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1 Introduction
Interestingly, the entanglement of qubits in quantum infromation and the entropy of
supersymmetric black holes in string theory uses the same mathematics, Cayley’s hyper-
determinant and Cartan’s invariant. There are also surprising parallels in the way they
can be classified: e.g. wrapping cycles corresponds to three-qubit basis vectors [1].

In this work, we will discuss Cayley’s hyperdeterminant from a mathematical point
of view, followed by some physical applications. We shall then express the entropy of
a 24-charge N = 4 black hole (or the equivalent quantum entanglement problem) as a
quartic polynomial of imaginary quaternions. We shall then discuss attempts to solve a
more complicated 56-charge black hole problem, using imaginary octonions instead.

2 Cayley’s Hyperdeterminant

2.1 Mathematical Background
The hyperdeterminant generalises the concept of the determinant to hypermatrices: mul-
tidimensional arrays of numbers (from any field) with dimension greater than two. It is
a polynomial composed of the entries of the hypermatrix, which acts as a discriminant
for the multilinear map represented by the hypermatrix (see [2] for full details). There
is no known way to explicitly construct a hyperdeterminant given any hypermatrix of
arbitrary dimensions. Fortunately, for our purposes we only need the hyperdeterminant
of a 2×2×2 hypermatrix, and for this we do have an explicit form, discovered by Arthur
Cayley in 1845 [3].

Writing our 2× 2× 2 hypermatrix as aABC , with A, B, C taking values of either 0 or
1, Cayley’s hyperdeterminant is defined as

Det a ≡ −1
2ε
A1A3εA2A4εB1B2εB3B4εC1C2εC3C4aA1B1C1aA2B2C2aA3B3C3aA4B4C4 (1)

where we have used the Einstein summation convention, εA1A2 is the two-dimensional
Levi-Civita symbol with ε01 = 1, and naturally aAiBiCi ≡ aABC for i = 1, 2, 3, 4. These
conventions will be followed throughout the paper. Explicitly it is

Det a ≡ a2
000a

2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

011a
2
100

−2(a000a001a110a111 + a000a010a101a111

+a000a011a100a111 + a001a010a101a110

+a001a011a100a110 + a001a010a100a111

+4(a000a011a101a110 + a001a010a100a111).

The required discriminant property is satisfied by the fact that the hyperdeterminant
vanishes iff the following set of simultaneous equations in six unknowns xA, yB, zChas a
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non-zero solution:

aAB0x
AyB = 0

aAB1x
AyB = 0

a0BCy
BzC = 0

a1BCy
BzC = 0

aA0Cz
CxA = 0

aA1Cz
CxA = 0.

A property of the hyperdeterminant that will be useful later is that it is invariant
under a cyclic exchange of A, B, C, also known as a triality. That is, if one performs this
interchange on either εA1A3εA2A4εB1B2εB3B4εC1C2εC3C4 or aA1B1C1aA2B2C2aA3B3C3aA4B4C4 ,
Det a remains unchanged. An elegant way to prove this is given in [1]: define three 2× 2
matrices

γ1(a)A1A2 ≡ εB1B2εC1C2aA1B1C1aA2B2C2

γ2(a)B1B2 ≡ εC1C2εA1A2aA1B1C1aA2B2C2

γ3(a)C1C2 ≡ εA1A2εB1B2aA1B1C1aA2B2C2.

Using the determinant formula

detA = 1
2ε
A1A3εA2A4aA1A2aA3A4 ,

we have
det γ1(a) = −Det a.

Now observe that det γ2(a) can be obtained from det γ1(a) by performing the following
replacements on the εAiAj terms:

Ai → Bi

Bi → Ci

Ci → Ai.

Similarly, det γ3(a) is obtained by performing the remaining cyclic interchange. However,
by manual calculation we can show

det γ1(a) = det γ2(a) = det γ3(a)

and we have proved the triality. Note that this proof also demonstrates how the hyper-
determinant is in some sense the determinant of a determinant.
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2.2 Physical Background
Here we shall briefly describe the physical applications of the hyperdeterminant to entan-
glement in quantum information and black hole entropy in the context of string theory.
The results described are obtained from [1].

2.2.1 Qubit Entanglement

A qubit is a two-state quantum system, with basis state vectors |0〉 and |1〉 . Any state
vector in this system can be expressed as a linear combination of these basis vectors:|

|ψ〉 = α |0〉+ β |1〉

where α, β ∈ C. If we impose the normalisation |α|2 + |β|2 = 1, then we can interpret
the coefficients as probability amplitudes of observing the corresponding basis states in
the usual way.

It turns out that the hyperdeterminant is a convenient way to give the measure of
tripartite entanglement of three qubits. Consider a three-qubit system whose state vectors
are a linear composition of eight basis states:

|ψ〉 = aABC |ABC〉

where |000〉 ≡ |0〉⊗ |0〉⊗ |0〉 etc. and A, B, C = 0, 1 as usual. Then Det a gives the
tripartite entanglement of three qubits.[1] The problems detailed in 3.1 and 4.1 can be
viewed as the tripartite entanglement of seven qubits.

2.2.2 Black Hole Entropy

In certain cases, supersymmetric black hole entropy as calculated in string theory is given
by Cartan’s invariant, of which Cayley’s hyperdeterminant is a key component. The 24
real numbers of the problem in 3.1 can be viewed as 24 black hole charges, following which
the invariant (2) becomes the entropy of a 24-charge black hole in N = 4 supersymmetry.
Similarly, (14) is the entropy of a 56-charge black hole in N = 8 supersymmetry. [1]

3 Cartan over the Quaternions

3.1 Setup
We have 24 real numbers, labelled aABD, eEFA and gGAC , where A, B,...G are either 0 or
1. Let

I1 ≡ a4 + e4 + g4 + 2(a2e2 + e2g2 + g2a2) (2)
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with the individual terms defined as

a4 ≡ 1
2ε
A1A2εB1B2εD1D3εA3A4εB3B4εD2D4aA1B1D1aA2B2D2aA3B3D3aA4B4D4 (3)

e4 ≡ 1
2ε
E1E2εF1F2εA1A3εE3E4εF3F4εA2A4eE1F1A1eE2F2A2eE3F3A3eE4F4A4

g4 ≡ 1
2ε
G1G2εA1A2εC1C3εG3G4εA3A4εC2C4gG1A1C1gG2A2C2gG3A3C3gG4A4C4

a2e2 ≡ 1
2ε
A1A3εB1B2εD1D2εE3E4εF3F4εA2A4aA1B1D1aA2B2D2eE3F3A3eE4F4A4 (4)

e2g2 ≡ 1
2ε
E1E2εF1F2εA1A3εG3G4εA2A4εC3C4eE1F1A1eE2F2A2gG3A3C3gG4A4C4

g2a2 ≡ 1
2ε
G1G2εA1A3εC1C2εA2A4εB3B4εD3D4gG1A1C1gG2A2C2aA3B3D3aA4B4D4 .

Note that a4is the negative of Cayley’s hyperdeterminant 1, treating aABD as a 2× 2× 2
hypermatrix. Similar remarks obviously apply to e4and g4. As mentioned in 2.1, the
triality of the hyperdeterminant means it does not matter which index is contracted with
εA1A3εA2A4 rather than εA1A2εA3A4 . I1 is Cartan’s quartic invariant in SL(2) × SO(6, 6).
[1] The somewhat unusual labelling will be explained in 4.1.

Our objective is to express (2) as a linear combination of products of eight imaginary
quaternions, taken four at a time, similar to (3) and (4). Since each imaginary quaternion
can be viewed as a real vector space of dimension three, in some sense both sides have the
same number of degrees of freedom (8× 3 = 24) and we can be optimistic about success.

We will also label these quaternions via the binary system (capital Roman letters),
and write them as

xABC = xiABCei (5)

where ei are the standard imaginary quaternion basis, satisfying

eiej = −δij + εijkek (6)

with i,j,k taking values of 1,2,3.

3.2 Solution
It turns out one can directly assign the 24 aABD of (2) to the 24 quaternion components
of (5) via

x1
ABC ≡ aABC

x2
ABC ≡ eBCA (7)
x3
ABC ≡ gCAB
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and

I2 = 1
4ε
A1A3εA2A4εB1B2εB3B4εC1C2εC3C4xiA1B1C1x

j
A2B2C2x

k
A3B3C3x

l
A4B4C4

(eiejekel + eiekelej).
(8)

Thus if we can prove that
I1 = I2 (9)

then we have successfully defined this invariant over the imaginary quaternions.

3.3 Proof
Our proof will be slightly different from that found in [1]. Using the quaternion mul-
tiplication properties from (6) (note that quaternion multiplication is associative), we
have

eiejekel = (−δij + εijmem)(−δkl + εklnen)
= δijδkl − δijεklnen − δklεijmem + εijmεkln(−δmn + εmnpep)
= δijδkl − δijεklnen − δklεijmem − εijmεklm + εijmεklnεpmnep.

Substituting the identity
εijmεklm = δikδjl − δilδjk

yields

eiejekel = δijδkl − δikδjl + δilδjk + εiklej − εjklei − δijεklmem − δklεijmem.

Cycling the j, k, l indices gives

eiekelej = δikδjl − δilδjk + δijδkl + εiljek − εkljei − δikεljmem − δjlεikmem

and we have

eiejekel+eiekelej = 2δijδkl−2εjklei+εiklej+εiljek−(δijεklm+δklεijm+δikεljm+δjlεikm)em.
(10)

Using only the first term, let

I3 = 1
4ε
A1A3εA2A4εB1B2εB3B4εC1C2εC3C4xiA1B1C1x

j
A2B2C2x

k
A3B3C3x

l
A4B4C4

(2δijδkl)

= 1
2ε
A1A3εA2A4εB1B2εB3B4εC1C2εC3C4xiA1B1C1x

i
A2B2C2x

k
A3B3C3x

k
A4B4C4

= 1
2ε
A1A3εA2A4εB1B2εB3B4εC1C2εC3C4(aA1B1C1aA2B2C2aA3B3C3aA4B4C4

+eB1C1A1eB2C2A2eB3C3A3eB4C4A4 + gC1A1B1gC2A2B2gC3A3B3gC4A4B4

+2(aA1B1C1aA2B2C2eB3C3A3eB4C4A4 + eB1C1A1eB2C2A2gC3A3B3gC4A4B4

+gC1A1B1gC2A2B2aA3B3C3aA4B4C4))
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where we have used the definitions in (7) and the fact that εA1A3εA2A4εB1B2εB3B4εC1C2εC3C4

is invariant under the interchange of 1↔ 2, 3↔ 4. By exploiting the triality of Cayley’s
hyperdeterminant from 2.1, we can see that the first three terms are a2, e2and g2from (3),
and the last three terms are ae, eg, and ga from (4). Thus we have

I1 = I3. (11)

Hence proving (9) has been reduced to proving that the remaining eight terms in (10)
vanish under contraction with εA1A3εA2A4εB1B2εB3B4εC1C2εC3C4xiA1B1C1x

j
A2B2C2x

k
A3B3C3x

l
A4B4C4

.
We will do so by exploiting the symmetries in this polynomial. For ease of expression let

J ijkl ≡ εA1A3εA2A4εB1B2εB3B4εC1C2εC3C4xiA1B1C1x
j
A2B2C2x

k
A3B3C3x

l
A4B4C4

.

By inspection one can see that εA1A3εA2A4εB1B2εB3B4εC1C2εC3C4 is invariant under the
following interchanges:

1 ↔ 2, 3↔ 4
1 ↔ 3, 2↔ 4
1 ↔ 4, 2↔ 3.

As the Ai are dummy indices, this implies J ijkl is invariant under:

i ↔ j, k ↔ l

i ↔ k, j ↔ l

i ↔ l, j ↔ k.

Now we can show that the four terms of type εjklei cancel each other. Observe that
εiklej − εjklei is antisymmetric under the interchanges i↔ j, k ↔ l, which implies that it
will vanish under contraction with J ijkl. This can be verified explicitly:

εA1A3εA2A4εB1B2εB3B4εC1C2εC3C4xiA1B1C1x
j
A2B2C2x

k
A3B3C3x

l
A4B4C4

(εiklej − εjklei)
= εA1A3εA2A4εB1B2εB3B4εC1C2εC3C4xkA3B3C3x

l
A4B4C4

(xiA1B1C1x
j
A2B2C2 − x

j
A1B1C1x

i
A2B2C2)εiklej

= εB1B2εB3B4εC1C2εC3C4(εA1A3εA2A4 − εA1A4εA2A3)xiA1B1C1x
j
A2B2C2x

k
A3B3C3x

l
A4B4C4

εiklej

= εB1B2εB3B4εC1C2εC3C4(εA1A3εA2A4 − εA1A3εA2A4)xiA1B1C1x
j
A2B2C2x

k
A3B3C3x

l
A4B4C4

εiklej

= 0.

Similarly, εiljek − εjklei is antisymmetric under i ↔ k, j ↔ l, and its contribution also
vanishes. Thus we have

J ijkl(εiklej + εiljek − 2εjklei) = 0. (12)
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Next we will consider the terms of type δijεklmem. Here each term will individually
vanish: δijεklmem and δklεijmem are both antisymmetric under i↔ j, k ↔ l, and δjlεikmem
and δikεljmem are both antisymmetric under i↔ k, j ↔ l. Thus we have

J ijkl(δijεklm + δklεijm + δikεljm + δjlεikm)em = 0. (13)

Combining (11) with (12) and (13) gives us

I1 = I2

and we have proved the desired equality.

4 Cartan over the Octonions

4.1 Setup
Having successfully defined Cartan’s invariant over eight imaginary quaternions, we will
now tackle a more difficult problem. We will now construct a similar polynomial from 56
real numbers, and endeavour to express as a linear combination of products, taken four
at a time, of eight imaginary octonions. An imaginary octonion can be viewed as a real
vector space of dimension seven, so using the same degree of freedom argument from 3.1
(8× 7 = 56), we can again be optimistic about success.

Similar to 3.1, we will label the 56 real numbers as aABD, bBCE, cCDF , dDEG, eEFA, fFGB, gGAC
with A, B, ...G either 0 or 1. Our polynomial has form

I4 ≡ a4 + b4 + c4 + d4 + e4 + f 4 + g4 (14)
+2(a2b2 + a2c2 + a2d2 + a2e2 + a2f 2 + a2g2 + b2c2 + b2d2 + b2e2 + b2f 2 + b2g2

+c2d2 + c2e2 + c2f 2 + c2g2 + d2e2 + d2f 2 + d2g2 + e2f 2 + e2g2 + f 2g2

+8(abce+ bcdf + cdeg + defa+ efgb+ fgac+ gabd).

Terms of the form a4 are defined exactly as they were in (3), the negative of Cayley’s
hyperdeterminant. Terms of the form a2b2 are defined similar to (4), except that one
must take care to contract the shared A, B, ...G index with the cross εA1A3εA2A4 term,
e.g.:

a2b2 ≡ 1
2ε
A1A2εB1B3εD1D2εB2B4εC3C4εE3E4aA1B1D1aA2B2D2bB3C3E3bB4C4E4 .

Note that each pair of a, b etc. has exactly one shared index, and all possible pairs are
listed in (14). The new terms of form abce are defined as

abce ≡ εA1A4εB1B2εC1C2εD1D3εE2E4εF3F4aA1B1D1bB2C2E2cC3D3F3eE4F4A4 (15)
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i.e. one contracts over each shared index. Note that there are always six different pairs of
shared indices in each abce term, and each of these seven terms excludes a different index
(there are seven indices).

I4 is Cartan’s quartic invariant in E7(7), of which SL(2) × SO(6, 6) is a maximal
subgroup.[1] Note that we chose aABD, eEFAand gGAC to formulate the simpler problem
in 3.1; this is related to using three imaginary octonions to construct the algebra of the
imaginary quaternions.

As stated earlier, we now wish to define eight imaginary octonions in terms of the
aABD etc. and express I4 as a quartic polynomial of these octonions.

4.1.1 The Octonions

This will be a brief description of the octonions O. They are an eight-dimensional normed
division algebra over the real numbers, discovered by John T. Graves in 1843 and inde-
pendently by Arthur Cayley in 1845 [4]. Writing their basis as e0, e1, ...e7, e0 ≡ 1 and
the remaining octonions satisfy the following multiplication table:

e1 e2 e3 e4 e5 e6 e7

e1 −1 e4 e7 −e2 e6 −e5 −e3
e2 −e4 −1 e5 e1 −e3 e7 −e6
e3 −e7 −e5 −1 e6 e2 −e4 e1
e4 e2 −e1 −e6 −1 e7 e3 −e5
e5 −e6 e3 −e2 −e7 −1 e1 e4
e6 e5 −e7 e4 −e3 −e1 −1 e2
e7 e3 e6 −e1 e5 −e4 −e2 −1

Table 1: Octonion multiplication table

where each entry is the product of the corresponding basis octonion in the first column
with that in the first row, in that order. Note that

• e2
i = −1.

• eiej = −ejei if i 6= j.

• If eiej = ek, ei+1ej+1 = ek+1 under addition modulo seven.

A more instructive way to write the multiplication table is the Fano plane, found in [4]
and [1]. This demonstrates how there are seven ways to choose three imaginary octonions
which from a subalgebra isomorphic to the imaginary quaternions. The octonions can
also be constructed from the quaternions via the Cayley-Dickson construction [4].

Key properties of the octonions a, b, c ∈ O are as follows:
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• normed: it has norm |�| : O→ R in the vector space sense, satisfying |ab| = |a| |b|.

• division algebra: if b 6= 0 then there exists exactly one x ∈ O and exactly one y ∈ O
such that a = bx and a = yb.

• non-commutative: ab 6= ba, like the quaternions.

• non-associative: (ab)c = a(bc).

• alternative: a(ab) = (aa)b and (ba)a = b(aa).

4.2 Unsatisfactory solution
One can construct 56 octonions, labelled xiABC with i = 1, 2, ...7 and A, B, C = 0, 1
from our 56 real numbers aABD etc. via

x1
ABC ≡ aABCe1

x2
ABC ≡ bABCe1

and so on. ei are now basis octonions defined by the dual Fano plane, described in [1],
and so the multiplication table will be different from that in 4.1.1.

Then define a polynomial very similar to (14):

I5 ≡
7∑
i=1

(xi)4 +
∑
all pairs

(xi)2(xj)2 − 8(x1x2x3x5 + x2x3x4x6 + . . .+ x7x1x2x4)

where (xi)4, (xi)2(xj)2 and xixjxkxl are defined exactly the same way as in (3), (4) and
(15). Note that double counting accounts for the missing factor of two on the (xi)2(xj)2

terms, and the new minus sign on the xixjxkxl terms.
The order of octonion multiplication makes no difference here. By inspection all the

octonions will multiply out to 1 or -1, and by construction we have

I4 = I5.

This, however, is an inferior solution, since we have defined 56 imaginary octonions, rather
than 8. Compare this to 3.3, where by exploiting symmetries we defined I1 in terms of 8
imaginary quaternions rather than 24.

4.3 Outlook
This problem remains unsolved, largely due to the xixjxkxl terms. Note that due to the
non-associativity of octonions, there are five ways to multiply a eiejekel term.
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