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ABSTRACT:

In this paper we explain the basics of Topological Quantum Comput-

ing, show that Interferometry is useful in analyzing anyon models, dis-

cuss how the 3-point Fabry-Pérot type Interferometer can be used as a

quantum NOT-gate, and construct the Unitary and Density Matrices

describing anyon interactions within it.
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1 Introduction

This paper constitutes an Introduction to the methods of Topological Quantum

Computing and an application of these methods to different types of interfer-

ometers.

Chapter 1 is a basic introduction to Topological Quantum Computing. For

a general introduction to Quantum Computing see [1, 2].

Chapter 2 deals with the general physics and diagrammatic methods needed

to understand chapter 3 and other papers on the subject.

Chapter 3 deals with detailed explanations of the calculations done in [3, 4]

concerning the 2-point Fabry-Pérot and Mach-Zehnder interferometers. Where

sections 3.2.2 and 3.2.3 consist of original calculations applying the methods

of [3, 4] to the 3-point Fabry-Pérot Interferometer described in [5].

1.1 Introduction to Topological Quantum

Computing

A Topological Quantum Computer [TQC] is a condensed matter system whose

excitations, satisfying non-abelian braiding statistics, can be exploited to per-

form inherently error-free quantum computations [6].

One of the fundamental differences between a TQC and non-TQC lies in

the locality of the qubits1. Non-TQCs have local qubits and perform local

operations on them, which makes them susceptible to errors caused by local

perturbations (interactions with the environment). TQC store qubits in a non-

local manner and the operations are non-local , which makes them resilient to

local perturbations [Sec. 2.3].

TQC are also naturally immune to errors introduced by unitary gate oper-

ations, as braiding operations naturally take on a discrete set of values. The

standard example of how an error is introduced when one is dealing with spin-

based qubits is that, in the task of performing a rotation of 90 degrees a rotation

of 89.99 or 90.01 will occur, creating a small error. Since TQC operations are

performed by taking quasiparticles [Sec. 2.1] around each other, no error will

1The quantum equivalent of standard computational bits 0 & 1, which is a superposition of
the the two states.
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be introduced by a quasiparticle being taken partially around another unless

it changes the topological class of the link formed by the particle trajectories

[Sec. 3.1]. So, the only errors we must concern ourselves with are those that

might cause us to form the wrong link, resulting in the wrong calculation.

We will see in the following sections that there remain many barriers to the

implementation of a TQC, including: identifying an anyonic model capable

of universal quantum computation, creating and controlling anyons, and the

construction of large scale architectures for a quantum computer.
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2 The Tools of Topological

Quantum Computing

Discussed in this section is the necessary information to understand the cal-

culations of Chapter 3. Each section follows from the previous so that the

information is built up in the correct manner.

Since the next few sections have multiple overlapping sources I have left most

referencing to the end of each section.

2.1 Fractional Quantum Hall Effect

The Hall Effect [7] is observed when an electric current flows through a con-

ductor in an orthogonal magnetic field. The magnetic field exerts a transverse

force on the charge carriers (electrons, electron-holes etc), pushing them to one

side of the conductor. There results a measurable voltage between the two sides

of the conductor due to the buildup of charge balancing the magnetic influence.

The quantum-mechanical version of the Hall Effect [8–10], only observed

in two-dimensional systems, occurs at low-temperatures (∼30mK)1 and in the

presence of strong magnetic fields(∼20T), when the Hall conductivity σXY takes

on quantized values. In general

σXY = ν
e2

h
(2.1)

where h is Planck’s constant, e is the electric charge and ν is known as the

Filling Factor. The filling factor is defined by the ratio of electrons to magnetic

flux quanta, it specifies the Quantum Hall Effect as either Fractional or Integer.

The integer case, v ∈ N, is well understood in terms of non-interacting electrons

in a magnetic field.

We are especially interested in the instances when the Hall resistance does

not rise linearly with the applied magnetic field, but instead exhibits plateaux.

This occurs when the current moves perpendicular to the applied voltage, or

put another way, when the Fermi energy lies in a gap of the density of states.

1There exists some evidence of FQHE at higher temperatures [11]
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Figure 2.1: Experimental results for hall resistance, from [12]

At each plateau the electrons form an incompressible fluid state with interest-

ing localized excitations. The quasiparticles (and quasiholes2) that appear at

fractional plateaux exhibit exotic properties, such as having a fraction of the

charge of the electron and are even predicted to be non-abelian in some cases.

It is these non-abelian cases that we are especially interested in experimentally,

as they may correspond to non-abelian Anyons; this is discussed in Section 2.2.

To further understand the effect, consider a system of free particles of charge

−e and mass m in two dimensions, under the influence of a magnetic field

B = (0, 0, B). Ignoring the spin of the electrons, the single particle Hamiltonian

for the system is

H =
1

2m

(
(px − ecAx)

2 + (py − ecAy)
2
)

(2.2)

where A is a vector potential which gives rise to the required magnetic field.

We work in the gauge that specifies

A =
(
−B2 y,

B
2 x, 0

)
(2.3)

2If these excitations correspond to a local peak in the electron density, then they are referred
to as quasiparticles. If they correspond to a local dip in the electron density, then they are
referred to as quasiholes.
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Translated into dimensionless complex coordinates, z = x+iy
l , where l =

√
~c
eB

and the Hamiltonian H and the angular momentum L = xpy − ypx (with some

work) become

H = 1
2
~eB
mc

(
−4∂z∂z − ∂s + z∂z + 14zz

)

L = ~(z∂z − z∂z)

(2.4)

Similarly to the usual solution of the Harmonic oscillator, we find the operators

Creation operators

{
a† = ∂z − z4
b† = ∂z − z4

(2.5)

Annihilation operators

{
a = −∂z − z4
b = −∂z − z4

(2.6)

where a, a† commute with b, b† and

[H, a†] =
~eBa†

mc
, [H, b†] = 0 (2.7)

By solving

aψ0,0 = bψ0,0 = 0 (2.8)

we find the lowest weight ground state ψ0,0(z, z) := e
−zz/4. Applying a† and b†

to this state, we obtain a basis of eigenstates of H

ψm,n(z) =
(
∂z − z4

)m (
∂z − z4

)n
e−zz/4 (2.9)

The corresponding energy levels

En =
~eB
mc

(
n+ 12

)
(2.10)

are known as Landau Levels [13] and are independent of m, hence infinitely

degenerate. Each Landau level can be distinguished by its angular momentum.

From

Lψ0,0 = 0 (2.11)

and the commutation relations

[L, a†] = ~a†, [L, b†] = −~b† (2.12)
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we have that

Lψm,n = ~(m− n)ψm,n (2.13)

The angular momentum eigenstates in the first Landau level are just the func-

tions zme−zz/4, with eigenvalues m~. Confining the sample results to a finite

region in the plane results in a loss of the infinite degeneracy of the Landau

levels. Each single-particle state then takes a surface area hceB = l
2, so that each

Landau level contains eBAhc states (Where A is the surface area of the sample).

Thus the number of states in a Landau level equals the number of fundamental

flux quanta ehc that pierce the sample.

The Fractional Quantum Hall Effect (FQHE) depends essentially on the re-

pulsive interactions between all the electrons in the system. To see where the

values for the filling fractions come from we look at Laughlin’s variational wave

functions for a system of N electrons on a disc [9]. Starting at the ground state,

the wave functions are

ψmN (z1, ..., zN ) =
∏

i<j

(zi − zj)
2m+1e−(

1
4

∑
i zizi) (2.14)

where zk are complex coordinates for the electrons and m ∈ Z. From this, we

can read off the the maximal angular momentum for a particle. A simple way

to find the filling fraction is by considering the fact that since the electrons

fill the sample space, the highest occupied single article angular momentum

state must also be the highest Landau level. Whereas the maximal angular

momentum for a single particle is just the maximal power of a single zk, which

is (2m+1)(N − 1). The first Landau level contains (2m+1)N states, so for N

electrons, we have a filling fraction ν = 1
2m+1 . [14–16]

The FQH plateaux, filling fractions, and the fractional charge of the quasi-

particles in the first landau level are well described by Laughlin states, and the

Abelian hierarchy states constructed over them [17–19].

The discovery of the FQHE in 2-DEG (two-dimensional electron gases), in

a strong magnetic field, indicated that the effect occurs exclusively at Landau

level filling factors with odd denominators [20, 21]. Also important is the fact

that the electron gas (under the right specific conditions:high quality material

with a low carrier concentration etc) condenses into a remarkable system with

liquid-like properties, which we call a Fractional Quantum Hall Liquid (FQHL).

The discovery of FQHE in an even denominator filling factor 52 in the second

landau level [22] was the first indication that not all fractional quantum Hall

states fit the Abelian hierarchy.

Using Conformal Field Theory the Moore-Read Pfaffian wavefunction was
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constructed

ΨPf = Pf
(

1
zi−zj

)∏

i<j

(zi − zj)
me−

∑
i |zi|

2/4l20 (2.15)

which, for even m, describes an even-denominator quantum Hall state in the

lowest Landau level. It was suggested by Moore and Read [23] that its quasi-

particle excitations would exhibitnon-Abelian statistics, which correspond to

non-abelian anyons.

2.2 Anyons

In our three spatial dimensions we live with fermions and bosons, conforming

to Fermi-Dirac and Bose-Einstein statistics respectively. In 1977 Leinaas and

Myrheim [24] (and later Wilczek) realized that if we were to live in a (2+1)-

dimensional Flatland3 we would find ourselves in the company of quasiparticles

known as Anyons, a term coined byWilczek in 1982. These anyons obey neither

Fermi-Dirac nor Bose-Einstein statistics, but are instead governed by a third

set of statistics usually referred to as fractional or anyonic statistics.

To understand their behaviour we must look at the behaviour of multiparticle

states under the exchange of particles. For a particular pair of bosons |ψ1ψ2〉

under interchange, we have the symmetric relation |ψ1ψ2〉 = +|ψ2ψ1〉. And

for a particular pair of fermions |ψ1ψ2〉, we have the antisymmetric relation

|ψ1ψ2〉 = −|ψ2ψ1〉. However, for a particular pair of Anyons we have the

relation |ψ1ψ2〉 = eiθ|ψ2ψ1〉, meaning that they can acquire any phase when

interchanged. Notice that for θ = π, 3π..., we have Fermi-Dirac statistics and

for θ = 0, 2π..., we have Bose-Einstein statistics.

Consider, for a moment, the symmetry properties of an N-particle wavefunc-

tion |ψ〉 on a D-dimensional manifold. In general, under an arbitrary permuta-

tion Π, the Hamiltonian of the system remains invariant, but the wavefunction

transforms as

Π : |ψ〉 → U(Π)|ψ〉 (2.16)

where U(Π) are matrices representing the symmetry group of the permuta-

tion Π. For our D-dimensional, N-particle system, we have the configuration

space MD
N . The fundamental group Π1(M

D
N ) gives the symmetry group of the

permutation, and thus the symmetry properties depend on the configuration

space topology. In general the configuration space MD
N is not simply connected,

because indistinguishable particles are allowed to coincide, meaning that the

fundamental group is non-trivial and depends on D [25, 26]. In D > 3 spatial

3For cultural reference see Flatland: A Romance of Many Dimensions by A.Square
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dimensions, the fundamental group is isomorphic to the permutation group of

N-objects:SN

Π1(M
D
N ) w SN , D > 3. (2.17)

However, in D = 2 spatial dimensions it is isomorphic to the braid group of

N-strands BN

Π1(M
2
N ) w BN (2.18)

(Note: in D = 1 spatial dimensions quantum statistics is not well defined since

particle interchange is not possible without one particle passing through an-

other.) The irreducible representations of SN & BN give the matrices U(Π),

thus they govern the transformation properties of the wavefunction. We there-

fore only expect to observe anyonic behaviour in systems of two spatial dimen-

sions where the symmetry properties of |ψ〉 are described by the braid group

BN , which fully captures all the long range interactions in a (2+1)-D system.

2.3 Braiding

The structure of the braid group BN can be intuitively visualized by consider-

ing the worldline trajectories of our quasiparticles as strands with time in the

direction of the arrow and particles 1, ..., N along the x-axis.

BN is generated by N − 1 generators σ1...σN−1. Where the operation σi
indicates a counter-clockwise (or left over right) interchange of the ith and

(i+1)th particles (strands) as indicated in Fig.2.2. For our particle this results

in an acquired einθphase, where n is the number of times that one particle winds

another (minus the number of times that it winds the other way). The inverse

σ−1i indicates a clockwise interchange, and the corresponding acquired phase

e−inθ. And gives the relation

(σi)
−1σi = σi(σi)

−1 = e, e−inθ.einθ = 1 (2.19)

where e is the identity element of the braid group.

Figure 2.2: σ1: the operation of interchanging the particles at 1 & 2 by moving
1 counter-clockwise around 2. σ2: the operation of interchanging
particles 2 & 3 by moving 2 counter-clockwise around 3
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The braid group has two constraints, the first constraint

σiσj = σjσi, |i− j| ≥ 2, (2.20)

is an algebraic expression of Fig. 2.3 and Fig. 2.4, and of the fact that σ2i 6= e,

Figure 2.3: σ1σ2 6= σ2σ1

Figure 2.4: σ1σ3 = σ3σ1

in contrast to the permutation group SN where σ
2
i = e. This is important

to note as it leads to the fact that there exists no theorem constraining the

dimensionality of the irreducible representations of the braid group; BN , N ≥ 3

is a non-abelian infinite group. It is this richness of the braid group that allows

quantum computation through quasiparticle braiding.

The second constraint

σiσi+1σi = σi+1σiσi+1 (2.21)

is the algebraic expression of the Yang-Baxter relation shown in Fig. 2.5.

Non-abelian braiding statistics is associated with higher dimensional repre-

sentations of the braid group, which occur when there is a degenerate set of g

states with particles at fixed positions x1...xN . Defining an orthonormal basis

ψα, (α = 1, 2, ..., g) of these degenerate states, an element of the braid group σi

9



Figure 2.5: Yang-Baxter relation: σiσi+1σi = σi+1σiσi+1

is represented by a g x g unitary matrix ρ(σi), which defines a unitary trans-

formation within the subspace of degenerate ground states.

ψα → [ρ(σi)]αβψβ (2.22)

The particles are said to obey non-abelian braiding statistics if

[ρ(σ1)]αβ [ρ(σ2)]βγ 6= [ρ(σ2)]αβ [ρ(σ1)]βγ (2.23)

which, in general, will result in non-trivial rotations of the Hilbert space.

The topological nature of these interactions has two unusual consequences.

Firstly, the phase acquired is independent of the path travelled, depending only

on the number and order of interchanges, making the phase immune to minor

fluctuations in the worldline. At low energies, it is essentially true that the only

way to make non-trivial unitary operations is by braiding quasiparticles, which

is equivalent to saying that no local perturbations can have non-zero matrix

elements within this degenerate space. Secondly, because there are no particles

mediating the interaction it is a non-local effect, meaning that it persists even

with a large spatial separation. [27–29]

2.4 Fusion

Fusion is the formation of a different type of anyon by bringing two anyons

together, though not necessarily a bound state as no such bound state may

exist, it is enough to simply bring two anyons close together while all other

anyons are much further away. For example, consider a system of abelian
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anyons with braiding statistics θ, a bound state of two such anyons will have

braiding statistics 4θ. We then consider the two anyons to be a single anyon

whose quantum numbers are obtained by combining the quantum number of

the two particles.

So, if there are θ = π/m anyons in a system, then we must also consider

there to be

θ = 4
π

m
, 9

π

m
, ..., (m− 1)2

π

m
(2.24)

anyons in the system. With

θ = (m− 1)2
π

m
= −

π

m
(2.25)

for m even, and

θ = (m− 1)2
π

m
= π −

π

m
(2.26)

for m odd, since the statistics parameter is only well defined up until θ = 2π.

Combining a −π/m particle and a +π/m particle results in a particle with

statistics θ = 0 (boson). Such a particle is as good as the absence of a particle

and as such is typically called the ’trivial particle’ or simply the ’vacuum’.

We will denote this particle by I ∈ C. Also note that every particle a has an

antiparticle ā with conjugate charge and that I = Ī.

Just as two spin-1/2 particles may combine to form a spin-1 or spin-0 particle

so too can two particular anyons fuse into more than one particular anyon. The

different possible fusions are known as fusion channels. So we have,

a× b =
∑

c∈C

N cabc (2.27)

where a × b indicates a fused with b, N cab is a non-negative integer indicating

the number of ways charge a and charge b can be combined to form c, and C is

the finite set of anyonic charges (sometimes referred to as superselection sector

labels). It should be obvious that N caI = δac, and that N
I
ab = δbā.

If, for a charge a, ∑

c

N cab = I (2.28)

for every charge b, then a must correspond to abelian anyons. In order for the

anyons to have a non-abelian representation of the braid group there must exist

one pair of charges such that ∑

c

N cab > I (2.29)

which is equivalent to saying that there must be a pair of charges a and b with

11



multiple fusion channels.

Another way to distinguish abelian and non-abelian anyons is to examine

their quantum dimension. For a charge a, its quantum dimension da is a measure

of the amount of entropy added to the system by the presence of the charge.

For an abelian charge we have da = 1, and for a non-abelian charge we have

da > 1. Here we can define the total quantum dimension of an anyon model as

D =

√∑

a

d2a. (2.30)

It is useful at this point to adopt a diagrammatic formalism to discuss anyon

models. Again thinking of anyons as worldlines, with time increasing in the

upward direction, where reversing the direction of the arrow is equivalent to

charge conjugation.

a = a (2.31)

For each vector product there exists a fusion vector space V cab (charges a &

b combine to form charge c), and corresponding splitting space V abc , where

dim(V cab) = N
c
ab. Defined as

(dc/dadb)
1/4 = 〈a, b; c, μ| ∈ V cab (2.32)

(dc/dadb)
1/4 = |a, b; c, μ〉 ∈ V abc (2.33)

where |a, b; c, μ〉 is some set of orthonormal basis vectors4, with μ = 1, ..., N cab
and the factor (dc/dadb)

1/4, which is included to conform with the isotopy

invariant convention discussed in [30]. Where Isotopy5 is used to construct

equivalence relations in Knot theory. Essentially telling us whether one knot

may be continuously deformed into another. Our strands may be considered

knots in this context as all open endpoints should be thought of as ending on

some boundary through which isotopy is not permitted.

4The convention used throughout this paper that latin letters label particles and greek letters
label vertices.

5Isotopy⊂Homotopy
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The concept of inner product is conveyed diagrammatically as

〈a, b; c, μ|a, b; c′, μ′〉 = (dc/dadb)
1/4 .(dc/dadb)

1/4 (2.34)

⇒ (dc/dadb)
1/2 . = δc,c′δμ,μ′ (2.35)

⇒ = δcc′δμμ′

√
dadb
dc

c

(2.36)

which explicitly forbids ”tadpole” diagrams and diagrammatically encodes charge

conservation. An important special case of this is c = 1, where the equation

reduces to

a = da = da (2.37)

showing that a charged, unknotted loop evaluates to its quantum dimension.

When we say that we evaluate a particle or worldline, we mean that that we

consider no further fusion or braiding in the life of the particle. This is repre-

sented by closing a line back in on itself.

The standard completeness relation
∑

i

|i〉〈i| = I, where |i〉 is the orthonormal

basis is given, in our diagrammatic formalism, by

|a, b; c, μ〉〈a, b; c, μ| = (dc/dadb)
1/4 .(dc/dadb)

1/4 (2.38)

⇒

a b

=
∑

c,μ

√
dc

dadb
(2.39)

One last important relation is given by evaluating a and b

⇒ (≡ dadb) =
∑

c,μ

√
dc

dadb
=
∑

c

N cabdc (2.40)

These diagrammatic equations are also valid within larger more complicated
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diagrams, which will be essential later on. [3, 4, 30–32]

2.5 Some of the other methods required

What follows are very brief sections introducing the various other techniques,

described in [3, 4], to the extent which we will need them later.

2.5.1 F-moves

F-moves are the set of unitary isomorphisms between different decompositions

of the 4-anyon space V abcd into tensor products of two 3-anyon spaces (i.e.⊕

e

V abe
⊗

V ecd )
6 that are considered simply a change of basis.

They are related to each other by

[(F abcd )
†](f,μ,ν)(e,α,β) = [F

abc
d ]
∗
(e,α,β)(f,μ,ν) = [(F

abc
d )

−1](f,μ,ν)(e,α,β) (2.41)

and are related to quantum numbers by

[F abcd ]I(c,μ,ν) = [(F
abc
d )

−1](c,μ,ν)I =

√
dc

dadc
δμν (2.42)

Two such useful F-move examples are

=
∑

f,μ,ν

[F abcd ](e,α,β)(f,μ,ν) (2.43)

and

=
∑

f,μ,ν

[F abcd ](e,α,β)(f,μ,ν) (2.44)

6
⊕

e

is the direct sum, which is used to combine several modules into a larger module. Here

a vector space can be considered as a module over a field.
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2.5.2 R-moves

The R-move Rab is a unitary braiding operator of pairs of anyons equivalent to

σi in section 2.3, but here a ∼ i and b ∼ (i+ 1). They are defined as

Rab|a, b; c, μ〉 =
∑

v

[Rabc ]μν |b, a; c, v〉 (2.45)

⇒ =
∑

v

[Rabc ]μν (2.46)

And are related to each other by

(RabRcd)
† = (RabRcd)

−1 = R−1dc R
−1
ba (2.47)

These R-moves can be related to the topological spin, θa, of a particle a,

through the equation

∑

λ

[Rabc ]μλ[R
ba
c ]λν =

θc

θaθb
δμν (2.48)

Where θa is related to the ordinary spin of a particle sa by

θa = e
i2πsa (2.49)

and is defined diagrammatically as

θa =
1

da
(2.50)

2.5.3 Topological S-matrix and the Monodromy Scalar

The Topological S-matrix Sab is defined in terms of quantum dimension as

Sab =
1

D
, D =

√∑

a

d2a =
1

SII
(2.51)

And is described by the relations

Sab = Sba = (S−1)ab = Sab, da =
SIa
SII

(2.52)
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It is important because of its relation to the Monodromy7 scalar Mab,the value

of which describes the statistics of a theory.

|Mab|

{
= 1 abelian statistics

< 1 non-abelian statistics
(2.53)

In terms of the S-matrix Mab is defined as

Mab =
da
db

=
SabSII
SIaSIb

(2.54)

The S-matrix is also diagrammatically important as it allows us to remove

closed loops from lines.

=
Sab
SIb

b

(2.55)

To see how the Monodromy scalars relate to each other consider first removing

the loop e from the following diagram

=
Sce

SIc
(2.56)

and then reconnecting it around the a strand

⇒ = .
Sce

SIc
.
SIa
Sae

(2.57)

which, looking at Eq.2.54, we see is equivalent to

Mce

Mae
=
SceSII
SIcSIe

.
SIaSIe
SaeSII

=
Sce

SIc
.
SIa
Sae

(2.58)

but in our diagram e wrapping c is equivalent to e wrapping a and b, so we

7Monodromy is the study of how objects behave when moved around a singularity. In
complex analysis it is related to the idea of a punctured disk, which is in turn related to
topological concepts such as braiding.
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could equally have said

=Mbe (2.59)

which leads to the important relation

Mbe =
Mce
Mae

(2.60)

[3, 32]

2.5.4 Quantum Trace and Partial Quantum Trace

For a general system we use the notation

= X ∈ V A1,...,Am
A′1,...,A

′
n
=

∑

a1,...,am
a′1,...,a

′
n

V
a1,...,am
a′1,...,a

′
n

(2.61)

where X is a general operator acting on n input anyons and m output anyons.

The capitalized anyons A1, ..., Am & A′1, ..., A
′
m indicate a direct sum over all

possible charges. For the tensor product of an operator X, acting on anyons

labelled by A and an operator Y on anyons labelled by B, we use the diagram-

matic representation

= (2.62)

The quantum trace of the system X, T̃ rX, is defined by matching the input
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line Ai to A
′
i for all i.

T̃ rX = T̃ r























= (2.63)

We cannot, however, connect lines of different anyonic charges, doing so would

violate charge conservation and the resultant diagram would evaluate to 0.

The standard Trace and Quantum Trace are related to each other by

TrX =
∑

c

1

dc
T̃ rXc, T̃ rX =

∑

c

dcTrXc (2.64)

X =
∑

c

Xc, Xc ∈ V
A1,...,An
c ⊗ V cA′1,...,A′n (2.65)

The Partial Quantum Trace, T̃ rBX, over an anyon B, can only be taken if

B is one of the outer anyons (i.e. at position A1 or Am above) due to the fact

that B can’t be treated as independent while still in the midst of the remaining

anyons. For an operator X ∈ V A1,...,An,B
A′1,...,A

′
n,B

′ or X ∈ V
B,A1,...,An
B′,A′1,...,A

′
n,
the partial trace

is defined by joining only B & B′ as either

T̃ rBX = , OR T̃ rBX = (2.66)

It is also true that B need not be just a single anyon in our system, but

may we be a subsystem of anyons B = (B1, ..., Bm). However, provided B is

contiguous we may treat it as a single anyon. Where T̃ rB ≡ T̃ rBm , ..., T̃ rB1

and we simply iterate the the operation starting at the edge as

T̃ rB ≡ T̃ rBm , ..., T̃ rB1 = (2.67)

and similarly for B at the other edge.
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By way of demonstration we apply the Partial Quantum Trace to one of the

equations we looked at in Section 2.4

T̃ rB














= (2.68)

which, using Eq 2.44, leads to

=
∑

e,α,β

[(F aba′b′)
−1](c,μμ′)(e,α,β) (2.69)

For charge conservation we must have a = a′ and b = b′ which leads to

= [(F abab )](c,μ,μ′)I

a

b (2.70)

=

√
dc

dadb
δμ,μ′

a

db (2.71)

⇒ T̃ rB














=

√
dcdb
da

δμ,μ′

a

(2.72)

T̃ r gives us one more important relation for the S-matrix

Sab = D
−1T̃ r[RbaRab] =

1

D
(2.73)

2.5.5 States and Density Matrices

To properly describe the state |ψ〉 of a system of anyons one must start with the

creation from vacuum of a particle/anti-particle pair with respective charges c

and c

|ψ〉 =
∑

c

ψc|c, c; I〉 =
1

(dc)1/2
(2.74)

It then is necessary to specify all the splitting channels starting from the vac-

uum. So for the particular case where c splits into just a and b (or equally c
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splits into a and b) we have the state

|ψ〉 =
∑

a,b,c,μ

ψa,b,c,μ|a, b; c, μ〉|c, c; I〉 (2.75)

=
∑

a,b,c,μ

ψa,b,c,μ

(dadbdc)1/4
(2.76)

We note that the total charge of the system is zero as desired.

Using this approach allows us to exactly specify the state and to conserve

charge. However, this approach, for systems with many more splitting channels,

becomes difficult to deal with. It also makes it very difficult to evaluate just a

subsystem. For these reasons we will instead use the density matrix approach

outlined below.

For an arbitrary two anyon system, the density matrix

ρ :=
∑

a,a′,b,b′

c,μ,μ′

ρ(a,b,c,μ)(a′,b′,c,μ′)
1

dc
|a, b; c, μ〉〈a′, b′; c, μ′| (2.77)

using Eq.2.38, with a′,b′,μ′ replacing the input set of a,b,μ, (note that c is

unaffected due to charge conservation) this reduces to

ρ =
∑

a,a′,b,b′

c,μ,μ′

ρ(a,b,c,μ)(a′,b′,c,μ′)

(dadbda′db′d2c)
1/4

(2.78)

A normalisation is chosen such that

T̃ r[ρ] =
∑

a,b,c,μ

ρ(a,b,c,μ)(a,b,c,μ) = 1 (2.79)

The main use of the density matrix approach is that it allows us to a evaluate

a subsystem. Consider another density matrix ρ′ defined as

ρ′ =
∑

a,a′,b,b′

c,c′,μ,μ′

ρ(a,b,c,μ)(a′,b′,c′,μ′)|a, b; c, μ〉|c, c; I〉〈c
′, c′; I|〈a′, b′; c, μ′| (2.80)
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=
∑

a,a′,b,b′

c,c′,μ,μ′

ρ(a,b,c,μ)(a′,b′,c′,μ′)

(dadbdcda′db′dc′)1/4
(2.81)

Then by taking the partial trace over c we see

T̃ rc[ρ
′] =

∑

a,a′,b,b′

c,c′,μ,μ′

ρ(a,b,c,μ)(a′,b′,c′,μ′)

(dadbdcda′db′dc′)1/4
(2.82)

then, by charge conservation we must let c = c′, which leads us to

T̃ rc[ρ
′] =

∑

a,a′,b,b′

c,μ,μ′

ρ(a,b,c,μ)(a′,b′,c,μ′)

(dadbda′db′d2c)
1/4

(2.83)

which is exactly ρ. So we have the relation

ρ = T̃ rc[ρ
′] (2.84)

which allows us to easily consider a subsystem.
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3 Topological Quantum Computing

Via Interferometry

In this section we see that interferometry not only offers a us a way to analyze

the statistics of anyons, but also to implement a NOT-gate [5].

We will begin by looking at the Mach-Zehnder type interferometer as a test

case, then expand the work done in [3] studying the 2-point Fabry-Pérot inter-

ferometer to encompass the 3-point interferometer [5].

3.1 Mach-Zehnder Interferometer as a Test case

In this section we consider an idealized Mach-Zehnder interferometer [33, 34]
for quasi-particles with non-Abelian braiding statistics, which supports an ar-
bitrary anyon model.

Figure 3.1: Mach-Zehnder Interferometer - A: Target anyons, B: Probe
anyons, C: Entangled anyons located outside the central interfer-
ometry, T1,T2: Beam-splitters, D: Detectors, ^: Position we are
viewing from when considering braiding operations. This is arbi-
trary but important to define
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We note that within a FQH system there exist what are referred to as intended

quasiparticles and unintended quasiparticles. The intended quasiparticles are

those that we have created (and whose positions we know) to perform our

quantum computation. The unintended quasiparticles are those which have

been introduced to the system without our knowledge. An example of this is

the creation via thermal fluctuations of quasiparticle-quasihole pairs which may

encircle an intended quasiparticle before annihilating [though for an error to be

introduced the unintended pair must encircle two intended quasiparticles. So,

to minimize thermal fluctuations and hence exponentially suppress errors, TQ

computations must be performed at temperatures far below the energy level for

quasiparticle-quasihole pair creation. For our calculations we will ignore such

errors and only concern ourselves with intended quasiparticles.

We begin by positing the experimental ability (without concern for physical

implementations) to

• Produce, isolate and position the desired anyons.

• Provide a manner of propulsion to produce a beam of probe anyons.

• Construct lossless beam-splitters and mirrors.

• Detect the probe anyons at the output.

We will consider A, B, C not to be a single anyon but instead to be a com-

posites A = (A1...An), B = (B1...Bn), C = (C1...Cn), in charge superposition.

We also wish that A and C be entangled only with each other.

A probe anyon B is sent into the system at input S→ or S→. We use the

subscript Bs where s = (→, ↑) to denote the choice. This corresponds to the

two component vector notation

(
1

0

)

= | →〉,

(
0

1

)

= | ↑〉 (3.1)

which is necessary to keep track of the path the anyon follows through the

interferometer.

The probe anyon B can either travel along the path over A acquiring a phase

eiθ2 (due to the Aharonov-Bohm effect [35, 36]) and the braid R−1AB , or along

the path between A and C picking up a phase eiθ1 and RBA.

The mirrors and beam-splitters have transmission and reflection the coeffi-

cients

(3.2)
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and are represented by the matrix

Tj =

[
tj r∗j

rj −t∗j

]

, |tj |
2 + |rj |

2 = 1 (3.3)

The density matrix of the target system A is

ρA =
∑

a,a′,b,b′

c,μ,μ′

1

dc
ρA(a,c;f,μ)(a′,c′;f,μ′)|a, c; f, μ〉〈a

′, c′; f, μ′| (3.4)

=
∑

all

ρA(a,c;f,μ)(a′,c′;f,μ′)

(dada′dcdc′(df )2)1/4
(3.5)

where ρA(a,c;f,μ)(a′,c′;f,μ′) is a specific coefficient and
∑

all

merely indicates that

we are summing over the same indices again. The density matrix of the probe

system B is given by

ρB =
∑

d,d′,bs,b′s
h,λ,λ′

1

dh
ρB(d,bs;h,λ)(d′,b′s;h,λ′)|d, b;h, λ〉〈d

′, b′s;h, λ
′| (3.6)

=
∑

all

ρB(d,bs;h,λ)(d′,b′s;h,λ′)

(dddd′dbsdb′s(dh)
2)1/4

(3.7)

where s indicates the incident direction of the specific anyon b. B’s entangled

partner D is considered to have been sent off far to the left outside the diagram.

The unitary operator representing the probe anyons passing through the in-

terferometer is

= eiθ1

[
t1r
∗
2 r∗1r

∗
1

−t1t∗2 −r
∗
1t
∗
2

]

s,s′

RBA

︸ ︷︷ ︸
W

+ eiθ2

[
r1t2 −t∗1t2
r1r2 −t∗1r2

]

s,s′

R−1BA

︸ ︷︷ ︸
X

(3.8)

and its hermitian conjugate is

= e−iθ1

[
t∗1r2 −t∗1t2
r1r2 −r1t2

]

s,s′

R−1AB

︸ ︷︷ ︸
Y

+ e−iθ2

[
r∗1t
∗
2 r∗1r

∗
2

−t1t∗2 −t1r
∗
2

]

s,s′

RAB

︸ ︷︷ ︸
Z

(3.9)
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where

U = T2ΣT1, Σ =

[
0 eiθ2R−1AB

eiθ1RBA 0

]

(3.10)

We choose at this point to label the individual components to make more

apparent a calculation later on.

The braiding of C with the probe is given by

V =

[
R−1CB 0

0 R−1CB

]

= (3.11)

Once B is measured at one of the detectors, we remove it and its entangled

partner from the system. Diagrammatically we trace anyons B and D out of

the system, so that the overall state of the system is

ρ = V U(ρB ⊗ ρA)U †V † (3.12)

and we apply the orthogonal measurement collapse projection, with Πs = |s〉〈s|,

such that

ρ 7→
ΠsρΠs
Pr(s)

, P r(s) = T̃ r[ρΠs] (3.13)

3.1.1 Single Probe

For simplicity we will consider a single probe anyon b, with density matrix

ρb = |b, b↑; I〉〈b, b↑; I|. Since the s =→ case is looked at in [3] we will look at the

s =↑ case. So for a single probe anyon, Eqs. 3.12, 3.13 correspond to

The tracing out of b and bs, and the fusion/splitting vertices labels μ
′, μ, are not

illustrated in this diagram for clarity’s sake. The partial traces would simply

result in the b being looped back around to itself on the left side of the diagram,

and for bs being looped back around on itself on the right side of the diagram.

Both without any further interaction of course.

ρ = V U(ρb ⊗ ρA)U †V † (3.14)
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Figure 3.2: Diagrammatic interpretation of the equation 3.14

By inverting Eq.2.44 we get

=
∑

e,α,β

[(F aca′c′)
−1](f,μ,μ′)(e,α,β) (3.15)

Now we look at the four cases from U and U †, where W ,X,Y , and Z are

defined in Eqs. 3.8, 3.9,
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1.

(
0 1

)↑
W

(
1

0

)→

×
(
1 0

)↑
Y

(
0

1

)→

= |t1|
2|t2|

2 (3.16)

2.

(
0 1

)↑
X

(
1

0

)→

×
(
1 0

)↑
Z

(
0

1

)→

= |r1|
2|r2|

2 (3.17)

3.

(
0 1

)↑
W

(
1

0

)→

×
(
1 0

)↑
Z

(
0

1

)→

= −t1r
∗
2r
∗
1t
∗
2e
i(θ1−θ2) (3.18)

4.

(
0 1

)↑
X

(
1

0

)→

×
(
1 0

)↑
Y

(
0

1

)→

= −t∗1r2r1t2e
−i(θ1−θ2) (3.19)

which gives us

=
∑

e,α,β

[(F aca′c′)
−1](f,μ,μ′)(e,α,β)

×






|t1|
2|t2|

2 − t1r∗2r
∗
1t
∗
2e
i(θ1−θ2)

+ |r1|
2|r2|

2 − t∗1r2r1t2e
−i(θ1−θ2)






(3.20)

The exact forms of the four braid diagrams may not be obvious initially. To

see how we arrive at them, replace the U and U † (keeping α,e and β intact) of
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Eq. 3.15, with the braids of Eqs. 3.16-19. Then imagine the worldlines as strings

(or use actual strings), and deform them, bearing in mind that we consider

a, a′, c, c′ to end on some surface through which deformations are not allowed.

We then use Eq. 2.37, Eq. 2.44 and Eq. 2.55 to get

=Meb[F
ac
a′c′ ](e,α,β)(f ′,ν,ν′)db (3.21)

=Mab[F
ac
a′c′ ](e,α,β)(f ′,ν,ν′)db (3.22)

= [F aca′c′ ](e,α,β)(f ′,ν,ν′)db (3.23)

=M∗a′b[F
ac
a′c′ ](e,α,β)(f ′,ν,ν′)db (3.24)

where M∗ indicates the clockwise rotation of b around a′ (since reversing the

direction of an arrow is akin to conjugation).

This leads to our result

= db
∑

e,α,β
f ′,ν,ν′

[(F aca′c′)
−1](f,μ,μ′)(e,α,β)[F

ac
a′c′ ](e,α,β)(f ′,ν,ν′)p

↑
aa′e,b (3.25)

with
p
↑
aa′e,b = |t1|2|t2|2Meb − t1r∗2r

∗
1t
∗
2e
i(θ1−θ2)Mab

+|r1|
2|r2|

2 − t∗1r2r1t2e
−i(θ1−θ2)M∗a′b

(3.26)
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For s =→ the result given in [3] is

p→aa′e,b = |t1|2|r2|2Meb + t1r∗2r
∗
1t
∗
2e
i(θ1−θ2)Mab

+|r1|
2|t2|

2 + t∗1r2r1t2e
−i(θ1−θ2)M∗a′b

(3.27)

For some general outcome s, the reduced density matrix of the target anyons

is given by

ρA = 1
Pr(s) T̃ rB,B [ΠsρΠs]

=
∑

a,a′,c,c′,f,μ,μ′

e,α,β,f ′,ν,ν′

ρA(a,c;f,μ)(a′,c′;f,μ′)

(dada′dcdc′d
2
f )
1/4

psaa′e,b

Pr(s)

×[(F aca′c′)
−1](f,μ,μ′)(e,α,β)[F

ac
a′c′ ](e,α,β)(f ′,ν,ν′)p

s
aa′e,b

(3.28)

=
∑

all

ρA
(a,c;f,μ)(a′,c′;f,μ′)

(dfdf ′ )
1/2

ps
aa′e,b

Pr(s) [(F
ac
a′c′)

−1](f,μ,μ′)(e,α,β)

×[F aca′c′ ](e,α,β)(f ′,ν,ν′) |a, c; f
′, ν〉〈a′, c′; f ′, ν ′|

(3.29)

To find the probability of measurement outcome s we now take the quantum

trace of the target system, which projects on e = 1, giving

Pr(s) = T̃ r[ρΠs] =
∑

a,c,f,μ

ρA(a, c; f, μ)(a, c; f, μ)psaa1,b (3.30)

We note that we have a well defined probability distribution since

p
↑
aa1,b = |t1|2|t2|2 + |r1|

2|r2|
2 − 2Re

(
t1t
∗
2r
∗
1r
∗
2e
i(θ1−θ2)Mab

)

p→aa1,b = |t1|2|r2|2 + |r1|
2|t2|

2 + 2Re
(
t1r
∗
2r
∗
1t
∗
2e
i(θ1−θ2)Mab

) (3.31)

gives us

0 ≤ psaa1,b ≤ 1, p→aa1,b + p
↑
aa1,b = 1 (3.32)

For the general density matrix ρB we obtain a result by replacing psaa
′e, b

with

psaa
′e,B =

∑

b

PrB(b)p
s
aa
′e, b (3.33)

29



where we define

PrB(b) =
∑

d,h,λ

ρB(d,b→;h,λ)(d,b→;h,λ) (3.34)

3.2 Fabry-Pérot Interferometer as a NOT-gate

Figure 3.3: 3-Point contact Fabry-Pérot Interferometer [5, 37].

We will discuss in this section a the 3-Point Fabry-Pérot1 type Interferometer

of Fig.3.3. First focusing on the means by which it may be used to implement

a NOT-gate, as outlined in [5], and then performing some calculations with the

2- and 3-point versions.

The Fabry-Pérot Interferometer consists of: a quantum Hall bar with two

individually gated anti-dots, A and C, (“humps” in the potential) in the interior.

Tunnelling is enabled at t1, t2, t3, by applying a voltage to opposing F -gates

which creates an anti-dot (not shown) between the gates. The arrowed line

represents the path the electrons ( which are confined to the edge of the sample

by the FQHE) take when a current is applied. The region encompassed by the

arrowed-lines contains an incompressible FQH liquid. Again, S and D represent

the sources and detectors respectively.

To show how this may be used as a NOT-gate, we wish to

1. Initialize the qubit and measure its state:

This is done by placing a charge e2 on anti-dot A, which will be either occu-

pied or unoccupied but not a superposition of the two. To determine the

state we apply a voltage across the front and back gates so that tunnelling

can occur with amplitudes t1 and t3. The longitudinal conductivity, σxx, is

the probability that current entering from S→ will exit from D←. This is

given (to lowest order) by the interference from the process of the current

tunneling at t1, and the process that the current travels right to tunnel

1There is much debate over the correct spelling of Pérot’s name. In his own scientific pub-
lications he spelled his name with the accent, we choose here to respect his wishes. See
http://www.sabix.org/documents/perot.pdf ”Pérot ou Perot?”.

30



at t3. Where the state of the qubit, which is formed by the correlation

between anti-dots A and C, is determined by the relative phases of the

processes

|0〉 := σxx ∝ |t1 + it2|2

|1〉 := σxx ∝ |t1 − it2|2
(3.35)

2. Flip the qubit:

With initial state |0〉 (the choice of initial state |0〉 or |1〉 is arbitrary) we

apply a voltage to the anti-dots so that a charge e4 is transferred from A

to C, so that each anti-dot now has a charge e4 . Note that the state is

unaffected by this process. A voltage is now applied to the central gates

so that a single quasiparticle of charge e4 tunnels across t2. To ensure that

only one quasiparticle tunnels we can place, before the outset, a finely

tuned anti-dot E between the central gates. By applying the voltage in

stages, first to the bottom so that the anti-dot is filled by a charge e4
quasiparticle, then turning off the current at the bottom and applying it

to the top so the quasiparticle trapped at E tunnels across. E should be

turned off at the beginning and end of the bit-flip process so that there are

no quasiparticles there which could become entangled with our system.

If the ν = 5
2 plateau is in the phase of the Moore-Read Pfaffian state, this

will transform |0〉 to |1〉. However, if do not observe this state then we can

conclude that our state is abelian.

3. Measure the new state:

As with our initial measurement we allow tunnelling at t1 and t3, where

we expect to find

σxx ∝ |t1 − it2|
2 −→ |1〉 (3.36)

We now ask with what probability can this be performed, ie. what is the

error rate, Γ, of this NOT-gate. A Bit-flip error will occur when an uncontrolled

charge e4 quasiparticle encircles one of the anti-dots by jumping across the Hall

bar between A and C (essentially how we perform the Bit-flip but without

our knowledge). A phase flip error will occur when an uncontrolled charge e4
quasiparticle encircles both A and C. The rate for these processes is related

to the longitudinal resistivity, from which we can put an upper bound on the

error rate.
Γ

Δ
∼
T

Δ
e−Δ/2T (3.37)

With values for the quasiparticle excitation gap Δ ≈ 500mK and lowest achieved
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measurement temperature T ∼ 5mK [5,6] we get

T

Δ
e−Δ/2T < 10−15 (3.38)

which is incredibly low. However, this is a simplification and calculating the ac-

tual error rate for this system would need to consider multiple energy gaps, and

the density and mobility of excited quasiparticles. Even so, these error rates are

considerably lower than implementations in any other proposed architectures

of quantum computation, where the estimated error is ∼ 10−4 [38].

3.2.1 2-point Gate Calculations

Figure 3.4: 2-Point contact Fabry-Perot Interferometer [3]. Where the gate G
is used, experimentally, to change the shape and length of one of
the paths. Two antidots are used to allow for the combined target
to maintain a coherent superposition of anyonic charges. [39]

Before we look at the 3-point gate calculations, we will look at the slightly

simpler 2-point case, constructing the unitary matrix describing the interactions

and the density matrix of the system.

The set-up is as follows. We consider the source S← and the detector (drain)

D→ to be further right than the anyon C. Counter-clockwise motion over A

results in eiθ1 and counter-clockwise motion under A results in an acquired

phase eiθ2 .

The tunneling and transmission coefficients are defined as

(3.39)

where we have simplified the diagrams, for clarity, by representing ri as a

straight line through the gate whereas in fact they must travel up over the
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gate and then back down as in Fig 3.4.

We work in the convention where moving along the top edge is defined by

〈← | and moving along the bottom edge is defined by | →〉. Where

(
1

0

)

= | ←〉,

(
0

1

)

= | →〉 (3.40)

As before, to build up our Unitary matrix U we look at the components

individually.

U1,1: corresponding to (←,←) which is an anyon B entering from S← and

exiting from D←.

Ignoring the dotted line for a moment we see that the probe anyon B must

undergo the braiding RABRCB, acquire the phase e
iθ, and also pick up the

transmission coefficients r∗1r
∗
2. So we would have

U1,1 = r
∗
1r
∗
2e
iθ2RABRCB (3.41)

However, we must also consider the fact that B may be reflected at Gate

1 (t∗1RBA), travel under A (e
iθ2), be reflected back at Gate 2 (t2RAB)

and travel over A again (eiθ1), which is represented by the dotted line.

Furthermore it may do so indefinitely. To deal with this we introduce the

Wrapping term

WAB :=
∞∑

n=0

(
−t∗1t2e

i(θ1+θ2)RBARAB

)n
(3.42)

where n is the number of times B encircles A. We should also note the

mathematical relation
∞∑

n=0

(−A)n =
1

1 +A
(3.43)

which allows us to write

WAB =
1

(
1 + t∗1t2e

i(θ1+θ2)RBARAB

) (3.44)
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So our actual component value is

U1,1 = r
∗
1r
∗
2e
iθ1RABWABRCB (3.45)

U2,2: corresponding to (→,→) which is an anyon B entering from S→ and

exiting from D→.

In a similar fashion to U1,1 we can find our value to be

U2,2 = r1r2e
iθ2RBCRBAWBA (3.46)

U1,2: corresponding to (→,←) which is anyon B entering from S→ and exiting

from D←. Slightly more complicated than the previous components of U ,

we have two separate paths. For n = 0 we have the case where only the

reflection coefficient t1 is acquired. For the case n → ∞ we must use our

W term, which gives us

U1,2 =
1

t∗1
(1− |r1|

2WBA) (3.47)

The placement of WBA may not be obvious, to make it so we expand out

for n = 1, recalling the fact that |tj |2 + |rj |2 = 1, so we can write t1 as
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1−|r1|2

t∗1
, so we have

U
(n=1)
1,2 = 1

t∗1

(
1− |r1|2(1− t∗1t2e

i(θ1+θ2)RABRBA)
)

= t1 + |r1|2t2ei(θ1+θ2)RABRBA

(3.48)

which covers both our cases.

U2,1: corresponding to (←,→) which is anyon B entering from S← and exiting

from D→. Using the same method as U1,2 we get

U2,1 = RBC
1

t2
(−1 + |r2|

2WAB)RCB (3.49)

Putting these components together we find the unitary matrix describing our

system is given by

U =






r∗1r
∗
2e
iθ1RABWABRCB

1
t∗1
(1− |r1|2WBA)

RBC
1
t2
(−1 + |r2|2WAB)RCB r1r2e

iθ2RBCRBAWBA




 (3.50)

Constructing these diagrams is no more complicated than the Mach-Zehnder

case but quite cumbersome. In the Mach-Zehnder case B entered further left

than A and C and exited further right. In our current case B may enter from

the left or right and exit from the left or right, meaning more diagrams of the

form of Fig. 3.2 must be drawn. They are essentially of the same form where

U and U † of the 2-point case replace UV and V †U † of the Mach-Zehnder case.

Since |t1| ∼ |t2| is small, higher order tunneling is exponentially suppressed.

So we just quote the density matrices to order |t|2 by a quicker method. Where

the general form is the the same as the Mach-Zehnder case.

Firstly, we look at U2,2 expanded to n = 1, for the S← case,

U2,2U
†
2,2 =

(
r1r2e

iθ2RBCRBA(1− t∗1t2e
i(θ1+θ2)RABRBA)

)

×
(
r∗1r
∗
2e
−iθ2(1− t1t∗2e

−i(θ1+θ2)R−1ABR
−1
BA)R

−1
ABR

−1
CB

)

= |r1|2|r2|2 − |r1|2|r2|2t1t∗2e
−i(θ1+θ2)RBCRBARABRBAR

−1
ABR

−1
CB

−|r1|2|r2|2t∗1t2e
i(θ1+θ2)RBCRBAR

−1
ABR

−1
BAR

−1
ABR

−1
CB

+ |r1|
2|r2|

2|t1|
2|t2|

2(R-terms)
︸ ︷︷ ︸

∼t4

(3.51)
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through diagrammatic means we come to

p→aa′e,b ' |r1|
2|r2|2

(
1− t∗1t2e

i(θ1+θ2)Mab − t1t∗2e
−i(θ1+θ2)M∗a′b

)

' 1− |t1|2 − |t2|2 − |t1t2|
(
eiβMab + e

−iβM∗a′b

) (3.52)

Through the same method we can see that U1,2U
†
1,2, expanded to n = 1, gives

p←aa′e,b ' |t1|
2 + |r1|2t∗1t2e

i(θ1+θ2)Mab + |r1|2t1t∗2e
−i(θ1+θ2)M∗a′b + |r1|

4|t2|2Meb

' |t1|2 + |t1t2|
(
eiβMab + e

−iβM2
a′b

)
+ |t2|2Meb

(3.53)

where β = arg{t∗1t2e
i(θ1+θ2)}. So, our probability is

p→aa′e,b + p
←
aa′e,b ' |t2|

2Meb + |r2|
2 (3.54)

Again, taking the quantum trace of the target system, which projects on e = 1,

so that Meb = 1, gives us

p→aa′1,b + p
←
aa′1,b ' |t2|

2 + |r2|
2 = 1 (3.55)

3.2.2 Reduced 3-point Gate Calculations

Since constructing the Unitary matrix for the 3-point poses a far greater prob-

lem than the 2-point gate we will begin by looking at three simplified special

cases where we disallow tunnelling at each gate respectively, denoted by |ti| = 0

(⇒ |ri| = 1). These will be useful in our full 3-point calculation. To further

simplify matters we’ll change notation so that a counter-clockwise rotation un-

der the anyon A gives a phase eiθA and over it gives eiθ
′
A . Rotations around

C give eiθC and eiθ
′
C respectively. This also an interesting case to examine as,

ideally, would would like to consider our gates to be switches that we can turn

on and off to control the system.

|t3| = 0: The first case is described by the diagrams where the transmission

coefficient |r3| = 1, since |ti|2 + |ri|2 = 1.

⇒ r1r2e
i(θA+θC)RBCRBAW

12
BA

(3.56)
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⇒ r∗1r
∗
2e
i(θ′A+θ

′
C)RABW

12
ABRCB

(3.57)







































⇒ 1
t∗1
(1− |r1|2W 12

BA)







































⇒
RBC

ei(θC+θ
′
C )

t2

×(−1 + |r2|2W 12
AB)RCB

(3.58)

where we have defined a new wrapping term

W 12
AB :=

∞∑

n=0

(
−t∗1t2e

i(θA+θ
′
A)RBARAB

)n
(3.59)

The superscript indices (12) indicate which reflection coefficients are in-

cluded. Since letting t3 = 0 is almost equivalent to removing the third

gate completely we see that we have almost exactly our 2-point gate and

thus we get the same the Unitary matrix.

U|t3|=0 =







r∗1r
∗
2e
i(θ′A+θ

′
C)RABW

12
ABRCB

1
t∗1
(1− |r1|2W 12

BA)

RBC
ei(θC+θ

′
C )

t2
(−1 + |r2|2W 12

AB)RCB r1r2e
i(θA+θC)RBCRBAW

12
BA







(3.60)

The difference arises from the presence of the third gate. Looking back at Eq.

3.41 we see that we pick up a term ei(θ
′
A) but no term ei(θ

′
C), the only difference
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being the presence of the gate, which affects the phase regardless of whether

tunneling takes place or not.

Which gives us, for the S← case, up to O(t
2),

p→aa′e,b ' |t2|
2 + |t1|2|r2|2 + 2Re{t1t∗2e

i(θ′A+θA)Mab}|r2|2

' |t2|2 + |t1|2 + 2Re{t1t∗2e
i(θ′A+θA)Mab}

p←aa′e,b ' |r1|
2|r2|2 − 2Re{t1t∗2e

i(θ′A+θA)Mab}|r1|2|r2|2

' 1− |t2|2 − |t1|2 − 2Re{t1t∗2e
i(θ′A+θA)Mab}

(3.61)

and we see that

p→aa′e,b + p
←
aa′e,b ' 1 (3.62)

|t1| = 0: We note that this case corresponds to nothing more than a relabelling

of the previous case.

⇒ r2r3e
iθCRBCW

23
BCRBA

⇒ r∗2r
∗
3e
iθ′A+θ

′
CRABW

23
BCRCB

(3.63)







































⇒
RAB

ei(θA+θ
′
A)

t∗2

×
(
1− |r2|2W 23

BC

)
RBA

(3.64)
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⇒ 1
t3

(
−1 + |r2|2W 23

CB

)

(3.65)

Where we have used

W 23
BC :=

∞∑

m=0

(
−t∗2t3e

i(θC+θ
′
C)RCBRBC

)m
(3.66)

We find our Unitary matrix to be

U|t1|=0 =







r∗2r
∗
3e
iθ′A+θ

′
CRABW

23
BCRCB RAB

ei(θA)+θ
′
A

t∗2

(
1− |r2|2W 23

BC

)
RBA

1
t3

(
−1 + |r2|2W 23

CB

)
r2r3e

i(θA+θC)RBCW
23
BCRBA







(3.67)

Which gives us, for the S← case, up to O(t
2),

p←cc′e,b ' 1− |t2|
2 − |t3|2 − 2Re{t2t∗3e

i(θ′C+θC)Mcb}

p→cc′e,b ' |t2|
2 + |t3|2 + 2Re{t2t∗3e

i(θ′C+θC)Mcb}

(3.68)

p→cc′e,b + p
←
cc′e,b ' 1 (3.69)

|t2| = 0: Our final case is unique.

⇒ r1r3e
i(θA+θC)WABCRBCRBA

(3.70)

⇒ r∗1r
∗
3e
i(θ′A+θ

′
C)WCBARABRCB

(3.71)
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⇒ 1
t∗1

(
1− |r1|2WCBA

)

(3.72)







































⇒ 1
t3

(
−1 + |r3|2WABC

)

(3.73)

Where we have used new wrapping terms

WABC :=
∞∑

n=0

(
−t∗1t3e

i(θA+θ
′
A+θC+θ

′
C)RBCRBARABRCB

)n
(3.74)

WCBA :=
∞∑

n=0

(
−t∗1t3e

i(θA+θ
′
A+θC+θ

′
C)RABRCBRBCRBA

)n
(3.75)

Interestingly, we see that it is equivalent to treating A and C as a single particle.

U|t2|=0 =







r∗1r
∗
3e
i(θ′A+θ

′
C)WCBARABRCB

1
t∗1

(
1− |r1|2WCBA

)

1
t3

(
−1 + |r3|2WABC

)
r1r3e

i(θA+θC)WABCRBCRBA







(3.76)
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Which gives us, for the S← case, up to O(t
2),

p←aa′cc′e,b ' 1− |t1|
2 − |t3|2 − 2Re{t1t∗3e

i(θ′A+θ
′
C+θA+θC)MabMcb}

p→aa′cc′e,b ' |t1|
2 + |t3|2 + 2Re{t1t∗3e

i(θ′A+θ
′
C+θA+θC)MabMcb}

(3.77)

p→aa′cc′e,b + p
←
aa′cc′e,b ' 1 (3.78)

3.2.3 Full 3-point

We now consider the “Full” Unitary matrix up to O(t2). Where Full means that

we consider all tunnelling gates to be turned on, we will not however attempt to

construct the Unitary matrix for n, t → ∞. Using the same method as before

we find U1,1, U2,2 ∼ {1, t2, t4, ...}, and U1,2, U2,1 ∼ {t, t3, t5, ...} as given below.

U1,1 = r∗1r
∗
2r
∗
3e
i(θ′C+θ

′
A)RABRCB

−r∗1r
∗
2r
∗
3t
∗
2t3e

i(2θ′C+θ
′
A+θC)RABRCBRBCRCB

−r∗1r
∗
2r
∗
3t
∗
1t2e

i(θ′C+2θ
′
A+θA)RABRBARABRCB

−r∗1r
∗
2r
∗
3t
∗
1t3|r2|

2ei(2θ
′
C+2θ

′
A+θC+θA)RABRCBRBCRBARABRCB

U2,2 = r1r2r3e
i(θC+θA)RBCRBA

−r1r2r3t∗2t3e
i(θC′+2θC+θA)RBCRCBRBCRBA

−r1r2r3t∗1t2e
i(θC+θ

′
A+2θA)RBCRBARABRBA

−r1r2r3t∗1t3e
i(θ′C+θ

′
A+2θC+2θA)RBCRBARABRCBRBCRBA

U1,2 = t1

+t2|r1|2ei(θ
′
A+θA)RABRBA

+t3|r1|2|r2|2ei(θ
′
C+θ

′
A+θC+θA)RABRCBRBCRBA

(3.79)

U2,1 = −t∗3
−t∗2|r3|

2ei(θ
′
C+θC)RBCRCB

−t∗1|r2|
2|r3|2ei(θ

′
C+θ

′
A+θC+θA)RBCRBARABRCB

(3.80)

These terms can be checked by applying the three cases

|ti| = 0, |ri| = 1, i = 1, 2, 3 (3.81)

and seeing that the resultant unitary matrices correspond to the simplified cases

in Sec 3.2.2.
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We note that up to O(t4) U1,1, U2,2 have eight extra terms each, and U1,2, U2,1

have four extra terms each.

Here we will just examine the S← case. To make our calculation of U1,1U
†
1,1

easier, we consider U1,1 to be

U1,1 = α− β − γ − δ (3.82)

and U †1,1 to be

U
†
1,1 = α

† − β† − γ† − δ† (3.83)

where β, δ, γ ∼ O(t2) so that we have

U1,1U
†
1,1 = αα

† −αβ† − αγ† − αδ†

−βα† − γα† − δα†

+(O(t4)terms)

(3.84)

So we find

U1,1U
†
1,1 = |r1|

2|r2|2|r3|2

×(1− t2t∗3e
−i(θ′C+θC)RABRCBR

−1
BCR

−1
CBR

−1
BCR

−1
BA

−t1t∗2e
−i(θ′A+θA)RABRCBR

−1
BCR

−1
BAR

−1
ABR

−1
BA

−|r2|2t1t∗3e
−i(θ′C+θC+θ

′
A+θA)RABRCBR

−1
BCRBA−1R

−1
ABR

−1
CBR

−1
BCR

−1
BA

−t∗2t3e
i(θ′C+θC)RABRCBRBCRCBR

−1
BCR

−1
BA

−t∗1t2e
i(θ′A+θA)RABRBARABRCBR

−1
BCR

−1
BA

−|r2|2t∗1t3e
i(θ′C+θ

′
A+θC+θA)RABRCBRBCRBARABRCBR

−1
BCR

−1
BA)

(3.85)

Corresponding to the diagram S← and D← we have our equivalent of Eq.3.15

=
∑

e,α,β

[(F aca′c′)
−1](f,μ,μ′)(e,α,β)

(3.86)

42



which gives us

=
∑

e,α,β

[(F aca′c′)
−1](f,μ,μ′)(e,α,β)|r1|

2|r2|
2|r3|

2

×






− t2t∗3e
−i(θ′C+θC) − t1t∗2e

−i(θ′A+θA)

−|r2|2t1t∗3e
−i(θ′C+θC+θ

′
A+θA) − t∗2t3e

i(θ′C+θC)

−t∗1t2e
i(θ′A+θA) − |r2|2t∗1t3e

i(θ′C+θ
′
A+θC+θA)






(3.87)

which leads us to

= db
∑

e,α,β

[(F aca′c′)
−1](f,μ,μ′)(e,α,β)|r1|

2|r2|
2|r3|

2×














1− t2t∗3e
−i(θ′C+θC)M∗c′b

−t1t∗2e
−i(θ′A+θA)M∗a′b

−t∗2t3e
i(θ′C+θC)Mcb

−t∗1t2e
i(θ′A+θA)Mab

−|r2|2t1t∗3e
−i(θ′C+θC+θ

′
A+θA)M∗abM

∗
cb

−|r2|2t∗1t3e
i(θ′C+θ

′
A+θC+θA)MabMcb














× [F aca′c′ ](e,α,β)(f ′,ν,ν′)

(3.88)

gives us

= db
∑

e,α,β
f ′,ν,ν′

[(F aca′c′)
−1](f,μ,μ′)(e,α,β)[F

ac
a′c′ ](e,α,β)(f ′,ν,ν′)p

←
aa′cc′e,b (3.89)
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where

p←aa′cc′e,b ' |r1|
2|r2|2|r3|2 −t2t∗3|r1|

2|r2|2|r3|2e−i(θ
′
C+θC)M∗c′b

−t1t∗2|r1|
2|r2|2|r3|2e−i(θ

′
A+θA)M∗a′b

−t∗2t3|r1|
2|r2|2|r3|2ei(θ

′
C+θC)Mcb

−t∗1t2|r1|
2|r2|2|r3|2ei(θ

′
A+θA)Mab

−t1t∗3|r1|
2|r2|4|r3|2e−i(θ

′
C+θC+θ

′
A+θA)M∗abM

∗
cb

−t∗1t3|r1|
2|r2|4|r3|2ei(θ

′
C+θ

′
A+θC+θA)MabMcb

(3.90)

'









1− |t1|2 − |t2|2 − |t3|2

−2Re{t2t∗3e
i(θ′C+θC)Mcb}

−2Re{t1t∗2e
i(θ′A+θA)Mab}

−2Re{t1t∗3e
i(θ′C+θ

′
A+θC+θA)}









(3.91)

We now look at U2,1U
†
2,1, which corresponds to the S← and D→ case,

U2,1U
†
2,1 = |t3|

2 +t2t
∗
3|r3|

2e−i(θ
′
C+θC)R−1BCR

−1
CB

+t1t
∗
3|r2|

2|r3|2e−i(θ
′
C+θ

′
A+θC+θA)R−1BCR

−1
BAR

−1
ABR

−1
CB

+t∗2t3|r3|
2ei(θ

′
C+θC)RBCRCB

+|t2|2|r3|4RBCRCBR
−1
BCR

−1
CB

+t1t
∗
2|r2|

2|r3|4e−i(θ
′
A+θA)RBCRCBR

−1
BCR

−1
BAR

−1
ABR

−1
CB

+t∗1t3|r2|
2|r3|2ei(θ

′
C+θ

′
A+θC+θA)RBCRBARABRCB

+t∗1t2|r2|
2|r2|4ei(θ

′
A+θA)RBCRBARABRCBR

−1
BCR

−1
CB

+|t1|2|r2|2|r3|2RBCRBARABRCBR
−1
BCR

−1
BAR

−1
ABR

−1
CB

(3.92)

Similar to U1,1 we have

=
∑

e,α,β

[(F aca′c′)
−1](f,μ,μ′)(e,α,β)

(3.93)

which gives us
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=
∑

e,α,β

[(F aca′c′)
−1](f,μ,μ′)(e,α,β)

×






|t3|2 + t2t
∗
3|r3|

2e−i(θ
′
C+θC)

+t1t
∗
3|r2|

2|r3|2e−i(θ
′
C+θ

′
A+θC+θA) + t∗2t3|r3|

2ei(θ
′
C+θC)

+|t2|2|r3|4 + t1t
∗
2|r2|

2|r3|4e−i(θ
′
A+θA)

+t∗1t3|r2|
2|r3|2ei(θ

′
C+θ

′
A+θC+θA) + t∗1t2|r2|

2|r2|4ei(θ
′
A+θA)

+|t1|2|r2|2|r3|2






(3.94)
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and we get

= db
∑

e,α,β

[(F aca′c′)
−1](f,μ,μ′)(e,α,β)×



















|t3|2 + t2t∗3|r3|
2e−i(θ

′
C+θC)M∗c′b

+t1t
∗
3|r2|

2|r3|2e−i(θ
′
C+θ

′
A+θC+θA)Ma′bMb′c

+t∗2t3|r3|
2ei(θ

′
C+θC)Mcb

+|t2|2|r3|4Meb
+t1t

∗
2|r2|

2|r3|4e−i(θ
′
A+θA)Mab

+t∗1t3|r2|
2|r3|2ei(θ

′
C+θ

′
A+θC+θA)MabMcb

+t∗1t2|r2|
2|r3|4ei(θ

′
A+θA)Ma′b

+|t1|2|r2|2|r3|2



















× [F aca′c′ ](e,α,β)(f ′,ν,ν′)

(3.95)

gives us

= db
∑

e,α,β
f ′,ν,ν′

[(F aca′c′)
−1](f,μ,μ′)(e,α,β)[F

ac
a′c′ ](e,α,β)(f ′,ν,ν′)p

→
aa′cc′e,b (3.96)

where we have defined

p→aa′cc′e,b ' |t3|
2 +t2t

∗
3|r3|

2e−i(θ
′
C+θC)M∗c′b

+t1t
∗
3|r2|

2|r3|2e−i(θ
′
C+θ

′
A+θC+θA)Ma′bMc′b

+t∗2t3|r3|
2ei(θ

′
C+θC)Mcb

+|t2|2|r3|4Meb
+t1t

∗
2|r2|

2|r3|4e−i(θ
′
A+θA)Mab

+t∗1t3|r2|
2|r3|2ei(θ

′
C+θ

′
A+θC+θA)MabMcb

+t∗1t2|r2|
2|r3|4ei(θ

′
A+θA)Ma′b

+|t1|2|r2|2|r3|2

(3.97)

'









|t1|2 + |t2|2Meb + |t3|2

+2Re{t2t∗3e
i(θ′C+θC)Mcb}

+2Re{t1t∗2e
i(θ′A+θA)Mab}

+2Re{t1t∗3e
i(θ′C+θ

′
A+θC+θA)MabMcb}









(3.98)

Again, these terms can be checked by applying the three cases

|ti| = 0, |ri| = 1, i = 1, 2, 3 (3.99)

and seeing that the resultant density matrices correspond to the simplified cases
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in Sec 3.2.2.

So we see that

p←aa′cc′e,b + p
→
aa′cc′e,b ' |t2|

2Meb + |r2|
2 (3.100)

which is exactly the result for the 2-point gate. Again, taking the quantum

trace of the target system, which projects on e = 1, so that Meb = 1, gives us

a well defined probability distribution

p←aa′cc′e,b + p
→
aa′cc′e,b ' |t2|

2 + |r2|
2 = 1 (3.101)

3.3 Further Analysis

Further analysis could include constructing a complete unitary matrix for the

3-point Fabry-Pérot to all orders.

Having the complete unitary matrix would allow us to study other interesting

cases such as

|ti| ' |tj |, |tk| ' 0, i, j, k = 1, 2, 3, i 6= j 6= k (3.102)

Which is the case where one of the tunneling amplitudes is much weaker than

the other two. This would allow us to approximate the situation with 3 gates,

where one is turned ’off’, but allowing for the possibility that tunneling may

occur at the off gate, and compare it with the situation

|ti| ' |tj |, |tk| = 0, i, j, k = 1, 2, 3, i 6= j 6= k (3.103)

where one of the gates is completely off.

Another interesting case is

|ti| → 1, |tk| ' |tj | ' 0, i, j, k = 1, 2, 3, i 6= j 6= k (3.104)

Where we consider one of the gates to have much higher tunneling than the

other two, and allowing the stronger amplitude to approach 1.

We may also like to some of the apply specific anyon models (Fibonacci, Ising,

etc) discussed in [4] to the complete case to see if it leads to any interesting

results.
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