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Abstract 

 
Inflation is introduced as a solution to the horizon and flatness problems. The 
equation of state during inflation is shown to violate the strong energy dominance 
condition, and the de Sitter solution is used as a first approximation to estimate the 
duration of inflation at ~ 64 e-folds. A scalar field is introduced as the driving force 
for inflation and energy conservation is used to derive its equation of motion. The 
slow-roll approximation is then introduced and the slow-roll conditions for the field 
are derived. The scalar-vector-tensor decomposition of metric perturbations is 
introduced, and the behaviour of the perturbations, as well as the perturbations to the 
scalar field, under a generic infinitesimal gauge transformation, is derived. Gauge-
invariant variables are then constructed and the longitudinal gauge is employed to 
derive an updated field equation of motion taking into account metric perturbations. 
The perturbed Einstein’s equations are quoted in the longitudinal gauge and are used 
to supplement the perturbed equation of motion to provide the framework for a full 
dynamical description of the field/metric system. This system is solved for initial 
sub-horizon field perturbations in the adiabatic limit, and then solved in the super-
horizon limit, using the horizon-crossing as a boundary condition. This is used to 
predict the power spectrum at the end of inflation as a function of perturbation scale. 
The spectrum is found to differ from the flat Harrison-Zeldovich spectrum with only 
a logarithmic scale-dependence. 
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Introduction 
 
In 1981, Alan Guth based at SLAC published a paper outlining the first intuitive model of 
inflation theory which proposed to solve the horizon and flatness problems [5]. The idea 
was that the vacuum energy density of the universe drove an exponential expansion of 
spacetime. As it expanded, the vacuum energy density nevertheless remained constant, 
which can be understood from the point of view of energy conservation by remembering 
that the energy of the gravitational field is negative. The vacuum was then thought to 
decay, giving rise to a phase transition. However, he could not find a way to end inflation 
with a graceful exit. The problem was that in the phase which followed, vacuum bubbles 
formed which experienced wall-collisions giving rise to extreme inhomogeneity [6]. 
Shortly afterwards, Andrei Linde published a paper entitled ‘A New Inflationary 
Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy 
and Primordial Monopole Problems’ [7]. It was a culmination of Guth’s original paper, 
but with the different postulate that the driving force for inflation was a scalar field 
rolling slowly down a potential with a sufficiently flat region. However, Linde’s model 
still relied on the assumption of highly homogeneous initial conditions (which may 
arbitrarily be identified with the Planck time tPl ~ 10-43 s), prior to inflation. In principle, 
requiring uniform initial conditions appears to be philosophically sound and in 
accordance with the Copernican principle. However, it would have been more 
satisfactory to remove the need for this assumption. This was in fact achieved by Linde 
with his “chaotic inflation” model [8]. This model still used a slow-roll potential, but did 
not require any particular level of pre-inflation energy density uniformity. Subsequent 
research has led to inflation becoming generally accepted as the strongest current 
candidate which offers solutions to the cosmological puzzles. 
 
A theory which explains the levels of homogeneity and isotropy is particularly interesting 
in the context of cosmological structure formation, and provides a foundation on which to 
study the subtle structure which does remain, namely the anisotropy of the CMB and the 
inhomogeneity of the matter distribution. The theory of inflation in the purely 
homogeneous case provides this foundation. Fluctuations can then be added to the theory 
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to serve as the seeds for later formation of inhomogeneity and anisotropy. It should be 
noted that this is not an ad-hoc modification – the homogeneous case is not now believed 
to be realized in nature. Quantum uncertainty characterizes the very early universe so it 
would be unnatural for it to be completely void of fluctuations. A basic understanding of 
the consequences of inflation for structure formation can be achieved without need for 
rigorous applications of quantum theory however. The distribution of the physical 
fluctuations can be expressed in a general way as a Gaussian random field, characterized 
entirely by its variance, and the corresponding behaviour of the surrounding spacetime 
can be naturally described in the linear regime using the scalar-vector-tensor 
decomposition. The physical ingredient comes in the form of the slow-roll 
approximation, which is applied in this paper. 
 
During the inflation epoch, these fluctuations are thought to have been amplified to 
super-horizon scales, generating a spectrum of large-scale primordial inhomogeneities by 
the end of inflation, which ultimately evolved into the large scale structure observed 
today. This paper uses a simple model of inflation to predict that spectrum. At 
recombination, the primordial distribution is thought to have decoupled into separate 
matter and radiation distributions which respectively evolved into the present day matter 
distribution and the CMB. The signals observed today were emitted at the recombination 
stage. The observed distributions of matter and radiation exhibit stark differences 
primarily because radiation pressure prevents radiation from forming localized 
inhomogeneities like those exhibited by matter, which is more subject to gravitational 
instability. However they are both thought to originate from the same primordial 
spectrum generated at the end of inflation, which is where the prediction of this spectrum, 
and therefore the aim of this paper, find their relevance. 
 
1. Homogeneous inflation 
 
1.1 Where does inflation fit into the big bang picture? 
 
The conventional big bang theory relies on the assumption that all of the radiation in the 
universe was uniformly distributed at the Planck time, tPl ~ 10-43 s, in order for the theory 
to stand up to observations today. At the very least, this assumption seems to be 
philosophically sound, although it seems unsatisfactory to have to assume such initial 
conditions without any physical justification. Modern inflation actually predicts the 
uniform generation of standard model particles during what is nowadays called the 
reheating phase which occurs at the end of inflation around 10−36 s, thereby removing the 
need for extreme uniformity in the pre-inflation stage. In this way, inflation is seen as the 
prequel to the conventional big bang. Modern particle physics predicts that at GUT 
energies (~1016GeV), physical states of matter exhibiting negative pressure may occur 
[10]. For the early universe, these energies are associated with the time ~10−36 s. Despite 
the statistical improbability that may be associated with the occurrence of such a patch of 
material in the early universe, only a non-zero probability is required in order for it to 
occur somewhere, and the gravitational repulsion it generates then dominates the rest of 
the universe and becomes the driving force for the subsequent big bang [10]. 
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1.2 The horizon problem and its solution in a nutshell 
 
To a very good approximation, the entire observable universe is homogeneous and 
isotropic, so the region satisfying homogeneity and isotropy is at least as large as the 
current horizon scale, since identical conditions may, for all we know, exist beyond the 
horizon. In fact, a simple argument suggests that the observable universe (or any given 
causal patch) has always been smaller than the entire, global universe: 
 
At a given initial time, ti, a given length scale in spacetime was smaller than it is today, at 
t0 , by the ratio of the corresponding scale factors, ai and a0. The initial conditions are 
identified as those which occur at the Planck time, so let ti = tPl.  So the length scale of the 
region of homogeneity is at least as large as ct0(ai/a0). The scale of the observable 
universe at the Planck time is ~cti. So the ratio of the scale of the total homogeneous 
region compared to that of the causal region will indicate whether it is apparently 
impossible for a causal process to be responsible for homogeneity outside the horizon at 
the Planck time. The ratio is 
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This suggests a volume containing ~ (1028) 3 causally disconnected regions. So the causal 
region at the Planck time is much smaller than the homogeneous region, and the 
homogeneity which characterizes the global universe can apparently not be attributed to a 
causal process.  
 
This raises the question of why the modes entering the horizon at recombination exhibit 
the same level of homogeneity as the rest of the observable universe at this time (the 
CMB survey effectively shows the universe at recombination). Obviously, observational 
astronomy has not been around for long enough to literally track the modes entering the 
horizon, but given that the entire observable universe today is composed of regions which 
entered the horizon in the past, the question of why the entire observable universe today 
is so homogeneous at all observable distance scales is an entirely equivalent one. 
 
Inflation theory simply postulates that all regions of the observable universe were in fact 
in causal contact before the inflation mechanism occurred. The subsequent inflation that 
then occurred caused spacetime to expand at a rate far in excess of any causal signal 
propagating within it, resulting in a globally homogeneous yet causally disconnected state 
by the end of inflation. 
 
1.3 The flatness problem and its solution in a nutshell 
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The flatness problem can be regarded as the problem of the requirement of extreme fine 
tuning of the initial velocity distribution. The initial velocity has to be so extremely finely 
tuned to avoid immediate collapse or expansion which is so fast as to make the universe 
empty too soon [2].  
 
The problem can be expressed in a relativistic way in terms of the energy density 
parameter Ω(t). It seems unnatural that the universe should be so close to flatness today, 
given that Ω(t) evolves in time, causing the curvature of the universe to diverge away 
from flatness. Ω(ti) must have been extremely close to unity since Ω(t0) is still so close to 
unity today. The latest WMAP+BAO+SN measurement is Ω(t0) = 1.0052 ± 0.0064 [11]. 
It can be shown using the 1st Friedmann equation that Ω(ti) must differ from unity by a 
quantity less than 10-56 [A.1]. If Ω(ti) was slightly larger than 1, it would have diverged to 
infinity, preventing galaxies from forming. If it was slightly smaller than 1, it would have 
converged to zero very quickly, also preventing galaxies from forming. Since galaxies 
have, in fact, formed in our universe and we are alive to talk about it, it is tempting to 
invoke the anthropic principle as an explanation. A physical explanation is always 
preferable to this however, and inflation provides just that. 
 
The solution is that spacetime at the beginning of inflation, irrespective of its degree of 
curvature at this point, was rapidly expanded at a rate far exceeding the propagation of 
causal horizons so that the scale of curvature by the end of inflation was far in excess of 
the scale of any given causal patch. The universe has therefore been driven to flatness by 
the end of the inflation period 
 
1.4 The variation of the Hubble radius 
 
Another way of looking at the solution to the horizon problem is to allow the comoving 
Hubble radius to vary over the history of the universe in such a way as to allow the 
comoving particle horizon to become larger than the present Hubble radius. This gives 
rise to a scenario in which the entire observable universe can exhibit self-resemblance at 
all observable scales without the causality issues outlined in section 1.2. If it is assumed 
that the entire observable universe was formed from a primordial homogeneous region, 
existing amongst a larger region perhaps containing inhomogeneities, then this primordial 
region is causally separate from the outside since all universes undergoing accelerating 
expansion have an event horizon [A.2]. 
 
The comoving particle horizon can be written as 
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distance scale (mode) exiting the horizon during inflation, and reentering the horizon at a 
later stage. 
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Fig. 1 – A general inflationary scenario in which a mode within the Hubble radius at an 
early time becomes causally disconnected by exiting the horizon, and reenters at a later 
stage due to the variation of the Hubble radius. 
 
1.5 Looking towards a physical realization of inflation 
 
It can be seen from the second Friedmann equation, 
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, that ä > 0 is required during the inflationary period in order for the Hubble radius to 
decrease [A.3]. So the condition for gravity to be repulsive is that the strong energy 
dominance condition is violated. This can be written as [A.4] 
 

p3                                                              (1.4) 
 
Positive cosmological constant type matter satisfies condition (1.4): 
 

  p                                                             (1.5) 
 
It can be shown that in order for the initial stages of inflation to be well described, the 
initial conditions must not deviate by more than 1% from the vacuum equation of state 
[3]. That is, the physical realization of the mechanism for inflation must strongly 
resemble positive cosmological type matter in the initial stages 
 
The de Sitter solution to Einstein’s equations can therefore be used as an approximate 
model in aid of investigating the initial conditions required for inflation.  
 
1.6 Inflation induced by a scalar field 
 
A scalar field, φ, can be identified as a physical mechanism to drive inflation.  
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The stress-energy tensor is of a scalar field   is defined as 
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, where L  is the Lagrangian density of the scalar field: 
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Accordingly, the  component (the Hamiltonian density) which can be identified as 
the energy density parameter of the scalar field 
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momentum density), which can be identified as the pressure of the scalar field, 
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both be calculated explicitly [A.5]: 
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Combining (1.8) and (1.9) with condition (1.5) results in 
 

)(2  V  (1.10) 
 
This is a necessary condition for inflation, but not a sufficient condition for inflation 
which ends in a graceful exit. The conditions required for inflation which ends in a 
graceful exit are provided by a slow-rolling scalar field, which is described in section 1.8. 
 
1.7 Estimating the duration of the inflation epoch 
 
Since the whole of the observed CMB is smooth, i.e. the homogeneous region is at least 
as large as the present day comoving Hubble radius, the distance scales which have been 
entering the horizon since the end of the inflationary period must have originally been 
sub-horizon (see section 1.5). Another way of saying this is that the ratio of the comoving 
Hubble radius today and at the end of inflation must equal the ratio of the comoving 
Hubble radius at the end of inflation and the Planck time. The Hubble radius today is 
related to the Hubble radius at the end of inflation by the ratio of the corresponding scale 
factors: 
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Progressing from here depends on choosing an equation of state of the universe for the 
period tf - t0. Assuming for the sake of example that the universe is radiation dominated 
for this period (for which a ~ 1/T, where T is the radiation temperature): 
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, using T0 = 2.725 K and Tf ≈ 1.2 × 1028 K. 
 
So the factor by which the Hubble radius must have decreased during the inflationary 
period is to the order of 1028.  
 
The assumption that the equation of state during the inflationary period is (1.5), which 
corresponds to the de Sitter solution, allows for the change in the comoving Hubble 
radius during inflation to be calculated. 
 
The general solution for the scale factor in the de Sitter universe is 
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The second term is zero for the K = 0 case and HΛ is the constant Hubble parameter.  
  
Since the Hubble parameter is constant during this stage, the scale factor must increase 
by a factor of at the order of 1028or more. 
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This gives (tf – ti) = 64/H, or 64 e-folds. Inflation is only realized if condition (1.10) is 
satisfied for at least approximately 64 Hubble times. 

H
tt if

64
   (1.15) 

 
Late into the inflation period, the scale factor must eventually reach a stage where ä < 0, 
decelerating in such a way as to tend towards the observed Hubble expansion today. This 
is not the case in the de Sitter solution, which serves as a first approximation. 
 
1.8 The slow-roll approximation and an expression for the scale factor 
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Obviously, the inflation stage is radically different to the universe today. If inflation is to 
be successfully integrated into conventional big bang cosmology, it must preserve the 
original aspects of conventional big bang cosmology. The expansion of the universe in 
inflation models must converge towards the Hubble expansion observed today. The stage 
where inflation dies out is the graceful exit stage, and this is a key requirement of the 
theory. In Guth’s original paper, the physical realization of the required state of negative 
pressure came in the form of a scalar field trapped in a metastable vacuum. The ending of 
the inflation stage can be accounted for by allowing the scalar field to decay away to the 
true vacuum.  
 

 
  
Fig. 2 – An arbitrary potential with a true vacuum and false vacua, satisfying  )(2  V

 
However, this model could not be made to end in a graceful exit and the newer model 
developed by Andrei Linde was adopted. It used the slow-roll approximation, a basic 
summary of which follows. 
 
By substituting the first Friedmann equation into the second, the following expression of 
energy conservation can be found [A.6]: 
 

)(3 pH                            (1.16) 
 
Substituting (1.8) and (1.9) into this energy conservation equation results in [A.7] 
 

03 






 V
H                        (1.17) 

 
This is the general equation of motion describing the scalar field during inflation. At this 
point, the set of possible inflationary scenarios remains large since any combination of 
field φ and potential V(φ) which satisfies (1.17), subject to condition (1.10) will result in 
inflation.  It will be convenient later in the report to express (1.17) in conformal time 
[A.8]: 
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The field equation of motion, (1.17), is identical to that of a damped (classical) harmonic 

oscillator. For example, if 2
2

2
)(  m

V  , (1.17) reads    
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, where m2 is equivalent to the constant undamped angular frequency and the constant 

damping ratio is identified as 
m

H

2

3
. 

 
A basic sketch of φ versus t for different values of the damping ratio show how the field 
can undergo slow-roll decay. 

 
 
Fig. 3 – Sketch of solutions to (1.19) with different values of the damping ratio, resulting 
in slow roll decay 
 
A slow-roll approximated solution for the scale factor purely as a function of φ can be 
obtained by allowing the damping term to be particularly large compared to the 
acceleration term. That is, 
 

  H3 .                               (1.20) 

 
Equation (1.20) defines the slow-roll case. For this case, the equation of motion (1.17) 
reads 
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0,3   VH  .                                                          (1.21) 

 
The 1st Friedmann equation can be simplified by using the inflation condition (1.10) to 
omit the  term: 2
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By combining (1.21) and (1.22) with the Hubble parameter definition, 
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following equation is obtained [A.9]: 
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This can be integrated to yield the scale factor as a function of φ: 
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1.9 The scale factor for a power law potential 
 
For the more specific case of a potential which depends on some arbitrary power of φ, as 
such: 
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, where  a constant. The scale factor at time t then takes the form [A.10] 
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2. Inhomogeneous Inflation 
 
2.1 Introducing perturbations 
 
Despite the striking levels of homogeneity in the CMB, there is nevertheless some 
remaining structure. This can be integrated into the homogeneous inflation theory rather 
elegantly with the idea that quantum fluctuations during the inflationary period are 
amplified into large-scale inhomogeneities and can be thought of as the “seeds” of the 
present day structure.  
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To work towards studying a simplified instance of this, it is first necessary to study how 
perturbations to spacetime, and to the physical entities that occupy it, can be described in 
a general relativistic context. 
 
Gauge freedom in general relativity means that perturbations apparently depend on the 
choice of coordinates, which would be physically absurd. To clarify this situation, gauge-
invariant variables must be formulated which fully describe the perturbations in the 
spacetime metric, gμν and the scalar field  . 
 
2.2 General metric perturbations in flat spacetime 
 
The metric for an unperturbed universe is  
 


 dxdxgds 2 .             (2.1) 

 
The perturbations to the metric can be considered as an addition to the above background 
metric so can be added separately: 
 





  dxdxgdxdxgds 2 .                          (2.2) 

 
In the linear regime, the components of the perturbation term are much smaller than the 
background metric: 
 

 gg   (2.3) 

 
The background metric obviously satisfies homogeneity and isotropy. This means that the 
perturbations can be naturally categorized using the scalar-vector-tensor decomposition. 
Explicitly: 
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, where ,  , B  and E are scalars,  and  are 3-vectors and is a tensor. iS iF ijh
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The matrix representing the metric perturbation therefore has 42 – 6 = 10 independent 
components. 
 
The scalar perturbations,  ,  , B  and E, are of primary interest as they have the biggest 
effect on structure formation in the universe, whereas the vector perturbations have been 
shown to have no effect on structure formation at all [12]. Tensor perturbations are 
produced in the form of gravitational waves, although due to the current experimental 
inaccessibility of gravitational waves, they are not considered in this paper. 
 
For flat spacetime, the unperturbed metric takes the standard Minkowski form (using 
conformal time): 
 

 ji
ij dxdxdads   222 . (2.8) 

 
The scalar perturbations can be selected from the full set of perturbations (2.4) – (2.6) by 
setting the vectors  and , and the tensor , all equal to zero. What remains can then 

be integrated into the background metric (2.8) to give the full metric with scalar 
perturbations [A.11]: 
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2.3 The behaviour of metric perturbations under gauge transformations 
 

Under a general gauge transformation,  
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A metric with a small perturbation, g , 
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, where the notation  denotes the unperturbed flat background metric, 
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, transforms under the gauge transformation (2.10) as [A.12]: 
 










  gggxgxg  )0()0()0( ,,)()~(~                       (2.14) 

 
The LHS of (2.14) can written in its own right as a background metric in the new 
coordinates with the perturbation metric in the new coordinates, as such: 
 







 gxgxg ~)~()~(~ )0(             (2.15) 

 
(2.14) can be compared with (2.15) to yield the infinitesimal gauge transformation law 
for the perturbation to the metric [A.13]: 
 







  ggggg )0()0(
,

)0( ,,~  .                    (2.16) 

 
2.4 The behaviour of perturbations to scalars under gauge transformations 
 
The scalar field driving inflation,  , is of primary physical interest, so its behaviour 
under a gauge transformation will be needed. To find the behaviour of a perturbation to a 
scalar quantity under the gauge transformation (2.10), a scalar quantity is split into 
background and perturbation parts.  
 

qxqxq   )()( )0(                    (2.17) 
 
The gauge transformation law can then be found by similar reasoning to that used for the 
metric. The result is [A.14]: 
 


  ,

)0(~ qqq                        (2.18) 

 
The behaviour of a covector can also be calculated in a similar way [A.15], and this will 
come in useful later in the paper. 
 







  ,,~ )0()0( qqqq   (2.19) 

 
2.5 Explicit expressions for metric perturbations under gauge transformations 
 
 
In order to derive the explicit transformation laws for the metric perturbations, it is 
necessary to consider the separate components of the infinitesimal function, , in the 
following way [4]: 



 

- 15 - 



Trevor Peter Hardcastle - MSc Quantum Fields and Fundamental Forces - CID:00575357 
Imperial College London Summer Thesis 2009 

iii ,     (2.20) 
 
, where  has zero divergence and i

  is a scalar function [A.16]. 

With the help of (2.4) – (2.6) and (2.20) the metric perturbation gauge transformation law 
(2.16) can then be used to yield explicit expressions for the metric perturbations. The 
results are [A.17]: 
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, where the untransformed parts, g , are left in square brackets. 

 
2.6 Explicit expressions for scalar perturbations under gauge transformations 
 
The primary scalar quantity of interest in the context of inflation is the scalar field  . 
The gauge transformation law for perturbations to a physical scalar quantity, equation 
(2.17), can be used to find the explicit behaviour of  under such a transformation. By 
giving   a perturbation, namely  , and writing the field as the sum of a homogeneous 
component and a perturbed component as such [A.18]: 
 

),()(0  x                                           (2.24) 

 
, the explicit transformation law results immediately [A.19]:  
 

0
0

~                             (2.25) 

 
2.7 Forming gauge-invariant variables 
 
The issue of distinguishing fictitious, gauge-dependent perturbations from physical ones 
is solved by picking gauge-invariant variables with which to express the metric 
perturbations and field perturbations. Generally, in practice, this means defining new 
gauge-invariant parameters as linear combinations of the original system parameters, 
where the number of new parameters is equal to the number of degrees of freedom in the 
system. To find the number of degrees of freedom existent in the scalar metric 
perturbations, equations (2.4) – (2.6) are combined with (2.21) – (2.23) to find the 
number of unique parameters on which the gauge-transformed scalars,  ,  , B  and E  
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depend. The gauge transformation properties of  ,  , B  and E  are shown below 
[A.20]: 
 

0~  a

 EE

                                    (2.26) 
 
~

                                   (2.27) 
 

0~   BB                          (2.28) 
 

)(
1~ 0   a
a

                      (2.29) 

 
There are 2 unique parameters, and 0  , so the whole perturbed metric can therefore be 
described fully using 2 gauge-invariant variables. By definition, these are arbitrary, so the 
way they are defined comes down to convenience.  
 
It is easy to see that choosing 
 

E     (2.30) 
 

EB 0 

causes B
~

 and E
~

 to vanish. ~  and ~  remain non-zero, and these will be the 2 gauge-

invariant variables. By relabelling them as  and ~  ~  (to signify their 
importance as the gauge-invariant variables), they are 
 

  EBa
a

1                                                                (2.31) 

 

 EB
a

a 


  



.                                                                   (2.32) 

 
It can be shown that (2.31) and (2.32) are the simplest linear combination which exhibit 
gauge-invariance [4]. 
 
Using the choice (2.30) the gauge-invariant field perturbation (2.25) reads:  
 

 EB  0
~      (2.33) 

 
2.8 The Longitudinal Gauge 
 
Now that gauge-invariant variables have been established, a particular gauge can be 
picked to work with. For what lies ahead, the longitudinal gauge will work best. The 
longitudinal gauge (or the conformal Newtonian gauge) is the most physically intuitive 
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one to work with since there exist natural correspondences between classical Newtonian 
parameters and the perturbation parameters. 
 
It is defined by: 
 

0 EB                        (2.34) 
 
, which, by quick inspection of (2.31) and (2.32) implies [A.21]: 
 

               (2.35) 
 

 .                 (2.36) 
 
The scalar perturbation metric (2.9) is therefore greatly simplified in the longitudinal 
gauge, and reduces to [A.22]: 
 

     ji
ij dxdxdads  1221 222          (2.37) 

 
In this gauge, the field perturbation (2.33) takes on the trivial form:  
 

 ~    (2.38) 
 
2.9 Deriving an equation of motion for the perturbations to   
 
The aim of this section will be to derive an updated version of the equation of motion 
(1.18) for the scalar field  , which describes the scalar perturbations to  , and the scalar 
perturbations to the metric. It will therefore be an equation in   and the metric 
perturbation parameters B, E,   and  . 
 
It can be derived directly from the Klein-Gordon equation, and this will be done here. 
However since the metric now has perturbations, it is necessary to use the Klein Gordon 
equation in curved spacetime:  
 

  0
1






 





V

gg
g

                         (2.39) 

 
The general scalar-perturbed metric, (2.9), is quite complicated due to its non-diagonal 
components, and direct substitution into (2.39) gives rise to a very complicated equation, 
which is not practical to work with. However, the longitudinal gauge, in which B = E = 0, 
comes to the rescue here by simplifying the metric enough for direct substitution to be 
practical. 
 
Since scalar perturbations are only fully described by metric perturbations supplemented 
with perturbations to physical scalar quantities, it is also necessary to substitute the 
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perturbed field (2.24) to yield the perturbed equation of motion. (It should be noted that 
this only results in a complete description of the kinematics for the field perturbations. 
Einstein’s equations are needed to couple the field to spacetime, giving a fully dynamical 
description of the whole system – see later section). 
 
The scalar-perturbed metric in the longitudinal gauge is  
 

 212
00  ag    ijij ag  122   00 ig   (2.40) 

 
, with  
 

    2
3

2
14 1221  iag .   (2.41) 

 
Substituting this metric along with the perturbed field (2.24) into the Klein Gordon 
equation (2.39) gives an expression which, through quite a long process of simplification, 
can be reduced down to [A.23]: 
 

 
0,2

3,2,2
2

0
222

00













Va

VaVa HH
 (2.42) 

 
It is important to note here that the first 3 homogeneous background terms are 
independent of the perturbed terms. That is, the homogeneous terms can be extracted to 
recover the original homogeneous equation of motion (1.18): 
 

0,2 2
00   VaH    (2.43) 

 
This leaves the equation of motion for the perturbations in their own right: 
 

  0,23,2 2
0

22    VaVaH   (2.44) 

 
2.10 Perturbing Einstein’s equations 
 
Einstein’s equations are 
 





 TG 8      (2.45) 

 
These can be expressed with perturbations by adding linear perturbation terms: 
 

 









  TTGG  8                (2.46) 

 
With the unperturbed background metric (2.13), the components of  are as follows 

[4]: 


G
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HH                       (2.47) 

 

It follows from (2.45) that the components of the stress-energy tensor  must satisfy 
T

 
00 iT      (2.48) 

 

i
j

i
jT 

In the same way that the perturbations to the metric and the scalar field   were 
considered separately above, so too are the perturbations to the stress-energy tensor, and 
Einstein’s tensor : 

G

 




  TG 8     (2.49) 

 

The behaviour of the perturbations to the stress-energy tensor, , under the gauge 

transformation (2.10), is most easily calculated by considering the individual 

components. The  in its own right is just a scalar, the  components can be 

considered as the components of a vector etc. Then the results (2.18) and (2.19) can be 
used to find their transformation behaviour in gauge-invariant form. The results are not 
derived here but they are [4]: 
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The same procedure is done for : 
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This allows for the Einstein equations for the perturbations to be written in gauge-
invariant form: 
 





  TG 8    (2.56) 

 
The scalar perturbation metric in the longitudinal gauge, equation (2.34), allows for the 
components of 

G  to be calculated in terms of the parameters   and  . These come 

out as [4]: 
 

  0
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22 43 Ta  HH     (2.57) 
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              (2.59) 

 
The spatial components of the perturbation to the stress-energy tensor are all zero for 

ji  , which corresponds to zero shear stress. This is significant as it results in the 
following simplification: 
 

  (2.60) 
 
With this simplification, the equation of motion (2.44) now reads 
 

0,24,2 2
0

22    VaVaH .  (2.61) 

 
By using (1.6) to find explicit expression for perturbations to the stress-energy tensor, 
and also using (2.60), the RHS of equation (2.58) (which is the most useful for the 
following section) then takes the following form [4]: 
 

 04  H    (2.62) 

 
A complete description of cosmological perturbations induced by a scalar field requires 
coupling of the physical field with the spacetime perturbations. This means combining 
Einstein’s equations expressed in terms of   with the equation of motion for . In the 
case of scalar perturbations, the equations of interest are the equation of motion, (2.61), 
and the stress-energy-tensor perturbations (2.57) – (2.59). 
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3. Structure Formation 
 
3.1 The latest measurements of anisotropy in the CMB 
 
The present day matter power spectrum is measured using galaxy redshift surveys.  
However, redshift surveys are more time consuming than angular surveys and suffer from 
the problem that accurate measurements of galaxy recession velocities do not translate 
into unambiguous measurements of radial distance, due to the peculiar velocities 
associated with the galaxies being observed [13]. 
 
An angular power spectrum of the CMB captures the structure of anisotropy in a much 
more revealing way. The CMB exhibits a blackbody spectrum, which is determined 
solely by its temperature. Its temperature has been measured by the FIRAS instrument on 
the COBE satellite as 2.725 +/- 0.002 K in the wavelength range 0.5 - 5 mm [14]. The 
CMB anisotropy becomes clear on a contrast ratio of ~10-5. Figure 4 shows the CMB 
angular temperature distribution going through the stages of subtracting superfluous 
signals, using the data collected by WMAP. The range of the temperature deviations 
shown on the bottom right panel is approximately 0.0005 K [15]. 
 

 
Fig. 4 - The top left panel is the raw CMB map, showing the ‘white noise’ signal. The top 
right panel shows the average-subtracted signal, which shows the Milky Way, and has a 
clear dipole pattern caused by the Doppler shift associated with the Earth’s own peculiar 
velocity. The bottom left panel shows the dipole-subtracted map with a higher contrast 
ratio. The Milky Way signal is subtracted to give the bottom right panel, which displays 
the temperature deviations from the measured average. Image taken from 
http://www.astro.ucla.edu/~wright/CMB-DT.html 
 
The angular power spectrum is conventionally expressed as an expansion in multipoles, 
or spherical harmonics, whose coefficients, labelled l , correspond to the intensity of the 
corresponding -pole exhibited in the map. A peak around l kl   would indicate a higher 
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incidence of structures corresponding to an angular size (180/k)°. Figure 5 shows the 
latest measurement of the CMB angular power spectrum. 
 
 
 

 
Fig. 5 - The angular power spectrum of the CMB measured by using the latest 5-year   
data from WMAP. The red curve shows the prediction of a ΛCDM inflation model 
prediction. Image taken from http://map.gsfc.nasa.gov. 
 

There are localized peaks, but given that the temperature variations are to the order of 10-

5, the basic message to be taken from the angular power spectrum of the CMB, at least for 
the purposes of this paper, is that the post-inflation primordial spectrum may be expected 
to not show any significant scale dependence. 
 
It was mentioned in the introduction that the field perturbations are treated as Gaussian. 
Since all non-linear perturbations have been neglected, the Fourier modes behave 
independently so it is easy to deal with the remaining linear perturbations in Fourier 
space. Any spatial function  can be expressed as an integral over its Fourier modes.  

The spatial two-point correlation function of the function  is a Gaussian random field. 

Such a field is completely characterized by its variance, which for the function  is 
the expectation value of two of its Fourier coefficients: 

)(xf
f

)(xf
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 qpff pqp   2   (3.0) 

 

, where p
2  is the variance.  

 

With the identification 
22

kk  , the quantity of interest for calculating the power 

spectrum for the metric perturbations will be the dimensionless variance: 
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32
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k
k k
   (3.1) 

 
3.2 Perturbations on the quantum scale 
 
In section 1.1.5, the notion that sub-horizon distance scales are inflated out of the horizon 
to become super-horizon was touched upon. That notion can now be applied in a specific 
way in the context of vacuum fluctuations in the inflaton field, with a wavelength,  , 
which characterizes the scale of the fluctuation, playing the role of the sub-horizon 
distance scale. These vacuum fluctuations are rapidly redshifted in proportion to the scale 
factor during inflation, so inhomogeneities induced by these fluctuations therefore grow 
(in the comoving sense) at superluminal speeds. It is in this sense that the fluctuations in 
  can be considered as the primordial seeds for the present day structure of the universe. 
 
3.3 Finding a solution for   in the sub-horizon limit 
 
The primary task here is to simplify the equation of motion (2.61) and the Einstein 
equation (2.62) using the sub-horizon limit, the slow-roll approximation and the 
assumption of zero shear stress, in aid of finding a solution for  . 
 
  is (initially) much smaller than the Hubble radius and increases proportionally with the 
scale factor. This is the sub-horizon limit. 
 

k

a

k

a

H
~

21     (3.2) 

 
, where k is the wavevector corresponding to  . 
 
Also, in the slow-roll approximation [A.24],  
 

a
H


1

.   (3.3) 
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Since the equation of motion (2.61) contains only linear perturbation terms, the 
perturbation modes behave independently in Fourier space. It is therefore useful, with the 
help of condition (3.3), to express the small   condition (3.1) in terms of k: 
 

1k   (3.4) 

 
The potential is still arbitrary, so long as the slow-roll conditions are satisfied, so it 
should be included in the final answer for the power spectrum. To this end, the 1st 
Friedmann equation can be combined with the slow-roll conditions (1.10) and (1.20) to 
eliminate the   terms and express the slow-roll approximation purely in terms of the 
potential, and its derivatives [A.25]: 
 

1
,

2









V

V 
    (3.5) 

 

 2~, HVV          (3.6) 

 
Equation (1.10) converted into conformal time also comes in useful: 
 
  Va 22

0   (3.7) 

 
The other approximation to be used is the approximate oscillatory behaviour of the 
gravitational field in the slow-roll case. It is a matter of straightforward inspection of 
(2.62) to see that  behaves as [A.25b]: 
 

k
k

0~~


  (3.8) 

 
3.4 Calculating the primordial power spectrum 
 
The approach in this section will be to solve for   in the sub-horizon limit, and then to 

solve for   and  in the super-horizon limit and use Einstein’s equations to find the 

spectrum of metric perturbations 


  in terms of  . 

 
Since the equation of motion (2.61) contains only linear perturbation terms, the 
perturbation modes behave independently in Fourier space. Each mode can be labelled 
with its corresponding wavevector and considered separately. It is therefore useful to 
perform a Fourier transform on (2.61) and seek a solution as a function of . It should 
also be noted that under a Fourier transform, F, . 

k
22 k F

 
Before this is done however, the equation can be largely simplified using the 
approximations (3.2), (3.5), (3.6), (3.7) and (3.8). Doing this shows the last 3 terms of 
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(2.61) to be negligible compared to the first 3. The most straightforward way to show this 
is to show that each of the last 3 terms is negligible compared to the spatial derivative 
term,  (this is easiest since  corresponds directly to , which is very large), and 
then to show that the terms 

2 2 2k
   and  H2  are of the same order of magnitude 

as . The details of this process are shown in [A.26]. Thus only the first 3 terms 
remain and the equation reduces to: 

2

 
02 2  kkk k  H   (3.9) 

 
As the subscript labels now indicate, the solution to this equation will correspond to a 
particular value of , so will necessarily be a function of . It is in fact the equation of a 
simple harmonic oscillator with a variable mass, which can be made obvious by rescaling 

k k

 

kk ua    (3.10) 

 
to get [A.27] 
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The frequency is clearly 
a
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2  and carries time dependence so let 
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 2, .  (3.12) 

 
It can be shown that in the adiabatic limit [A.28],  
 

a

a
k


2  (3.13) 

 
so that in fact,   kk  , , causing equation (3.11) to reduce to  
 
   (3.14) 

 

02  kk uku

, which has the straightforward solution 
    

      


ikAikBikAau kkkkkk expexpexp
1



  (3.15) 

 
The considerations so far have been purely classical, but it is essential to recognize   as 

a quantum field for the sake of deciding on a suitable boundary condition to evaluate . kA
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In light of this, a short digression into how the solution  should be regarded from the 

point of view of QFT follows. This will also shed some light on the physical meaning of 
the adiabatic assumption employed in finding the solution (3.15). 

ku

 
Quantum digression 
 
Under quantization,  will become a sum of creation and annihilation operators: ku

 

    †
kkkkk akUakUauu ˆ,ˆ,ˆˆ     (3.16) 

 
, with the canonically quantized scalar field commutation relations: 
 

     kkaa kk 
)3(32ˆ,ˆ †            0ˆ,ˆˆ,ˆ  

††
kkkk aaaa       (3.17) 

 
, where  ,U  is an amplitude to be found. 
 
The power spectrum is defined using in terms of correlation functions. The bridge joining 
the quantum fluctuation   and the primordial power spectrum will therefore come in 
the form of a correlation function for the (rescaled) field perturbation (c.f. (3.1)): 
 

2

3
2

2
ˆˆ)(


 k

uuk kkuk
 

†    (3.18) 

 
, where   denotes the vacuum taking into account interactions. 

 
Here the notation  does not denote a conformal time derivative, but is merely used to 
distinguish the two momentum labels in the commutation relations. 

k 

 
In the sub-horizon limit, 1k , the metric perturbations may be neglected on 

curvature scales associated with the initial scale of the field perturbation. That is to say 
that the standard Minkowski metric (2.8) is a good approximation of the metric on such 
scales. This is the adiabatic limit, and it implies that all of the states of   are non-

interacting and in the ground state, so the vacuum   can in fact be treated as the non-

interacting vacuum 0 . This makes it easy to extract the amplitude  ,kU  from the 

vacuum correlation function using the canonical commutation relations [A.29]: 
 

    23 ,20ˆˆ0  kUuu kk 
†   (3.19) 

 
It can be seen by comparing (3.1) and (3.18) that under the canonical quantization 
procedure 
 

- 27 - 



Trevor Peter Hardcastle - MSc Quantum Fields and Fundamental Forces - CID:00575357 
Imperial College London Summer Thesis 2009 

    232222
,2  kUaua kk    (3.20) 

 
so the operator  is seen to produce a superposition of plane waves: 

  (3.21) 
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                     (3.22) 

 
his should be compared to (3.15), which concludes the digression. 

 Now returning to the issue of deciding on a boundary condition, without any rigorous 

T
 
 
  
quantum theory, the evaluation of kA  can only be an estimate. It will not be derived here 

but simply quoted [4]: 
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sing (3.1), the spectrum evaluated for the initial quantum scale fluctuation then reads: U
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 order to predict the scale dependence of the post-inflation spectrum, it is now 

hen the fluctuation crosses the horizon, 

In
necessary to consider the behaviour of the fluctuation as it is stretched to super-horizon 
scales.  
 

aHaHk ~2W , which can be applied to 
(3.24), resulting in a boundary condition to be used in the super-horizon case: 
 

aHk
aHkaHk

HHk ~
2

~

2
2~

2 ~
2

1
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    (3.25) 

 
ow we want to study the evolution of the perturbation as it grows to a super-horizon N

scale. For this purpose, it is easiest to express the equation of motion (2.61) and the 
Einstein equation (2.62) in physical time [A.30]: 
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0,24,3 0
2    VVH    (3.26) 

 
 04   H    (3.27) 

 
On the super-horizon scale, the  term can be neglected on intuitive grounds. As the 
initial plane wave fluctuation (3.23) is stretched to the super-horizon scale, it is clear that 
spatial derivative terms will become negligibly small. The slow-roll approximation (1.20) 

can then be used to neglect the 

2

   term and the   term, giving 
 

0,2,3    VVH    (3.28) 
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These can be further simplified [A.31]:  
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Now by using the simplified Friedmann equation )(
3

8 
V

G
H  , (3.30) and (3.31) can 

be combined into a single equation [A.32] which is easily solved to give the behaviour of 
the perturbation   and the metric perturbation  , 
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, where C is the integration constant 
 
.In Fourier space this reads: 
 

V

V
Ckk


,

   (3.33) 

 
It is assumed here that the amplitude of the fluctuation here has the minimum amplitude 

ka
k

1
  (equation 3.23) at horizon crossing so that the horizon crossing boundary 
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condition (3.25) can be used to evaluate . Equating this with kC
V

V
Ckk


,

  at horizon 

crossing gives k
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 , so the fluctuation amplitude in the super-horizon 

limit reads: 
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Finally, this can be substituted back into the Einstein equation (3.31) (in k space) to 
obtain  in terms of V  [A.33]: k
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To determine the power spectrum at the end of inflation, it is necessary to decide what 
exactly is meant by the end. Throughout this paper, the inflation stage has been defined 
by the slow-roll approximation, so, looking at the form of equation (3.35), it is obvious 
that allowing the slow-roll condition (3.5) to be violated is an easy way of defining the 
end of inflation. This can be expressed as such: 
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The post-inflation power spectrum is therefore defined as the spectrum at the time when 
(3.36) first becomes satisfied. Remembering that the perturbation crosses the horizon 

before the end of inflation, so that the 
aHk
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 term still satisfies 1
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, this gives: 
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  (3.37) 

 
, with the corresponding power spectrum: 
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, where )(
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G
H   was used. 

 
A potential needs to be picked now to see the scale-dependence of this spectrum. For the 
power-law potential (1.25) with  and n = 2, the potential is that of a massive 
scalar field. In this case the power spectrum is: 
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Now equation (1.26), which expresses the scale factor as a function of  , can finally be 
put to use. By expressing the field in (3.39) in terms of the scale factor and using 
equation (3.2) to relate the scale factor to the wavelength of the perturbation in question, 
the power spectrum (3.39) can be expressed as a function of the perturbation wavelength 
[A.34]: 
 

  222 ln~)( Hmk    (3.40) 
 
The Hubble parameter is evaluated at horizon crossing, although is essentially constant at 
all times during inflation. 
 
This is the key result of the paper. The effect of the logarithm is to suppress perturbations 
for all values of  . This brings large scale perturbations into the regime of smaller ones, 
and the resulting spectrum is nearly flat, i.e. approximately scale-invariant. 
 
 
4. Concluding remarks 
 
The prediction for the primordial spectrum differs from the perfectly flat Harrison-
Zeldovich spectrum by a logarithmic scale-dependence. However, the obvious first 
remark to be made is that the predicted primordial spectrum (3.40) is many calculations 
short of being an analytic prediction of the observed CMB spectrum. The spectrum 
occurs immediately before reheating, when the age of the universe is ~10-35 s, whereas 
the measured spectrum of the CMB shows the universe at recombination (assuming zero 
scattering along the way), i.e. at an age of approximately 377000 years [16]. Of course, a 
lot could happen in 377000 years so the natural thing to ask is how the spectrum might be 
preserved, or otherwise, during this time period, in such a way as to evolve into the 
observed CMB spectrum. 
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When the inflation paradigm first emerged around 1982, the field   was thought to 
decay during the subsequent reheating phase into standard model particles via field 
oscillations, typically ~ O(103) oscillations [17], which could be described in the 
conventional perturbative way [18]. In 1997, it was found that coherent field effects such 
as parametric resonance may have been responsible for causing   to decay within fewer 
oscillations than that predicted by perturbative methods [19], [20]. The term ‘preheating’ 
was coined for this process. The preheating stage, should it have been physically realized, 
is thought to have implications for baryogenesis [17], which occurs after (p)reheating. 
Faster decay mechanisms have been considered [21], which involve tachyonic decay. The 
decay mechanism used depends on the inflation model being studied.  
 
In fact, it can be shown that the primordial spectrum is largely unaffected by the 
reheating phase and furthermore, that all subsequent phases leading up to recombination 
are not particularly significant to the produced spectrum [22]. This fact allows for a fairly 
accurate spectrum prediction to be made with the simplification of assumed instantaneous 
recombination. With or without the assumption of instantaneous recombination, spectrum 
predictions depend crucially on the Hubble radius at the time of recombination, which 
distinguishes frozen-out perturbations which were super-horizon by the time of 
recombination from perturbations which were sub-horizon by this time.  
 
Sub-horizon modes at recombination require a comprehensive description of the transfer 
and growth functions in the full Einstein-Boltzmann system. This has in fact been done 
analytically by Mukhanov [22], although the full calculation still involves some degree of 
fitting the prediction to observed data. The parameters on which the calculation relies are 
density parameters associated with dark energy and baryonic matter, as well as the 
temperature measurements of the CMB measured by WMAP, and the calculation is very 
sensitive to these parameters [22]. The extra complexity of the sub-horizon spectrum can 
be appreciated by referring to figure 5. The spectrum for angles below ~0.87°, which 
corresponds to the Hubble scale at recombination [22], shows a more intricate set of 
angular peaks. 
 
Modes which were super-horizon at recombination are not subject to the evolution effects 
of sub-horizon modes so in principle are easier to predict. However, there is no free lunch 
with super-horizon modes either, due to the cost of cosmic variance on the accuracy of 
observations corresponding to smaller multipoles.  
 
There is one parameter which is a completely free parameter in all models of inflation, 
which is the objective amplitude of fluctuations, and therefore the amplitude of measured 
temperature anisotropies. The predicted curve can be normalized to provide a best-fit 
curve, and it turns out that the normalized spectrum fits very well with the observed data, 
indicating a high level of predictive power for relative amplitudes [22]. 
 
One factor which was ignored in this paper was tensor contributions to the spectrum. No 
unambiguous measurements of gravitational waves yet exist, however studies of the 
relative significance of scalar and tensor perturbations to the spectrum are ongoing 
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[9][23][24]. Other generally overlooked factors include multiple-field inflation models, 
approaches based on string theory and the multiverse. 
 
Extensions to this paper could involve further investigation of any of the issues 
highlighted in the above paragraphs, and would serve to test the robustness of the 
prediction of the primordial spectrum made in this paper in the context of different 
models.  
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Appendix 
 
A.1 
 
The 1st Friedmann equation is 
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, which can be written as 
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, so 
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A.2 
 
The event horizon of a universe is 


max

)(
)()(

t

t

e ta

dt
tatd  

 
If the universe in question is undergoing accelerated expansion, this integral is 
convergent and there exists a finite event horizon. For two events separated by an interval 
de(t), the expansion of the intermediate spacetime separating the two events prevents any 
future interaction. 
 
The particle horizon changes with time and is equal to  
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A.3 
 
The Hubble radius at time t is  
 

)()(

1

tHta
 

 
Hence an accelerating scale factor is required for the Hubble radius to decrease. 
 
A.4 
 
2nd Friedmann equation: 
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Strong energy dominance condition: 
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In the last line, 0)(   t  was used.  
 
If now the first term is expanded as follows: 
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The stress-energy tensor now reads: 
 

  





 







 





 













 












 






  )(

2

1
)(

2

1
)(

2

1 2

22

22 VVVT 


  

 
This can be identified as the stress-energy tensor for a perfect fluid with 4-velocity : V
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, leading to the identifications 
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A.6 
 
First taking the square root of the first Friedmann equation, and taking the time 
derivative: 
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On the other hand, 
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Combining these two: 
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So equating the LHS with the second Friedmann equation gives: 
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Now using 
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 causes this equation to reduce to the energy 

conservation equation: 
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A.7 
 
Substituting equations (1.8) and (1.9), the expressions for the energy density and pressure 
in terms of  , into the energy conservation equation: 
 

 pH   3  
 
, gives: 
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which can be compared with the time derivative of (1.8): 
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, to give 
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A.8 
 
To convert (1.17) into conformal time, use dttad )(  to yield, term by term: 
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, and substitute into  (1.17) to obtain 
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A.9 
 
By using some basic algebra to expand the definition of the Hubble parameter as such: 
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, then using the simplified equation of motion (1.21) to substitute for 
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and using the simplified Friedmann equation (1.22) to substitute for H: 
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which can be equated with the square root of (1.22) to give 
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, which simplifies to  
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A.10 
 
Starting from  
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A.11 
 
The background metric: 
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The perturbation metric with vector and tensor perturbations neglected: 
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The complete metric: 
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A.12 
 
Using the general gauge transformation (2.10) to see that  
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, and substituting this into the transformation law for the metric (2.11) yields the 
following: 
 

 

   

)()()(,,

,,,,

,,,,

,,

~~
~~~

22)0()0()0(

)0()0()0()0(

)0(

)0()0(

gOgOgOgggg

gggg

gggg

gg

gg
x

x

x

x
ggg









































































































 

 
Neglecting the non-linear terms in  and g , this approximates to  
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, which is equation (2.14). 
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A.13 
 
Equating the RHS of (1.31) and (1.32) gives 
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which can be simplified by substituting  
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 xg terms to give equation (1.33). 

 
A.14 
 
The reasoning used here is similar to that in A.13. The Jacobian for a scalar quantity is 
just 1, so the general transformation law is 
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to cancel the )~()0( xq  terms, gives equation (1.33), which is the gauge transformation 
law for the scalar perturbations: 
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Also splitting it into background and perturbation parts in the new coordinates: 
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, and equating for the LHS gives 
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and substituting these both gives: 
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Neglecting the quadratic term in   gives the covector transformation law: 
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A.16 
 
This is the natural way to split a vector into its irreducible components, a.k.a. the 
fundamental theorem of vector calculus, which states that any vector field can be split 
into the sum of a divergenceless vector field and the gradient of a scalar function.  
 
A.17 
 
Using (1.33) and (1.26):  
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A.18 
 
The perturbed component   is written as ),(  x above to clarify that the perturbations 

have both spatial and temporal dependence. 0 , being the homogeneous component of 

the field, has no spatial dependence by definition. 
  
A.19 
 
Using the result (2.18): 
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A.20 
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(1.26a) written in some new, gauge-transformed coordinates, reads: 
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This is a vector equation in  and a scalar equation in , so picking out the scalar 

equation: 
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Picking out the two relevant equations: 
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A.21 
 

0,,0 00  EBEB  

 
This causes (1.46) and (1.47) to reduce to   and   respectively.               
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This causes the perturbed metric (1.27b) to reduce to  
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A.23 
 
The Klein Gordon equation is 
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It can be expanded out as such: 
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Since in the longitudinal gauge, 0g  for   , writing out the above equation in 

components is not too tedious: 
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, where  denotes a derivative with respect to conformal time. 0
 
Now substituting the metric in, which in the longitudinal gauge, comes in the following 
form: 
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, where the lines of the equation are labelled (a) – (c). 
 
Taking it line by line: 
 
Line (a): 
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So line (a) reads: 
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This reduces down to 
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Line (b): 
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So line (b) reads: 
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Putting all this together: 
 
The Klein Gordon equation now reads: 
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Factorizing for  and  , this becomes: 
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From (1.25a), it is obvious that   and   satisfy 1  and 1 , so the remaining 
denominators can be expressed as power series: 
 
Line by line once again: 
 
Line (a): 
 

      


































































21

12

12

3

21
4

21

1
22

HH
aa

 

 

      
  

  


























33212

)(212

)(213)(214)(21

2

2

222

2

H

H

H

a

O

OOO

a
 

Line b: 
 
By neglecting all non-linear terms: 
 

         
 

0

21

2

12

3

2121

1
222
































 










aa  
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KG now reads: 
 

   033212 2
2











 V

a
H  

 
Now considering the field broken into its background and perturbed components: 
 

  ),(0  x  

 
The following simplifications/modifications can be made: 
 

1.    


 



 00 ),(x  

 
2.       ),(0 x  

 

3.    


 



 002

2

),(x  

 
4.      2

0
22 ),(  x  

 
5. The potential term also changes under substitution of the perturbed field:  

 
 

       ),()(),(),()( 000 xVVxVV    

 
Using this, and the fact that V  can be written as  

 





d

dV
V   

 
, the potential term changes as follows: 

 
 












 











































 VVV

d

dVV

d

dV
V

V
2

2
00

0  

 
 
Substituting all of this once again into the KG equation yields equation (1.50): 
 

  0,23,2,2 2
0

222
00    VaVaVa HH  

 

- 49 - 



Trevor Peter Hardcastle - MSc Quantum Fields and Fundamental Forces - CID:00575357 
Imperial College London Summer Thesis 2009 

 
A.24 
 

Substituting 
2Ha

da

aa

da

a

dt



 into  a

dt  gives 
aHa

da

H

11
2


  , where the fact that 

H is virtually constant during inflation has been used. 
 
A.25 

1. Using 03 






 V
H  , )(V  reads 2

 
)(

3

,
2

2

 V
H

V










 
. Then 

3

)(8 V
H   can be substituted which results in equation (3.5): 1

,
2









V

V  . 

 

2. Taking the time derivative of 03 






 V
H   gives 

H

V

3

,

 





 Substituting this 

into   H3  gives 
H

V
H

3

,
3 

 . Then using 
3

)(8 V
H   to eliminate H 

this results in 1
,


V

V   

 
It is clear also from the 1st Friedmann equation that : 2~ HV
 

 V
GG

H  22

3

8

3

8 
   

 
22 ~ HVV   

 

So VV ,  can be extended to 2~, HVV  . 

 
A.25b 
 
The square root of the slow-roll condition (3.7) is 
 

H~~0 aHVa , where V
GV

H ~
3

8
  was used.  

 
So the 0  term in the Einstein equation (2.62) can be neglected, giving:  

 
 HH 04  
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A.26 
 

0,24,2 2
0

22    VaVaH  

 
It should also be noted that under a Fourier transform, F, . 22 k F

 

 To show that 
22 , Va : 

 


22222 ~, kHaVaVa   

 


22 ,  Va  

 
, where (in order) , , and  were used. VV , 2~ HV aHk 
 

 To show that  : 
22 ,2 Va

 
22222 22~2,2 kHaVaVa    

 


22 ,2  Va  

 
, where (in order)    and  were used. VV , , 2~ HV aHk 
 

 To show that  :  2
04 

 

   22222
000 44~44~4~4 kHaVak   

 

 2
04   

 

, where (in order) ,  k~
k

0~


  ,   Va 22
0  ,  and  were 

used. 

2~ HV aHk 

 
 
All that remains to do now is to show that    and  H2  are of the same order of 

magnitude as : 2
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  0
2

0
0

2

0

0
2

0
000

22

































































k
kk

k
kkk

HH

 

 
, where  was used. There is no need to continue with any algebra here since it is 
readily seen that the terms in  are not negligibly small, so the 

 k~
k  H2 can not be 

neglected. 
 
Doing the same procedure for    produces a similar result with the same conclusion. 
 
A.27 
 

a

uk
k   

2a

a
u

a

u
k

k
k





  

 







 










 




a

a

a

a
u

a

a
u

a

u
kk

k
k 32

22  

 
Substituting into (1.76): 
 

0

2
22

2

2

2
232

2









 









 










 










 






kk

k
k

k
kk

k

kkk

u
a

a
ku

a

u
k

a

a
u

a

u

a

a

a

a

a

a
u

a

a
u

a

u

k  H

 

 
A.28 
 

Slow-roll approximation gives 
2

1
~

1




a

a

a

a

a











 

So the 1k  limit reads 
a

a
k


2  

 
A.29 
 

Using      kkaa kk 
)3(32ˆ,ˆ †   and     0ˆ,ˆˆ,ˆ  

††
kkkk aaaa :   
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         0ˆ,ˆ,ˆ,ˆ,00ˆˆ0 kkkkkk aUaUaUaUuu 


   †††  

 

       
       

0
ˆˆ,,ˆˆ,,

ˆˆ,,ˆˆ,,
0 

























kkkk

kkkk

aaUUaaUU

aaUUaaUU
†††

†




 

 

    0ˆˆ0,, †
kk aaUU 

    

 

Inserting the term  here makes no difference due to its annihilating effect on the 

vacuum, so a commutator can be formed: 
kk aa ˆˆ †



 

     0ˆ,ˆ0,, †
kk aaUU 

    

 

      0)(20,, 3 kkUU     

 

    23 ,2  U  

 
 
A.30 
 
Using  
 

  aa 2  
 

 2HaH   
 
etc., (2.61) and (2.62) then respectively are: 
 

0,24,3 0
2    VVH     

 
 04   H     

 
A.31 
 
Having neglected the terms , 2    and  , (3.26) and (3.27) simplify to  
 

1. 0,2,3    VVH   

 
2.  04 H  
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1. The first equation can be simplified with the following manipulations:  

 
Divide by  (obviously  during inflation, otherwise there would be no slow-

roll at all and no inflation) to get: 
,V 0, V

 

02
,

,

,
3 0 








V

V

V
H


  

Modify the  term by substituting ,V
0

,
,




 

V
V   (chain rule) and 03,  HV   (the 

slow-roll equation of motion, (1.21)) in succession to obtain 
 

02,
,

3

,
3  




V

V

H

V
H 

 

 
The first two terms can be identified as the derivative of a product, to give equation 
(3.30): 
 

02
,

3 
















Vt

H  

2. The second equation is modified by using 



,0 V

V
   (chain rule) to give (3.31): 
















,

44 0 V
VH   

 
A.32 
 
Substituting   from (3.31) into (3.30): 
 
 

0
,

4
2

,
3 






































V

V
HVt

H    

 

Then substituting the Friedmann equation )(
3

8 
V

G
H  : 

 

0
,,,








































V

V

dt

d

V
V

Vt
V   
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, which is equation (3.32) 
 
A.33 
 

0  can be eliminated from equation (3.29) by using 0,3   VH  : 

 

kkk H

V

HH
 







 


3

,44
0  

 

Then by using the Friedmann equation )(
3

8 
VH  , H can be eliminated: 

 

  kkkk V

V
V

HH
 

 









,

2

1
,

3

44
20  

 
A.34 
 
Equation (1.26) is: 
 

  





  )()(

4
exp)( 22

fiif tt
n

G
aa   

 
First, the times  and  need to be specified. Set  as the time at the end of inflation, 

and set  as the time at horizon-crossing as such: 
ft it ft

it

 

VVf tt ~,
                      aHki tt ~

 

This gives  and ,  aHkit ~
22 )(   )()( ~,

22
VVf tt


 

 
By taking the logarithm of the scale factor expression, 
 

  )(~)(2lnln ~,
2

~
2

~,
2

~
2

VVaHkVVaHkif ttaa


   

 
, and substituting in ka ~ , the LHS reads: 
 

 
 

)ln(

lnln

lnlnlnln
~

H

aHa

akaa

ii

iaHkif
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- 56 - 

If  is neglected, then the following is obtained: )( ~,
2

VVt 


 
)ln(~

2 HaHk    
 
The Hubble parameter here is its value at the end of inflation. Its value is virtually 
constant during the inflation stage though, so it can be relabelled as its value at horizon 

crossing: 
a

k
H ~ . 

 
 


