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Abstract

This dissertation is written in order to present some cases of calculations of
the quantum corrections to the masses of low dimensional topological defects. The
present document is focused on the cases of the quantum kink and especially the case
of the ’t Hooft-Polyakov monopole. In the first chapter we describe the semiclassical
expansion in quantum mechanics and we apply this procedure in field theory, in
the background of the trivial and kink solutions. Then we calculate the lowest
order quantum correction to the mass of the kink in φ4 in 1 + 1 dimensions. In the
second chapter we present the Georgi-Glashow model and its monopole solutions.
In continuance we calculate the classical monopole mass at the Bogomol’nyi-Prasad-
Sommerfield (BPS) limit. Finally at the end of this chapter we give the basic steps
of the calculation of the one-loop correction to the monopole mass.
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Chapter 1

Quantization of static solutions

1.1 The semiclassical expansion

In this chapter we describe the semiclassical expansion [2, 13] by using the
correspondence principle. This procedure relates quantum levels to classical orbits
in a systematic approximation. In the following we generalize that procedure to field
theory. Here we focus on the quantization of static solutions.

To begin with, we consider a non relativistic particle with unit mass, moving in
one dimension under the influence of the potential V (x). In Classical Mechanics, If
we know the position x of the particle as a function of time then we can describe
the particle. In order to obtain the position of the particle as function of time, we
must solve the Newton’s equation:

d2x

dt2
= −dV

dx
(1.1)

In quantum mechanics particles are not described by giving their position x, but
they are associated with a wavefunction which describes them. In particular, in order
to determine their energy eigenstates we must solve the Schrodinger’s equation:

HΨn = (
1

2
p̂2 + V (x))Ψn(x) = EnΨn(x) (1.2)

where p̂ ≡ −i~ ∂
∂x

is the momentum operator. In the following, we give a relationship
between the classical static solutions (obtained from Newton’s equation) and the
quantum energy eigenstates (determined by the Schrodinger’s equation).

• The static solutions of the classical equation of motion are those which extrem-
ize the potential V (x), i.e they are the solutions of the equation dV

dx
= 0. Static

solutions with d2V
dx2

∣∣∣
x=sol

> 0 represent stable static solutions, while static so-

lutions with d2V
dx2

∣∣∣
x=sol

< 0 represent unstable static solutions.
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1.1. THE SEMICLASSICAL EXPANSION

The ”classical ground state” represents the lowest energy solution and if it
corresponds to the static solution x(t) = a = const, then its total energy is
Ecl

0 = V (a).

Figure 1.1: An example of a potential with two minima and one local maximum.

• In Quantum theory, the uncertainty principle does not allow the existence of
such states. According to this principle the particle cannot have both zero
momentum and a fixed position. Thus, even in the ground state (state with
the lowest eigenvalue of energy) the particle will fluctuate around the classical
static solution x = a. This fact gives to the ground state the amount of energy:
E0 = Ecl

0 + ∆0 = V (a) + ∆0, where ∆0 represents the quantum correction due
to zero-point motion.

• If we consider an approximately harmonic potential in the vicinity of the clas-
sical static solution x = a, then we can perform a ”weak-coupling expansion”.
That is to take the Taylor expansion of the potential V (x) around the classical
static solution x = a. Let the expansion be [13]:

V (x) = V (a) +
1

2
ω2(x− a)2 +

∞∑
r=3

1

r!
λr(x− a)r (1.3)

Then for those wavefunctions that satisfy the condition:

λr 〈(x− a)r〉 � ω2
〈
(x− a)2

〉
, r = 3, 4, ... (1.4)

the effects of the anharmonic terms of V (x) will be small. If we take λr to
be sufficiently small, then the low-lying energy eigenstates whose spread is
localized in the vicinity of the classical static solution x = a, will satisfy the
previous condition. For these wavefunctions the potential will be dominantly
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1.1. THE SEMICLASSICAL EXPANSION

that of a harmonic oscillator. The energies of these low-lying states [13] can
be written as

En = V (a) + (n+
1

2
)~ω +O(λr) (1.5)

So the Quantum ground state in weak-coupling approximation becomes:

E0 = V (a) +
1

2
~ω +O(λr) (1.6)

• Equation (1.6) represent a relation between Quantum states and classical so-
lutions. The left-hand side is the energy of the Quantum ground state. In
right-hand side, the first term is the energy of the corresponding classical
static solution. The second term represents the leading Quantum correction
and with ω we denote the classical stability frequency of this solution.
The O(λr) corrections can be obtained by standard perturbation theory. These
corrections will again involve only the constants λr and ω which give the deriva-
tives of the potential at the classical solution x = a.

• In fact, not only the ground state, but the energies of a tower of low-lying
states are similarly related to this classical solution through the relation (1.5).

• The full information about the state is contained in its wavefunction. Even
though the ground state wavefunction Ψ0(x) has a spread in x, it will still
be typically localized around the classical solution x = a. For instance, its
position expectation value is given by:

〈x〉 ≡
∫
x |Ψ0(x)|2 dx = a+ ... (1.7)

where dots represent corrections due to the anharmonic constants λr and the
quantity a above represents the classical solution.

• Now let us focus on the solution x(t) = c = const, which corresponds to an
other stable classical static solution (local minimum of the potential V (x)).

Classically this solution has energy Ẽcl = V (c) which is higher than V (a).
This solution is the analogue of the classical solitons in field theory. They are
also static solutions but with higher energies than the classical vacua in the
corresponding field theories.
Even though x = c is only a local minimum of V (x), one can again attempt a
”weak-coupling” approximation near it. Let the weak-coupling approximation
be:

V (x) = V (c) +
1

2
ω

′2(x− c)2 +
∞∑
r=3

λ
′
r

r!
(x− c)r (1.8)
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1.1. THE SEMICLASSICAL EXPANSION

• As before, if λ
′
r are sufficiently small, then near the classical static solution

x = c the anharmonic effects will be small. One can try to construct a family
of approximate harmonic oscillator states centered at x = c with energies

Ẽn′ = V (c) + ~ω′
(n

′
+

1

2
) +O(λ

′

r) (1.9)

If the approximation was valid, the lowest of these states would have energy
Ẽ0 = V (c) + 1

2
~ω +O(λ

′
r) and expectation value 〈x〉 = c+O(λ

′
r).

Thus we would again have an approximation to a set of energy eigenstates
whose energy is related to V (c) (the classical energy of a classical solution)
and whose 〈x〉 is related to the solution x = c.

• Such perturbation theory starting from a harmonic oscillator approximation,
when applied to the local minimum x = c, treats the potential well near
x = c as if the other deeper well near x = a did not exist. Actually, we
know that wave packets built in the potential well around x = c will tunnel
into the well around x = a and vice versa. Consequently the two subsets
of energy levels will mix, but if the λr and λ

′
r are all small the two minima

x = a and x = c will be widely separated. Therefore the tunneling will be
slow and the resultant change in energy eigenvalues due to tunneling will be
small. To any finite order in the weak-coupling expansion, the set of levels
Ẽn′ = V (c) + ~ω′

(n
′
+ 1

2
) + O(λ

′
r) around x = c can be considered separately

from the set En = V (a) + (n+ 1
2
)~ω +O(λr) around x = a.

• It is obvious that there will not be a set of levels built around the static solution
x = b = const, which corresponds to an unstable classical static solution (local
maximum in the potential V(x)), because it is unstable. The corresponding

frequency would be imaginary, since ω2 = d2V
dx2

∣∣∣
x=b

< 0.

• When the harmonic constant ω vanishes, this whole procedure runs into trou-
ble. No matter how small the λr may be, the weak-coupling condition (1.4)
cannot be satisfied.
So when the potential is independent of a coordinate, the corresponding har-
monic frequency ω will vanish and the semiclassical expansion outlined above
has to be modified.

• One can associate a tower of energy eigenstates with each static stable classical
solution. It should be emphasized that the relationships

En = V (a) + (n+ 1
2
)~ω +O(λr)

〈x〉 =
∫
x |Ψ0(x)|2 dx = a+ ...

}
(1.10)
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1.2. THE SEMICLASSICAL EXPANSION IN FIELD THEORY

and
En′ = V (c) + (n

′
+ 1

2
)~ω′

+O(λ
′
r)

〈x〉 = c+O(λ
′
r)

}
(1.11)

are valid only in the weak-coupling expansion, where the anharmonic terms are
treated as small. Note that anharmonic terms in V (x) also lead to non-linear
terms in the equation of motion d2x

dt2
= −dV

dx
. Correspondingly, quantization of

static solitons in field theory will be valid only when the non-linear couplings
are small. Nevertheless, the results may be non-perturbative. This is because
the classical solution itself may be non-perturbative. Its properties form the
leading terms, as for instance in the expansions (1.11). It is only the quantum
corrections which are treated perturbatively.

1.2 The semiclassical expansion in field theory

In this paragraph we will apply the procedure that we discussed above to field
theory, by giving an example. To do this we consider a system described by the
Lagrangian:

L =

∫
d3x

{
1

2

(
∂φ

∂t

)2

− 1

2
(∇φ)2 − U(φ)

}
(1.12)

where U(φ) is bounded from below. The kinetic energy is given by:

T [φ] ≡
∫
d3x

1

2

(
∂φ

∂t

)2

(1.13)

and the potential energy is given by:

V [φ] ≡
∫
d3x

{
1

2
(∇φ)2 − U(φ)

}
(1.14)

So the Lagrangian can be written as L[φ] = T [φ]− V [φ].
The equations of motion for the field φ are obtained from the Euler-Lagrange

equations:

∂2φ(~x, t)

∂t2
= −δV [φ]

δφ
(1.15)

Note that now the coordinates of the system is the field φ(~x), so the potential energy
is a function of the function φ(~x), i.e a functional.

We observe that the equation of motion (1.15) is similar to Newton’s equation
(1.1), where now the static solutions of the Euler-Lagrange equation are the extrema

of the potential in field-space satisfying the condition δV [φ]
δφ

= 0. The stable solutions
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1.3. QUANTIZATION OF THE KINK SOLUTION

are given by the minima of the potential.
Now let φ(~x) = φ0(~x) be one such minimum. Then we can perform a functional

Taylor expansion of the potential V about φ0. So we write[13]:

V [φ] = V [φ0] +

∫
d3x

1

2

{
η(~x)

[
−∇2 +

d2U

dφ2

∣∣∣∣
φ0(~x)

]
η(~x) + ...

}
(1.16)

where η(~x) = φ(~x)− φ0(~x) and we have integrated by parts.

The operator

(
−∇2 + d2U

dφ2

∣∣∣
φ0(~x)

)
ηi(~x) = ω2

i ηi(~x) is the generalization of the

second derivative of the potential in the weak-coupling expansion (1.3) that we de-
scribed in the previous paragraph. Here ηi(~x) are the orthonormal ”normal modes”
of fluctuations around φ0(~x).

Now one can construct a set of approximate harmonic-oscillator states, spread
in field space around φ0(~x). The energies [13] of these states are:

E{ni} = V [φ0] + ~
∑
i

(
ni +

1

2

)
ωi + corrections (1.17)

where ni is the excitation number of the i-th normal mode.
In the previous formula:

• The first term is just the classical energy of the static solution φ0(~x).

• If any of the ωi are equal to zero, then the simple ideas we have discussed so
far need to be modified.

• These results are valid only in the weak-coupling approximation.

• If φ0 is an absolute minimum, then it is the ”classical vacuum” of the system.
Because of the (∇φ)2 term in the expression of V [φ], such an absolute minimum
would have to be space-independent.

1.3 Quantization of the kink solution

Let us apply now what we have discussed so far, to the case of a field theory
with one scalar field φ(x, t) in (1+1) dimensions [2, 12, 13, 14] which is described
by the Lagrangian:

L =

∫
dx

[
1

2

(
∂φ

∂t

)2

− 1

2

(
∂φ

∂x

)2

+
1

2
m2φ2 − λ

4
φ4 − m4

4λ

]
(1.18)
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1.3. QUANTIZATION OF THE KINK SOLUTION

In this system, the potential is:

V [φ] =

∫
dx

[
1

2

(
∂φ

∂x

)2

+
λ

4

(
φ2 − m2

λ

)2
]

(1.19)

and the equation of motion that a static classical solution satisfies is:

∂V [φ]

∂φ(x)
= −∂

2φ

∂x2
−m2φ+ λφ3 = 0 (1.20)

This equation of motion has the following solutions [13]:

i. Trivial solutions φ(x, t) = ± m√
λ

ii. Kink solutions φk = ± m√
λ

tanh
[
m(x−a)√

2

]
In the following we apply the semiclassical method [2, 13] to each of these static
solutions.

1.3.1 The vacuum and its excitations

Consider now the trivial solution of the equation (1.20), which is φ1(x, t) = ± m√
λ
.

We expand the potential around φ1 and we take:

V [φ] = V [φ1 + φ̃] =

∫
dx

1

2

(
∂(φ1 + φ̃)

∂x

)2

− 1

2
m2(φ1 + φ̃)2 +

λ

4
(φ1 + φ̃)4 +

m4

4λ


=

∫
dx

{
1

2
φ

′2
1 +

1

2
φ̃

′2 + φ
′

1φ̃
′ − 1

2
m2φ2

1 −
1

2
m2φ̃2 −m2φ1φ̃

}
+

∫
dx

{
λ

4

[
φ4

1 + 4φ3
1φ̃+ 6φ2

1φ̃
2 + 4φ1φ̃

3 + φ̃4
]

+
m4

4λ

}
= V [φ1] +

∫
dx

{
1

2
φ̃

′2 − 1

2
m2φ̃2 +

3λ

2
φ2

1φ̃
2

}
+

∫
dx

{
λφ1φ̃

3 +
λ

4
φ̃4

}
+

∫
dx
{
φ

′

1φ̃
′ −m2φ1φ̃+ λφ3

1φ̃
}

The third integral equals to zero since φ1 satisfies the equation of motion (1.20). The

first integral becomes
∫
dx
{
−1

2
φ̃∂

2φ̃
∂x2
− 1

2
m2φ̃2 + 3λ

2
φ2

1φ̃
2
}

and the quantity V [φ1] also

equals to zero. By substitution of the expression of the static solution φ1 we take
the result:
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1.3. QUANTIZATION OF THE KINK SOLUTION

V [φ] =

∫
dx
φ̃

2

(
− ∂2

∂x2
+ 2m2

)
φ̃+m

√
λ

∫
φ̃3dx+

λ

4

∫
φ̃4dx (1.21)

where φ̃(x) ≡ φ(x)− φ1(x) = φ(x)− m√
λ
.

If the constant λ is sufficiently small, we can treat the cubic and the quartic
terms in (1.21) by perturbation. In the lowest-order quadratic term, the second

derivative of V [φ] at φ1 is the operator
(
− ∂2

∂x2
+ 2m2

)
with:

i. eigenvalues: k2
n + 2m2

ii. eigenfunctions: eiknx

The allowed values of kn are obtained in box-normalization [13, 14] by the condition:

knL = 2nπ (1.22)

where L is the length of the box. As L→∞ we perform the replacement∑
kn

→ L

2π

∫
dk (1.23)

As we know the eigenvalues of the operator
(
− ∂2

∂x2
+ 2m2

)
, i.e the frequencies,

we can construct a tower of approximate harmonic oscillator states around φ1. The
lowest state of these states will have energy [13]:

Evac = 0 +
1

2
~
∑
n

(k2
n + 2m2)1/2 +O(λ) (1.24)

where the zero represents the classical energy V [φ1]. This is the vacuum state of the
system.

Higher excitations, analogous to (1.17), will have energies:

E{Nn} = ~
∑
n

(Nn +
1

2
)(k2

n + 2m2)1/2 +O(λ). (1.25)

These correspond to the familiar quanta of the theory, where Nn of them have
momentum ~kn. We will call these quanta the ”mesons” of this model. An identical
set of vacuum and many-meson states can also be built around the solution φ2 =
− m√

λ
.
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1.3. QUANTIZATION OF THE KINK SOLUTION

1.3.2 The quantum kink and its excitations

Having found the approximate harmonic oscillator energies for the states around
the trivial static solution φ1, we apply the same method [2, 12, 13, 14] to the kink

solution φk(x) = m√
λ

tanh
[
mx√

2

]
with energy V [φk] = 2

√
2

3
m3

λ
. For simplicity we have

considered the case where a = 0 in kink solution.
Now expand the potential around φk(x) and we obtain:

V [φ] = V [φk] +

∫
dx

1

2
η(x)

(
− ∂2

∂x2
−m2 + 3λφ2

k

)
η(x)

+λ

∫
dx

(
φkη

3 +
1

4
η4

)
(1.26)

where η(x) ≡ φ(x)− φk(k). The linear term in the above expansion is absent (in a
similar way to the case to the trivial static solution) since the kink solution obeys
the equation of motion (1.20). That is because the kink solution is an extremum of
V [φ].

The second derivative of V [φ] at φk gives the operators
(
− ∂2

∂x2
−m2 + 3λφ2

k

)
from which we obtain the eigenvalue problem [13]:

(
− ∂2

∂x2
−m2 + 3λφ2

k

)
ηn(x) =

[
− ∂2

∂x2
−m2 + 3m2 tanh2

(
mx√

2

)]
ηn(x) = ω2

nηn(x)

(1.27)
If we change the variables to z = mx√

2
the above eigenvalue problem takes the form:(

−1

2

∂2

∂z2
+
(
3 tanh2 z − 1

))
η̃n(z) =

ω2
n

m2
η̃n(z). (1.28)

This has the form of a Schrodinger equation with potential
(
3 tanh2 z − 1

)
. The

eigenvalues and eigenfunctions of this Schrodinger equation are already known [8].
They are:

Discrete levels

i. ω2
0 = 0 with η̃0(z) = 1

cosh2 z

ii. ω2
1 = 3

2
m2 with η̃1(z) = sinh z

cosh2 z

Continuum of levels

iii ω2
q = m2

(
1
2
q2 + 2

)
with η̃q(z) = eiqz

(
3 tanh2 z − 1− q2 − 3iq tanh z

)
10



1.3. QUANTIZATION OF THE KINK SOLUTION

The allowed values of q are fixed by periodic boundary conditions in a box of length
L with L→∞, as we did for the allowed values of kn in (1.22).

Now observe that the eigenfunctions of the continuum level η̃q(z) have an asymp-
totic behavior:

η̃q(z)
z→±∞−−−−→ ei(qz±

1
2
δ(q)) (1.29)

where

δ(q) = −2 tan−1

(
3q

2− q2

)
(1.30)

is just the phase shift of the scattering states of the associated Schrodinger problem
(1.28). The periodic boundary conditions [2, 12, 13, 14] in the case of the kink
require that:

qn
mL√

2
+ δ(qn) = 2nπ (1.31)

where n is a positive or negative integer. This condition fixes the allowed values of
qn. In the limit L→∞ we perform the replacement∑

qn

→ 1

2π

∫ ∞
−∞

dq

(
mL√

2
+

∂

∂q
[δ(q)]

)
(1.32)

We should expect to construct a set of approximate harmonic oscillator states
around the kink solution φk(x). Using the equation (1.17), we should expect the
energies [13] of these states to be

Ẽ{Nn} = V [φk] + ~
∞∑
n=0

(
Nn +

1

2

)
ωn +O(λ) (1.33)

or

Ẽ{Nn} =
2
√

2m3

3λ
+

(
N1 +

1

2

)
~
√

3

2
m+m~

∑
qn

(
Nqn +

1

2

)(
1

2
q2
n + 2

)1/2

+O(λ)

(1.34)
However there is a difficulty: this analysis we described so far for the case of the
kink solution does not hold for the n = 0 mode, since ω0 = 0. The treatment of
such difficulties are not of the scope of the present discussion. Fortunately such
difficulties do not occur to order λ0 but they will arise only in the O(λ) terms which
are not explicitly shown in (1.33).

We interpret these energy states in the following way:
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1.4. QUANTUM CORRECTIONS TO THE KINK MASS

i. The lowest-energy state in (1.33), which corresponds to Nn = 0 will be inter-
preted as the state of the quantum kink particle at rest. The Nn = 0 state in
(1.33), is not the vacuum state and will be interpreted instead as the quantum
kink.

ii. The next higher energy level in (1.33) to order λ0, arises when the n = 1 mode
is excited once, i.e when N1 = 1. This state has energy

Ẽ1 ≡ Ẽ{N1=1;Nqn=0} = Ẽ0 +

√
3

2
m~ +O(λ).

This state may be interpreted as a discrete excited state of the kink particle.
Higher excitations of this mode (N1 > 1) give higher excited states of the kink.

iii. The Nq 6= 0 states in (1.34) can be thought of as the scattering states of the
mesons of this theory in the presence of the kink particle.

1.4 Quantum corrections to the kink mass

Here we will evaluate the mass of the quantum kink particle. So far we have
associated the kink particle with the lowest energy level in the set (1.33). This
energy is given by:

Ẽ0 =
2
√

2m3

3λ
+

1

2
~m
√

3

2
+

1

2

∑
qn

~m
(

1

2
q2
n + 2

)1/2

+O(λ). (1.35)

This expression is formally divergent. The infinite series over
∑

qn
becomes in the

continuum limit (1.32) a quadratically divergent integral. In fact this is not a prob-
lem for us, since the energy of the vacuum (1.24) is also quadratically divergent.
What matters physically is the difference in energy between any given state and the
vacuum state. This difference is given by subtracting (1.24) from (1.35):

Ẽ0−Evac =
2
√

2m3

2λ
+

1

2

√
3

2
~m+

1

2

∑
n

{
m

(
1

2
q2
n + 2

)1/2

−
(
k2
n + 2m2

)1/2

}
+O(λ)

(1.36)
If we put the system in a finite box of length L then kn and qn are related by

the periodic boundary conditions (1.22) and (1.31) which give

2nπ = knL =
qnmL√

2
+ δ(qn) (1.37)
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1.4. QUANTUM CORRECTIONS TO THE KINK MASS

So the first term in the sum of the expression (1.36) becomes

m

(
q2
n

2
+ 2

)1/2

=

[(
kn −

δn
L

)2

+ 2m2

]1/2

=

[
k2
n + 2m2 − 2

knδn
L

+
δ2
n

L2

]1/2

=
(
k2
n + 2m2

)1/2 − knδn
L

(
k2
n + 2m2

)−1/2
+O(1/L2)

Thus the whole term in the sum of the expression (1.36) takes the form:

[(
kn −

δn
L

)
+ 2m2

]1/2

−
(
k2
n + 2m2

)1/2
= −knδn

L

(
k2
n + 2m2

)−1/2
+O(1/L2) (1.38)

Going to the limit L→∞ and using the replacement (1.23) we obtain the expression:

Ẽ0 − Evac =
2
√

2m3

3λ
+

1

2

√
3

2
~m− ~

4π

∫ ∞
−∞

dk
kδ(k)√
k2 + 2m2

+O(λ). (1.39)

In the limit L → ∞ using the relation between kn and qn in (1.37) we can express
the phase shift given in the equation (1.30) in terms of k. Then we take:

δ(k) = −2 tan−1

(
3
√

2mk

2m2 − 2k2

)
(1.40)

Integrating by parts the integral in (1.39) we take

Ẽ0 − Evac =
2
√

2m3

3λ
+

1

2

√
3

2
~m− ~

4π

[
δ(k)
√
k2 + 2m2

]∞
−∞

+
~
4π

∫ ∞
−∞

dk
√
k2 + 2m2

dδ(k)

dk
+O(λ)

(1.41)

The term
[
δ(k)
√
k2 + 2m2

]∞
−∞ is computed at the following lines. We take first the

limit of this expression at k →∞ and we have:

lim
k→∞

{√
k2 +m2δ(k)

}
= lim

k→∞

δ(k)
1√

k2+2m2

= lim
k→∞

δ(k)
dk

−k (k2 + 2m2)−3/2
=

12
√

2m lim
k→∞

m2+k2

4m4+4k4+10k2+m2

k

(k2+2m2)3/2

= 12
√

2m lim
k→∞

(m2 + k2) (k2 + 2m2)
3/2

k (4m4 + 4k4 + 10k2m2)
=

12
√

2m lim
k→∞

k2 (k2 + 2m2)
3/2

4k5
= 3
√

2 lim
k→∞

(k2 + 2m2)
3/2

k3
= 3
√

2 lim
k→∞

(k2 + 2m2)
1/2

k
= 3
√

2m

13



1.4. QUANTUM CORRECTIONS TO THE KINK MASS

where we have used the Del’Hospital’s rule in the steps of computing the limit. Also
we have used the fact that

dδ(k)

dk
= −12

√
2m

m2 + k2

4m4 + 4k4 + 10k2m2

In a similar way we find that

lim
k→−∞

{√
k2 +m2δ(k)

}
= −3

√
2m

Thus the equation (1.41) takes the form:

Ẽ0 − Evac =
2
√

2m3

3λ
+

1

2

√
3

2
~m− 3~m

π
√

2

− 3m~√
2π

∫ ∞
−∞

dk
k2 +m2

(2k2 +m2)
√
k2 + 2m2

+O(λ) (1.42)

Note that although the quadratic divergence in Ẽ0 has been removed by subtract-
ing out the Evac, still there is a logarithmic divergence in the difference Ẽ0 − Evac.
This divergence cannot be removed by adding a divergent constant to the La-
grangian, since Ẽ0 − Evac is the difference between two energy levels. In fact this
divergence can be removed by normal-ordering the Hamiltonian. In fact, the re-
moval of the logarithmic divergence will be realized by adding suitable ”counter
terms” [13, 14] to the Hamiltonian. For a φ4 theory in 1 + 1 dimensions, the only
divergences that occur are known to be removable by just normal ordering. The
Hamiltonian of our theory is:

H =

∫
dx

{
1

2
π2 +

1

2

(
∂φ

∂x

)2

− 1

2
m2φ2λ

4
φ4 +

m4

4λ

}
(1.43)

In the quantized theory, operators such as φ2(x, t), φ4(x, t) etc. are formally diver-
gent and therefore so is the Hamiltonian. Consequently the energy levels calculated
from this Hamiltonian will also be divergent. This is the reason to the divergence
in Ẽ0 − Evac.

To remove the logarithmic divergence we replace [13] the original Hamiltonian
by the normal-ordered one. In fact the normal-ordered Hamiltonian can be written
as

: H := H −
∫ ∞
−∞

dx

(
1

2
δm2φ2 +D

)
(1.44)
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1.4. QUANTUM CORRECTIONS TO THE KINK MASS

where the constants δm2 and D can be evaluated in perturbation theory. For δm2

the contribution to order λ comes from the Feynman diagram:

Figure 1.2: The one loop Feynman diagram that contributes to order λ.

Thus for the counter-term δm2 [13, 14] we have

δm2 = −3iλ~
∫

d2p

(2π)2

1

p2 + 2m2
=

3λ~
4π

∫ mΛ

−mΛ

dp√
p2 + 2m2

=
3λ~
4π

∫ Λ

−Λ

dp√
p2 + 2

(1.45)

where mΛ is the momentum cut-off. We will not calculate the constant D since the
kink mass involves the difference between two energy levels. Thus in our calculation,
constant D cancels.

The replacement of the Hamiltonian by the normal ordered Hamiltonian implies
the change of the potential (1.19) by the amount ∆V = −

∫
dx
(

1
2
δm2φ2(x) +D

)
.

This implies the change in the classical energies of the static solutions φk(x) and
φ1(x). Finally this affect the quantum energy levels Ẽ0 and Evac, since the classical
energies are their leading terms. As a result, we have to add to equation (1.42) the
amount

15



1.4. QUANTUM CORRECTIONS TO THE KINK MASS

∆Ẽ0 −∆Evac = −1

2

∫ ∞
−∞

dxδm2
(
φ2
k − φ2

1

)
=

1

2
δm2

∫ ∞
−∞

m2

λ

(
1− tanh2 mx√

2

)
=
m2

2λ
δm2

∫ ∞
−∞

dx
1

cosh2 mx√
2

=

√
2m

2λ
δm2

∫ ∞
−∞

du
1

cosh2 u

=
2
√

2m

λ
δm2

∫ ∞
−∞

du
1

(eu + e−u)2 =
2
√

2m

λ
δm2

∫ ∞
−∞

du
e2u

(e2u + 1)2

=

√
2m

λ
δm2

∫ ∞
0

dz
1

(z + 1)2 = −
√

2m

λ
δm2

{
1

z + 1

∣∣∣∣∞
0

}
=

√
2m

λ
δm2

(1.46)
where in the last step we used the substitution z = e2u.

Before we continue we must insert the momentum cut-off in the integral of the
expression (1.42). Thus we consider the integral

I = −3m~√
2π

∫ ∞
−∞

dk
k2 +m2

(2k2 +m2)
√
k2 + 2m2

(1.47)

When we insert the momentum cut-off in this integral this becomes:

I = −3m~√
2π

∫ mΛ

−mΛ

dk
k2 +m2

(2k2 +m2)
√
k2 + 2m2

= −3m~√
2π

∫ Λ

−Λ

dp
p2 + 1

(2p2 + 1)
√
p2 + 2

(1.48)

where in the last equality we used the substitution p = k/m. Then the expression
(1.42) takes the form:

Ẽ0 − Evac =
2
√

2m3

3λ
+

1

2

√
3

2
~m− 3~m

π
√

2

− 3m~√
2π

∫ Λ

−Λ

dp
p2 + 1

(2p2 + 1)
√
p2 + 2

+O(λ)

=
2
√

2m3

3λ
+

1

2

√
3

2
~m− 3~m

π
√

2

− 3~m
2
√

2π

∫ Λ

−Λ

dp

{
1√
p2 + 2

+
1

(2p2 + 1)
√
p2 + 2

}
(1.49)

Now insert the expression for the counter-term into the previous result and we
get for the renormalized kink mass the following expression:
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1.4. QUANTUM CORRECTIONS TO THE KINK MASS

M ≡
(
Ẽ0 + ∆Ẽ0

)
− (Evac + ∆Evac) =

2
√

2m3

3λ
+m~

(
1

2

√
3

2
− 3

π
√

2

)

− 3
√

2m~
4π

∫ Λ

−Λ

dp
1

(2p2 + 1)
√
p2 + 2

+O(λ~2)

(1.50)

where we have introduced the cut-off into the integral. Note that the logarithmic
divergences cancel. Then we can take the cut-off to infinity. All we have to do now
is to compute the integral.

To simplify the result, first we compute the antiderivative. To do this, we set
p =
√

2 tanu and the integral becomes:∫
dp

1

(2p2 + 1)
√
p2 + 2

=

∫
du

1

4 tan2 u+ 1

1

cosu
=

∫
du

cosu

4 sin2 u+ cos2 u
=∫

du
cosu

3 sin2 u+ 1
=

∫
dy

1

1 + 3y2
=

1

3

∫
dy

1

y2 + 1
3

=

√
3

3
tan−1

(√
3y
)

+ const =

1√
3

tan−1
(√

3 sinu
)

+ const =
1√
3

tan−1

{ √
3p√

p2 + 4

}
+ const

where in the intermediate steps we have set y = sinu. Now we have that the integral
we want to calculate is:∫ Λ

−Λ

dp
1

(2p2 + 1)
√
p2 + 2

=
1√
3

tan−1

{ √
3p√

p2 + 4

}∣∣∣∣∣
Λ

−Λ

Taking the limit Λ→∞ this integral becomes:∫ ∞
−∞

dp
1

(2p2 + 1)
√
p2 + 2

=
2π

3
√

3

Having done with the integral, we substitute the result to the equation (1.50)
and we find that the renormalized mass of the kink particle[2, 13] is:

M =
2
√

2

3λ
m3 +m~

(
1

6

√
3

2
− 3

π
√

2

)
+O(λ~2) (1.51)

This expression [2, 12, 13, 14] gives the mass of the kink particle. Let us now make
some observations about the result.

i. The first term in the mass of the quantum kink particle is the energy of the
classical static kink solution. The next term represents the leading correction
due to quantum fluctuations.
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1.4. QUANTUM CORRECTIONS TO THE KINK MASS

ii. The leading term, the energy of the classical kink is singular as λ → 0. Thus
the result is non-perturbative.

iii. This result is valid only in the weak-coupling approximation. The non-perturbative
nature of the result is brought about by the classical contribution. The quantum
corrections are being treated perturbatively in powers of λ.
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Chapter 2

Quantum one-loop correction to
the ’t Hooft-Polyakov monopole
mass

2.1 The model and its monopole solutions

In this chapter we continue our discussion to the calculation of the quantum
correction [5] of the ’t Hooft-Polyakov monopole mass, which is the aim of this
dissertation. Before we begin our discussion it is remarkable to refer that the classical
[13, 18] monopole mass can be analytically computed only in the BPS limit. However
when one reaches the BPS limit the quantum correction turns out to be increasing.

The model we use here consists of scalar fields φa(~x, t) and vector fields Aaµ(~x, t)
in (3+1) dimensions [5, 11, 13, 16]. The index a = 1, 2, 3 is an internal space index,
which will transform according to local SU(2) transformations. For any given a, φa

is a scalar and Aaµ (µ = 1, 2, 3) is a vector under Lorentz transformations. The
system we deal with is described by the action

S =

∫
d4x

{
−1

4

(
F a
µν

)2
+

1

2
(Dµφ

a)2 − 1

4
λ
(
φ2 − F 2

)2
}

(2.1)

The Lagrangian density of this theory is

L = −1

4

(
F a
µν

)2
+

1

2
(Dµφ

a)2 − 1

4
λ
(
φ2 − F 2

)2
(2.2)

Here the field tensor F a
µν is defined by

F a
µν ≡ ∂µA

a
ν − ∂νAaµ + gεabcAbµA

c
ν (2.3)

and the covariant derivative Dµφ
a by
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2.1. THE MODEL AND ITS MONOPOLE SOLUTIONS

Dµφ
a ≡ ∂µφ

a + gεabcAbµφ
c. (2.4)

The covariant derivatives of other triplets of fields such as Aaµ and F a
µν are defined

in a similar way. The real constants g, λ > 0 and F are parameters of the model.
Now we can calculate the equations of motion using the Euler-Lagrange equations

for the Higgs fields φa and the gauge fields Aaµ.

• The equation of motion that comes from the Higgs fields are given by:

∂µ
∂L

∂ (∂µφa)
− ∂L
∂φa

= 0⇒ DµD
µφa = −λ

(
φbφb

)
φa + λF 2φa (2.5)

• The equation of motion that comes from the gauge fields are given by:

∂µ
∂L

∂ (∂µAaν)
− ∂L
∂Aaν

= 0⇒ DµF
aµν = gεabc

(
Dνφb

)
φc (2.6)

At this point of our discussion we will find the classical vacuum solutions[5,
11, 13, 16]. This will help us to find the boundary conditions that any finite-energy
configuration must satisfy. We will restrict ourselves to static solutions which satisfy
Aa0(~x) = 0 for all ~x, a. Such solutions provide us an expression for the conserved
energy of the system which is

E =

∫
d3x

{
1

4
F a
ijF

aij +
1

2
Diφ

aDiφa +
1

4
λ
(
φaφa − F 2

)2
}
. (2.7)

Then the energy has a minimum (which is zero) when

Aai (~x) = 0 (2.8)

φa(~x)φa(~x) = F 2 (2.9)

Diφ
a = 0 (2.10)

The condition [13] for finite E is that the fields approach some configuration with
zero energy at spatial infinity sufficiently fast. We see from the expression (2.7) that
this condition for the Higgs fields is

r3/2Diφ
a → 0 (2.11)

φaφa → 0 (2.12)

as r ≡ |~x|. Also if we consider the expression (2.4) for the covariant derivative in
terms of spherical polar coordinates (r, θ, φ), then the θ−component Dθφ

a is given
by
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2.1. THE MODEL AND ITS MONOPOLE SOLUTIONS

Dθφ
a =

1

r

∂φa

∂θ
+ gεabcAbθφ

c. (2.13)

As long as the Higgs field falls fast enough in order to satisfy the asymptotic form
(2.11), ∂φa/∂θ need not vanish as r → ∞. For a non zero ∂φa/∂θ as r → ∞, the
θ−component of the gauge field Abθ must be matched with ∂φa/∂θ in such a way
that Dθφ

a goes to zero as r →∞. This implies that the θ−component of the gauge
field, Abθ, falls off to zero as fast as 1/r. A similar statement holds for the azimuthal
components of (gradφa) and Abµ. We must note that the part which involves F a

ijF
aij

in the expression (2.7) will decrease as 1/r4 and will be integrable.
It is shown by Gerard ’t Hooft [16] that there is a monopole solution in this

model which satisfies the equations of motion (2.5) and (2.6) and which has the
appropriate asymptotic form that we discussed above. This monopole solution is
given by the following equations [5, 11, 13, 16, 18]:

Aa0 = 0
Aai = εaiknkW (r)
φa = naφ(r)

 (2.14)

where na = xa

r
and in the limit r → ∞ the functions W (r) and φ(r) have the

asymptotic behavior W (r) = 1
gr

and φ(r) = F − 1
gr

.
At this point it would be useful to define the scalar boson mass µ and the the

vector field mass m. To do this we consider small fluctuations around the vacuum.
Thus we consider a small fluctuation χ of the scalar field ~φ around the trivial vacuum∣∣∣~φ∣∣∣ = F , where only the third isotopic component of the Higgs field is non-vanishing,

i.e we take:

~φ = (0, 0, F + χ) (2.15)

Substitution of this expansion into the Lagrangian of our theory yields, up to terms
of second order

Dµφ
aDµφa ≈ ∂µχ∂

µχ+ g2F 2
[(
A1
µ

)2
+
(
A2
µ

)2
]

(2.16)

and

V (φ) ≈ λ

2
F 2χ2 (2.17)

Further analysis shows that the perturbative spectrum consists of a massless pho-
ton A3

µ corresponding to the unbroken U(1) subgroup, massive vector fields A±µ =
1√
2

(
A1
µ ± A2

µ

)
with mass m = gF , and neutral scalars having a mass µ = F

√
2λ.

21



2.2. THE CLASSICAL MASS OF THE MONOPOLE AT THE BPS LIMIT

2.2 The classical mass of the monopole at the

BPS limit

Here we will derive an expression which gives the lower bound [13, 18] of the
energy of a static configuration. This expression first derived by Bogomol’nyi (1976)
and relates the energy of a static configuration to its topological index. In order to
find the classical mass of the monopole we have to use the Bogomol’nyi condition
[13, 18] that we will refer later.

To begin with we consider the limit λ→ 0. In this limit the energy for a static
solution with Aa0 = 0, which is given in the expression (2.7), takes the form:

E =

∫
d3x

{
1

4
F a
ijF

aij +
1

2
Dkφ

aDkφa
}

=

∫
d3x

∑
i,j,a

1

4

(
F a
ij − εijkDkφ

a
)2

+

∫
d3x

1

2
εijkF

a
ijDkφ

a (2.18)

Now we can write the second term in the second line of the above expression as∫
d3x

1

2
εijkF

a
ijDkφ

a =

∫
d3x∂k

(
1

2
εijkF

a
ijφ

a

)
(2.19)

where we have used the identity DµF̃
aµν = 0 where F̃ aµν is the dual field 1

2
εµνρσF a

ρσ.
Then using the Gauss theorem we finally obtain∫

d3x
1

2
εijkF

a
ijDkφ

a =

∮
S2

dσk

(
1

2
εijkF

a
ijφ

a

)
(2.20)

Before we continue we must mention an other gauge invariant definition of the
electromagnetic field tensor Fµν . This definition of the field tensor presented by
Gerard ’t Hooft [16] has the following form:

Fµν ≡ φ̂aF a
µν −

1

g
εabcφ̂aDµφ̂

bDνφ̂
c (2.21)

where φ̂a = φa

|φ| .
As we discussed above, for any finite-energy configuration it must be: Dµφ

a → 0

and φ̂a → φa/F at the limit r → ∞. Thus the magnetic field obtained from the
field tensor (2.21) has the following asymptotic behavior[13]:

Bk =
1

2
εijkFij →

1

2F
εijkF

a
ijφ

a (2.22)

as r →∞.
Using this result, the equation (2.20) takes the form:
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2.3. ONE-LOOP CORRECTION TO THE MONOPOLE MASS

∫
d3x

1

2
εijkF

a
ijDkφ

a = F

∮
S2

dσkBk = 4πmF = 4π
Q

g
F (2.23)

where Q is called homotopy index. This is a topological index and any further
discussion about it is out of the scope of this dissertation. We have to mention that
in this case the homotopy index has the value Q = 1 [13]. Also m is the monopole
charge [13] which is related to the homotopy index by the relation m = Q/g.

Then we obtain the following inequality [13, 18] which gives the lower bound for
the energy of the static solutions:

E =
4πQF

g
+

∫
d3x

∑
i,j,a

1

4

(
F a
ij − εijkDkφ

a
)2 ≥ 4πQF

g
. (2.24)

For any value of the homotopy index, the energy is minimized if and only if the fields
satisfy the Bogomol’nyi condition [13, 18]:

F a
ij = εijkDkφ

a. (2.25)

If a field configuration satisfies the Bogomol’nyi condition then it minimizes the
static energy and is therefore a static classical solution. Accordingly the inequality
in (2.24) tells us that the monopole will have a classical mass [5, 11, 13, 18] 4πF/g.

2.3 One-loop correction to the monopole mass

In this final paragraph we present the calculation of the quantum correction [5]
to the monopole mass. In fact we give the basic steps of the procedure we use here.

Before we continue we observe that our theory, described by the action (2.1),
is gauge invariant under SO(3) gauge transformations. It is known that in gauge
invariant theories there is a large set of field configurations that make the functional
integral

∫
DAeıS[A] being badly divergent. Where with A we mean the gauge field

of a gauge invariant theory. This difficulty is due to gauge invariance.
To see this difficulty in the present theory, we consider the Yang-Mills term

of our Lagrangian which is LYM = −1
4
F a
µνF

aµν . Now we express this term in the
following way:

LYM = −1

4
F a
µνF

aµν

= −1

4

(
∂µA

a
ν − ∂νAaµ

)
(∂µAaν − ∂νAaµ)

− g

2
εabc

(
∂µA

a
ν − ∂νAaµ

)
AbµAcν − g2

4
εabcεadeAbµA

c
νA

dµAeν (2.26)
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2.3. ONE-LOOP CORRECTION TO THE MONOPOLE MASS

From the above expression we see that in the limit g → 0 we cannot compute the
propagators of the gauge fields, since when we try to compute these propagators
we see that the quantity −1

4

(
∂µA

a
ν − ∂νAaµ

)
(∂µAaν − ∂νAaµ) lead us to the 4 × 4

matrix −k2ηµν + kµkν which is singular. The solution of this problem is to fix the
gauge. To do this we follow the Faddeev-Popov method. Following this method first
we vary the action around the monopole solution (that minimizes the energy) and
then we see that a convenient gauge-fixing function is the Ga = Dµα

a
µ + gεabcφ

bχc,
where αaµ and χc are fluctuations of the gauge fields and scalar fields respectively.

Now, after we have introduced the ghost terms in the original Lagrangian, during
the Faddeev-Popov procedure, we collect the terms that give the second variation of
the action. Then we take for the second variation [5] of the action the result:

δ2S =

∫
d4x

{
1

2
(Dµα

a
ν)

2 +
1

2
g2
(
εabcφ

bαcµ
)2

+
1

2
(Dµχ

a)2

+
1

2
g2
(
εabcφ

bχc
)2

+ δ2V + |Dµψ
a|2 + g2

∣∣εabcφbψc∣∣2
+ gαaµα

b
νεabcF

c
µν + 2gεabcα

a
µχ

bDµφ
c
}

(2.27)

where δ2V is the second variation of the potential and ψa, a = 1, 2, 3 are the ghost
fields. The non-diagonal terms on the third line of the above expression, together
with the term δ2V can be ignored since they don’t have any sensible contribution
to the singular part of the quantum correction [5] which then becomes:

δM =
3

2
ln det

H

H(0)
(2.28)

where the operators H and H(0) are defined by the expression:

−
(
D2
k

)
ab

+ g2
(
φ2δab − φaφb

)
(2.29)

on the background of the monopole solution and of the trivial solution, correspond-
ingly. We note that the coefficient 3 in the expression (2.28) for the quantum
correction, comes from the counting of the degrees of freedom. In this model the
number of the degrees of freedom is 3.

Now we substitute the monopole solution (2.14) in the expression of the operator
H and we obtain the following expression for this operator [5]:

Hab =
(
−∂2

0 − ~∇+ g2W 2(r) + g2φ2(r)
)
δab + 2~Tab · ~L

W (r)

r
+
(
g2W 2(r)− g2φ2(r)

)
nanb (2.30)

where with ~L we denote the angular-momentum operator and with ~T we denote the
generators of the SO(3) group which are T cab = ıεabc.
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2.3. ONE-LOOP CORRECTION TO THE MONOPOLE MASS

Then we demand the operator ~J = ~L + ~T to commute with H. We observe
that the spectrum of the operator H consists of triplets with fixed ~J and J3 with
L = J − 1, J, J + 1, where J3 is the third component of the operator ~J . Now the
operator H is reduced to

H = −∂2
r + ω2 + g2W 2 + g2φ2

+
1

r2
diag (J (J − 1) , J (J + 1) , (J + 1) (J + 2))

+
gW

r
diag (2 (J − 1) ,−2,−2 (J + 2))

+g2
(
W 2 − φ2

) J 0 −
√
J (J + 1)

0 0 0

−
√
J (J + 1) 0 J + 1

 1

2J + 1
(2.31)

Our next step is to substitute the expression of the asymptotic behavior of the
function W (r), where W (r) = 1

gr
at r →∞. Then we see that the matrix expression

(2.31) for the operator H can be diagonalized to give the following two operators
[5]:

−∂2
r + ω2 +

J (J + 1)− 1

r2
+ g2φ2 (2.32)

and

−∂2
r + ω2 +

J (J + 1)

r2
+ g2φ2 (2.33)

where these two expressions are valid at the limit r →∞.
Now since the spectrum of the operator (2.33) has not any singularity at the

limit λ→∞, we take into account only the operator (2.32), which has a singularity
at this limit. Taking into account the operator (2.32) the quantum correction (2.28)
becomes [5]:

δM = 3

∫
dω

2π

(
∞∑
J=1

(2J + 1) ln det
(
−∂2

r + p2
)

−
∞∑
L=0

(2L+ 1) ln det
(
−∂2

r + p̃2
))

(2.34)

where

p =

√
J (J + 1)− 1

r2
+ ω2 + g2φ2 (2.35)
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and

p̃ =

√
L (L+ 1)

r2
+ ω2 +m2 (2.36)

with m to be the mass of the vector field, which is m = gF .
In order to compute the determinants in the equation (2.34) we use the relation

[4]:

det (−∂2
r + V1(r))

det (−∂2
r + V2(r))

=
N1(∞)

N2(∞)
, (2.37)

where the N1(r) and N2(r) are the solutions of the equations

(−∂2
r + V1(r))N1(r) = 0

(−∂2
r + V2(r))N2(r) = 0

(2.38)

having identical regular behavior at the limit r → ∞. To find the functions N1(r)
and N2(r) for the operators from (2.34) it is correct to use the quassiclassical expan-
sion [6] including the second-order terms. This is valid because we are interested only
in terms singular at the limit λ → ∞. By using the formula of the quassiclassical
expansion, the expression (2.34) becomes [5]:

δM = 3

∫
dω

2π

∫ ∞
0

dr

{
∞∑
J=1

(2J + 1)

[
p+

1

8p3

(
dp

dr

)2
]

−
∞∑
L=0

(2L+ 1)

[
p̃+

1

8p̃3

(
dp̃

dr

)2
]}

(2.39)

We can see from (2.39) that δM includes quadratic and logarithmic ultraviolet
divergences. To regularize these divergences we use the Pauli-Villars procedure [5],
i.e we modify formula (2.28) (and all the following formulas up to (2.39) correspond-
ingly) to:

δM =
3

2

(
ln det

H

H(0)
−
∑
i

Ci
ln (H +M2

i )

H(0) +Mi

)
(2.40)

with conditions
∑

iCi = 1 and
∑

iCiM
2
i = 0.

Following this procedure, when we perform the calculations we end up to the
following formula for the quantum correction δM [5]:
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δM =
3

4π

(
m2 lnm2 −

∑
i

Ci
(
M2

i +m2
)

ln
(
M2

i +m2
))∫

drr2
(
g2φ2 −m2

)
+

3

4π

(
lnm2 −

∑
i

Ci lnM
2
i

)∫
drr2

(
g2φ2 −m2

)2

+
1

8πm2

∫
drr2

(
g2φ2 −m2

)3
+O(m) (2.41)

To renormalize this formula we must subtract the perturbative counterterms from

it. In our model there are four types of possible counterterms:
(
F a
µν

)2
, (Dµφ

a)2, φ2

and φ4. The first two counterterms are not singular at the limit λ→ 0, thus we can
neglect them. The second two counterterms can be rewritten as:

δLc.t. = a
(
g2φ2 −m2

)
+ b
(
g2φ2 −m2

)2
(2.42)

We define the constants a and b in terms of an effective potential:

d

dφ
(δLc.t. + δVeff )

∣∣∣∣
φ=F

= 0,

d2

dφ2
(δLc.t. + δVeff )

∣∣∣∣
φ=F

= 0, (2.43)

where δVeff [5] is a one-loop correction to the effective potential:

δVeff =
3

32π2

(
g4φ4 ln g2φ2 −

∑
i

Ci
(
M2

i + g2φ2
)2

ln
(
M2

i + g2φ2
))

(2.44)

Now obtaining from equations (2.42), (2.43) and (2.44) the constants a and b, we
perform the integration of (2.42) over d3x and we add it to (2.41). Then we finally
obtain the following result for the quantum correction δM [5]:

δM =
1

8πm2

∫ ∞
0

drr2
(
g2φ2 −m2

)3

= −m
2π

ln
m2

µ2
+O(m) (2.45)

where µ = F
√

2λ is the scalar boson mass and we have taken into account the
asymptotic behavior of φ(r).

So, we see that the one-loop quantum correction to the monopole mass is negative
and increases in absolute value when one reaches the BPS limit.
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