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Abstract

Quantum Theory is a rich and successful theory which suffers from a lack
of clear and unanimous interpretation. I suggest a research programme
that examines various toy theories that approximate some of the interest-
ing features of quantum mechanics whilst being far easier to interpret. By
examining these toy theories using category theory, the relevant structures
and principles of the toy theory which lead to “quantum like” phenom-
ena can be highlighted. In this way we can hope to better understand
which axioms of Quantum Theory lead to which Quantum phenomena,
and how. As a case study I examine Robert W. Spekkens’s toy theory
of epistemic states and compare it with Stabilizer Quantum Mechanics,
noting the similarities and differences and their bearing on interpreta-
tions of Quantum Theory. I discuss an example of similarity with the toy
theory, noting that a purely information theoretic principle on the states
of the toy theory can give rise to a no cloning theorem for such states,
and this suggests that a similar conceptual ingredient exists in Quantum
Theory. I also discuss an example of contrast with the same toy theory:
the existence or non-existence of a hidden variable interpretation. The
comparison is made more precise by using Category Theory to describe
the toy theory and quantum theory in a unified framework. The cate-
gory theoretic ingredient of the phase group is shown to be the root of
the presence or absence of non-locality in the theories. A four element
cyclic phase group will generate non-locality in a theory whereas the four
element Klein group fails to do so.

2



CONTENTS CONTENTS

Contents

1 Introduction 4

1.1 Inconsistency and Indefiniteness . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Project Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Quantum Mechanics 8

2.1 A Set of Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Quantum Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Pairs of Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 No-Cloning Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Spekkens’s Toy Theory 16

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 The Elementary System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 The Knowledge Balance Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Single Qubit Pure State Analogues . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Pairs of Elementary Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 Measurements on Bipartite States . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.9 Correlated States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.10 Cardinality of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 A Physical basis for the principle? . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.12 No-cloning Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Stabilizer Formalism 31

4.1 Stabilizer Octahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 No Cloning Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Cardinality of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 GHZ Argument for Non-Locality . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Category Theory 36

5.1 What is Category Theory? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 †SMCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Categorical Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Map State Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Teleportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Basis Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.7 Basis Structure Monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8 Phase Group for FHilb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.9 Stab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.10 The CNOT gate for Stab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.11 Spek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.12 Comparison of Stab and Spek . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.13 Phase Group Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.14 GHZ state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.15 Non-Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion 63

3



1 INTRODUCTION

1 Introduction

1.1 Inconsistency and Indefiniteness

At the turn of the 20th Century The Photoelectric Effect and The Double Slit
Experiment had produced some unexpected results. The results were at first
considered anomalous, but with increasing frequency they were reproduced and
confirmed across the world and gathered enough attention to begin to over-
throw the received Classical Physics of the day. The founders of Quantum
Theory rapidly formulated radical and unintuitive notions of a wave-particle
duality, of a fundamental uncertainty in parts of reality, and other exotic ideas
[11] as conceptual ingredients of a new Physics. To some, Quantum Theory was
born with a plethora of new and exciting concepts which captured the essence
of the microscopic world: but to sceptics it was born as an unattractive theory
which seemed inconsistent with existing ‘facts’ about the universe. There were
two ways of proceeding. One could accept the counter-intuitive results of Quan-
tum Theory as hard facts about the universe and relegate Classical Physics to
an emergent approximation arising from (rather than principle foundation to)
the more fundamental Quantum Theory. The alternative is to maintain a belief
that Classical Physics is the more fundamental theory of nature, and that Quan-
tum Mechanics arises as an emergent approximation to an as-yet-undescribed
deeper reality. The latter position is often referred to as a ‘hidden variable
interpretation’.

The inception of Quantum Mechanics involved an array of ill-defined terms
borrowed from the common natural language which form an essential part of
describing the theory. Words like ‘apparatus’ are meant to refer to a com-
mon and everyday meaning of the word but actually require a tighter definition
that is lacking from the axioms of Quantum Theory. John Stuart Bell was one
of those not happy to accept the loose definitions presented in descriptions of
Quantum Theory, famously expressing a discomfort with the term ‘measure-
ment’ [2], which appears frequently both in everyday discourse and in most
axiomatizations of Quantum Theory.

The majority of scientists, along with the popular literature and textbooks,
quickly swallowed the new terminology, skating over the issue of the meanings
of the words, their interpretation, and ultimately some of the worrying ramifica-
tions of the theory as a whole. This was likely due to the empirical success of the
theory: it was powerful enough to absorb the erstwhile anomalous results of the
Photoelectric Effect and the Double Slit Experiment, providing an explanation
for them. Furthermore the theory makes many other predictions which enjoy
a high degree of confirmation. In fact Quantum Theory would pave the way
to Quantum Electrodynamics (QED), a theory which agrees with experimental
data to unprecedented and unrivalled numerical precision. Not all were as eas-
ily swept up into the ‘shut up and calculate’[2] camp by this sort of empirical
success however, and some continued to ponder the problem of understanding
the theory and reconciling it with other important theories in Physics. It is
ironic and perhaps significant that QED, the best confirmed theory we have, is
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1.1 Inconsistency and Indefiniteness 1 INTRODUCTION

a Quantum Field Theory and as such is a marriage of Quantum Theory with
Special Relativity: for it is Special Relativity with which Quantum Theory has
the biggest disagreement. In a famous paper [10] Einstein, Podolsky and Rosen
put forward an argument that Quantum Mechanics is incomplete, and really
needed an hidden variable theory to underpin it. Whether they were correct or
not is contentious, but the paper spurred on other thinkers to show explicitly
that a hidden variable interpretation of Quantum Theory would have to be ‘non-
local’ [1, 13, 12].Einstein’s epithet for the notion of non-locality was “spukhafte
fernwirkung” or “spooky action at a distance”, and he had personal reasons for
his uneasiness with quantum mechanical predictions. Einstein’s seminal work,
Special Relativity, was built around the fundamental idea of causality: he de-
creed that the constant speed of light provides a limit on the speed at which
observers can communicate, and a finite lower bound on the time taken to trans-
mit a causal influence. In short Einstein had stated that cause and effect could
not be instantaneous (it must be local), and the Quantum Theorists had dis-
agreed. Rather than take sides, the scientific community tends still to hold two
seemingly mutually contradictory beliefs: Einstein was right, and he was wrong.
This state of suspended judgement is a barrier to progress toward a unified the-
ory of nature. Of course the jury being out does not prevent scientists from
making predictions with the theory and developing technologies; but it may be
preventing them from achieving much more than would otherwise be possible.

In this work I aim to present arguments that contribute to the struggle
of improving the interpretation of Quantum Mechanics. The improved under-
standing of the logical implications of the separate conceptual and mathematical
ingredients of Quantum Theory should help in the two areas discussed above:
the inconsistency of the theory with other important physical theories and the
indefiniteness of the language used to axiomatize it. Work on isolating con-
ceptual ingredients of Quantum Theory may shed light on the possibility of a
non-local hidden variable theory, or on interpreting the many strange results of
the theory. It may also assist in improving the understanding of key words in
the theory which could then be defined in a much more satisfactory way. The
work might well help in strengthening intuitions about the theory: new methods
of calculation might emerge and new ways of visualising the quantum world (or
the hidden reality currently approximated by the quantum world).

An improvement in the clarity, consistency and detail of the axioms of Quan-
tum Theory will help in a Philosophical regard, but importantly in an empirical
regard with new predictions that may be subjected to scientific testing. New
ways of describing the theory or understanding the mathematics that underpin
it may well point to as yet undiscovered phenomena, or as yet undiscovered
technologies which could be developed. Ultimately an insight into the nature of
the theory should allow us to exploit it further, rather than merely smooth the
furrowed brows of those who seek an elegant axiomatization free from contra-
diction with the rest of physics.
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1.2 Project Outline

In section 1.3 I introduce (by way of a culinary analogy) the technique of isolat-
ing conceptual ingredients of a theory through comparison with ‘toy theories’. I
will discuss a particular type of toy theory: the quantum-like theory (a term first
used in [9]), and claim that with enough quantum like theories we may be able to
entirely classify and isolate conceptual ingredients and mathematical structures
which give rise to quantum phenomena, and use this classification and insight to
recast the theory in a way that has a clearer interpretation. In section 2 a brief
recapitulation of Quantum Mechanics is given with some basic notions from the
field of Quantum Information. In section 3 I will introduce Spekken’s toy theory
as a concrete example of a quantum like theory and case study for the suggested
research programme. In section 4 Stabilizer Quantum Mechanics is introduced
as a sub theory or restricted version of Quantum Mechanics which is ‘closer’ to
Spekkens’s toy theory than unrestricted Quantum Mechanics ( in that it there
is a bijection between the Stabilizer states and Spekkens’s toy states). The ex-
istence of a no cloning theorem in both theories is discussed: the fact that an
information theoretic principle is clearly responsible for the instance of the the-
orem in one theory suggests that it might be responsible in the other. In section
5 both Spekkens’s toy theory and Stabilizer Quantum Mechanics are described
using Category Theory, and Category Theoretic language and notation is used
to exactly pinpoint not only where the theories are similar and where they differ
but exactly how the differences in mathematical structure bring about differ-
ences in extant phenomena. I present the proof (due to Coecke, Spekkens and
Edwards [8]) that if a quantum-like theory has a phase group isomorphic to
Z2 × Z2 (the Klein group) then it remains local, but if it has a phase group
isomorphic to Z4 (the four element cyclic group) then it exhibits non-locality.
Finally in section 6 conclusions are drawn about the success of this case study,
and future work is suggested.

1.3 Methodology

When a baker makes a cake, she combines ingredients in a bowl, mixes and
heats. The resultant cake can exhibit colour, texture, shape and taste, taking on
different qualities as the ingredients vary. The first cake makers were probably
like the founders of Quantum Theory: stumbling across ingredients that worked
in combination to produce desired results. As bakery and science have improved
bakers have learnt more about the action of certain ingredients: more baking
soda means a larger size, more sugar means a sweeter taste. Further it is now
possible to understand at a deeper level the reason for ingredients to cause their
respective qualities in the cake: the microscopic affect of egg at a molecular
level can explain how this ingredient binds the cake together and impacts the
texture of the cake.

Isolating Conceptual Ingredients of a Physical Theory in order to find a good
set of axioms for it is like being presented with a mystery cake, and trying to
retrofit an accurate recipe for it. Perhaps a vague recipe exists, but the amount
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1.3 Methodology 1 INTRODUCTION

Figure 1: Quantum Phenomena might be a subset of the union of phenomena
of many toy theories. Of course any given toy theory may exhibit ‘extra’ or
‘unwanted’ phenomena which are not exhibited by Quantum Theory, and no
one toy theory is likely to exactly capture all of the quantum phenomena.

of each ingredient is undefined, or the ingredients are named ambiguously. What
is a good way to proceed? The suggestion is to bake a number of ‘toy cakes’.
These toy cakes are so called because they are baked for fun: or more precisely
they are baked to help discover something about the real mystery cake. They
do not attempt to taste nice or look appealing: any desirable attributes like this
are completely coincidental. A variety of toy cakes are baked with different sets
of ingredients until similarities with the mystery cake are revealed. Eventually
ingredients can systematically be chosen to fully reproduce the mystery cake,
and now by construction an accurate recipe is known.

A toy theory is like a toy cake. It does not attempt to make statements
about reality that might stand up to testing: any desirable qualities like this
are purely coincidental. It is constructed just for fun, or more precisely to
help highlight some facts about the real theory (in this case Quantum Theory).
Conceptual Ingredients are not like egg white or sugar or flour, of course: they
are mathematical structures (such as a vector space) or intellectual ideas (such
as the Spin-Statistics theorem) that in combination bring about prediction of
natural phenomena. It is the goal of this project to begin the process of isolating
the conceptual ingredients of Quantum Theory by using various toy theories in
an exactly analogous way to the cake example outlined above.

What should be sought is a complete classification of toy theories and their
phenomena, where all quantum phenomena were accounted for by at least one
toy theory (see Figure 1).
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2 QUANTUM MECHANICS

2 Quantum Mechanics

2.1 A Set of Axioms

The Copenhagen Interpretation of Quantum Mechanics has axioms [14]:

Axiom 1. At a fixed time the state of a quantum system is a vector |ψ〉 in a
Hilbert Space H.

Axiom 2. The evolution of a quantum system is always described by unitary
evolution, i.e. by a Unitary (Û † = Û−1) operator or ‘gate’ Û with |ψ〉 → Û |ψ〉.
In particular the time evolution obeys the Schrödinger Equation1

i
∂

∂t
|ψ〉 = Ĥ|ψ〉, (1)

with Ĥ a unitary operator known as the Hamiltonian.

Axiom 3. The Born Rule. A measurement on a quantum system is described
by an Hermitian operator (Â = Â†) known as an Observable. An observable
has spectral decomposition

Â =
∑

i

λi|ei〉〈ei|. (2)

The eigenvalues λi of an Observable are the possible values obtainable by mea-
surement2, and the |ei〉〈ei| are known as projectors. When a state |ψ〉 is mea-
sured the probability of getting outcome i is

p(i) = 〈ψ||ei〉〈ei|ψ〉. (3)

Axiom 4. The Collapse Postulate. The post measurement state of the system
is

|ei〉〈ei|ψ〉
√

p(i)
. (4)

Axiom 5. Completeness Relation The projectors satisfy

∑

i

|ei〉〈ei| = I. (5)

where I is the identity operator.

2.2 Quantum Information

The primitive object of Quantum Information theory is a two level system de-
scribed by a two dimensional Hilbert Space. A large edifice of protocols, algo-
rithms and architectures can be built on this primitive object as a foundation, in

1I set Planck’s constant ~ = 1
2In this project the eigenvalues are always assumed to always be non-degenerate
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2.2 Quantum Information 2 QUANTUM MECHANICS

the same way that the modern digital computer and all its complexities is built
upon the foundation of a bit. A bit is the smallest measure of information. It
can distinguish between two possibilities. It can be realised physically in many
ways: any classical binary (two level) system will do, such as the result of an
ideal coin flip, the on/off status of a bulb, or the high/low current status of a
wire in an integrated circuit. One of the possibilities is labelled as ‘logical zero’

0 (6)

and the other as ‘logical one’
1. (7)

If we wish to represent more information then we can consider a ‘string’ of many
bits, and the number of possibilities now rises as a power of two. For example
if we consider 3 bits then we can distinguish between the 23 = 8 possibilities
associated with the strings 000, 001, 010, 100, 011, 101, 110, 111.

A ‘Quantum - Bit’ or qubit is the quantum mechanical equivalent of a clas-
sical bit. It is the simplest non trivial Quantum Mechanical system. Upon
measurement it distinguishes between two possibilities. It can be realised phys-
ically in many ways: the first/second energy level of the Hydrogen atom, the
spin up/spin down state of a spin half particle, the horizontal/vertical polariza-
tion of a photon. The difference is that between measurements the qubit exists
as a superposition of the two possibilities. We cannot say which value is taken
on by the system between measurements. The two possibilities that are obtain-
able by measurement are in correspondence with elements of a basis of the two
dimensional Hilbert Space. The canonical choice for notational reasons is the
computational basis, with e.g. spin up (one of the possibilities) as

|0〉 (8)

and spin down (the other possibility) as

|1〉. (9)

Another important difference between bits and qubits is that one can make
measurements on a qubit in a direction other than one that distinguishes |0〉
from |1〉. A general qubit exists in a state known as a ‘coherent superposition’:

|ψ〉 = α|0〉+ β|1〉, (10)

with α, β complex numbers satisfying |α|2 + |β|2 = 1 if the state is normalised
〈ψ|ψ〉 = 1. Importantly states which differ by a global phase are identified,
since they produce identical physical predictions. This enables a specification
of a qubit state by a relative weight and a relative phase. Considering for now
only equal weight superpositions of two qubits we have

|ψ〉 =
√
2
−1

(|0〉+ eiθ|1〉), (11)

9



2.2 Quantum Information 2 QUANTUM MECHANICS

the following states being special cases with θ = 0, π respectively:

|+〉 =
√
2
−1

(|0〉+ |1〉)

|−〉 =
√
2
−1

(|0〉 − |1〉).

It is possible to make a measurement distinguishing |+〉 and |−〉 by defining the
observable

X̂ = |+〉〈+| − |−〉〈−|. (12)

The outcome of a measurement will not always be wholly determined by the
measurement itself and the state |ψ〉. This is one of the keystone ideas of
quantum mechanics which sets it apart from any classical physics.

The information contained in a classical binary state is quantified by a bit,
and this is the amount of information required to specify the state completely.
But how might a quantum state be specified? A little thought soon uncovers an
interesting fact: the complex coefficients α and β can take on a continuum of
non-integer values. There is an infinite amount of classical information involved
in specifying a quantum state. This is just one paradox [4] which drives a wedge
between classical theories and quantum mechanics. An altogether novel concept
of ‘Quantum Information’ arises.

Definition The density matrix ρψ associated with a qubit state |ψ〉 is a 2× 2
matrix satisfying

ρψ = |ψ〉〈ψ| (13)

or equivalently if |ψ〉 = α|0〉+ β|1〉 then

ρψ =

(
|α|2 α∗β
β∗α |β|2

)

. (14)

Theorem 2.1. The normalisation condition for a state implies that it’s density
matrix representation has unit trace.

Definition The fidelity between two quantum states |ψ〉 and |χ〉 is defined by
F = |〈ψ|χ〉|2 or for two states with density matrices ρ and σ the fidelity is
F = Tr

√
ρ
√
σ.

Definition Two quantum states |ψ〉 and |χ〉 are said to be orthogonal iff
〈ψ|χ〉 = 0. This is a special case of Fidelity when F = 0.

Definition A state that can be written as a linear combination of basis vectors
is called a pure state.

Definition The coherent superposition of two or more pure states is another
pure state:

|ψ〉 =
∑

i

αi|i〉 (15)

with the αi ∈ C known as weights.

10
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Definition The convex combination ρ of two or more quantum states is a mixed
state defined as the linear combination of density matrices representing those
states with probabilities pi that sum to unity:

ρ =
∑

i

piρi (16)

and there are many convex decompositions of a mixed state: for example the
maximally mixed state ρ = 1

2 (|0〉〈0| + |1〉〈1|) = 1
2 (|+〉〈+| + |−〉〈−|) = I/2. A

mixed state cannot be written as a sum of basis states with complex weights.

The semantic difference between a ‘pure’ state and a ‘mixed’ state is due to the
fact that the uncertainty for the former is purely quantum uncertainty, whereas
for the latter some classical uncertainty is introduced. A mixed state would
be produced if a quantum state is prepared based on the result of a classical
coin flip, with different states for heads and tails. Alternatively the classical
uncertainty can be understood as some sort of experimental error.

There is an elegant representation of qubits which greatly enhances a quan-
tum physicist’s visualisation of measurement, evolution, and the closeness of
states in Hilbert Space. In the density matrix representation of a pure state
there are ostensibly two complex, or four real degrees of freedom. The nor-
malisation condition (that density matrices have unit trace) removes one real
degree of freedom leaving three real degrees of freedom. As we have seen pure
states which differ only by a global phase are identified with each other, and this
removes a further degree of freedom. This means there are only two remaining
degrees of freedom for a pure state, or three remaining degrees of freedom for
a mixed state: so mixed states can be represented in a volume and pure states
on a surface.

Definition The Bloch Vector ~r = [rx, ry, rz] associated with any quantum state
ρ satisfies

ρ =
1

2
(I+ ~r.~σ) =

1

2

(
1 + rz rx − iry
rx + iry 1− rz

)

(17)

with ~σ = [X̂, Ŷ , Ẑ] a vector of Pauli matrices. The Bloch vector enables us to
plot any qubit state in a three dimensional space known as the Bloch Sphere.
Pure states lie on the surface of the sphere, and mixed states in it’s interior.
Orthogonal states are antipodal points. By construction eigenstates of the Pauli
Matrices form three sets of antipodal points

X̂|+〉 = |+〉 (18)

X̂|−〉 = −|−〉 (19)

Ŷ |i+〉 = |i+〉 (20)

Ŷ |i−〉 = −|i−〉 (21)

Ẑ|0〉 = |0〉 (22)

Ẑ|1〉 = −|1〉 (23)

11



2.3 Pairs of Qubits 2 QUANTUM MECHANICS

with |i±〉 =
√
2
−1

(|0〉 ± i|1〉). Each pair of eigenstates is a basis for the Hilbert
space and defines an orthogonal axis in the Bloch sphere:

X

Z

Y

. (24)

Note that orthogonal here does not mean that the bases are orthogonal: they are
mutually unbiased. This means that the inner product of the elements of any
two bases is a constant: the geometrical consequence is that mutually unbiased
states are equidistant in the Bloch sphere.

The geometrical representation is an incredibly useful one: it enables a visual
comparison of many effects within Quantum Information Theory and also the
states (and their evolution) of any quantum-like theory can be compared readily
in a visual manner. Convex combination maps pure states from the surface of
the Bloch sphere to its mixed states in it’s interior, or mixed states in it’s interior
to other mixed states in its interior. The maximally mixed state, defined as I

2
lies at the centre of the Bloch sphere.

2.3 Pairs of Qubits

When there is a need to describe multiple systems, this is achieved by using the
tensor product ⊗. For example if we have a Qubit in New York that we want
to describe mathematically and at the same time a Qubit in London, we can
write:

|ψ〉New York ⊗ |φ〉London, (25)

where the qubit in New York is in the state labelled by |ψ〉, the Qubit in London
is in the state labelled by φ, and ⊗ is the tensor product. It is common practice,
once an order convention has been established, to drop the subscript labels from
the qubits, and even conflate the two kets to form a larger one:

|ψ〉New York ⊗ |φ〉London = |ψ〉 ⊗ |φ〉 = |ψφ〉. (26)

The expression (25) is referred to as a ‘product state’, and it exists in the ten-
sor product Hilbert space. That is to say, if |ψ〉 ∈ H1 with basis {|N〉, |Y 〉}
and |φ〉 ∈ H2 with basis {|L〉, |D〉} then |ψ〉 ⊗ |φ〉 ∈ H1 ⊗ H2 with basis
{|NL〉, |ND〉, |Y L〉, |Y D〉}.

It is possible to pass the product state through a gate, just as it is with a
single qubit. This gate can itself be the tensor product of two separate gates

12



2.4 No-Cloning Theorem 2 QUANTUM MECHANICS

acting on the separate qubits respectively:

(ÂNew York ⊗ B̂London)|ψ〉 ⊗ |φ〉. (27)

If we allow Â to be the identity operator then (27) describes acting only on the
London Qubit, and likewise if we allow B̂ to be the identity operator then it
describes acting only on the New York Qubit.

The usual computational basis for qubits is extended to a composite system
of a pair of qubits (existing in a bipartite Hilbert space): the basis elements
are denoted {|00〉, |01〉, |10〉, |11〉}. A general bipartite state is thus a linear
combination of these basis elements. An extremely important caveat here is
that bipartite quantum states may evolve into special ‘entangled’ states. For
example there is the Bell state

|Bell〉 =
√
2
−1

(|00〉+ |11〉). (28)

Notice how in the computational basis expansion of the Bell state certain ‘cross-
terms’ |01〉 and |10〉 are missing (they have zero weight), and that consequently
this state may not be written as the product of two single qubit states. Entan-
gled states such as this are central to many Quantum Information Processing
protocols.

2.4 No-Cloning Theorem

Now that a bipartite product space has been introduced, it can be used to show-
off some of the strange and surprising phenomena of quantum theory. Consider
the copying or cloning of a quantum state. A universal state cloner acts on both
a data qubit |ψ〉 and an ancilla qubit in some arbitrary fixed state, producing
a final bipartite state that is a product of two copies of the data qubit. For
argument’s sake suppose the ancilla qubit is in a ‘blank’ state of |0〉. A cloner
achieves

U |ψ〉|0〉 = |ψ〉|ψ〉 (29)

and by the same process (for a universal cloner)

U |φ〉|0〉 = |φ〉|φ〉 (30)

for a distinct state |φ〉. Taking the inner product of (29) and (30) yields

〈ψ|φ〉 = (〈ψ|φ〉)2 (31)

which has solutions only if the states are identical (inner product is one) or
orthogonal (inner product is zero). Hence a universal state cloner is impossible.
The only inner product preserving cloning process is for a single state or for
two orthogonal states. The hidden argument is that the cloning process is not
unitary (it does not preserve inner products) and as such is not allowed by
Axiom 2.

13
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In order to clone a state, the cloner or the cloning mechanism must be able to
access all of the information specifying the state without disturbing it. Classical
states can be specified by a finite amount of information and completely survive
the process of measurement; this means that they may be cloned simply by
identifying the state through measurement and preparing a fresh system in an
identical state. Perhaps the reason that quantum states cannot be cloned in this
way is because an infinite number of measurements are required to completely
identify a quantum state. It is more likely that the reason is that quantum
states are destroyed by measurement, and hence may never be identified from
an arbitrary ensemble of states.

2.5 Teleportation

Teleportation is another surprising example of a quantum phenomenon. It is
a result that meshes with the no-cloning theorem: one cannot clone a state
without simultaneously destroying it.

The description of the protocol which enables teleportation necessarily re-
quires a tripartite Hilbert Space. This is easily understood as the tensor product
of three Hilbert spaces.

Let’s imagine that Alice holds a qubit |ψ〉 = α|0〉 + β|1〉 that she wishes
to send to Bob, and that there is no quantum channel in which to do so (i.e.
she is unable to send the physical instantiation of the qubit). Let us imagine
further that the identity of the state (the amplitudes α and β) are unknown
to both parties so that classical communication of the identity of the state is
impossible. There is however a classical communication channel open to Alice
and Bob (perhaps a telephone), and local measurements and operations are
allowed. In order to implement the protocol Alice and Bob share a Bell state:

|teleport〉 = |ψ〉|Bell〉 =
√
2
−1|ψ〉(|00〉+ |11〉). (32)

This state exists in the tripartite Hilbert space (because the Bell state is a
bipartite state). The notational convention will follow:

H = H1 ⊗H2
︸ ︷︷ ︸

Alice

⊗ H3
︸︷︷︸

Bob

, (33)

i.e. Alice holds both the state to be teleported and one ‘half’ of the Bell state
with Bob holding the other half. We can rewrite (32) as

|teleport〉 =
√
2
−1

(α|0〉+ β|1〉)(|00〉+ |11〉) (34)

=
√
2
−1

(α|00〉|0〉+ α|01〉|1〉+ β|10〉|0〉+ β|11〉|1〉). (35)

Alice now proceeds by making a measurement corresponding to the observable
A =

∑

i=I,X,Y,Z λiPi which has four possible outcomes of equal likelihood asso-

14
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ciated with the following projectors:

PI =
1

2
(|00〉+ |11〉)(〈00|+ 〈11|) (36)

=
1

2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|) (37)

PX =
1

2
(|00〉 − |11〉)(〈00| − 〈11|) (38)

=
1

2
(|00〉〈00| − |00〉〈11| − |11〉〈00|+ |11〉〈11|) (39)

PY =
1

2
(|01〉+ |10〉)(〈01|+ 〈10|) (40)

=
1

2
(|01〉〈01|+ |01〉〈10|+ |10〉〈01|+ |10〉〈10|) (41)

PZ =
1

2
(|01〉 − |10〉)(〈01| − 〈10|) (42)

=
1

2
(|01〉〈01| − |01〉〈10| − |10〉〈01|+ |10〉〈10|). (43)

It is a simple exercise to check the following facts: that PI+PX+PY +PZ = I in
accordance with Axiom 5, that each of the outcomes has probability of a quarter
in accordance with the Born Rule (Axiom 3), and that the post measurement
states are

|teleport′
I
〉 = PI ⊗ I|teleport〉 = |Bell〉(|ψ〉) (44)

|teleport′σ〉 = Pσ ⊗ I|teleport〉 = |Bell′〉(σ|ψ〉) (45)

Where |Bell′〉 is the Bell state or a unitary rotation of the Bell state and σ =
X̂, Ŷ , Ẑ is a Pauli operator. Notice that in a quarter of cases, teleportation
has been achieved. Alice now telephones Bob and transmits two bits of classical
information, informing him of the result of her measurement λi: for the outcome
associated with PI she transmits a coded message with meaning “teleportation
achieved” and for the outcome associated with Pσ she transmits one of three
coded messages identifying an appropriate Pauli Operator. Bob then uses this
information to rotate his qubit to the state desired by applying the relevant
Pauli Operator:

I⊗ I⊗ σ|teleport′σ〉 = |Bell〉|ψ〉, (46)

where the involution of the Pauli operators is assumed σ2 = I. This completes
the description of a protocol which, through the paradigm of Local Operation
and Classical Communication has consistently achieved:

|ψ〉|Bell〉 → |Bell′〉|ψ〉. (47)

This protocol will be revisited in Section 5.5 where it is described in an altogether
different language.

15
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3 Spekkens’s Toy Theory

3.1 Introduction

This section is chiefly a summary of a toy theory presented by Spekkens in [15].
Spekkens’s is a classical theory equipped with an information theoretic principle:
there is restriction on the amount of knowledge one can obtain about any given
system. This restriction is dubbed The Knowledge Balance Principle and it
has surprising consequences. Spekkens’s toy theory may, some believe, bridge
the gap between an intuitive and straightforward explanation of reality and the
strangeness of Quantum Theory. As the toy theory is explicitly a local theory,
the Bell theorem [1] implies that it cannot reproduce all of Quantum Mechanics.
By construction, then, the toy theory must have a role other than a theory of
nature. It does not benefit from any sort of experimental confirmation, and so
it is deserving of toy theory status. It does qualify as a quantum like theory
- it has a no cloning theorem and many other phenomena that are considered
characteristic of Quantum Mechanics. Spekkens would have us take this as
evidence for an epistemic view of quantum states; an interpretative point that
differs from the mainstream. The epistemic view of quantum states views the
statements of Quantum Theory not as the ultimate description of reality, but
as a statement of incomplete knowledge about some hidden reality. Spekkens’s
view that there may be a contextual or non-local hidden variable interpretation
of Quantum Mechanics [16] is largely irrelevant to the research programme of
this project. The toy theories, of which Spekkens’s is an example, could help us
understand and refine orthodox views irrespective of their own success.

3.2 The Elementary System

The simplest system of the toy theory is called an elementary system. An
elementary system can be in one of four states, and these are fact-of-the-matter
states of reality called ontic states. They are the distinct values taken on by
a classical discrete degree of freedom3. The ontic state is an abstract entity,
and the arguments of this project (and indeed of arguments for the epistemic
view of quantum states) go through irrespective of a concrete definition. It can
aid understanding however to think of a tetrahedral die as one example of a
physical system with four classical states.

An elementary system is represented by a row of four boxes, each represent-
ing a distinct ontic state (such as each face of the tetrahedral die). An opinion
about the system, known as an epistemic state, is represented by a disjunction
of ontic states: for instance a ∨ b (read ‘a or b’) expresses the knowledge that
a system is either in ontic state a or ontic state b. Equivalently we can shade
in boxes corresponding to ontic states that the system could be in, and express

3The true classical notion of a state is a point in phase space. In this discussion we would
have a phase space that allows only four possibilities for the values of the canonical variables:
perhaps there is a classical particle with fixed momentum and four possible positions. See
section 3.11.
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our knowledge that way. In this way we can represent total ignorance:

1 ∨ 2 ∨ 3 ∨ 4 (48)

partial knowledge,

1 ∨ 2 (49)

or complete knowledge

1 (50)

.

Definition The Ontic base of an epistemic state is the set of ontic states that
are compatible with it. For example the ontic base of (1∨2∨3∨4) is {1, 2, 3, 4}.
Theorem 3.1. For an elementary system, if there are n ontic states in the
ontic base of an epistemic state, then the probability distribution is uniform over
these ontic states and each square in the graphical representation represents a
probability of 1

n .

In (48) each shaded square represents a probability of 1
4 , in (49) each shaded

square represents a probability of 1
2 and in (50) the single shaded square has unit

probability. When we have complete knowledge our epistemic state coincides
with the ontic state of the system. In the same way that when a probability dis-
tribution on the possible values of a variable is a Delta function this corresponds
to certainty about the value of that variable.

3.3 The Knowledge Balance Principle

It is interesting to pause here and ask: which features if any of Quantum Me-
chanics could be exhibited by the entirely classical system thus far outlined?
The answer is obviously that only ‘classical phenomena’ would be reproduced.
Quantum Theory is not fully classical, but it is undoubtedly built upon classi-
cal foundations, and has classical phenomena. ‘Classical phenomena’ is a rather
clumsy phrase, because it describes something completely uninteresting. Quan-
tum Mechanics may exhibit non-classical phenomena such as non-commuting
observables, but it also falls back on classical notions frequently. When mea-
surements are made on a particle, in fact, the quantum world disappears for
an instant and the particle momentarily has a classically defined position and
momentum. The axioms of Quantum Theory supplement and restrict classical
notions, enabling the theory to arrive at its bizarre conclusions. A toy theory
can place restrictions on classical notions and lead to conclusions in precisely
the same way. The same is true of Spekkens’s toy theory. That the conclusions
generated resemble those of Quantum Theory suggests that the conceptual in-
gredient(s) that restricts or extends classical notions is culpable for the interest-
ing phenomena shared by the theories. The conceptual ingredient that concerns
us here is the Knowledge Balance Principle.
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The Knowledge Balance Principle roughly states that we can never achieve
more than half of the complete amount of knowledge. To make this principle
precise we must give a quantitative description of knowledge.

Definition A Canonical Set is a set containing the minimal number of yes/no
questions needed to fully specify the ontic state of a given system.

An inefficient way of specifying a quantum state for an elementary system in
ontic state 1,2,3 or 4 would be for example







‘Is it 1?’,
‘Is it 2?’,
‘Is it 3?’,
‘Is it 4?’







, (51)

whilst the more efficient canonical set might be

{
‘Is it 1 or 2?’,
‘Is it 2 or 3?’

}

. (52)

Clearly this example of a canonical set is capable of precisely ascertaining the
ontic state, with the minimal number of yes/no questions. This is because each
question halves the possibilities for the identity of the ontic state. There are
other canonical sets than this one for the same system, but what is important
is the number of questions in the canonical set (which is constant for a given
system). Here, for a single elementary system of four ontic states, the number
is two.

Definition Spekkens’s Measure of Knowledge is the maximum number of ques-
tions for which the answer is known in a variation over all canonical sets of
questions (i.e. we pick the canonical set which contains the most number of an-
swered questions, and this number constitutes the amount of knowledge about
a system).

Definition Spekken’s Measure of Ignorance is the difference between the total
number of questions in a canonical set and the amount of knowledge.

Theorem 3.2. The Knowledge Balance Principle: in a state of maximal knowl-
edge, for every system and at every time the amount of knowledge one possesses
about the ontic state of a system at that time must equal the amount of ignorance
about that system [15].

The immediate consequence of Theorem 3.2 is that maximal knowledge is in-
complete. It is like having nature roll a tetrahedral die, and allow us only
incomplete knowledge of the identity of the label on the uppermost vertex.

For a single elementary system we have two questions in a canonical set, one
of which must remain unanswered. Recalling the form of the questions in the
canonical set (52), the principle means we may discount at most two ontic states
at any given time. This corresponds to a minimum of two squares remaining
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shaded in the pictorial representation of epistemic states. Hence an exhaustive
list of the six epistemic states of maximal knowledge can be given for a single
elementary system:

1 ∨ 2 (53)

3 ∨ 4 (54)

1 ∨ 3 (55)

2 ∨ 4 (56)

2 ∨ 3 (57)

1 ∨ 4 (58)

with a state of maximal ignorance (48) completing the set of seven allowed
epistemic states for a single elementary system. States of maximal knowledge
will be known as pure toy bits. An epistemic state of maximal knowledge is
known as a ‘toy bit’ as it takes a single classical bit to answer one question in
a canonical set for an elementary system.

3.4 Single Qubit Pure State Analogues

It is possible to set up a dictionary between the seven states of the toy system and
seven important states from Quantum Information theory; the ±1 eigenstates
of the Pauli matrices and the maximally mixed state:

1 ∨ 2 ⇔ |0〉
3 ∨ 4 ⇔ |1〉
1 ∨ 3 ⇔ |+〉
2 ∨ 4 ⇔ |−〉
2 ∨ 3 ⇔ |i+〉
1 ∨ 4 ⇔ |i−〉

1 ∨ 2 ∨ 3 ∨ 4 ⇔ I/2. (59)

Considering the Bloch Sphere representation of qubits:

I

2 |i+〉|i−〉

|0〉

|1〉

|−〉

|+〉

(60)

19



3.4 Single Qubit Pure State Analogues 3 SPEKKENS’S TOY THEORY

using the dictionary (59) we can construct a geometrical representation of states
in the toy theory

1 ∨ 2 ∨ 3 ∨ 4 2 ∨ 31 ∨ 4

1 ∨ 2

3 ∨ 4

2 ∨ 4

1 ∨ 3

(61)

or alternatively

(62)

which we will refer to as the toy bit insect.

Definition Two states are disjoint if the intersection of their ontic bases is
null.

Using the dictionary (59) or the geometrical representations (61) and (62) one
can appreciate that states that are analogous to orthogonal states in Quantum
Theory are disjoint in the toy theory. Three pairs of antipodal points on the
Bloch Sphere become three pairs of points ‘opposite’ each other in the toy bit
insect. If one superimposes two disjoint states on each other one notices no
overlap between shaded boxes.

Definition The fidelity F [p̄, q̄] between two epistemic states (a∨ b∨ c∨ d) and
(e∨ f ∨ g∨h) with pk a vector of uniform probabilities for a,b,c,d which sum to
unity and qk a vector of uniform probabilities for e,f,g,h which sum to unity is :

F [p̄, q̄] =
∑

k

√
pk
√
qk. (63)

Fidelity is a measure of nondisjointness. Disjointness and Equality are special
cases of fidelity when F = 0, 1 respectively.

If one takes the Quantum Fidelity between any two states on the right hand side,
and the Toy Theory Fidelity between the corresponding states on the left hand
side of the dictionary (59) one finds a numerical agreement for each pairing.
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Definition The convex combination of two disjoint epistemic states is the union
of their ontic bases if the union forms a valid epistemic state. Otherwise, and
for nondisjoint states, the convex combination is undefined.

Definition The coherent superpositions of two disjoint epistemic states (a∨ b)
and (c ∨ d) with a, b 6= c, d and a < b, c < d are defined:

(a ∨ b) +1 (c ∨ d) = (a ∨ c) low-low
(a ∨ b) +2 (c ∨ d) = (b ∨ d) high-high
(a ∨ b) +3 (c ∨ d) = (b ∨ c) high-low
(a ∨ b) +4 (c ∨ d) = (a ∨ d) low-high

(64)

with the mnemonic in the right hand column codifying how to construct each
coherent superposition.

Coherent binary operations map pure toy bits to other pure toy bits (generating
an analogue to the coherent superpositions of Quantum Mechanics), and so in
the toy bit insect representation we can think of this as mapping between any
two of the sharp ends of the six protruding legs to any of the other four sharp
ends. The four coherent binary operations +1,+2,+3,+4 are analogous to equal
weight superpositions of two pure states in Quantum Theory (11) with a relative
phase θ chosen from {0, π, π/2, 3π/2} respectively.

3.5 Transformations

In the toy theory, any transformation of the states must be such that it preserves
fidelity. Fidelity preserving operations are exactly analogous to unitary trans-
formations in Quantum Theory, which preserve the inner product. The allowed
transformations must be permutations of the ontic states. This is necessary to
prohibit transformations which map many ontic states to a single ontic state,
which is a map from a legal epistemic state to an illegal one which violates the
Knowledge Balance Principle. For example the transformation

→

can be achieved by a (123)(4) permutation (that is a cyclic permutation of the
ontic states 1, 2, 3 and no permutation of ontic state 4). The same permutation
achieves

→ .

Note that the fidelity between initial states is the same as the fidelity between
final states. This is true for all of permutations of the ontic states, which from
the 24 element group S4.

3.6 Measurement

In Quantum Theory a measurement involves both an outcome and a post mea-
surement state (which is the eigenvector of the observable with the measurement
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outcome as its eigenvalue). For the post measurement state in the toy theory to
obey the Knowledge Balance Principle it must rule out all ontic states incompat-
ible with the measurement outcome. A measurement will act on an elementary
system of four ontic states and can distinguish between two sets of two ontic
states, with the outcome determining the post measurement state. There are
(
4
2

)
= 6 partitioning of four states into two sets of two, but half of them are

merely a relabelling and as the order is irrelevant this leaves three possibilities
for a measurement on an elementary system. We denote a measurement of “a∨b
versus c ∨ d” by using roman numerals as labels:

IIIIII = {1 ∨ 2, 3 ∨ 4} (65)

IIIIII = {1 ∨ 3, 2 ∨ 4} (66)

IIIIII = {1 ∨ 4, 2 ∨ 3}. (67)

The Roman numerals label the measurement “direction” in analogy to projective
measurements in Quantum Theory. Disjoint epistemic states are distinguishable
by a suitable choice of measurement direction, just as orthogonal states are dis-
tinguishable in Quantum Theory. A measurement direction defined by “1 ∨ 3
versus 2 ∨ 4” can distinguish between epistemic states 1 ∨ 3 and 2 ∨ 4 with cer-
tainty. Diagrammatically I represent a measurement by a wiggly arrow pointing
from the measurement direction to the system being measured. This visual way
of representing measurements may help build intuitions about the measurement
process. The post measurement states corresponding to the different outcomes
of the measurement are given:

IIIIII

Outcome I
Outome II

does not occur

. (68)

The post-measurement state is always given by an epistemic state coinciding
with the appropriate sector of the measurement direction, provided there is
a non zero fidelity between this zone and the pre-measurement state. If the
Fidelity is zero then that outcome is impossible. To complete this example I
show the other epistemic state which, with the same measurement direction
has a certain outcome, allowing the measurement to distinguish between these
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epistemic states:

IIIIII

Outcome I
Outome II

does not occur

(69)

If it is known that the epistemic state is either 1 ∨ 3 or its disjoint 2 ∨ 4 then
the above measurement can distinguish between these states, by virtue of the
determination of the measurement outcome by the epistemic state. Some mea-
surement outcomes are not determined by the initial epistemic state and the
measurement direction :

IIIIII

Outcome I
Outome II

(70)

Only the relative frequencies of outcomes in a large ensemble of experiments is
determined. The important point is that although we have some uncertainty
here in analogy with the Quantum Theory, it can be rested squarely on the
shoulders of a lack of knowledge! There is no need in the toy theory to swallow
the bitter pill of accepting uncertainty as a fundamental aspect of reality, but
merely as the run-of-the-mill classical uncertainty as incomplete knowledge. It
is possible to tell a story explaining a deterministic transformation of the ontic
states of the system whilst maintaining a lack of knowledge about the identity of
those ontic states and a lack of knowledge about their transformation. Consider
the ‘I Outcome’ in (70): it seems as if the intersection of pre and post mea-
surement states would allow one to infer with certainty the ontic state as 1 and
violate the Knowledge Balance Principle. Importantly, the Knowledge Balance
Principle says nothing of the possibility of retrodicting a past ontic state and
hence there is no violation unless we can know the identity of the current in-
stantaneous ontic state. To maintain a balance of Knowledge we must conclude
that the ontic state has been transformed by the measurement from 1 to either
1 or 3. Our uncertainty about which transformation has taken place secures a
valid post epistemic state, whilst allowing for a deterministic and well defined
value for the ontic state at all times, albeit hidden from our perceptions.
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3.7 Pairs of Elementary Systems

Theorem 3.3. Every system is built from elementary systems. For n systems
there are 2n questions in the canonical set and 22n possible ontic states, because
each question in a canonical set halves the possibilities for the ontic state.

If we consider two elementary systems simultaneously, the ontic states are every
possible pairing of each of the ontic states on the separate systems in analogy
with the tensor product. There are sixteen possibilities, and the joint states are
written (a · b) with a representing the ontic state of the first system and b the
second system: 





(4 · 1), (4 · 2), (4 · 3), (4 · 4),
(3 · 1), (3 · 2), (3 · 3), (3 · 4),
(2 · 1), (2 · 2), (2 · 3), (2 · 4),
(1 · 1), (1 · 2), (1 · 3), (1 · 4)







. (71)

We can represent the sixteen ontic states on a grid, with the first system’s ontic
state being a row and the second system’s ontic state being a column:

S
y
st
em

1

System 2

1 2 3 4
4

3

2

1. (72)

Note how the labelling of boxes mimics neither the usual labelling of coordinates
in the Cartesian plane (because the horizontal axis is the second label not the
first) nor of matrix elements (labels are read up and then right, rather than row
and then column). As an example consider the joint ontic state of “system 1 in
ontic state 1 and system 2 in ontic state 1” written as (1.1) or depicted

. (73)

This is not a valid candidate for an epistemic state for two reasons. Firstly the
‘marginal’ epistemic states do not obey the Knowledge Balance Principle; that is
to say that if we look at at one of the systems in isolation, ignoring information
about the other state the amount of knowledge expressed in (73) would allow
more than half of the questions in a canonical set for that subsystem to be
answered. This way of ignoring some of the information in a bipartite state is in
analogy with the partial trace of Quantum Mechanics (see e.g. [14]), and in the
toy theory the marginal distributions are found by projecting all of the rows into
a single sub-row (if we discard information about System 1) or projecting all of
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the columns into a single sub-column (if we discard information about System
2). Secondly if we consider the Knowledge Balance Principle as it applies to
the composite system, and also consider Theorem 3.3 which implies for n = 2
that we may know the answers to a maximum of two out of four questions in
the canonical set, states such as (73) violate the principle.

Theorem 3.4. There must be a minimum of four boxes which are shaded on a
composite system of two elementary subsystems.

This means there are (
16

4

)

= 1820 (74)

states of maximal knowledge satisfying the Knowledge Balance Principle on the
the joint system. Some of these states will violate the principle as it applies to
a subsystem, however. Consider for example

(75)

which will violate the Knowledge Balance System on the second subsystem and

(76)

which will violate the Knowledge Balance Principle on the first subsystem. If we
look at the marginal distributions, they are invalid epistemic states. There are
other invalid states which are invalid because they will be updated in some cases
to a post-measurement state which violates the Knowledge Balance Principle
(as it applies to the composite system) for particular measurements.

3.8 Measurements on Bipartite States

Definition A Product State in the toy theory is one in which a maximal amount
of knowledge about each subsystem is possessed, given the Knowledge Balance
Principle and it’s application to composite and both subsystems. If System 1
has marginal (a ∨ b) and System 2 has marginal (c ∨ d) then the product state
is simply (a∨ b) · (c∨ d) = (a · c)∨ (b · c)∨ (a · d)∨ (b · d), where the disjunction
has been distributed over the conjunction4.

4In much the same way as we distribute addition over multiplication in (x + a)(y + b) =
xy + ay + xb+ ab.
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The post measurement state for two elementary systems is calculated in the
usual way, except now it is only the marginal distribution which is updated on
whichever subsystem undergoes measurement. The other subsystem’s marginal
is updated to the state consistent with the measurement outcome and the
pre-measurement state (i.e. the intersection of the ontic bases of the pre-
measurement state and the appropriate measurement direction zone). The joint
state is simply a product state of the two updated marginals:

I

I

II

II

Outcome I
Outcome II

. (77)

Similarly

IIIIII

Outcome I
Outcome II

. (78)

Note that in (78) the post measurement state depends on the measurement
outcome, and in one case the post measurement state is valid and obeys the
Knowledge Balance Principle. Crucially however, there is a possibility that the
other outcome is found and the Knowledge Balance Principle is violated. Such
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a possibility is excluded by removing these (pre-measurement) states from the
theory.

3.9 Correlated States

Definition A Correlated State in the toy theory is one in which complete
knowledge about the relation between each subsystem is possessed, but nothing
about the ontic states of the separate subsystems is known. Both systems will
have a marginal that represents total ignorance, and the bipartite state will be
(1 · 1) ∨ (2 · 2) ∨ (3 · 3) ∨ (4 · 4) or state found by permutations of the rows or
columns of this state.

An example of a correlated state:

. (79)

It should be clear that a correlated state may not be written as the product of
two marginal distributions. This is precisely because it must lack certain “cross
terms” in analogy with the entangled states of Quantum Mechanics (see Section
2.3).

3.10 Cardinality of States

For a composite system of n elementary systems, there are 4n ontic states and
2n questions in a canonical set. If we answer the maximum of half of these 2n−1

this corresponds to 2n ontic states in an epistemic state of maximal knowledge.
Therefore the number of epistemic states satisfying the Knowledge Balance Prin-
ciple on the composite system is

Ω̄n =

(
4n

2n

)

. (80)

For two elementary systems (n = 2) this amounts to 1820 states, but as I have
pointed out most of these will be invalid.

Theorem 3.5. The only valid bipartite states of maximal knowledge (pure bi-
partite toy bits) in the toy theory are product states and correlated states.

Using Theorem 3.5 we can calculate how many pure toy bit states there are
for two elementary systems. As a product state can be constructed by picking
two rows from four and then two columns from four columns and shading the
intersection there are (

4

2

)

.

(
4

2

)

= 36 (81)
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product states. For the correlated states one must shade in a single box in any
of the four rows of the first column, then shade in a box in one of the other three
rows of the second column, and then shade in a box in one of the two remaining
rows in the third column. The final box to be shaded must be the one in the
final column in the final remaining row. Hence there are

4! = 24 (82)

correlated states. This makes a total of 60 pure toy bit states for two elementary
systems.

3.11 A Physical basis for the principle?

In this section I present a suggestion for a physical system with a single clas-
sical degree of freedom (in this case position) which reproduces the abstract
concept of an elementary system and hints as to a possible physical reason for
the Knowledge Balance Principle. The aim is not to argue for a particular mi-
croscopic account of the hidden reality, but to explore a possibility and consider
its plausibility. The exercise will highlight key questions about the toy theory:
is a physical basis for the information theoretic principle necessary or can such
a principle be basic or primitive, underlying any physical principles? The exer-
cise also serves as a proof that it is possible for the ontic state to be specified
in a totally classical and easy to understand way, and for uncertainty to melt
away as a true aspect of reality (it being relegated to the status of a lack of
knowledge).

In Section 3.2 we saw that the elementary system could be represented phys-
ically by a tetrahedral die. This works insofar as there are four possibilities for
the ontic state of the system (the lowermost face or uppermost vertex of the
tetrahedral die). It is difficult (though not impossible) to form a physical basis
for the knowledge balance principle for this system, and to imagine how nature
might prevent us from gaining complete knowledge about the die. Instead I opt
for a row of four boxes with three wedges positioned above it, which makes for
a very simple interfacing with the pictures already in use to represent states:

. (83)

There is a classical particle or ‘ball’ which begins above the top wedge. The ball
will fall under the affect of gravity and be imparted a lateral force by two of the
three wedges. The ball can fall into any of the four boxes by interacting with two
of the wedges. The final position of the ball dictates the ontic state. Each wedge
has a bias: either to the left or to the right, and the lower wedges always have the
same bias. The Knowledge Balance Principle for this system would imply that
the possible amounts of knowledge attainable would be knowledge of the bias
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at the higher level or knowledge of the bias at the lower level or neither but not
both. Knowledge of the bias at both the upper level and lower level would lead
to complete knowledge of the final position of the ball, the ontic state. It should
be clear that all of the epistemic states for a single elementary system introduced
above can be assigned to this physical system if one bit of information5 is given
about the bias of the wedges (either at the upper or lower level). The state of
total ignorance of course can also apply to this physical system. This suggestion
for the physical basis of the toy theory sharpens questions about the physical
basis of the no cloning theorem in the theory, if there is such a physical basis.

3.12 No-cloning Theorem

In the toy theory, cloning or copying a state of incomplete knowledge is es-
sentially the ability to apply such an epistemic state to a new system whilst
maintaining its applicability to the original system. It is “not about duplicating
parts of reality” [16], because epistemic states are not part of the landscape of
reality but rather parts of the landscape of our language or of our mind. In
section 2 we saw that classical states of reality may be cloned, but quantum
mechanical states may not be. We shall now see that toy states may not be
cloned.

A toy bit cloner would perform

(a ∨ b).(c ∨ d) → (a ∨ b).(a ∨ b) (84)

where (a ∨ b) is the data toy bit and (c ∨ d) is an arbitrary ancilla toy bit. The
same transformation would, for a universal cloning process, have to achieve

(e ∨ f).(c ∨ d) → (e ∨ f).(e ∨ f) (85)

for any other data toy bit (e ∨ f). Taking the fidelity between (84) and (85)
gives:

F [(a ∨ b), (e ∨ f)] → F [(a ∨ b), (e ∨ f)]2 (86)

where I have assumed

F [(a ∨ b).(c ∨ d), (e ∨ f).(c ∨ d)] = F [(a ∨ b), (e ∨ f)]×F [(c ∨ d), (c ∨ d)] (87)

in analogy with the Hilbert space inner product. Notice that (86) implies that
a fidelity preserving cloning process exists only for either a single state or for
disjoint states. As the only transformations allowed in the toy theory are those
preserving fidelity (see Section 3.5), a universal cloning process is therefore
impossible.

The mathematical similarity with the no-cloning theorem for quantum states
is manifest. Cloning is described and then shown to be an illegal transformation.
Toy bits by definition are specified by a small finite amount of information: so

5It is straightforward to cast this example in terms of canonical sets and questions answered
as in previous discussions.
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heuristically the ‘infinitude of information’ argument above for quantum states
cannot be given for toy bits: coherent quantum states not only correspond to an
uncountably infinite amount if classical information, but they are also destroyed
by measurement6. It seems that it is the conceptual ingredient of ‘information
gain implies disturbance’ that is instrumental. A possible solution would be
to determine the identity of the toy bit to be cloned, and then prepare two
‘fresh’ systems in this state. But determining an arbitrary state in the toy the-
ory requires more than one measurement for certainty and since measurements
disturb the toy bits, a second or subsequent measurement is useless and states
cannot be identified with confidence (see Section 3.6).

6An argument could be made that both classical and quantum states can be defined approx-
imately by a finite amount of information by ‘gridding’ the phase space or Hilbert space of the
given system [4], thus fixing the problem of infinite information. The problem of measurement
disturbing the state remains.
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4 Stabilizer Formalism

Despite the similarities shared by the toy bit theory with Quantum Mechanics,
there are some important differences. Perhaps the most important is that the
toy theory is discrete where Quantum Mechanics has a continuum of states,
measurements and transformations. Happily there is a version of Quantum
Mechanics which also has discrete pure states and transformations and as such
promises to share a stronger similarity with Spekkens’s toy theory.

Stabilizer Quantum Mechanics is a restricted version of Quantum Mechan-
ics. It admits allows only a subset of states and transformations of Quantum
Mechanics.

Definition An operator M stabilizes a state |ψ〉 iff M |ψ〉 = |ψ〉. Equivalently
if a state is the +1 eigenstate of some operator then the state is said to be
stabilized by that operator.

Definition The Pauli Group on n-qubits Gn is the group of n-fold tensor prod-
ucts of Pauli matrices and/or Pauli matrices scaled by ±1, ±i.

For the single qubit case:

G1 ≡ {±I,±X,±Y,±Z,±iI,±iX,±iY,±iZ} . (88)

Gn is the product group of n lots of G1:

Gn = G1 × . . .×G1
︸ ︷︷ ︸

n of these

. (89)

A subgroup of Gn defines a subspace Vs which is the spanned by the set of all
states simultaneously stabilized by all elements of the subgroup:

Vs := {|φ〉 : Si|φ〉 = |φ〉 ∀Si ∈ S} . (90)

An example of a subgroup of Gn is

S = {I, X1X2, X2X3, X1X3} (91)

with the notation I = I ⊗ I ⊗ I and X1X3 = X ⊗ I ⊗ X etc. The subspace
stabilized by this subgroup is

Vs = {|χ〉||χ〉 = α|+++〉+ β| − −−〉} α, β ∈ C (92)

and this subspace is the intersection of the subspaces stabilized by each of the
elements of the subgroup S. Stabilizer Quantum Mechanics has only states that
exist in a subspace stabilized by subgroups of the Pauli Group, and transfor-
mations that map these states into each other. These transformations are the
Clifford Unitary gates.
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4.1 Stabilizer Octahedron

There is a useful geometrical representation of Stabilizer states for one qubit::

|0〉

|1〉

|i+〉|i−〉

|+〉

|−〉

, (93)

upon which the Bloch ball can be superimposed

. (94)
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The places that the ball touches the octahedron identify the pure stabilizer
states7:

|0〉

|1〉

|i+〉|i−〉

|+〉

|−〉

. (95)

Notice the similarity with the toy bit insect (62). As the states inherit all of
their properties from Quantum Mechanics, there is now a manifest bijective cor-
respondence between pure stabilizer states and toy bits for a single elementary
system or qubit.

4.2 No Cloning Theorem

The theorem is inherited from unrestricted Quantum Mechanics, since the sta-
bilizer states are a subset of quantum states and the Clifford transformations
are a subset of unitary transformations.

4.3 Cardinality of states

The number of distinct stabilizer states for N -qubits is [3]:

ΩN = 2N(N+3)/2
N∏

k=1

(1 + 2−k) (96)

so for one qubit there are Ω1 = 6 distinct stabilizer states, and are the six +1
eigenstates of ±X,±Y,±Z to mirror the states on the right hand side of the
dictionary (59). For two qubits there are

Ω2 = 60 (97)

states, which fall into 24 entangled states and 36 product states in the same
way as Spekkens’s toy bits. Immediately we have a stronger similarity with the

7Strictly speaking ‘mixed stabilizer state’ is a contradiction in terms, as such a state is not
in fact stabilized by members of the Pauli group. We can imagine, however, a mixed state
in unrestricted Quantum Mechanics which has a convex decomposition in terms of stabilizer
states.
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Figure 2: Stabilizer Quantum Mechanics exhibits phenomena which are a sub-
set of the phenomena of unrestricted Quantum Mechanics. The analogy with
Spekkens’s toy theory is stronger than was the case with unrestricted Quantum
Mechanics, but there are still some effects which are unaccounted for.

toy theory than was enjoyed with unrestricted quantum mechanics. See Figure
2.

4.4 GHZ Argument for Non-Locality

There is an elegant argument against the possibility of a hidden variables in-
terpretation of Quantum Mechanics, and it is presented succinctly in [13]. Sta-
bilizer Quantum Mechanics inherits this argument. The key ingredient is the
tripartite generalisation of the Bell state, known as the GHZ state:

|GHZ〉 =
√
2
−1

(|000〉+ |111〉). (98)

Note that this is a stabilizer state. This state is a simultaneous eigenstate of
the observables X ⊗X ⊗X,X ⊗ Y ⊗ Y, Y ⊗X ⊗ Y and Y ⊗ Y ⊗X which are
all tripartite tensor products of individual Pauli operators and furthermore are
admitted to the stabilizer formalism by virtue of being Clifford Unitary gates.
The observables have eigenvalues of ±1. A hidden variable interpretation will
attempt to assign a value of either +1 or −1 to each individual system for each
Pauli operator. The interpretation will then be that the system possesses these
values as an aspect of reality and that a measurement merely reveals the value
of these pre-existing variables as eigenvalues of the observables. For example

XY Y |GHZ〉 = −1|GHZ〉 (99)

and the realist is likely to claim that either the triple of separate hidden variables
corresponding to XY Y are either

(+ − +) or
(− − −) or
(− + +) or
(+ + −)

(100)
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where + stands for +1 and − stands for −1 and is the parity of the eigen-
value of the observable. Notice this list exhausts all possible assignments of
hidden variables to XY Y , since each individual observable can only return ±1
on measurement, and the parities must multiply to give −1. We can repeat
this procedure for XXX,Y XY and Y Y X, and in each case there will be four
possible assignments of hidden variables. Considering two observables each with
with two eigenvalues on the three qubits, there are 22

3

= 64 ways of simulta-
neously assigning hidden variables to all four observables (remembering that a
particular Pauli operator should be assigned the same hidden variable if it acts
on the same qubit). We could check each possibility for consistency, but there
is a simpler way. If we list the observables in a ‘Mermin Table’ [9]:

Observable Eigenvalue
X X X +
X Y Y −
Y X Y −
Y Y X −
+ + + ?

(101)

we notice that in each column we have two observables appearing twice. If the
individual observables are to have pre-existing values of ±1 then these must
be the same for the same qubit (the same column). Hence the product of
the parities in each column are necessarily +1 (the column parities are all the
product of two squares of ±1). The table parity can be calculated by multiplying
the column parities, giving +1.

Each observable has an eigenvalue for the GHZ state which can be checked
by direct computation. The eigenvalues are listed as row parities, and the table
parity can be found by multiplying these row parities, giving −1. This is a
contradiction, and we are left with only two resolutions. Either accept that
no hidden variable assignment is possible for the GHZ state and Observables
listed, or claim that the value of an individual observable on one qubit can be
instantaneously affected by a measurement on a different qubit which may be
separated by a space like interval from the first. It is this affect that is known as
Non-locality. The argument has succeeded in concluding that there can be no
local hidden variable interpretation of Quantum Mechanics precisely because
such an interpretation cannot be applied without contradiction for the GHZ
state and observables above.
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5 Category Theory

Using category theory, Bill Edwards suggests a programme of classification for
quantum like theories that might elucidate which features and important results
of Quantum Theory are consequent from which axioms or assumptions [9]. As
a proof of this programme, he examines Spekkens’s toy theory: in particular its
relation to stabilizer quantum mechanics. In fact Spekkens’s original paper [15]
hints at this sort of a research programme:

“A distinction between those quantum phenomena that are due to
maximal information being incomplete and those quantum phenom-
ena that arise from some other conceptual ingredient is likely to be
very useful in the field of quantum information theory, where there is
currently a paucity of intuitions regarding what sorts of information
processing tasks can be implemented more successfully in a quantum
universe than in a classical universe”. [15]

In our case the quantum phenomenon under consideration is non-locality, and
the “other conceptual ingredient” turns out to be something called the phase
group. The facet of non-locality is explored in a paper examining Stabilizer
Quantum Mechanics and Spekken’s toy theory authored by Spekkens, Coecke
and Edwards [8]. They state (emphasis in original):

“It is our goal. . . to identify the piece of structure of Hilbert space
quantum mechanics that generates non locality. To this end we will
use the framework [of category theory] to analyse two theories which
make very similar predictions, but differ principally in that one is
local and the other is non-local.”

We will see that some phase groups generate non-locality while others do not.

5.1 What is Category Theory?

Category theory is a way of thinking in a unified way about disparate areas
of mathematics. The idea is that it generalizes over things like vector spaces,
Hilbert spaces, sets, groups and other mathematical structures to form the
more abstract idea of an Object. It also generalizes over things like functions,
group homomorphisms, linear maps and other mathematical processes that are
associated with the Objects to form the more abstract idea of aMorphism. The
two ideas of Object and Morphism considered together are a Category. The
claim from the Category Theorists is that their ‘way of thinking’ is sufficiently
general to be able to describe (at least) both quantum mechanics and Spekken’s
toy theory using the same precise language and that this generality will make
more obvious the similarities and differences in structure of the two theories.
The Objects of a category are really just labels for physical systems. The
Morphisms can link two Objects with a direction, for example turning eggs
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into an omelette8. We can express that a morphism or an arrow f links objects
A (the domain) and B (the co-domain) in a number of different ways. Firstly
there is a notation which mirrors the notation for sets and maps:

f : A→ B. (102)

Alternatively we may express that f is a member of the set of all morphisms
between A and B (known as the Hom-Set) in the Category C

f ∈ C(A,B). (103)

Another way of denoting expressions is diagrammatically, with objects as capital
letters, and morphisms as arrows with a lower case letter:

A
f

B , (104)

alternatively we can use a straight line for an object and a box for a morphism,
and use an input/output type picture:

B

f

A

(105)

In all cases note that the order of the Objects is important, i.e.

f : A→ B 6= f : B → A (106)

f ∈ C(A,B) 6= f ∈ C(B,A) (107)

Similarly we must distinguish between morphisms that have the same domain
and co-domain: boiling an egg is a distinct process to frying it, although the
end product is a cooked egg in both cases:

f : A→ B 6= g : A→ B (108)

The notations (102),(103),(104),(105) are all completely equivalent, but lend
themselves more naturally to different situations. I will concentrate on the
input/output notation for the rest of the project. These diagrams are read
‘upwards’ from bottom to top.

For each Object there is a special Morphism known as the Unit Morphism,

which does nothing to the object:

A
1A

A (109)

8The fact is that one must break some eggs in order to make an omelette, but this step is
ignored.
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or in the input / output notation

A

(110)

We can express successive application of morphisms algebraically g ◦ f (read ‘f
then g’) or diagrammatically:

C C

g ◦ f = g

BA

f

A

. (111)

This is like frying the egg and then seasoning the egg to produce an seasoned
omelette. Whilst the diagrams are read upwards, the expressions in the algebraic
representation are read ‘backwards’ or right to left (as is standard in e.g. linear
algebra). The equality of the diagrams above means that any two successive
morphisms (between say Objects A and B , B and C respectively) can be
viewed as a single morphism (between A and C). We also have associativity
(g ◦ f) ◦ h = g ◦ (f ◦ h).

5.2 †SMCs

Along with the concepts of Object and Morphism that make up a Category, it
is necessary to introduce further concepts or structures to construct a ‘Dagger
Symmetric Monoidal Catgeory’ or †SMC. This entity is a Category with some
extra conceptual apparatus.

Definition A Functor is a map on Objects and a map on Morphisms. A
Bifunctor is a functor taking two arguments.

There is a Bifunctor ( ⊗ ) called the ‘tensor’ which is a way of considering
Objects and Morphisms in parallel (as opposed to the serial nature of successive
application above). So we can fry the egg and ferment the apples independently
but in parallel:

Egg ⊗ Apples
fry ⊗ ferment

Omelette ⊗ Cider (112)
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or

Omelette Cider

fry ferment

Egg Apples

. (113)

The Bifunctoriality condition reads (f2 ◦ f1)⊗ (g2 ◦ g1) = (f2 ⊗ g2) ◦ (f1 ⊗ g1)
and the condition is implicit in the pictorial calculus . Both sides of this equality
are given by the same diagram:

f2 g2

f1 g1

. (114)

This is the statement that ‘(frying the egg and then seasoning the egg) whilst
(fermenting the apples then sweetening the apples)’ is equivalent to ‘(frying the
egg whilst fermenting the apples) then (seasoning the egg whilst sweetening the
apples)’.

If the definitions and concepts introduced here seem familiar, this should
not be surprising: Category Theory claims to be a generalisation of Hilbert
space quantum mechanics, and as such has a similarity with it. The aspects of
Category Theory that are more surprising are still to be introduced.

There is an Identity Object which, in the input/output notation is de-
picted as a blank space. It represents the absence of a system. This is not to
say it represents a physical vacuum but rather a lack of a physical state: and
viewing states as information of some kind we can think of the Identity Object
as being an unspecified state.

There is a Dagger Structure which means lines, or wires (which are Ob-
jects) are endowed with a direction which we can reverse by taking the dual
A→ A∗:

A∗A

(115)
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Also each morphism f : A → B has a dagger morphism or adjoint morphism
f† : B → A which can be considered as an ‘upside down box’:

f

B

f†

A

A B

(116)

The dagger is a contravariant functor which is also ‘identity on objects’. This
means it turns outputs into inputs and inputs into outputs, but has no effect
on the objects themselves.

5.3 Categorical Quantum Mechanics

Quantum Mechanics is a concrete physical theory and hence is associated with
a category. Pure state Quantum Mechanics arises as the Category FHilb. In
this category Objects are finite Hilbert Spaces representing physical systems
(i.e. a qubit or a pair of qubits or a qutrit etc.), and Morphisms are linear maps
(i.e. Unitary Transformations or Evolutions). The tensor is the usual tensor
product and the dagger is the adjoint operation. As special cases of morphisms
we have States or ‘State Preparations’ which transform an unspecified state
into a specified state: i.e. they are a map from the Identity Object into another
Object of the Category. They have at least one output but no input:

ψ

A

. (117)

Recall that we read diagrams from bottom to top (logical concatenation or
succession in time). As the name suggests they are very much in analogy with
the states or kets of quantum mechanics

|ψ〉. (118)

Similarly we have the case where a morphism transforms the state of an existing
system into an unspecified state: i.e. a map from an Object of the Category to
the Identity Object. These are ‘co-states’ and have input but no output:

π

A

. (119)
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And these are like the dual states or bras of quantum mechanics:

〈π|. (120)

An obvious question here might be: “why are states depicted as morphisms
rather than objects?” Whilst it is true that kets seem to have more to do
with entities which undergo processes than the processes themselves, we should
remind ourselves that Objects are the Hilbert Spaces themselves rather than el-
ements of the Hilbert Space (vectors or kets). Hence what we have represented
is the process of preparing system A in state ψ in the first case, and in the
second case destroying a state through for example making a measurement. To
demonstrate this further we introduce the ‘Bell state’ or ‘entanglement genera-
tor’:

Bell

A∗ A

(121)

and the bell costate

Bell

A∗ A
(122)

as a state preparation with no input and two outputs and a state deletion with
two inputs and no outputs respectively. Recall that the directions of the arrows
do not denote time flow or label whether an object is the input or output.
For now I will vaguely suggest that the arrows denote the flow of quantum
information. These pictures are of course analogous to

1√
2
(|00〉+ |11〉) (123)

and
1√
2
(〈00|+ 〈11|) (124)

from quantum mechanics (here we work in the computational basis but any
basis {|ai〉} gives rise to a bell state

∑

i |ai〉 ⊗ |ai〉). Finally we have numbers
or scalars which have no input or output at all:

x
. (125)
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These are the result of combining a state with a co state, or preparing a state
then measuring it:

π

ψ

= x

. (126)

Again the pictorial calculus aims to be easy to intuit: one can imagine even a
young child pushing two triangles together to form a diamond [5]. There is even
a similarity with Dirac notation: in Quantum Theory we have the Born rule
playing this role of joining states with their duals, and the scalars are complex
numbers:

〈π|ψ〉 ∈ C (127)

5.4 Map State Duality

There is a single axiom for the calculus:

Bell

Bell

=

. (128)

If we imagine a rope looped through the triangles then this axiom is equivalent
to ‘yanking’ the rope [5] to straighten out the loop:

=

. (129)

Now we can manipulate the ends of the rope to obtain an equivalent identity:

=

, (130)
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where we have implicitly assumed:

Bell
= Bell

. (131)

The motivation for the axiom can be seen in Dirac Notation [9]. For each state
|ψ〉 ∈ HA ⊗HB in a bipartite tensor product space we can expand it thus

|ψM 〉 =
∑

ij

Mij |ai〉 ⊗ |bj〉 (132)

with {|ai〉} and {|bi〉} bases for the first and second Hilbert spaces respectively.
The same matrix elementsMij can be used to specify a linear map taking states
from the first Hilbert space to the second M : HA → HB

M =
∑

ij

Mij |bj〉〈ai|. (133)

This is known as “map-state duality”. We may now draw

ψM

HA HB

=
Bell

MHA

HB

(134)

which expresses that a general bipartite state can be created by the action of
applying an identity operator on one of the Hilbert spaces of a Bell state and
the M operator on the other space. In Dirac notation

(IA ⊗MB)
∑

i

|ai〉 ⊗ |ai〉 =
∑

ij

Mij |ai〉 ⊗ |bj〉 (135)

Now by applying the first ‘half’ of a Bell co-state to the left of (after) the first
half of the bipartite state, and applying the second half of the Bell co-state to
the right of (before) the second half of the bipartite state we recover M :

(
∑

k

〈ak| ⊗ I

)


∑

ij

Mij |ai〉 ⊗ |bj〉





(
∑

p

I⊗ 〈ap|
)

=
∑

kj

Mkj |bj〉〈ak| (136)
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pictorially we have

Bell

ψM

= M

(137)

which has (128) as the special case with M = I.

5.5 Teleportation

We can use (130) to describe teleportation [5] in a novel way. The standard
version in Dirac Notation is given above in the Section 2.5. Consider Alice on
the left and Bob on the right, sharing a Bell state:

Bell

Alice Bob

. (138)

Alice now is presented with a state to be cloned, ψ:

Bell

Alice Bob

ψ

, (139)
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and performs a joint measurement on the state to be cloned and her half of the
bell state, using a Bell co-state:

Bell

Bell

Alice Bob

ψ

. (140)

The axiom of the pictorial calculus (130) means we can infer teleportation9:

Alice Bob

ψ

(141)

The arrow represents the flow of quantum information and this picture shows
the information flowing from Alice to Bob. So there we have it: an example of
the pictorial calculus in action. The claim is that the pictorial calculus is very
natural in describing quantum phenomena: indeed teleportation is described
succinctly above when compared with the traditional description in Dirac no-
tation. I will go on to describe some more conceptual apparatus and further
tools in the pictorial calculus that enable us to go deeper into the nature of
non-locality.

9In actuality this describes only one of the four possibilities for a Bell co-state type mea-
surement by Alice. For the full description of teleportation, see [6].
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5.6 Basis Structures

We still haven’t finished learning about the additional conceptual apparatus
needed to complete the pictorial calculus. One step we can take to simplify
things is to restrict attention to objects that are self adjoint A = A†. This
means we no longer have to worry about the directions of any of the wires in
the diagram, although we still have the ability to take the dagger of a morphism
and reverse its direction. We will also orient the diagrams so they are now
read left-to-right in the natural way for western script instead of reading them
upwards10. Next we will use, instead of the Bell state (121), a morphism η
called the ‘unit’

A

A
ηA

(142)

and instead of the Bell costate (122), a morphism η† called the ‘counit’

A

A

η†A

(143)

To make perfectly clear this change in the pictorial calculus, consider the axiom
(130) in the new convention [9]:

A

A

= =

A

A

(144)

We also represent states as circles from now on, instead of triangles. Now we
introduce the Basis Structure of an object A, which is a triple:

∆ = {A, δ : A→ A⊗A, ǫ : A→ I} (145)

10Both conventions are abundant in the literature.
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In other words it is the collection of A together with two special morphisms.
The first special morphism δ : A → A ⊗ A can be thought of as a copying
procedure and is depicted

. (146)

The second morphism ǫ : A→ I as a deletion procedure, depicted

. (147)

Of course we will also have δ†

, (148)

and ǫ†

(149)

to consider. In FHilb Objects are Hilbert Spaces and morphisms are linear
operators.

Definition A Hilbert spaceH with basis {|i〉}i=1...N will have a Basis Structure
∆ = {H, δ, ǫ} where

δ : H → H⊗H (150)

|i〉 7→ |i〉 ⊗ |i〉 (151)

ǫ : H → C (152)

|i〉 7→ 1. (153)

It should be clear that there will be exactly one distinct basis structure for
each distinct orthonormal basis for H, i.e. basis structures are in bijective
correspondence with orthonormal bases. As such they will often be referred
to as ‘observables’ because they are the category theory abstract counterpart
to the orthogonal projectors which make up Observables in Quantum Theory.
We should expect then, to be able to see counterparts of the three mutually
unbiased (orthogonal) observables X,Y, Z in categorical quantum mechanics.

The X,Y, Z observables each have eigenstates x±, y±, z± respectively: this
means the Categorical counterpart, the basis structure, will only ‘copy’ these
eigenstates. Of course for unrestricted quantum mechanics there are an infini-
tude of other bases that could form basis structures. For the remainder of the
project we shall concentrate on a basis structure that copies the {|0〉, |1〉} basis.
The copying procedure will only successfully copy certain special states, which
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are the eigenstates of the basis structure, and these are the elements of the
orthonormal basis that a basis structure is in correspondence with:

δ :: |0〉 7→ |00〉 (154)

:: |1〉 7→ |11〉 (155)

:: |+〉 7→ (|00〉+ |11〉) 6= |++〉. (156)

Notice that states that are not copied by δ are mapped to entangled states.
The fact that there is a copying procedure in this pictorial calculus strikes at

the heart of the difference between Hilbert Space Quantum Mechanics in Dirac
Notation, and Categorical Quantum Mechanics. Category theory enables us to
keep track of information flow to and from unspecified systems in much the same
way as statistical mechanics allows the flow of energy to and from a heat bath. In
Categorical Quantum Mechanics we can imagine a collection systems of interest
embedded in an ensemble of many such systems. The copying procedure does
not imply the existence of a cloning procedure for arbitrary quantum states (in
fact this would be in serious disagreement with quantum theory). The pictures
used in Categorical Quantum Mechanics are very similar to the circuit diagrams
abundant in literature on Quantum Information [14]. They are read left to right,
and multipartite states are split across horizontal sectors of the diagram.

5.7 Basis Structure Monoid

Next, we must introduce the basis structure multiplication map ( ⊙ ) :

( ⊙ ) : C(I, A)× C(I, A) → C(I, A) (157)

where
ψ ⊙ φ = δ† ◦ (ψ ⊗ φ) (158)

or in the latest edition of the pictorial calculus:

ψ ⊙ φ =

ψ

φ
(159)

Definition The upper star ( ∗) on a state f is defined as f∗ := (1A ⊗ ηB) ◦
(1A ⊗ f ⊗ 1B) ◦ (η†A ⊗ 1B).

Definition The lower star ( ∗) on a state f is defined as f∗ := (f∗)† = (f†)∗

If the following diagram depicts the function f : A→ B

BfA

(160)
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then the upper star f∗ is

B

f

A

(161)

and the lower star f∗ is

A

f†

B

(162)

Note that if f : A → B then f∗ : B → A, and f∗ : A → B. In other words the
lower star is a covariant functor (it doesnt reverse the direction of morphisms)
since the upper star and dagger are both contravariant (they do). The upper
star is like the transpose operation in linear algebra, and the lower star is like
complex conjugation. A state ψ is unbiased with respect to a basis structure
∆ = {A, δ, ǫ} iff ψ ⊙ ψ∗ = ǫ† :

ψ

ψ∗

=

. (163)

If we consider all of the states in the category together with this basis structure
multiplication, then because we can choose ǫ† to be an identity under the mul-
tiplication ⊙, we have a monoid (which is a group with some elements which
do not have an inverse). If we then pare this down to states that have inverses
(equivalently we take the set of unbiased states for ∆) then they form a group
with the ⊙ as multiplication, ǫ† as the identity element and the lower star ( )∗
as the operator providing each element with an inverse. This group is known as
the Phase Group.
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5.8 Phase Group for FHilb

For a basis structure on an n-dimensional H with basis {|i〉}, the basis structure
multiplication is

|ψ ⊙ φ〉 =
n∑

i=1

ψiφi|i〉 (164)

because we take
∑

i ψi|i〉 ⊗
∑

j φj |j〉 and act with δ† :: |ii〉 7→ |i〉

ψ

φ

. (165)

The unbiased states satisfy

ψ

ψ†
=

. (166)

Definition A vector |ψ〉 is unbiased with respect to a basis {|ai〉}ni=1 iff 〈ai|ψ〉 =
1√
n
eiθ for some θ in the range [0, 2π] (assuming the states are normalised). The

important point is that the inner product must be a constant, i.e. independent
of the basis vector.

Hence the unbiased states (for a basis structure copying z±) can be specified
uniquely by the relative phase in |ψ〉 = |0〉 + eiφ|1〉 since all of these states are
unbiased with respect to |0〉 and |1〉. This means the phase group for FHilb is
isomorphic to U(1).

5.9 Stab

Definition FHilb is the category which has Hilbert Spaces as its Objects and
linear maps as its morphisms. The tensor bifunctor is the tensor product and
the dagger is the adjoint.

Definition A subcategory is a category with some objects and morphisms re-
moved.
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Stab is a subcategory of FHilb. To construct the category we remove from
Ob(FHilb) anything which is not an nth power of a qubit Q := C

2. We also
remove from Hom(FHilb) all linear maps that are not single qubit Clifford
unitary gates, but leave the linear maps

δstab : Q → Q⊗Q (167)

|0〉 7→ |00〉 (168)

|1〉 7→ |11〉 (169)

and ǫstab. Of course we are free to chose from two other possibilities11 for the
eigenstates copied by δ, and within each of those choose from four possibilities
for ǫ, so there are 12 basis structures in the theory. These primitive objects,
known as generators, are enough to generate the whole theory, that is to say
any state or process can be constructed from combining these generators alone.
There are a few facts about Stabilizer Quantum Mechanics that reduce the
number of generators needed for the theory.

Theorem 5.1. Any n level clifford unitary gate can be decomposed as two level
Clifford unitaries and the CNOT gate.

Theorem 5.2. We can build a CNOT gate using the Hadamard gate which is
a two level Clifford unitary.

A CNOT gate candidate is given in [9] and I prove below that it is indeed the
CNOT gate. Once this argument is given, we should be convinced that all of the
states and unitary gates of Stabilizer Quantum Mechanics can be constructed
from the generators above.

11Ordinarily we could choose from a continuum of possibilities but since Stab has only a
limited number of mutually unbiased bases we are somewhat restricted.
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5.10 The CNOT gate for Stab

In Dirac notation, the CNOT is an operation on a bipartite hilbert space which
will invert the value of the second qubit if the first qubit is in the state |1〉.
Otherwise it has no effect. The circuit diagram is

CONTROL

TARGET × (170)

and if we label the bipartite states with the control qubit first on the left and
the target qubit on the right, the following table summarises the CNOT gate:

CNOT ::







|0〉|1〉 7→ |0〉|1〉
|0〉|0〉 7→ |0〉|0〉
|1〉|0〉 7→ |1〉|1〉
|1〉|1〉 7→ |1〉|0〉

(171)

It is suggested [9] that the following picture can achieve an equivalence to the
CNOT gate in the pictorial calculus:

CONTROL

TARGET H

H

H

(172)

Now we can run each of the four important choices in (171) through this circuit
and check the results are as required. The exercise serves as a useful example
of how to do calculations using these weird pictures and also highlights the
similarity of the pictorial calculus with the familiar circuit diagrams. We require
two facts to do computations with this CNOT gate. Firstly we must know the
action of H which is involutive:

H|0〉 = |+〉
H|1〉 = |−〉
H|+〉 = |0〉
H|−〉 = |1〉

(173)

and secondly we must know the action of δ which is included above and also of
δ† which although a morphism H×H → H will annihilate certain basis states
because δ will only copy eigenstates of the basis structure. In category theoretic
language δ† is sometimes a morphism to the identity object.

δ† ::







|00〉 7→ |0〉
|11〉 7→ |1〉
|01〉 7→ 1
|10〉 7→ 1

(174)
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Ok now lets input |0〉 for the control qubit and |1〉 for the target qubit:

|1〉

|0〉

H

H

H

(175)

we can step forward one step by using the rules of the calculus:

|0〉

|0〉

|−〉

H

H

(176)

and again

|+〉

|0〉

|−〉
H

(177)

and again

|0〉

|−〉 H

(178)

where I have used δ† :: ((|0〉+ |1〉)(|0〉−|1〉)) = δ† :: (|00〉+ |10〉−|01〉−|11〉)) 7→
|−〉 and ignored any global phases and scalars. Finally we get

|0〉

|1〉

(179)

53



5.11 Spek 5 CATEGORY THEORY

as desired.
The other three cases can be tested in the same fashion.

5.11 Spek

Definition FRel is the category which has Sets as its Objects and relations as
its morphisms. The tensor bifunctor is the Cartesian product and the dagger is
the relational converse [8]. The identity object is the set with only one element,
denoted {∗}. The scalars of the theory are yes/no answers, otherwise known as
elements of the Boolean Algebra B.

Spek is a subcategory of FRel. If we only consider states of maximal knowledge
(pure toy bits), Spek is the category of Spekken’s toy theory. It inherits the
identity object {∗} from FRel , and its only other objects are the four element
set IV:= {1, 2, 3, 4} and its n-fold Cartesian products IVn. Allowed morphisms
are all permutations on IV, and of course the copying procedure

δspek : IV ∼ IV⊗ IV (180)

1 ∼ {(1, 1), (2, 2)} (181)

2 ∼ {(1, 2), (2, 1)} (182)

3 ∼ {(3, 3), (4, 4)} (183)

4 ∼ {(3, 4), (4, 3)} (184)

and deleting procedure ǫspek. The copying procedure is nicely codified by the
following diagram [7]:

1

12

2

3

3

4

4

(185)

Cartesian products are written as ordered pairs (µ, ν) and correspond to a
shaded square on a 4×4 grid with coordinate ν, µ in accordance with the conven-
tion established by Spekkens [15] and used in Section 3. Mirroring the language
used to defined Stab above, we can say that this particular choice of δ copies
the orthogonal states (1 ∨ 2) and (3 ∨ 4) and maps other states to correlated
(entangled) states.
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5.12 Comparison of Stab and Spek

At this stage it looks like Stab and Spek might be the same category. Of
course a Hilbert Space is not a strictly a Set, and a linear map is not strictly
a relation but prima facie there is more than a strong similarity between the
Categories if their internal structure is ignored. In fact it seems there is a
bijection between states in the theory. For one qubit (elementary system) there
are 6 stabilizer (toy bit) states, for two qubits (elementary systems) there are
60 stabilizer (toy crumb) states and furthermore theses states factorize into
24 entangled states and 36 product states. There are 24 morphisms which
combine as the group S4. Both theories exhibit 12 basis structures each with
two eigenstates. There are always four states in the phase group for Stab and
Spek, and these four states are the ‘other’ states that aren’t copied by the basis
structure chosen. In both theories we are free to choose the identity object: this
gives four possible basis structures for each of the three observables. That’s
twelve basis structures altogether. There is actually a difference, however, in
the way that the phase group elements interact with the observable [8] in the two
theories. The phase groups are different. It is to category theory’s credit that it
can quantitatively distinguish the structures of two theories because the theories
have incompatible predictions12. It is these incompatible predictions that are
of interest (i.e. locality versus non-locality) to the programme of classifying
quantum phenomena by toy theories. Category theory putatively elucidates
which structures of the theories lead to which phenomena. It is stated that the
structure of the phase group is precisely the piece of structure which determines
if a theory is local or non-local [9, 8].

5.13 Phase Group Structure

The states in the phase group are unbiased with respect to the eigenstates of a
given basis structure. Henceforth I assume the basis structure with z± eigen-
states, and discuss the structure of the phase group for unrestricted quantum
mechanics, Stabilizer quantum mechanics, and Spekkens’s Toy Theory. In all
cases ‘unbiased’ will translate into ‘equidistant’ in the geometrical representa-
tion of states for each theory. Question: Which pure states are equidistant in
the Bloch sphere from |0〉 and |1〉? Answer: A continuous U(1) ring, here shown

12Since the toy theory is explicitly local, it will not violate Bell inequalities.
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as a thick red line:

|0〉

|1〉 . (186)

Question: Which pure states are equidistant in the stabilizer octahedron from
|0〉 and |1〉? Answer: the other four observable eigenstates {|i〉, |i−〉, |+〉, |−〉}
shown as red dots:

|0〉

|1〉

bc

bc

bcbc

. (187)
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Question: Which states are equidistant in the toy bit insect from (1 ∨ 2) and
(3∨ 4)? Answer: the other four observable eigenstates again shown as red dots:

bc

bc

bcbc

. (188)

It might seem that the phase groups for Stab and Spek are the same but they
are not isomorphic. A bijection may exist but the group multiplication is not
preserved under the mapping of the dictionary (59). In other words there is not
a homomorphism. Let ξ represent the mapping of the dictionary. In general:

ξ(|ψ〉 ⊙ |φ〉) 6= ξ(|ψ〉)⊙ ξ(|φ〉) (189)

Elements combine under⊙ in a slightly different way: this difference in the group
structure of the Phase groups of the two categories can be seen in the diagrams
below. If we take the multiplication table for any four element abelian group
{α, β, γ, ζ} then we can ignore multiplications below the diagonal by symmetry
(the group is Abelian) and also the trivial identity multiplication. This leaves
just three ‘squaring’ multiplications (i.e. µ2 = µ ⊙ µ) and three ‘combining’
multiplications which reveal all of the non-trivial group structure.

⊙ α β γ ζ

I = α # # # #
β # β2 β ⊙ γ β ⊙ ζ
γ # # γ2 γ ⊙ ζ
ζ # # # ζ2

I plot these six group multiplications for the Z4 phase group of Stab on a two
dimensional slice through the stabilizer octahedron, and also include the I⊙I = I
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mapping for clarity:

|−〉

|+〉

|i+〉|i−〉

(190)

I also plot the six multiplications for the Z2 × Z2 phase group of Spek on a
two dimensional slice through the toy bit insect again including the I ⊙ I = I

mapping:

(191)

The way to read these diagrams is to interpret each arrow as pointing from two
elements in the group to their product under the commutative binary operation
⊙. The dotted lines point from a group element to it’s square under ⊙. I have
kept ǫ†, the identity object of the phase group, lowermost in these diagrams,
as is obvious in the diagram where we see the identity mapping to itself under
squaring. Notice the uppermost element squares to the identity in both cases
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and hence is known as the involutive element. I believe these diagrams to
be more informative than multiplication tables: one can immediately spot the
difference in group structure13.

5.14 GHZ state

In this section I hope to show that the non-locality of Stabilizer Quantum Me-
chanics can be traced to it’s Z4 phase group and that the absence of non-locality
in Spekkens’s toy theory is due to it’s having a Z2 × Z2 phase group [9, 7, 8].

Definition The category theory the GHZ state is a morphism Ψ∆ : I → A ⊗
A⊗A

Ψ∆ := (δ ⊗ 1A) ◦ δ ◦ ǫ† (192)

or pictorially.

(193)

In Spek this state is [15]

(1.1.1) ∨ (1.2.2) ∨ (2.1.2) ∨ (2.2.1) ∨ (3.3.3) ∨ (3.4.4) ∨ (4.3.4) ∨ (4.4.3). (194)

Definition An Allowed Triple (a, b, c) with respect to a tripartite state ψ is
one with a nonzero state outcome scalar (e.g. a nozero probability amplitude):

(a⊗ b⊗ c)† ◦ ψ 6= 0 (195)

Theorem 5.3. All allowed triples with respect to the GHZ state are of the form
(a∗, b∗, a ⊙ b) or equivalently (a, b, (a ⊙ b)∗) , with all other triples ‘forbidden’
(they have zero state outcome scalars).

Proof.

a∗

x

b∗
=

a

b

x = a⊙ b x

(196)

and x = a⊙ b is the only solution giving a non-zero outcome scalar [9].

13Any discrete Abelian group could clearly be represented in this way, even for larger groups.
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In Stab allowed triples correspond to states the have non-zero fidelity with the
GHZ state (98). For example |−〉|−〉|−〉 is forbidden since:

〈− − −|GHZ〉 = 0. (197)

The analogue in Spek is that (2 ∨ 4).(2 ∨ 4).(2 ∨ 4) is forbidden since it when
expanded (when the disjunction is distributed over the conjunction) it’s ontic
base has a null intersection with the ontic base of GHZ state (194). The use-
fulness of the ⊙ multiplication and hence the phase group is now apparent: it
enables the construction of triples of states that are compatible with the GHZ
state. Allowed triples are compatible with the GHZ state in the sense that a
realist is forced to posit hidden variables giving rise to these states in particular:
any other state would fail to reproduce the predictions of Quantum Theory in
the case of Stab and Spekkens’s toy theory in the case of Spek. Because the
phase groups of the theories differ, so do the allowed triples.

5.15 Non-Locality

Bearing in mind Theorem 5.3, we can construct sixteen tripartite states for
Stab and Spek which show the allowed triples for the GHZ state by reading
off states from the phase group multiplication table (remembering to take the
inverse of the product). I do this by taking the group structure diagrams above
and constructing a triple of (origin, origin, inverse of destination) for each arrow.
Of course the groups being Abelian means that permutations of the origins of
the arrows are also allowed triples, and we must also include the trivial identity
multiplications (not shown in the phase group structure diagrams) as allowed
triples. The sixteen allowed triples fall into four collections. For Stab we have
the following triples which happen to all be +1 eigenstates of XXX

x+ x+ x+
x+ x− x−
x− x+ x−
x− x− x+,

(198)

the following which are -1 eigenstates of XYY

x+ y+ y−
x+ y− y+
x− y+ y+
x− y− y−,

(199)

the following which are -1 eigenstates YXY

y+ x+ y−
y+ x− y+
y− x+ y+
y− x− y−,

(200)
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and the following which are -1 eigenstates of YYX

y+ y+ x−
y+ y− x+
y− y+ x+
y− y− x−.

(201)

For Spek the analogue of a tripartite observable σσσ is a measurement dis-
tinguishing between two tripartite toy states. For example we can have the
observable corresponding to a measurement distinguishing (1∨ 3).(1∨ 3).(1∨ 3)
from (2∨ 4).(2∨ 4).(2∨ 4)14. So, replacing the usual Roman numeral labels I,II
with +,− we have the analogue of XXX:

−+−+ . −+−+ . −+−+ (202)

of XYX

−+−+ . +−−+ . −+−+ (203)

of YXY

+−−+ . −+−+ . +−−+ (204)

and of YYX

+−−+ . +−−+ . −+−+ . (205)

Henceforth these analogues of observables will be treated as such. We have the
following allowed triples which happen to all be outcomes associated with the
+1 result of XXX

x+ x+ x+
x+ x− x−
x− x+ x−
x− x− x+,

(206)

the following which are outcomes associated with the +1 result of XYY

x+ y+ y+
x+ y− y−
x− y+ y−
x− y− y+,

(207)

the following which are outcomes associated with the +1 result of YXY

y+ x+ y+
y+ x− y−
y− x+ y−
y− x− y+,

(208)

14Equivalently (1.1.1) ∨ (1.1.3) ∨ (1.3.1) ∨ (1.3.3) ∨ (3.1.1) ∨ (3.1.3) ∨ (3.3.1) ∨ (3.3.3) from
(2.2.2)∨(2.2.4)∨(2.4.2)∨(2.4.4)∨(4.2.2)∨(4.2.4)∨(4.4.2)∨(4.4.4). The two possibilities corre-
spond to two zones of eight shaded cubes with coordinates (z,y,x) in a pictorial representation
of tripartite toy states.
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and the following which are outcomes associated with the +1 result of YYX

y+ y+ x+
y+ y− x−
y− y+ x−
y− y− x+.

(209)

Examine the Mermin table below:

Observable Stab Spek

X X X + +
X Y Y - +
Y X Y - +
Y Y X - +
+ + + ! +

. (210)

Using the same four tripartite observables introduced in Section 4.4 we can
repeat the GHZ argument in a more abstract way. For a given theory, one can
attempt a hidden variable assignment to the observables by populating each
row with an allowed triple which is an eigenstate of the appropriate observable.
The preceding discussion has excluded forbidden triples, for good reason: they
represent states that are incompatible with the GHZ state and therefore useless
states to posit as arising from hidden variables. Each triple is made up of
eigenstates each with a certain parity. The parity need not be the eigenvalue or
any other quantity appearing in the theory, but serves merely as a label for the
hidden variable. It might in fact be the argument for a hidden variable function
which assigns a completely different value to the state. The parity of each
observable is found by multiplying the parity of the eigenstates together. As
the parity of each observable is fixed by the allowed triples given above, the row
parity can be given automatically and is included on the right of the Mermin
table for each theory. The column parity is positive for each column since
each observable appears twice in each column. This is true for both theories.
The table parity can then be found either by taking the product of the row
parities or taking the product of the column parities. Note that we reach a
contradiction for Stab, but not for Spek. This means that of the possible
assignments of hidden variables to these observables, no combination of them
can be applied without contradiction in Stab. Therefore Stabilizer Quantum
Mechanics cannot be given a hidden variable interpretation, but Spekkens’s toy
theory can, as expected15.

15The hidden variable interpretation of Spekkens’s toy theory is exactly the values of the
ontic states which as we have seen can be given well defined values at all times. These values
ultimately give rise to the allowed triples and hence to the failure of the non-locality proof.
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6 Conclusion

I have discussed the existence of a no-cloning theorem in both Spekkens’s toy
theory and in Stabilizer Quantum Mechanics. I take a similar view to Spekkens
[15] in that an information theoretic principle is a key conceptual ingredient
for this phenomenon. The essence of the Knowledge Balance Principle is that
maximal knowledge is incomplete: it seems this conceptual ingredient is highly
responsible for many of the quantum like phenomena shared by the toy the-
ory with quantum mechanics. If the toy theory is exquisitely straightforward
to understand owing to its classical nature, and the quantum like phenomena
are plainly seen to arise from this principle, then perhaps our understanding of
Quantum Theory can be improved by installing a similar principle in a reax-
iomatization of Quantum Theory. The similarity of the theorem in both the
toy bit theory and in Stabilizer Quantum Mechanics strongly suggests that a
limit on how much information can be sought from a state should be included
in a new set of axioms for Quantum Theory. Whether this limit takes a similar
form to the Knowledge Balance Principle, however, is less clear. The principle
seems too rigidly discrete to deal with the continuum of states present in unre-
stricted Quantum Mechanics. Time should be spent on attempting construction
of a toy theory which has Spekkens’s theory as a restricted sub-theory. Such
an expanded theory should be continuous: the canonical set would have to be
extended somehow, and the Knowledge Balance Principle reformulated to allow
many more states. Only with the construction and evaluation of such a toy
theory would a more confident conclusion be drawn about the exact form of any
information theoretic axioms for Quantum Theory.

In the tracing of phenomena to conceptual ingredients, differences are as
important as similarities. I have discussed the existence of a Non-locality proof
in Stabilizer Quantum Mechanics and the absence of such a proof in Spekkens’s
toy theory. The result is satisfying since a rigorous mathematical foundation is
shown to underpin the obvious locality of the toy bit theory. The discrete nature
of Stabilizer QuantumMechanics is not a problem in this consideration, since the
GHZ argument can easily be given for FHilb by using the U(1) phase group. A
generalised proof of which property of the phase group gives rise to non-locality
is given in [9], and allows one to predict the locality or non-locality of many
more toy theories. This is a very powerful result, and could be instrumental in
finding additional non-local toy theories which aid in the research programme
which this project suggests. Certainly if a Category Theoretic axiomatization
of Quantum Theory is attempted, it should include the phase group: at present
this is U(1) but perhaps other continuous phase groups (sharing some attribute
with U(1)) also generate non-locality and a more generalised axiom could be
given based on the shared attribute.

There are many more similarities between Spekkens’s toy theory and Quan-
tum Mechanics, and even between the toy theory and Stabilizer Quantum Me-
chanics. The toy theory exhibits remote steering, a no broadcasting theorem
and dense coding in addition to the no cloning theorem described [15]. There
remain many differences aside from the discrete/continuous nature of the states
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and transformations: coherent binary relations are not precisely analogous to
those of Stabilizer Quantum Mechanics, and there are analogues of anti-unitary
transformations in the toy theory. Once these similarities and differences have
been explored, perhaps with Category Theory, other toy theories can be ex-
amined. The similarities and differences in both conceptual ingredients and in
predicted phenomena will suggest which toy theories would be useful to exam-
ine, or even how to extend or modify current toy theories to most efficiently
achieve ingredient isolation.
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