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Abstract

Modern cosmology is based on the two pillars of homogeneity and isotropy. In ap-
parent violation of these principles we observe prominent structures in the CMB
and in the galaxy distribution. Here we show how they find their natural explana-
tion in perturbations around the homogeneous background. Both, radiation and
matter perturbations are supposedly set during inflation. The most convincing
suggestions contain perturbations that started off as quantum fluctuations and
were inflated in the process of the rapid expansion of the universe. At the end of
inflation they reached a cosmological size large enough to act as initial seed for
the perturbations we observe.
We discuss the evolution of the small perturbations at the end of inflation to

the highly nonlinear matter perturbations today. We use a perturbed metric
from general relativity to describe the gravitational potential and a relativistic
Boltzmann system to deal with the interactions of the perturbations. It proves
very helpful to do this in Fourier space instead of real space. We insert the
equations into a computer and compare the numerical results with analytical
approximations where they exist. This interplay lets us confidentially come to
the conclusion that the growth of the matter perturbations is suppressed during
radiation domination. Only after radiation-matter equality the perturbations
have opportunity to grow substantially. During the long matter dominated era
before effects of dark energy become important the perturbations reach the size
consistent with observations.
A very important means to compare theoretical predictions with observations

is the power spectrum, because radiation, matter and dark energy leave their
signatures in the power spectrum. We compare the predictions for the power
spectrum of a model of the universe without dark energy with a model with dark
energy and come to the conclusion that the theory of perturbations favours a
model with dark energy
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1. The Homogeneous Universe

1.1. Introduction

Today cosmology has a standard model. The underlying principles of modern
cosmology are homogeneity and isotropy. Homogeneity implies that the universe
has the same properties everywhere in space. This is obviously false when we
think of all the structures on earth, the solar system and the galaxy. When we go
to larger and larger structures, however, homogeneity takes over: averaging over
large patches of the universe containing several clusters of galaxies, i.e. averaging
over sufficiently large scales leaves a highly homogeneous background. It is this
background that is supposed to be homogeneous.

Isotropy of the universe means the universe looks the same in every direction.
Again, this is evidently false in our neighbourhood, as the galaxy distribution
that we observe is highly anisotropic. The further we look, however, the more
isotropic the universe becomes. The cosmic microwave background is surprisingly
isotropic.
The principles of homogeneity and isotropy imply two important consequences:

The position of the earth in the universe cannot be special, because that would
violate homogeneity. Secondly, any other centre of the universe cannot exist
either. This is, in a sense, a modern version of the Copernican principle.
Cosmology is concerned with the physics of the whole universe. Averaging

over small scales implies, fortunately for the physicist, that only gravity has to
be considered. All other fundamental forces (electromagnetic, strong, weak) are
either confined to the scales of particle physics or the charges are aligned to
charge-neutral objects. Neither of these effects happen to gravity. That is why
cosmology applies the theoretical description of gravity, general relativity, to the
universe. The four dimensional spacetime of the universe is highly curved, which
is manifest in the expansion of the three dimensional subspace, the real space.
The first chapter of this thesis will be summarising how physics describes the

homogeneous background of the universe and how this results from general rela-
tivity. At the end of this chapter we give a very short introduction of what the
presence of dark energy changes. The second chapter is an extensive discussion of
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the matter perturbations and their evolution throughout the universe. We com-
pare analytic expectations to numerical data. Chapter 3 deals with the effects of
dark energy at late times on the matter perturbations, whereas chapter 4 shortly
discusses the differences between a cosmological constant and dark energy as a
more general approach.

1.2. The Expansion of the universe

We will use c = 1 and ~ = 1 throughout this document as it is usual for theoretical
physics. General Relativity says that the metric of a homogeneous and isotropic
universe is of the form

ds2 = gµνdx
µdxν (1.1)

(summed over the indices µ and ν from 0 to 3 following the Einstein summation
convention here and in the following), where the metric tensor takes the form

gµν =


−1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)

 (1.2)

which is called a Friedmann-Robertson-Walker (FRW) metric. The time variable
a is called the scale factor and turns out very helpful in the discussion of the
expansion of the universe (see below).
The principle of general relativity that particles follow locally straight lines is

translated into the geodesic equation:

D2xµ

dλ2
= 0, (1.3)

where D stands for covariant differential and λ is the proper time τ (for massive
particles) or some parameter used to describe the orbit (in case of a massless par-
ticle). Writing this equation in usual differentials the geodesic equation becomes

d2xµ

dλ2
= −Γµρσ

dxρ

dλ

dxσ

dλ
, (1.4)

where Γ denotes the Christoffel symbols of the FRW metric.
The equation that relates the metric to the content of the spacetime is Einstein’s
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field equation. First, we need to introduce the Einstein tensor

Gµν := Rµν +
R

2
gµν , (1.5)

where Rµν is the Ricci tensor and R is its trace. The field equation then takes
the form

Gµν = 8πGTµν + Λgµν , (1.6)

which relates the Einstein tensor Gµν to the content of the universe, i.e. all
sorts of particles (summed together to the energy-momentum tensor Tµν) and
cosmological constant Λ.
Going through the calculations two equations for the scale factor a(t) are ob-

tained. These so called Friedmann equations describe the expansion of the uni-
verse: (

ȧ

a

)2

=
8πG

3
ρ(t)− k

a2
+

Λ

3
(1.7)

ä

a
= − 4πG

3
(ρ(t) + 3p(t)) +

Λ

3
(1.8)

The newly introduced parameters are the curvature in the three dimensional sub-
space k, the mean density of matter in the universe ρ(t) and its pressure p(t).
Λ denotes the cosmological constant or dark energy implemented as cosmological
constant. Fig. 1.1 shows the evolution of the scale factor a with cosmic time t for
a universe that starts off radiation dominated. At some point matter becomes the
driving force behind the expansion and the slope of the double-logarithmic plot
changes indicating the time of radiation-matter equality.
The Hubble rate H(t) is a measure for the change of the scale factor a(t). Its

definition is given by

H(t) =
da/dt

a(t)
. (1.9)

Today’s value for H is denoted as H0 = H(t = today)1. It is often written in
another parameter h2 via

H0 = 100h km s−1 Mpc−1 (1.10)

1Here and in the following we will use the subscript 0 to indicate today’s value of a variable.
2Due to this occurrence of h we will never use the letter for Planck’s constant, which is set to
be equal to one: ~ = 1.
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with h ≈ 0.72± 0.08 as best value today. It defines the critical density via

ρcr =
3H2

0

8πG
, (1.11)

ρcr0 ≈ 1.88h2 × 10−33kgm−3, (1.12)

where the last line gives the numerical value for today’s critical density.
The conservation of the energy momentum tensor Tµν gives a conservation

equation:
DTµν
dxµ

= 0 ⇒ ∂ρ

∂t
+
ȧ

a
[3ρ+ 3p] = 0. (1.13)

Pressure and density of the particles in the universe are connected via the equation
of state p = wρ with parameter w. Most common are:

dust (matter): wm = 0 p = 0 (1.14)

radiation: wγ =
1

3
p =

1

3
ρ (1.15)

dark energy: wDE = − 1 p = − ρ (1.16)

Matter – be it dark matter, baryons or electrons – is largely pressureless, because
its kinetic energy is much smaller then its rest energy with which it needs to be
compared with. It is therefore generally described as dust. Photons, however, are
relativistic particles in equilibrium with the temperature. Therefore they have
w = 1/3. The equation of state parameter of the dark energy is of interest to
current research. If dark energy indeed behaves like a cosmological constant, its
parameter is w = −1.
Using the expression for the pressure we can substitute p in the conservation

equation, Eq. (1.13). In case of only one type of content (or a dominating type)
the conservation equation can be integrated to

dust: ρma
3 = const (1.17)

radiation ργa
4 = const (1.18)

dark energy: ρDE =
Λ

3

1

H2
0

ρcr = const. (1.19)

In the following discussion of the homogeneous universe we will assume the
evolution of the different species of particles is independent from each other. This
means the different evolution equations above are valid for each species. It is then
feasible to parametrize the contribution of the species by their value today. Using
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Figure 1.1.: Scale factor a(t) versus cosmic time t (thick line). The growth of
the scale factor depends on the dominating content of the universe.
In early times, during radiation domination it grows as t1/2 (c.f. the
linear approximation with the thin line), later, during matter domi-
nation it grows as t2/3. We see a clear departure from the radiation
approximation. This agrees with Fig. 1.2 in Dodelson[5].
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the critical density ρcr defined above we introduce the dimensionless parameters

Ωi(t) :=
ρi(t)

ρcr(t)
, i = m, γ, etc. (1.20)

Fig. 1.3 shows the contribution of the different types of content to the critical
density at various times. The different eras of the evolution of the universe can
be clearly distinguished by the change in Ωi. The universe starts radiation domi-
nated, but matter takes over not lang after. In late times the universe is supposed
to be dominated by dark energy, here as cosmological constant.
Using the new parameters, the Hubble rate H and the Ωi the Friedmann equa-

tion, Eq. (1.7), can be written as

H2(t) = H2
0 (Ωγa

−4 + Ωma
−3 + Ωka

−2 + ΩDE) (1.21)

when setting Ωk := k.

1.3. Temperature, the CMB and other photons

Referring to the temperature of the universe usually means the temperature of the
photons, which we today measure as the cosmic microwave background (CMB).
There have been many experiments and satellites measuring this temperature, its
best value today is T0 = 2.725 ± 0.002K (Mather et al., 1999). The microwave
photons we observe are very well described by black body radiation with this
temperature.
Because the energy of a photon is determined by its wavelength and the wave-

length is stretched by the expansion of the universe the energy density of the
photons drops off with with ageing universe as

T (t) =
T0

a(t)
. (1.22)

This means that when we observe photons today with wavelength λobs they had a
much shorter wavelength when they were emitted: λemit. To quantify this change
we define the redshift z via:

1 + z :=
λobs

λemit
=

1

a(t)
. (1.23)

In an expanding universe we see everything (i.e. galaxies, as only these objects
are bright enough to be detected over large enough distances) recede from our
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Figure 1.2.: This plot shows the radiation and matter densities in the homoge-
neous universe in a double logarithmic plot. The different slopes of ra-
diation and matter correspond to the different exponents in Eq. (1.17)
and the following. The density of a cosmological constant is the same
throughout the ages. When radiation and matter have the same con-
tribution to the critical density of the universe we speak of radiation-
matter equality. This agrees with Fig. 1.3 in Dodelson[5].
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Figure 1.3.: Relative density of the content in the universe plotted against scale
factor a(t). At early times the radiation is by far the driving force
(radiation dominated universe), but it falls off rather rapidly. Matter
takes over at radiation-matter equality (matter dominated universe).
At late time the universe is dominated by dark energy
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Figure 1.4.: This is the Hubble diagram published by the Hubble Space Telescope
(HST) Key Project, [7]. It shows the receding velocities of objects
in our intergalactic neighbourhood. Data are derived from various
methods including the use of the Tully-Fisher relation and supernovae
data as standard candles. The lower panel shows the residues from
the best fit for today’s Hubble rate: The note H0 = 72 implies h = 72
in our notation.

position, just as any other observer in the universe. This observation was first
made by Edwin Hubble in 1929 and the corresponding diagram, Fig. 1.4 was
named after him.

1.4. Conformal Time η

Just as time, scale factor or temperature we can use conformal time η to parametrize
the evolution of the universe. Its definition is given by

η :=

∫ t

0

dt′

a(t′)
. (1.24)
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Figure 1.5.: The scale factor a is plotted versus conformal time η. During radia-
tion dominated epoch the scale factor is proportional to η, in matter
dominated epoch it is proportional to η2.

When the universe is dominated by one type of content there exist analytical
expressions for η: During radiation domination a grows as η, during matter dom-
ination, however, a grows as η2.

Proof. From the definition of η we see that

dη

dt
=

1

a(t)
. (1.25)

During radiation domination we have a ∝
√
t s.t.

η =

∫
dη ∝

∫
dt√
t
∝
√
t ∝ a, (1.26)
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whereas in matter domination we have a ∝ t2/3 which leads to

η =

∫
dη ∝

∫
dt

t2/3
∝ t1/3 ∝

√
a. (1.27)

These relations proof the claim.

In a universe with radiation and matter only, the evolution of η with the scale
factor a(t) is given by:

η =
2√

ΩmH2
0

(√
a+ aeq −

√
aeq
)

(1.28)

Proof. In a radiation and matter dominated universe the Friedmann equation
becomes

H2(t) = H2
0 (Ωra

−4 + Ωma
−3). (1.29)

The scale factor aeq at the time of radiation matter equality is given by the
equation Ωra

−4
eq = Ωma

−3
eq . We use this to replace the parameter Ωr in favour of

Ωm. Rearranging the terms in the Friedmann equation and using H = a−1da/dt

we find
da

a
= H0

√
Ωm

√
aeqa−2 + a−1

dt

a
. (1.30)

This can be used to replace the integrand dt/a in the definition of η. We then
find

η =

∫ t

0

dt′

a(t′)
=

∫ a(t)

0

1√
ΩmH0

da′√
aeq + a′

(1.31)

=
2√

ΩmH0

(√
a(t) + aeq −

√
aeq

)
, (1.32)

where the last line simply is the evaluation of the integral above. Thus we find
the claim.

Fig. 1.5 shows the evolution of the scale factor with conformal time η. In
this double logarithmic plot the transition from radiation domination (a ∝ η) to
matter domination (a ∝ η2) is manifest in a changing gradient of the plotted line.
The usage of η instead of t will be very effective in the discussion of perturba-

tions of the homogeneous universe, indeed, we will even change our notation from
˙( ) = d/dt to ˙( ) = d/dη in the next chapter.
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1.5. Dark Energy

Today’s data hint towards some kind of dark energy that is accelerating the
expansion of the universe. The proposed origin of this phenomenon is being
discussed in the literature today, suggestions range from a classical cosmological
constant to a unified dark sector. Fig. 1.6 shows the supposed position of our
universe in the (Ωm,ΩΛ) parameter space. Observations suggest that it is not a
flat matter dominated universe.
Because ρL = const dark energy is bound to dominate the universe at late

times. Fig. 1.7 is the analog of Fig. 1.1 with a cosmological constant dominant at
late times. The scale factor grows immensely at this stage – here shown up to an
age of 80 billion years – in accordance with the analytical exponential expectation
for Λ domination:

a(t) ∝ exp(
√

ΩΛH0t). (1.33)

Proof. In a Λ dominated universe we write the Friedmann equation:

H2(t) = H2
0 ΩΛ ⇒ da

dt
= H0

√
ΩΛa(t). (1.34)

This can be integrated by separation of the variables to give the claimed relation.

Fig. 1.8 shows the plot corresponding to Fig. 1.5. Again, early in the universe
first radiation, then matter dominate the Friedmann equation and the scale factor
a grow correspondingly as η and then as η2. However, as soon as the universe
is dominated by the dark energy the scale factor grows exponentially in time.
The integrand of η, however, 1/a(t) falls off very rapidly and the increment in η
becomes negligible. This results in the steep rise in Fig. 1.8.
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the ΩM–ΩΛ plane are shown, after integrating the four-dimensional fit over MB and α. (The table of this two-dimensional probability distribution is available
at http://www-supernova.lbl.gov/.) See Figure 5(e) for limits on the small shifts in these contours due to identified systematic uncertainties. Note that the spatial
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recollapse. This line is not quite horizontal because at very high mass density there is a region where the mass density can bring the expansion to a halt before the
scale of the universe is big enough that the mass density is dilute with respect to the cosmological constant energy density. The upper-left shaded region, labeled “no
big bang,” represents “bouncing universe” cosmologies with no big bang in the past (see Carroll, Press, & Turner 1992). The lower right shaded region corresponds
to a universe that is younger than the oldest heavy elements (Schramm 1990), for any value of H0 ≥ 50 km s$1 Mpc$1.

Figure 1.6.: In a plane of the parameters Ωm and ΩΛ the position of our universe
is confined to the oval confidence levels obtained from supernovae
observations. A flat, Λ = 0 universe clearly contradicts the observa-
tions, instead some kind of dark energy is favoured s.t. ΩΛ 6= 0. This
figure is taken from [1].
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Figure 1.7.: This plot shows again scale factor a(t) versus cosmic time t. In
contrast to Fig. 1.1 there is a cosmological constant. It becomes
important at late times when radiation and matter densities have
fallen off. It drives the expansion exponentially.
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Figure 1.8.: Here the scale factor a is shown versus conformal time η. At late
times dark energy becomes the dominating content of the universe.
This is when the scale factor grows immensely with η.
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2. Inhomogeneities in a Universe
without Λ: Ωm = 1

The inhomogeneites in the universe today are supposed to have their origin in the
primordial fluctuations of the universe set by inflation (or – in principle – by any
other mechanism). The suggestion is that original inevitable quantum fluctuations
were amplified by the inflationary phase to serve as the initial conditions for
the growth of structures. For these initial conditions models usually predict a
Gaussian random field with a matter power spectrum1 of the form

Pδ(k) = Akn, n ' 1, k = ‖k‖ , (2.1)

where k the wave vector, also referred to as mode number and A the amplitude.
Both of these values need to be chosen in accordance with observations, from the
CMB say. The power spectrum in principle gives the intensity of fluctuations on
a given scale. The linear power spectrum above says that large-scale fluctuations
are a lot less apparent then small-scale fluctuations. This is in accordance with
our picture of the perturbations’ origin in quantum fluctuations.
The important point is that the physics of the evolution of these inhomogeneities

is well-understood, whereas their origin is a matter of current research. Hence,
we will only discuss the former here.
Incidentally, as we are interested in explaining the distribution of galaxies to-

day, the focus lies on the matter perturbations, i.e. both dark matter and baryons.
Considering the fact that the baryonic fraction of the matter content of the uni-
verse is small compared to dark matter it seems to be a feasible assumption that
baryons simply trace the evolution of the dark matter because of gravity. It is
hence the fluctuations in the dark matter at the end of inflation that are the
origin of today’s matter fluctuations. These initial overdensities have a size of 1

in 105 in most models (compare standard texts on inflation). In the evolution of
the universe there need to be processes that amplify these values enormously to
explain the rich large-scale structure we observe today. To do so there is basically

1For definition and extensive discussion see 46
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two ways: One is to find the underlying law of the physics of these processes, the
other is to use a computer to simulate the evolution of n-bodies. The fundamen-
tal flaw with the former is that it can only describe linear perturbation theory.
Non-linear effects can only be explained by comparison with simulated data.
The density contrast δ is used to describe the matter overdensities. Its definition

is given by

δ(x, t) =
ρ(x, t)− ρcr(t)

ρcr(t)
, (2.2)

where ρ(x, t) is the density at a given point in spacetime and ρcr(t) the time-
dependent critical density.
The basic form of the equation for δ is

δ̈ + (pressure− gravity)δ = 0, (2.3)

where the overdot denotes the derivative with respect to time. Pressure tends to
stop overdensities from growing, whereas gravity, of course, drags matter together.
The growth rate of an overdense region in the universe is thus driven by the
interplay of gravitational pull inwards and pressure pushing particles away from
the region. In detail it is the full Boltzmann and Einstein systems that that have
to replace this equation.

Boltzmann-Einstein System. Under these circumstances it is a valid approx-
imation to ignore higher photon moments then monopole and dipole, and thus set
the gravitational potentials Φ = −Ψ in the metric perturbations. In the notation
used here the overdot represents differentiation with respect to d/dη, and we con-
sider the Boltzmann-Einstein system in Fourier space: Θr,0 radiation monopole,
Θr,1 radiation dipole, and v the velocities of the matter inhomogeneities. Note
that we drop the notation of the density contrast, and let δ(k, η) denote the
Fourier transform of the matter inhomogeneities from now on. The equations
then read:

Θ̇r,0 + kΘr,1 = − Φ̇ (2.4)

Θ̇r,1 +
k

3
Θr,0 =

−k
3

Φ (2.5)

δ̇ + ikv = − 3Φ̇ (2.6)

v̇ +
ȧ

a
v = ikΦ, (2.7)

There is one more equation relating the potential Φ to the overdensities in
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matter and radiation:

k2Φ + 3
ȧ

a

(
Φ̇ +

ȧ

a
Φ

)
= 4πGa2(ρdmδ + 4ρrΘr,0). (2.8)

An alternative to Eq. (2.8) is to use Eq. (5.81) in [5]:

k2Φ = 4πGa2

(
ρdmδ + 4ρrΘr,0 +

3aH

k
(iρdmv + 4ρrΘr,1)

)
, (5.81)

with the advantage that this equation is an algebraic equation and not a differ-
ential equation.

Mode Number k. A mode is characterised by its mode number k, or – equiv-
alently – its wavelength λ = 2π/ ‖k‖, where, of course, as above k = ‖k‖. Causal
physics can only act on objects of the size of the Hubble horizon 1/aH. As a
manner of speaking we say a mode enters the horizon when its (fixed) wavelength
becomes comparable to the (growing) Hubble horizon. Decisive for the develop-
ment of a given mode is when it enters the horizon with respect to radiation-matter
equality aeq. We define a relevant scale for modes that enter the horizon during
radiation-matter equality via

keq = aeqH(aeq) =

√
2ΩmH2

0

aeq
(2.9)

= 0.073Mpc−1 Ωmh
2. (2.10)

Proof. To prove this simply insert the Friedmann equation and the corresponding
numerical values for the parameter.

Considering the fact that aeq = 4.15 ·10−5(Ωmh
2)−1 we will speak of large-scale

modes if k−1 ∼ 1000h−1Mpc, which means they enter the horizon at a ∼ 0.03,
i.e. much later then radiation-matter equality.

2.1. Analytical Results

In Sec. 2.2 and the following we will discuss numerical results of these coupled
differential equations. First, however, we will have opportunity to digress and
discuss the analytical description of the processes. These exist for all modes
entering in radiation or matter dominated era. No analytical description has
been found for modes that enter during radiation-matter transition.
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Super-horizon Evolution

Super-horizon indicates that the mode has not entered the horizon, but instead
that its wavelength succeeds the Hubble horizon: kη � 1. In the early universe
(a = 10−7 − 10−6) this is true for all modes of physical interest. It implies that
we can drop all k-dependent terms in the differential equations: The evolution is
independent of mode number k, they all evolve identically. Early in the universe
the potential Φ is then constant for all modes.

Proof. First, we note that the full Bolzmann-Einstein system, Eq. (2.4)-(2.8) sim-
plifies to three equations as the velocities v and the dipole moment Θr,1 decouple
from the other equations. The system becomes

Θ̇r,0 = − Φ̇ (2.11)

δ̇ = − 3Φ̇ (2.12)

3
ȧ

a

(
Φ̇ +

ȧ

a
Φ

)
= 4πGa2(ρdmδ + 4ρrΘr,0). (2.13)

It can then be shown that for super-horizon modes the potential Φ obeys the
following second order differential equation with respect to variable y := a/aeq:

d2Φ

dy2
+
dΦ

dy

21y2 + 54y + 32

2y(y + 1)(3y + 4)
+

Φ

y(y + 1)(3y + 4)
= 0. (2.14)

This differential equation can be integrated to

Φ(y) =
3
√

1 + y

4y3
Φ(y ≈ 0) ·

∫ y

y′≈0
y′2

3y′ + 4

(1 + y′)3/2
dy′ (2.15)

=
1

10

Φ(y ≈ 0)

y3

(
16
√

1 + y + 9y3 + 2y2 − 8y − 16
)

(2.16)

This means that in the early universe (when y � 1) all modes are super-horizon
and they share the same constant potential Φ(y ≈ 0). This can be seen in the
top left corner of Fig. 2.1 below, where all modes start at the same potential and
only gradually depart from it when they enter the horizon.

This proof also shows that the evolution of δ is rather uninteresting as long as
the mode stays outside the horizon: The differential equation for δ, Eq. (2.12), tells
us with Φ = const that δ̇ = 0. In early times the potential and the inhomogeneities
stay constant. This behaviour can be seen in Fig. 2.2, where δ is plotted versus
scale factor a(t). At early times all modes are constant and only start to grow
when they entered the horizon.
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Furthermore, from the proof above we can deduce another important result:
we can predict the evolution of large-scale modes that entered the horizon much
later. For those modes the derived Eq. (2.16) is valid through all times and we
can take the (y →∞)-limit. In that case the 9y3 term dominates and we find

Φ→ 9

10
· Φ(y ≈ 0). (2.17)

Even on the largest scales the potential suffers a drop of 10% when the uni-
verse passes through radiation-matter equality. Again, this feature can be seen in
Fig. 2.1, where the largest mode shown drops according to the result here. Smaller
modes enter the horizon earlier and show a completely different behaviour. The
result of the 9/10 drop will be used below in the definition of transfer and growth
function.

Horizon Crossing

Matter Domination In the section above we have seen that the potential Φ

remains constant as long as the mode has not entered the horizon, this is early
in the universe. During radiation-matter transition even the largest modes suffer
a 10% drop. Another analytical result regards modes that enter the horizon well
after radiation-matter equality: The potential is constant during horizon crossing
as long as the universe is matter dominated.

Proof. In the equations of the full Boltzmann-Einstein system we replace all den-
sities by ρ = ρm = ρdm. The equations simplify considerably and going through
the algebra we find that the potential must obey a differential equation of the
form

αΦ̈ + βΦ̇ = 0, α, β = const. (2.18)

One solution to this equation is a constant potential Φ = const, and by the initial
conditions we see it is the solution to Eq. (2.18).

Fig. 2.1 shows the constant potential at late times for three modes. The numer-
ical results again confirm our understanding of the physics behind the evolution
of the different modes.
With constant potential Φ the overdensities δ then grow as δ ∝ a.

Proof. The relevant differential equation for δ is different from Eq. (2.12), however,
and we recall with Eq. (2.6) from the full system that:

δ̇ + ikv = −3Φ̇ (2.6)
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Figure 2.1.: Evolution of the potential Φ for three different perturbation modes
k (note that the values given in the figure are in units hMpc−1).
Small-scale modes enter the horizon during radiation domination and
are damped, i.e. the transfer function is less then unity. In contrast
the large-scale modes enter the horizon much later and incur the drop
by a factor of 9/10. The effects shown here are due to the transfer
function T (k), see below. This agrees with Fig. 7.2 in Dodelson[5].
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and see that with constant potential

δ̇ = −ikv ⇒ δ̈ = −ikv̇. (2.19)

Trying the ansatz δ = δ0η
2 shows that −ikv = 2δ0η and −ikv̇ = 2δ0. Now we

need to check if this satisfies the differential equation for v:

−ik(v̇ + aHv) = 2δ0 − ikv · aH (2.20)

= 2δ0 + 2δ0η · aH. (2.21)

Using the fact that during matter domination H2 ∝ a−3 and a ∝ η2 we see that
aH ∝ 1/

√
a ∝ 1/η. This means that the expression in the equation above is

indeed constant, and thus satisfies the differential equation (2.6). We thus arrive
at the result δ ∝ a for the evolution in matter dominated era.

Radiation Domination Modes that enter the horizon during radiation domi-
nation experience a totally different evolution. In the Ωm = 1 model we find

Φ(η) =
3

k2η3

(
sin

kη√
3
− kη√

3
cos

kη√
3

)
· ΦP (2.22)

For a proof consult [5]. This explains the damped oscillations in the potential of
small-scale modes in Fig. 2.1.
This analytical expression for the potential Φ can be used to find an expression

for the density contrast δ. One finds that

δ(k, η) = AΦP · log(B · kη), A,B parameters. (2.23)

Once again, a proof can be found in [5]. Hu and Sugiama, [10] find values A ≈ 9.6

and B ≈ 0.44 This means that modes, that enter the horizon during radiation
domination, i.e. small-scale modes, grow logarithmically during that epoch.

Sub-horizon Evolution

Some time before radiation-matter equality small-scale modes have long entered
the horizon: a � aH . In Eq. (5.81), however, the radiation perturbation is
negligible compared to the ρdmδ term and the rest of the equation is suppressed
as aH/k � 1. Again, working with the variable y := a/aeq and defining prime as
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differentiation with respect to y one finds the following set of equations:

δ′ +
ikv

aHy
= − 3Φ′

v′ +
v

y
=

ikΦ

aHy
(2.24)

k2Φ =
3y

2(y + 1)
a2H2δ

The solution for δ must adhere to Mezaro’s equation for the inhomogeneities:

δ′′ +
2 + 3y

2y(y + 1)
δ′ − 3

2y(y + 1)
δ = 0. (Mezaro)

A proof of the derivation and the following implications of Mezaro’s equation is
straightforward and can be found in [5]. The solutions to Mezaro’s equation are
the growth function D1(a):

D1(y) = y +
2

3
=
a+ 2aeq/3

aeq
, (2.25)

and a decaying mode

D2(y) = D1(y) log

(√
1 + y + 1√
1 + y − 1

)
− 2
√

1 + y. (2.26)

Recall that with a� aH we have y � yH and for those modes the general solution
to Mezaro’s equations is a linear combination between the two:

δ(k, a) = C1D1(y) + C2D2(y), C1, C2 = const. (2.27)

This expression must match onto the logarithmic growth during radiation domi-
nation seen in the last section, Eq. (2.23) within the matching domain where the
mode has entered the horizon but radiation-matter transition has not happened
yet. We will use this technique to derive an expression for the transfer function
on small scales below.
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Figure 2.2.: This plot shows the growth of the density perturbations. There is
a stark k-dependence of the growth: smaller modes start growing
earlier, but are suppressed during radiation domination before and
during aeq (which is indicated as vertical dotted line). Bigger modes
start later and grow freely in matter domination. At late times all
modes grow proportionally to a. Note that k is again given in units
of hMpc−1. This agrees with Fig. 7.3 in Dodelson[5].
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Figure 2.3.: This plot shows the behaviour of the two modes k = 1 and k =
10hMpc−1 early in the universe. Mezaro’s equation applies to the
area left of the aeq line. There the agreement is very good (not shown
here).
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2.2. Numerical Simulation

The most natural and straightforward thing to do with the set of coupled differ-
ential equations of the full Boltzmann-Einstein system, Eq. (2.4) and following,
is to put everything on a computer. A sensible result will be to see how the per-
turbations develop, what happens to the potential Φ and the inhomogeneities δ.
Even better, we can hope for a confirmation (as already indicated above) of the
analytical work of the last section.
For reasons of completeness we repeat the equations governing the full Boltzmann-

Einstein system:

Θ̇r,0 + kΘr,1 = − Φ̇ (2.4)

Θ̇r,1 +
k

3
Θr,0 =

−k
3

Φ

δ̇ + ikv = − 3Φ̇ (2.6)

v̇ +
ȧ

a
v = ikΦ,

Additional to that we use the differential expression Eq. (2.8) in the form:

Φ̇ =
1

3ȧ

3H2
0

2
(Ωmδ + 4ΩrΘr,0a

−1)− ak2Φ− ȧ

a
Φ (2.28)

Proof. This follows directly from Eq. 2.8 when resolving for Φ̇ and inserting

4πGρcr =
3

2
H2

0 . (2.29)

The parameter of the simulation here are h = 0.5,Ωm = 1 and Ωr = 10−5.
The initial conditions are the values for the variables at the end of inflation

(the time of the start of this simulation). Inflationary models give the following
relations between the potential Φ and the other values:

Θr,0 =
1

2
Φ (2.30)

Θr,1 = − a

6ȧ
kΦ (2.31)

δ = 3Θr,0 (2.32)

iv = −1

2

kΦa

ȧ
(2.33)

For the potential itself we insert Φ = k−3/2 in order to normalise the spectrum.
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The simulation itself is a numerical integration of the system of coupled equa-
tion in the programming language C++. There is a wide range of existing numer-
ical integrators readily available, several of which can be found in Numerical

Recipes[14]. Here we use a Runge-Kutta based integration technique called
Stepperdopr853 from this book. It is a Dormand-Prince embedded method of
order eight that uses 12 function evaluations per step. Closely watched by a super-
ordinate instance of the program it ensures adaptive stepsize control at all times
of the integration. This ensures that the numerical error is kept to a minimum,
the integrator will bulk, as soon as it finds the results not reliable.
In the following we will discuss the physics of the evolution of the inhomo-

geneities and – as we go along – discuss the numerical methods applied to find
these results. All figures – including the figures above and in Chapter 1 – come
from this simulation if not otherwise stated.
The additional equation we use is Eq. (5.81). This has the advantage that

it minimises the difficulties of a numerical integration. The only problem arises
for small scale modes at relatively late times. This is because it becomes tricky
to trace the behaviour of the radiation perturbations. However, these modes
have long entered the horizon and well after radiation-matter transition radiation
becomes negligible. The idea is to halt the integration process at this stage
and restart it without following the radiation anymore. There is the caveat left,
however, that the gravitational potential Φ still does not completely stabilise.
Instead, it rapidly oscillates with a tiny amplitude of about 0.1%. This makes
it too difficult to track for the numerical integrator. In order to prevent that we
manually insert an exponential damping of d/dη(Φ) = Φ̇ so that Φ stabilises in
accordance to Eq. (2.18).
The procedure will thus be as follows: We integrate the full system as far as

possible to find the k-dependent bulk times of the integrator. Equipped with
this knowledge we will be able to stop the integration process just before that
and restart it without the differential equations for the radiation perturbations.
Additional to that we insert the damping factor in the differential equation for Φ.

Integration until ηSTOP

When attempting to integrate the full Boltzmann-Einstein system until today the
integrator will – for some small k – bulk at late times. As the integration is in
η, we will have to find that ηSTOP(k) until which we can integrate safely. This
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function depends on the numerics of the integrating computer, here we suggest

ηSTOP(k) = ηtoday −
2

3
log
(
100k/(hMpc−1)

)
, (2.34)

where we set ηSTOP = ηtoday when the second term becomes negative. This means
that ηSTOP ≤ ηtoday. What this means for the integration is shown in Fig. 2.4.
The red line indicates up to where an integration of the full system is done when
following Eq. (2.34), i.e. the left side of the red line has been integrated with the
full system, the right side with the damped system. The points on the red lines
show the k-dependence of the coordinates:

(aSTOP(k),Φ(k, aSTOP(k))) , (2.35)

where we define in accordance with Eq. (2.34) that aSTOP := a(ηSTOP). From this
plot we see already that the algorithm only switches to the damped system when
Φ has been constant for some time. Fig. 2.5 and 2.6 give more insight into the
behaviour of the potential Φ where it crosses the red line (see below).

The Damping Factor

We insert an exponential damping factor damp(k, η) into Eq. (2.28) and at the
same time dropping the radiation perturbations. The equation then reads

Φ̇ =

[
1

3ȧ

(
3

2
H2

0 Ωmδ − ak2Φ

)
− ȧ

a
Φ

]
· damp(k, η). (2.36)

The form of the damping term damp(k, η) has to be chosen such that the lines
on the left of the red line in Fig. 2.4 match smoothly onto those on the right.
The k-dependence stems from the fact that larger modes (small k) do not need
to be damped as strongly as smaller modes. In fact modes of wave vector k '
0.01hMpc−1 and larger do not need to be damped at all: It is possible to integrate
the full system all the way up to today. In that case we set ηSTOP = ηtoday, as
mentioned above. This is why the red line in Fig. 2.4 does have a upper limit. In
the treatment here we choose for the damping factor:

damp(k, η) = η−(1+0.1k). (2.37)

Fig. 2.5 shows the behaviour of the mode k = 0.5hMpc−1, i.e. the evolution of
Φ at times shortly before the integration of the full system will bulk. The black
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Figure 2.4.: Just as Fig. 2.7 this plot shows the evolution of Φ of 10 modes. Ad-
ditional to that the red line indicates that the points on the left have
been calculated using the full system, whereas the points on the right
have been calculated using the damped system. The line has been
calculated using Eq. (2.34).
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Figure 2.5.: This plot shows in detail the behaviour of the mode with wave vector
k = 5hMpc−1. The integration of the full system (integrated as far
as possible) is shown in red, the integration of the system that has
been stopped and started again with the damping factor is shown in
black (and integrated until today).
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Figure 2.6.: This plot shows the detailed behaviour of the mode k = 10hMpc−1.
The colouring follows Fig. 2.5

36



line shows the evolution of the system with the damping factor with ηSTOP chosen
according to Eq. (2.34), the red line that of the full (undamped) system integrated
slightly further.
The vertical, dashed line indicates the scale factor at which the simulation with

the damping factor has been stopped. This corresponds to the intersection of the
red line with the line representing Φ in Fig. 2.4. The oscillations before that are,
of course, shared by both curves: Here, the differential equations are exactly the
same. After that the black line does not show the oscillations of the full system
anymore. This is because they have their origin in the rapidly changing radiation
perturbations which are ignored at this stage in the black model. However, the
overall behaviour is very well approximated by the damped model, as it traces
the full system very accurately.
Fig. 2.6 shows the corresponding plot for the mode k = 10hMpc−1.
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2.3. The Evolution of Inhomogeneities

Fig. 2.1 shows the evolution of the potential Φ for different modes. The potential
of large-scale modes (k ∼ 0.001hMpc−1) is up to a 10% drop unaffected by
radiation-matter transition. However, small-scale modes (k ∼ 1hMpc−1) suffer a
substantial drop.
Analytically we describe the potential at late times alate and thereafter by its

primordial value ΦP , the so called transfer function T (k) and the growth function
D1(a). The normalisation is chosen as

Φ(k, a) =
9

10
ΦP (k)T (k)

D1(a)

a
for a > alate. (2.38)

This equation is only valid at late times, i.e. a sufficiently large time interval after
radiation-matter transition. We will assume this for the rest of the chapter.

The Transfer Function T (k)

The transfer function describes the change of potential Φ(k, a) during radiation-
matter equality and horizon crossing for the different modes k. The formal defi-
nition is given by

T (k) :=
Φ(k, alate)

Φlarge-scale(k, alate)
. (2.39)

The factor of 9/10 in Eq. (2.38) ensures that the transfer function is unity for
the largest modes that only today start entering the Hubble horizon (see above
for a derivation). But, as we see in Fig. 2.1, this is clearly not the case for smaller
modes: There is a substantial drop in potential in these modes compared to the
large-scale modes. This is because small modes enter the horizon during radiation
domination and causal physics starts to act on them. The earlier they enter the
more suppressed they are in accordance with the theoretical results derived above.
For those modes we can predict the transfer function to be

T (k) '
12k2

eq

k2
· log

(
k

8keq

)
for k � keq. (2.40)

Proof. The proof uses the solution to Mezaro’s equation we derived earlier:

δ(k, y) = C1D1(y) + C2D2(y), (2.41)

again defining y = a/aeq. As mentioned above this solution can be matched onto
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Figure 2.7.: This plot in principle resembles Fig. 2.1: it shows potential Φ ver-
sus scale factor a. Here, a scan on different values for k has been
performed: The lines shown correspond to 0.001hMpc−1 · 1.64i, i =
0, 1, . . . , 18. This plot basically shows the effect of the transfer func-
tion on the potential.
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the logarithmically growing mode deep in radiation dominated era

δ(k, η) = AΦP log(B kη). (2.23)

Deep in radiation era means that the argument kη can be replaced by y/yH

because k = aHH(aH) = aH
√
H2

0 Ωra−4 ∝ 1/aH and a ∝ η. The matching
conditions (for the function and its derivative) then become:

AΦP · log(By/yH) = C1D1(y) + C2D2(y) (2.42)

AΦP
yH
By

B

yH
= C1D

′
1(y) + C2D

′
2(y) (2.43)

where y in the matching region. Multiplying the first equation by D′2 and the
second by D2 we can subtract one from another to get rid of the the term pro-
portional to C2:

C1(D1D
′
2 −D′1D2) = AΦP

[
D′2 log

(
By

yH

)
− D2

y

]
. (2.44)

The term in brackets on the left hand side can be written as D2
1 d/dy(D1

D2
) and we

use the result from the derivation of the solution of Mezaro’s equation to see that
this is equal to:

D2
1

d

dy

(
D1

D2

)
= D2

1

−4

(2 + 3y)2

1

y(
√

1 + y)
. (2.45)

This means that then

D1D
′
2 −D′1D2 = − 4

9

1

y
√

1 + y
(2.46)

' − 4

9

1

y
for yH � y � 1. (2.47)

In the same limit we approximate

D2(y) ' 2

3
log(4/y)− 2 and (2.48)

D′2(y) ' − 2

3y
(2.49)

Plugging back all these results back into Eq. (2.44) we find:

− 4

9y
C1 ' AΦP

[
− 2

3y
log(By/yH)− 1

y

(
2

3
log(4/y)− 2)

)]
(2.50)
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⇒ C1 '
3

2
AΦP (log(4B/yH)− 3) (2.51)

Having fixed the constant C1 we see that we do not need to find the value for C2,
because well after equality the decaying mode has long died out. Thus we arrive
at a final expression for δ:

δ(k, a) =
3

2
AΦP (k) (log(4B/yH)− 3)D1(a). (2.52)

To turn this into a result for the transfer function we use the relation between δ
and ΦP from below, Eq. (7.8)

δ(k, a) =
3

5

k2

ΩmH2
0

ΦP (k)T (k)D1(a). (7.8)

Equating the two expressions for δ, dropping the terms D1 and ΦP and resolving
the resulting equation for the transfer function T (k) we see – using aeq/aH =√

2k/keq – that

T (k) =
5

2
A

ΩmH
2
0

k2aeq
· log

(
4Be−3

√
2k

keq

)
for k � keq. (2.53)

Lastly, we use the definition of keq = aeqH(aeq) =
√

2H0a
−1/2
eq with Ωm = 1 to

see that the numerical factors of the transfer function only depend on the ratio
k/keq. Recalling the numbers A = 9.6 and B = 0.44, we see that the numerical
factor in the transfer function are 12.0 and 0.124 ' 1/8.07. This finishes the proof
of Eq. (2.40).

The BBKS Fitting Function

Bardeen, Bond, Kaiser and Szalay, [2], have found a fitting function to the transfer
function T (k). They define x := k/keq, then

T (x) =
log(1 + 0.171x)

0.171x

(
1 + 0.284x+ (1.18x)2 + (0.399x)3 + (0.490)4

)−1/4

(2.54)
Fig. 2.8 shows the transfer function for the modes relevant in cosmology.

The Growth Function D1(a)

The growth function describes the evolution of the inhomogeneities at late times.
In contrast to the transfer function T (k) it is independent of k. Although the
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Figure 2.8.: This is a double logarithmic plot of the transfer function versus
mode number k: black line (values from the simulation), red line (the
BBKS fitting form, [2]) and the blue line (the analytic expression,
Eq. (2.40)). On large scales the transfer function is close to unity.
On small scale it falls off rapidly following the analytic expression.
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potential is constant at late times, matter overdensities have acquired considerable
mass already and hence attract more matter. Their growth is exemplary shown in
Fig. 2.2 for three different modes, where we explicitly see that their late evolution
is mode-independent: they grow as δ ∝ a.
The large-scale mode only entered the horizon at late times during matter dom-

ination. It starts growing without obstruction. The small-scale mode entered the
horizon well in radiation domination. Its suppression from the transfer function
(i.e. radiation pressure) can be seen clearly.
At later times well after radiation-matter transition the evolution is determined

by the growth factor only and it is the same as for the other modes. The kind of
suppression will be an important tool in the determination of the parameter of
our universe.
As we have seen already, the growth factor D1 in a flat matter-dominated

universe (Ωm = 1) is given by:

D1(a) =
a

aeq
− 2

3
. (2.55)

Defining x := (1 − Ωm)a/Ωm the growth factor in an open matter-dominated
universe (Ωm < 1) is given by

D1(a) =
5Ωm

2(1− Ωm)

[
3

√
1 + x

x3/2
log
(√

1 + x−
√
x
)

+ 1 +
3

x

]
(2.56)

Proof. A proof of this formula will be given in the next Chapter, on page 56.
This is because we will need the general Friedmann equation (here for matter and
curvature) and its consequences on the growth function. This is being discussed
in the chapter on dark energy and its consequences on the evolution of matter
inhomogeneities.

Fig. 2.9 shows the growth factor for four different models of the universe for
a = 0.1 to a = 1. The top line corresponds to the flat, matter dominated universe,
the three lines below that to open, matter dominated universes with varying Ωm.
The growth factor in the flat case, Eq. (2.55) coincides with the (Ωm → 1)-limit of
Eq. (2.56) as well as with the data from the simulation. This is a very important
consistency check.
We see from these curves that the growth factor D1(a) behaves almost identi-

cally up to a ∼ 0.1. In the flat case the growth factor is simply proportional to the
scale factor, see Eq. (2.55). In the open models the growth factor is increasingly
suppressed with decreasing matter content. The structures we see today must
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Figure 2.9.: Here the growth factor is shown for a flat, matter dominated (Ωm =
1) universe and several open, matter dominated (Ωm < 1) universes.
The growth factor in the flat case (thick line) is given by Eq. (2.55),
in the open case (thin lines below) by Eq. 2.56. The figure has been
normalised to the growth factor in the flat case today.
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have formed earlier in an open universe compared to a flat, matter dominated
universe. Refer to page 58 for a discussion of the effects of dark energy on the
growth factor.
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2.4. The Matter Power Spectrum

With the machinery developed so far we can explain the power spectrum of the
matter distribution at late times. This is important and very helpful for the
further discussion, because the power spectrum is accessible to observations via
large galaxy redshift surveys. The power spectra of matter Pδ(k) and gravitational
potential PΦ(k) are defined via:

〈δ(k, a)δ(k′, a)〉 = (2π)3Pδ(k) δ(3)(k− k′) and (2.57)

〈Φ(k)Φ(k′)〉 = (2π)3PΦ(k) δ(3)(k− k′), (2.58)

where the δ(3) denotes the Dirac delta function in three dimensions.

Scale-free Spectra

A scale-free spectrum P (k) (or scale-invariant) is a spectrum for which the excess
power is constant, i. e. independent of k. The (integrated) excess power ∆ is
defined by

∆2(k) :=
k3P (k)

2π2
. (2.59)

The name comes from the identification of P (k)d3k/(2π)3 with the excess power
in the canal centred at at k with width dk. The integration goes over all directions
of k. The significance of the excess power is that it is an indicator of nonlineari-
ties in the perturbations. Small inhomogeneities, that can be treated with linear
perturbation theory, have small ∆, whereas nonlinear perturbations have a cor-
responding large excess power ∆. The critical value for the excess power ∆ is
about 1.
In the case of scalar perturbations (in which we are working here) the potential

power spectrum at primordial times is given by

PΦ(k) =
50π2

9k3

(
k

H0

)n−1

δ2
H

(
Ωm

D1(a = 1)

)2

. (6.100)

This definition (and the equation numbering) follows the conventions of [5]. Note
that this idea of the primordial power spectrum includes the growth function D1

evaluated today at a = 1 and the value of the overdensities at horizon crossing
δH . The number n is an index of the scale invariance of the spectrum. The
scale-free spectrum (Harrison-Zel’dovich-Peebles) spectrum corresponds to n = 1.
The theory of inflation suggests that the scalar (and tensor) perturbations in the
universe are scale-free up to small deviations. It is these deviations we are most
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interested in, i.e. we are looking for n.

Today’s Matter Power Spectrum

To find an expression for today’s matter power spectrum we use Eq. (6.100) for the
primordial power spectrum and the definition of transfer and growth functions.
We find (again with the equation numbering of [5]):

P (k, a) = 2π2δ2
H

kn

Hn+3
0

T 2(k)

(
D1(a)

D1(a = 1)

)
. (7.9)

Proof. At late times the algebraic expression for the gravitational potential k2Φ(k)

simplifies to
k2Φ(k) = 4πGa2 · ρmδ(k, a). (2.60)

This can be seen as follows: Eq. (5.81) in [5] reads:

k2Φ = 4πGa2

[
ρmδm + 4ρrΘr,0 +

3aH

k
(iρmvm + 4ρrΘr,1)

]
. (5.81)

We now consider the limit of Eq. (5.81) in the case of negligible radiation for large-
scale modes. This means that we set ρr = 0 and take aH/k � 1 and immediately
recover Eq. (2.60).
Upon insertion of ρm/ρcr = Ωma

−3 (matter domination) and the definition of
ρcr one finds that

δ(k, a) =
2

3

a

ΩmH2
0

k2Φ(k)

=
3

5

k2

ΩmH2
0

ΦP (k)T (k)D1(a), (7.8)

where in the second line the analytical expression for Φ(k), Eq. (2.38), has been
inserted (the equation numbering follows [5]). Using the definition of the power
spectrum, Eq. (2.57), we find the equation

(2π)3Pδ(k)δ(3)(k− k′) = 〈δ(k, a)δ(k′, a)〉 (2.61)

=
9

25

1

Ω2
mH

4
0

〈k4Φ2
PT

2(k)D2
1(a)〉. (2.62)

Here, the brackets on the right hand side collapse onto 〈Φ2
P (k)〉 and we can use its

definition, Eq. (2.58), to replace it with the potential power spectrum PΦ. This,
in turn, can be replaced by expression (6.100). Dropping the (2π)3δ(3)(k − k′)
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terms on both sides we see that

Pδ(k, a) =
9

25

1

Ω2
mH

4
0

k4T 2(k)D2
1(a) · 50π2

9k3

(
k

H0

)n−1

δ2
H

(
Ωm

D1(a = 1)

)2

= 2π2δ2
H

kn

Hn+3
0

T 2(k)

(
D1(a)

D1(a = 1)

)
, (2.63)

where the last line simply follows from evaluating the terms in the line above.

Fig. 2.10 shows the power spectrum obtained from the simulation. The model
shown is a flat, matter dominated model (Ωm = 1 and h = 0.5), called a stan-
dard cold dark matter power spectrum, or short sCDM power spectrum. We use
Eq. (2.63) to translate the results of the evolution of different modes into a power
spectrum. We have two analytical results:
On large scales P (k) ∝ k.

Proof. This follows directly from Eq. (2.63) when we insert a simple (and ap-
proximately correct) inflationary model with n = 1 (scale-free spectrum). The
transfer function is equal to one for these modes and the growth factor D1 is
mode-independent.

On small scales the power spectrum is a decreasing function of k.

Proof. We have already seen that the transfer function is a decreasing function
of mode number k. This can be seen, for example, in Fig. 2.8. With Eq. (2.63)
this translates to a decreasing power spectrum on small scales, because the term
in the power spectrum without the transfer function grows only as kn, whereas
the transfer function behaves as log(k)/k2.

Because these behaviours must fit together smoothly, we can deduce that there
must be a point of turnover in the power spectrum. The physical picture of this is
as follows: Large-scale modes do not enter the horizon until late in the universe.
Their transfer function is thus unity. By the time of horizon entering radiation
is negligible and the inhomogeneities grow without impediment. This means that
the signature of inflation imprinted on the power spectrum early in the universe
(P ∝ k) is preserved throughout the evolution with time. We see this behaviour
on the left hand of the turnover point in Fig. 2.10.
Small-scale modes, however, behave completely different. They enter the hori-

zon early during radiation domination or radiation-matter transition. Causal
physics starts to act on them and radiation pressure suppresses their growth,
i.e. the transfer function is small and decreasing with k. This can be seen in
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Figure 2.10.: The power spectrum of the inhomogeneities Pδ(k) today in a Ωm = 1
model of the universe: sCDM power spectrum. There is a good
agreement between the data from the simulation (black line) and
the BBKS fitting function (red line). The overall normalisation has
been chosen arbitrarily. For large-scale modes the power spectrum
behaves as P ∝ k, for small-scale modes, in contrast, it falls off with
k.
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Fig. 2.2: Large-scale modes enter late and simply grow with a, small-scale modes
(k = 2hMpc−1 shown there) enter early and experience a phase of delayed growth
before radiation becomes negligible. The earlier a mode enters the horizon, the
more its growth is suppressed. This results in the power spectrum being a de-
creasing function of k.
In the next chapter we will supplement this discussion with the power spectrum

of a model of the universe with cosmological constant Λ. For further discussions
[16] and [11] are good starting points.
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3. The Effect of Dark Energy on the
Inhomogeneities

In the last chapter we extensively discussed the evolution of matter perturbations
in a universe with radiation and (dark) matter only. This was very advantageous
in the sense that we were able to understand the reasons behind certain features
in the evolution of the inhomogeneities. In particular we have seen that the
inhomogeneities grow immensely in a matter dominated era of the universe. We
did not have to worry about effects of dark energy. In this chapter, however, we
set off to discuss the changes caused by dark energy in the universe. We will
limit ourselves to dark energy implemented as a cosmological constant Λ in this
chapter, and defer all effects due to variable dark energy to the next chapter.
The effect of dark energy is very prominent in both the transfer function T (k)

and the growth function D1(a). Due to their input to the power spectrum we can
expect prominent dark energy features in the power spectrum as well. In fact,
because of observations of the matter power spectrum in the last 20 years, these
effects can be used to find the parameters of the universe we live in.
In the following we compare the results of a simulation of the model with

parameter Ωr = 4.67·10−5/h2,Ωm = 1 and h = 0.5 on the one hand and the model
with cosmological constant with parameters Ωr = 4.67 · 10−5,Ωm = 0.3,ΩΛ = 0.7

and h = 0.73 on the other hand.

3.1. The Transfer Function in a Universe with Λ

The transfer function in models of the universe with Λ behaves differently at late
times. This is due to the decay of the gravitational potential at late times. As an
example we show the behaviour of the mode k = 0.001hMpc−1 in Fig. 3.1. Just
as in Fig. 2.1 the mode has constant potential Φ early in the universe. During
radiation-matter transition the modes suffers from the 9/10-drop and approaches
a constant value again. Only at late times the effects of Λ become prominent and
the potential drops substantially. This behaviour is exemplary, the other modes
incur a similar drop at late times.
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Figure 3.1.: Here we show the decay of the mode k = 0.001hMpc−1 at late times.
Even though it is a large-scale mode the gravitational potential suffers
from a substantial drop at late times. This is due to the accelerated
expansion from the cosmological constant Λ.
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Figure 3.2.: This plot shows the ratio of the transfer function divided by the
BBKS fitting form of the transfer function for the model with Ωm = 1
and h = 0.5 (thick black line), the model with ΩΛ and h = 0.73 (thin
black line) and the analytic expression, Eq. (2.40) (blue line), c.f.
Fig. 2.8 on page 42.
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This drop, of course, has radical consequences on the transfer function. Fig. 3.2
shows the transfer function divided by the BBKS form of the transfer function.
The thick black line close to unity is the transfer function of the model with
Ωm = 1. From Fig. 2.8 we expect this agreement. The analytic solution, Eq. (2.40)
is shown in blue again. As expected, the thin black line of the transfer function
of a model with Λ lies substantially below unity.

3.2. The Growth Function in a Universe with Λ

In a flat matter-dominated universe the growth function D1 was simply given by

D1(a) =
a

aeq
− 2

3
. (3.1)

For our universe we suppose this is true for the time after radiation-matter tran-
sition, but before the effects of dark energy become apparent, i.e. before a ' 0.1

or, equivalently, z ' 10. Even in an open matter-dominated universe we were
able to find an analytic expression for the growth function. With dark energy the
growth function is given by the integral:

D1(a) =
5Ωm

2

H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3
. (7.77)

The advantage of writing it in this form is that it is general enough to include
effects of curvature (Ωk 6= 0). This is important as we are going to use this result
to prove Eq. (2.56) from above.

Proof. This proof follows the steps sketched out in [5]. First, we will find the
differential equations governing the Boltzmann-Einstein system at late times: a >
0.1. Radiation can be ignored (as above), but curvature and dark energy have
to be taken into account. This means we attempt to find a generalisation of the
Mezaro’s equation. For this we retrace the steps of its derivation starting with
the system (2.24). The first two equations are valid in this regime, too. However,
the derivation of the third equation from the full Boltzmann-Einstein system is
not valid anymore. We know that the dark matter behaves like

8πG

3
ρdm = H2

0 Ωma
−3. (3.2)

This means that the coefficient of the k2Φ equation, Eq. (5.81) changes. Again,
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we ignore radiation, and deal with modes inside the horizon, so we get:

k2Φ = 4πGa2ρdmδ =
3

2
H2

0 Ωma
−1δ. (3.3)

Another way to see this is to work with the variable y := a/aeq again. Here we
have y � 1 so that we can approximate y/(y + 1) ≈ 1. This equation together
with

δ′ +
ikv

aHy
= − 3Φ′

v′ +
v

y
=

ikΦ

aHy
(2.24)

defines the new system of coupled differential equations.
In the derivation of Mezaro’s equation we used an expression for the derivative

of 1/(aHy) with respect to y, but here we want to keep the behaviour of H ′ as
general as possible. This means we will not specify d/dy(H) = H ′. Similar to the
derivation of the Mezaro’s equation, we differentiate the differential equation for
δ in the system 2.24 to obtain a second-oder equation for δ. The differential equa-
tions of the system can be combined to find a second order differential equation
for δ, Eq. (7.73):

d2δ

da2
+

(
d logH

da
+

3

a

)
dδ

da
− 3ΩmH

2
0δ

2H2a5
= 0, (7.73)

where all factors of aeq disappear.
Interestingly, in several cases there are non-increasing solutions for δ. These

are, however, useless for the theory of structure formation. It drops out that
the increasing solution in case of matter, cosmological constant and curvature is
determined by the integral:

I(a) :=

∫ a da′

(a′H(a′)/H0)3
(3.4)

and the coefficients turn out to be the ones given in Eq. (7.77). Note however,
that this is no longer true if dark energy has an equation of state with parameter
w 6= −1, see the discussion on page 64.

We are now in a position to proof Eq. (2.56), i.e. we want to show that

D1(a) =
5Ωm

2(1− Ωm)

[
3

√
1 + x

x3/2
log
(√

1 + x−
√
x
)

+ 1 +
3

x

]
(2.56)
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Proof. To begin with we define a new variable y := Ωm/a with

dy = −Ωm
da

a2
(3.5)

. Using this variable and the Friedmann equation for an open universe,

H2(a) = H2
0 (Ωma

−3 + Ωka
−2), where Ωk = 1− Ωm, (3.6)

=
H2

0

a2
(y + 1− Ωm) =

H2
0

Ω2
m

y2(y + 1− Ωm) (3.7)

⇒ H3
0

aH3(a)
=

a2

(y + 1− Ωm)3/2
=

Ω2
m

y2

1

(y + 1− Ωm)3/2
(3.8)

we see that the integral I(a) of Eq. (3.4) and Eq. (7.77) transforms as

Ωm

∫ a

0

da′

(aH(a)/H0)3
=

∫ ∞
Ωm/a

Ω2
m dy

y2(y + 1− Ωm)3/2
(3.9)

We now use a common trick in solving integrals: We introduce new variables ε
and λ realising that the product of

d

dε

1

y + ε

∣∣∣∣
ε=0

=
−1

y2
and (3.10)

d

dλ

1√
y + λ

∣∣∣∣
λ=1−Ωm

=
−1

2
√
y + 1− Ωm

(3.11)

gives the integrand on the right hand side of Eq. (3.9). All functions are sufficiently
smooth, so we can pull the differentiations in front of the integral. The integral
then takes the following form:

Ωm

∫ a

0

da′

(aH(a)/H0)3
= 2Ω2

m

d

dε

d

dλ

∫ ∞
Ωm/a

dy

(y + ε)
√
y + λ

∣∣∣∣
ε=0

λ=1−Ωm

(3.12)

The resulting integral can be done using entry 2.246 in Gradshteyn and Ryzhik, [8],
which is for convenience repeated in the Appendix as Eq. (A.1) on page 66 of this
document. The expression obtained this way needs to be differentiated with re-
spect to both, ε and λ, and then evaluated at ε = 0 and λ = 1 − Ωm. That the
result is indeed Eq. (2.56) is demonstrated by calculation.

Equipped with Eq. (7.77) we are now in a position to investigate the growth
factor in a variety of universes. This will generalise the discussion of the growth
factor in an open, matter dominated universe, see Fig. 2.9 on page 44. Fig. 3.3
shows the growth factor for three different models. We already now the purely
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Figure 3.3.: This plot shows the growth factor for three different models for the
universe. The two upper curves correspond to flat cas with parame-
ters (Ωm = 1,ΩΛ = 0) and (Ωm = 0.3,ΩΛ = 0.7). The lower curve
is the growth factor in an open, matter dominated universe. This
agrees with Fig. 7.12 in [5].
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Figure 3.4.: Here the growth factor is shown for four flat models of the universe:
The two upper curves have h = 0.5, the two lower curves, however,
have h = 0.73. The black lines correspond to models without Λ
(Ωm = 1), the red lines to universes with Λ (Ωm = 0.3,ΩΛ = 0.7).
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matter dominated cases (top and bottom curves). The curve in between is the
growth factor of a flat universe with matter and Λ, here (Ωm = 0.3,ΩΛ = 0.7).
When dark energy has not come into effect yet (a ∼ 0.1 to 0.5), the growth
factor of the universes with and without Λ behaves very similarly. Later in time,
however, the growth factor in the model with Λ is suppressed compared to the
purely matter dominated case. Recalling the fact that the growth factor describes
the growth of inhomogeneities at late times we see that in the matter dominated
case structures keep building up until today. In the model with Λ, however, the
structures we observe today must have formed much earlier as their growth is
suppressed at very late times.
Fig. 3.4 shows the two flat models again, this time, however, compared to

two corresponding lines with different h. The two upper curves are from models
with h = 0.5, the two lower ones from curves with h = 0.73. The shape of the
corresponding curves is very similar we see that the growth factor D1(a) only
depends on h via its overall normalisation.

Approximation for the Growth Factor

An excellent approximation to the growth factor D1(a) of a flat universe (ΩΛ =

1− Ωm) is given by

D1(a,Ωm)

D1(a = 1,Ωm)
=

5

2
Ωma

[
Ω4/7
m − ΩΛ +

(
1 +

1

2
Ωm

)(
1 +

1

70
ΩΛ

)]−1

. (3.13)

In Fig. 3.5 we show the growth factor from the simulation compared to this
approximation. There is good agreement up to a ∼ 0.5. This approximation is
usually referenced to Carroll [4], although he gives further references to Lahav et
al 1991 and Lightman & Schechter 1990.

3.3. The Power Spectrum Revisited

Now that we have seen the results of a cosmological constant Λ on the transfer
function T (k) and the growth factor D1(a) we are in a position to discuss the
effects of Λ on the power spectrum. Fig. 3.6 shows the power spectrum in this
model compared to the power spectrum that we discussed earlier. The spectrum
of the model with Λ has been normalised to agree on large scales. The turnover
point of this spectrum occurs for modes much larger then in the other model.
The physical explanation for this is as follows: The model with Λ has a lot less
matter (Ωm = 0.3) then the model without Λ, which implies that radiation-matter
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Figure 3.5.: The growth factorD1(a) of a flat model with Λ (Ωm = 0.3,ΩΛ = 0.7).
The black line shows the growth factor obtained numerically, it is the
same as in Fig. 3.3 and 3.4. The red line is the approximation of
Eq. (3.13) with the parameters of this specific model. There is an
excellent agreement up to a ∼ 0.5.
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Figure 3.6.: Here the power spectrum obtained from the BBKS form of the trans-
fer function (red line), c.f. Fig. 2.10, is compared to the power spec-
trum obtained from the simulation of the model with Λ. The spectra
have been normalised to agree on large scales. The turnover point in
the model with Λ is significantly earlier then in the model without.
The small-scale modes are correspondingly more suppressed.

equality is correspondingly later. To see this we recall that the energy density of
the photons is much higher then matter energy density, but falls off more rapidly,
c.f. Fig. 1.2. This delay gives opportunity for more (i.e. larger) modes to enter the
horizon during radiation domination or radiation-matter transition. These modes
will experience suppressed growth due to radiation pressure and the turnover
point in the power spectrum will thus occur on larger scales. A measurement of
the power spectrum can thus be used to find the value of ΩΛ.
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3.4. Details of the Numerical Integration

We use the same numerical integrator as in the previous chapter. The one problem
there is is the form of Eq. 7.77. It is an integral instead of a differential equation.
However, we can easily convert this into a differential equation by taking the
derivative with respect to a of this equation:

d

da

D1(a)

H(a)
=

5

2
Ωm

H2
0

(aH(a))3
. (3.14)

Recalling that the Friedmann equation in a universe with radiation, matter and
dark energy is given by

ȧ =
da

dη
= H0

√
Ωr + Ωma+ ΩΛa4 (3.15)

and that this can be used to cast the derivative with respect to a into a derivative
with respect to η we see that

d

dη

D1(a)

H(a)
=
da

dη

d

da

D1(a)

H(a)
(3.16)

=
5

2
ΩmH

2
0

ȧ

(aH(a))3
. (3.17)

The differentiation with respect to log η then simply introduces another factor
of η, just as before. H can be replaced using aH = ȧ/a and the equation to be
integrated then reads

d

d log η

(
2

5

1

ΩmH2
0

D1(a)

H(a)

)
= η

a3

ȧ2
. (3.18)
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4. Dark Energy Equation of State:
p = wρ

The observational evidence for dark energy has grown immensely over the last
decade. Whereas it was an open question whether the universe was accelerating
or decelerating only fifteen years ago, today the evidence for an acceleration of
the expansion of the universe is convincing. There are many review articles sum-
marising the current indications that our universe has ΩΛ 6= 0, e.g. Eisenstein [6]
or Bartelmann [3]. The literature agrees that the observations indicating dark
energy are based on two pillars: Firstly, effects of dark energy on the scale fac-
tor a(t), and secondly, on the growth of the perturbations (and in particular the
matter inhomogeneities).

Supernovae Type Ia supernovae can be used as standard candles when their
lightcurve is corrected in a well-studied manner. This is convincing although the
physics of a supernova explosion is difficult to understand. Only recently have
simulations started to reproduce the observed effects. In a flat universe we can
thus infer the distance of those objects from the observed brightness and redshift.
Ten years ago it was already known that distant supernovae appear to be too
faint, e.g. Perlmutter [13].
Possible explanations range from mistakes in the physics of the supernovae to

difficulties in the estimate of intergalactic absorption rates. The most striking
explanation, however, is that the universe has recently undergone a phase of ac-
celerated expansion. This would place these object a lot farther away and explain
their apparent faintness. The observational basis that the latter explanation is
the correct one has steadily grown ever since. It is a strong hint on its own for
the existence of dark matter.

Acoustic Oscillations in the CMB The Cosmic Microwave Background (CMB)
gives us a picture of the universe at very early times. Analysis shows that the
angular correlations have a preferred scale of 1°. These oscillations give evidence
for a nearly flat universe. They basically rule out an open, matter dominated

63



universe.

4.1. Inhomogeneities in case of w 6= −1

If dark energy behaves different from a cosmological constant, i.e. w 6= −1, it was
pointed out by Pritchard, [15], that the growth factor can no longer be expressed
as the integral

D1(a) =
5Ωm

2

H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3
. (7.77)

Proof. To prove that for w 6= −1 Eq. (7.77) is no longer a solution to the differ-
ential equation for δ, Eq. (7.73), we insert it back. We see that it is a solution, if
the Hubble rate H(t) satisfies Eq. (7.73), i.e. if

d2H

da2
+

(
d logH

da
+

3

a

)
dH

da
− 3ΩmH

2
0

2H2a5
H = 0. (4.1)

Dividing by H2
0 and evaluating the differential of the logarithm we find that this

is equivalent to
d2

da2

(
H2

H2
0

)
+

3

a

d

da

(
H2

H2
0

)
− 3

Ωm

a5
= 0. (4.2)

To see the implications of this equation we recall the Friedmann equation:

H2

H2
0

= Ωra
−4 + Ωma

−3 + Ωka
−2 + ΩΛ. (4.3)

The function on the left hand side is therefore a polynomial in a−1 To see that the
Hubble rate fulfils this equation, we first see that the matter term Ωma

−3 indeed
fulfils it. We then try a power law ansatz: H2/H2

0 = Ωma
−3 + constan, where

n ∈ Z. The resulting terms do not violate Eq. (4.2) if

n2 + 2n = 0 ⇔

n = 0 or

n = −2
(4.4)

The first case corresponds to cosmological constant, the second to curvature. The
radiation term is negligible in any case. This means that for general dark energy
with w 6= −1 Eq. (7.77) cannot be true.

A much more general treatment of the effects of dark energy is given for example
in [12] or [9].
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Conclusions

In this thesis we have demonstrated that small perturbations set at the end of
inflation could be the source of the perturbations we observe today. Both, the
theoretical as well as the numerical analysis of the evolution of inhomogeneities
gives a consistent picture. The long period of matter domination is essential to
explain the growth of the inhomogeneities. Although it is still not explained why
ΩΛ should be of the order of Ωm, it is satisfying to see how well the physics of
the evolution of perturbations agree with other aspects of physical cosmology like
inflation, CMB and observations.
We have demonstrated how the power spectrum of matter inhomogeneities can

be used to find the signature of dark energy in our universe. The controversy of
what dark energy is and how it behaves is far from settled, and we have seen that
the theory of a perturbed universe is right in the middle of it. The developments in
the future will hopefully produce tighter observational bounds on transfer function
and growth factor. Much better observational data can also be expected for the
power spectrum. Combined they should provide us with very powerful tools to fix
the position of our universe in the parameter space, and to determine the nature
of dark energy.
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A. Additional Notes and Calculations

A.1. Additional Formulae

The following integral is given in as entry 2.246 in Gradshteyn and Ryzhik, [8]:
Let x be the variable of the integral, a, b, α and β arbitrary real parameter. Define
then: z := a+ bx, t := α+ βx and ∆ := aβ− bα. Then, if β∆ > 0, it is true that∫

dx

t
√
z

=
1√
β∆

log
β
√
z −
√
β∆

β
√
z +
√
β∆

. (A.1)
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B. Code

This appendix shows the components of the C++ program used to simulate different
models of the universe. This means that not all the code is shown that was used
to create all the different figures throughout this document, but only the most
important building blocks, i.e. functions, structures and classes used. We also do
not include the R1 code used to create the plots.
Furthermore, it does not contain the definitions and classes given in Numerical

Recipes, [14]: In particular, we omit the class definitions of nr3.h and the
StepperDopr853 integrator mechanisms, but will provide a quick introduction:
The StepperDopr853 routines integrate first order systems of the form

ẏ =
dy

dx
= f(x, y(x)), (B.1)

where x is the ‘time’ variable of the system of differential equations, y the vector
of components of the system. StepperDopr853 then uses structure calls of the
form

void operator ( ) ( const Doub x , VecDoub_I &y , VecDoub_O &dydx ) { . . . }

to find the values of ẏ = dydx at position (x, y) = (x, y(x)). Organising the
program in this way has the advantage that is it possible to change the system
of differential equations without worrying about how to integrate it at the same
time. The following pages will therefore contain many of these structures, each
designed for a specific integration: the homogeneous background universe, the full
Boltzmann-Einstein system or the integration of the growth factor are the most
straightforward examples.

Parameters of the Models

We use the following set of overall parameters for the integration of the different
systems:

const double H_0(h/2.99792458E3 ) ; // Hubble now in Mpc^−1
const double t_0 (13 . 7/3 . 26156∗1 . 0E3 ) ; // age o f un i ve r se

// again in Mpc

1http://www.r-project.org/
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The parameters left for variability are h, k and the Ωi, i = r,m,Λ. They need to
be set manually to the values of the model under consideration:

// parameter h f o r Hubble cons tant :
const double h ( 0 . 5 ) ;

// s e t the Omegas , the content o f the un i ve r se :
const double Omega_m( 0 . 3 ) ;
const double Omega_r(4 . 67E−5/h/h ) ;
const double Omega_L(0.7−Omega_r ) ;

// mode number k o f the inhomogene i t i e s :
// in un i t s o f h Mpc^−1
const double mode_k ( 0 . 0 0 1 ) ;

The Homogeneous Background

The differential equations for the background are core set of equations for all the
differential systems we will be talking about. It is important for two reasons:
First, it is the basic set of equations that drive the expansion of the universe. The
radiation and matter perturbations will be put on top of that. Second, we always
put a backwards integration first, in order to find the initial values for scale factor
a, conformal time η and ‘real’ time t.
The following structure does exactly that by integrating in log η:

1 struct cosmo_log{
Doub k , eta , a_dot ;

3 cosmo_log (Doub kk ) : k ( kk ) {}
void operator ( ) ( const Doub logeta , VecDoub_I &y , VecDoub_O &

dydx ) {
5 // the s e are the d i f f e r e n t i a l e qua t i ons

// −> FORWARDS and BACKWARDS in e ta
7

eta = exp ( l o g e t a ) ;
9

// eqn f o r s c a l e f a c t o r ( i n t e g r a t e in l o g e ta )
11 a_dot = H_0∗ s q r t (Omega_m∗y [ 0 ] + Omega_r +Omega_L∗y [ 0 ] ∗ y

[ 0 ] ∗ y [ 0 ] ∗ y [ 0 ] ) ;
dydx [ 0 ] = eta ∗a_dot ;

13

// d i f f eqn f o r time t
15 dydx [ 1 ] = eta ∗y [ 0 ] / t_0 ;

} } ;

The Boltzmann-Einstein system

The next structure is used to integrate the full Boltzmann-Einstein system given
by the equations (2.4) and the following on page 22.
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struct cosmo_ful l {
2 Doub k , eta , a_dot , phi_dot ;
cosmo_ful l (Doub kk ) : k ( kk ) {}

4 void operator ( ) ( const Doub logeta , VecDoub_I &y , VecDoub_O &
dydx ) {

// the s e are the d i f f e r e n t i a l e qua t i ons :
6 // −> FORWARDS the FULL Boltzmann Eins t e in

system

8 eta = exp ( l o g e t a ) ; // t h i s s e t the \eta_0
// a r b i t r a r y normal i za t ion , but l o o k s n ice in the eta−

s c a l e p l o t .
10 // a l s o l o g e t a =0 at time t=1year or a=10^−6

12 // eqn f o r the s c a l e f a c t o r (we i n t e g r a t e in l o g e ta )
a_dot = H_0∗ s q r t (Omega_m∗y [ 0 ] + Omega_r +Omega_L∗y [ 0 ] ∗ y

[ 0 ] ∗ y [ 0 ] ∗ y [ 0 ] ) ;
14 dydx [ 0 ] = eta ∗a_dot ;

16 // d i f f eqn f o r time t
dydx [ 1 ] = eta ∗y [ 0 ] / t_0 ;

18

// c a l c u l a t e phi_dot
20 phi_dot = 1 . 0/3 . 0/ a_dot ∗ (1 . 5∗H_0∗H_0∗( y [ 3 ] ∗Omega_m+4.0∗y

[ 5 ] ∗Omega_r/y [ 0 ] )− y [ 0 ] ∗ k∗k∗y [ 2 ] ) − a_dot/y [ 0 ] ∗ y [ 2 ] ;

22 // eqn f o r p o t e n t i a l ph i then s imply becomes
dydx [ 2 ] = eta ∗phi_dot ;

24

// −−−−−− the remaining equa t ions −−−−−
26 // eqn f o r d e l t a

dydx [ 3 ] = eta∗(−k∗y [4]−3∗ phi_dot ) ;
28

// eqn f o r v e l o c i t y
30 dydx [ 4 ] = eta ∗ (−a_dot/y [ 0 ] ∗ y [ 4 ] −k∗y [ 2 ] ) ;

32 // eqn f o r the monopole
dydx [ 5 ] = eta∗(−k∗y [6]− phi_dot ) ;

34

// eqn f o r the d i p o l e
36 dydx [ 6 ] = eta ∗k /3 .0∗ ( y [5]−y [ 2 ] ) ;

} } ;

In the Ωm = 1 model the radiation perturbations are irrelevant to the struc-
ture formation. At some stage they can be safely ignored (c.f. the red line and
discussion on page 34). This has been implemented in the following way:

1 struct cosmo_damp{
Doub k , eta , a_dot , phi_dot ;

3 cosmo_damp(Doub kk ) : k ( kk ) {}
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void operator ( ) ( const Doub logeta , VecDoub_I &y , VecDoub_O &
dydx ) {

5 // the s e are the d i f f e r e n t i a l e qua t i ons :
// −> FORWARDS the DAMPED Boltzmann Eins t e in

system
7

eta = exp ( l o g e t a ) ; // t h i s s e t the \eta_0
9 // a r b i t r a r y normal i za t ion , but l o o k s n ice in the eta−

s c a l e p l o t .
// a l s o l o g e t a =0 at time t=1year or a=10^−6

11

// eqn f o r the s c a l e f a c t o r (we i n t e g r a t e in l o g
e ta )

13 a_dot = H_0∗ s q r t (Omega_m∗y [ 0 ] + Omega_r +Omega_L∗y [ 0 ] ∗ y
[ 0 ] ∗ y [ 0 ] ∗ y [ 0 ] ) ;

dydx [ 0 ] = eta ∗a_dot ;
15

// d i f f eqn f o r time t
17 dydx [ 1 ] = eta ∗y [ 0 ] / t_0 ;

19

// c a l c u l a t e phi_dot ( damping HERE)
21 phi_dot = (1 . 0 /3 . 0 / a_dot ∗ (1 . 5∗H_0∗H_0∗( y [ 3 ] ∗Omega_m)− y

[ 0 ] ∗ k∗k∗y [ 2 ] ) − a_dot/y [ 0 ] ∗ y [ 2 ] ) ∗exp(− l o g e t a ∗k /10 .0 )
;

23 // eqn f o r p o t e n t i a l ph i then wi thout e ta ( and HERE) :
dydx [ 2 ] = phi_dot ;

25

// −−−−−− the remaining equa t ions −−−−−
27 // eqn f o r d e l t a

dydx [ 3 ] = eta∗(−k∗y [4]−3∗ phi_dot ) ;
29

// eqn f o r v e l o c i t y
31 dydx [ 4 ] = eta ∗ (−a_dot/y [ 0 ] ∗ y [ 4 ] −k∗y [ 2 ] ) ;

33 } // rad i a t i on pe r t u r b a t i on s are b l i nd ed out
} ;

The Growth Factor D1(a)

For the integration of the growth factor we use the same homogeneous background
as before, but now equipped with the differential equation (3.18) from page 62:

struct cosmo_growth{
2 Doub k , eta , a_dot ;
cosmo_growth (Doub kk ) : k ( kk ) {}

4 void operator ( ) ( const Doub logeta , VecDoub_I &y , VecDoub_O &
dydx ) {

// the s e are the d i f f e r e n t i a l e qua t i ons :
6 // −> FORWARDS fo r the growth f a c t o r
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8 eta = exp ( l o g e t a ) ;

10 // eqn f o r the s c a l e f a c t o r (we i n t e g r a t e in l o g e ta )
a_dot = H_0∗ s q r t (Omega_m∗y [ 0 ] + Omega_r +Omega_L∗y [ 0 ] ∗ y

[ 0 ] ∗ y [ 0 ] ∗ y [ 0 ] ) ;
12 dydx [ 0 ] = eta ∗a_dot ;

14 // d i f f eqn f o r time t
dydx [ 1 ] = eta ∗y [ 0 ] / t_0 ;

16

// d i f f eqn f o r the growth f a c t o r :
18 dydx [ 2 ] = eta /a_dot/a_dot∗pow(y [ 0 ] , 3 . 0 ) ;

}
20 } ;

The Core Parts of the Program

A very important function in the program is the function doEvolve. This function
controls the initialising of the integration processes, their starts and stops. To do
so it is called with some flag i to distinguish the output, the mode number k, the
limits of the integrations (log(η1) and log(η2)) and the vector yfull of initial values.
The first part of the function initialises the output of the integration process into
a file:

// doEvolve FUNCTION −−−−−−−−−−−−−−−−−−−−−−−−−−−
2 void doEvolve ( int i , const double k , double l ogeta1 , double

l ogeta2 , VecDoub y f u l l ) {
// mode number k comes in un i t s o f h (Mpc)^−1

4

// crea t e the f i l ename fo r the output :
6 s t r i ng s t r eam myString ;
myString << "myf i l e " << i << " . csv " ;

8

s t r i n g ber t = myString . s t r ( ) ; // conver t i t i n t o a s t r i n g
10 // t h i s needs to be conver ted in to a char∗ by . c_str ( ) see be low

12 // i n i t i a l i s e wr i t i n g in f i l e :
FILE ∗ myf i l e ;

14 myf i l e = fopen ( ber t . c_str ( ) , "w" ) ;
f p r i n t f ( myf i l e , " header \ t ␣ second\n" ) ;

16 f p r i n t f ( myf i l e , "%f ␣\ t ␣%f ␣\ t ␣%f ␣\ t ␣%f ␣\ t ␣%f \ t ␣%f ␣␣\n\n" , Omega_m
, Omega_r ,Omega_L, k∗ f a c to r , h , H_0∗ f a c t o r ) ;

18 // do the i n t e g r a t i o n s :
. . .

20 } } ;
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After this the function starts the integration process, the lines omitted in the
code above. In its simplest form this looks like:

// doing the i n t e g r a t i o n in l o g e t a o f the f u l l system :
2 Output out2 (−1) ;

cosmo_ful l my_cosmoful ( k ) ;
4 //h1=1.0E−4, hmin = 0 . 0 ;

Odeint<StepperDopr853<cosmo_full> > ode2 ( y f u l l , l ogeta1 ,
logeta2 , 1 . 0E−18 ,1.0E−18 ,1.0E−4 ,0.0 , out2 , my_cosmoful )
;

6 ode2 . i n t e g r a t e ( ) ;

8 // then wr i t e in f i l e
for ( int i = 0 ; i < out2 . count ; i++){

10 f p r i n t f ( myf i l e , "%f ␣\ t ␣%f \ t ␣%f \ t ␣%f \ t ␣%f \ t ␣%f \ t ␣
%f \ t ␣%f ␣\n" , out2 . xsave [ i ] , out2 . ysave [ 0 ] [ i
]∗ f a c to r , out2 . ysave [ 1 ] [ i ]∗ f a c to r , out2 . ysave
[ 2 ] [ i ]∗ f a c to r , out2 . ysave [ 3 ] [ i ] , out2 . ysave
[ 4 ] [ i ] , out2 . ysave [ 5 ] [ i ] , out2 . ysave [ 6 ] [ i ] ) ;

}

The problem here is that this function will not be able to consider the numerical
difficulties when integrating small-scale modes at late times. The program will
simply stop throwing an error message. However, we can instead integrate the
full system only up to the red line in Fig. 2.4 and then restart it. The dots in the
doEvolve function above are then to be replaced by the following code:

1 // c a l c u l a t e u n t i l when the f u l l system can be evo l v ed :
// f o r t h i s use the i f c l au s e :

3 double x ( log (100∗k/h) ∗2 . 0 /3 . 0 ) ;
s td : : cout << x << endl ;

5

i f (x<0){
7 // doing the i n t e g r a t i o n in l o g e t a o f the f u l l system :

Output out2 (−1) ;
9 cosmo_ful l my_cosmoful ( k ) ;

//h1=1.0E−4, hmin = 0 . 0 ;
11 Odeint<StepperDopr853<cosmo_full> > ode2 ( y f u l l , l ogeta1 ,

logeta2 , 1 . 0E−18 ,1.0E−18 ,1.0E−4 ,0.0 , out2 , my_cosmoful )
;

ode2 . i n t e g r a t e ( ) ;
13

// then wr i t e in f i l e
15 for ( int i = 0 ; i < out2 . count ; i++){

f p r i n t f ( myf i l e , "%f ␣\ t ␣%f \ t ␣%f \ t ␣%f \ t ␣%f \ t ␣%f \ t ␣
%f \ t ␣%f ␣\n" , out2 . xsave [ i ] , out2 . ysave [ 0 ] [ i
]∗ f a c to r , out2 . ysave [ 1 ] [ i ]∗ f a c to r , out2 . ysave
[ 2 ] [ i ]∗ f a c to r , out2 . ysave [ 3 ] [ i ] , out2 . ysave
[ 4 ] [ i ] , out2 . ysave [ 5 ] [ i ] , out2 . ysave [ 6 ] [ i ] ) ;

17 }
} else {
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19 // doing the i n t e g r a t i o n in l o g e t a o f the f u l l system
un t i l l o ge ta2−x :

Output out2 (−1) ;
21 cosmo_ful l my_cosmoful ( k ) ;

//h1=1.0E−4, hmin = 0 . 0 ;
23 Odeint<StepperDopr853<cosmo_full> > ode2 ( y f u l l , l ogeta1 ,

logeta2−x , 1 . 0E−18 ,1.0E−18 ,1.0E−4 ,0.0 , out2 ,
my_cosmoful ) ;

ode2 . i n t e g r a t e ( ) ;
25

// then i n t e g r a t e the damped system un t i l today l o g e t a 2 :
27 // but f i r s t f i nd the new i n i t i a l data :

VecDoub y r e s t a r t (5 ) ; // f i v e i s the number o f vars in
the damped system !

29 y r e s t a r t [ 0 ] = out2 . ysave [ 0 ] [ out2 . count −1] ;
y r e s t a r t [ 1 ] = out2 . ysave [ 1 ] [ out2 . count −1] ;

31 y r e s t a r t [ 2 ] = out2 . ysave [ 2 ] [ out2 . count −1] ;
y r e s t a r t [ 3 ] = out2 . ysave [ 3 ] [ out2 . count −1] ;

33 y r e s t a r t [ 4 ] = out2 . ysave [ 4 ] [ out2 . count −1] ;

35 // then do the i n t e g r a t i o n o f the damped system :
Output out3 (−1) ;

37 cosmo_damp my_cosmodamp(k ) ;
//h1=1.0E−4, hmin = 0 . 0 ;

39 Odeint<StepperDopr853<cosmo_damp> > ode3 ( y r e s t a r t ,
logeta2−x , logeta2 , 1 . 0E−18 ,1.0E−18 ,1.0E−4 ,0.0 , out3 ,
my_cosmodamp) ;

ode3 . i n t e g r a t e ( ) ;
41

// then wr i t e the f i r s t i n t e g r a t i o n in t o the f i l e
43 for ( int i = 0 ; i < out2 . count ; i++){

f p r i n t f ( myf i l e , "%f ␣\ t ␣%f \ t ␣%f \ t ␣%f \ t ␣%f \ t ␣%f \ t ␣
%f \ t ␣%f ␣\n" , out2 . xsave [ i ] , out2 . ysave [ 0 ] [ i
]∗ f a c to r , out2 . ysave [ 1 ] [ i ]∗ f a c to r , out2 . ysave
[ 2 ] [ i ]∗ f a c to r , out2 . ysave [ 3 ] [ i ] , out2 . ysave
[ 4 ] [ i ] , out2 . ysave [ 5 ] [ i ] , out2 . ysave [ 6 ] [ i ] ) ;

45 }
// then the second :

47 for ( int i = 0 ; i < out3 . count ; i++){
f p r i n t f ( myf i l e , "%f ␣\ t ␣%f \ t ␣%f \ t ␣%f \ t ␣%f \ t ␣%f ␣\n

" , out3 . xsave [ i ] , out3 . ysave [ 0 ] [ i ]∗ f a c to r ,
out3 . ysave [ 1 ] [ i ]∗ f a c to r , out3 . ysave [ 2 ] [ i ]∗
f a c to r , out3 . ysave [ 3 ] [ i ] , out3 . ysave [ 4 ] [ i ] ) ;

49 }

The main function of the program then only has to do the following:

• Evoke the integration backwards to find the initial values of the homoge-
neous background,

• Write the data into a file,
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• Find the initial data of the full Boltzmann-Einstein system,

• Call the function doEvolve, possibly several times (in a for-loop)

Its code is given in the following:

1 // MAIN FUNCTION −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
int main ( int argc , char ∗ const argv [ ] ) {

3

// the i n t e g r a t i o n backwards f o r the homogeneous system :
5 VecDoub ylog (2 ) ;
y log [ 0 ] = 1 . 0 ; // s c a l e f a c t o r today

7 ylog [ 1 ] = 1 . 0 ; // time today

9 // doing the i n t e g r a t i o n in l o g e t a o f the homogeneous system :
Output out_log (−1) ;

11 cosmo_log my_cosmolog ( 1 . 0 ) ; // ALWAYS CHECK THESE:
// i f h=0.5 and Lambda s t a r t wi th 9.8668195 up to −3.0

13 // i f h=0.73 and Lambda s t a r t wi th 9.497012 up to −4.0
// i f h=0.5 and no Lambda s t a r t wi th 9.3783025 up to −3.0

15 Odeint<StepperDopr853<cosmo_log> > ode_log ( ylog ,9 .497012 , −3 ,1 .0
E−19 ,1.0E−19 ,1.0E−4 ,0.0 , out_log , my_cosmolog ) ;

ode_log . i n t e g r a t e ( ) ;
17

// i n i t i a l i s e wr i t i n g in f i l e f o r the backwards run :
19 FILE ∗ p f i l e 2 ;

p f i l e 2 = fopen ( "myf i l e . csv " , "w" ) ;
21

f p r i n t f ( p f i l e 2 , " header \ t ␣ second\n" ) ;
23 f p r i n t f ( p f i l e 2 , "%f ␣\ t ␣%f ␣\ t ␣%f ␣\ t ␣%f ␣\ t ␣%f \ t ␣%f ␣␣\n\n" , Omega_m

, Omega_r ,Omega_L,mode_k∗ f a c to r , h , H_0∗ f a c t o r ) ;

25 // wr i t e in f i l e (
for ( int i =0; i <out_log . count ; i++){ //

s c a l e f a c t o r time
27 f p r i n t f ( p f i l e 2 , "%f ␣\ t ␣%f \ t ␣%f ␣\n" , out_log . xsave [ i ] ,

out_log . ysave [ 0 ] [ i ]∗ f a c to r , out_log . ysave [ 1 ] [ i ]∗
f a c t o r ) ;

}
29 // −−−−−−−−−−−−−−−−−−−−

// so f a r so good
31 // −−−−−−−−−−−−−−−−−−−−

33 // l im i t s o f the i n t e g r a t i o n :
const Doub loge ta1 = out_log . xsave [ out_log . count −1] ;

35 // have found f i n a l va lue f o r e ta
const Doub loge ta2= out_log . xsave [ 0 ] ;

37 // remember : cant do the f u l l t h ing ye t on sma l l s c a l e s
// t h i s means t ha t l o g e t a 1 < l o g e t a2 !

39

// THIS IS THE IMPORTANT LOOP THAT SCANS IN k
41 for ( int i =0; i <1; i++) {
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43 // s e t the MODE NUMBER k here :
double k = mode_k∗h∗pow ( 1 . 4 , 1 . 0 ∗ i ) ;

45 // note t ha t the mode number k i s g i ven in Dodelson ’ s un i t s ! !

47 // SET THE INITIAL VALUES OF THE FULL SYSTEM
VecDoub y f u l l ( 7 ) ;

49

// the va l u e s f o r the l o g e t a i n t e g r a t i o n
51 // i n i t i a l va lue f o r the s c a l e f a c t o r i s l a s t va lue o f the

backwards i n t e g r a t i o n
y f u l l [ 0 ] = out_log . ysave [ 0 ] [ out_log . count −1] ;

53 y f u l l [ 1 ] = out_log . ysave [ 1 ] [ out_log . count −1] ;

55 // a_dot in the beg inn ing :
Doub adot_start = H_0∗ s q r t (Omega_m∗ y f u l l [ 0 ] + Omega_r+

Omega_L∗pow( y f u l l [ 0 ] , 4 . 0 ) ) ;
57

// p o t e n t i a l ph i ( normal ized from Fig . 7 .2 )
59 y f u l l [ 2 ] = pow(k ,−1.5) ;

// the o ther i n i t i a l v a l u e s depend on p o t e n t i a l ph i
61 y f u l l [ 3 ] = 1 .5∗ y f u l l [ 2 ] ;

y f u l l [ 4 ] = −0.5∗k∗ y f u l l [ 2 ] ∗ y f u l l [ 0 ] / adot_start ;
63 y f u l l [ 5 ] = 0 .5∗ y f u l l [ 2 ] ;

y f u l l [ 6 ] = −k∗ y f u l l [ 2 ] ∗ y f u l l [ 0 ] / 6 . 0 / adot_start ;
65

doEvolve ( i , k , logeta1 , logeta2 , y f u l l ) ;
67 }

69

71 return 0 ;
}

75



Bibliography

[1] Supernova cosmology project: http://www-supernova.lbl.gov/.

[2] J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay. The statistics of
peaks of gaussian random fields. Astrophys. J., 304:15–61, May 1986.

[3] Matthias Bartelmann. The dark universe. ArXiv e-prints, 0906.5036, Jun
2009.

[4] Sean M. Carroll. The cosmological constant. Ann. Rev. of Astronomy and
Astrophysics, 30:499–542, Apr 2000.

[5] Scott Dodelson. Modern Cosmology. Academic Press, 1st edition, March
2003.

[6] Daniel J Eisenstein. Observing dark energy. Classical and Quantum Gravity,
25(11):114001, 2008.

[7] W. L. Freedman, B. F. Madore, B. K. Gibson, L. Ferrarese, D. D. Kelson,
S. Sakai, J. R. Mould, R. C. Kennicutt, Jr., H. C. Ford, J. A. Graham, J. P.
Huchra, S. M. G. Hughes, G. D. Illingworth, L. M. Macri, and P. B. Stetson.
Final Results from the Hubble Space Telescope Key Project to Measure the
Hubble Constant. , 553:47–72, May 2001.

[8] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products.
Elselvier, 7th edition, 2007.

[9] Wayne Hu and Daniel J. Eisenstein. Small-scale perturbations in a general
mixed dark matter cosmology. The Astrophysical Journal, 498(2):497, 1998.

[10] Wayne Hu and Naoshi Sugiyama. Small-scale cosmological perturbations:
An analytic approach. The Astrophysical Journal, 471(2):542, 1996.

[11] J. A. Peacock and S. J. Dodds. Nonlinear evolution of cosmological power
spectra. Mon. Not. R. Astron. Soc., 280:8, 1996.

[12] W. J. Percival. Cosmological structure formation in a homogeneous dark
energy background. A&A, 443(3):819–830, 2005.

76



[13] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Cas-
tro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim,
M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby,
C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Wal-
ton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter,
N. Panagia, H. J. M. Newberg, and W. J. Couch. Measurements of omega
and lambda from 42 high-redshift supernovae. The Astrophysical Journal,
517(2):565–586, Dec 1998.

[14] William Press, Saul Teukolsky, William Vetterling, and Brian Flannery. Nu-
merical Recipes in C. Cambridge University Press, Cambridge, UK, 3rd
edition, 2007.

[15] Jonathan Pritchard. On dodelson, exercise 7.11. http://home.fnal.gov/ do-
delson/pritchard.pdf.

[16] Rimes, D. Christopher, Hamilton, and J. S. Andrew. Information con-
tent of the non-linear power spectrum: the effect of beat-coupling to large
scales. Monthly Notices of the Royal Astronomical Society, 371(3):1205–1215,
September 2006.

77


	The Homogeneous Universe
	Introduction
	The Expansion of the universe
	Temperature, the CMB and other photons
	Conformal Time 
	Dark Energy

	Inhomogeneities in a Universe without : m=1
	Analytical Results
	Numerical Simulation
	The Evolution of Inhomogeneities
	The Matter Power Spectrum

	The Effect of Dark Energy on the Inhomogeneities
	The Transfer Function in a Universe with 
	The Growth Function in a Universe with 
	The Power Spectrum Revisited
	Details of the Numerical Integration

	Dark Energy Equation of State: p=w
	Inhomogeneities in case of w=-1

	Additional Notes and Calculations
	Additional Formulae

	Code
	Bibliography

