), (26), and the expression bf, we
get:

1 IR 1
m2:—P02:—2—a/0z2: (;a_n-an—a> ZE(N—a) (39)

T
whereN € N is called the level number.
Ground state N = 0. This state is realized when all the oscillators are in vatand it's given by

|k; 0). The mass of this state is:

m°=—— (40)

This state describes a tachyon (a particle travelling fakin the speed of light), since the mass is
imaginary. This is where we see that the bosonic string isroainsistent theory since the vaccum is

unstable.

First excited state NV = 1. The only way to get the first excited state is to apply on the vacuum:

k) = aZy|k; 0)
The mass is given by
m? = i/(l —a) (41)
o

The indexu takes its values in theD — 2) transverse coordinates (see 3.6). Thus, the stati; 0)
belongs to a vector representationsg(24). Since Lorentz invariance requires the mass to be equal

to zero, we findh = 1.

Second excited stat&/ = 2. We can obtain this state by either:

k1) = o[k 0)

which has 24 states, or

[k2) = aZya”,[k; 0)

which has% = 300 states. The total number of states is the number of stateBateless second-
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rank tensor of5O(25), which correspond to apin = 2 particle. Since: = 1, any state withV > 2

have positive mass.

e The closed string spectrum

The spectrum of the right-moving modes of closed stringesstiime as the open string and the closed
string states are tensor products of left-movers and nghters. For the left-moving modes, we have
the extra condition:

(Lo — a)|phys) = (Lo — a)|phys) = 0 (42)

Adding and subtracting them, gives the quantum constraints

(Lo + Lo — 2)[phys) = 0

(Lo — Lo)|phys) = 0 (43)

where we set. = 1. This lead us to the mass relation:

with
N=N (44)

which is again a tachyon.

First excited state N = 1. The state which is massless, is:

k) = o', |k; 0) ® &”,|k; 0) (45)

It has24? = 576 states. This tensor contain a symmetric and traceless trtransforms under

SO(24). Itis a masslesspin = 2 particle: the graviton.
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There is two big problems with the boconic string;

Firstly, both open and closed string spectrum contain aytachwhich violate causality and unitarity.
Secondly none of the spectrum contain fermion, which is afét problem since fermions are very
important in physics.

Then, one need a new symmetry to make fermions appear froomboshis is where supersymmetry

arise, and therefore we define supersymmetric strings:rsupegs.

2.2 Superstrings

Supersymmetry (SUSY), although it hasn’t been observedgatvery powerful symmetry. Indeed,
it makes string theory consistent since the spectrum of titiegs contain fermions, and is free of
tachyon. SUSY, which has been first discovered in the comtiestring theory and then adapted to

four-dimensional particles, was introduced in two diffgrequivalent way's

e The Ramond-Neveu-Schwarz (RNS) formalism, which is thgioal approach and which uses

two-dimensional world-sheet supersymmetry. In this ctseworld-sheet action takes the form:

S = —% / dE(0u X" X, — )" Oy

This is the approach we will use afterwards to calculate tloelerexpansions and the spectrum of

superstrings.

e The Green-Schwarz (GS) formalism, which uses a map that @snite string world sheet into

superspace instead of just spacetime in the bosonic strifigerefore, the advantage is to make
the spacetime supersymmetry obvious since the superspacpersymmetric by definition, and it
doesn’t require the GSO projection, needed inféS superstring to get ride of the tachyons. How-

ever, the quantization of the theory is much harder and haseh totally fulfilled yet.

2.2.1 The type of superstrings

There are five different types of superstring theories,ialhd in 10 dimensions. Type | and both

heterotic theories have” = 1 SUSY whereas types IIA and IIB hayé = 2 SUSY.

LIt might be possible that the two approaches are actuallgxaxdtly equivalent
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e Type I: This is the first superstrings theory. It is only oneiabhcontains both closed and open

strings, but they aren’t oriented (they have the same dtyiyalhe symmetry gauge group8)(32).

e Type lIA: For closed strings, there are two ways to chooseltimlities of the left and right moving
modes. If we choose the chiralities to be of opposite sigren we have type IlA. It containB,-

branes withp even. it is the strong limit coupling of Type II1A

¢ Type IIB: This is obtained by chosing the same chirality fog tnodes. It contain®,-branes with
p odd.

e HeteroticEs x Eg andSO(32): The heterotic strings theories are the most promisingsordiing

the physical world. The original thing here is that it uses thrmalism of both 26-dimensional
bosonic string for the left-moving modes, and 10-dimensisuperstrings for the right moving
modes. The gauge groups naturally appear when we comp#utifgxtra dimensions. The only
possible tori which have the required properties for thethe¢o be consistent must have the Lie

algebraFg x Eg or SO(32).

2.2.2 Dualities

e T-duality: This duality, which is a perturbative dualitelates two different theories that were
thought to be unrelated, by saying that the geometry of thra e&kmensions are physically equivalent.
Every theories that are related by this duality should dlstioe considered as only one. It relatBs
toR = % For open strings, it interchanges the usual Neumann boyrdaditions with Dirichlet

boundary conditions. The types of superstring related bythuality are:
T:1IA« IIB

T : FEg x Eg < S0O(32)

e S-duality: Also called Strong/weak duality, it is a dualihat relates the string coupling constant
gs to gy = gi This is therefore a non-perturbative duality and allowgebnon-perturbative results

from a perturbative analysis. The different theories esldity S-duality are:

S:IIAHESXES;
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S: 1+ SO(32)
S:IIB— IIB

We show in the next chapter, how T-duality arises from clamedi open strings, and how in the case

of open strings, it implies the existence of D-branes.

2.3 RNS superstring

The study of superstring theory is not much different from bBosonic string, and we are going to

follow the exact same pattern.

I recall the action of the RNS superstring given earlier:

T a H a
s=—5 [ Ee@x0x, - T o) (46)
wherep®(a = 0, 1) are 2-dimensional Dirac matrices and satisfy the algépfas®} = 2n%. We
have included Majorana spinors which belong to the reptasien of the Lorentz grouppO(1,9)
(since we are in 10 dimensions). This action is invarianturichnslations and supersymmetry trans-
formations:

O XH =€t
Ot = p*0, X" e 47)

wheree is the parameter of the supersymmetry group transformséiod is an infinitesimal Majorana
spinor.
The bosonic fields\* still possess the commutation relation (29), and the spistatisfy the anti-

commutation relatiod¢*, v*} = 0. The spinor) is a Majorana spinor and has two components

w1V
oA

We have the conditiom™* = 1 in order to keep the action real. The fermionic part of theoact
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written in terms of the spinor components is:
P p Oty = YO + PhLO_yl (48)
The equation of motion are in fact the massless Dirac equsitio
ot =0_Yi =0 (49)

wherey” is the the right-mover and, is the the left-mover and satisfy the anticommutation refat

{i(o,7), 9L (o", )} = 7n*6(1,-)0(0 — o) (50)

Like the bosonic string, we have the Virasoro constraints. still have the current associated to the
translation invariance, but since we have a new (super)stmnwe have an additional current , as-
sociated to the invariance of the action under supersynyrtraimsformations (47). Their expressions

are:

1— 1—
Ty = 0, XHO,XH + Z@D”paﬁbwu + Z@D”pbﬁa@bu — (trace)
1, 4
Jo = §p paw,uabX (51)
When we use the light cone coordinates, we find and7_. identically equal to zero and the

non-zero components of both currents are:

Ty =04 X0: X + 5910,9,. =0
(52)

T =0 X0 X+ 0 ¢ =0

Jo = 10.X, =0
oo (53)

J_=¢"9_X, =0
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2.3.1 Boundary conditions and solutions

Lets now find the expression of the mode expansion of thegstriWwhen we vary the action (46)
respect ta)_ and« ., we find that it vanishes if they respect the Dirac equatisemgabove and we

have the condition:
5 = [ dolidin —vo50-], Ly, [0~ v-50], =0 (54)
Open stringsThere are two possibilities, corresponding to the two aidke strings:
P (o, 1) = £ (0 + 27, 7) (55)

The sign is a matter of convention, so we can set the sign-at) to be+. At the end of the string,

there are still two possible choices:
e Ramond (R) sector)!} |,—2. = " |,—2.. This gives the fermions.
e Neveu-Schwarz (RS) sectr; |,—o, = —t"|,—2,. This gives the bosons.

Given the two different types of boundary conditions, wenthave two different ways to expand the

spinor fields in Fourier series:

w,u O' 7_ Zbu —r(T—0)
R: rez (56)

w_’_ o, 7_ \/_Zbu —r(T+0)

reZ

Vlom) =L Y per
NS : rezZ+1/2 (57)

¢+ o, 7_ Z bu —r(T+0)

r€Z+1/2
Closed stringsThe boundary conditions, like the open string, give tworfienic modes; left-moving
sectory’ and right-moving sectop”. There are two possibilities for periodic conditions to make

boundary term (54) vanish:

Vi(o,7) = £¢h(o + 2m,7) (58)
A positive sign gives periodic boundary condtions whereasgative sign gives antiperiodic bound-
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ary conditions. We can decide to give the left or right movtre periodic (R) or antiperiodic (RS)

conditions. Thus we have for the right-mover of the closeidgt

¢u O' 7_ Z b,u —2ur(T—0) (R)
or ret (59)
V! (o, 7) Z pre=2r(r=o) (NS)

r€Z+1/2

and for the left-mover:

¢+ o, 7_ Z b,u —2ur(T+40) (R)
or rek (60)
w+ o, 7_ Z bu —2ur(T+0) (NS)

reZ+1/2

Since we can pair together any of the sectors, we have fotareiift combinations for the closed

string, and their correspondant particle states:

R-R: Bosonic
NS-NS: Bosonic
R-NS: Fermionic

NS-R : Fermionic

2.3.2 Quantization and the superstring spectrum

Now we need to do the canonical quantization of the supegssince we have only classical su-
persymmetric strings. The procedure is similar to the bimssining quantization. The oscillatory
modes in the expansion obey the same comutation relatigra3the bosonic string. Similarly, for

the fermions the anticommutation relation (50) becomesiims of the oscillatory modés:
{bﬁv bg} = 77lul/6(7“-|—570) (61)

One should be careful with the (same) notation we've beeargusid not be confused with the Poisson
brackets for classical bosonic fields, and anticommutdtmr®oth classical and quantized spinor

fields.
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One can also notice that, like in the bosonic string, we hagative nhorm states because of the
spacetime metric{® = —1).
We now calculate the expressions of the constraints (52f%8)dn terms of the oscillatory mod#,

andbk:

T, ., = Z |:% Z Oy, * Oy + i Z(er _ nﬁ;n—r ET] e 2mET i zne—zmg—

n:o;oo m:oo r n——oo (62)
T _ = Z [% Z O, * Oy + i (2r —n)b,_, - br] - Z L, e 2ms

J+_Z[ Z a, - T_m] e ZG e

e (63)

N S Y

This is used to determine the string mass like in the bosdriimgscase. The physical statgsiys)

satisfy the conditions:

(Lo — a)|phys) =0
L,|phys) =0
G,|phys) =0 (64)

wherea is equal ta) in the R sector and} in the N'S sector. The first one gives the mass:

223,[(2(}_” ot Y b, b)) = é(N—a) (65)

r>0

To construct the spectrum, we have to considerihaend N'S sectors independently. The ground

state|0) must be annihilated by the annihilation operator in bothsc
ah |0) =b40) =0 forr,m >0 (66)

Open string spectrum in the NS sector
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Ground state:N = 0. The ground state has a mass:

m? = _ 1 (67)
20!

which is a tachyon. It is a unique ground state which corredpdo a state of spif. The excited

states are obtained by acting raising operators and aréassms.

First excited stateN = % The reason why this state ¢ = % and notl is because to construct the
first excited state we need to apply the raising operator thgrsmallest value or n. Then the good

operator i, ,, and the state is massless. Itis a vectos of(8).

Open string spectrum in the R sector

With (61) we get{by, b5} = n**, which is similar to thel0-dimensional Dirac algebrfl™ T"} =
21", up to factor2. Hence, We defing; = %F“ and conclude that all the states that these operators

act on arel0-dimensional spinors and then are fermions.

Ground state:N = 0. To analyze the ground state, we have to take into accourgupercurrent

constraint/_ (63) and the last condition in (64). The zero mode part aof #(0) obviously obeys:
Golphys) =0

with Gy = ag - by + Z a_, - b,. Since we have identifielt' with T'* andc, with pj, and since the
n#0
physical fermionic ground stat®;) is defined by (66), we find that it satisfies th@dimensional

massless Dirac equation:

ag - bo|0s) =0 (68)

Then, the fermionic ground state is a massless Dirac spinidr dimensions. The ground state in the
R sector is a 32-component spinor sirigas a32 x 32 matrix. In ten dimensions, one can impose
both Majorana (spinor equal to his complex conjugate) angd @ndition on spinors. Then, there are
two different ground states which have two possible chiesiand then is degenerate. This condition

gives rise of two different theories as we will see aftervgard

First excited state:N = 1. Here since the value of andn are the same, the first excited state is

obtained by applying either_, or b_; on the ground state. The state has a ma%s- ai
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2.3.3 The GSO projection

We said at the start of this section that supersymmetry gedfrthe problems encountered in the
bosonic string. This is not quite done yet because althouglidevhave fermions and bosons, the
ground state of théV'S sector is a tachyon. Besides, one can see that the spectnohspacetime
supersymmetric since there is no fermion with the same nma#iseatachyon. An operation which
consists of projecting the spectrum in a particular allovwaugemove the tachyon from the spectrum.
This operation is called th&'SO projection noted Pgso was introduced by Gliozzi, Schrek and

Olive. The physical statdphys) are replaced b¥sso|phys).
NS sector

In this sector, the projector is defined with:

Pgso = %(1 - (—1)F) (69)

o0

wherel’ = Z b_, - b, is called fermion number operator. This is different fromazenly if F' is
r=1/2
odd. Then, the projector keep only states with an odd numbg&s and remove those with an even

number. The ground state which has no an even nurfbiereliminated, and the first excited state

becomes the ground state witi¥ = 0.
R sector

The expression of the projector is the same as before, buieti@tion of /' changes:
Paso = 1(1 - (—1)F) (70)
GSO 9
where(—1)F = £I'! . (—1)2>1%—" is called Klein operator anf'* = I'°T"*..I"?, (I'")2 = 1 and
{T», T} = 0. The spinors that satisfy:
[ = £ (71)

are said to have positive or negative chirality and the tihjraperator isP, = 1 4 I''%,

The "new” ground state/{'.S) bosont” /2|0> is massless and hds — 2 = 8 polarizations (corre-

sponding to the number of transverse dimensions in the DLEX3%). The ground stat&) fermion
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04) is @ massless Majorana-Weyl spinor and fi23/? = 8 polarisations (a fermion i dimensions
has2”/? components and the Majorana and Weyl conditions each dikiel@umber of components
by 2). Hence the number of fermions and bosons are the samequ@ised by supersymmetry, have

the same mass and then form a supermultiplet.

Closed string spectrum

As mentioned before, there atgossible sectorsv.sS — NS, NS — R, R— NS andR — R. We can
choose the right and left moving sectors ground sates to have the same or opposite chirBiy.

correspond tQ different theories:

¢ Type 1IB: We define the type 1I1B theory with the left and righbwing sector ground states to have
the same chirality, chosen to be positive. Therefore theRwsectors have the same parity. Let us
denoted them bj0 ;). In this case, the ground state (massless) in the type Ii&dlstring spectrum
are given in theR — R sector, by the tensor product of the ground state iniRlsector with itself:
07) % ®107) % (72)
Inthe NS — NS sector, the ground state is the tensor product of the "neatiiga stat%il/2\0>Ns
(after the GSO projection got rid of the tachyon) with itself
521/2‘0>NS ® bj_l/2|0>NS (73)
In the NS — R sector, the ground state is the tensor product of the "newtin state in théV.s
sector and the ground state in tResector:
fgi_1/2|0>NS ®10s)% (74)
In the R — NS sector, the ground state is the tensor product of the grotatte s theR sector and
the "new” ground state in th&/ S sector:
107)% @ b1 200) s (75)

All these states are massless.
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e Type llIA: The left and right moving? sector ground states are chosen to have opposite chgalitie
The massless states in the spectrum are irktheR sector the tensor product of the two ground state

both in theR sector, but with opposite chirality:

07)7 @ 105) % (76)

Inthe NS — NS sector, the ground state is the same as in type IIB:

b1l 0 s ® B ]0) s (77)

In the NS — R sector, the ground state is the tensor product of the "newl state in theVs

sector and the ground state in tResector with positive chirality.

311/2|0>NS ®105) % (78)

In the R — NS sector, the ground state is the tensor product of the grotate i theR sector with

negative chirality, and the "new” ground state in tN& sector:

07) % @ bL12]0) ns (79)

The massless spectrum of each Type Il closed string conhtdajorana-Weyl gravitinos and therefore

they form = 2 multiplets. There aré4 states in each of the four massless sectors:

e NS-NS This sector is the same for both type IIA and IIB. The speuteontains a scalar called
dilaton (one state), an antisymmettéidorm gauge field ¢ = Szﬂ = 28 states) and a symmetric

traceless rank-tensor, the graviton(= 12< = 35 states).

 NS-RandR-NS: Each of these sectors contain a spjf gravitino (v = 226 = 56 states) and a
spin1/2 fermion called dilatino{ states). In lIB, the gravitinos have the same chirality, whereas in

[IA they have opposite chirality.

eR-R: These states are bosons, obtained by tensoring a pair airdhag-Weyl spinors. In the 1A
case, the Majorana-Weyl spinors have opposite chirality and oneiobta1-form (vector) gauge

field (8 states) and a-form gauge field 6 states). In the 1IB case ttieMajorana-Weyl spinors have
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the same chirality and one obtaing)dorm (scalar) gauge fieldl (state), &-form gauge field 8
states) and a-form gauge field with a self-dual field strengtib(states). Because of the self duality

of the field strength, the number of states is divide@by

Everything is summarize in the following:

NS-NS R-R

WA | g &, B | AP, AR,

B | g, &, B | A© AZ) AL,

2.4 M-theory
2.4.1 Relations to superstrings theories and supergravity

The following drawing shows pretty much everything we kndwoat M-theory which is an 11-

dimensional theory.

strong/weak strong/weak
1 M 1
m j/ \S 1Z3 m

D = O
N (L

T T

Figure 4:Relation between M-theory and Superstrings theories.

o M-theory with a longitudinal coordinate'! compactified on a circlé® gives the 10-dimensional
Type IlA string theory. We also say that it is the strong caupllimit of Type IIA and Heterotic
Eg x Eg

oll-dimensional supergravity is the low energy limit of Medtny.

o M-theory compactified on a torus is dual to Type |[IB compaetifon a circle.

o In the non-compactified limit, it doesn’t contain stringsit la three-form gauge field; and M-
branes. Such fields can couple to the M-branes, electritallyV/2-brane 2-dimensional super-
membrane), and magnetically told5-brane. From its relationship with supergravity, it mustoal
contain the graviton (bosonic field withh components), the gravitino (fermionic field witB8 com-

ponents) and tha-form potential (bosonic field witB4 components).
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2.4.2 D-Branes

We just show here how T-duality imply the existence of D-lesmnin the next chapter, we’ll present

some aspects of D-brane dynamics.

T-duality for closed strings Before talking about T-duality, we need to introduce theiorobf
winding number. This notion appears when we compactify trameter of the string on a circle

to get a cylinder.

The periodic condition then becomes:

XH¥(r,0+21) = X¥(1,0) + 2rmR (80)

whereR is the radius of the cylinder on which the string is compaatifon, andn is the winding
number which correspond to the number of time we wind thegtaround. Since the cylinder is

oriented;n can be negative. One can define the winding number £ and get:

a/

XH(r,0+2m) = XH(1,0) + 2rd’w (81)
The expansion (19) still holds, but, is not equal tax, anymore. (81) gives the new condition:
o o -
o2 2 a0 = 2 2 +2o2rdw = ay— oy = V2w (82)

For non-compact closed string we find the momentum:

1 27 . . 1
— do(X! + X¥) = — i 83
D= Jy LX) = ot ) ®3
The full coordinateX (7, o) is:
a/ 6_277/7- ~ —tno mao
X(r,0) = 2o + a'pr + o'wo + 3y ) E#O " (ae + a,e™) (84)
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Solving (82) and (83) simultaneously, we get:

Qg = \/%(p —w) (85)
Qy = \/z(erw)

The mass of a given string state is given(y)® + (ao)*. Let us consider now the operater*?
which translates states along the directiony a distance:. If one decides to compactify’, thenz®
lives on a circle of radiug, the translation operator that translate2ay? has no effect on the states.

Thus,e~*>*Fr is a unit operator, and then the states have momentum aldhagt is quantized and

take values:
p= %, nez (86)
Using this result, (85) can be written as:
ap = &’(ﬂ _ n;f%)
2 \R (87)
ao =/ T (% + 2%

The T-duality is now obvious; (87) is invariant under the gitaneous exchanges:

O{/

= — 88
n—m , R—R 7 (88)

T-duality for open strings Here again, the expansion (25) still holds, and the momentum

quantized in the same way as the closed stpirg . With (24), we define)N(“(r, o) as:

)?”(7', o) =X{(1,0) — Xi(7,0)

and find:
~ , ok
XH(1,0) = x3" + V2 oo + V2! o Z —e " sin(no) (89)
n
n#0
For (25), we had the boundary conditionX*(r, a)}azo ,. = 0, which is Neumann. For (89), the
boundary condition is no longer Neumann, but Dirichlet sime haved, X*(r, ‘7)‘0:0 o, = 0.1n

other words, a Neumann boundary conditionors equivalent to a Dirichlet boundary condition for

X.
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When we compare:

XH(r,2m) — X*(7,0) = V2o/al'r = 2ralp = 27‘(‘0/% (90)
and
X*(r,2m) — X*(1,0) = 2w Rn (91)

we see thaf{ and X, are equivalent undeR «— R’ = %. Therefore, we can conclude that the T-
duality swaps the boundary conditions of a string. We havepaxtified only one dimension. So the
string ends are free to move in any of [(p+1)-1]-dimensiohg are not T-dualized. They constitute

a p-dimensional hypersurface calleg-brane.

Figure 5:0pen strings ending on B,-brane

2.5 A non-perturbative formulations of M-theory: the AdS/CFT correspon-
dance

We briefly present some aspects of the AAS/CFT duality. Befalking about the correspondance,
we introduce the notion of Conformal Field Theory (CFT) anmttiAle Sitter (AdS) space.

2.5.1 Conformal field theory

A conformal field theory is a field theory which is invariantden conformal transformations. A
conformal transformation is used to transform an infinitgepinto a compact space. One can see it

as a stereographic projection:

The physical manifolds is essentially the stereographic projection of the compaamifold S. It

conserves the metric up to a scale. We also call it confororapactification. The metrics associated
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Figure 6:The stereographic projection 6f in R?

to each manifolds are related by a conformal factor) which to be determinated by the equation
Guw = w?(x)g,., Whereg,, is the metric corresponding to the flat space gnthe metric of the
compactified space. One should not make the confusion betaveenformal compactification and

the Weyl transformation, where the factodoes not depend on the coordinates.
As an example, we calculate the conformal factor of the foanmationR? — S3.

The standard metric &P is:

h = dip* + sin® 1pdf? + sin® 1 sin” Odp? (92)

The metric ofR® is h = da? + dy? + d2? in Cartesian coordinates. In spherical coordinates it's:

h = dr? + r*d6? + r? sin® §dp? (93)

With0 <y <7, 0< e <2r,0<0<7

We can see that to statisfied the conformal equationust be a function of. Hence:r = r(¢)) and

dr =r'dy

w A (r?dy? + r2df? + r? sin® 0dp?) = dip® + sin® d6* + sin® ¢ sin® fdp” (94)

2,02 _ 1
(95)
w™2r? = sin® ¢
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By solving this equation we get the valuesof £ tan % with £ € R. Thanks to the system, we can

havew:

, sin’y
w =
r2
r _k:tan%_ k

w =

sing  sintY 14 cosy (96)

An example of conformally invariant field theory is Yang-Miltheory. It is also invariant in its

guantum version if we have the conditionséf= 4 in 4-dimensions.

2.5.2 Anti-de Sitter space

An AdS space is a maximally symmetric (same number of synmesesis ordinary Euclidean space)
spacetime geometry, with negative scalar curvature amdasy SO(2, p). It is the Lorentzian ana-
logue of p-dimensional hyperbolic space (Riemannian noéhifith constant sectional curvature -1).

On the(p + 3)-dimensional space with the metric:

p+1

ds’ = —dX3 — dX]},, + > X} (97)
=1

the (p + 2)-dimensionaldds,,» can be represented by the hyperboloid:
p+1
R = X2+ X2,-Y X? (98)
=1

With the coordinate transformation:

Xo= RcoshpcosTt

Xpt2 = RcoshpsinT (99)
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p=c p=w0

Figure 7: AdS, ., space as a hyperboloid iR*?*!, with closed timelike curves along thelirection.

wherep > 0 and0 < 7 < 27, the metric 0nAdS, 1 Is:
ds* = R*(— cosh® pdr* + dp? + sinh? pdQ?) (100)
We see that whep = (. A serie expansion leads to a metric with the topologybf RP+!:
ds* = R*(—dr* + dp* + p*dQ?)
We introduce another coordinatetan 6 = sinh p, with 0 < 6 < 7, and transform the metric to get:

2

R
ds* = e 9(—d7'2 + df* + sin? 0dQ?) (101)

We see that the metric is conformally related to the Eingtitic universe. ThereforeldS, ., can be
conformally mapped into one-half (sinée< 7) of the whole Einstein static universe. We need to set
the boundary condition &= 7 to make the Cauchy problem (initial data value problem) wefied.

In general, if a spacetime can be conformally compactifiemlarregion which has the same boundary
structure as one-half Einstein static universe (has a emetrine form like (101)), the spacetime is

called asymptotically AdS.

2.5.3 The correspondence

The ADS/CFT (also called Maldacena) correspondance [8§|dates that there is a complete equiv-

alence between conformally invariant quantum field thesosied superstrings theory in a special

38



spacetime geometry. A collection of a large numbBeof coincidentp-branes produces a spacetime
geometry with a horizon (like a black hole horizon). Near hlogizon, this geometry can be approx-
imated by a product of an anti-de Sitter space and a compauaifatth(like a sphere). The main
example of this correspondence is obtained by conside¥irmpincidentDs-branes in the type 11B

superstring theory. Then, we have the equivalence between:

e N = 4 SYM theory in 4-dimensions, with gauge groSp’(/N) and coupling constant ,,;, which
is a gauge theory known to be conformally invarian it 1 dimensions.

e The type IIB superstring theory in 10 dimensions,&hS; x S°, where both4dS; and.S® have the
same radius and where the string coupling.is- g%,

One of the feature of the duality is the identification of teemetry group of AdS to the conformal

symmetry group of the flat space.

(@) (®) ©

Figure 8:From left: Single D-brane; well separated D-branes; coaemt D-branes

The ADS/CFT conjecture is that type IIB, in thelS; x S° backgroundis dualte/ =4, D =3+ 1

SYM with gauge grou'U(N). | present here how the conjecture arises:

The brane action is defined on tBet 1 dimensional brane worldvolume of Type 1IB superstring
theory, and it contains th& = 4 SYM Lagrangian, which is known to be conformally invarialRtr

a Ds-brane, the action is:
ds® = fV2(=dt? + da? + dx? + dad) + F2(dr® + r2dQ2)

f=1+—7% (102)

with R* = 47g,a/?N.
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In the near horizon region where< R, f can be aproximate by = ’f—f, and the metric becomes:

2 2

R
L (—df? + da? + da? + dad) + —dr® + Rd0; (103)

d82 = ﬁ(

Which is exactly the geometry ofdS; x S°.

We have just presented here the general idea of AdS/CFT amdh@correspondence arose in the
first place. It is a very wide subject and it exists much morgespondences in addition to the
one presented here. Although it has been proved to be vefylusenot the only non-perturbative
formulation of M-theory. We now turn to the main subject; téatrix) models, an alternative to
AdS/CFT. Although they don’t have the same properties, wesee at the end of the chapter what

are the connections between them.

3 M(atrix) models

We said earlier that M-theory doesn’t contain strings but 2d M5-branes, which make the theory
very complicated. However, one great conjecture statesMkieory reduces to a simple matrix
model, which is a supersymmetric quantum theory with mategrees of freedom. In the case of
the BFFS model, these degrees of freedom turn out tbpbranes. We review the different models
BFSS, IKKT, and NBI, how they are related to each other, homcoonmutative geometry arises from

these relations and what are the connections to AdS/CFT.

3.1 The BFSS model

This model which has been the first to be developed by Ban&shker, Shenker and Susskind [5], is
based on the idea that M-theory can be described in the mfimitmentum frame (IMF) by a theory
where the only dynamical degree of freedom &xgbranes. The key idea is to interpret thepace
dimensions (theX" fields) of theD,-brane matrix model as the transverse dimensions of anreleve
dimensional theory in the IMF. We start by introducing theAMnd the D-brane effective action.

Then, the appearance bf-branes as dynamical degree of freedom is discussed.
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3.1.1 The Infinite Momentum Frame (IMF)

This frame was introduced by Weinberg, to simplify problemgerturbative quantum field theory.
It is a frame which is highly boosted in the momentéhdirection until it becomes much larger than

any other momenta in the problem.

In M-theory, we separate the components of the eleven diimesiscoordinates in three parts:
ot = (t, 2", ') (104)

wherei = 1,...,9. This coordinates are called the transverse coordinatts@metimes written as

x. We compactify the longitudinal coordinaté' on a circle:
ot =2 +27R (105)

Since in the IMF we boost along longitudinal momentuih the great advantage is that only positive
p'! matter whereas the zero or negative ones do not appear. ldgveelsoost is not a symmetry of
Lorentz invariant theories which have been compactifiethéndirection of the boost, so the Lorentz
invariance in M(atrix) theory is no longer explicit, if dtgresent. We have the same condition (86) as
before, due to the compactification:

p== (106)

with N an integer stricly positive. In order to recover theditnensional M-theory we need to un-
compactify, with the conditions:
N
R — o0 and 7 (107)
The other great advantage of working in the IMF is that it heimasverse Galilean symmetry, which
leads to a nonrelativistic form of the equations. For exanihle Galilean transformation for trans-

verse momenta is

p—p+pth (108)

- . - - . - - 2
and the energy of a massless particle boosted in the lonigatudirectionz!! is £ = 24;. We see
2p

that the longitudinal momentupt! plays the role of the mass in the IMF Galilean theory.
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3.1.2 M-theory, Type IIA and the conjecture

By definition, 10-dimensional Type IIA is equivalent to 1iménsional M-theory with a dimension
compactified on a circle with the radius of compactificatidonr- 0. Given this relationship, one can

relates objects in both theories to each other. The cornelgmees include the following:

1. The string coupling constant is related to the radius ofactification by:
R = ¢*51, = gl, (109)

2. The photon of lIA in the R-R sector is the photon called kaklKlein photory,;; which arises

from the compactification in eleven dimensional supergyavi

3. The only objects in the theory which carry R-R photon chae theD,-branes. They are point

particles (in 10D) which carry longitudinal momenturdy = %.

ConsequentlyD,-branes are good candidates to be the dynamical degreeseafoin (parton) of
M-theory in the IMF. Since the dynamics of D-branes is goedrthe reduction of SYM theory to
p + 1 dimensions (or by the Dirac-Born-Infield action in a purebsbnic theory), a collection a¥
Dy-branes is described by-dimensional/ (V) SYM reduced td) + 1 dimensions, i.e. byV x N

hermitian matrix quantum mechanics. The conjecture fatow
M-theory in the infinite momentum frame (IMF) is exactly &gient to theN — oo limit of D,-

branes supersymmetric matrix quantum mechanics, destoipthe 10-dimensional(N) SYMN =

1, reduced to 0+1 dimension

3.1.3 D-Brane action from dimensional reduction of 10D Super Yang-Mills

It was shown by Leigh that the equation of motion foDabrane in a purely bosonic theory are
precisely those of the Dirac-Born-Infield action. The aledynamics on a fluctuating,-brane, in

an arbitrary background, is described by the action:

T,
SDBI =_r /dp+1£\/—d€t(gag + Ba,@ + QWOZ/Fag) (110)
9

s

whereg,s and B,z are the pull-backs of the spacetime supergravity fields ¢a/tjrbrane world-

volume. If we make some assumptions, this action can be #ietpl We conside3,s = 0, the
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spacetime background flat so that = 7,,, and the geometry of the brane flat as well. The pull-back

of the metric on thé,-brane is now:
9o = Nap + 0aX 05X, (111)

and the DBI action (110) becomes:

T,(2ma’)?

SDBI = - 4g

e 2 a 1
/dp+1§ [FagF d + W&IX 85Xa - g—j + 0(F4) (112)

where(a, ) =0,...,panda = (p+1),...,(D —1).
This is the action for &/(1) gauge theory irfp 4+ 1) dimensions with 9 — p) scalar fieldsX“. Itis

actually the action that would result from the dimensioealuction to(p + 1) dimensions of abelian

Yang-Mills theory in 10 dimensions with action:

1
Sym = —— / d"zF,, F*™ (113)
49y v
if we identify the coupling constants:
s
Gym = T,2ra P (114)

This lead us a generalization to a non-abelian supersyroceise:

The low energy dynamics of parallel coincidentD,-branes in flat space is described in static gauge
by the dimensional reduction tp + 1)-dimensions alV" = 1 supersymmetric Yang-Mills theory with

gauge groud/(N) in ten dimensions, with action:

1

4912/M

Ssym = / dz Tr [ — FW F™ 4+ 20 "D,y (115)

where the covariant derivative 13,1y = 0,9 — 1[A,, ], ¥ is a Majorana-Wey! spinor ofO(1,9)

in 10 dimensions, and the field strengthfis, = 0,4, — 0,A, —1[A,, A,]. This action is invariant

under SUSY transformations:
1

6 =5

el 1 (116)

43



b = 3 Fyu [, TV]e (117)
Now we can construct a SYM theory ji+ 1 dimensions, which is thé,-brane action, by dimen-
sional reduction of tha0-dimensional SYM. This is done by assuming that all the fieldsare
independent of coordinatest 1, ..., 9. Then, thel0D field A, decomposes intfp + 1)-dimensional
U(N) gauge fieldA,, with m = 0,...,p, and and9 — p scalar fieldsX?, with transverse indices
i=p+1,...,9. If we consider the bosonic part of (115), we get that thengfite field tensor decom-
poses as:

F =F, +F.+F; (118)

On the brane, there is no dependance ontheso the derivatives in thedirection vanish:

Fon = OmAy — 00 Ay +1[An, Ay (119)
Fri = OnX; + 1[Am, X;] = D X, (120)
Fij = [ Xi, Xj] (121)
We get:
Sp, = —M/d”l{ Tr [F F™ 42D, X'D™X; + [X; X—]z] + fermions (122)
Dy 4 mn m i Qs <N

3.1.4 Dy-Brane mechanics

From the previous subsection, we know that the dynamic¥ dp,-branes in the low energy limit
in flat 10-dimensional spacetime is the dimensional reductioA/of= 1 SYM in 10 dimensions to
0 + 1 dimension. Thel0 dimensional gauge field,, splits into9 transverse scalats™, and one
dimensional gauge field,. We get a supersymmetric matrix guantum mechanicfs andd’s in

the adjoint representation 6f(/V) with the Lagrangian:

) ) 1 ) . .
Lp, = Tr|DoX'DoX" + 20" Do) — §[X’, X2 —20",[0, X ’]] (123)

1
295V !

where we have used the following:
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0
) = , IS a Majorana-Weyl spinor artlis a real 16 components spinor. The gamma matii¢es
0

are real symmetrit6 x 16 of SO(1,9) given by:
1—\0 — FZ —

From (119), (120) and (121), we had:
Ej = Z[Xi, XJ] FOj = 80Xj + ’L[Ao, XJ] = D()Xj (124)

ng = Z[XZ', 9] D09 = 8()(9 + Z[A(], 8] (125)
Changing the units to those whdte= v/o/ = 1 andl, = 1, and introducing:

i X'’

which is more convenient for the 11-dimensional intergrem (123) becomes:

1
2R

Lp, =Tr < DY'DY* — ZRM[YZ, Y2~ 0" D6 — R0 [0, Y’]) (127)

whereD; = 0, + 1Ay. One can simplify (123) by choosing the gaudge = 0. The Hamiltonian,

written in 11 dimensions, associated to (128) is:

1 1 |
Hpo = Ru Tr [in,-n,- + VLY + 0T l0, Y (128)

wherell is the canonical conjugate 10, and half of the&/’s are canonical conjugate momenta of the

other half.

45



3.1.5 M(atrix) theory objects: supergravitons and membrares

e Supergravitons The simplest states of the Hamiltonian is when the matfi¢eare diagonal

with only one nonvanishing component andédl equal to zero. Then we get:

=L (129)

wherep; is the energy eigenvalue oF;,. This corresponds to a singlg,-brane. Each of these states
are accompanied by the fermionic superpartners and thay darepresentation of the algebralof
0’s with 26/2 = 28 = 256 components. This is exactly the number of states of the gugéton in

11D supergravity arising from the graviton, the 3-form and thevgino (256=44+84+128).

A more general eigenstate has a form of the diagohal N matrix:

yi— . (130)

where the diagonal matrix elements are the coordinateseabghbranes. It describes a state §f
supergravitons, where the matricgé§ are NV, x N, matrices and the longitudinal momentum of the
kth graviton isp = N/ R.

e Membranes Since M-theory is the strong coupling of type IIA, it must banembranes in
its spectrum. We use two different ways to show of membrareeslatained from the M(atrix) model

action (128).

First, we see how we can get the supermembrane action frobteane action. It was Townsend
who first pointed out the connection between these two anidisai a membrane should be considered

as a collection of),-branes. To make this connection, we use the following:

We begin with a pair of unitary operator, IV with the relations:
27

UV =e~ VU

UN =1, VN =1 (131)

46



U andV may be written as exponential of canonical variablesndgq:

U=¢e?, V=e" (132)
satisfying the commutation relation:
2
=" 133

They can be represented onVadimensional Hilbert space, where they form a basis suchaimat

matrix Z can be written as:

N

n,m=1
One can interpret these coordinates in terms of the quantechamics of particles, with coordinates
p q, on a torus. Therefore, due to the commutation relatiomaridg, the space is sometimes called
"noncommuting torus”. In the limit of largé/, the noncommuting torus behaves like a phase space,

and we have the correspondance between the two spaces:

* The trace of an operator is replaced Bytimes the integral over the torus:

TrA — N/dpqu(p, q) (135)

« The commutator of two operators is replacedlBy times the Poisson brackets:
1 1
[A, B] — N{A’ B} = N(anapB — 0,B0,A) (136)

If one promotes™ andé of (128) as operators depending pandq and operates the changes, one

gets the Lagrangian:

L= % / dpdg(Y"(p,))* — pi / dpdq(0,Y'9,Y7 — 9,Y79,Y")? + fermions ~ (137)
11

and the Hamiltonian:

1 1 . . . ‘
H = S /dpqu?(p, q) + — /dpdq(anlﬁpYJ —90,Y70,Y")? + fermions (138)
P11 P11
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which exactly the Hamiltonian for thel D supermembrane in the IMF [58].

Another way to see the emergence of membrane is from theadhsguations of motion:
Yy yi=o0 (X", 700] = 0 (139)
An infinite membrane stretched out in tReY plane is given by:
V® = RyVNp , Y? = RyVNq (140)

and all other Y’s and)’s are equal to zerop andq are infinite dimensional matricesV( — oo)
satisfying (133), and?s and R, are the compactification radii. Since the commutatoy dfandY™

is equal to a complex number, the equations (139) are sdtisfie

One can compute the tension of the brane in both M(atrix) anthédry, to check whether they
match, which could be a first step in the proof of the conjectdihe calculation done in [5], shows

that the tensions actually agree.

3.1.6 The symmetries

The Hamiltonian (128) has a Galilean symmetry, which onesesnby defining the center of mass of
the system by:

Y(em.) = %TTY (141)

A translation is defined by — Y + cl, wherec is a constant (adding a multiple of the identity
to Y).This has no effect on the commutator because the identigmmutes with ally’, and has no
effect on the equations of motion. Similarly, the Hamilmhas a rotation invariance. The center of

mass momentum is defined by:

P(c.m.) =Trll = %Y(c.m.) (142)
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With the expression gf;; = 2%, the momentum reaés

P(c.m.) = pyY(c.m.) (143)

A Galilean boost is defined by — Y + ¢I, wherec is a constant (adding a multiple of the identity
to V). This once again has no effect on the equation of motion celgime whole Hamiltonian has a

full Galilean invariance.

The Lorentz invariance is broken because a boost is not a symypf the IMF. In M(atrix) theory,

it has not been proved yet, and there are actually very éttidence of it. However, in [6] the model
has been used to describe the properties of the Schwasthdk holes in7 + 1 dimensions, by
describing it as a Boltzmann gas madelaf-branes. Compactified dfi* and with the assumption
N ~ S, it properly describes the energy-entropy relation andtaeking temperature. Their results
actually rely on the Lorentz invariance of Matrix model, winiis investigated further in details in
[23]. They consider the Hawking radiation in Matrix modet fbe caseV > S, and get the correct
evaporation rate of the black hole. Their result about Hagykidiation is independent of the boost

parameter, and thus, gives support of the Lorentz invagiahthe Matrix model.

Also, in [3], they present a formulation of a matrix model aimanifestly possesses the general
coordinate invariance when they identify the large N masiwith differential operators. In order
to build a matrix model which has the local Lorentz invarianthey investigate how th€O(1,9)
Lorentz symmetry and thé (V) gauge symmetry are mixed together. They find that the bogamic

of the model reproduces the Einstein gravity in the classivaenergy limit. Finally, they give a
proposal to build a matrix model which haé = 2 SUSY and reduces to the type |IB supergravity in

the classical low-energy limit.

3.2 The IKKT model

We saw that BFSS provides a nonperturbative description-tiédry. Another model was introdced

in [26] to describe type IIB. We show how this model has bearstoicted.

°Note that the expression of P(c.m.) is of the fgym: mv, sincep,; plays the role of the mass. The Galilean form of
this relation is due to the IMF formulation.
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3.2.1 The action

As we said before, a consequence of the opposite chiraiitiése theories is the difference @i-
branes we find. In type IIA we hav@,-branes withp even and in type IIB we havP,-branes with
p odd. The analogue of thBy-brane is theD-instanton f = —1). Since the Lagrangian in BFSS is
expressed in terms db,-branes, one can expect to be able to formulate the fundaeagrangian

of IKKT in terms of D-instanton i.e byl0-dimensional SYM reduced to a point.

The starting point is obviously the Nambu-Goto form of the@r-Schwartz action of type IIB su-

perstring theory:

Sos = 1 [ o[y ~(e0, 00,5 + 260,50, 00 (149

1 is a Majorana spinor with 16 components ane- 0, ..., 9. This action can be written [41] in the so

called Schild form:
Sisenitd = / Lo [a(i{)@ X2 - Lgaex \If}) v wg] (145)
chi 4\/§ 5 9 1wy
where{ X", X"} are the poisson brackets defined by:
{X" X"} = €9, X"0,X" (146)

One can show that this action is classically equivalent &oGneen-Schwartz action by calculating

the equation of motion foy/g. By solving the Euler-Lagrange equation we have:

4(v9)®

(€0, X" 8,X")2 + =0

and by isolating /g

Ji= %\/g V(e20, %9, Xvy? (147)

we recover the GS action if we plug this in the Schild actiohe TKKT model is obtained from the
Schild action (145) by replacing the bosonﬁg(ao, o') and fermionic¥, (o, o!) fields by hermitian

N dimensional matrices. We denatg’ the bosonic matrices ang},” the fermionic matrices. In the
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limit where N is large, we have the correspondance:

., =1, (148)
and
/dza\/ﬁ =Tr (149)
Hence, the action of the IKKT model is:
S=aT Lixe xovp - Lgoom 1x, w8 N 150
= r[_Z[ ’ ]_§¢7aﬁ|:uvw}i|+ﬁ ( )

where the dynamical variable i¥ (the size of the matrices), and is the analogug/gfin the Schild
action (145). It means that the size of the matrix is not fixElde bosonic part of this action can be
obtained from a matrix model developed in the 80’s by Egucki Kawa? [21]. The IKKT model

can also be obtained by reducing SYM in 10 dimensions to apoin

3.2.2 Symmetries

Since IKKT model is constructed froit) dimensional SYM, it has many inherent symmetries coming

from SYM theory, and is invariant under:

o Shifts:
X, — X, +a,l (151)
wherea,, is a c-number
0 SO(10) transformations (rotations):
X, — ANJX, (152)

whereA is a generator of the groupO(10). We will see later how this property leads us to the BFSS
model.
o SU(N) gauge symmetry:

X, - U'X,U (153)

3The action of the Eguchi-Kawai model 6= —3 >, Tr(U,U,U,'U, " —1T). By settingU,, = exp(aX,) and
taking the limita — 0, one obtains the bosonic part of IKKT.
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whereU is a generator of the gauge grofp/' (V).

o Supersymmetry transformations:
00, X, = ey , 00, X, =0 (154)

6Q1¢ = [XWXV]VMVE ’ 6Q2¢ =" (155)

wheree andn are the parameters of the SUSY transformations.

3.2.3 Classical solutions

The equation of motion for the Schild action whén= 0 are:
(XF X, X,}}=0 | (XM 7, 0,1 =0 (156)

The equation of motion for the IKKT model can be obtainedegithy operating the previous changes,

or by solving the Euler-Lagrange equation. In both case wk fin
(X, [X,, X, =0 , [X*, v,00] = 0 (157)

To solve the equation of motion, one can see that (157) anéasitm (139) for the BFSS model. Then,
they have solutions of the same form (140), associated tig $dastrings along thést axis.

T L
X, = (g —p0, .. = 158
4 (2ﬂq,2ﬁp,0, ,0) , Yo =0 (158)

wherep andq are N x N matrices statisfying the commutation relation (133). Tdotution is for
one string. The case of two parallel staflestrings separated by a distarica@long the second axis is

obtained by considering’,’s as matrices with two diagonal blocks:

T L b

Lg 0 = 0 5 0
Xo=| & 7 X, =| * Xy=| ?

0 —27;‘1 0 —2L7r 0 —%
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The generalization for onB,-brane withp > 1 is:

T L T L
0)

Xy = (gql, P ety 5P, 0, ;. Ya=0 (159)

where there aréfg—l pairs of operatop, q. The solution for multi-brane can be obtained similarly as

for two staticD-strings.

3.3 The NBI model

This model gives a description of Type 1B superstringst jikg the IKKT model. The necessity of
introducing another model describing the same things cdrmoes the calculation of the interaction
betweenD,-branes using solution (159). The results reproduce thase $uperstring calculations
only at large distances. The modification of the IKKT modd][® the introduction of a new dynam-
ical variable replacingV: an hermitian matrix”*® with positive eigenvalues, which is the analogue
of /g is the Schild action. The integration over this new variabte yields to the non-abelian Born-
Infield action (NBI) which reproduces the Nambu-Goto vensid the Green-Schwarz action of 11B

(144).

3.3.1 The action

In the IKKT model, the size oF * is set to beV and only the element of the matrix fluctuate. From

the Schild action (145):

1 1
Sl = —a Tr ZY‘l[Xu,X,,]z +3 VYIX )|+ BTrY (160)
The equation of motion foy *:
Qe 2y —1 _
: (Y X, X, 2Y )ab B0, =0 (161)

yields to the solution of (160):
1 /a
— _ — _ 2
Y = 5 ﬁ’/ (X, X, (162)

We see that (162) is very similar to (147). This is how we se¢lthis the equivalent tq/g. Putting
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(162) into (160) gives the non-abelian Born-Infield (NBljian:
NBI \YA TT[ X X] 5 EV“[XW?/)] (163)
The NBI matrix model action is defined by the action:
Lo 2, 1 =
SNBI =—a Tr EY [XM,XV] -+ 5 ¢7“[XH,¢] —|—V(Y) (164)
whereY is a hermitianV x N matrix with positive eigenvalues, and the potentiak:
V(Y) = BTrY + (N — %) Tr In(Y)

The action is invariant under SUSY transformations:

1
Seth = Z{Y‘l, (X, X, e
0.X,, = ey (165)

One can prove that this model reproduces the Nambu-Gotwwen$ the Green-Schwarz action of

type IIB superstrings (144) [35, 22].

3.3.2 D-brane solutions

The equations of motion of,, ands,, of the action (163) are:
[Xﬂ (V=1 [X, X ]}} 0 . [Xu"ta] =0 (166)

The solutions of the NBI matrix model are of the same form j1&0the IKKT model.
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3.4 Relation between the models

The relation between the IKKT and the NBI models has beerudssxd in the previous subsection
is quite straightforward. We now turn to the relation to BR8fl IKKT*. Since BFSS describesM-
theory, and IKKT describes type 11B, one might ask whetherttto models are related, just as the two
superstring theories are. The relation actually is thatnmlve compactify on a circle the Euclidean
version of IKKT model, it gives the BFFS model at finite termmgdere. The compactification of matrix

models has been studied in the first place by Connes, DougtbSehwarz [15].

3.4.1 Compactification on a circle

When we compactify on a circle in th€® direction, one should have the gauge equivalence:
UX'U'=X'+2rR] : UXIU = XI : UyprU ™t =y~ (167)

whereR; is the radius of compactification arid is the unitary matrix of the gauge group transfor-
mation. These equation can't be satisfied unlEssind«~ aren't finite matrices but operators in an
infinite-dimensional Hilbert spack. The solutions are:

X'= A'(o) + QZﬂRi£ ; X7 = Al(o) ; P = Vo) (168)

(Uf)(o) =€ f(o) (169)

where0 < o < 2 is the coordinate compactified ¢t and A”’s and¥'’s are hermitian operators in
H.

The reasons why we consider an Euclidean version of the naodel

+x The BFSS model is obtained by a reduction of the 10-dimea$i®¥M to 0 + 1 dimension. This

breaks the Lorentz invariancg)(1,9), and the theory is only invariant under the little groti@(9),

which corresponds to spatial rotations.

«x The IKKT model is obtained by a reduction of the 10-dimenaid8YM to 0 + 0 dimension (a

point), and the theory is invariant undg€(1, 9).

4A numerical approach, using the Monte Carlo simulation, beesn used in [31] to find a relation between the two
models, by identifying them to two other models which areiemjant: EK (Eguchi-Kawai) and cQEK (continuum
quenched EK) models [25].
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Taking the Euclidean version of IKKT allow us to use tR¥ metric and thus, have $0O(10) sym-
metry group. This way, one can compactify in any directién(with i=0, ..., 9) and end up the same
symmetry group as BFSS,0(9). From the IKKT action (150), one can insert the solutions3(16
and (169) with the timeX° compactified ors*:

9 9
S = C/daTr 23 (Vod')? + Y AL AP 4 20% OﬁvoxpMsz LJAT WA (170)
=1

i,j=1 =1

Cisaconstant, an@y) f(c) = 1Ro2 +[A°, f](o). This is an action of a matrix quantum mechanics
with compact Euclidean time direction. One can see thavéry similar to the BFSS action. In fact,

it is equivalent to BFSS quantum mechanics at finite tempezat

This can be easily generalized to the compactifiation of nitwee one dimension on a torus. This is

how noncommutative geometry arises.

3.4.2 Compactification on a torusl™

The torus appears when we compactify more than one dimenkiangeneral case, the correspon-
dence between a torus and spheregds~ (S')<. If one compactifies{! and X2, the new set of

equations follows from (176):
ULX'WUr =X+ 27D UL XU =X ; UU =9 (171)

Us X2U; ' = X2 4+ 27 Ryl : U, X'U; ' = X° : Upp®Uy ' = o (172)

where R;’s are the radii of compactification. From these equationgliows that U, U,U; U, !

commutes withX*’s andv*’s. Then, it can be written as a scalar operator:

U Uy = AUU, (173)
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where) = > is a complex constant. If = 1, U; andU, commute, and then we have about a

commutative torus. The solutions of (171) and (172) folloani (169):

0 0 ; ;
X' = Ao, o) + QlﬂRlﬁ o X% =A%(00%) + QZWRQw ;o X'= Aot 0?) (174)
V=00 0% ; (Upf)(oh0%) =€ f(o',0”) (175)

with i # 1,2, k = 1, 2. The coordinates compactified on the tofifstake values betwedhand2r.

3.4.3 Compactification on a noncommutative torug

If one wants to compactify dimensions in @)-dimensional Hilbert spack, we will get a torus™

with the equations:
U;X*U; ' = X* 4 2n R, 16% ; U XUt = X ; UpU' =9 (176)

wherej, k=1,....dandl = D —d, ..., D. The solutions are a generalization of (174) and (175), and
the following relation still holds:

Uj Uk — €2m0jk Uk Uj (177)

Like in the previous section, the parameter in the relatiam e set to be equal g so we get a
commutative torus. However, if it is different from the torus will be honcommutative, caracterized
by the parametef/, which is a constand x d antisymmetric matrix. One can restrict the action of

either BFSS or IKKT to be solution of (176). This leads to SYManoncommutative torus [34].

3.5 Relation to AdS/CFT

In AdS/CFT we derived field theories from string theories bysidering their largeVv limit. It has
been shown in [36] that they contain in their Hilbert spaceitexions describing supergravity, and
conjectured that the field theories are dual to the full quianstring theory on various spacetime.
This duality can be used to give a definition of M-theory on flgacetime as the largg limit of
the field theories. Since the field theories can be definedpeoturbatively, this definition of M-

theory is non-perturbative. The most obvious differendd W (atrix) theory is with the signification
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of N. In AdS/CFT, theN is related to the curvature and the size of the space wherihdoey is
defined, whereas, in M(atrix) theory, it is interpreted as tmomentum along a compact direction.
However, in both cases, in the largelimit, we get flat and non-compact spaces. One of the crucial
difference is that in AAS/CFT, it is much more clear how tcongsr supergravity in the larg® limit.

In M(atrix) theory, it hasn’t been established yet whetlhermodel is consistent with 11-dimensional
supergravity. Since the Yang-Mills matrix model is definadnly 10 dimensions, it is not evident
that it is the appropriate theory to describe 11-dimengisnpergravity. However, 10-dimensional
[IA supergravity is the dimensional reduction of 11-dimiengl supergravity, SO one can investigate
if we can get IIA supergravity from Matrix string theory (s&er7), which is itself obtained from
M(atrix) theory. See [9] and [43] for an extension of AdS/C&drrespondence to the Matrix model
of D-particles in the largeV limit (generalized AAS/CFT correspondence). This couddilo a map
between the two theories and enable us to take advantagéhodporoaches by using new tools from

one description to be used in the other.

3.6 A better BFSS model

The BFSS model presented at the beginning of this chapteipisosed to described all the physics
contained in M-theory. However, there are some restristiant. First, it has to be formulated in the
IMF frame. Also, the dimensions of the matrices have to bernak infinity. Another formulation
proposed by Susskind [50] allows to get rid of the infinitaneadf V, if, instead of the IMF, one works
in the DLCQ (Discrete Light-Cone Quantization) frameworke constraints on SYM implied by the
dualities of M-theory, which were supposed to be true ontydmge N are in fact also true fow finite

as long as we work in the context of DLCQ. The IMF and DLCQ anesidered to be similar when
N — oo, but whenN is finite, they are different. In the DLCQ framework, the adioate which is
compactified is not the space-like coordinatg, but the light-like coordinate~ = %(t—x”). Then,
the quantized momentum js = %. The new conjecture is that M-theory in the DLCQ is exactly

described byU/(N) SYM, with N finite. To check the conjecture, one can work ontydrative or

non-perturbatives evidences [11].
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Figure 10:Change of variables to the light cone frame for the momentodhesergy coordinates.
3.7 M(atrix) string theory

An interesting feature of M(atrix) theory is that with a fewodifications, it can be used to give a
nonperturbative definition of string theory. If we consitiéfatrix) theory compactified in dimension
9 on a circle, we have a SYM theory in+ 1 dimensions. In the BFSS model, this corresponds to

M-theory compactified ofi™.

From the Hamiltonian for the BFSS model, we are going to @etine Hamiltonian for the matrix

string theory. We start from (128), which | recall for coniearce:

1 1. |
Hp, = Ruy Tr [inin,- + VYR 4+ 6T, Y] (178)

wherei = 1, ...,9. Type llAis obtained from M-theory via the compactificatiofithe 11th dimension
(conventionally) on a circle&®. Since the BFSS model describes M-theory, we need to coifjpact
one transverse dimension of the BFSS Hamiltonian to be alflad a M(atrix) model for Type IIA.
We compactify thedth dimension on a circle of radiuBy,. We apply ar'-duality transformation
along theS* directions, so we can identify® with the covariant derivativé?,D,,, whereo is the

compactified coordinate running frabro 27. The conjugate momentum is identified with the electric
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field £ = Rylly. This leads to the new Hamiltonian:

R2 , 1 1. . .
ILII; + f(m/l)? + R0 " DO+ —FE*+ [V YT+ 0" ~,[0, Y]] (179)

. Rll do |:1
212 4

S Rl U
or | Ry 12

wherei = 1, .., 8. If we rescale the coordiantes ¥ — R, '/*Y", we get:

R 1 1 i\ 9 T 1 9 ; 19 1 T )
— | 4o Tr | ZILIL + = (DY DO+ = (E2+ [V Y2 + —-0"~[0,Y]| @
H= gt [0 Tr [T DY 0T D0 (B4 V) ¢ ] @80

Once again, Type IIA is obtained from M-theory from compiyatig the 11th dimension, which
relates the string coupling constantto the radiusik;; by g, = (R11/1,)*?. Since in the M(atrix)
model, thellth dimension is already compactified, we needed to compatttd 9th one. So, to
arrive to a matrix string point of view, we need to interchanige role of thedth and 11th direction,
by defining the string scale = /o’ and string coupling constamt in terms of Ry and the 11-

dimensional Planck length by:
RQ = gslsa lp - g;/gls (181)

or g, = (Ry/l,)*%. From this we obtain the final result in string units whére- 1:

or 2

=1 /da Tr [SLIL 4+ (DY) +67D0 + (B> + [V, Y7P) + —07[0,v]] (182
92 Js

The8 scalar fields’s and thes fermionic fields) are N x N hermitian matrices. The fields transform
under the representation of the symmetry groidp(8) of transversal rotations. This Hamiltonian is
of the form of the Green-Schwarz light-front string Hamilian of Type IIA, except that the fields are
represented by non-commuting matrices. The eigenvaluastifx coordinaté’ are the coordinates
of the fundamental Type IIA string, since in the original BB-®odel, they represented the coordinates
of the Dy-branes.T-duality transformation along th&! directions, turned thé,-brane, from the

BFSS model, into Type llAD-strings.

60



4 Noncommutative geometry

The idea of noncommutative geometry is the replacementettdmmutative algebra of function
on a manifold by a noncommutative deformation of it. To mdks tonstruction, we start from a
definition given to some geometric notion using algebra oicfions with commutative geometry,
and we replace these notions by noncommutative algebras type of geometry was introduced
by von Neumann as "pointless geometry” because in a quanhasepspace, points are replaced by
cells of sizeh. The points of a quantized spacetime become fuzzy and aeecespwith cells whose
size is set by the noncommutative length scalé\ string is replaced by a certain finite number of
elementary volumes of "fuzz”, each of which can contain onarqum mode. After defining the
new noncommutative operations and constructing noncomiaatYang-Mills, we show how to get

M(atrix) models from a noncommutative geometric approach.

4.1 Formalism

Let’s consider two fieldg and. A noncommutative field theory can be seen as a deformatian of

classical quantum field theory by using the star produceatsbf the point product:

2 9%

O(w) U(x) = G(r)wib(@) = 2" 35T G0+ )+ )lecmo = 9(2) (@) + £070,0050 -+ o(6?)
(183)

This product is associative but obviously not commutatiGometrically, the star product can be

seen as generating a deformation of the ordinary canomaraformations, induced l#y If we setd

to zero, we recover normal geometry. The commutation oxadre:

[V, 2"], = ot % z¥ — a¥ %zt = 10" (184)
[z#, p”], = thé"” (185)
" P =0 (186)
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Where#"” is a real antisymmetric matrix. In general, given any ordirfeeld theory, one obtains a

noncommutative field theory by replacing all the dot produmt star products

4.2 Yang-Mills, Noncommutative Yang-Mills and the appearace of matrices

Yang-Mills is the name given to non-abelian theories thaehaeen constructed from abelian elec-

tromagnetic Maxwell’'s theory. The Maxwell equations are:

a“F/J,l/ — _jl/
Ou(xF") =0 (187)
which are obtained from the action:
5= / a'r( - iF‘“’FW> (188)

with the field strength¥},, = 0,4, — d,A,. This theory has the symmetry grodf(1) which is

abelian. In electrodynamics, we have the scalar figldstion:
S = / d'w (0,600~ V(9",0)) (189)
Which is also invariant undér (1) and transforms as:
¢ — ¢ =e" (190)

Where« is the parameter of the group. This action is actually irarronly in the case of a global
symmetry, wherex doesn’'t depend on the coordiates To make the action invariant under local

transformation, one needs to introduce covariant devieati
0,0 — D¢ = 0,0 +1eA,¢ (192)

00" — D,¢" = 0,0" —1eA, 0" (193)
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where there is a coupling between the magnetic potedfjand the scalar fields. e is the coupling

constant, andi,, has to transforms as:
, 1
Ay, — A, = gﬁua(x) (194)
One can obtain the field strengkf), by taking the commutator of the covariant derivatives:
[D,,D,| =eF,, (195)

We now turn to non-abelian groups, with gauge gréip( V), where the fields transform under the

transformation rules:
G0 — & = Uty
(6°)" — (¢)" = (¢")"(Up)! (196)
whereU is a element of the group. For a local symmetry invariancegémeralisation of the abelian

transformations are:

au¢a - Dugba = Mba - ZgAﬁ(Tk)Z¢b (197)

b
Af = (ARY = |U(ARTF - gU‘lﬁuU)U‘l (198)

a

whereyg is called Yang-Mills coupling and™’s are the generators of the group, forming the algebra
of the group:
[T7, 77 = of7*T" (199)

The action is then invariant under the transformations Y18tce the symmetry is locdl; is:
Ub = [exp(zek(x)Tk)}Z (200)

wheree'(z) are the group parameters. The Yang-Mills field strength &ragbtained from the

commutator of the covariant derivatives:

(D D) = =19 (0,41 — 0,41, — g A1, 4] )(T'); (201)
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where we have:
F, =0,A, —8,A;, —ig [Al, Al (202)
Fi, which transforms a8 F, = —u [F},, ¢'] under the gauge transformation:

(L-AL =0, —1 [AL, EZ] (203)

allows us to write the generalisation of the Maxwell actiond non-abelian gauge group:

]' UV 1
S = / d%:( - g F* FW> (204)
and the Maxwell becomes:
DHFW = —JH
D, (xF™") =0 (205)

Now that we have constructed the Yang-Mills action for a abelian gauge group, we just need to

replace the dot product by the star product to obtain theesgion of noncommutative Yang-Mills:
1~ ~
SNYM = /T’f’( - ZFMVFMV> (206)
where the field strength is given by:

~ -~ ~ -~

F, = 0,A, —0,A, —i]A, A), = 8,A, —8,A, —1[A,, A] + o(8, (DA)?) (207)

and its variatiorggfﬁu =— [ﬁ,j,,,?] We can expand(4, (0A)2) to the first order irp:

This action is invariant under the transformation:

A, — Ux A, U +1U % 9,U" (208)
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with
U(zh) = s (209)

andU xU ' =U""1xU =1L

4.2.1 The Seiberg-Witten map

Now that we have a noncommutative generalization of gaugeris, we can work out the relation-
ship with string theory. It turns out that noncommutativaggtheories arising from open strings the-
ory imply that open string theory can always be thought ofngjvrise to ordinary gauge theory. One
can see here a contradiction but in 1999, Seiberg and Wittgrpfoposed a map that relates ordinary
Yang-Mills vector potential,, with parameter and gauge transformation (203), to noncommutative

Yang-Mills vector potentiaﬁ“(AH) with parametef’(4,,, ¢') and gauge transformation:
0uA, = 0,8 +14, %€ — i@ x A, (210)

such that we have:

~ AN~ ~

A, (A,) +0A,(A,) = A (A+5A) (211)

We write A,(4,) = A, + Al(Ay) ande(A,, €) = ¢ + €"(¢', A,), with A" and¢’ function of A and

e of orderd. When we expand (211) in power étsing (183), we find:

, . 1 , ,
AL (Au+06Ay)— AL (Ay)—0ue’ 2 [¢), Ayl — [GZ’AL] = —59”"(8peZ80Au+&,AM8pel)+o(92) (212)
The solution of this equation to the first orderdin= 66 is:

AH(AH) - AH = _ié@PU{AP’ aUA“ + FU“} (213)

(A, €)= 1507{0,€¢', A, }

T 1

where{....} are anticommutators. From this we get the first order reldtetween field strength:
~ 1
P = Fu = 700" (2{ Fup Foot = {A,, DyFpy + 00FW}) (214)
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These equations are called the Seiberg-Witten equatiaharardifferential equation determining the

map to all orders ir.

For a rank one gauge field with constdntve have:
§F = —F60F (215)

which has the solution:

F=(1+F0'F (216)

Deformation of gravity can be induced from a noncommutajsege theory with position-dependent

noncommutativity* (x#*) using this map.

4.2.2 The appearance of matrices from NYM

It was noticed that gravity is contained in the dynamics aficmmmutative gauge theory through
the observation that spacetime translations of noncontivetgauge fields are equivalent to gauge
transformations. From (208), (209), and the identity? x p(a#) x e=* = p(a* — O#E,), we find:

A, (z") — Au(at +at) — Gljula” (217)
Sincea” is a constant shift, the noncommutativity of the field sttén@07) disappear. Hence, the
translation symmetry is a gauge symmetry and noncommatgauge theories provide toy models

of general relativity (simplified set of equations that canused to understand a mechanism that is

also useful in the non-simplified theory).

In order to identify the gravity gauge theory, we need to folate the noncommutative gauge theory

in an independent spacetime coordinates background. Thenti@duce covariant coordinates:
X, = G;Vl:r;” +A, (218)

that we use to rewrite (207) as:

Fu=—1[X,, X)), + 0, (219)
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We can use this to rewrite the NYM action (206) as:
1 1\?
S = —ZTT< X, X))+ %) (220)

This action is expressed in terms of operatiyswhich are no longer regarded as position coordinates
since we are not in a spacetime background. It is totallyejiae independent and,, are abstract
objects of an infinite-dimensional (since we have no resbnicon ;) matrix algebra. It is therefore
called a Matrix model. We can get the equations of motions:

X [X,, X)) = 0 (221)

Wy “dv

with the vacuum solution4,, = 0) satisfying:
(X, X)) = —b,) (222)

One can notice that the equation of motion (221) is similath®equation of motion (157) for the
IKKT matrix model. If one set9 = 0, we have from (220) a matrix model for a commutative YM
theory:

g = iﬂ( X, X,] [X,. XV]> (223)

This model will be used later on in the construction of the Egaat noncommutative gravity. One
can also construct the BFSS and IKKT model independentliriofgstheory, from a noncommutative

approach [46].

5 Low energy limit of M-theory: 11D supergravity

This theory was built in the laté0’s by Cremmer, Julia and Schrerk [17], as an attempt for adyran
unified theory. The first superstring revolution in the riiks saw this theory abandoned for super-
string theory. But, during the second superstring revotutn mid 90’s, it was discovered that the
strong coupling limit isl 1-dimensional supergravity. We present how the Lagrangias eviginally
constructed , as well as the derivation of the equations dfamo To avoid any too complicated

calculation, the most important results are given here thedletails are explained in appendix C.
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5.1 The construction of the Lagrangian

Since supergravity is the unification of general relativatyd supersymmetry, it must contains the
graviton, which is apin = 2 boson, and its superpartner, the gravitino, whichdgia = % fermion.
Thus the natural starting point for the action is the Eimstdilbert action and the Rarita-Schwinger

action (which is the equivalent of the Dirac equation butses % particles):
D 1 1— v
Si= [ PG| TR+ S0, D), (224)
TheI'**r are the 32 dimensional Pauli matrices and satisfy the 11mBioeal Clifford algebra:
{F‘u, FV} = Qnuyﬂgg
[Hkn — Tluaprz enl
The covariant derivative is given by:
1 ab
Dy(w>¢u = 81/w,u - Zwyab I ¢u
This action is invariant under the SUSY transformations:
doy = Dy(w)e (225)

bgelt = ey, = 0qgu = 5Q(nab6261b,) = 2,1,

where we have used the tetrad basis- e dz/. When we vary the action we get:

1 1 1 1
58 = / dz”\/g [§(RW = 50w BTG = (R, = g RJET 0" | 600" (226)

which is identically equal to zero. We have used the symmatthie Riemmann tensor(,,.5-o)-
Then, we have proved that the variation of the action (224yjisal to zero. However, a third order

fermionic term has been neglected. We need to add an adalitenm to cancel them. The good one
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is the kinetic term for the three form potent@|, .

1
Sy = / az” /| - mGwaGWﬂU] (227)

whereG,, - = 40,,C, . By rewriting this as:

1 vpo 1 a v o
_mGuupaGu p7 = _mGuupaGaﬁvégu g 691)79 g

we see that, according to the variation law (225), we aregimiiget a new contributioni@l“%”(G)fw.
There is two indices of/ contracted by the variation Qfg (see (C.2.1)). We must balance this addi-
tional term by adding something involvirg with two indices contracted with an unknown quantity

X: 1, (XG)+r1p,. We then should modify the SUSY transformation/gfas:

~

doy = Dy(w)e+ (ZG) e = Dy(w)e (228)

WhereZ is the unknown quantity that contractsndices ofGG. The action now looks like:

1

1_ 1 1
Sy — / de\/g[ TR+ SBI D), — e

1 481/JH(XG)W1/JP — mGuypaG“””” (229)

The method to find the expression(0f G)** is to write down all the possible terms consistent with
the tensor structure with two free indices. The I matrices andy*” are the objects used for the
construction since they can raise and lower indices. Weiden&'“?? with its all four indices.
First, we contract all of them. We need two free, so we havepgassible terms'g*“’FaM;G‘“WS

or F“”amgGaﬁ’Y‘s. If we contract two of them, we simply ha\léaﬁGWaﬁ. If we contract 3, we
havel*,s,G**%" which can be decomposed into symmetric and antisymmetris pauv. After

reorganizing this we have:

(X(;)W —a F(“amG”W”Y +b gwpaﬁwGaﬁw +e Fuvam(sgaﬁvé +d Faﬁgwaﬁ +e F[uamGV]aﬁv

g

symmetric antisymmetric

(230)

wherea, b, ¢, d, e are real constants. It turns out that the only remaining temrts are: = and

N
841
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d = —5%, and therefore we have the expressiof.¥f~)"
v 1 Q, 12 rvao,

(XG)# — _8 : 4' a 75G Bys < 4'F GM B (231)

The same analysis f¢/G)* gives:
" L s 8 raBssaapys
(Z2G)" = =5 U uGasns + 5 U™0LG (232)
The variation (228) is now:
L (papns 546 sa
St = Due = 5= (19, — 8T9062 ) Gl (233)

We now perform the variation of (229) to see wether evergleancels out and if we have a consistent

action. We consider only the new terms(X G)"*v, andG,,, ,c G**7:

50Ss = / da:D[fQ< 4\/;8GMV,,UG“””") +5Q( f D (X G)ﬂwp)J] (234)

-

g

I 11

_ \/_ pvpo \ 2 aup, Bv _~p, oo
5@(53)1 - 5@( 4 - 48GHVPUG > - 4 - 48G (\/_)_'_\/7 5@( 4 - 48GHVPUGC“6'Y59 9979 >

(235)
with (246) and (225) we find:
Lo Lo No oty w)
b0 (Ss)1 = =57 (61 — 5G2g JET 00 (236)
We must calculate the variation ¢fin order to be able to find the variation f3);;. With:
T10 - afByd d sa
S, = (Dye) TO + me(F B0 4 TP 5N)Gaw (237)
we find:
2
o - onT ont 134 onT ont
5(S5)11 = ~3755 (12 (17 -+ ST T (D7 ¢ ST 0L ), | G Gy (238)
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After some calculation using identities of the Clifford elga of the gamma matrices (see [37]), we

find that the variation of the total actiad¥y (229) does not vanish, and we have the left term:

9 _
6@53 _ /le, [m 6041...a451---54MVpGa1ma4G61_nﬁ4 € F[,uzxwp]] (239)

Once again, we need to balance this undesired term by adolingtking new. Based on the form of

(301), one makes the ansatz of the compensating term, ¢aedhern-Simons term:

1 a (0% v
Scs = /dD,’L‘|:4‘(12)4 €1 Lap pGal...a4Gﬁ1~-.ﬁ4 CMVP (240)

with a super-transformation of the potential satisfying:
5ch,p =ae€ F[/Wwp} (241)

with a € R. When we perform the variation of the CS term, one finds:

3
5QSCS _ /dD{L' [m Eal"'a461"'64MVpGa1...a4G61...ﬁ4 a gr[ulﬂ/}p}] (242)

which is identical to (301). If one sets = 3, the actionS = S; + Scs vanishes, and the total

Lagrangian of 11-dimensional Supergravity finally reads:

1 1 - w4+ w 1 Voo
L = Z€R+§€'¢MFM PDV <T) ¢p—4‘—486Guyp0'Gup
1
448
1

41442

e (D0, + 12477707 (GO‘W ; Gaﬁvé)

+ 6@1---a461---ﬁ4quGa1___a4G61___54CWp . (243)

where we added the fermionic terms and used the notations:

Wyab = W,(El)b + i [@Earuabaﬁwﬁ —2 (@Eurb'lvba - @Eurawb + ’(/_)bru'lvba)}

G/u/pa = G/u/pa + 6{)[;11—‘1//)7#0] djuab = Wyab — i@zaruabaﬁwﬁ
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5.2 Equation of motion
5.2.1 Gravitong,,

We now derive the equation of motion for the graviton. Thdcecto be considered here is the
Einstein-Hilbert action coupled to the field strengt),,,. Therefore, we should expect to find the

Einstein equation plus an additional term:

1
S = /defR /defeGuypaG””p“ =S+9 (244)

e Let us consider first the variation of the Einstein-Hilbartian:

08 = /de [5(\/§)g””RW +/96(9" )Ry + /99" O R, (245)

Using the identity:

5(v) = 509 =

= —/99" g = —= /99" 246
5N 2\/799 dg;k \fg Gjk \fg Gjk (246)

We find:
58 = / @’/ - gWR+RW] Sg" + / AP\ /39" 6 Ry, (247)

We see that the first term is the Einstein tensor. Therefoeayant the second term to vanish. Using

Stoke’s theorem, one can show that the téri), does not contribute (see appendix C).

e Using the variatiord, /g, given above, we write the variation of the second part ofitteon:

, 1 Voo vpo o
05" = 48 a7 [_ 5\/§gaﬁGwpoGM g +4\/§GQVPUGBP 09" (248)

The equation of motion for the whole action now reads:

1 1 vpo
R = 59a0R = 1 [ 5908Grrpo G + 43/ GG G (249)
By contracting this withy®®, we get:
R= ﬁGwpoGW”" (250)
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5.2.2 3-form potentialC,,,

The part of the supergravity action involving the 3-formguatal C,,, , is:

1 Vpo 1 (6% (6%
L= 4_8GHVP0Gu 77+ @6 b 4ﬁ1“ﬂ47”273G011~~~a4G51..ﬂ4G’71“/2“/3 (251)
To find the equation of motion, one can solve the Euler-La@eaafquatior‘agfjk — O [a(a?éjk)} = 0.
Using the following identities:
0G ) iy
T §Ek 252
00 (252
and
Ol ga Gt = 41Goae (253)
we have the equation of motion:
9,GEik o A8 aiaupi..puijk
gG + @6 Goc1---Oc4Gﬁ1-.ﬂ4 =0 (254)

This equation of motion can be expressed in a simpler formgusie language of forms (totally anti-
symmetric tensors). | recall some of the definitions and eriogs of this language in the appendix
B. The first termd;G* must be of the formxd(xG) since we want to rewrite the equation in term
of three form (number of free indices). Inde&djs a4-form. Since we are in 11 dimensions7 is

all — 4 = 7-form. (d x GG) is a8-form and so(xd * ) is a 3-form. Starting from the coordinates

generalizatiorG = G dzt A ..o A\ dxtt, and usings,, €412V = K123 e

12 U3 4 vivovsy !

end up with:

*d<*G)I/1I/2V3 = astljlllQVg (255)
Doing the same analysis, we find that the second term shoulditien as«(G A G):

1

vivavs 4l

[ * (G A G)} EV1V2V3a1...a461.--54Ga1.“OC4G61.“64 (256)

Using (255) and (256), we can rewrite the equation of motsfodow:

d(xG) + %G NG=0 (257)
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5.2.3 Gravitino,

The part of the Lagrangian involving the gravitino is:

£= 300D, (52, L (g, 1251790 (s — BTt (259

When we solve the Euler-Lagrange equationfcand+), we find the equation of motion:

1 1 :
0= 517D, (@) = 5o (T%,5 + 12051505 ) G277,

96
1 - 1
T LSy + Dt DT,
1 v AL va,
o (P8t DT — 6 D i, D25, (259)

We find that the last four terms vanish using the CremmegrJbdiherk Fierz identity:

1 — 1 —
Z [Hvabys Uy T by — = I » Uytha [Hvepbys

8 8
1 _ 1 _
= TP gals + 5 Tathy el
-9 gﬁ[aﬁw}wﬂ/japﬁ — 9 Fﬁwyﬂagﬁ[aﬁw}
+ 2 g% p T sy, = 0 (260)
and using the identity:
3(rgg75 +126°T 55”> 1, GOV = v (PCW 8r57553)¢,,éaw (261)

the equation of motion can be written is a simple form:
P D), =0 (262)

where the covariant derivative is:

1

lA)V”va - DV((‘D),@D/) - m

(P;W _ 81“57553) 1, Clagns
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6 Discussion

The relationship between matrix theory and noncommutgeanetry is not very clear and is still an
active area of research. There is a lot of aspects of bothidssihat we couldn’t cover due to a lack
of time. In [46], they show how to get BFSS and IKKT directlpfin noncommutative geometry. The
solution of 11-dimenional gravity supergravity, can berfdun [20] for the)/2-brane and in [24] for
the M5-brane. In [37], they show how to get Type IIA superstringsirl 1-dimensional supergrav-
ity, and they calculate intersecting 5-M 5 branes solutions. A very little progress has been made
recently in "pure” models of M-theory or string theory in ggal. However, their applications to other
fields has been investigated especially in cosmology fostihay of black holes for example [6] [23].
In [40] they propose an alternative model of inflation based cecent formulation in terms of coher-
ent states of noncommutative quantum field theory. A vergmemodel has been proposed, based
on the IKKT model [33] [47] [48] [49] called emergent noncomtative gravity. They show that the
Yang-Mills matrix model action for noncommutativ& N) gauge theory (223), describréé/ (V)
gauge theory coupled to gravity. Those kind of models haveommutative branes as solutions,
which, when embedded R'°, give rise to a dynamical effective metric, governing thealyics of
the fields on the brane. The resulting geometry is therefpnamical governed by the matrix model
and its effective action which contains the Einstein-Hitderm. One can say that gravity emerges
from noncommutative gauge theory. Having an effective imeimplifies the quantization, since,
the metric is not the fundamental degree of freedom. Whatigtized is the matrix model action
rather than the Einstein-Hilbert action. As we saw in thiggradifferent models can be obtained from
NYM. But there is a prime candidate as a model for an emergamtemmutative gravity. Indeed, the
theory is expected to be finite leading to the identificatibthe Planck scale, and therefore provide
a well-defined quantum theory of fundamental interactioietuiding gravity. This is possible in the
case of maximally supersymmetry, which is the IKKT model indimensions. The strong point of
this model is that it solves the cosmological constant gotdince the results they obtain are in good
agreement with observation, which hasn’'t been the casers®fathe other hand, an analog of the

Schwarzschild solution is yet to be found.
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A Useful identities

@ OGuvpo  __ ctij aj..a wBa ai...o
o 6(y/75) = by 959" o M e 05 EGH O = aiGens

= G+D)J
Qlagosvy.. V11 ajasas _ 1poap — (—
O €y, €X1ARNVVIL = Bl 51020 ® D, Dyje = Ry Tope olie=(—-1)"z

el
0 3 (T4 5 + 1200104 ), G0 = T (T899 — ST9952 )5, G

d % F,uzxaﬁ’y& ,lvbl/lvzoe Fﬁ'y - % Fﬁ'y @Drﬂ/—)a Fuuaﬁyé

_ i F’“’O‘ﬁéiﬂﬂz(xrﬁ —+ i Fglbl,qzaf/waﬁé

_ Qgﬁ[aréuV] WoTs — 2Tz, 7agﬁ[af‘5uv}
B B

+ 2 gPleTom ) Tstp, = 0 (Cremmer-Julia-Scherk Fierz identity)
. min(j,k) ,] k (a1 " ‘
[ ] Faj"'alrbl...bk = Z l! 5[1)1 A 5b[l FaJ...al+1}bl+l...bk}
=0 z I
e, T0e = —(~1)" ey, o M o(2h) x =T = (3 — 0P,

B The language of Differential Forms

B.1 Wedge product

Given ap-form and ag-form, we can construct g + ¢)-form using the wedge produet A B by

taking the antisymmetrized tensor product:

(p+q)

<A A B)“l‘““(zﬁrq) - WA[NL--NPBMHL--NPM] (263)
For example, if we have two 1-forms we have
A, NB,=A,B,—AB, =2A,B, (264)

We also have the following properties:

ANB=(-1P"BAA
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ANBANC)=(AANB)ANC
Wi oy N Dpry oy = 0 (265)
if pis odd. The coordinates generalisation gtform is:

1
w = Ewﬂl---ﬂpdxul A ... ANdxtr (266)

B.2 Exterior derivative

The exterior derivative allows us to differentiate a-form to obtain af + 1)-form as follow:

(@A) s s = (P + )0y Ay i) (267)

It satisfies the Leibniz rule:

d(w A E) = (dw) A€ + (—1)Pw A (dE) (268)

wheref is ap-form, and the property

A = d(dA) = 0 (269)

for any form.

B.3 Hodge duality

We define the hodge star operator oalimensional manifold as a map fropaAforms to (O — p)-

forms:
1
(*A)m---unfp = HEZi'.'.'.Z%,pAm...Vp (270)
(x % A) = (—=1)"PPP 4 (271)

For example, the hodge dual of the field strengjth is:

1 1
xF,, = 56551% = igwﬁwﬁ (272)
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C Supergravity calculations

C.1 The construction of the Lagrangian

Einstein-Hilbert and Rarita-Schwinger action:

S, = / de\/g[iR + %@uruuﬂpy(w)% (273)

TheI'*** are the 32 dimensional Pauli matrices and satisfy the 11mbioeal Clifford algebra:
{FM, FV} = Qnuyﬂgg

r# — rlervl

The gamma matrices can be expressed with the Pauli matfices

M=—nelelele : MN=nenenenemn
M= nlnmnemn , B=neldndnen
M=—menednelen , P=-nenenelen
M=—79nelenon , [M=-7nelenen
MB=-1nelelelemn : I =7 ®g
M =73®1,

The covariant derivative is given by:

1
Dy (W), = 0,4, — Jvab 4,
This action is invariant under the SUSY transformations:

doy = Dy(w)e (274)
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5Q€Z = EFG‘Q/)M — 6ng/ = 5Q(nabezeg) = QEFMwV

When we vary the action we get:
505 = [ de /G2 (R — 29 R)50g™ + 500,10 D LT T D, ()
051 = [ da® /5|7 (B = 50, R)09"™ + 5000, Do), = 58,177 D, (@)q¥,

3_
D100 T oDy ()15 (275)

The derivation of the first part of the variation (Einsteiruatjon) is derived in the section (C.2.1).
The last term involves fermionic fields to the third order,ethare gonna be cancelled by terms yet
to be added to the action. We can neglect them for the timegbiat’s calculate the second term,

rewritten with (274) ag D,,eI'** D, (w)v,. By integrating by parts:

1— 1 1
/ de@bDueerDV(w)M = D, (W)t / de\/ﬁ[—§EF“”pDu(w)Dy(w)¢p (276)
On the right-hand side, only the second term remains. Usiaddentity:
1 B
D[MDV]E = ngj Faﬁe
and the fact that (276) is antisymmetric[in/|, (276) becomes:
D 1 — urp D 1 af=uvp
dx \/§[§Duef Dy(w)zpp} = [ da @[— Ry raﬁzpp] (277)

We can expand (277) using the Clifford algebra identity:

mln(]vk) )y
Ta--apr = E [ J K 5[a1 e §M T ]
b1...bk - * l bl

ibs (278)
1=0 l

bi1obr] -

With this, we have:

Ry TP T o), = Ry 7| Tag"® + 68714 5 + 655514 | 1),
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Ry ST gy = Ry €| + 63110 [0, + €[ AR, — 2R |5,
Ry STty = Ry e[ + 60T |, + 4| R0 — —Rg“p] e,
The second term finally reads:
1 1 1
/ dz” /g 5 Dl Dy (W), | = / de@[ Rede T 6oL | vy [R5 Ry |y

16
(279)

Doing the same calculation with the third tem%EHF“”PDV(w)épr, we have a similar result:

/ de\/ﬁ[—%EHFW”DV(w)DP( )] / def[ — Ry [“”p+65[”r“”] i[Rp”—%Rg”“]qupe]
(280)

We need to switch the position of thendq to compare them. Then with the identity:
2oy, (281)
and by adding them, we find:

1 1— 1
/ dz” /G| 3Dl Dy ()i, = 50,07 D, (@) Dy(w)e| = / dx” /G| 5(=1 = D) Byuapel ™0,
6
aB=slp ]

&(-1 —1) [RW’ — %Rg“”} €Fu¢p}

The second line obviously vanishes as well as the first oneatige symmetry of the Riemmann

tensor 2,.,.5-0)- Putting altogether in the variation (275), we get:

1 1 1 1
oS = / de\/gb(RW = SO BTG = (R, = g RJET YY) |6gg™ (282)

The term to add in order to cancel out third order fermionioteis the kinetic term for the three

form potentialC),,,:

1
Sy = / dz” /| - mGmeW’”] (283)
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whereG,, - = 40,,C, . By rewriting this as:

1

vpo o, v od
_mGuupaGu P7 = 4 48GuupaGaﬁ'y5gH g 69[)79

we get a new contribution 5;el'*¢”(G)2,,, that we must balance witfi with two indices contracted

with an unknown quantity : wu(XG)W’wp. We then should modify the SUSY transformation/ogf

as:
0oty = Dy(w)e + (ZG) e = Dy(w)e (284)
The action now looks like:
1 1— 1
— D Z Z prp _ GHPoy  — pvpo
S= [ deP VG| 3R+ 55D, = 1 TuXC) Py~ 1 GuupnG (285)
(XG)" is given by:
(XGW = — ! T s GO0 — 12 L, Gre? (286)
R TR 8.4l 7
and(ZG)* is
1 8
[T aByd afyd saafByd
(Z@) s uGass + TG (287)
The variation (284) is now:
1 (posv Bvé 5o
bt = D — 5z (19, = 8T91062 ) Gl (288)
The variation of the new terms, (X G)"*v, andG ,,,,G***° reads:
_ D \/7 nvpo \/7 wp
55 / dz [fQ( = 48GW,,UG )+5 (Y 0.(x0) ¢p)j (289)
I H
35(50)1 = b (~ 2 G G7) = — G2 (/) 8 (g5 CrsprCrnni ™™ 475"
448710 4-48 4- 48 Hpo ey

(290)
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with (307) and (274) we find:

1 1 4
5(Ss); = —mcﬂ( — VI g2 r%”)) (@2 P lky¥)

6(S3)r = —2—14((G2)W ;G gw> NG (291)

The variation of(S;);; is:

(Ss)11 = — 50 (T, + 155 T ) G (202)

We lower the indices of the andy with the metricy and we expand the variation:

1

0(Ss)rr = 448

(600, (125, + 12g7eT ) — (D05 11200197 ) s, | Gl
(293)

It is more complicated because we have to determine theticariaf 1, using the variation (284):

S0, = 0o (w;ro) - (5Q¢M) ro— (Due - ﬁ[wﬁm - 8rﬁv553]Gawe)Tr0 (294)

= (D,e) T — ﬁ (raﬁvée - grﬁvéageag) Gugs  (295)
do is determined using the identity:
Tie = (—1)“5 e (296)
wherej is a number of indices, and is equal to:
St = (De) T + ﬁe(raﬁ% + 80707 G (297)

Using (288) and (297), (293) is now:

1
6(Ss) 11 —m [ (Fpamu + 8F0"T(5”> ( [rvebs 129u[arvdwﬁ]u> by
_EV (Fuuaﬁ“fé . 129V[ar“/5gﬁ]ﬂ> <FPU77TH . 81-10'777-55) E] Gpa'nTGaIBm/(s (298)
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Using the identity:
(Caprsr + 8 aystua) TP G0 = 3 (DM g,s + 12 6% Ty 05)G° (299)

(298) becomes:

1
©3-32-(12)3

_|_$V (I‘Pcrm'§ + 8F0777'5§) Iﬂ/ﬁ# <I‘pcr777"u - 8FU777—5£) €:| GponTGaﬁ’y5 (300)

8(Ss) 11 = [E(FW”TM + 8FW§Z> e (rwmg _ 8PW5§) b,

The variation of the total actiof; (229) does not vanish and the remaining term is:

9 o « v —
60Ss = /d%[4 2 peeabiPueg G, er[,wzpp]] (301)

To balance it, one makes the ansatz of the compensatingdahed the Chern-Simons term:

]' (07 Q. vV
Ses = / e gy € GGy Co (302)

with the super-transformation of the potential satisfying

5QCMVP =3¢ P[MVwP} (303)

The total actionS = S3 + S¢s vanishes, and the final Lagrangian of 11-dimensional Sugeity

reads:

1 1 - w+w 1 Voo
E = ZeR—i_ §€¢“P‘u pr( )wp_ m@Guljpch“ P

2 o
1 7 vafByo T a0 Gaﬁ s+ Gaﬁ 5
_4'486(@%1"“ By ¥y, + 12°T7 wﬁ) ( y . 7)
1 o ,
_'_4 1442 € B "Goy.csG1.s Cuvp - (304)
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with the following notations:

D)y = Ot — w,,ab T4,
Crpr = 40y, Cop
Guvpe = Gupe + 69T 0100
Wyab = ,mb+ Wa war™ g — 2 (U lobe — Loty + Wpluthy ) |

djuab = Wyab — 1 ,lvba 1—‘uabaﬁ 'Qbﬁ

C.2 Equation of motion
C.2.1 Gravitong,,

We vary the Einstein-Hilbert action coupled to the field st G ,, .

S = / d’z\/gR — 418 / A2\ /G6G e GH7° = S + S

e Let’s consider first the variation of the Einstein-Hilbectian:

58 = / APz [5(\/5) 9" Ry + \/G30(9") Ry + /39" 5 Ry,

Using the identity:

11 11

j S jk _ _ - jk
2\@5 Qfgg g \fg 09k \fg dg;k

We find:

58 = / aPx /g - gWR+RW] 5g" + / P2 /39" 6 Ry,

(305)

(306)

(307)

(308)

The second term must vanish. To prove this we calculate thatiea of the Ricci tensor given by:

R _RP _FMV)‘ F

wpv

A TP A TP
BV + F)\prl/u - Fupr)\u
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0R,, becomes:

0Ry, = 0\OT), — 0,0, + 613 1'%, + 3,000, — 6T T4, — T 0%, (310)

The variationdI'}), is the difference of two connections, and therefore isfiséénsor. We can thus

take its covariant derivative:
VaA(OIY,) = oA(dT7,) + 15,00y, — I'3,01%, — T'S,0T7, (311)
Then, the variation of the Riemann tensor is:
R0, = VA(oT%,) = V,(oT%,) (312)
and the contribution of this term in the action is written as:

o5 = [P0 /g9. g (T5) - 96T (313)

But this is an integral with respect to the natural volulmenatnt of the covariant divergence of a
vector. So, by Stoke’s theorem, this is equal to a boundamyribwition at infinity, which is equal to
zero since we make the variation of the action vanish at igfifihen, the term frona R, does not

contribute.

e Using the variatio, /g, given above, we write the variation of the second part ofitteon:

e

/—__
05" = 48

dPz [6\/§GWWG‘“’”” + \/ga(GW,,UGWW)}

1
_ _4_68 @z - 5 V991G G707 1/5Ganm G 69 (314)

The equation of motion for the whole action now reads:

1 e 1 vpo
Raﬁ — igagR = 4_8 [ — igaﬁG“VpoGuupo + 4\/§GaupoG5p :| (315)
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By contracting this withy”®, we obtain:

R G lpe GHP7 (316)

T 144

C.2.2 3-form potential C,,,
The part of the supergravity action involving the 3-formeguutal C,,, , is:

1 1

L = 4_8G/WMGMVPJ + @Em"'a461"'547”2%Ga1...a4G61...ﬁ4G’y1'Y2'Y3 (317)

To find the equation of motion, one can solve the Euler-Lagg;eaafquatior'Bg?k — O [a(a?é-‘k)} =0.
1K 1k

Using the following identities:

-
and
6;11;;.'5‘446151“'54 = 41G- (319)
we have the equation of motion:
1 .
0 = 1442 g P e Ga..as Gor...ou 531312273
- % { - 4—18 {088 Grom 4 g g g G G 050,

2 "
+ e Ea1...a4ﬁ1~ﬂ4“/1’72“/3 5321]...044 G61...B4 C’n'yz’yg }

0 = QGW" 4+ s e I Gy G
2 "
_ Ve 8a1...a461..ﬂ4'ywms 53113_“0{4 gﬁl...ﬁ4 aﬁcwwm:i
sinceEGZO

0 = QG + rg et M Gy 0, G
2-4l Bi...Baév1v2v3i5k G 8:C
+ @5 Bi..Ba YEYny2v3
———
a[ﬁc’yﬂz’vg]

(320)
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and then:
18

0 G* + 1442 et B G L 0iGy gy =0 (321)

The first termd: G¥/* must be of the formxd(xG):

1
G = IGmm%Md:c“l AN dxt

_ - [
(*G) sy = 4,€u5...u11u1mu4G

1 S
d(*G)Vl“'Vs - 88[1/1 Eeug...us}m...(uG L4

1 1
*d(*G)V1V2V3 — §€V1---V118a[y4 EEVS.“Vll}al“.a4G061---064
1
mﬁnmvu
1 1

Q1a2a3vy...V1] 2
7!3!6111...11116 §8 Gal...a4

A5G = e lG

aj...aq

*d(¥G ) yprs =
*d(*G)I/szVS = 85G§V1u21/3 (322)

1 a1oa3V4... V11 — __ Q| So1a2a3
sincee,, ., € = —8lop1o20s,

The second term should be writtensd& A G):

1
GAG = 5GCa..0,Gp g dz™ A Adz®™ Adz™ A A do™

(4)

1

[ * (G N G)} = 561/11/21/3041---04451---5467%mmGﬁlnﬂ4 (323)

vivavs

Using all this, we can rewrite the equation of motion as fetlo

18
xd(xG) + (4!)2(1442) * (GAG)=0
d(+G) + %G AG =0 (324)
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C.2.3 Gravitino v,

The part of the Lagrangian involving the gravitino is:

L= 30.00D, (52, L (g, 41251790 (s — BTt (325)

We are going to solve the Euler-Lagrange equation/favhich reduces to

oL
= =0
e
. Let split the Lagrangian as:
L=L+Ly
L, = gzzuery(%)wp (326)
£ = 5k (5090, + 1202796 ) (Gays — 301l

\

We first consideiC,. With % = ¢¢, and the notations given earlier, we directly get:

0L 1

0 (i i) (e sin)
3

448

o0t Dt (000, 120717 )

For £,, we first need to expand it, to make all this appear (one can also use the chain rule):

~

D, (w 5 w>¢p = 0up—~ [ Vab_'_ (warchbwﬁ_2(Evrbwa_$’/n’wb+@br”wa)>} Fabqpp—i_?)l_QwaFSfbwﬁrabwp

2

When we multiply by%@HFWP, we get:

1- 1- 1 — — — | — a
L1 =SB0, = 0,07 | 0l0, = 5 (8, Dot =B, Lty + D Lutha) + 58Tyt | T, (328)
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By taking the derivative of this, we find:

oL, 1

a]{/} 2F§Vpau¢/? 81—‘&/[) Vab ('l/) 1—‘bwa ,l7b 1—‘a'lvbb + ,lvbbrl/,lvba) + @Daruab,l?bﬁ} Fab,l?D
13

__w FHVpriﬁb¢ﬁFabw
1 - 1, —
—S (@, 0) | = S0, vtba = BTty + L), | (329)

When we calculate the equation of motion farwe find that, combine to the equation of motion for

1, the last part of (329) vanishes, and the rest can be writtarcondensed form:

oc 1

1—
vp AN af ab 6 uvpab
5o = 3" (D@ - P iy + TSI oT b, (330)

Putting everything together

1 R 1_ ) -

°C §P£Vp [DV(W) 32wa V“b¢ﬁr b} ,lvbp + 64rugbwﬁ¢ul—w T b'l/)p
1 —

448 (Faﬁ%% T 125§¢F75¢ﬁ) (Gaﬁw — 3¢[apﬁw¢5])

3

pvafByd ard, B
- 485 o105 <¢Mr by, + 12¢°T w)

and by re-ordering the terms, we have the equation of motion:

1 1
0= [PWD,,(@) (Ff 5+ 1208 rwaf’)aaﬁvé} b,

96
1 vpTa 7, 1 vpa
—Ga T T el + s, T,
1 v 7l vao,
o (T8 s ler —6@%%@?#‘ P, ) (331)

The last four terms vanish using the Cremmer-Julia-Schienz kdentity:

1 _
3 [, 1,1 D770

1 - 1 -
= TP tals + 5 Tathy el

— 2 g% D, T — 2T g0h,4heg”loT o]

1 vo N
g I o0 wuwa Fﬁ’Y o

+2¢°0T 4 p T anh, = 0 (332)
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and with the identity:

3 <FHP

afy

s + 1264T. 584 )5, G0 = T2 (195 — 19362 )45, Gy (333)
the equation of motion can be written is a simple form:
TP Db, = 0 (334)

where we have used:

1

Db, = D, (&), — 2 114 (Fgmé - 8F57553> 0,Glas
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