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1 Introduction

Inflation in the early universe is now an accepted cosmological fact supporting the ho-

mogeneity of the universe and the inhomogeneities of galaxies. Inflationary dynamics

is controlled by Planck-suppressed contributions within an effective action. This moti-

vates the building of models which can realize this inflation and handle the Planck-scale

contributions. One natural starting point for this is to use string theory and quantum

field theory since these theories are well placed to deal with Planck-scale, infra-red and

ultra-violet scenarios. However, one major problem with such theories has been the

sensitivity of inflation to Planck-scale physics; consequently, building a string theory

based model to address all of these factors has proven highly challenging.

D. Baumann et al have been working on such a model, the D3 brane model

within their paper - D3 brane potentials from fluxes in AdS/CFT - and their previous

supporting papers. What has made their model particularly interesting and robust is

that they have self-imposed the requirements that: the model should be consistent with

four dimensional Conformal Field Theory in the spirit of the Maldacena AdS/CFT

duality; should work successfully as a ten-dimensional supergravity and as a four-

dimensional gauge theory, and finally, possess a high level of computability.

The problem I had in reading and trying to understand Baumann’s paper was

that there were many bridging areas which are beyond that covered by the Master’s

courses. Therefore, I am assuming that the reader has taken courses in String Theory,

Supersymmetry, Differential Geometry, Advanced Field Theory, Differential Geometry

and General Relativity. My task in this dissertation is to understand Baumann’s paper

and explain some of the more important bridging areas.

It makes sense to summarise the D3 brane model itself and provide a simple sum-
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mary of the inter-relationships and results reported within Baumann’s paper.

The D3 brane model:

The goal is to create an effective action for D3 branes in a flux compactification. It is

assumed that all of the fluxes will be of an ISD and IASD (Imaginary Self Dual) type

and that the presence of nonperturbative effects will cause the D3 brane to experience

a potential. It is assumed that the model fits a Type IIB supergravity and that the

fields satisfy the associated equations of motion. After compactification, a finite throat

is glued into the compact space causing distortions of the supergravity fields in the

ultraviolet regions of the throat. The finite warped region of the throat is then ap-

proximated by a non-compact deformed conifold whose solutions are explicitly known

in terms of harmonic functions, Kahler forms and holomorphic forms. The fluxes, in-

cluding the scalar mode, can be expressed in terms of these solutions. Stability of

the solutions is important and leads to approximations to the associated perturbative

expansions and places restrictions on the radial component and scalar modes. Only

three types of fluxes, depending on the Hodge type, can be constructed and from these

the D3 brane potential is known or can be derived.

Subsequently, there is one major enhancement, that of embedding a stack of D7 branes

wrapping a four cycle, which when accompanied by gaugino condensation on the D7

branes induces an extra D3 brane potential.

Next, we consider the inter-relationships and results:

1) Conformal Field Theory: The above theory is a string theory model on AdS × T 11.

The CFT dual of this is an N=1 supersymmetric Yang Mills theory possessing gauge

group and continuous global symmetries. The matching is between the low-dimension

protected supermultiplets of operators in CFT and the supergravity three-form fluxes

and scalar mode. This is mainly done using dimensional comparison rather than su-
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persymmetry derivations. There is also a brief discursive comparison of the scalar

potential between the two theories.

2) Superpotentials: That the D3 brane potential specified by a superpotential on the

conifold can be geometrized. That is for a superpotential for a D3 brane on the coni-

fold, there exists a supergravity solution in which the BI plus CS potential equals the

F-term potential in 4d supergravity ie the F-term potential can be expressed in terms

of a nonperturbative superpotential which is equal to the flux potential expressed in

terms of holomorphic functions. After matching, this gives a flux representation in

terms of the superpotential.

3) Gaugino condensation: Considering gauginos as a source of flux in Field Theory and

the Bulk, results are established for a coupling in 4d between the gauginos of the D7

branes in a warped throat and CFT fields dual to fluxes in the throat and that this

coupling relationship can be formulated from the BI plus CS couplings action involving

gauginos and bulk fluxes

Next we comment on the structure of this dissertation. There is a section on

the background concepts consisting of three topics which have been selected as being

fundamental to the theory: Calbi-Yau manifolds, AdS/CFT duality and Fluxes. The

depth discussed reflects their underlying importance. Following this, there are sections

on: (1) the D3 brane model, which is covered in Baumann’s chapters 2,3 and 4, (2)

CFT, which is covered in Baumann’s chapter 5, (3) Superpotentials from Fluxes, which

is covered in Baumann’s chapter’s 6, and finally (4) Gauginos as a source of fluxes,

which is covered in Baumann’s chapter 7.

Finally, Baumann’s paper has been written in the context of an overall physical
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cosmological structure, namely inflation cosmology which covers the inflation stage of

the creation of the universe. The appendix briefly outlines the three main areas leading

from inflation cosmology to Baumann’s D3-brane model: the Dynamics of Inflation,

Quantum Fluctuations of Inflation, and Inflation in String Theory.

2 Background Concepts

2.1 Calabi-Yau Manifolds

There is a good review on Calabi-Yau by B.R.Greene (1997) and this section has used

results from that paper.

Compactified string theory requires that the compact portion of space-time meets

various stringent constraints. Although there are various manifolds which satisfy these

constraints, the most successful manifold is the Calabi-Yau Manifold. This is defined

as an n-dimensional manifold which is compact, complex, Kähler, and has SU(d)

holonomy. There are three kinds of manifolds: topological, differentiable and complex,

which can be regarded as surfaces comprising sets of points which possess respec-

tively continuity, smoothness and holomorphic structure. Compactness is a topological

manifold property requiring any set of points in the manifold to be approximately

continuous. Complex refers to a complex manifold which has structure allowing the

existence of holomorphic functions; these are functions h : Cn/2 → Cn/2 such that

h : (zi, z̄i) → h(zi) and similarly for anti-holomorphic functions h : (zi, z̄i) → h(z̄i), ie

the functions in the complex space are separable. These are adequate definitions for

our purposes.

However, to define Kähler requires some knowledge of differential forms, homol-
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ogy, co-homology and the Hermitean metric. Denoting the complex tangent space by

TpX
C and the dual complex tangent space T ∗pX

C , q-forms can be constructed in terms

of coefficients wi1..iq

w =
∑

wi1..ir j̄1...j̄q−rdz
i1 ∧ dzi2 ∧ .....dzir ∧ dz̄ j̄1 ∧ ...dz̄ j̄q−r (1)

where the wedge products are the antisymmetric tensor products of the bases dzi and

dz̄ j̄. Ωr,s(X) is used to denote the space of antisymmetric tensors with r holomorphic

indices and s anti-holomorphic indices:
∧r T ∗(1,0)X ⊗

∧s T ∗(0,1)X

Next the concept of ordinary differentiation is generalised to give a real exterior

differentiation map d :
∧q T ∗X →

∧q+1 T ∗X, defined by

d : w → dw =
∂wi1..iq
∂xiq+1

dxiq+1 ∧ dxi1 ∧ .....dxiq (2)

For the complex case Ωr,s(X)→ Ωr+1,s(X)⊕Ωr,s+1(X), the wr,s form, the complex

version, becomes

dwr,s =
∂wi1...ir j̄1...j̄s
∂zir+1

dzir+1 ∧ dzi1 ∧ .....dzir ∧ dz̄ j̄1 ∧ ...dz̄ j̄s+

∂wi1...ir j̄1...j̄s
∂z̄is+1

dzi1 .....dzir ∧ dz̄ j̄s+1 ∧ dz̄ j̄1 ∧ ...dz̄ j̄s (3)

which can be written briefly as dwr,s = ∂wr,s + ∂̄wr,s. Now a q form is called closed

if dwp = 0 and a q-form is called exact if there exists a (q-1) form wq−1 such that

wq = dwq−1. From differential geometry, there are some standard results. If a w form is

closed, then w is exact or can be expressed as dβ where β is (q-1) form. Furthermore,

there exists a (real) qth DeRham cohomology group Hq
d(x), defined as the quotient

space of closed q-forms to the space of exact q-forms ie

Hq
d(X,R) =

(w|dw = 0)

(α|α = dβ)
(4)

where w and α are q-forms and β is a (q-1) form. For a complex manifold, this can be
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generalised to the (r,s) Dolbeault cohomology group

Hr,s

∂̄
(X,C) =

(wr,s|∂̄wr,s = 0)

(αr,s|αr,s = ∂̄βr,s−1)
(5)

where wr,s are as defined in Ωr,s(X). These groups will provide parameters called

Hodge numbers, explained more fully in the next section.

Next, we need the concept of the (complex) Hermitean metric, which is a map

g : TpX
C × TpXC → C defined as

g = gij̄dz
i ⊗ dz̄ j̄ + gījdz̄

ī ⊗ dzj (6)

where gij are the metric concepts encountered in general relativity. In particular, in

the Hermitean metric, there are no components gij = gij = 0. There is another way

of expressing this result which says that if J is a map acting on the tangent space and

J2 = −1 then g(Jv1, Jv2) = g(v1, v2) for tangent vectors v1 and v2.

The tools are now in place to define the Kähler property for manifolds. Given a

Hermitean metric, there is a form in Ω1,1(X) defined as

J = igij̄dz
i ⊗ dz̄ j̄ − igj̄idz̄ j̄ ⊗ dzi = igij̄dz

i ∧ dz̄ j̄ (7)

When J is closed ie dJ=0, J is called a Kähler form and X is called a Kähler manifold.

Using second differentials, there is a Kähler potential K which can be constructed as

follows. Since dJ = 0,

dJ = (∂ + ∂̄)igij̄dz
i ∧ dz̄ j̄ = 0 this implies

∂gij̄
∂zl

=
∂glj̄
∂zi

(8)

(similarly with z and z̄ interchanged). So there exists a potential, K, such that gij̄ =

∂2K
∂zi∂z̄j̄

or, in brief, J = i∂∂̄K. One consequence of this is that the Christoffel symbols

are either holomorphic or anti-holomorphic.

The last of the properties is Holonomy. This is best understood by description

rather than a lengthy proof. Given a tangent vector vεTpX, if it is parallel transported
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around a closed curve located at p, the orientation of v will change to say v
′
. The

group of transformations which transform v to v
′

is called the Holonomy Group. For

an orientable, differentiable manifold, this group is SO(n), or a subgroup thereof. If

X is a complex Kähler manifold, the holonomy group is U(n/2) and if n is even, the

group becomes SU(n/2).

Calabi-Yau Manifolds - Hodge numbers and Moduli Space

The size and shape of the Calabi-Yau manifolds are usually identified by the Hodge

numbers of the manifold’s Cohomology group and the family of manifold parameters

collectively referred to as the moduli space or Calabi-Yau space.

The Hodge number, denoted by hr,sX is the dimension of the Dolbeault cohomology

group Hr,s

∂̄
(X,C). However, these take on more significance for Kähler manifolds.

Since Calabi-Yau manifolds look rather like a 3D fine-meshed fishing net drifting in

the sea, the Hodge numbers are a measure of the size of the holes in the net and the

net mesh size. Now the adjoint d† is defined as

d† : w → d†w = − 1

(p− 1)!
wµµ1...µp−1;µdx

µ1 ∧ dxµp−1 (9)

where wµµ1...µp−1;µ is the covariant derivative of wµµ1...µp
. From differential geometry, there

is a Hodge decomposition theorem, which states that any (r,s)-form can be written as

wr,s = ∂̄αr,s−1 + ∂̄†βr,s+1 + w
′r,s (10)

where α is (r, s−1) form, β is (r, s+1) form, and w
′r,s is a harmonic p-from. The latter

is defined as a form satisfying ∆w
′r,s = 0, where ∆ = ∂̄†∂̄ + ∂̄∂̄† is the Laplacian for

(r, s) forms. For Kähler manifolds, the hr,sX are the same as the dimension of the vector

space of harmonic (r, s) forms on X. Other properties ensure that there are symmetry

properties between r and s and also between n-r and n-s.
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If the holonomy group is denoted by SU(d), where d = n/2, then the Hodge

numbers are usually portrayed as a diamond, eg d=3, a commonly encountered case:

h3,3 = 1

h3,2 = 0 h2,3 = 0

h3,1 = 0 h2,2 = h1,1 h1,3 = 0

h3,0 = 1 h2,1 h1,2 = h2,1 h0,3 = 1

h2,0 = 0 h1,1 h0,2 = 0

h1,0 = 0 h0,1 = 0

h0,0 = 1

(11)

As can be seen, for d=3 there are numerous possibilities and combinations of hodge

numbers, whereas, in fact, for d=1 and d=2 the h numbers are unique.

Turning to the moduli space, this is the family of parameters of the manifold.

However, to understand its content, it is necessary to understand the concept of defor-

mations of the complex structure of X. Given a Calabi-Yau manifold with a Hermitean

metric g such that the Ricci metric vanishes ie Rij̄(g) = 0, by considering perturbations

g+δg to the internal space and the curvature tensor (and requiring Ricci flatness) leads

to restrictions on g. For our purposes, the fact that matters is that δgij̄dz
i ∧ dz̄ j̄ is

harmonic and, therefore, is related to H1,1

∂̄
(X), while Ωijkg

kk̄δk̄l̄dz
i∧dzj ∧dz̄ l̄ is related

to H2,1

∂̄
(X). Therefore, the metric perturbations are representatives of the cohomology

classes ie there are two cohomology groups associated with deformations of Ricci flat

metric space on X. In fact, because the resulting Hermitean metric is with respect to

a different complex structure on X the cohomology group is actually H2,1
∂ (X). In sum-

mary, the moduli space comprises parameters from the deformations of the complex

and the Kähler structures. These are Kähler manifolds in their own right. There are
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now two Kähler potentials respectively,

− ln(i

∫
M

Ω ∧ Ω̄) and

∫
M

J ∧ J ∧ J (for a three fold) (12)

where Ω is differential form (d, 0) and J is (1, 1) form. The parameter spaces are

special Kähler manifolds. Consequently, there exists a pre-potential F (z) and Kähler

potential, K, satisfying

K = i(w̄j
∂F

∂wj
− wi ∂F̄

∂w̄j
) (13)

SU(3) structure manifolds

Under compactification, constructing the internal space-time manifold, while preserv-

ing N=1 supersymmetry, leads to the requirement that the supersymmetric infinites-

imal variation of the gravitino field must vanish. Splitting this result between the

internal and external spinors forces the internal piece to have SU(3) holonomy. In

the case of Calabi-Yau 3-folds, the manifolds have SU(3) structure and the invariant

spinor is covariantly constant. The metric, actually the Levi-Civita connection, has

SU(3) holonomy. In this scenario, for this manifold with SU(3) structure, there is a

connection with SU(3) holonomy, which may or may not have torsion,

Defining the torsion tensor as

T pmn ε Λ1 ⊗ (su(3)⊕ su(3)⊥) (14)

where Λ is the space of 1-forms and mn span the space of 2-forms isomorphic to su(6).

The piece that matters for us is that su(3)⊥ gives an intrinsic torsion tensor, defined:

T 0p
mn ε (∧1 ⊗ su(3)⊥) = (1⊕ 1) ⊕ (8⊕ 8) ⊕ (6⊕ 6̄) ⊕ 2(3⊕ 3̄) (15)

W1 W2 W3 W4,W5 (16)
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where the Wi are the five torsion classes, which appear in the covariant derivatives

of the spinor. W1 is complex scalar, W2 is complex primitive (1,1) form, W3 is real

primitive (2, 1) + (1, 2) form, W4 and W5 are real vectors. Although this is sketchy,

the purpose is to provide a categorisation according to the Wi values, as follows. The

Manifold Vanishing torsion class

Complex W1 = W2 = 0

Symplectic W1 = W3 = W4 = 0

Half flat ImW1 = ImW2 = W4 = W5 = 0

Special Hermitean W1 = W2 = W4 = W5 = 0

Nearly Khaler W2 = W3 = W4 = W5 = 0

Almost Kahler W1 = W3 = W4 = W5 = 0

Kahler W1 = W2 = W3 = W4 = 0

Calabi-Yau W1 = W2 = W3 = W4 = W5 = 0

Conformal Calabi-Yau W1 = W2 = W3 = 3W4 − 2W5 = 0

Table 1: Vanishing torsion classes in SU(3) structure manifolds

detailed construction is in Graña (2005).

Special Manifold Concepts needed for Baumann Paper

Within the Baumann paper, there are various manifold concepts of a more specialised

nature. Two are dealt with here.

Conifold singularity: Calabi-Yau manifolds have numerous solutions arising

from the many hodge numbers. In addition, Calabi-Yau compactifications will have

singularities which may lead to the low energy effective action breaking down. A

Conifold Singularity is an example of this. Suppose we have a holomorphic three-form,

labelled Ω which is a function of the moduli space coordinates xi and one/some of these
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coordinates vanish over some vanishing cycle expressed ie xi =
∫
van−cycle Ω vanish, there

is a singularity. Typically, the reason for this is because the cycle is looped around a

point, which collapses to singularity. By identifying the Kähler potential and metric

near the singularity, the singularity can be fixed by process called deformation or

resolution.

Kähler cones: The construction of these cones is best understood by example.

Given a Ricci flat metric Rmn(g) = 0 and applying metric deformations leads to a

Ricci of the form Rmn(g + δg) = 0. The latter can be expanded and give a condition

∇2∇kδgmn + 2(Rp
m)qnδpq = 0. The solution, δg (1,1) form, has to be harmonic and

the (g + δg) is a Kähler metric with Kähler form J = igij̄dz
i ∧ dz̄ j̄. This J satisfies

positivity
∫
M
J ∧J...J > 0. The metric deformations which lead to this positivity form

a Kähler cone. It is a cone because not only is J positive but so is rJ for positive r.

2.2 Ads/CFT Correspondence

There is a good review on AdS/CFT correspondence by E.D’Hoker (2002) and this

section has used the results from that paper.

Maldecena (1998)conjectured that there is an equivalence between the ten di-

mensional type IIB superstring theory on the product space, Anti-de Sitter Ads5 × S5

(AdS) and the four dimensional supersymmetric Yang-Mills theory with maximal N=4

Supersymmetry in its superconformal phase (SYM). The conjecture states that the

two theories, including operator observables, correlation functions and dynamics are

equivalent. The strong-form correspondence manifests itself through several parame-

ters: L, the radii of anti-de Sitter space Ads5 and S5; the integer flux N =
∫
s5
F+

5 ,

the type IIB 5-form flux through S5; gs, the string coupling in type IIB; α′, the type
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IIB plank length squared; and gYM , the Yang-Mills coupling in superconformal phase

(with gauge group SU(N)). The relationships linking these are L4 = 4πgsNα
′2 and

g2
YM = gs. The equivalence refers to maps between the states and fields in superstring

theory (on the curved manifold AdS5 × S5) and the local gauge invariant operators in

super Yang Mills theory. (There are also two other correspondences which relate the

two theories in the N 7→ ∞ expansion limits).

The AdS/CFT conjecture requires extending or summarising various concepts

encountered on the courses: Super Yang Mills, its Lagrangian, conformal transforma-

tions, Chiral or BPS multiplets; N=4 Supersymmetry, in particular, its mass represen-

tations; D=10 Supergravity, its Lagrangian and a little D3 brane knowledge leading

to the AdS × S background metric; and then finally the CFT/AdS global symmetries

conjecture.

Firstly, N = 4 Super Yang Mills supersymmetries. The starting point is the

Lagrangian, which is given by

L = tr(− 1

2g2
FµνF

µν +
θI

8π2
FµνF̃

µν − Σaiλ̄
aσ̄µDµλa − ΣiDµX

iDµX i+

Σabig C
ab
i λa[X

i, λb] + ΣabigC̄iabλ̄a[X
i, λ̄b] +

g2

2
Σij[X

i, Xj]2) (17)

The fields have the usual meanings except the only possibly unfamiliar symbols are

θI , which is the instanton angle and the C’s, which are the Clifford Dirac matrices for

SO(6)R ∼ SU(4)R.

From Supersymmetry, the Poincare symmetry comprises the Lorentz transfor-

mations of SO(1, 3) and translations of R4 with generators Lµν and Pµ respectively

while the complexified Lorentz algebra is isomorphic to SU(2) × SU(2). In addition,

the Superpoincare algebra which includes the spinor supercharges transform as Weyl

spinors of SO(1, 3).
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There is another symmetry, R-symmetry. The SUSY anti-commutation rela-

tionships, including the antisymmetric generators, Zab, called central charges (which

commute with all generators) are,

{Qa
α, Q̄β̇b} = 2σµ

αβ̇
Pµδ

a
b {Qa

α, Q
b
β} = 2εαβZ

ab (18)

Since these supercharges can be rotated into one another under the unitary group

SU(N)R, these automorphism symmetries are called R-symmetry. The gauge algebra

of the N = 4 Gauge multiplet is (Aµ, λ
a
α, X

i), where the Aµ is the gauge field, the λ’s

are the Weyl fermions and the X i’s are scalars; these transform under SU(4)R as the

singlet, the 4-rep and the 6-rep respectively.

Next, the symmetries arising from conformal transformations must be considered.

A general diffeomorphism on a manifold X is a differentiable map acting on local coordi-

nates xµ or infinitesimally by a vector field vµ such that δvx
µ = −vµ(x). Under a diffeo-

morphism, the metric on X transforms as gµνdx
µdxν = g

′
µνdx

′µdx
′ν and δνgµν = ∇(µvν).

From this, a conformal transformation is a diffeomorphism which preserves the metric

up to a scale factor and preserves angles ie g
′
µν = ω(x)gµν . For X = RD, the conformal

transformations have solutions referred to as dilations (vµ = λxµ),(generators D), and

special conformal (vµ = 2cρx
ρxµ−xρxρcµ), (generators (Kµ)). For reference, the isom-

etry solutions are translations (vµ constant) and Lorentz (vµ = ωµνx
ν). This leads to

a new total symmetry, Conformal Symmetry, which comprises translations, Lorentz,

dilations and special conformal transformations and is SO(4) ∼ SU(2, 2)

As mentioned, the Poincare supersymmetries are generated by the supercharges

Qa
α + c.c.. There are also Conformal Supersymmetries generated by the supercharges

Saα + c.c.; these arise because the Poincare supersymmetries and the special confor-

mal transformations Kµ do not commute and these have their own anti-commutation
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relationships (which we do not need).

Combining the above gives a Superconformal Yang Mills symmetry group SU(2, 2 |

4), the superconformal group.

Diagrammatically, the SYM generators can be represented by a matrix showing:-

the bosonic subalgebras SO(2, 4) in top left and bottom right, and spinor algebras 4

and 4* in top right and bottom left respectively. Pµ Kµ Lµν D Qa
α S̄

a
α̇

Q̄α̇a Sαa TA


Turning to the D=10 Supergravity Lagrangians and basic brane interactions.

These are developed so as to fit in with the AdS/SYM correspondence. The bosonic

low-energy action for type IIB supergravity in Einstein frame (GEµν = e−φ/2Gµν) is

given by (excluding fermions):

SIIB =
1

4κ2
B

∫ √
GE(2RGE −

∂µτ∂
µτ̄

Im(τ)2
− 1

2
| F1 |2 −

1

2
| G3 |2 −−

1

2
| F̃5 |2)

− 1

4iκ2
B

∫
A4 ∧ Ḡ3 ∧G3 (19)

Type IIB supergravity also has several symmetries. The metric GE and the anti-

symmetric, self dual field A+
4 are invariant under the non-compact symmetry group

SU(1, 1) ∼ SL(2, R). The dilaton-axion τ transforms under a Mobius transformation

τ → τ
′

= aτ+b
cτ+d

while the complex three-form G3 transforms under a Mobius transfor-

mation G3 → G
′
3 = cτ̄+d

|cτ+d|G3. (The fermion field transformations are given in D’Hoker,

but we do not need them).

Next, we turn to Dp branes. Any Dp brane has (p+1) dimensional flat hy-

persurface with Poincare invariance group Rp+1 × SO(1, p) and transverse space of

SO(D-p-1). Therefore, for type IIB, D=10 the symmetry group of a Dp brane is

Rp+1 × SO(1, p) × SO(9 − p). From the string theory course, a (p+1) form couples
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to geometrical objects Σp+1 because the action Sp+1 = Tp+1

∫
Σp+1

Ap+1 is invariant

under abelian transformation ρp given by Ap+1 → Ap+1 + dρp. The associated field

strength (p+2) form Fp+2 has conserved flux. This is called a Dp brane because of the

p space dimensions. Associated with the Ap+1 gauge field is the magnetic dual AD−p−3

satisfying duality dAmagD−p−3 = ∗DdAp+1 and the magnetic dual brane is DD−4−p. One

important point about D3 branes is that when D=10, p=3, the magnetic dual brane

is also D3. Also, a key D3 brane property is that its metric has the form

ds2 = H(~y)−1/2dxµdxµ +H(~y1/2)(dy2 + y2dΩ2
5) (20)

where xµ are ‖ coords and yu are ⊥ coords and

H(~y) = 1 +
∑
I

4πgsNI(α
′
)2

| ~y − ~yI |4
(21)

where number of D3 branes is N = ΣNI .

In addition, the D3 brane has vanishing G3 and gs = eφ.

By defining the radius L of the D3 brane solution by L4 = 4πgsNl
4
p, the metric can be

written as

ds2 = (1 +
L4

y4
)−1/2ηijdx

idxj + (1 +
L4

y4
)1/2(dy2 + y2dΩ2

5) (22)

The metric becomes, in the limit: for y � L, a flat space-time R10, for y < L, a

throat, and for y � L, a compact singularity . However, letting u = L2/y, the metric

becomes

ds2 = L2[
1

u2
ηijdx

idxj +
du2

u2
+ dΩ2

5] (23)

The last term is the metric for S5 and the first two terms are the metric for the hyper-

bolic Anti-deSitter AdS5. These have symmetries SO(6) and SO(2, 4) respectively.

Adding the fermionic piece, results in the symmetry group of AdS also being SU(2, 2|4).

To summarise, the global unbroken symmetries of the two theories SYM and AdS
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must be the same. The superconformal global group of SYM (in the conformal phase) is

SU(2, 2 | 4); this identifies the bosonic group as SU(2, 2)×SU(4),∼ SO(2, 4)×SO(6)R;

it arises from the conformal group SO(2, 4) times the automorphism group of the N = 4

Poincare SUSY algebra SU(4)R. In contrast, the superconformal global group of AdS

has a bosonic group given by the isometry group of the AdS5 × S5 background; this

has group symmetries SO(2, 4) and SO(6) respectively. The completion to the full

supergroup, SU(2, 2 | 4), is achieved because the N D3 branes preserve 16 of the

Poincare Symmetries together with another 16 conformal supersymmetries.

To complete our AdS/SYM section, we look very briefly at operators and corre-

lators.

The states in SYM are handled using operators. A superconformal primary op-

erator O 6= 0 is defined with properties: it commutes with the conformal supercharges

S, and must not involve the gauginos or the gauge field strengths, the derivatives of

scalars, or commutators of scalars - so it is only a function of the scalars X i. In fact

the O are symmetric trace of products of the scalars.

Now the unitary representations of the superconformal algebra maybe labelled

by the quantum numbers of the bosonic group

SO(1, 3)× SO(1, 1)× SU(4)R (24)

(s+, s−) ∆ [r1, r2, r3] (25)

Various constraints on the ∆ and the ri lead to states referred to as BPS multiplets.

As an example, 1/2 BPS operators can be defined as

Ok(x) =
1

nk
str(X{i1(x)...Xik}) (26)

Similarly, the 1/4 and 1/8 BPS operators can also be constructed.
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For AdS, the contents of the irreducible representations of SU(2, 2 | 4) are needed.

The type IIB massless supergravity and massive string degrees of freedom are described

by fields ϕ living on AdS5×S5. Using coordinates zµ and yµ respectively, the fields can

be matched to string degrees of freedom and expanded in terms of spherical harmonic

functions on S5.

ϕ(z, y) = Σϕ∆Y∆(y) (27)

∆ are labels corresponding to the totally symmetric traceless representations of SO(6),

called scaling dimensions.

Using the SYM operators and AdS fields, D’Hoker shows the matching between

the SYM operators and the Sugra fields. For example: This provides a mapping

SYM operator Sugra SU(4)R

O4
k ∼ tr(F+X

k) Aµν (0, k, 0)

Table 2: Example of Super Yang Mills Operators and Supergravity Fields

between the AdS and SYM states.

Next AdS and SYM correlators. First we outline the mapping relationship be-

tween the two correlators. The AdS fields need changing by taking the 10-dimensional

fields and decomposing them onto S5, after which they are denoted by ϕ∆(z) on AdS5,

labelled by dimension ∆. Away from the interaction region, they behave as free fields

ϕ0
∆(z); these are either normalizable z∆

0 or non-normalizable z4−∆
0 . It is assumed that

the normalizable fields determine the vacuum expectation values of the operators and

the non-normalizable solutions represent the coupling of external sources to supergrav-

ity. Associated with the functions ϕ are boundary fields, ϕ̄∆ defined as

ϕ̄∆(~z) = lim
(z0→0)

ϕ(z0, ~z)z4−∆
0 (28)
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The action for the Type IIB supergravity on AdS5 × S5 is denoted by S[ϕ∆].

Now for SYM. Define the generating functional, (defined in AFT), by Γ[ϕ̄] in

terms of the operators by

exp{−Γ[ϕ̄]} =< exp{
∫
∂H

ϕ̄O} > (29)

Then the mappings between SYM and AdS correlators are

Γ[ϕ̄] = ExtrS[ϕ∆] (30)

where the extremum is over all fields ϕ∆ which have associated boundary fields.

There are also AdS rules for Type IIB supergravity, equivalent to the Feynmann

rules, called Witten rules and these correspond to Witten circles, such as the 2-pt

function 	 and 4-pt function ⊗; The interior of the circle is the interior of AdS and

the boundary of the circle is boundary of AdS. These are given in D’Hoker.

2.3 Fluxes

There is a good review on Flux Compactification by M. Graña (2005) and this section

has used the results from that paper.

Fluxes make an important contribution to any theory seeking physical reality

because they can, amongst others things: make a variable contribution to the cosmo-

logical constant, stabilise moduli, generate warped metrics, give a positive contribution

to the energy-momentum tensor, be turned on by D-brane sources, generate potentials

and superpotentials, partially break supersymmetry giving vacuum expectation values

to massless fields. So for instance, given flux-less Calabi-Yau compactifications, if the

supersymmetry is broken by non-perturbative effects, this results in a negative cosmo-

logical constant; this can then be countered by turning on certain fluxes which make
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an offsetting positive contribution to the cosmological constant. This section is mainly

discursive as almost all proofs are extensive.

First we explain the meaning of fluxes. In the absence of sources, the integral

of the field strengths will vanish. However, when sources are present, the integral of

the field strength over either a compact cycle AK and or a non-compact cycle BK

maybe non-zero, lead to electric and magnetic fluxes. (This is similar to standard

results on fluxes in electromagnetism). Accordingly, for Type IIB theory, the electric

and magnetic fluxes are defined, for each field strength, as

Magnetic Fluxes Electric Fluxes∫
A
H3 ∼ mK

∫
B
H3 ∼ eK∫

A
F̂3 ∼ mK

RR

∫
B
F̂3 ∼ eRRK∫

A
F̂2 ∼ ma

RR

∫
B
F̂4 ∼ eRRa

Table 3: Magnetic and Electric Fluxes for each Field Strength

(K and a values are known). Although F1 and F5 can be similarly defined, for Calabi-

Yau 3-folds, they are not defined due to the absence of appropriate cycles. The NS

field strengths are defined by H = dB while the RR field strengths are defined by

F 10 = dC + meB − H ∧ C and F̂ = dC + meB, (where 10 indicates the dimension,

m is called mass parameter and B and C are the usual massless bosonic fields).These

results are integral relationships; however, using some standard results on integrals

over cycles, the field strengths can be expanded as combinations of the magnetic and

electric fluxes without integrals.

For supersymmetric backgrounds, it is natural to assume that the ten di-

mensional warped metric consists of a separate four-dimensional space-time, which

is Minkowski, dS4 or AdS4, together with an internal six-dimensional metric. If we
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require our theory to satisfy reality and maximal supersymmetry, then the vacuum

expectation value of the fermionic fields will have to vanish ie the background must be

purely bosonic. This is done in the usual way by finding the supersymmetric transfor-

mations of the gravitino and dilatino spinors and setting the variation equal to zero.

The former leads to the vanishing of a supersymmetric parameter ∇mε = 0 ; splitting

this ten-dimensional result into external and internal components, the latter forces the

internal manifold to have a covariantly constant spinor. Calabi-Yau manifolds admit

a covariantly constant spinor and so satisfy this condition for the internal space.

When the fluxes are turned on, there are numerous resulting supersymmetric

backgrounds depending on the combination of fluxes which have been activated (and

also depending on the associated underlying torsion classes). Each resulting back-

ground scenario is categorised by its appropriate vacua’s properties. The Type IIB so-

lutions have been analysed by Maldacena-Nunez, Klenbanov-Strassker (KS) Pochinski-

Strassler. The proofs and analysis are lengthy and are not needed.

Essentially, as before, the supersymmetric transformations for the gravitinos and

dilatinos are derived but these now including a contribution from the fluxes; in partic-

ular, the gravitino equations for KS, type B, are

δψM = ∇mε+
1

4
HMPε +

1

16
eφΣnF/2nΓMPnε (31)

where P,H denotes function of Γs. For the NS and RR fluxes, the Supersymmetric

transformations for the gravitino ψM and dilatino λ are re-expressed in terms of spinors

on the internal manifold and complicated coefficients Q,T and A for the NS fluxes;

these, when analysed, lead to multiple conditions.

Given the complexity, we briefly comment on KS and show its parameter con-

straints in terms of the field strengths and torsion classes. Per Graña, this class is a
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non-compact Type IIB in which the underlying Calabi-Yau is the conifold. The solu-

tion is compactified by adding orientifold 3-planes - ie it can be used as local IR throat

geometry of the compact Calabi-Yau. The conditions for the Type IIB Minkowski fall

into four types labelled A, B, C and ABC according to the values of certain complex

parameters. KS is a type B, which is analysed by SU(3) representation in table 4.

IIB TypeB

1 W1 = F
(1)
3 = H

(1)
3 = 0

8 W2 = 0

6 W3 = 0, eφF (6)
3 = ∓ ∗H(6)

3

3 eφF
(3̄)
5 = 2

3 iW̄5 = iW4 = −2i ∂̄A, ∂̄φ = 0

Table 4: IIB N=1 vacua for type B

There are numerous other backgrounds but this is sufficient for our purposes.

Now we consider the effect of fluxes on Einsteins equations. The four-dimensional

components of the Einsteins fluxless equations are

Rµν = R̃µν − g̃µν(∇2A+ 2(∇A)2) = Tµν −
1

8
e2Ag̃µνT

L
L (32)

where a tilda means the internal metric and T is the energy-momentum tensor. Ap-

plying a g̃µν contraction to this gives

R̃ + e2A(−T µµ + (1/2)TLL ) = 4(∇2A+ 2(∇A)2) = 2e−2A∇2e2A (33)

For Minkowski and de Sitter compactifications, R̃ ≥ 0. Defining T̂ = (−T µµ +(1/2)TLL )

and the energy momentum tensor in terms of an n-flux F, the internal and external

fluxes are separable within this equation:

T̂int =
n− 1

2n
F 2 ≥ 0 T̂ext = −9− n

2n
F 2 ≥ 0 (34)

So all of the internal and external fluxes give strictly positive to the trace of energy
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momentum tensor (ignoring a few exceptions).

The expression for R̃ above, when integrated over the internal manifold, has a

right side which vanishes and a left side which is non-negative. So without local flux

sources, the deSitter space which is positive on the left side, cannot fit this equation.

This is equivalent to saying that the internal spaces has a positive curvature on left

side.

The solution to this dilemma is to accept that the external space has negative

curvature such as in AdS (eg AdS5 × S5), or, possibly Minkowski which has zero

contribution. Including local sources has the effect of adding a local energy momentum

tensor which may be positive such as in theories with Dp branes, negative in theories

such as orentifold planes, or zero in theories such as D7.

The effect of the local source on the R̃ equation is:

R̃ +
1

2
e2A(T̃ flux + T̃ local flux) = 2e−2A∇2e2A (35)

So local sources of flux provides flexibility to the theory.

The above is not very user-friendly. It can be re-formulated into restrictions on

the local sources. For instance, in the case of supersymmetry and specialising to Type

IIB class B, Einstein’s equation and the Bianchi identities and the equation of motion

for the fluxes can be used to derive direct conditions on the localised sources as: (i)

the warp factor and four form potential satisfy e4A = f (per table 4 type B). (ii) the

complex three form flux is imaginary self dual (iii) the inequality is saturated. So there

exists flux and torsion class conditions for the various background solutions and also

restrictions to be satisfied by the local sources of flux.

Now for the flux induced superpotential. Firstly, Orientifolds are included

here because they include a negative contribution to the R̃ equation and help stabilise
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some moduli. We will need to consider type IIB moduli, the potential, and then the

superpotential.

Building on our earlier general discussion on moduli, the Type IIB moduli ar-

ranged in N=2 multiplets (built from the Calabi-Yau hodge numbers) is given in table

5. The moduli labels are by convention. So, for instance, the scalars in the vector

Multiplet hodge number moduli

gravity multiplet 1 (gµν , V 0
1 )

vector multiplets h(2,1) (V k1 , z
k)

hypermultiplets h(1,1) (va, ba, ca, ρa)

tensor multiplet 1 (B2, C2, φ, C0)

Table 5: Type IIB moduli for N=2 multiplets

multiplet moduli space are the complex structure deformations zk. Both scalars in

this multiplet span the special Kähler manifold of complex dimension h(2,1). The va

are the Kähler deformations of the metric. The scalars in the hypermultiplet span a

quaternionic manifold with the dimension of its coordinates as h(1,1).

Including Orientifolds, projects out certain moduli. At the sametime, the original

N=2 multiplets become N=1 gravity, vector and chiral multiplets in table 6.

Multiplet hodge number moduli

gravity multiplet 1 gµν

vector multiplets h(2,1) V k1

chiral multiplet h(2,1) zk

” h(1,1) (va, ba, ca, ρa)

” 1 (φ,C0)

Table 6: Type IIB moduli with O3-orientifolds for N=1 multiplets
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Next we need Kähler coordinates which, in terms of these moduli, are zk and

τ = C0 + ie−φ and Ga = ca − tba and

Tα =
1

2
Kα + iρα −

i

2(τ − τ̄)
KabcG

b(G− Ḡ)c (36)

where Kabc and Kα are intersection numbers (of wedge products). From this the Kähler

potential can be constructed as

KO3 = −ln[−i
∫

Ω(z) ∧ Ω̄(z̄)]− ln[−i(τ − τ̄)]− 2ln
1

6
K(τ,G, T ) (37)

The inclusion of fluxes is achieved by modifying the forms C2 in RR flux and B2

in NS flux to include magnetic and electric fluxes. This is done by introducing the

transformations for dC2 → dC2 +mK
RR−eRRK and dB2 → dB2 +mKαK−eRRKβK into

the Type IIB Lagrangian. The effect of the RR flux is to induce mass terms for the

tensor B2 and the effect of the NS fluxes is for electric fluxes to generate a potential

for the scalars in the vector muliplet and for the axion-dilaton and for the magnetic

fluxes to induce mass terms for the tensor C2. The NS flux induced potential is

VNS = − e
4φ

2K
(C2

0 +
e−2φ

2K
) eK(ImM)KLeL (38)

Finally, there is a Type IIB superpotential for compactifications of Calabi-Yau 3-folds

including O3 orientifolds generated by fluxes as

WO3 =

∫
G3 ∧ Ω = (eKRR − iτeK)ZK − (mK

RR − iτmK)FK (39)

M is a known complex matrix. This superpotential depends on complex structure

moduli and dilaton-axion. However this superpotential does not depend on the Kähler

moduli vα and ρα and the B2 and C2 moduli ba and ca.

Lastly, we discuss moduli stabilisation with non-perturbative

corrections to the superpotential. One of the main reasons compactification with
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fluxes is included in many theories is because the presence of flux induced potentials

causes some of the moduli of the Calabi-Yau compactifications to stabilise. So if the

flux generated potential for the moduli has a local minima, the moduli will stabilise at

the local minima. As indicated in the previous section, the Type IIB superpotential

for compactifications of Calab-Yau 3-folds and Calabi-Yau O3 generated by the fluxes

is WO3 =
∫
G3 ∧ Ω

The key fact is that from the supersymmetric Minkowski vacuum conditions

W = 0 and DW = 0, there are 2h(2,1) + 2 equations but none of them involve the

Kähler moduli (vα, ρα) and (ba, ca) which therefore remain unfixed. However, turning

on appropriate fluxes can fix some of the 2h(2,1) + 2 real moduli of complex structure

moduli zk and the dilaton-axion, τ . For instance, given a flux configuration profile

(eK ,m
K , eRR,K ,m

K
RR) they should fix H3 and F̂3 and hence G3 since G3 = F̂3 − τH3,

but in fact the flux profile only fixes some of the components of G3 moduli - a partial

success. Orientifolds can produce further stabilisations if necessary.

Moving onto non-perturbative corrections to the superpotential, we have

seen that fluxes are not usually enough to stabilise all moduli and in the above example,

fluxes left the Kähler moduli unfixed. Non-perturbative corrections to the Kähler

potential and superpotential can be used to stabilise the remaining moduli eg using

D3 branes. A simple example explains how this works. For D3 branes wrapping a four

cycle, the superpotential adds a term Wnp = Bne
−2πnαTα , where Tα are the Kähler

moduli defined earlier. Combing the fluxes and D3 brane instantons leads to total

superpotential contribution W = W0 + Be−2πT where W0 is flux contribution, Bn is

one loop determinants. Applying DW = 0 a value for W0 which leads to minimum

potential Vmin = −2π2B2e−4πσcrit

3σcrit
and σ = ReT . More on this later.
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3 D3 Brane Model

3.1 Discussion on the D3 Brane Model in 10d Supergravity

This section deals with Chapters 2,3,4 of Baumann’s paper. The two main underlying

references for the D3 Brane model are: Hierarchies from fluxes in string compactifi-

cations by S Giddings (2002) and On D3 brane potentials in Compactifications with

Fluxes and Wrapped D-branes by D Baumann (2006).

First we construct the geometrical construction of Baumann’s model outlined

in the Introduction and explain the meaning and properties of the various fields and

space-time geometries included within his method.

The model is built as follows. In the no-scale structure, there is no potential

between any ISD fluxes and sources and the D3 brane. To create a potential on

the D3 brane, the no scale structure must be broken by (say) stabilising some of the

Kähler moduli by nonperturbative effects; in this case the D3 brane experiences a

potential from the fluxes and scalar mode sources. The overall goal is to derive such a

potential in ten-dimensional supergravity by a perturbative expansion approach around

the zero flux and scalar mode solution. The expansion must be done in a controlled and

predictive manner to avoid instabilities, flux violations or uncontollable distortions.

Next, the bulk region of space is assumed to be ten-dimensional Type IIB Su-

pergravity with its well defined fields and properties. A finite throat is glued into the

compact space which causes distortions of the supergravity fields. These distortions

cause the D3 brane located in the throat to experience a potential. The compact space

is initally a Calabi-Yau manifold but loses its structure as a result of the distortions.

In fact, while the associated perturbed fluxes and scalar modes couple to the D3 brane,
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Figure 1: Insertion of throat causing distortions of the fluxes and scalar modes leading to D3 brane

potential

the dilaton and unwarped metric do not couple to the D3 brane. As a result, new terms

appear in the D3 brane Lagrangian and in the known D3 brane potential expressions.

The UV end of the throat is where the geometry continuously merges with the

supergravity bulk while the IR end of the throat limits to a singularity. It is assumed

that the D3 brane is sited deep towards the tip of the throat.

Next there are some assumptions about the UV region and the throat which

are summarised as follows: that the UV perturbations occur in the supergravity bulk

perturbing the fluxes and scalar modes; that the finite warped region of the throat may

be approximated by a noncompact warped deformed conifold solution; and that UV

solutions may be approximated in the infrared by a solution parametrized by a few

dominant modes due to the effects of radial scaling and smallest scaling dimensions;

the presence of the brane is said to backreact on the geometry leading to 4d/6d warped

line element.

So simplistically (figure 1): Starting with Type IIB Supergravity fields with ho-

mogenous geometry, a throat with a D3 brane situated towards the tip and UV region

towards the base is inserted into the supergravity. As a result there are supergravity

flux and scalar field perturbations which creates a force field which is experienced by
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the D3 brane in the form of a potential. The throat is then replaced by a warped de-

formed conifold ie by an object with known geometry and mathematics. The D3 brane

potential is calculated from three additive parts arising from fluxes, scalar modes, and

curvature.

Now we discuss some of the above concepts in more detail. First the throat. To

build on the AdS/CFT section, a simple throat is an alternative nomenclature for the

near horizon solution at which a radial coordinate → 0. To consider a very simple

metric ds2 = − y2

Q2dt
2 + Q2

y2 dy
2 plus a symmetrical angular piece, as y → 0, the time

piece disappears and the spatial piece becomes an infinitely long radial tube called a

throat. More complicated throats can be constructed which leave both terms intact by

taking a different form in the small and large limits. In the model, a conifold throat

structure is inserted into the supergravity bulk. A conifold (more on this later) is a cone

over a five-dimensional manifold with a metric dy2 + y2dΩ2. But from the AdS/CFT

section, the presence of D3 brane ensures that its structure is split into coordinates

parallel to and perpendicular to the D3 brane. As given in that section, the D3 brane

metric is

ds2 = (1 +
L4

y4
)−1/2ηijdx

idxj + (1 +
L4

y4
)1/2(dy2 + y2dΩ2

5) (40)

where the perpendicular coordinates are the same as the conifold. As noted, y � L,

y < L and y � L yield different metrics with different geometries.

Next we consider the meaning of no scale models and structure. Typically a no

scale model refers to nonsupersymmetric solutions with vanishing cosmological constant

and radial modulus. No scale structure similarly means that the D3 brane (probe) in

an ISD flux compactification experiences no force or potential and can be placed at

any point in a compact space with no resulting energy change ie there is no potential
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between the D3 brane and ISD fluxes and sources. This means that presence of the

D3 brane provides a zero potential basis.

The no-scale structure can be broken in several ways so that the D3 brane expe-

riences a potential from the fluxes and sources via, for instance, Kahler moduli stabil-

isation eg by nonperturbative effects (or for instance by the inclusion of antibrane).

Next we consider the stability of the throat solutions in the presence of UV

perturbations. Ideally the D3 brane potential would be fully specified in terms of

fluxes, brane positions and scalar modes. But the approach of the model is to use

UV deformations of various fields and fluxes and arrive at a perturbative expansion

of the form V (φ) = Σci
φ∆i

M
∆i−4
UV

where φ is a normalized field as a function of the D3

brane position and M∆i−4
UV is UV mass scale (related to rUV , the UV location of the

throat merging with the compact bulk). r is used instead of y to emphasise that it

is the radial component. Determining the scaling dimensions ∆i will provide a well

defined power series for calculation or model development. The radial r is constrained

within the throat by the condition rIR � r � rUV . The leading terms in the series

will be remote from the UV due to ”filtering by RG flows” and the D3 brane must be

reasonably far from the IR because of ”conifold deformities”. Baumann comments that

his paper focusses on non-normalizable perturbations, corresponding to deformations

of the gauge theory Lagrangian sourced by effects in the compact bulk, since these

encode the effects of Planck-scale physics in the form of the above potential expansion.

And as mentioned in the Introduction, the aim is to control such terms in the effective

action.

There is also an assumption that the finite throat configuration is in a stabi-

lized compactification, the supersymmetry breaks controllably in the bulk, and that
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there is a moduli potential to prevent decompactification. This amounts to requiring

the four dimensional potential energy must be bounded. D Baumann (2009) found

that under suitable conditions this can be expressed in terms of the scalar modes as

Φ−(r) < Φ
(0)
+ (rIR) ≤ Φ

(0)
+ (rUV ); this provides a general constraint that the expansion

has exponentially small coefficients on flux Λ and scalar mode Φ− in the UV region.

Finally from the DBI and CS terms in the action for the D3 brane, the potential

felt by the D3 brane is T3Φ− (to be explained later).

3.2 Constructing Flux solutions Λ in the Conifold

The aim here is not to simply repeat the mathematics in Baumanns chapters 2, 3 and 4

but to explain the key steps and highlight the key assumptions used in the derivations

of the Flux solutions in the Conifold. The starting point is the bosonic low energy

action for Type IIB supergravity, which in the Einstein frame is given by

SIIB =
1

2κ2
10

∫
d10x

√
|g|[R10 −

∂Mτ∂
M τ̄

2Im(τ)2
− G3 · Ḡ3

12Im(τ)
− F̃ 2

5

4 · 5!
]

+
1

8iκ2
10

∫
C4 ∧G3 ∧ Ḡ3

Im(τ)
+ Slocal (41)

We need to define the three key physical fields, including fluxes, which will be required

in the flux solution derivation:

• the three-form ISD and IASD fluxes G±, where G± = (?6±i)G3 and G+ is the ISD

component and G− is the IASD component. Flux G3 is defined as G3 = F3− τH3

where F3 and H3 are the RR and NS three form fluxes dC2 and dB2 respectively

from IIB supergravity;

• the scalar mode Φ±, where Φ± = e4A ± α. Φ− will be the most important as the

integral of its Laplacian vanishes. e4A is the warp factor and α is the four-form
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potential;

• the mixed flux Λ, where Λ = Φ+G− + Φ−G+, which couples and mixes the warp

factor, the four potential and the ISD and IASD fluxes.

In addition, there are three physical concepts: the axion-dilation field τ = C0+ie−φ, the

Ricci tensor R and the self dual five-form flux F5, F̃5 = F5− 1
2
C2∧H3+ 1

2
B2∧F3 which we

do not need. Next, these physical concepts are expressed as perturbative expansions so

that at zero order they have no impact on the geometry or the D3 brane potential. The

G fluxes can be regarded as similar to the field strength forms from electromagnetism

and at zero order are switched off. The negative scalar mode is a function of the warp

factor and four potential, but conditions on the local electromagnetic tensors require

e4A = α at zero order. So the Baumann model is controlled by first and higher order

terms in the perturbative expansions; these affect the geometry, the potentials, and

other fields etc in a controlled manner.

The equations of motion provide fundamental information for any field. S Gid-

dings (2002) derived them for the scalar mode Φ− and mixed flux Λ from the 5-form

flux Bianchi Identity dF̃5 = H3 ∧ F3 + local and the 3-form flux Bianchi Identity

dF3 = dH3 = 0 (and Einsteins equations). He obtained:

∇2Φ− =
e8A+φ

24
|G−|2 + e−4A|∇Φ−|2 +R4 + Slocal and (42)

dΛ =
idτ

2Im(τ)
∧ (Λ + Λ̄) = 0 (43)

Next consider the perturbations. The fluxes are switched on and the scalar mode

(background) is disturbed; this is equivalent to considering the first and second order

terms in the perturbative expansions and assessing their relative magnitudes (∇ is also

assumed to have an expansion). The assumptions affecting the Φ− equation of motion
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are that: the curvature and local contributions are small; at first order, ∇2
(0)Φ

(1)
− = 0;

and Φ
(1)
− = 0 (this is an optional assumption). Consequently, the Φ− equation of motion

becomes

∇2
(0)Φ

(2)
− =

gs
96

(Φ
(0)
+ )2|G(1)

− |2 (44)

which implies that perturbations of G− arise at linear order acting as sources for second

order scalar mode.

Applying the same constraints to the Λ equation of motion leads to treating the

second term as small in equation (43), ie

dΛ(1) = 0 with Λ(1) = Φ
(0)
+ G

(1)
− . (45)

Substituting this into the above equation (44) for ∇2
(0)Φ

(2)
− gives a result ∇2

(0)Φ
(2)
− =

gs
96
|Λ(1)|2 which has a physical interpretation, namely, that the Λ(1) can acts as a source

for Φ
(2)
− field ie Λ(1) acts as source perturbation. However, the Λ(1) is IASD of first

order with respect to background metric, while Φ+ is at zero order. This also implies

that the IASD flux solution is not affected by the explicit form of perturbed metric.

As a consequence, the distortions disturb the manifold from being Calabi-Yau but this

does not affect the perturbation expansions.

Solving the ∇2
(0)Φ

(2)
− equation (44) was undertaken in Baumann’s paper (chapter

3) using Greens functions for G3 and G−, but this led to a solution in terms of unknown

eigenfunctions and unknown spectrum of eigenvalues. Therefore, Baumann decided to

use the equation dΛ(1) = 0 (45) for which explicit solutions for Λ can be derived.

Now, we need to understand the conifold, which, from linear algebra, has known

solutions. This is a singular non-compact Calabi-Yau threefold in C4 such that Σz2
a = 0.

This can be re-configured as a cone over a five dimensional manifold with five angular

coordinates Ψ(θi, φi, ψ), with i=1,2 of T 1,1. The line element over T 1,1 is dr2 + r2dΩ2
T 1,1
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where r3 = (3
2
)3/2Σ|za|2. The cone is noncompact but is assumed to smoothly join the

compact space smoothly at rUV . A stack of D3 branes placed at the singularity za = 0

backreacts on the geometry producing the ten-dimensional warped line element

ds2 = e2Aηµνdx
µdxν + e−2A(0)(dr2 + r2dΩ2

T 1,1) (46)

which is AdS5 × T 1,1, such that e−4A(0)(r) = L4

r4 and L4 = 27π
4
gsN(α

′
)2.

The harmonic function solutions f on the conifold satisfy ∇2f = 0 and are well

documented and will form an important part of the flux Λ solutions. They take the

form:

f(r,Ψ) = ΣfLM(
r

ruv
)∆f (L)ΥLM(Ψ) (47)

where ∆f (L) are radial scaling dimensions satisfying ∆f (L) = −2 +
√
H + 4 and

H = 6[j1(j1 + 1) + j2(j2 + 1) − R2
f/8]. The L = (j1, j2, Rf ) are positive quantum

numbers satisfying group theoretic selection rules for SU(2) × SU(2) × U(1). An

example of allowed harmonic functions spectrum is (j1 = 1
2
, j2 = 1

2
)( (table 7)

∆f j1 j2 Rf

3
2

1
2

1
2 1

Table 7: Example of harmonic functions spectrum on conifold

Finally, we still need to solve dΛ = 0. Baumann draws on the results and solutions

from linear algebra which state that the explicit solutions for flux perturbations on a

Calabi-Yau can be constructed from the Kähler from Jαβ̄ = igαβ̄, the holomorphic (3,0)

form Ωαβγ = qεαβγ with qq̄ = detg and the harmonic functions f. For the closed flux

equation dΛ = 0, (?6Λ = −iΛ), there are only three possible solution types, as follows:

• Series I: Flux ΛI = ∇∇f1 · Ω̄ of Hodge type (1, 2);
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• Series II: Flux ΛII = (∂ + ∂̄)(f2 + 1
2
kα∂αf2) ∧ J + ∂(∂̄f2 ∧ ∂̄k) of Hodge type

(2,1)+(1,2);

• Series III: Flux ΛIII = (2h + kα∂αh)Ω + (∂̄h · w) ∧ J + ∂̄(∂̄f3 · w) ∧ ∂̄k of Hodge

type (3,0) + (2,1)+ (1,2).

where w, k and h are known functions of Ω, metrics and harmonic functions. Proving

that these satisfy the equation is done by verification. Completeness is more difficult

but is not needed here. These Series have solutions with a known spectrum δI = 1+∆f ,

δII = 2 + ∆f and δIII = 3 + ∆f where ∆f =
√
H + 4 − 2 is the scaling dimension of

harmonic function. For example (table 8):

Series ∆ j1 j2 Rf Chirality

Series I 5
2

1
2

1
2 -1 chiral

Series II 7
2

1
2

1
2 1 chiral

Series III 9
2

1
2

1
2 3 chiral

Table 8: Example of Series spectrum

The chiral modes will be particularly useful later because their flux perturbations

take a simple form as the harmonic functions are holomorphic functions and each series

is of a distinct Hodge type.

Λ
(1,2)
I = ∇2f̂1 · Ω Λ

(2,1)
II = ∂f̂2 ∧ J Λ

(3,0)
III = f̂3Ω (48)

where the above f̂i have been redefined f̂1 = f1, f̂2 = f2 + 1
2
kα∂αf2 and f̂3 = 6f3 +

5kα∂αf3 + kα∂α(kβ∂βf3).

The flux solutions will be used extensively in the following sections, and in par-

ticular, in the AdS/CFT correspondence and the D3 brane potential.
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3.3 D3 Brane potential

Deriving the D3 brane potential is by direct computation. First we note that the D3

brane potential is made up, additively, of 3 parts: mixed flux and harmonics, and

curvature ie V (φ) = VΛ + VR + VH .

First, V (φ) = VΛ. The approach is to express the potential as a perturbative

expansion of a product of: the radial functions to a dimensional scaling power times

the products of angular functions.

The Green’s function solution for the scalar mode ∇2Φ− = gs
96
| Λ |2 equation of

motion is

Φ− =
gs
96

∫
d6y

′
G(y; y

′
)| Λ |2(y

′
) + ΦH(y) (49)

where the Green’s function satisfies ∇2
y G(y; y

′
) = δ(y − y

′
) and ΦHomog′ous satisfies

∇2
y ΦH(y) = 0. D Baumann (2009) derived the Greens function for the singular

conifold as

G(y; y
′
) = ΣΥLM(Ψ)Υ∗LM(Ψ

′
)gL(r, r

′
) (50)

where gL(r, r
′
) are known functions of radial scaling dimension ∆(L).

The potential is derived from the self and cross products of fluxes of the Series I,

II, III. The form of the spectrum for the scalar mode Φ− can be deduced by noting that

it must involve the product of radial functions from each flux Λi andΛj resulting in a

radial function to a power involving the sum of separate scaling dimensions. Similarly

the angular piece must be an overlap of the angular functions. So the spectrum for Φ−

is of the form

Φ− = Σδi,δjr
∆(δi,δj)h(δi,δj)(Ψ) (51)

where the h’s are angular products of Green’s functions, the deltas are scaling di-

mensions of Λ’s and ∆ = δi + δj − 4. Using the deltas from earlier flux Series gives
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∆Λ = 1, 2, 5
2
,
√

28− 5
2
, ... These are the permitted powers for the potential ie.

VΛ(φ) = b1φ
1j1(Ψ) + b2φ

2j2(Ψ) + b 5
2
φ

5
2 j 5

2
(Ψ) + ... (52)

where φ = T3r
2, T3 is a function of the coupling, and jk denote the overlap angular

functions.

As mentioned earlier, the chiral flux solutions for each flux series is of a separate

Hodge type. So there are no mixed terms between the different fluxes and for the chiral

case, the flux squared is the sum of Λ’s squared ie

|Λ|2 = |ΛI |2 + |ΛII |2 + |ΛIII |2 (53)

|Λ|2 = 6gαᾱgββ̄∇2
αβf1∇2

αβf1 + 12gαᾱ∇αf2∇αf2 + 6|f3|2 (54)

From which the flux induced potential is

Φ− =
gs
96

[3gαᾱ∇αf1∇αf1 + 12|Ref2|2 + 6∇−2|f3|2 (55)

Next we consider the Ricci curvature additional contribution to the potential

ignoring the presence of the IASD Λ flux . The Φ− equation of motion becomes

∇2Φ− = R4 and R4 =
4

M2
pl

(V0 + T3Φ−) (56)

where the latter uses Friedmann’s equation for 4d deSitter and the D3 brane potential

is T3Φ−.

Solving this is by direct mathematical computation with all steps included in the

Baumann’s paper (chapter 4). Essentially the steps are: express Φ− as product of

radial and angular parts where the radial part Q satisfies

d2Q

dr2
+

5

r

dQ

dr
− H

r2
Q = λQ (57)

and H is the same H as defined in the Series spectra. This is the modified Bessel

equation satisfied by Bessel functions In (ignoring the divergent piece). Using the
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potential for the curvature is VR(φ) = V0 + T3Φ− and substituting the In gives

VR(φ) = 2V0

M2
pl

φ2
ΣLIn(

2φ

Mpl

) hL(Ψ) (58)

which gives the terms in the potential as

VR = V0(1 +
φ2

3M2
pl

..) ∼ c2φ
2 (59)

to first order.

Lastly V (φ) = VH . The harmonic potential piece was derived by Baumann (2009)

as

VH = V0 + a 3
2
φ

3
2h 3

2
(Ψ) + a2φ

2h2(Ψ) (60)

The D3 brane potential is the sum of these three potential series.

4 Conformal Field Theory

This section deals with Chapter 5 of Baumann’s paper. The two main underlying

references for the D3 Brane model are: Superconformal Field Theory on Threebranes at

a Calabi-Yau Singularity by I Klebanov (1998) and Spectrum of Type IIB Supergravity

on AdS5 × T 11 Predictions on N=1 SCFT by A Ceresole (1999).

As indicated in the Introduction and the section on the AdS/CFT correspon-

dence, there are several levels of matching between the Superconformal Gauge The-

ory/Supergravity. Our matching will be primarily using CFT operators.

To summarise Baumann’s chapter 5. Baumann briefly sets up the Conformal

Field Theory operators using Supersymmetric Nonabelian Gauge Theory consisting of

two doublets of chiral superfields and the chiral gauge field strength superfields for

the two gauge symmetries. The theory focusses on the protected operators of the
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chiral, conserved and semi-conserved types, since these operators have well defined

dimensions as opposed to unprotected operators whose dimensions become anomalous

in limit of ’t Hooft coupling. The treatment in the paper is to match the scalar

mode and flux Series I,II,III with the protected CFT operators by comparing the

quantum numbers of the continuous global and gauge group symmetries together with

the associated scaling dimensions. Baumann briefly sketches how to analytically take

a supersymmetry operator involving just chiral superfields and derive the associated

flux Series I, but He does not track from supersymmetry operators involving chiral and

vector superfields to flux Series I, II and III since this appears to digress from the main

theme and appears to be a specialist area.

As an additional comparison, Baumann compares the results with findings in

Ceresole’s paper on Supergravity on AdS5 × T 11 and undertakes a discussion matching

of the flux induced potential from chiral perturbations for the three series arising from

superpotential perturbations.

Chapter 5 has a large underlying knowledge infrastructure. To understand it

further, my discussion focusses on specific selected areas: a summary of the supersym-

metric non-abelian gauge theory and the motivation for symmetries and superfields;

Ceresole’s AdS/CFT correspondence for IIB Supergravity on AdS × T 11 multiplets;

and finally an understanding of Baumann’s matching tables and related matters.

4.1 Non-Abelian Supersymmetry

From the Supersymmetry course, to construct the N=1 SUSY Abelian gauge theory

we need a chiral superfield, Φ and U(1) vector (gauge) superfield denoted by V. These

fields have transformation rules of Φ→ eiqΛΦ and V → V − i(Λ−Λ†) where Λ is chiral
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superfield.

The Lagrangian of a supersymmetric Abelian gauge theory has aKähler potential

term Φ†eqVΦ, a kinetic term (WαWα) where theWα is the chiral field strength superfield

defined as Wα = (−1
4
)D̄2DαV and a superpotential (holomorphic) (W (Φ)), where, to

restrict the gauge freedom, V is assumed to be in the Wess-Zumino gauge. Finally, to

get the Lagrangian terms, we extract the D term from the Kähler potential and the F

term from the superpotential and kinetic term (and ignore the Fayet-Lliopoulos term

which drops out in non-abelian case). Integrating over superspace, leads to an Action:

S =

∫
d4xd4θ[(Φ†eqVΦ) + (WαWα) + (W (Φ) + hc)] (61)

To change the above to the non-Abelian case, the usual method is adopted:

express the gauge fields as matrices, use spinor indices and take the trace, ie

• replace the charge by generators of the gauge group −1
2
q → T aij and change the

covariant derivative accordingly

• the field strength Wα becomes Wα = D̄2(eVDαe
−V) ie WαWα → 1

g2Tr(W
αWα)

From which the N=1 global SUSY and gauge covariant action becomes (for i chiral

superfields):

S =

∫
d4xd4θ [K(Φ†i , e

2qVΦi) + fab(Φi)(W
aαW b

α) + (W (Φi) + hc)] (62)

Therefore, to set up such a Field theory requires determining the global and gauge

symmetries and its chiral and vector superfields. Klebanov and Witten (1998) (KW)

have done this for three branes at a Calabi-Yau singularity, which has a structure

similar to that required in Chapters 2,3 and 4 and so it is useful to outline the group

structure and in particular, how it is then formulated into superfields and vector fields

and the format of the CFT operators.
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KW explain that the Type IIB theory backgrounds AdS5 × S5 has N=4 SU(N)

gauge theory and preserves the maximal number of supersymmetries while AdS5×X5,

where X5 is an Einstein manifold, often preseves no supersymmetry and that Field

Theories are best constructed from manifolds which have some supersymmetry left un-

broken. Therefore a manifold between these two extremes is desirable and T 11 is a ’good

candidate’. T 11 has a group structure given by the coset space SU(2) × SU(2)/U(1)

corresponding to the Type IIB on AdS5×S5/Z2. As was indicated earlier, placing the

N D3 branes near the conical singularity leads to a conelike metric of dimension 6 -

which in the near horizon becomes AdS5 × T 11. KW comment that the holonomy of

the cone can be SU(3) (Calabi-Yau threefold) or SU(2) which, because of the number

of unbroken symmetries, respectively results in an N=1 and N=2 superconformal field

theory. Since T 11 has SU(2) × SU(2) × U(1) = SO(4) × U(1) symmetry this is a

suitable choice for the structure of the singularity.

Ceresole (1999) and Baumann (2010) have each chosen two chiral superfields; the

logic is simple but key. The singularity coordinates Σ4
i=1 z

2
i = 0 can be transformed

into an alternative format z1z2− z3z4 = 0 which can then be solved as z1 = A1B1, z2 =

A2B2, z3 = A1B2, z4 = A2B1 ie ’pairing the four coordinates’ This parametrization of

the conifold suggests using two chiral superfields Ak and Bl, with k, l = 1, 2.

The geometry of T 11 has SU(2) × SU(2) × U(1)R continuous global symmetry.

So the chiral fields Ak and Bl, which are assigned an R-symmetry value of 1
2

must

transform under (2,0,1
2
) and (0,2,1

2
).

In addition from the string theory course, parallel three branes have symmetry

U(1) × U(1), the second one viewed as coming from the unbroken U(1) on the three-

brane volume and for N D3 parallel branes the gauge group is U(N) × U(N) which
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in the infrared becomes SU(N) × SU(N). The chiral fields Ak, k=1,2 transform in the

(N, N̄) representation and Bl transforms in the (N̄ ,N) representation.

KW also explains the thinking behind the format of CFT chiral operators. The

underlying idea, motivated by the traceless symmetric polynomials of scalar fields in

the N=4 SYM theory, is that because each chiral superfield is assigned an R-charge of

1/2, forming the operator TrAkBl will give an R-charge 1, dimension 3
2

and occur in

the (2,2) of SU(2)×SU(2). Generalising this to multiple products of pairs AB will give

towers of operators of the form TrAk1Bl1 ...AknBln with an R-charge of n, dimension

3n
2

and occur in the (n+1,n+1) of SU(2)× SU(2).

Also, for each of the gauge group SU(N) symmetries, there are two vector su-

perfields V1 and V1, from which can be constructed the chiral gauge field strength

superfields W
(1)
α and W

(2)
α where W i

α = D̄2(eViDαe
−Vi) for i=1,2.

So in summary, there is a continuous global symmetry SU(2) × SU(2) × U(1)R

which comes from the geometry of T 11 and gauge group symmetry SU(N) × SU(N)

which comes from the presence of N D3 branes. This is the group structure quoted by

Baumann in Chapter 5.

4.2 Constructing Multiplets in IIB Supergravity on AdS5 × T 11

In presenting his scalar mode and flux matching table to CFT tower operators, Bau-

mann cross-references to Ceresole’s multiplets derived for AdS5 × T 11. Ceresole also

uses new operators formed from the products of chiral and vector fields. For our pur-

poses we need to broadly understand Ceresole’s construction of the nine families of

multiplets for the harmonics of the coset space T 11 used in the Baumann matching.

And then understand his construction of the sequences of (chiral) superfields corre-
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sponding to the hypermultiplets and tensor multiplets in the AdS bulk. (This is the

tower of operators used by Baumann in Chapter 5).

To avoid deviating too far in our multiplet construction, there is a key result by

Ceresole that: in a KK compactification (ie five-dimensional), the equations of motion

for the ten-dimensional fields φ fluctuations lead to equations

(�[Λ]
x + �[λ1,λ2]

y )φ
[Λ]
[λ1,λ2](x, y) = 0 (63)

where coordinates x are for AdS5 and y are for T 11 and [Λ] has three labels, energy E0

and spin quantum numbers s1 and s2 of SU(2,2) and [λ1, λ2] are spin labels of SO(5).

The boxes are the kinetic operators of 5d internal and 5d external spaces and the

fields φ[λ1,λ2](x, y) can be expanded in terms of the harmonics of T 11. The harmonics

of T 11 are either Y j,l
[λ1,λ2] where the lower labels must be both integer or half integer

and add to 0,1,2 or fragmented Y j,l,r
(q) (y) where j,l are spin quantum numbers of SU(2),

r is quantum number of U(1)R, and q is U(1)H charge. There are six such harmon-

ics, Y[0,0], Y[1,0], Y[1,1], Y[2,0], Y[ 1
2
, 1
2

], Y[ 3
2
, 1
2

] each with its own Laplace-Beltrami differential

equation and mass matrices.

Focussing on the scalar harmonic Y[0,0], the Laplace-Beltrami differential equation

gives �Y (j,l,r)
0 = H0(j, l, r)Y

(j,l,r)
0 with eigenvalue H0 = 6(j(j+1)+ l(l+1)− r2

8
) as well

as masses for the five-dimensional fields. (This H0 is used by Baumann in Chapter 5).

There are similar results for the spinor and vector harmonics giving eigenvalues and

masses. Ceresole presents her multiplets categorised by (E0, s1, s2) and E0 is expressed

in terms of H0. Since we will focus on the Vector Multiplet I later, this corresponds

to (s1 = 1
2
, s2 = 1

2
). We extract the b(ottom) and φµ values from the Ceresole’s Vector

Multiplet I of table 7, and note that the (j, l, r) (where r corresponds to the highest

spin dependence is buried within H0). This Vector Multiplet I is used most frequently
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(s1, s2) Es0 R-sym field Mass

( 1
2 ,

1
2 ) E0 + 1 r φµ H0 + 12− 6

√
H0 + 4

(0, 0) E0 r φ H0 + 16− 8
√
H0 + 4

Table 9: Extract from Vector multiplet I with E0 =
√
H0 + 4− 2

by Baumann in cross-referencing.

Next Ceresole draws on some Lie Algebra standard results for the given global and

gauge symmetries, and chiral and vector fields, and states their gauge transformations.

From these, Gauge covariant combinations can be derived:

Wα(AB)k = W 1
α(AB)k Wα(BA)k = W 2

α(BA)k (64)

AeV Āe−V = AeV2Āe−V1 BeV B̄e−V = BeV2B̄e−V1 (65)

But the real strength is that many more Gauge covariant combinations or towers

can be built by intermultiplying. For instance AeV2ĀB̄e−V2B is a Gauge covariant

combination. Guided by this, many towers were constructed and categorised into four

(of which Baumann uses three) types of protected operators.

• Chiral superfields, S defined by D̄α̇S(α1....α2s1 )(x, ϑ, ϑ̄) = 0, s2 = 0

• Conserved superfields, J defined by Dα1J(α1....α2s1 ,α̇1....α̇2s2 )(x, ϑ, ϑ̄) = 0, and

D̄α̇J(α1....α2s1 ,α̇1....α̇2s2 )(x, ϑ, ϑ̄) = 0

• Semi-conserved superfields, L defined by D̄α̇L(α1....α2s1 ,α̇1....α̇2s2 )(x, ϑ, ϑ̄) = 0

Respectively these have r-values: r = 2
3
∆, r = 2

3
(s1 − s2) and ∆ = (2 + s1 + s2),

r = 2
3
(∆ − 2 − 2s2) and ∆ = (2 + s1 + s2). where J = {Ja, Jb} and Ja = AeV Āe−V ,

Jb = BeV B̄e−V ,Lα̇ = eV W̄α̇e
−V
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Ceresole constructed towers for these Chiral, Conserved and Semi-conserved su-

perfields (for k a positive integer).

Chiral

Sk = Tr(AB)k ∆k = 3
2k

T kα = Tr[Wα(AB)k] ∆k = 3
2 + 3

2k

Φk = Tr[WαWα(AB)k] ∆k = 3 + 3
2k

Table 10: Protected Towers of Chiral Superfields

Conserved Semi-conserved

Jk = Tr[J(AB)k] ∆k = 2 + 3
2k L1,k

α̇ = Tr[Lα̇(AB)k] ∆k = 3
2 + 3

2k

Jkαα̇ = Tr[Jαα̇(AB)k] ∆k = 3 + 3
2k L2,k

α = Tr[WαJ(AB)k] ∆k = 7
2 + 3

2k

Ik = Tr[JW 2(AB)k] ∆k = 5 + 3
2k L2,k

α̇ = Tr[Lα̇W 2(AB)k] ∆k = 9
2 + 3

2k

Table 11: Protected Towers of Conserved and Semi-Conserved Superfields

Cresole found constraints for the associated labels, constructed towers for non-

chiral operators and produced extensive multiplet tables.

4.3 Matching Supergravity Scalar Φ− and Flux G− Modes and CFT Oper-

ators

In Baumann Chapter 5, he presents matching between

• Φ− and G− Series and CFT operators - and some matching to Ceresoles multiplets.

• Chiral Flux induced potential and superpotential perturbations of operators

albeit, that the level of matching varies significantly from detailed to discursive. Also

the tables are presented as separate complete entities and hence some values cannot

be cross matched. This suggests that some matching really means demonstrating
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consistency rather than total matching.

For each of the above, the aim is to drill down and explain the level of matching

by taking a specific (easy) example.

In Baumann chapter 3, as well as expanding the harmonic functions f on the

conifold in terms of angular harmonics, there are associated radial scaling dimensions

∆f (L), defined as: ∆f (L) =
√
H(j1, j2.Rf ) + 4− 2 where H(j1, j2.Rf ) = 6[j1(j1 + 1) +

j2(j2 + 1)− R2
f

8
]. from which the spectrum of harmonic functions on conifold for chiral

(j1 = 1
2
, j2 = 1

2
) and (j1 = 1, j2 = 1) is (table 12)

∆f j1 j2 Rf

3
2

1
2

1
2 1

3 1 1 2

Table 12: Extract from Baumann table 2, spectrum of harmonics

In defining Series I flux Hodge type (1,2) as ΛI = ∇∇f1 · Ω̄, the dimension of the

dual field theory is δI = 1 + ∆f and R = Rf − 2, from which the spectrum of Series I

for chiral modes is (table 13)

δf j1 j2 R

5
2

1
2

1
2 -1

4 1 1 0

Table 13: Extract from Baumann table 3, Series I, ΛI = ∇∇f1 · Ω̄

In setting up the CFT Chiral operators in Chapter 5, the simplest case is found

by multiplying the two chiral superfields A and B and extracting the bottom and ϑ2

component and taking the trace ie [Tr(AB)]b,ϑ2 and assigning f1 = (AB) in the above

table. So Baumann’s Φ− and G− tables (between his tables 5 and 6) with k=1 gives:
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Scalar/Flux Defined as Operator ∆ j1 j2 R

Φ−(k = 1) (AB) Tr[AB]b
3
2

1
2

1
2 1

G− (k=2) ∇∇(AB)2 · Ω̄ Tr[AB]2ϑ2 4 1 1 0

Table 14: Extract from Baumann Φ− and G− tables and CFT operators f=(AB)

which can be seen to equal the first line of table 12 and the second line of table

13.

Then in tables 6 and 7, Baumann states that both belong to Ceresoles Vector

Multiplet I. This is immediately apparent since E0 and ∆f are equal. All other levels

of matching requires skill at products of chiral and vector superfields and gauge field

strength superfields.

There is a physical interpretation for any form of matching which in the above case

amounts to: although the flux form is valid for any Calabi-Yau manifold since it was

created from the three building blocks for Calabi-Yau cone ie Kähler form, three form

Ω and harmonic functions, it is necessary to focus on the conifold in order to obtain

a radial scaling of the flux solution and the relevant symmetries and quantum number

relationships. Also the f1 has to be holomorphic of the form (AB)k in order for the

matching to occur. In comparison on the CFT side, for instance, the superpotential

perturbations
∫
d2θTr[AB]k project out the θ2 corresponding to supersymmetry of

unperturbed CFT.

Baumann makes other self-contained comments about the Ceresole’s various mul-

tiplets which add no value in repeating here.

Turning to scalar potential matching. Baumann’s treatment is primarily a dis-

cussion. I shall just highlight a couple of points.
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As mentioned earlier, when the specific forms of the fluxes were given for Series

I,II,III ie ΛI ,ΛII ,ΛIII , there was also a subset corresponding to chiral perturbations in

which the harmonic functions f1, f2, f3 are holomorphic. In this case, the flux induced

potential was

Φ− =
gs
96

[3gαᾱ∇αf1∇αf1 + 12|Ref2|2 + 6∇−2|f3|2 (66)

For the matching to CFT operators, (briefly).

• Assign f1 ∼ (AB)k to the first term which is equivalent to evaluating the super-

potential perturbation
∫
d2θ(AB)k (F term)

• Assign f2 ∼ (AB)k to the second term which is equivalent to evaluating the

superpotential perturbation
∫
d2θTr[Wα

+(AB)kYα] where Yα are spurion fields (ie

Yα = [Yα]b + [Yα]θθ + [Yα]θ2θ2), followed by some supersummetry manipulations

• This matching is lengthy but is similar to the second term method.

Baumann’s matching between AdS5×T 11 with N=1 SYM focuses on the matching

between supergravity Φ− modes and G− flux modes and the CFT operators. The

technique used is primarily quantum number and dimension matching with only limited

use of CFT operator to supergravity modes using supersymmetric techniques. Noting

that the object is to understand the chapter 5 methods rather than independently

verify the results, this completes our summary.

5 D3 Brane Superpotentials from Fluxes

This section deals with Chapter 6 of Baumann’s paper. The main underlying refer-

ences for the D3 Brane Superpotentials are: AdS strings with Torsion: Non-complex

Heterotic Compactifications by A.R.Frey (2005), On D3 brane Potentials in Compact-
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Figure 2: Insertion of throat causing distortions of the fluxes and scalar modes leading to D3 brane

potential

ifications with Fluxes and Wrapped D-branes by D Baumann (2006) and Towards an

Explicit Model of D-brane Inflation by D Baumann (2007).

Baumann’s Chapter 6 is a short chapter which in summary (i) states that for

a superpotential interaction in a conifold gauge theory, there is a G(1,2) flux which

geometrizes the superpotential. (ii) for a stack of D7 Branes wrapping a four cycle,

gaugino condensation on the D7 Branes induces a non-trivial potential on the D3 Brane.

(iii) for a specified superpotential of a D3 Brane in a conifold, there exists a Born-Infeld

plus Chern Simons potential of the D3 Brane which gives an F-term potential in 4d

supergravity - and again the superpotential is geometrized.

An immediate clarification is that geometrizes roughly means that the superpo-

tential is embedded into some dimensional geometry; simplistically, this means that

the D3 Brane potential can be expressed in terms of the superpotential. The main

features of D7 branes is covered in part (ii), although a few D7 brane facts will be

needed in part (i).

Figure 2 provides simple sketch of the D7 brane geometry (gauginos presence

implied).
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5.1 D3 Brane Potential in terms of Superpotential

So far, D3 Brane potential solutions have been found in various forms for various

scenarios from the equation of motion for Φ− containing flux sourced terms taking the

basic form

∇2Φ− =
gs
96
|Λ|2 (67)

Resulting solutions include the following types:

1) Green’s function solution

Φ− =
gs
96

∫
d6y

′
G(y; y

′
)| Λ |2(y

′
) + ΦH(y) (68)

2) chiral perturbations for Series I

Φ− =
gs
96

[3gαᾱ∇αf1∇αf1] (69)

3) non-vanishing 4d Ricci scalar,

VR(φ) = 2V0

M2
pl

φ2
ΣLIn(

2φ

Mpl

)hL(Ψ) (70)

Having established the CFT relationships in the previous section, the natural

extension is to see if the D3 Brane potential can expressed in terms of the CFT Super-

potential, W, assumed to be a function of the holomorphic chiral fields. Baumann’s

Chapter 6 puts D7 Branes at the centre of his discussion. The key result is that the

D3 Brane potential can be expressed in terms of the superpotential, given by

V = gαβ̄∇αW∇βW (71)

Baumann considers the D7 brane scenario: for global-supersymmetry on a D3 brane

probing a non-compact cone with D7 branes, then for a superpotential W, there is

a solution of 10d equations of motion such that the Series I fluxes give rise to the
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superpotential. The superpotential W is assumed to proportional to the holomorphic

function within the Series I flux.

We need three facts about D7 branes for this section. Early on it was stated

that perturbations of the dilaton and metric do not affect the flux induced potential on

the D3 brane. However, D7 branes can source dilaton terms leading to a holomorphic

axion-dilaton within a compactification. As a result, the Λ flux equation is modified

and becomes

dΛ + ∂φ ∧ (Λ + Λ̄) = 0 (72)

The second fact is that the Ricci for the internal space is given by Rαβ̄ = ∂α∂β̄φ and

thirdly the Φ− equation of motion becomes

∇2Φ− =
eφ

96
|Λ|2 (73)

Now we demonstrate that

• suitable fluxes Λαβ̄γ̄ = gse
−φ∇α∇σfg

σρ̄Ω̄ρ̄β̄γ̄ and Λαβγ = gs∇σfgσρ̄∇ρ̄e−φΩαβγ,

which now include a dilaton factor due to the D7 brane, satisfy the Λ flux equation

• and the V = gαβ̄∇αW∇βW , where W is assumed to be a holomorphic function f,

satisfies the Φ− equation.

Using the properties of the IASD forms, covariant derivatives and substituting

for Ω, the above (1,2) form can be expressed in terms of simple derivatives to give

Λαβ̄γ̄ = ∂α(∂σfg
σρ̄q̄ερ̄β̄γ̄)e

−φ. Then assuming that the (3,0) takes the form Λαβγ =

ψqεαβγ, substituting into the Λ equation gives a pair of equations

∂ᾱψq + ∂βφ∂ᾱ[∂σfgσβ̄ q̄]e
−φ = 0 (74)

− ∂β[∂α(∂σfg
σβ̄)e−φ] + ∂αφψ̄q̄ = 0 (75)
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which are satisfied provided ψ = ∂σfgσβ̄∂β̄e
−φ. This briefly outlines that the fluxes with

the above form satisfy the equations of motion when modified to reflect the presence

of the D7 brane.

Next, to show that V expressed in terms of the superpotential satisfies the Φ−

equation, and remembering that the superpotential W ∼ to holomorphic potential f

(and W 2 = T3

8
f 2). The left hand side of Φ− equation is

∇2V = ∇2[gσβ̄∇αf∇βf ] = gρσ̄gαβ̄(2∇ρ∇αf∇σ∇βf + 2∇σ̄∇αf∇ρ∇β̄)

+gαβ̄∇2∇αf∇β̄ + gαβ̄∇αf∇2∇β̄ f̄ (76)

from which second term vanishes because f is holomorphic. The remaining terms after

some algebra give 1
3!
eφ|Λ(1,2)|2 + 2

3!
eφ|Λ(3,0)|2, which is the right hand side.

This outlines the justification for V = gαβ̄∇αW∇βW , at least for the D7 brane.

Generalising to general W appears to follow the same method.

5.2 Superpotentials from D7 branes

Turning to part (ii), our objective is to explain the main D7 features and justify that

the brane superpotential takes the form W = W0 +Wnp(zα, ρ), where the various terms

are to be explained.

First lets clarify the difference between perturbative and nonperturbative effects.

There are action terms, such as the Chern-Simons terms and localized p-brane terms,

which give rise to perturbative expansions in powers of the couplings, gs and α
′
(defined

earlier), which are determined by the Planck scales. Often, they appear in the Kähler

potential but not in the superpotentials. In contrast non-perturbative effects arise

in well-defined constructed situations such as gaugino condensation, instantons and

composite goldstinos. We are interested in the first - gaugino condensation.
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The key features, for our purposes, of gaugino condensate are found in Frey

(2005). These are that in pure N=1 non-abelian gauge theory, the gauge field becomes

strongly coupled at energy scale Λ and the gaugino condenses leading to

< χχ >∼ Λ3 ∼M3
UV e

− 1
bg2 (77)

where MUV is the UV cut off scale, b is ”one loop determinant”, g is 4d (YM) gauge

coupling. The reason it condenses is that the underlying running coupling has an

inverse dependence which becomes strong at scale leading to Λ having exponential

dependence. At low scales, when coupled with the auxiliary field it takes on the form

of superpotential, which is often stated that the condensate induces a condensation

superpotential

W ∼ e
− 1
bg2 (78)

We know that in 4d N=1 theory, fluxes induce a flux superpotential W of the form

W =

∫
M

G ∧ Ω (79)

where G (comprising RR and NS fluxes) is coupled to the geometry via the 3-form Ω.

This fixes the dilaton and complex structure moduli but leaves the volume modulus

unfixed ie in no-scale compactification. Baumann creates his model so that each of

these terms is well defined. This model is the D3 brane model described earlier but

he now inserts a holomorphically-embedded stack of D7 branes wrapping a four cycle,

where the latter resides partially in throat and in the bulk. Finally the presence

of the gaugino condensation induces a D3 brane potential. In fact, combining the

superpotentials fixes all of the Kähler moduli, in particular the volume modulus, and

the superpotential becomes

W = W0 + A(X)e−aρ (80)
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where the first term comes from the flux superpotential and is a constant W0 after

stabilisation of the complex structure moduli. The second term is the condensation

superpotential Wnp in which the exponential ρ is the Kähler modulus associated with

the volume over the four cycle and the A(X) takes on the structure of the model. In

Baumann’s case, the four-cycle volume depends on the D3 brane position which forces

the condensation superpotential coefficient to depend on the D3 brane position and is

A(zα) = A0h(zα)
1
Nc (81)

for Nc D7 branes and A0 ∝ N2
c . The term, holomorphic embedding, provides a condi-

tion on the geometry h(zα) = 0.

We note that Frey deals with gaugino condensation with an H flux in heterotic

supergravity leading to AdS4×X6. From the effective supergravity action for bosonic

field and gaugino, he derives the string frame SUSY dilatino, gaugino and gravitino

variations leading to the torsion dependent manifolds and expressions for gaugino con-

densate, condensate scales, volume modulus, and Kähler potential leading to AdS4,

but this takes us too far from our discussion.

Whilst the role of the gaugino condensate is clear, the role of the D7 branes needs

explaining; these are:

The action for gauge fields on D7 branes wrapping a four-cycle Σ4 is given by

S =
1

g2
7

∫
Σ4

d4ξ
√
gindh(Y ) ·

∫
d4x
√
ggµαgνβTrFµFαβ (82)

where ξi are coordinates on Σ4 and gind is the induced metric on from gij, Y are internal

space coordinates and h(Y) determines the geometry. The warped volume of Σ4 is given

by

V ω
Σ4

=

∫
Σ4

d4ξ
√
gindh(Y ) (83)
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and the gauge coupling of 4d theory is, from the above action

1

g2
=
V ω

Σ4

g2
7

=
T3V

ω
Σ4

8π2
(84)

Using this expression for the warped volume, the modulus of the gaugino super-

potential in SU(ND7) super YM with MUV cut off takes the precise form

|Wnp| = 16π2M3
UV exp(−

8π2

ND7g2
) ∝ exp(−

T3V
ω

Σ4

ND7

) (85)

The D3 brane adds SU(ND7) flavour to the SU(ND7) gauge theory whose mass is a

holomorphic function of the D3 brane coordinates. A displacement of a D3 brane in

the compactification creates a slight distortion δh of the warped background and so

perturbs the warped volumes of the four-cycles ie

V ω
Σ4

=

∫
Σ4

d4Y
√
gind(X;Y )δh(X;Y ) (86)

This change in volume enables the dependence of the superpotential on D3 location X

to be determined. Rephrasing this, the D3 brane location at point X in 6d internal

space, coords Y, acts as a point source for the perturbation δh and so δh is Green’s

function of the Laplacian with a background charge ρ

−∇2
Y δh(X;Y ) = c[

δ6(X − Y )√
g(Y )

− ρ(Y )] (87)

Solving for δh and integrating over the four-cycle gives A(X).

The solution of δh which is effectively the same as considering the corrections to

the warped volume are an inverse power function of the radial coordinate and therefore

justify that the effects of interest are deep within the infrared region of the throat.

5.3 Flux Potential in terms of Superpotentials

Now we consider part (iii). Baumann states that for any specified superpotential for

a D3 brane in the conifold, there exists a noncompact supergravity solution in which
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the Born-Infeld plus Chern-Simons potential of a D3 brane probe precisely equals the

F-term potential VF [W (zα), K(zα, z̄α)] computed in 4d supergravity with the superpo-

tential W and Kähler as input.

In other words, The D3 brane potential derived for Series I and II fluxes ΛI =

∇∇f1 · Ω̄ and ΛII = ∂f2 ∧ J ,where f1 amd f2 are holomorphic functions and given by

Φ− =
gs
32

[gαβ̄∇αf1∇βf1 + 2|f2|2] (88)

can be matched to the 4d supergravity F-term potential

VF =
κ2

12σ2

e−2aσ

γ
[gαβ̄AαĀβ̄ + 2aγ(aσ + 3)AĀ− aγ(Āgαβ̄kβ̄Aα + cc)] + harmonic (89)

The actual coefficient matching is clearly explained by Baumann and it adds no value

to repeat it here. But the answer is an expression for Φ− in terms of A The task here

is to explain the F-term potential. Following Baumann (2007), the standard place

to start is by observing that from the Superpotential and Kähler potential, the N=1

supergravity potential in the action can be expressed in terms of the superpotential W

and Kähler K as follows

VF = eκ
2K [DΣL

ΣΩ̄DΩW − 3κ2WW̄ ] (90)

where the ZΣ is function of the volume and coordinates modulus and DΣW is covariant

derivative and the Kähler K is given by

K = − 3

κ2
log[ρ+ ρ̄− γk(zα, z̄α)] (91)

where the Kähler potential is of Calabi-Yau manifold, γ is a constant. The related

Kähler metric is known in terms of kγ which leads to a potential

VF =
κ2

3U2
[....+ (kαδ̄kδ̄W,ρW,α + cc) +

1

γ
kαβ̄W,αW,β] (92)
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where the dotted terms are the KKLT F-term potential and the displayed terms are

the nonperturbative potential depending on the brane position. To match the two

expressions for VF is lengthy but involves redefining U, σ, extracting the exponential

from the superpotential ieWnp(zα) = A(zα)e−aρ and carrying out algebra manipulation.

6 Gauginos as a Source of Flux: Field Theory v Bulk Per-

spectives

This section deals with Chapter 7 of Baumann’s paper. Baumann’s chapter 7 has two

brief sections of a general discursive nature on non-commutative superpotentials and

the role of ten-dimensional equations of motion for fluxes incorporating fermion expec-

tation values that are nonvanishing but my assessment is that these are ponderings for

the future rather than tangible results. There is a third brief section on gaugino con-

densation as a source of fluxes from a field theory perspective and a bulk perspective

which leads to tangible results and this is the focus below.

Field Theory Perspective

Intriligator (1995) covers extensively the dynamics of 4d supersymmetric gauge theories

in his lectures. In particular, he derives an effective action (his section §4) generated

by instantons and associated with gaugino condensation and gives the 4d SUSY low

energy WZ term in terms of the gaugino mass term. What is fascinating is that from

group QCD symmetries, he derives the exact dynamic superpotential (inclusion here

adds no value) leading to the result adapted by Baumann which includes a gauge
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coupling homolomorphic function f of chiral superfields of the D7 brane theory.

L ⊃
∫
d2θf(Φ)WαWα + cc ∼ λλ

∫
d2θf(Φ) = FΦ

∂f

∂Φ
λλ (93)

Regarding this equation as a source for FΦ ie
∫
d2θW (Φ) gives

∂W

∂Φ
= − ∂f

∂Φ
λλ (94)

consistent with the standard gaugino condensate expression W = Ncλλ. From the

Flux potentials section, for series I and using local coords instead of superfield

∂W

∂zα
= T3

√
gs
32

f1

∂zα
⇒ T3

√
gs
32

f1

∂zα
= − ∂f

∂zα
λλ (95)

D.Baumann (2006) found a specific form for the coupling function for D7 brane em-

bedded along a divisor in terms of an homlomorphic equation h(zα) = 0 as f =

2πρ− log(h(zα)) with the result

T3

√
gs
32

f1

∂zα
= λλ

∂(logh)

∂zα
(96)

The physics description for this is: on the left are the G(1,2) fluxes for Series I in the

warped throat arising from 10d Supergravity while on the right, there is a coupling in

4d between the gauginos condensate of the D7 branes arising from the 4d SUSY and the

gauge coupling constant arising from the D7 brane embedded in the divisor. Baumann

suggests that there should be a coupling term of the form
∫
d8ξG3λλ representing the

interaction between the 10d three form flux fields and the gaugino condensate in the

presence of D7 branes (possibly embedded in the divisor).

Bulk Perspective

Cámara (2004) expands the DBI and CS actions for D7 and D3 branes and computes

field forms for the resulting interactions. From this paper Baumann extracts the tree
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level coupling action involving G3 flux and gaugino condensate λλ as

L = 16ζ

∫
Σ

√
gG3 · Ωλ̄λ̄ ∼

∫
M

G3 ∧ Ω(λ̄λ̄δ(0)) (97)

where ζ = T3

√
g3

32
Taking the variation with respect to C2 and B2 gives

16

∫
M

δG3 ∧ Ω(λ̄λ̄δ(0)) (98)

The variation for the bulk is

− gs
4κ2

10

∫
M

δG3 ∧ Λ̄ (99)

In the case of Series I, some manipulation leads to the relationship

∇2f1 =
4π

ζ
λλδ(0) (100)

which has a solution

f1 =
2

ζ
λλRe(log(h(zα))) (101)

The physics description for this is: on the left are the G(1,2) fluxes for Series I while

on the right are again gaugino condensates but this time sourced from the tree level

coupling arising in the expansion from the D7 brane fermions and bulk fields.

These two expressions from Field Theory and Bulk Perspective are equivalent.

This can be re-phrased to imply that the potential from the 4d SUSY is the same as

that from 10d Sugra in flux background sourced by gaugino condensate.
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7 Conclusion and The Future

Conclusion

The Baumann 2010 paper under review in this dissertation, D3 brane Potentials from

Fluxes in AdS/CFT, is the latest in a series of papers over the last six years which have

been constructing a string theory based model capable of controlling the inflationary

dynamics in cosmology by creating Planck-suppressed contributions to the effective

action. The resulting D3 brane model has an overriding objective of formulating D3

brane potentials from physical scenarios that possess a high degree of computability

which are capable of feeding into cosmological theories. Whilst there are related papers

dealing with the cosmological aspects of the models, this paper - and my interest - focus

on the model construction.

The strength of the model’s evolutionary path has been underpinned by ensuring

consistency of the complementary descriptions, namely, 10d supergravity, 4d conformal

field theory and 4d supergravity. The achievements of the paper can be summarised

• From Type IIB supergravity, following compactification from the D3 branes and

throat geometry, the resulting non-normalizable perturbations of the background

leads to closed three-form IASD flux solutions and a spectrum of contributions to

the D3 brane potential.

• Systematic matching of the flux solutions to sources for dual operators in con-

formal field theory by the construction of complete matching tables between the

fluxes and scalar modes and associated protected chiral, conserved, semi-conserved

CFT operators.

• For any superpotential for a D3 brane in the conifold, the F-term potential in
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4d supergravity can be geometrized from a 10d background of IASD fluxes. And

that gaugino condensation on D7 branes wrapping a four-cycle sources the IASD

fluxes in ten dimensions. Finally, that the scalar potential takes the same form in

4d SUSY or 10d brane in flux background sourced by gaugino condensation.

The Future

There have been no further publications on the D3 brane model since the current

paper. However, the authors have indicated that a paper would be forthcoming on:

Flux Duals of Non-Perturbative Effects on D7 branes. This appears to be looking for a

more comprehensive geometric treatment of the D7 branes. There is also the possibility

of including the multitude of other sugergravity tools such as antibranes, orientifolds

and so on, into the model.

It is also noted that, for the six authors of the the current publication: D. Bau-

mann has published a paper on: Desensitizing Inflation from the Planck Scale, which

looks at the role of the Inflaton interacting with the conformal sector; I Klebanov has

published a paper on: M-Branes and Metastable States, which looks at supersymmetry

deformation of M-theory solutions in higher dimensional conifolds; the others have no

related or no papers published since this paper.
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9 Appendix - Physical Significance

The main reference for this Physical Significance section are the TASI Lectures on

Inflation by D.Baumann. ArXiv: hep-th/0907.5424 (2009).

The Dynamics of Inflation

The history of the Universe after the first 10−10 secs is based on generally well un-

derstood and experimentally tested laws of physics. After the first 3 minutes, at an

appropriate energy level of 0.1 MeV, the strong interaction is significant and protons

and neutrons combine into the light elements in accordance with Big Bang Nucleosyn-

thesis; after 104 years and at 1eV, equal radiation and matter densities result in charged

matter particles and photons coupling in the plasma to cause density fluctuations; after

105 years, and at 0.1 eV, electrons and protons combine into neutral hydrogen atoms

from which photons decouple and form the free-streaming cosmic microwave back-

ground. Some of the important stages are summarised in Baumann’s TASI evolution

table, a selection of which are included in table 15:

However, prior to 10−10 secs is still speculative. What is believed to happen is

that there is a Planck Epoch (< 10−43 secs, 1018 GeV ) during which string theory

applies, followed by a Grand Unification period (< 10−36 secs, 1015 GeV ) followed

by an Inflation period (< 10−34 secs, 1015 GeV ). Inflation is described as a period
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Event Time Energy

SUSY breaking (?) < 10−10 s > 1 TeV

Electroweak Unification 10−10 s 1 TeV

Quark-Hadron transition 10−4 s 102 MeV

Nucleon Freeze Out 0.01 s 10 MeV

Neutrino Decoupling 1 s 1 MeV

BBN 200 s 0.1 MeV

Matter-Radiation Equality 104 years 1 eV

Recombination 105 years 0.1 eV

Galaxy Formation 108 years -

Table 15: Selected Physical Significance Events after 10−10 secs

of exponential expansion. During the Inflation period, it is believed that microscopic

quantum fluctuations are transformed by the inflationary expansion into macroscopic

fluctuations manifested in the form of density fluctuations and gravitational waves.

Although subsequent 10−10 secs events affect these fluctuations and waves, these can

be stripped from current observations to obtain their original form.

We need to develop some language and physics to describe Inflation. From the

general relativity course, the FRW metric arises naturally from the homogeneity and

isotropy of the large scale universe such that the evolution of the universe is encom-

passed within the scale factor a(t) and the expansion rate, the Hubble parameter H,

given by H = ȧ
a
; the form of a(t) is determined by the matter content of the universe

via Einsteins field equations.

The comoving (particle) horizon τ is the causal horizon or maximum distance a

light ray can travel over an interval. In terms of a and H, this is τ =
∫
d(ln a) 1

aH
where

the (aH)−1 is called the comoving Hubble radius which for Big Bang grows monotoni-
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cally resulting in τ ∝ a when radiation dominates and τ ∝ a1/2 when matter dominates.

So the comoving horizon grows monotonically. Now consider- if particles are separated

by distances greater than τ , they never could have communicated with one another, if

they are separated by distances greater than (aH)−1, they cannot communicate now,

but particles causal contact could have occurred earlier. One possible scenario for this

is: while a grows exponentially during inflation, if H is constant, the comoving Hub-

ble radius decreases during inflation. which can be expressed as d
dt

( 1
aH

) < 0; using

Friedmann’s Equations, this implies d2a
dt2

> 0.

From this, there are three equivalent conditions for Inflation, known respectively

as Decreasing comoving horizon ( d
dt

( 1
aH

) < 0), Accelerated expansion (- ä
(aH)2 < 0 or

ε = − Ḣ
H2 < 1) and Negative pressure (p < −1

3
ρ).

A few more facts are needed for the later sections. There is a curvature parameter

Ωk which is a function of the ratio of the current energy density and the critical energy

density (the latter equals 3H2
0 ), which can be re-expressed as the difference between

the average potential energy and the average kinetic energy of a region of space. Using

a modified definition for Ω, defined as 1 − Ω(a) = −k
(aH)2 and assuming it is time

dependent, leads to an instability around the currently observed unit value called near-

flatness. The presence of Inflation manages this apparent instability since by using one

of the conditions - that the comoving Hubble radius is decreasing - drives the universe

towards flatness (rather than away from it). One final expression is the number of

e-folds N =
∫
t
Hdt.

Now the simplest field dynamics model of Inflation uses a scalar parameter φ and

a simple gravitational Einstein-Hilbert action plus a scalar field kinetic term plus po-

tential term. Making assumptions that the metric is FRW and the energy-momentum
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tensor is a perfect fluid, leads to many equations and conditions. But our focus is on

accelerated expansion within Inflation which is determined by the slow roll parameters

ε� 1 and η � 1,

εV =
M2

pl

2
(
V,φ
V

)2 ηV = M2
pl(
V,φφ
V

) (102)

which tells us that Inflation ends when these approach 1.

Clearly the form of the inflationary potential function V (φ) is important as it

needs to satisfy the slow roll conditions. Commonly used is the chaotic Large-Field

Inflation potential V (φ) = λpφ
p, (where λp is the Inflation self coupling) which has

the characteristics: the slow roll parameters are small for super Planckian field values

(φ � Mpl), λp � 1, the potential energy density is sub-Planckian ie V � M4
pl and

quantum gravity effects are assumed not important. This treatment is classical.

Quantum Fluctuations during Inflation

This section sketches how quantum fluctuations during Inflation can lead to a primor-

dial fluctuation spectra. Again, our main interest will be in setting up the language

for later use.

First, there are two gauge invariant combinations of metric and matter per-

turbations: the curvature perturbation on uniform density hypersurfaces defined by

−ζ = Ψ + H
˙̄ρ
δρ which measures the spatial curvature of constant density hypersurfaces

(parametrised by Ψ) and is constant for certain matter perturbations; and the comov-

ing curvature perturbation R = Ψ − H
(ρ̄+p̄)

δq which measures the spatial curvature of

co-moving hypersurfaces. These can be shown to be equal during slow roll inflation and

both can be perturbatively expanded using Einsteins equations. The critical statistical
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measure of the primordial scalar fluctuations is the power spectrum of R, or ζ,

< RkRk′ >= (2π)3δ(k + k
′
)PR(k) ∆2

R =
k3

2π2
PR(k) (103)

where < RkRk′ > is the ensemble average of the fluctuations. The perturbations

separate into scalar and tensor power spectra.

Briefly, the theory involves: taking the unperturbed slow roll model of the infla-

tion action, expanding to second order, promoting the scalar to quantum operators,

imposing initial conditions, and solving the mode equations, and then evaluating the

power scalar spectrum. Its the final result we need:

∆2
R(k) =

H2

(2π)2

H2

φ̇2
(104)

evaluated at the horizon crossing. There is a similar expression for the power tensor

spectrum. From which, after some algebra, we are left with expressions for the power

spectra of scalar and tensor fluctuations.

∆2
s(k) =

1

8π2

H2

M2
pl

1

ε
|k=aH ∆2

t (k) =
2

π2

H2

M2
pl

|k=aH (105)

where ε = −dlnH
dN

The final step for us is that in the slow roll case, in which H can be

expressed in terms of V

∆2
s(k) =

1

24π2

V

M4
pl

1

ε
|k=aH ∆2

t (k) =
2

3π2

V

M4
pl

|k=aH (106)

This finally gives us the main result that: the power spectra for the scalar and ten-

sors are explicitly dependent on the potential’s shape ie that H is a measure of the

scale of the potential. ε and η are a measure of the first and second derivatives of the

potential. And so measurements of the amplitude and scale dependence of the cosmo-

logical perturbations provide information about the potential driving the inflationary

expansion.
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From the ratio r of the tensor to scalar power spectra, assuming ∆2
s is fixed, and

∆2
t ∝ H2 ∝ V 2, gives a direct measure of the energy scale of Inflation

V 1/4 = (
r

0.01
)41016GeV (107)

which is interpreted that for large values of r ≥ 0.01 correspond to inflation at GUT

scale energies.

Rewriting r as r = 8
M2
pl

( dφ
dN

)2 provides a (Lyth) Bound for the time field evolution

between CMB fluctuations excited between the horizon at Ncmb and the end of inflation

Nend given by

∆φ

Mpl

∼ (
r

0.01
)1/2 (108)

Again ∆φ > Mpl for large scale inflation.

The above historical scalar and tensor power spectra, together with equivalent

power bispectra (which arise from non-Gaussian effects), must be adjusted for time

transfer functions and dark matter transfer functions (etc) to allow for known physi-

cal events over the last 109 years (such as CMB polarization sourced from Thomson

scattering) and then matched to current CMB anisotropies and fluctuations and the

galaxy power spectrum. The results are close and support the Inflation model. For

instance, Ω, an indicator for the spatial geometry of the universe, has an experimental

value of 1 ± 0.02 and an Inflation predicted value of 1 ± 10−5. As the TASI lectures

comment: current observations are in good agreement with the Inflation predictions.

The universe is essentially flat with a spectrum of nearly scale-invariant, Gaussian

and adiabatic density fluctuations. But future tests are still necessary including: un-

derstanding the B-modes of CMB polarization, which are a unique signature of the

inflationary gravitational waves as they are a direct measure of the energy of inflation;

and the overall effects of non-Gaussianicity as such lesser effects act as a constraining
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factor for the inflation field.

Inflation in String Theory

From the previous sections, the structure of the inflationary potential function feeds

directly into the power spectra. The underlying field content and interactions will be

existing at energies approaching the Planck scale and these are arguably best modeled

by string theory.

Now we first remind ourselves that Inflation requires a potential that is nearly

flat in Planck units ie

εV =
M2

pl

2
(
V,φ
V

)2 � 1 ηV = M2
pl(
V,φφ
V

)� 1 (109)

Introducing the high scale cut off Λ as the mass of the lightest particle that is

not in the spectrum of the low energy theory and coefficient operators existing within

the low energy which can be used to describe the high- scale physics above the cut off.

Particles above the cut off are said to lie in UV-completion. Integrating out particles

of mass M ≥ Λ gives rise to operators of the form Oδ
Mδ−4 , where δ is the mass dimension

of the operator. However, for inflation, the flatness of the potential requires δ ≤ 6,

resulting in Planck-suppressed operators, of the form O6

M2 . Consequently, these will

contribute to the Lagrangian. In the numerator, two dimensions can be replaced with

φ2, leaving four dimension operator with a vacuum expectation value comparable to

the inflation energy density ∼ V , this impacts the eta parameter by order one. This is

the eta problem.

In fact, a more detailed treatment shows that Λ ≥ H and mφ � H leads to

∆η =
∆m2

φ

3H2 ≥ 1 contradicting Inflation conditions. The solution is to introduce some

symmetry or fine tune the action. For N=1 Supergravity, the F-term potential in the
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scalar potential is

VF = e
K

M2
pl [Kϕϕ̄DϕWDϕW −

3

M2
pl

|W |2] (110)

where ϕ is complex scalar field. Expanding K leads to terms in the inflationary La-

grangian of the form

L = −∂φ∂φ̄− V0(1 +
φφ̄

M2
pl

) (111)

from which O6 = V0φφ̄ and is a large contribution to the eta parameter. To fix this,

we need the F-term potential to be negligible or the inflaton must not appear in the

F-term potential.

Next, to derive the Lyth Bound, we used

∆φ

Mpl

∼ (
r

0.01
)1/2 (112)

For r > 0.01, epsilon and eta must be very much less than 1 over the super-Planck

range ∆φ > Mpl. To achieve this, the flatness of the inflation potential must be dy-

namically and sensitively controlled over the specified range because interacting terms

between the inflaton and other fields leads to self coupling and mass changes which

in turn changes the inflaton potential. In summary, the effective Lagrangian receives

substantial corrections from a series of higher dimension operators and symmetries at

the Planck scale.

The strength of string theory compactification from 10d to 4d is that the kinetic

terms and scalar potentials can be determined in terms of the moduli (scalars). In turn,

if the values of the moduli are known, this fixes the parameters of the four-dimensional

theory. There is an energy cost for deforming the compactification in the presence of D

branes and quantized fluxes which forces some of the moduli fields to become massive.

Usually the Hubble scale is used as the cut off between light and heavy fields. Such

moduli stabilization also contributes to the eta problem.
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Now that the necessary language has been developed, we consider the two aspects

of Baumann’s D3 brane model - its ability to satisfy the above Inflation bound condition

and its potential content.

Inflation is tested as follows

• the inflaton kinetic term determined by the DBI action for D3 brane leads to the

product form φ2 = T3r
2 where r is the radial coordinate. Using the length of the

throat as rUV gives ∆φ2 < T3r
2
UV

• the volume of the internal space V6 is bounded below by the volume of the throat

ie V6 > V6 throat = 2π4gsN(α
′
)2r2

UV , where N measures the background flux and

N � 1

• Combining these gives ∆φ
Mpl

< 2√
N

. That is the inflaton variation will always be

sub-Planckian ∆φ � Mpl. These arguments are geometrical and ensure that D3

brane model fits the Inflation condition.

The potential is broken down as follows. Inflation proceeds as a D3 brane moves

radially inward in the throat region towards the throat tip (where an anti-D3 brane

is situated). The inflation potential is assumed to be weak Coulomb; but moduli

stabilization introduces new terms into the inflaton potential, the most important of

which is the inflaton mass term arising from the supergravity F-term potential of the

form H2
0φ

2 = 1
3
V0

φ2

M2
pl

, and finally other additional contributions to the potential arising

from all other sources. This can be written as

V (φ) = V0(φ) +H2
0φ

2 + ∆V (φ) (113)

which has an equivalent eta parameter format

η(φ) = η0 +
2

3
+ ∆η(φ) (114)
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Since η0 � 1, all correction terms ∆V must be considered to ensure that eta is well

behaved. Baumann’s main ∆V potentials (section 3.3)are:

• The potential of the D3 branes, impervious to other fields, VD3(φ) = T3Φ−

• Induced Φ− perturbations, ∇2Φ− = 1
24
|G−|2 + R where Ricci R is the square of

the Hubble parameter H (equation 42). The solutions are harmonic expansions

with a spectrum of eigenvalues expessible in terms of scaling dimensions ∆

(i) Homogeneous solution (right side=0): this gives expansion terms corre-

sponding to ∆ = 3
2
, 2 (equation 60).

(ii) Inhomogeneous solution (right side ∼ R)-Curvature induced correction:

this gives an inflaton mass correction (equation 59)

(iii) Inhomogeneous solution (right side ∼ G2
−)-Fluxed induced corrections:

this gives expansion terms corresponding to ∆ = 1, 5
2

(equation 52).

So the discrete spectrum of correction terms to the Inflaton potential are ∆ = 1, 3
2
,2

and 5
2
. Further terms are encountered in the Baumann’s paper but these are of a

similar nature and format. The eta problem and its expression must be evaluated for

each of the contributing correction terms to ensure Inflation conditions are compliant.
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