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Abstract

Write your own abstract here instead of the following 224 words of

and about placeholder text.

“In publishing and graphic design, lorem ipsum (or simply lipsum) is standard

placeholder text used to demonstrate the graphic elements of a document or

visual presentation, such as font, typography, and layout. Lipsum also serves as

placeholder text in mock-ups of visual design projects before the actual words

are inserted into the finished product. When used in this manner, lipsum is

also called greeking.

Even though using ‘lorem ipsum’ often arouses curiosity due to its resem-

blance to classical Latin, it is not intended to have meaning. Where text is

visible in a document, people tend to focus on the textual content rather than

upon overall presentation, so publishers use lorem ipsum when displaying a

typeface or design in order to direct the focus to presentation. ‘Lorem ipsum’

also approximates a typical distribution of letters in English, which helps to

shift the focus to presentation.

The most common lorem ipsum text reads as follows: Lorem ipsum dolor sit

amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore

et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation

ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor

in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia de-

serunt mollit anim id est laborum.”

— Wikipedia
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1 Introduction

1.1 Causal sets and Discrete Spacetime

There are many approaches to a theory of quantum gravity. (ref) gives a

discusion of some of the possibilities. One approach is causal sets which is

based on the assumption of fundamental spacetime discreteness.

There are a number of results in current theories that suggest that spacetime

might be discrete. The infinities of Quantum Field Theories are caused by the

lack of a short distance cut-off. Although these are cured by the renormalisation

procedure they return in an unmanageable way in simple attempts to quantise

general relativity (ref). The finiteness of black hole entropy also gives another

clue. Without a cut-off the entanglement entropy of quantum fields appears

to be infinite (black hole entropy will be discussed in more detail in chapter

2). Other approaches to quantum gravity such as Loop Quantum Gravity also

suggest fundamental discreteness (ref).

The causal set approach combines the notion of spacetime discreteness with

the information gained from the causality relations between events in a space-

time. A theorem by Malament (ref) building on earlier work by Hawking (ref)

states that the metric up to a conformal factor of every future and past distin-

guishing spacetime can be determined from its causal structure. The points of

a weakly causal (future and past distinguishing) Lorentzian manifold and the

causal relations between them form a partial ordered set or poset. A poset is a

set A with the order relation ≺ on them that obeys:

(i) Transitivity: ∀x, y, z ∈ A, x ≺ y ≺ z ⇒ x ≺ z).

(ii) Irreflexifity: ∀x ∈ A, x ⊀ x.

To impose discreteness the following axiom is added:

(iii) Local finiteness: ∀x, z ∈ A, card{y ∈ A |x ≺ y ≺ z} <∞.

Where card X is the cardinality of the set X. This last condition ensures

that there is a finite number of elements causally between any two elements and

so ensures that our poset will be discrete.
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A set and order relation that obeys all the above axioms will be a locally

finite poset and is called a causal set or causet. This can be shown pictorially

via a Hasse diagram such as figure (ref). The conformal factor of the metric

can be determined from a measure of the volume of spacetime and in the causal

set approach this has the interpretation of being simply the number of elements

in the set. Therefore a causet includes all the information required to describe

a spacetime.

1.2 Recovering the Continuum

Although spacetime is fundamentally discrete our perception on larger length

scales is of a continuous Lorentzian manifold. Therefore an important question

is when can a Lorentzian manifold (M, g) be said to be an approximation to a

causal set?

A causal set A whose elements correspond to points in a spacetime (M, g)

and whose partial order is that induced on those points by the causal order

of the spacetime is said to be an embedding of A into (M, g). Not all causal

sets can be embedded into all manifolds and a manifold can not be said to be

an approximation of all causal sets that embed into it. There is no volume

information, there is no fixed discreteness scale and there may not be enough

elements to accurately determine the causal information. So to ensure the

correct density of points and to provide volume information it is easier to start

from the continuum and work back to the discrete causal set. It is hoped that

when a fuller knowledge of the dynamics on a causal set are known the causal

sets that approximate relevant manifolds will emerge naturally.

Evidence from black hole entropy (ref) implies that the scale on which dis-

creteness becomes apparent is of the order of the plank length. lp =
√
κ~ where

κ = 8πG. Therefore the fundamental unit of volume would be Vf = vl
4
p where v

is a number of order one. Any causal set whose elements correspond to points in

a spacetime such that the number of points in a sufficiently large region is pro-

portional to the volume could be a possible discretised version of the spacetime

in question. A simple way of doing this would be to set up a lattice of points

in spacetime whose intervals are separated by v1/4lp. The problem with this

method is that it is coordinate dependant and therefore not Lorentz invariant.

Under highly boosted frames large voids where there are no points at all will

occur (ref). Although in the original frame and ones related by a sufficiently

small boost the causal set would still resemble a Lorentzian manifold, in highly

boosted frames if this structure was fundamental there would be no manifold
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description at all.

Since Lorentz invariance is not seen to be violated a distribution of points in

spacetime that is Lorentz invariant is required. Such a distribution is found in

the Poisson distribution. The sprinkling process is essentially a process where

elements of the causet A are placed in the spacetime via a Poisson process with

density ρ. Therefore the probability of finding n elements in a given volume V

is:

P (n) =
(ρV )ne−ρV

n!
(1.1)

Where ρ is of Plankian order. A Lorentzian manifold (M, g) is said to ap-

proximate a causal set A if A could have come from sprinkling (M, g) with

sufficiently high probability. If this is the case a is said to be faithfully embed-

ded in m.

1.3 Basic Definitions

• J+(p) is the causal future of the set p and is the set of all elements r such

that p ≺ r.

• J−(q) is the causal past of the set q and is the set of all elements r such

that r ≺ q.

• An interval (Alexandrof set) J(x, y) between two elements x, y such that

x ≺ y is the intersection J+(x) ∩ J−(y). It is the set of all elements r

such that x ≺ r ≺ y.

• An element p is maximal in a causal set C if there are no elements q such

that p ≺ q.

• An element p is minimal in a causal set C if there are no elements q such

that q ≺ p

• A link is between two elements whose interval is empty.
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2 Black Hole Thermodynamics

2.1 Link Counting

In statistical mechanics the entropy is found to be proportional to the number

of microstates contained in the system. In the classical limit and for a perfect

gas this reduces to counting the number of molecules to leading order. The

philosophy behind link counting is that the corresponding horizon ”molecules”

for black hole entropy are the links that cross the horizon. This makes sense

heuristically as a link can be seen as the flow of information from one space time

point to another. Therefore counting links across the horizon would hopefully

give a measure of the amount of information that can flow into the interior of

the black hole.

The hope therefore is that by counting links with suitable conditions a result

that is proportional to the area of the horizon will be found. Furthermore

the relationship between black hole entropy and horizon area appears to be

the same for all horizons, including cosmological. Therefore to be a possible

interpretation of black hole entropy our program must give a result that has

the same constant of porportionality for all horizons.

For a causal set to approximate a sapcetime on large scales it must be fiath-

fully embedded. This can be done by random sprinkling on the relevant space-

time giving a distribution of points as given in equation 1.1.

(derivation of basic integral)

For a given horizon the area to which the entropy is proportional to is given

by the area of the intersection of the horizon with a hypersurface (Σ).

S = k.A(H ∩ Σ)

The hypersurface can be null or spacelike. The links we be the ones that cross

both the horizon and the hypersurface. Therefore the links will be between

points x ∈ J−(H) ∩ J−(Σ) and y ∈ J+(H) ∩ J+(Σ). The number of links

between points in these regions is infinite and is shown in the case of a flat space

time in chapter 3. This divergence is understood to be due to the infinite number
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of links that are null related and extended along the horizon and hypersurface.

Therefore further conditions are required to suppress this divergence.

In (ref) Sorkin and Duo argue that we intuitively want to estimate the

amount of information flowing across the horizon at a given time and not the

total amount. Therefore to count a given link for more than one hypersurface

would be to overcount it. The links that are extended along the horizon will

contribute to many hypersurfaces and so would seem to be responsible for the

divergence. Therefore the conditions that are required will be ones that only

count links that belong to the hypersurface in question and not to ones earlier

or later.

One condition that should do this is forcing x to be maximal in J−(Σ).

Links corresponding to x being far away from Σ should be suppressed by the

extra volume in the exponential. Therefore the contributing links will not cross

a earlier hypersurface and would be suppressed for a hypersurface occurring

later. But other conditions will exist that suffice and there is no natural reason

why the above one should be used. In chapter 3 it will be shown that the

maximality condition on x has the same form as a similar minimality condition

on y for the case of a collapsing null shell.

These conditions will be further examined in chapter 3. Below I include a

calculation carried out by Duo in (ref) that shows how the minimality condition

on y gives rise to a finite answer for a dimensionally reduced Schwarzchild black

hole with null hypersurface.

2.2 2D Schwarzchild

Ideally the calculation would be caried out on a full four dimensional Schwarzchild

black hole but due to the complexity of the non radial goedesics it is hard to

evaluate the Alexandrov volume of two points let alone the volume correspond-

ing to the extra conditions. Therefore a dimensionally reduced two dimensional

Schwarzchild spacetime where the angular coordinates are suppressed is con-

sidered.

To simplify the calculation the presence of the collapse is ignored and the

hypersurface is chosen to intersect the horizon far from the collapse. The hyper-

surface is chosen to be null and the portion of spacetime used in the calculation

is shown in....

The metric describing this spacetime with suppressed angular coordinates is:

ds2 = −
4a3

r
e−r/adudv
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where a is the Schwarzchild radius of the black hole (2.M) and u and v are

the Kruskal-Szekeres coordinates with r implicitly defined via:

uv = (1−
r

a
)er/a

The volume element is:

d2V =
√
−gdudv =

2a3

r
e−r/adudv

The ingoing null hypersurface is defined by the equation v = v0. The horizon

will correspond to u = 0. The conditions impossed on the points (x, y) giving

rise to our links is:

x ∈ J−(H) ∩ J−(Σ)

y ∈ J+(H) ∩ J+(Σ)

x ≺ y is a link

x maximal in J−(H) ∩ J−(Σ)

y minimal in J+(H)

For the null Σ used here the fourth condition is redundant.

The volume of the excluded region corresponding to the above conditions is:

V = a2 + r2xy − r
2
xx − r

2
yy

where:

uivj = (1−
rij

a
)erij/a

The expected number of links satisfying these conditions is therefore:

< n >= (2a3)2
∫ v0

0
dvx

∫ 0

−∞
dux

∫ ∞

v0

dvy

∫ 1/vy

0
duy
e−rxx/a−ryy/a

rxxryy
e−V

Changing integration variables from (ux, vx, uy, vy) to (rxx, rx0, rxy, ryy), and

then by the substitutions x = rxy, y = rx0 and z = rxx reduces the integral to:

< n >= 4 I(a) J(a)

where

I(a) =

∫ ∞

a

dx
x

x− a
e−x

2

∫ x

a

dy
y

y − a

∫ y

a

dz ez
2

and
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J(a) = e−a
2

∫ a

0
dryy e

r2yy

The black holes of interest will be ones for which a� 1. In this regime:

I(a) =
π2

12
a+O

(1
a

)

and

J(a) =
1

2a
+O

( 1
a3

)

Therefore:

< n >=
π2

6
+O

(1
a

)

This is finite and therefore looks promising. At first glance the integrals

appear to be dominated by points near horizon and so is said to be controlled by

the near horizon geometry. In four dimensions this is locally the two dimensions

used here multiplied by the euclidean plane. Therefore where as here < n > is

proportional to a point in four dimensions it would be expected to be multiplied

by the angular coordinates representing the euclidean plane and therefore be

proportional to the horizon area. Unfortunately this is not the case as will be

argued in section 3.4.

For link counting to be a possible source of horizon entropy it must work

for different types of horizons. A horizon whose spacetime is particularly easy

to study is the collapsing null shell since it gives rise to a horizon with a flat

spacetime inside the shell. What follows in the later chapters will therefore be

a study of the effect of different conditions on the link counting procedure in

this spacetime.
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3 Basic link counting in a flat

spacetime

Due to Birkoff’s theorem any spherically symmetric solution of the Einstein

equations must be stationary and asymptotically flat and therefore its exterior

solution must be given by the Schwarzchild metric. If you consider a collapsing

null shell the interior will posses a flat Minkowski metric and it will collapse to

a Schwarzchild black hole due to the above theorem.

The horizon is defined as the boundary of the causal past of future infinity.

Therefore the horizon will form inside the shell at a time before the shell has

passed its Scharzchild radius. This is because light within this region will

only be able to reach the Schwarzchild radius after the null shell has passed

this radius and the black hole has been formed. At this point light can no

longer escape and so can not reach future infinity. Therefore this gives rise to a

horizon in the flat spacetime within the shell. The metric in normalised (u, v)

coordinates will be:

ds2 = −dudv + r2dΩ2

The spacetime diagram is shown in figure 3.1. The null coordinates (u, v)

are chosen to be such that the horizon first forms at the origin. The null shell

collapses to the point (b, b). The hypersurface (Σ) intersects the horizon at (0, a)

and (a, 0). The four dimensional spacetime has been dimensionally reduced so

that each point correspond to halves an S2. Antipodal points on the sphere

are shown. This is because some of the calculations are simpler in this scheme

than where the full S2 angular components are suppressed. This should have

no effect on the validity of the calculations.

Since we will be considering the dimensionally reduced 2D case the angu-

lar components (r2dΩ2) will be dropped. As with the Schwarzchild case we

are interested in macroscopic black holes. Also since ideally most of the links

counted should be close to the intersection of H and Σ there should be a neg-

ligible contribution from links outside the shell if Σ crosses H at a sufficiently

early enough time. Therefore b� a� 1 if the above two conditions hold.
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Figure 3.1: Penrose diagram for the collapsing null shell. (u, v) coordinates are
chosen so that the horizon forms at the origin

Figure 3.2: Regions of integration
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The volumes required to be empty will depend on where the points x and

y exist. So I have split the space into several regions as shown in figure 3.2.

Requiring only that x ∈ J−(H) ∩ J−(Σ) and y ∈ J+(H) ∩ J+(Σ) will force

x to exist in regions 1’,2’ or 3’ and y to exist in regions 1,2 or 3. This same

classification of regions will be used for all the calculations that follow.

3.1 The Causal Diamond

The expected number of links will again have the form of equation (ref). If

no further conditions are imposed except that x ∈ J−(H) ∩ J−(Σ) and y ∈

J+(H) ∩ J+(Σ) form a link. The volume required to be empty will be the

interval between the two points. Sometimes referred to as the causal diamond.

The integration range for vy will be taken to infinity. Strictly speaking it

should be limited by the shell (v = b) but it is assumed that links far away from

Σ will make a marginal contribution. Therefore the inclusion of these links

should have a limited effect.

Figure 3.3: The causal diamond

< n >=

∫ a

0
dvx

∫ ∞

a

dvy

∫ ∞

0
duy

∫ 0

−∞
dux e

ux(vy−vx)−uy(vy−vx)

integrating over ux and uy gives:

< n >=

∫ a

0
dvx

∫ ∞

a

dvy
1

(vy − vx)2

< n >= ln(a)− ln(0) =∞

This divergence is due to the large number of links that are close to being
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null. The believe is that these links will make a contribution to many different

hypersurfaces and so in a sense are counted more than once. The attempts to

produce a finite answer for link counting are based around the idea of trying

to only count links which are associated with a given hypersurface. Therefore

conditions must be imposed that will suppress the links that cross many hyper-

surfaces i.e. the ones that are null or close to null. One way of doing this is by

forcing the points x and y to be close to the intersection of Σ and H.

3.2 Min y

In an attempt to force the links to be close to the intersection of Σ and H a

proposal was made to add the condition that x is maximal in J−(Σ). This

particular choice of a maximality condition on x will be referred to as min x.

The effect of this extra condition will be that a greater volume of spacetime will

be required to be empty of points after the sprinkling process. This volume will

appear in the exponential and will have the effect of confining vx to be close to

Σ.

The hope is that since the point x is confined to be close to Σ the links

counted using these conditions will be associated to a particular Σ and will

not make a contribution to Σ′, a hypersurface occurring earlier or later. If

Σ′ occurs earlier these links will not be counted as v′x (vx in relation to this

new hypersurface) will now be greater than a′ (the new point of intersection

between the hypersurface and the horizon) and so the link will not cross this

hypersurface. If Σ′ occurs later these links should again not be counted as v′x

will be too far away from Σ′ and will thus be suppressed.

Since the hypersurface used here is null there is a symmetry between this

condition and the condition that y is minimal in J+(H). This condition will

be referred to as min y. The max x condition is related to the min y condition

by changing variables as: u ↔ −v, x ↔ y and moving the origin from (0, 0)

to (a, a). The condition of min y has the effect of confining uy to be close to

the horizon and prevents contributions from deep inside the black hole. The

volumes and integrals for the min y condition are often simpler and therefore

from now on the min y condition will be used. Therefore the conditions used

will be:

x ∈ J−(H) ∩ J−(Σ)
y ∈ J+(H) ∩ J+(Σ)
x ≺ y is a link

y minimal in J+(H)
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The Volume(V ) required to be empty in the case of min y depends on whether

x is in region 1’ or region 2’.

if x is in region 1’: V = uy.vy − ux(vy − vx)

if x is in region 2’: V = uy(vy − vx)− ux(vy − vx)

x in Region 1’ - y in Regions 1 or 2

(a) min y in region 1’-12 (b) max x in region 1’,2’-1

Figure 3.4: comparison of the min y and max x conditions

This region includes the intersection of Σ and H and so it would be expected

that it would be responsible for the majority if not the whole contribution to

the total average number of links counted given our constraints. The average

number of links coming from this region will be:

< n >=

∫ a

0
dvx

∫ ∞

a

dvy

∫ ∞

0
duy

∫ 0

−∞
dux e

ux(vy−vx)−uy .vy

< n >=

∫ a

0
dvx

∫ ∞

a

dvy
1

vy(vy − vx)

< n >=

∫ ∞

a

dvy
1

vy
ln(

vy

vy − a
)

Using the series expansion for ln(1− x) for small x gives:

< n >=

∫ ∞

a

dvy

∞∑

n=1

1

n

an

v
(n+1)
y

< n >=
∞∑

n=1

1

n2
=
π2

6
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This is finite and agrees with the dimensionally reduced Schwarzchild result.

This is promising. Due to the fact that Black hole entropy appears to be of the

same form regardless of the type or characteristics of the black hole then the

results gained by link counting should be the same as well.

To see where these links are coming from it is interesting to include a cut off.

If vy is restricted to be less than b.a, where b is a positive factor greater than

1 the integral becomes:

< n >=

∫ b.a

a

dvy
1

vy
ln(

vy

vy − a
)

Again using the series expansion for ln(1− x) gives:

< n >=
π2

6
−
∞∑

n=1

1

n2
1

bn

The series in the second term represents the number of links between the

cutoff and infinity. It converges to:

∞∑

n=1

1

n2
1

bn
= Li2(1/b)

Similarly if a cut off is introduced on vx as vx been restricted to be greater

than a/b then the integral becomes:

< n >=

∫ a

a/b

dvx

∫ ∞

a

dvy
1

vy(vy − vx)

< n >=

∫ ∞

a

dvy
1

vy
ln(
vy − a/b
vy

) + ln(
vy

vy − a
)

< n >=
∞∑

n=1

1

n2

[(a/b
vy

)n
−
( a
vy

)n]∞

a

< n >=
π2

6
−
∞∑

n=1

1

n2
1

bn

This is the same as the result for a cutoff on vy. A plot of the dependence

of < n > on this cutoff is shown in figure 3.5. The < n > has been rescaled so

that when < ñ >= 1 < n >= π2/6.

If both cut offs are applied at the same time the number of links counted is:

< n >=

∫ a

a/b

dvx

∫ b.a

a

dvy
1

vy(vy − vx)
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Figure 3.5: rescaled < n > with only one cutoff.

< n >=
∞∑

n=1

1

n2

[(a/b
vy

)n
−
( a
vy

)n]a.b

a

< n >=
π2

6
+
∞∑

n=1

(
1

b2n
−
2

bn
)

< n >=
π2

6
+ Li2(1/b

2)− 2.Li2(1/b)

Figure 3.6: rescaled < n > with both cutoffs

A plot of the dependence of < ñ > on both cutoffs applied at the same time

is shown in figure 3.6.

The plots of < n > show that the average number of links gradually ap-

proaches π2/6. If a is large this shows that links far away from Σ are contribut-

ing to our result. The divergence suppressed by imposing the min y condition

is of links extending deep into the black hole interior and so maybe it should

not be surprising that the resulting links extend far along the horizon.

The argument for the divergence found in the causal diamond was that it was

17



due to over counting links that cross many hypersurfaces. The links calculated

using the min y condition as shown above appear to still cross many horizons

and so there is little reason to believe that these links are particularly associated

with any one horizon. The reason why the divergence is still cured is that the

links close to the intersection are more numerous and so contribute with a

greater weight. If the calculation above was followed through with a max x

condition as initial proposed then the contributing links would extend far along

Σ instead. These links would then extend far into the interior of the Black Hole.

The contribution from x and y in other regions was assumed to be negligible

compared to this region. But given that vx is not necessarily confined to be

close to Σ this may not be the case.

x in region 1’ - y in region 3

(a) Without a maximality condition on x (b) With x max in J−(Σ) ∩ J−(H)

Figure 3.7: Volumes for integration in Region 1’-3

The figure showing the volume corresponding to x and y in these regions is

shown in figure 3.7(a). The integral for this case is:

< n >=

∫ a

0
dvy

∫ vy

0
dvx

∫ ∞

a

duy

∫ 0

−∞
dux e

ux(vy−vx)+uy .vx

< n >=

∫ a

0

dvy

vy

∫ vy

a

dvx
1

(vy − vx)
ea.vy

< n >=

∫ a

0

dvy

vy
ea.vy

(
ln(vy − a)− ln(0)

)
=∞

The problem here is that when vx tends to vy and vy tends to 0 the min y

condition becomes less and less effective. In the limit of vy = 0 the condition has
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no effect and there is nothing stoping uy running off to infinity and producing

a divergent number of counted links. These links are again far away from the

point of interest and so intuitively should make only a small contribution if any

at all to the final answer.

This is why a maximality condition is required on x as well. Applying the

max x condition at the same time as the min y condition should have the desired

effect of suppressing this divergence. This will be examined in section 3.3. But

first I will examine the effects of a less strict condition of making x minimal in

J−(Σ) ∩ J−(H). The full list of conditions is now:

x ∈ J−(H) ∩ J−(Σ)
y ∈ J+(H) ∩ J+(Σ)
x ≺ y is a link

y minimal in J+(H)
x maximal in J−(H) ∩ J−(Σ)

These are the same conditions used by Duo and Sorkin in (ref). The volume

required to be empty to satisfy these conditions is:

V = ux(vx − a) + uy.vy

Therefore the integral required to evaluate the average number of links is

now:.

< n >=

∫ a

0
dvy

∫ vy

0
dvx

∫ ∞

a

duy

∫ 0

−∞
dux e

ux(a−vx)−uy .vy

< n >=

∫ a

0
dvy

∫ vy

0
dvx
1

vy

1

(a− vx)
e−a.uy

< n >=

∫ a

0
dvy

(
ln(a)− ln(a− vy)

)
e−a.uy

vy

< n >=

[

ln
(a− vy
a

)e−a.vy

a
+ Ei(−a(a− vy))

e−a
2

a

]a

0

< n >= (Ei(a2) + 2log(a) + γ)
e−a

2

a

This is suppressed for large a and so the divergence has been successfully

dealt with.

This extra condition on x is redundant in the earlier cases as the volume

it adds was already contained within the existing conditions. Therefore the
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previous calculations are unchanged.

x in region 2’ - y in region 1

First I will present the calcultion for this case without any maximality con-

dition on x.

(a) Without a maximality condition on x (b) With x max in J−(Σ) ∩ J−(H)

Figure 3.8: Volumes for integration in Region 2’-1

For x and y in these regions the min y condition is redundant and the volume

is the same as that used in the causal diamond calculation.

< n >=

∫ ∞

a

dvy

∫ 0

−∞
dvx

∫ ∞

0
duy

∫ 0

−∞
dux e

ux(vy−vx)−uy(vy−vx)

integrating over ux, uy and vx gives:

< n >=

∫ ∞

a

1

vy
=∞

This divergence is similar to the one found for region 1’-3. As ux tends

to 0 there is nothing stopping vy and vx running off to infinity and -infinity

respectively. As before the same extra condition of x being minimal in J−(Σ)∩

J−(H) is enough to suppress this divergence. The integral now becomes:

< n >=

∫ ∞

a

dvy

∫ 0

−∞
dvx

∫ ∞

0
duy

∫ 0

−∞
dux e

−vy(uy−ux)+vx(a−ux)

< n >=

∫ ∞

0
duy

∫ 0

−∞
dux

1

(a− ux)(uy − ux)
e−a(uy−ux)
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< n >=

∫ 0

−∞
dux

∫ ∞

−ux
dy
e−a.y

y

< n >=

∫ 0

−∞
dux

1

(a− ux)
Ei(a.ux) ≤

1

a

x in region 2’ - y in region 2

Figure 3.9: volume for integration in Region 2’-2

This diagram should be suppressed. This can be seen due to the fact that

the minimal value the volume in the exponential could take is a2. Therefore

this is expected to be suppressed as a becomes large.

< n >=

∫ ∞

a

dvy

∫ 0

−∞
dvx

∫ ∞

a

duy

∫ 0

−∞
dux e

ux(vy−vx)−uy(vy−vx)

< n >=

∫ ∞

a

dvy

∫ 0

−∞
dvx
e−a(vy−vx)

(vy − vx)2

< n >=

∫ ∞

a

dvy (
e−a.vy

vy
− a.Ei(a.vy))

< n >= (1 + a2)Ei(a2)− e−a
2

This is suppressed for large a as expected.
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3.3 Min y and Max x

To get rid of the divergences seen in the original causal diamond calculation

there is also the possibility of imposing the min y and max x simultaneously.

The use of both these conditions will suppress all the divergences shown so far

and has the added aesthetic benefit of being (at least in the case of the null

hypersurface) symmetric in its approach to both the points x and y. The list

of conditions is now:

x ∈ J−(H) ∩ J−(Σ)
y ∈ J+(H) ∩ J+(Σ)
x ≺ y is a link

y minimal in J+(H)
x maximal in J−(Σ)

The volumes corresponding to these conditions is now are different for each

of the distinct regions. (Here again cases where x is in region 3’ are related to

ones where x is in region 1’. Also again region 2’-3 gives the same result as

2’-1).

Region 1’-1

Figure 3.10: volume for integration in Region 1’-1

This region is the most important as the principle behind these extra con-

ditions is to attempt to force the links to be localised around the intersection

of H and Σ. This localised region is contained here therefore this contribution

should provide the majority of the links counted.

The volume required to be empty is:
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v = uy(vy + vx)− ux(vy − vx)− a(uy + vx) + a
2

< n >=

∫ a

0
dvx

∫ ∞

a

dvy

∫ a

0
duy

∫ 0

−∞
dux e

−uy(vy+vx)+ux(vy−vx)+a(uy+vx)−a2

< n >=

∫ a

0
dvx

∫ ∞

a

dvy
1

(vy − vx)
1

(vy − a+ vx)
(1− e−a(vy+vx−a))e−a(a−vx)

Separating the integral into 2 parts:

Ia =

∫ a

0
dvx

∫ ∞

a

dvy
1

(vy − vx)
1

(vy − a+ vx)
e−a(a−vx)

Ib = −
∫ a

0
dvx

∫ ∞

a

dvy
1

(vy − vx)
1

(vy − a+ vx)
e−a.vy

Looking at Ia first.

1

(vy − vx)
1

(vy − a+ vx)
=
( 1

(vy − vx)
−

1

(vy − a+ vx)

) 1

(2vx − a)

Using this and to integrate over vy gives:

Ia =

∫ a

0
dvx
e−a(a−vx)

(2vx − a)
ln
( vx
a− vx

)

This is difficult to evaluate. But limits can be placed on the integral.

Now back to Ib.

Similar to the technique used for Ia, integrating over vx using:

1

(vy − vx)
1

(vy − a+ vx)
=
( 1

(vy − vx)
+

1

(vy − a+ vx)

) 1

(2vy − a)

gives:

Ib =

∫ ∞

a

dvy

(

ln
( vy

vy − a

)
− ln

(vy − a
vy

)) e−a.vy

(2vy − a)

Ib =

∫ ∞

a

dvy
2

(2vy − a)
ln
( vy

vy − a

)
e−a.vy

Using series expansion in a/vy gives:

23



Ib =

∫ ∞

a

dvy 2
∞∑

k=0

ak

(2vy)k+1

∞∑

n=1

1

n

(
a

vy

)n

e−a.vy

Ib =

∫ ∞

a

dvy

[
a

v2y
+
a2

v3y
(1+

1

2
)+
a3

v4y
(1+

1

2
+
1

3
) . . .

ap

v
p+1
y

p∑

q=1

1

q

(
1

2

)p−q

. . .

]

e−a.vy

Therefore:

Ib ≤ e
−a2

∫ ∞

a

dvy

∞∑

p=1

ap

v
p+1
y

p∑

q=1

1

q

(
1

2

)p−q

Ib ≤ −e
−a2

[
∞∑

p=1

ap

v
p
y

p∑

q=1

1

p.q

(
1

2

)p−q]∞

a

Ib ≤ −e
−a2

∞∑

p=1

p∑

q=1

1

p.q

(
1

2

)p−q

This will be suppressed as long as the sum converges. To show that it con-

verges it is enough to consider only two cases. The first when q = 1 and the

second when q = p. The series with q valued between these should converge to

values between these two extreme cases.

First when q = 1:

∞∑

p=1

1

p
2−p = log(2) ≈ 0.693147

Second when q = p:

∞∑

p=1

1

p2
=
π2

6

Therefore this contribution is exponentially suppressed in a. It appears that

by these more stringent conditions exclude not just the divergent links but

almost all the links that we wish to count.

This appears to rule out this case as a useful means of calculating links. This

contribution should be the most important as discussed earlier. There is the

possibility that the suppressed contribution of this region may counteract the

divergence found in the 4-D case. But this appears unlikely since the nature of

the suppression here is different to the nature of the divergence in 4-D.
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The contributions from the other regions are expected to be suppressed. They

are and a proof of this is given below.

Region 1’-2

Figure 3.11: volume for integration in Region 1’-2

The volume required for this region is:

v = vy(uy − ux) + ux.vx

In this region the minimality condition on x is redundant and the volume

reduces to that of the min y case.

< n >=

∫ a

0
dvx

∫ ∞

a

dvy

∫ ∞

a

duy

∫ 0

−∞
dux e

−uy .vy+ux(vy−vx)

< n >=

∫ a

0
dvx

∫ ∞

a

dvy
1

vy(vy − vx)
e−a.vy

< n >= −
∫ ∞

a

dvy ln
(vy − a
vy

) 1
vy
e−a.vy

Using the series expansion for ln(1− x) for small x:

< n >=

∫ ∞

a

dvy e
−a.vy 1

vy

∞∑

n=1

1

n

(
a

vy

)n

Approximating by taking the maximal value of the exponential and then

integrating gives:
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< n >≤ −e−a
2
∞∑

n=1

1

n2

[
an

vny

]∞

a

≤
π2

6
e−a

2

Region 1’-3

Figure 3.12: volume for integration in Region 1’-3

v = vy.uy + vx.ux − a(ux + vy) + a
2

< n >=

∫ a

0
dvy

∫ a

0
dvx

∫ ∞

a

duy

∫ 0

−∞
dux e

−uy .vy−ux.vx+a(ux+vy)−a2

< n >=

∫ a

0
dvy

∫ a

0
dvx

1

a− vx

1

vy
e−a

2

< n >=

∫ a

0
dvy
e−a

2

vy
ln(1− vy/a)

Using the series expansion for small x in ln(1− x) again:

< n >=

∫ a

0
dvy
e−a

2

vy

∞∑

n=1

1

n

(
vy

a

)n

< n >= e−a
2

[
∞∑

n=1

1

n2
vny

an

]a

0

< n >=
π2

6
e−a

2
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Region 2’-3

Figure 3.13: volume for integration in Region 2’-3

v = vy.uy − vx.uy + vx.ux − a(ux + vy) + a
2

< n >=

∫ 0

−∞
dvx

∫ a

0
dvy

∫ ∞

a

duy

∫ 0

−∞
dux e

−vy .uy+vx.uy−vx.ux+a(ux+vy)−a2

< n >=

∫ 0

−∞
dvx

∫ a

0
dvy

1

a− vx

1

vy − vx
e−a(a−vx)

< n >=

∫ 0

−∞
dvx

1

a− vx
ln

(
a− vx
−vx

)

e−a(a−vx)

x = a− vx

< n >= −
∫ a

−∞
dx
1

x
ln

(
x

x− a

)

e−a(x)

< n >< e−a
2

∫ a

−∞

1

x

∞∑

n=1

1

n

(
a

x

)n

<
π2

6
e−a

2

Region 2’-2

The volume for this is the same as for the causal diamond and the min y

case. Therefore the contribution will be the same as in these earlier cases and

is suppressed as shown earlier.
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Figure 3.14: volume for integration in Region 2’-2

3.4 Problems in 4D

It appears so far that a although a straight forward programme of simply count-

ing the number of links that cross the horizon and the hypersurface fails due to

a divergent answer, there does exist links satisfying two conditions: a minimal-

ity condition on y in J+(Σ) and a maximality condition on x in J−(H∩Σ) that

when counted for points x ∈ J−(H∩Σ) and y ∈ J+(H∩Σ) gives a finite answer

in the dimensionally reduced case. Furthermore it appears that this answer is

the same for two different types of Black Holes, Shwarzchild and the collapsing

null shell. This gives strong evidence for the initial claim.

But the counting procedure fails when higher dimensions are considered.

This is due to the fact that the intersection of the future light cone of any point

x ∈ J−(H ∩ Σ) and also whose time coordinate is greater than 0 will have an

infinite intersection with the horizon. Along this intersection y can be close to

both the future light cone of x and the horizon. In this situation the volume

will be small and due to the infinite number of points along this intersection

will give rise to a divergent answer. There is the possibility that this divergence

may counteract the suppression shown in the case of y min and x max but there

is no evidence and little hope due to the suppression being seemingly unrelated

to the divergence seen here.

Therefore in higher dimensions our counting method requires another addi-

tion that suppresses contributions close to J+(x) ∩ H. One of these methods

the 4-diamond is examined below.
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4 The 4-Diamond

Figure 4.1: Volumes for z1and z2 are shown in a darker shading

To suppress the divergence in higher dimensions the 4-diamond is defined

as follows. It has the same conditions as in the min y case but now 2 extra

spacetime points are added. Defined as:

z1 ∈
(
J+(H) ∩ J+(Σ) ∩ J+(x) ∩ J−(y)

)

z2 ∈
(
J−(H) ∩ J−(Σ) ∩ J+(x) ∩ J−(y)

)

Now the points x and y no longer form a link. The sum needed to define this

new condition will be defined by requiring the old volume minus the volume

these points exist in to be empty as before. But now the volume for z1 and

z2 must contain one and only one extra point each. Following the definition of

the poison distribution given earlier the probability of finding only one point in

these areas is given by:

ρ = V (z1).V (z2) e
−V (z1)−V (z2)

The number of links will now therefore be calculated by multiplying the

probability of finding one point in the above volumes with the probability of
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finding no points in the remaining volume. Therefore the number of links will

be calculated using an integral of the form:

< n >=

∫

D

dVxdVy V (z1).V (z2) e
−V

The addition of these extra points suppress the divergence seen in higher

dimensions because when the point y is close to the future light cone of x (or

x is close to the past light cone of y) the volume which z1 must be contained

in goes to zero. This eliminates the contribution from these cases and thus

suppresses the divergence. The point z1 is enough to eliminate this divergence

but the point z2 is included for symmetry.

Table 4.1: Volume for z1 and z2

Region Vol for z1 Vol for z2

1’-1 (a− vx)uy (a− vy)ux
1’-2 (a− vx)a (a− vy)ux
1’-3 (vy − vx)a 0
2’-1 a.uy (a− vy)ux
2’-2 a2 (a− vy)ux
2’-3 a.vy 0

The volume for z1 and z2 depends on which region the points x and y are in.

These volumes are shown in Table 4.1. the volume for z2 is 0 when vy < a. This

means that the inclusion of z2 will eliminate these contributions completely.

Because most of the links we count are close to H or Σ the addition of either

z1 or z2 should only act to further reduce any previous contribution. This is

because close to H or Σ the volume these points can exist in reduces to zero thus

reducing these contributions. This implies that contributions already shown to

be suppressed should be further suppressed with the addition of these extra

points.

4.1 4-Diamond: min y

Region 1’-1

The volumes for z1 and z2 in this region are given in Table 4.1. The volume in

the exponential is the same as in the original min y calculation. So the integral

is:
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Figure 4.2: Volume for 4-Diamond with min y in region 1’-1

< n >=

∫ 0

−∞
dux

∫ a

0
dvx

∫ a

0
duy

∫ ∞

a

dvy (a− vx)uy(a− vy)uxe
ux(vy−vx)−uy .vy

< n >=

∫ a

0
dvx

∫ ∞

a

dvy
1

v2y(vy − vx)2
(a− vx)(vy − a)

(
1− (a.vy + 1)e

−a.vy
)

Ia :=

∫ a

0
dvx

∫ ∞

a

dvy
(a− vx)(vy − a)
v2y(vy − vx)2

Ia =

∫ ∞

a

dvy
(vy − a)
v2y

∫ a

0
dvx

( (vy − vx)
(vy − vx)2

+
(a− vy)
(vy − vx)2

)

Ia =

∫ ∞

a

dvy
(vy − a)
v2y

(
ln
( vy

vy − a

)
−
a

vy

)

I1 :=

∫ ∞

a

dvy
a

v3y
(vy − a) = −

1

2

I2 :=

∫ ∞

a

dvy
1

v2y
(vy − a)ln

( vy

vy − a

)

I2 =

∫ ∞

a

dvy
1

v2y
(vy − a)

∞∑

n=1

1

n

(
a

vy

)n

I2 =
∞∑

n=1

( 1
n2
−

1

n(n+ 1)

)
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I2 =
π2

6
− 1

Therefore

Ia = I1 + I2 =
π2

6
−
3

2

Ib :=

∫ a

0
dvx

∫ ∞

a

dvy
(a− vx)(vy − a)
v2y(vy − vx)2

(avy + 1)e
−a.vy

Ib ≤
1

a

∫ ∞

a

dvy (avy + 1)e
−a.vy

Ib ≤
−1
a2

[

(a.vy + 2)e
−a.vy

]∞

a

Ib ≤
1

a2
(a2 + 2)e−a

2

This is suppressed. Therefore in the limit of large a:

< n >= Ia + Ib →
π2

6
−
3

2

4.2 On the maximality condition on x

Also of interest here is the effect of the addition of z1 and z2 onto the earlier

condition of just min y without adding any maximality condition on x. Without

z1 and z2 it was shown earlier that without the condition on x infinities were

found in regions 1’-3 and 2’-1.

With z2 the infinity in region 1’-3 is immediately eliminated since if vy < a

then the volume for z2 as currently defined is non existent. Therefore contri-

butions from this region no longer exist.

The divergence in region 2’-2 was due to the ability of ux and uy to be close

to 0 producing a small volume between them as vy and vx ran to infinity and

-infinity respectively. But with the addition of z1 uy can no longer approach 0

and therefore the volume between the points can no longer become small and

the divergence may be cured. This is similar to the argument in favour of z1

curing the divergence in higher dimensions. z2 should have a similar effect.

Region 2’-1
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Figure 4.3: Volume for 4-Diamond with min y in region 2’-1

In this region the volumes for z1 and z2 are:

V (z1) = a.uy

V (z2) = −ux(vy − a)

The volume in the exponential is as before the same as for the causal diamond:

v = (uy − ux).(vy − vx)

Just considering z1

< n >=

∫ 0

−∞
dux

∫ a

0
duy

∫ ∞

a

dvy

∫ 0

−∞
dvx auy e

ux(vy−vx)−uy(vy−vx)

< n >=

∫ a

0
duy a.uy

∫ 0

−∞
dux

1

(uy − ux)2
e−a(uy−ux)

< n >=

∫ a

0
duy a.uy

∫ ∞

uy

dx
1

x2
e−a.x

< n >=

∫ a

0
duy a.uy

[

a.Ei(−a(x)) +
e−a(x)

x

]∞

uy

< n >=

∫ a

0
duy a.uy

(
a.Ei(−a.uy) +

e−a.uy

uy

)
= I1 + I2
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I1 :=

∫ a

0
duy a

2uy Ei(−a.uy)

I1 = a
2

[

(
1

2a2
+
a2

2
)e−a.uy +

a4

2
Ei(−a.uy)

]a

0

I1 =
1

2
(1 + a2)e−a

2
+
a4

2
Ei(−a2)−

1

2

I2 :=

∫ a

0
duy a e

−a.uy = 1− e−a
2

Therefore in the limit of large a:

< n >= I1 + I2 →
1

2

Just considering z2

< n >=

∫ 0

−∞
dux

∫ a

0
duy

∫ ∞

a

dvy

∫ 0

−∞
dvx (−ux)(vy − a)e

ux(vy−vx)−uy(vy−vx)

< n >=

∫ a

0
duy

∫ 0

−∞
dux (−ux)

1

(uy − ux)3
e−a(uy−ux)

< n >=

∫ a

0
duy

∫ ∞

uy

dx (x− uy)
1

x3
e−a.x

I1 :=

∫ a

0
duy

∫ ∞

uy

dx
1

x2
e−a.x

gives the same contribution as just considering z1:

I1 =
1

2
− e−a

2
+
1

2
(1 + a2)e−a

2
+
a4

2
Ei(−a2)

I2 :=

∫ a

0
duy

∫ ∞

uy

dx (−uy)
1

x3
e−a.x

I2 =

∫ a

0
duy
uy

2

[

a2Ei(−a.x) + e−a.x(
a

x
−
1

x2
)

]uy

∞

I2 =

∫ a

0
duy
1

2

(
a2uyEi(−a.uy) + e

−a.uy(a− 1/uy)
)
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Ia :=

∫ a

0
duy a

2uy Ei(−a.uy)

Ia = a
2

[

(
1

2a2
+
a2

2
)e−a.uy +

a4

2
Ei(−a.uy)

]a

0

Ia =
1

2
(1 + a2)e−a

2
+
a4

2
Ei(−a2)−

1

2

Ib :=

∫ a

0
duy a e

−a.uy = 1− e−a
2

Ic :=

∫ a

0
duy

1

uy
e−a.uy

Ic =
[
Ei(−a.uy)

]a

0
= Ei(−a2) +∞

Therefore:

< n >= I1 + Ia + Ib + Ic =∞

The infinity is still there because the volume for z2 is unbounded. In principle

z2 should suppress the divergence by preventing ux from approaching 0. But

it fails to do this. This is because as ux approaches 0 (vy − a) can grow to

counteract it. This means that the volume for z2 can still be finite as ux

approaches 0.

This does not occur with z1 because it exists in a bounded region. The v

dimension of the area is bounded by the line v = 0 so the maximum length

will be a as used above. So as uy approaches 0 the v component can not grow

to counteract this and the volume for z1 goes to zero and suppresses these

contributions.

A similar scenario will occur when attempting to suppress the divergence

in higher dimensions. In higher dimensions z1 is still bounded so should be

sufficient. But z2 is again unbounded and will not be able to suppress the

divergence. This means that z2 is there for purely cosmetic reasons if a maxi-

mality condition on x is used as well.

The whole 4-Diamond

< n >=

∫ 0

−∞
dux

∫ a

0
duy

∫ ∞

a

dvy

∫ 0

−∞
dvx a.uy(−ux)(vy−a)e

ux(vy−vx)−uy(vy−vx)
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< n >=

∫ 0

−∞
dux

∫ a

0
duy

∫ ∞

a

dvy a.uy(−ux)(vy − a)
1

(uy − ux)
eux.vy−uy .vy

< n >=

∫ 0

−∞
dux

∫ a

0
duy a.uy(−ux)

1

(uy − ux)3
e−a(uy−ux)

< n >=

∫ a

0
duy a.uy

∫ uy

∞
dx
(uy − x)
x3

e−a.x

< n >=

∫ a

0
duy a.uy

[

a.Ei(−a.x)+
e−a.x

x
+
uy

2

(
a2Ei(−a.x)+

e−a.x

x
(a−1/x)

)]uy

∞

< n >=

∫ a

0
duy a.uy

[

a.Ei(−a.uy) +
uy

2
a2Ei(−a.uy) +

e−a.y

2
(a+ 1/uy)

]

< n >=
1

6
+
1

6

(
2a2 + a4 − 1

)
e−a

2
−
1

6
a6Ei(a2)−

1

2
a4Ei(a2)

In the limit of large a this goes to 1/6.

This as expected from the calculation involving just Z1 gives a finite result.

This raises the question of wether a maximality condition on x is required at

all. Using both z1 and z2 together appear to eliminate the divergences that a

maximality condition on x was introduced to avoid. But the philosophy behind

link counting is the attribution of black hole entropy to horizon molecules. It

therefore makes sense that these horizon molecules are close to the horizon. The

horizon stops at the origin so the links coming from region 2’-2 are generally

far away from the horizon. On these grounds these links should be discarded

and will be if a maximality condition on x is used.

On a more basic level of merely constructing a link counting procedure that

gives a finite answer for different types of black holes the fact that this contri-

bution is finite means that maybe it should not be discarded. If z1 and z2 are

included the maximality condition on x is an added condition which is unnec-

essary and may add an added complication to the calculation. This is the case

of a spacelike hypersurface which will be examined below.
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5 Flat Spacetime with Spacelike

Hypersurface

Under a suitable lorentz boost the null (or at least the close to null) hypersurface

used earlier to measure the entropy will become spacelike. Under this lorentz

boost the area defined by the intersection of the horizon and the hypersurface

will remain constant. Therefore so too does the value of black hole entropy for

a given hypersurface. This means that the application of our procedure to a

spacelike hypersurface should give the same answer.

5.1 4-diamond

The volume for z1 and z2 now depends on whether the points A : (uy, vx) and

B : (ux, vy) are above or below the hypersurface. the volumes for all regions

and the diagrams for region 1’-1 are shown below.

Table 5.1: Volume for z1

Region of x and y A ≥ Σ: A ≤ Σ

1’-1 1
2(a− vx)

2 uy(a− vx)− 12u
2
y

1’-2 1
2(a− vx)

2 a(a− vx)− 12a
2

2’-1 1
2a
2 a.uy − 12u

2
y

2’-2 1
2a
2 1

2a
2

vx ≥ a 0 0

Table 5.2: Volume for z2

Region of y B ≥ Σ: B ≤ Σ

vy ≥ a −ux(vy − a)− 12u
2
y

1
2(vy − a)

2

vy ≤ a 0 0

This dependance on the points A and B splits each contribution into 4 parts.

The inclusion of the points z1 and z2 means there is no contribution from vy ≤ a
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(a) A ≥ Σ (b) A ≤ Σ

Figure 5.1: Volumes for z1 in Region 1’-1

(a) B ≥ Σ (b) B ≤ Σ

Figure 5.2: Volumes for z2 in Region 1’-1

38



and vx ≥ a. This forces x and y to be either bounded by the line v = a, which

earlier defined the hypersurface for the null case. This reduces the integration

regions to areas similar to the null case. The extra freedom allowed in the

movement of x and y due to the hrpersurface being null is counteracted by z1

and z2. Although the volumes in which z1 and z2 can exist in are different to

the null case. Also if the condition that x is maximal in J−(Σ) ∩ J−(H) is

included the volume corresponding to this condition will be different to the null

case.

Region 1’-1

A ≤ Σ , B ≥ Σ

Figure 5.3: A > Σ , B < Σ

These conditions on the points A and B translate into the following con-

straints:

A : vx + uy ≤ a

B : vy + uy ≥ a

The condition that x is maximal in J−(Σ)∩ J−(H) is redundant here as the

extra volume is already included in the causal diamond.

The volume in the exponential is the same as in the null case. The volume

for z1 is the given in Table 5.1 and the volume for z2 is given in Table 5.2. This

gives the integral for this contribution as:

< n >= −
∫ 0

−∞
dux

∫ a

0
duy

∫ ∞

a

dvy

∫ a

0
dvx

(
−
1

2
u2y+uy(a−vx)

)(1
2
u2x+ux(vy−a)

)
eux(vy−vx)−uy .vy
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This integral is hard to solve but can be shown to converge to π
2

6 −
3
2 for large

a numerically.

A ≤ Σ , B ≤ Σ

Figure 5.4: A < Σ , B < Σ

This contribution has the conditions:

A : vx + uy ≤ a

B : vy + uy ≤ a

Since B ≤ Σ there is a difference between including the maximality condition

on x. But the addition of this extra volume in the exponential will only suppress

the contribution further. This means that if the contribution is suppressed

without the addition of this volume it will still be suppressed with its inclusion.

Therefore I will present the calculation without a maximality condition on x

first. The volumes for z1 and z2 are given in tables 5.1 and 5.2 respectively.

< n >=

∫ a−vy

−∞
dux

∫ a−vx

0
duy

∫ ∞

a

dvy

∫ a

0
dvx
1

2
(vy−a)

2
(
−
1

2
u2y+uy(a−vx)

)
eux(vy−vx)−uy .vy

< n >=

∫ a−vx

0
duy

∫ ∞

a

dvy

∫ a

0
dvx
1

2

(vy − a)2

(vy − vy)

(
−
1

2
u2y+uy(a−vx)

)
e−(vy−a)(vy−vx)−uy .vy

< n >=

∫ ∞

a

dvy

∫ a

0
dvx
1

2

(vy − a)2

(vy − vx)
e−(vy−a)(vy−vx)Iuy
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where:

Iuy =

∫ a−vx

0
duy

(
−
1

2
u2y + uy(a− vx)

)
e−uy .vy

Iuy = −(a− vx)
1

v2y

[
(e−vy(a−vx) − 1) + (a− vx).vye

−vy(a−vx)
]

+
1

2v3y

[
2(e−vy(a−vx) − 1) + 2(a− vx)vye

−vy(a−vx) + (a− vx)
2vye

−vy(a−vx)
]

Therefore:

< n > =

∫ ∞

a

dvy

∫ a

0
dvx
1

2

(vy − a)2

(vy − vx)
e−(vy−a)(vy−vx)

×

[

− (a− vx)
1

v2y

[
(e−vy(a−vx) − 1) + (a− vx).vye

−vy(a−vx)
]

+
1

2v3y

[
2(e−vy(a−vx) − 1) + 2(a− vx)vye

−vy(a−vx) + (a− vx)
2vye

−vy(a−vx)
]]

0 ≤ vx ≤ a implies 0 ≤ (a− vx) ≤ a therefore:

< n > ≤
∫ ∞

a

dvy

∫ a

0
dvx
1

2

(vy − a)2

(vy − vx)
e−(vy−a)(vy−vx)

×

[

− a
1

v2y

[
(e−vy(a−vx) − 1) + a.vye

−vy(a−vx)
]

+
1

2v3y

[
2(e−vy(a−vx) − 1) + 2a.vye

−vy(a−vx) + a2vye
−vy(a−vx)

]]

< n >≤ Ia + Ib

where

Ia :=

∫ ∞

a

dvy

∫ a

0
dvx
1

2

(vy − a)2

vy − vx
e−(vy−a)(vy−vx)

( a
v2y
−
1

v3y

)

Ib :=

∫ ∞

a

dvy

∫ a

0
dvx
1

2

(vy − a)2

vy − vx
e−v

2
y+vx(2vy−a)

1

v3y

First Ia:

Ia =

∫ ∞

a

dvy

∫ a

0
dvx
1

2

(vy − a)2

vy − vx
e−(vy−a)(vy−vx)

( a
v2y
−
1

v3y

)
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Ia ≤
∫ ∞

a

dvy
1

2

( a
v2y
−
1

v3y

)
e−vy(vy−a)

[
evx(vy−a)

]a

0

changing variables with y = vy − a:

Ia ≤
∫ ∞

0
dy
1

2

( a
a2
−
1

a3

)(
e−y

2
− e−a.y

)

since:

∫ ∞

0
dy e−y

2
=

√
π

2

Ia ≤
1

2

(1
a
−
1

a3

)
(

√
π

2
−
1

a
)

Now looking at Ib:

Ib =

∫ ∞

a

dvy

∫ a

0
dvx
1

2

(vy − a)2

vy − vx
e−v

2
y+vx(2vy−a)

1

v3y

Ib ≤
∫ ∞

a

dvy
1

2

(vy − a)
v3y

e−v
2
y

(2vy − a)

(
ea(2vy−a) − 1

)

splitting this further into two integrals:

Ib ≤ Ib1 + Ib2

Ib1 :=

∫ ∞

a

dvy
1

2a
(
1

v2y
−
1

v3y
)e−v

2
y

Ib2 :=

∫ ∞

a

dvy
1

2a

(vy − a)
v3y

e−(vy−a)
2

Ib1 ≤
1

2a
e−a

2

∫ ∞

a

dvy(
1

v2y
−
1

v3y
)

Ib1 ≤
1

2a
e−a

2
(
1

a
−
2

a2
)

using again the change of variable y = vy − a:

Ib2 ≤
∫ ∞

0
dy
1

2

y

a4
e−y

2

Ib2 ≤
1

4a4
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Since Ib1,Ib2 and Ia are suppressed for large a so too is < n > As discussed

earlier. The suppression of this contribution also implies the suppression of a

contribution with a maximality condition on x.

A ≥ Σ , B ≤ Σ

Figure 5.5: A > Σ , B < Σ

A : vx + uy ≥ a

B : vy + uy ≤ a

Again since B ≤ Σ the volume in the exponential will depend on whether

or not a maximality condition on x is included. As with the earlier case, if

the contribution without the extra condition is suppressed then so too will the

contribution with the maximality condition.

< n >=

∫ a−vy

−∞
dux

∫ a

a−vx
duy

∫ ∞

a

dvy

∫ a

0
dvx 14(a−vx)

2(vy−a)
2 eux(vy−vx)−uy .vy

< n >=

∫ a

a−vx
duy

∫ ∞

a

dvy

∫ a

0
dvx
1

4

(a− vx)2(vy − a)2

(vy − vx)
e−(vy−a)(vy−vx)−uy .vy

< n >=

∫ ∞

a

dvy

∫ a

0
dvx
1

4

(a− vx)2(vy − a)2

vy(vy − vx)
(e−v

2
y+vx(2vy−a)−e−vy(vy−vx)−a.vx)
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< n >≤
∫ ∞

a

dvy

∫ a

0
dvx
1

4

a2(vy − a)
vy

(e−v
2
y+vx(2vy−a) − e−vy(vy−vx)−a.vx)

< n >≤
∫ ∞

a

dvy
1

4

a2(vy − a)
vy

(e−v
2
y

( ea(2vy−a)

(2vy − a)
−

1

(2vy − a)
−
ea.(vy−a)

(vy − a)
+

1

(vy − a)

)

dealing with this term by term as:

< n >≤ Ia + Ib + Ic + Id

Ia =

∫ ∞

a

dvy
1

4

a2(vy − a)
vy

e(vy−a)
2

(2vy − a)

Ia ≤
∫ ∞

0
dy
1

4

y

a
e−y

2

Ia ≤
1

8a

Ib =

∫ ∞

a

dvy
1

4

a2(vy − a)
vy

e−v
2
y

(2vy − a)

Ib ≤
∫ ∞

a

dvy
1

4
(vy − a)e

−v2y

Ib ≤
1

8
e−a

2
−
a

8

√
π erfc(a)

Where erfc(x) is the error function. This is suppressed for large a.

Ic =

∫ ∞

a

dvy
1

4

a2(vy − a)
vy

e−(vy−1/2)
2−3a2/2

(vy − a)

Ic ≤
∫ ∞

a/2
dy
1

4
ae−y

2
e−3a

2/2

Ic ≤
1

4
a erfc(a/2)e−31

2/2

Id =

∫ ∞

a

dvy
1

4

a2(vy − a)
vy

e−v
2
y

(vy − a)
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Id ≤
∫ ∞

a

1

4
a e−v

2
y

Id ≤
1

4
a erfc(a)

All these terms are suppressed for large a. Therefore < n > is suppressed as

well.

A ≥ Σ , B ≥ Σ

Figure 5.6: A > Σ , B > Σ

< n >=

∫ 0

a−vy
dux

∫ a

a−vx
duy

∫ ∞

a

dvy

∫ a

0
dvx−

1

2
(a−vx)

2
(1
2
u2x+ux(vy−a)

)
eux(vy−vx)−uy .vy

(5.1)

Splitting this up into two integrals:

< n >= Ia + Ib

Ia :=

∫ 0

a−vy
dux

∫ a

a−vx
duy

∫ ∞

a

dvy

∫ a

0
dvx −

1

2
ux(a−vx)

2(vy−a) e
ux(vy−vx)−uy .vy

Ib :=

∫ 0

a−vy
dux

∫ a

a−vx
duy

∫ ∞

a

dvy

∫ a

0
dvx −

1

4
u2x(a− vx)

2 eux(vy−vx)−uy .vy

Looking at Ia first:
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Ia =

∫ a

a−vx
duy

∫ ∞

a

dvy

∫ a

0
dvx
1

2
(a−vx)

2(vy−a)
e−uy .vy

(vy − vx)

[
(

1

(vy − vx)
−ux))e

ux(vy−vx)
]0

a−vy

Ia =

∫ ∞

a

dvy

∫ a

0
dvx
1

2

(a− vx)2(vy − a)
vy(vy − vx)2

(e−vy(a−vx) − e−a.vy)

×
[
1−

(
1 + (vy − vx)(vy − a)

)
e(vy−vx)(a−vy)

]

−vy(a− vx) ≥ −a.vy therefore e−vy(a−vx) ≥ e−a.vy . This means that if terms

due to the first exponential are suppressed so will terms due to the second

exponential. Therefore it is enough to consider:

I1 :=

∫ ∞

a

dvy

∫ a

0
dvx
1

2

(a− vx)2(vy − a)
vy(vy − vx)2

e−vy(a−vx)

×
[
1−

(
1 + (vy − vx)(vy − a)

)
e(vy−vx)(a−vy)

]

examining this term by term:

I11 :=

∫ ∞

a

dvy

∫ a

0
dvx
1

2

(a− vx)2(vy − a)
vy(vy − vx)2

e−vy(a−vx)

I11 ≤
∫ ∞

a

dvy

∫ a

0
dvx
1

2

(a− vx)
vy

e−vy(a−vx)

changing variables as x = a− vx and integrating over x gives;

I11 ≤
∫ ∞

a

dvy
1

2v3y

(
1− (1 + a.vy)e

−a.vy
)

using:

∫
e−a.x

x2
dx = a.Ei(a.x)−

e−a.x

x

and

∫
dx
e−a.x

x2
dx = −

1

2

(
a2.Ei(a.x) + e−a.x(

1

x2
−
a

x
)
)

this integral can be solved:
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I11 ≤
1

4

( 1
a2
+ a2Ei(a2)− (1 +

1

a2
)e−a

2
)

This is suppressed for large a.

I12 :=

∫ ∞

a

dvy

∫ a

0
dvx
1

2

(a− vx)2(vy − a)
vy(vy − vx)2

e−(vy−vx)
2−vx(a−vx)

I12 ≤
∫ ∞

a

dvy

∫ a

0
dvx
1

2

(a− vx)2

a(vy − vx)
e−(vy−vx)

2−vx(a−vx)

Using the substitutions y = vy − vx and x = a− vx gives:

I12 ≤
∫ a

0
dx
x2

2a
e−x.vx

∫ ∞

x

dy
e−y

2

y

integrating over y and using −x.vx ≤ 0 gives:

I12 ≤
1

4a

∫ a

0
dxx2Ei(x2)

I12 ≤
1

24a

(
a2Ei(a2) + a

√
π erf(a)− 2e−a

2
)

This is suppressed for large a.

I13 :=

∫ ∞

a

dvy

∫ a

0
dvx
1

2

(a− vx)2(vy − a)2

vy(vy − vx)
e−(vy−vx)

2−vx(a−vx)

I13 ≤
∫ ∞

a

dvy
a

2a
(vy − a)e

−v2y

∫ a

0
dvx(a− vx)e

vx(2vy−a)

I13 ≤
∫ ∞

a

dvy
1

2

(vy − a)
(2vy − a)2

(
e−(vy−vx)

2
+
(
1− a(2vy − a)

)
e−v

2
y

)

I13 ≤
∫ ∞

a

dvy
1

2

(vy − a)
a2

(
e−(vy−vx)

2
+
(
1− a(2vy − a)

)
e−v

2
y

)

I13 ≤
1

4

( 1
a2
+ a
√
π erf(a)− a

√
π + (1−

1

a2
)e−a

2
)

The error function tends to one for large a so this term is suppressed for large

a. Since I1 = I11 + I12 + I13 the suppression of each individual term for large

a implies the suppression of I1 and thus Ia.

Now to show the suppression of Ib:
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Ib =

∫ 0

a−vy
dux

∫ a

a−vx
duy

∫ ∞

a

dvy

∫ a

0
dvx −

1

4
u2x(a− vx)

2 eux(vy−vx)−uy .vy

Ib =

∫ 0

a−vy
dux

∫ ∞

a

dvy

∫ a

0
dvx −

1

4
u2x
(a− vx)2

vy
eux(vy−vx)(e−vy(a−vx) − e−a.vy)

Ib =

∫ ∞

a

dvy

∫ a

0
dvx

(a− vx)2

4vy(vy − vx)3
(e−vy(a−vx) − e−a.vy)

×
[
− 2 +

(
2− 2(a− vy)(vy − vx) + (a− vy)

2(vy − vx)
2
)
e(vy−vx)(a−vy)

]

Again since −vy(a − vx) ≥ −a.vy implies e−vy(a−vx) ≥ e−a.vy . This means

that if terms due to the first exponential are suppressed so will terms due to

the second exponential. Therefore it will be enough to consider:

I2 =

∫ ∞

a

dvy

∫ a

0
dvx

(a− vx)2

4vy(vy − vx)3
e−vy(a−vx)

×
[
− 2 +

(
2− 2(a− vy)(vy − vx) + (a− vy)

2(vy − vx)
2
)
e(vy−vx)(a−vy)

]

Again treating it term by term:

I21 :=

∫ ∞

a

dvy

∫ a

0
dvx

(a− vx)2

2vy(vy − vx)3
e−vy(a−vx)

I21 ≤
∫ ∞

a

dvy

∫ a

0
dvx

(a− vx)2

2a(vy − vx)3
e−a(a−vx)

I21 ≤
∫ a

0
dvx

(a− vx)2

4a(a− vx)2
e−a(a−vx)

I21 ≤
1

4a2
(1− e−a

2
)

I22 :=

∫ ∞

a

dvy

∫ a

0
dvx

(a− vx)2

2vy(vy − vx)3
e−(vy−vx)

2−vx(vy−a)
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I22 ≤
∫ ∞

a

dvy

∫ a

0
dvx

1

2a(vy − vx)
e−(vy−vx)

2

I22 ≤
∫ a

0
dvx
1

4a
Ei
(
(a− vx)

2
)

I22 ≤
1

4
(Ei(a2) +

1

a

√
π erf(a))

This is suppressed for large a.

I23 :=

∫ ∞

a

dvy

∫ a

0
dvx
(a− vx)2(a− vy)
2vy(vy − vx)2

e−(vy−vx)
2−vx(vy−a)

I23 ≤
∫ ∞

a

dvy

∫ a

0
dvx

(a− vx)2

2a(vy − vx)
e−(vy−vx)

2

I23 ≤
∫ a

0
dvx
1

4a
(a− vx)

2Ei
(
(a− vx)

2
)

I23 ≤
1

24

(
2a2Ei(a2) +

1

a

√
π erf(a)− 2 e−a

2
)

This is suppressed for large a.
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6 Further Ideas and Conclusion

6.1 4D Case

6.2 De-sitter

6.3 conclusion
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