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PT -Symmetric Optical Lattices

G. D. Hesketh

Physics Department, Imperial College, London SW7, London, UK

September 2010

Abstract

A brief overview of PT -symmetric non-Hermitian Hamiltonians is pre-

sented and their realisation in optical lattices is discussed. A review of

the literature is performed, accompanied by MATLAB and Maple simula-

tions throughout. PT -symmetric optical lattices are found to exhibit novel

features with no analog in real-potential systems. These include band merg-

ing, nonreciprocity, power oscillations, double refraction and phase transi-

tions. Following private communication with Dr. H. F. Jones, an equivalent

Hamiltonian is presented for the cos(x)2 + iV0 sin(2x) potential, and a de-

pendence on the sinusoidal shape of the potential is noted in the double

refraction. Soliton solutions are found in nonlinear PT lattices, and their

instability is found to increase with non-Hermiticity parameter V0.

1 Introduction

It is known that a physical quantum theory must adhere to a number of axioms.

These include a real energy spectrum that is bounded below, a Hilbert space

spanned by state vectors that in conjunction with an appropriate inner product

insures a positive norm and a unitary time evolution operator that results in the
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conservation of probability. In the Universe in which we live it is apparent that

measurements of physical observables yield real quantities. In quantum mechan-

ics these observables correspond to the eigenvalues of operators, and the reality

requirement of observables demands that the eigenvalues of all operators be real

quantities. In the case of the Hamiltonian operator, Ĥ, the real eigenvalues cor-

respond to a real energy spectrum. In order to provide a real spectrum it was

postulated that all observables corresponded to the eigenvalues of Hermitian (self

adjoint) operators and indeed, a Hermitian Hamiltonian not only ensures that the

energy spectrum is real but it also takes care of the unitary temporal evolution.

In recent years Bender et al. conducted work that sought to continue quantum

mechanics into the complex plane[1]. In particular they explored the spectra of

non-Hermitian Hamiltonians and found that in fact many non-Hermitian Hamil-

tonians can produce entirely real spectra provided they possess something known

as PT (parity-time) symmetry. The work of Bender et al. demonstrated that in

many cases a threshold exists in the Hamiltonians, above which the spectrum is

no longer completely real and instead becomes complex. This threshold marks the

boundary between the PT -symmetric and broken-symmetry phases and the tran-

sition is thus referred to as spontaneous PT -symmetry-breaking (PT -symmetry

breaking has since found application in, amongst other things, quantum field the-

ory, complex Lie Algebras and lattice QCD)[2].

1.1 PT -Symmetry

The Hermiticity condition imposed on the Hamiltonian in conventional quantum

mechanics is replaced in non-Hermitian Hamiltonian theory by the PT -symmetric

condition. The actions of the parity, P̂ , and time, T̂ , operators are defined as

follows:

P̂ : p̂→ −p̂, x̂→ −x̂, T̂ : p̂→ −p̂, x̂→ x̂, i→ −i, (1)
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where p̂ and x̂ are the momentum and position operators, respectively. In general

we define the Hamiltonian, Ĥ, as Ĥ = p̂2/m + V (x̂), where m is the mass and

V the potential. A Hamiltonian is defined as PT -symmetric if it shares the same

eigenfunctions as the P̂ T̂ operator and satisfies the following condition[3]:

P̂ T̂ Ĥ = ĤP̂ T̂ (2)

If the above condition is satisfied but the Hamiltonian does not share its eigen-

functions with the P̂ T̂ operator then the Hamiltonian is considered to possess

broken PT symmetry.

1.2 Orthogonality/Orthonormality of the Eigenfunctions

of the PT -Symmetric Hamiltonian and the CPT Inner

Product

After specifying a Hamiltonian we may construct the time-independent Schrödinger

equation and find the associated eigenvalues, En, and the corresponding eigenfunc-

tions, ψn(x), where n labels the nth energy level (or band). These calculations are

often only possible numerically (e.g. using the Runge-Kutta method) with ana-

lytic solutions available for only a limited number of cases. In order to express

any state vector in the Hilbert space as a sum of eigenstates of the Hamiltonian

we require the set of eigenfunctions to be orthonormal and complete.

1.2.1 Orthogonality

For a conventional Hermitian Hamiltonian the eigenfunctions are orthogonal with

respect to the Hermitian inner product:

(ψ, φ) =

∫
ψ(x)∗φ(x) dx (3)
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Orthogonality means that for distinct eigenvalues En 6= Em the inner product van-

ishes, (ψn(x), φm(x)) = 0. However, two eigenfunctions may be orthogonal with

respect to one inner product but not with respect to another. The eigenfunctions

of the non-Hermitian Hamiltonians are not in general orthogonal with respect to

the standard Hermitian conjugate inner product, and consequently if we are to

construct a successful quantum theory using the non-Hermitian Hamiltonian we

must seek a new definition for the inner product. Bender et al. first discussed the

possibility of using the PT inner product:

(ψ, φ) ≡
∫
C

ψ(x)PT φ(x) dx =

∫
C

ψ(−x)∗φ(x) dx (4)

where C is an appropriate contour in the complex plane[4].Through integration

by parts of the Schrödinger equation it can be shown that the eigenfunctions of

the PT symmetric Hamiltonian associated with distinct eigenvalues are indeed

orthogonal with respect to this inner product; however, this definition fails to

insure a positive norm. In fact the algebraic sign of the norm of φn(x) using

this inner product is (−1)n, and it is possible to normalize the eigenfunctions so

that this is the exact norm. However, the problem now is how to interpret these

negative norm states. This definition of the inner product demonstrates that in

fact half of the states will have negative norm. This in fact indicates a symmetry

of the Hamiltonian and that symmetry is represented by the Ĉ operator.

1.2.2 Orthonormality and the CPT Inner Product

In order to enforce positive orthonormality for the eigenfunctions the CPT in-

ner product. The additional operator, Ĉ, is in some ways similar to the charge

conjugation operator, hence its name. Furthermore, Ĉ is a linear operator that

commutes with Ĥ. The Ĉ operator can be written in coordinate space as a sum
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over the PT normalized eigenfunctions of the PT -symmetric Hamiltonian:

C(x, y) =
∞∑
n=0

φn(x)φn(y) (5)

The CPT inner product is then defined as:

〈ψ, φ〉CPT ≡
∫
C

ψ(x)CPT φ(x) dx (6)

where ψ(x)CPT =
∫
C(x, y)φ(y) dx. When dealing with non-Hermitian Hamiltoni-

ans one must first solve for the eigenstates of the Hamiltonian in order to know

the Ĉ operator and in turn the inner product. This dynamic determination of the

inner product differs from standard quantum mechanics where the Hilbert space

and inner product are known even before selecting the Hamiltonian. The Ĉ op-

erator has eigenvalues of ±1 and it indicates the measured sign of the PT norm

of an eigenstate. As a result this inner product is positive definite, as states with

negative norm are multiplied by −1 when acted on by the Ĉ operator. The com-

pleteness relation has been derived for the PT conjugate case and a mathematical

proof has been found[5]. In terms of the CPT conjugate it can be written as:

∞∑
n=0

φn(x)[CPT φn(y)] = δ(x− y) (7)

1.2.3 Unitary Temporal Evolution with PT -Symmetric Hamiltonians

In any quantum theory the temporal evolution of a state is given as:

ψt(x) = e−iHtψ0(x) (8)

To insure the norm remains unchanged in time, the temporal evolution must be

unitary. In theories with PT -symmetric Hamiltonians this remains true, as the

CPT operator commutes with the Hamiltonian within the CPT inner product.
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1.3 Mostafazadeh and Quasi and Pseudo-Hermiticity

In 2002 Mostafazadeh showed that all Hamiltonians with real spectra are pseudo-

Hermitian [19], and that the PT Hamiltonians being considered were also pseudo-

Hermitian (in fact he argued that as PT -symmetry is neither a neccessary or

sufficient condition for real eigenspectra, it is perhaps unrelated to the reality of

the eigenspectrum). Pseudo-Hermitian Hamiltonians satisfy the condition:

H† = ηHη−1 (9)

where η is a positive definate Hermitian operator. PT -symmetric Hamiltonians

are a subclass of pseudo-Hermitian Hamiltonians with η = PC. When the CP

operator is given as an exponential, CP = e−Q with Q Hermtian [2], η can be

expressed as:

η = e−Q (10)

A Quasi-Hermitian Hamiltonian is one that is related to a Hermitian Hamiltonian,

h, by a similarity transformation:

H = ρ−1hρ (11)

where ρ is again Hermitian and positive definate. It is then seen that η = ρ2

and thus, the similarity transformation that relates the Hamiltonian, H, to it’s

Hermitian equivalent is:

h = e−1/2QHe1/2Q (12)

It is generaly difficult to solve equation (12) however, and Hermitian equivalents

cannot easily be found.
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1.4 PT -Symmetric Optical Structures: A testing ground

for the Schrödinger equation

The work of Bender et al. demonstrated that the energy spectrum of a non-

Hermitian Hamiltonian is in fact real if the Hamiltonian is PT -symmetric. In

2007 D.N. Christodoulides et al. released a paper in which they suggested com-

plex PT -symmetric structures could be realized within an optical framework, and

in particular through the paraxial theory of diffraction. In this optical model the

dynamics are governed by Schrödinger-like equations in which the propagation dis-

tance, z, plays the part of time in quantum mechanics. Optical array constructions

using real potentials have been considered in semiconductors, glasses and liquid

crystals[6] and prior to PT -symmetric optical considerations complex potentials

were reviewed in both theoretical[7] and experimental optics[8]. PT symmetry in

optical structures with complex periodic potentials is therefore, a natural exten-

sion. In order to be PT symmetric it is necessary (but not sufficient) to impose

the condition on Ĥ that it commutes with the PT operator. This in turn places

a constraint on the potential as:

ĤP̂ T̂ = p̂2/m+ V (x) (13)

P̂ T̂ Ĥ = p̂2/m+ V ∗(−x) (14)

P̂ T̂ Ĥ = ĤP̂ T̂ , (15)

which implies:

V (x) = V ∗(−x) (16)

In other words the real part of the potential must be an even function and the

imaginary part an odd function of position, x. Christodoulides et al. suggested

that this situation could be realized in optics by ”involving symmetric index guid-
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ing and an antisymmetric gain/loss profile”[9]. In optics the refractive index n(x)

plays the part of the potential, and for the system to be PT -symmetric it must

satisfy:

n(x) = n∗(−x) (17)

The complex refractive index distribution, n(x), may be split into a sum of its real

and imaginary parts and a constant substrate background index, n0:

n(x) = n0 + nR(x) + inI(x) (18)

If the Hamiltonian is PT -symmetric the refractive-index profile, nR(x), is then an

even function and the gain/loss distribution, nI(x), an odd function of position.

1.4.1 Derivation of the Schrödinger-like Beam Dynamics

The equation for an electromagnetic wave in a non-magnetic medium with no free

charges or free currents and in Gaussian units is:

~∇×
(
~∇× ~E(~x, z, t)

)
+

1

c2
∂2
t
~E(~x, z, t) = −4π

c2
∂2
t
~P (~x, z, t) (19)

where ~P (~x, z, t) is the total material polarization and the transverse coordinates

have been compiled into the vector, ~x. Consider, then, the single-frequency com-

ponent of the electric field:

~E(~x, z, t) = ~E(~x, z)e−iωt + c.c,

where ω is the angular frequency of the oscillation. In general the polarization

vector ~P is expanded as a power series in the electric field ~E. For linear materials,

however, we may exclude higher order terms and make use of the constitutive
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relation:

4π ~P = (n2 − 1) ~E (20)

We then, after implementing the vector identity for the curl of the curl of a vector,

obtain:

~∇
(
~∇ · ~E

)
−∇2 ~E − ω2

c2
n2(~x, z, ω, ~E; t) ~E = 0

In the absence of free charges the divergence of ~E vanishes; thus we reach the

homogeneous vector Helmholtz equation in the form:

[∇2 +
ω2

c2
n2(~x, z, ω, ~E; t)] ~E(~x, z) = 0 (21)

For a constant polarization vector we may reduce the homogeneous vector Helmholtz

to the scalar equation. Furthermore, in the systems which form the focus of this

study the field will not be a function of y and the refractive index will generally

be a function of x only. If then we make the following substitution:

n2(~x, z, ω, ~E; t) = (n0 + δn(x))2 ≈ n2
0 + 2n0δn(x)

where we have taken δn(x)� n0, equation (21) reduces to:

[∂2
x + ∂2

z + k2
0 + 2

k2
0

n0

δn(x)]E(x, z) = 0 (22)

where k0 = n0ω/c. The electric field may be written as an envelope function times

a plane wave propagating along z: E(x, z) = ψ(x, z)eik0z. Taking this into account
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we may recast equation (22) as:

[∂2
x + ∂2

z + 2ik0∂z + 2
k2

0

n0

δn(x)]ψ(x, z) = 0 (23)

Now we employ the slowly-varying envelope approximation known as the ”paraxial

approximation”. To do this we introduce new rescaled co-ordinates:

X =
x

x0

Z =
z

2kx2
0

In terms of these new co-ordinates equation (23) becomes:

[∂2
X + ε2∂2

Z + i∂Z + 2
k2

0

n0

x2
0δn(X)]ψ(X,Z) = 0 (24)

where ε = 1/(2kx0). The transverse length scale, x0, is naturally set by the spot

radius of a laser or size of an aperture, and provided it is much greater than the

wavelength, ε� 1 and the ∂2
Z term may be dropped. This is known as the paraxial

approximation. Equation 24 then becomes:

[∂2
X + i∂Z + V (X)]ψ(X,Z) = 0 (25)

with V (X) = 2
k20
n0
x2

0δn(X). This of course is the well known 1d Schrödinger

equation with Z playing the role of time.
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2 PT -Symmetry in a Coupled 2-Channel Opti-

cal System

2.1 Experimental Realization of PT -Symmetry in a Linear

Coupled 2-Channel Optical System

Following the 2007 paper by Christodoulides et al. on the ”Theory of coupled

optical PT -symmetric structures”[9], attentions turned to the experimental real-

ization. In 2010 three of the authors of the theoretical 2007 paper, Christodoulides,

K.G. Makris and R. El-Ganainy, together with M. Segev and D. Kip, published an

article in Nature detailing the first experimental observation of a PT -symmetric

optical system with a complex potential[10]. In addition to this, the group also

witnessed PT -symmetry breaking and asymmetric power oscillations. The impor-

tance of the work was explained by the group:

Our results may pave the way towards a new class of PT-symmetric ma-

terials with intriguing and unexpected properties that rely on non-reciprocal

light propagation and tailored transverse energy flow[10].

The ultimate goal was to consider periodic optical systems but first it was neces-

sary to establish the PT properties of a single cell. Christodoulides et al. achieved

this through the construction of a coupled system with two channels, one of which

would receive gain, γG, through optical pumping and the other only loss, γL. The

electric envelope, E, of the optical beam, under the PT symmetric conditions laid

out in (17), obeys the paraxial diffraction equation:

i∂zE +
1

2k0n0

∂2
xE + k0[nR(x) + inI(x)]E = 0
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where k0 = 2π/λ with λ the wavelength. The optical dynamics of the two coupled

waveguides is then:

i
dE1

dz
− iγGeff

2
E1 + κE2 = 0, i

dE2

dz
+ i

γGeff
2

E2 + κE1 = 0 (26)

with E1,2 the field amplitudes in the respective channels, κ = π/2Lc the coupling

constant, with coupling length Lc, and γGeff = γG − γL the effective gain. For a

PT -symmetric system we require γGeff = γL = γ. The PT -symmetric coupled

equations can be written in matrix form using the non-Hermitian Hamiltonian:

i
d

dz

E1(z)

E2(z)

 = H

E1(z)

E2(z)

 (27)

H =

1
2
iγ −κ

−κ 1
2
iγ

 (28)

This has solution: E1(z)

E2(z)

 = e−iHt

E1(0)

E2(0)

 (29)

which leads to the following expressions for the electric field E1,2(z) as a function

of the initial states, E1(0) and E2(0):

E1 (z) =

(
cosh (1/2 ξ (z)) +

γ z sinh (1/2 ξ (z))

ξ (z)

)
E1 (0) +

2 iz sinh (1/2 ξ (z))κ

ξ (z)
E2 (0) (30)

E2 (z) =

(
− cosh (1/2 ξ (z)) +

γ z sinh (1/2 ξ (z))

ξ (z)

)
E2 (0) +

2 iz sinh (1/2 ξ (z))κ)

ξ (z)
E1 (0) (31)
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with ξ (z) =
√
z2 (−4κ2 + γ2). The PT -symmetric threshold is reached at γ = 2κ.

Below this value the eigenvectors and corresponding eigenvalues (right) are given

as:

|1, 2〉 = (1,±e±iθ), ± cos(θ) (32)

where sin(θ) = γ/2κ. At threshold they coalesce to:

|1, 2〉 = (1, i) (33)

Finally above threshold where cosh(θ) = γ/2κ they are given as:

|1, 2〉 = (1, ie∓θ), ∓ i sinh(θ) (34)

It is noted that the eigenstates of this system are not orthogonal. In a Hermitian

system, γ = 0, superposition of the symmetric and antisymmetric eigenstates

results in reciprocal wave propagation. For the PT -symmetric system the basis is

skewed, resulting in non-reciprocal dynamics and power oscillations. By switching

the input channel from 1 to 2, (E1(0) = 1, E2(0) = 0) → (E1(0) = 0, E2(0) = 1),

an entirely different output state is obtained. As we exceed threshold this situation

becomes increasingly more evident. Above threshold the eigenvalues are complex,

which results in an exponential increase (or decrease) in amplitude in channel 1 (or

2). Interestingly, this results in light predominantly exiting the system in channel

1 irrespective of the input state.
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,

Figure 1: Normalised intensity in the 2 channels. Conventional system (γ = 0) is
reciprocal during excitation of channel 1 (left diagram) and channel 2 (right diagram).

,

Figure 2: PT -symmetric system below threshold (γ = κ/2) during excitation of chan-
nel 1 (left diagram) and channel 2 (right diagram). On close examination the system is
non-reciprocal.

,

Figure 3: PT -symmetric system above threshold (γ = 1.2κ) during excitation of
channel 1 (left diagram) and channel 2 (right diagram). System is again non-reciprocal
with light propagating mainly in channel 1 irrespective of the input state.
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In addition, Christodoulides et al. measured the intensity distribution at the

output, (z = 2cm), at different instants t. They assumed an exponential temporal

build up in gain (proportional to the concentration of Fe3+ centres[10]) governed

by the equation:

γG(T ) = γmax[1− e−T ] (35)

with T = t/τ , t the time and τ the Maxwell time constant. With γL = 2κ,

γmax = 5κ and for the optical system employed κ = 1.9cm−1. From previous

considerations of the PT symmetry we find:

γGeff = γG − γL

γGeff = γL = γ

γ =
γG
2

=
5

2
κ[1− e−T ] (36)

By inserting equation (36) into equations (30) and (31) we obtain expressions for

the intensity I1,2 = |E1,2|2 as a function of time. The intensity was measured at

the channel outputs at different instances and for different input states (Figure 4).

,

Figure 4: Analytic solutions of the (normalised) coupled equations for the intensity at
the output. I1 in green, I2 in red. These simulations were run by the group and found
to be in good agreement with expermental data.
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2.2 Nonlinear PT -Symmetric Coupled System

The work of Christodoulides et al. in the previous section examined exclusively

the dynamics of the linear coupled optical system. It was natural of course to ex-

tend such considerations to include nonlinear behaviour. In May 2010 Hamidreza

Ramezani and Tsampikos Kottas, together with Christodoulides and El-Ganainy,

published a paper entitled Unidirectional Nonlinear PT -Symmetric Optical Struc-

tures [11]. Prominent among the motivations of the paper was the possibility of

being able to provide a means of unidirectional information flow in a manner that

does not rely on the Faraday effect. The Faraday effect generally requires the use

of materials that are incompatable with light emitting wafers[12]. In reference [11]

non-reciprocal PT -symmetric dynamics are combined with nonlinear self-trapping

phenomena[13] and the outcome is directed dynamics that could be utilised in op-

tical isolators or diodes. The system under consideration is similar to that of

the linear case in the previous section. Two PT -symmetric coupled waveguide

elements are employed, only this time with Kerr nonlinearity strength, χ. Such

PT -symmetric nonlinear systems are easily realised on semiconductor wafers with

Kerr-like properties[14].

In nonlinear materials the refractive index changes as it interacts with an electric

field. In this case the applied electric field is the light itself as it propagates through

the material. Owing to this modified potential we must in turn alter the equations

governing the optical dynamics. For a nonlinear material the higher order terms in

the expansion of the polarisation vector, ~P , cannot be ignored and the constitutive

relation (20) is no longer applicable. For nonlinear materials we approximate the

expansion with 1st and 3rd order terms (The even-ordered terms in the expansion

drop out if the material exhibits inversion symmetry). Consequently equation (20)
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is replaced with:

4π ~P = (n2 − 1 + χ| ~E|2) ~E (37)

with χ a measure of nonlinearity, and equation (25) then becomes the nonlinear

Schrödinger-like equation[15]:

[∂2
X + i∂Z + V (X) + χ|ψ(x, z)|2]ψ(X,Z) = 0 (38)

In the Kerr nonlinear version of a coupled two-channel waveguide system the

equations for the modal amplitudes are:

i
d

dz
ψ1(z) + ψ2(z)− iγψ1(z) + χ|ψ1(z)|2ψ1(z) = 0 (39)

i
d

dz
ψ2(z) + ψ1(z) + iγψ2(z) + χ|ψ2(z)|2ψ2(z) = 0 (40)

where γ is again the scaled gain/loss coefficient and χ is the strength of the

Kerr nonlinearity. Both γ and χ are normalised in units of the coupling length.

Equations (39) and (40) are not in general analytically solvable and thus numerical

solutions are sought. With χ = 0 we obtain the linear case of the preceding section.

In the linear limit PT -symmetry breaking occurs in equations (39) and (40) at

γ=1. Nonlinearity will be explored here in the exact PT -symmetric phase with

γ < 1.

For γ = 0 there are analytic solutions to equations (39) and (40) in the form of

elliptic functions[13]. If the initial state corresponds to stimulation of only one

of the channels, either channel 1(gain channel) or channel 2 (loss channel), then

for γ = 0 two distinct behaviours are observed. For χ < 4 Rabi oscillations

result in the beam oscillating between the channels, and for χ > 4 self-trapping

dynamics occurs, causing localization of the beam entirely in the channel of the

initial state[13]. In both cases the beam dynamics are reciprocal as they were for
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γ = 0 in the linear case.

For the interesting case of γ 6= 0 analytic solutions to (39) and (40) are in general

unknown and instead the dynamics are explored through numerical integration.

With γ = 0.1 two examples are provided, χ = 1.9 and χ = 8. The dynamics

is non-reciprocal for γ 6= 0, and this is particularly evident for the χ = 8 case

where the beam exits channel 1 (gain) regardless of the input state. The intensity

in channel 2 (loss) is seen to go exponentially to zero for waveguides longer than

some critical value, zd. It is this unidirectional property that could allow the

system to be used as an optical isolator (diode).
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,

Figure 5: Field intensity in a nonlinear 2 channeled couple system for γ = 0.1 and
nonlinearity strength χ = 1.9 during excitation of channel 1 (left) and channel 2 (right).
System is actually not quite reciprocal.

,

Figure 6: Field intensity in a nonlinear 2 channeled couple system for γ = 0.1 and
nonlinearity strength χ = 8 during excitation of channel 1 (left) and channel 2 (right).
The nonreciprocity of the system is drastic, with light only exiting channel 1 regardless
of input state.
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3 PT -Symmetric Optical Lattices

The investigation of PT -symmetric optical lattices is of particular importance, as

the interesting dynamics attributed to PT -symmetry may feature in the synthesis

of pseudo-Hermitian materials with novel optical properties. These properties were

explored by the group K. G. Makris, R. El-Ganainy and D. N. Christodoulides

in the paper Beam Dynamics in PT -Symmetic Optical Lattices [16]. Once again

the structure utilises a judicious gain/loss set up but now within the context of a

complex PT -symmetric array and we again focus on the diffraction dynamics of

optical beams in the spatial domain. The refractive index is of the form (18):

n(x) = n0 + nR(x) + inI(x)

The previous conditions imposed by the PT -symmetry still apply, i.e.:

nR(x) = nR(−x), nI(x) = −nI(x) (41)

In a lattice set up, however, n(x) is periodic such that:

nR,I(x) = nR,I(x+D) (42)

with D the period of the lattice. The complex potential V (x) is also periodic

such that V (x) = V (x + D). Under these conditions and with nR,I(x) � n0

the dynamics once again obeys the paraxial equation of diffraction which, after

suitable rescaling, resembles the Schrödinger equation (25):

[∂2
X + i∂Z + V (X)]ψ(X,Z) = 0

Such PT -symmetric lattices may be realised in the visible and long wavelength

regime when the gain or loss coefficients are appropriately selected[16].
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3.1 Band Structure of a Periodic PT -Symmetric Lattice

Crucial to the understanding of the PT lattice properties is the analysis of the

band structure. Solutions of the form:

ψ(x, z) = φkn(x)eiβn(k)z (43)

are sought with φkn(x) the n-band Floquet-Bloch mode, k the Bloch momentum

and βn(k) the associated eigenvalue (propagation constant). In all instances k is

kept to within the first Brillouin zone −π/D ≤ k < π/D. As mentioned in the

introduction, a necessary but not sufficient condition imposed on the potential in

order to insure a real eigenspectrum is:

V (x) = V ∗(−x) (44)

Focus is given here to the potential:

V (x) = 4(cos2(x) + V0i sin(2x)) (45)

with lattice period D = π.

3.1.1 Determining β(k)

By substituting equation (43) into the Schrödinger-like equation, (25), we find

that the n-band Floquet Bloch modes, φkn(x), satisfy the time (or in this case z)

independent Schrödinger equation:

[
d2

dx2
+ V (x)− βkn]φkn(x) = 0 (46)

There are two linear independent solutions to a second order differential equation

that are defined by distinct initial conditions. We may reduce the order of the
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differential system using the following substitutions:

φkn(x) = U(x)

d

dx
φkn(x) = U ′(x) (47)

d

dx
U(x) = U ′(x)

Combining (46) and (47) we obtain the system:

d

dx
U ′(x) = (−V (x) + βkn)U(x) (48)

d

dx
U(x) = U ′(x)

which yields two solutions subject to the following different initial conditions:

(U(0) = 1, U ′(0) = 0), (U(0) = 0, U ′(0) = 1) (49)

Then, for a specific value of βkn and for a specific function V (x), these equations

can be numerically solved on a computer using the Runge-Kutta method, for

example.

There is a well-known relation between these solutions and the Bloch momentum

k, (Floquet method), that is:

cos(kπ) =
1

2
(U1(π) + U ′2(π)) (50)

which enables us to determine k for a specified value of βkn:

k(β) =
1

π
arccos

(
1

2
U1(π) +

1

2
U ′2(π)

)
(51)

Plotting a graph of k(β) on its side, as if it were β(k), thus produces the eigen-

spectrum, with physically meaningful values of k lying in the region −1 ≥ k ≤ +1.
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Figure 7: LEFT: First 2 bands for V0 = 0.3 (red dashed line) and V0 = V th
0 = 0.5 (blue

line). RIGHT: Real part of first 2 bands for V0 = 0.85. In this region the eigenvalue is
real but outside it is complex.

The eigenvalue, β, is in general a complex number. In an exact PT phase where

eigenfunctions of the PT operator are also eigenfunctions of the Hamiltonian, H,

and where the PT operator and H commute, β is real valued. Above some thresh-

old value, V th
0 (x), eigenfunctions of the PT operator are no longer eigenfunctions

of the Hamiltoninian, despite the fact that PT and H commute. The symmetry

is then broken and β will no longer be completely real but will rather become

complex.

For V (x) given in equation (45) the threshold is found to be V th
0 = 1/2. Figure 7

(left) shows that for V0 = 0.3 the forbidden gaps are open but for V0 = V th
0 = 0.5

the first two bands close at k = ±1. For V0 = 0.85 > V th
0 the first two bands colide

forming an oval-like structure (right). This double-valued band has a complex as-

sociated eigenspectrum but in the oval region it is real valued. For ever increasing

values of V0 more bands begin to merge together. The bands that don’t merge,

however, maintain their real eigenvalues[16].
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3.2 Equivalent Hermitian Hamiltonian for non-Hermitian

A[cos(x)2 + iV0 sin(2x)] Potential

Through private communication with Dr. H. F. Jones, it has been noted that

a Hermitian equivalent Hamiltonian exists for the non-Hermitian potential used

in equation (45). For V0 < V th
0 = 0.5 the potential presented in (45) may be

rewritten as:

V (x) = 4[cos2(x) + iV0 sin(2x)] = 2 + 2
√

(1− 4V 2
0 ) cos(2x− iθ), (52)

with θ = arctanh(2V0) (For a similar transformation see reference [17]).

Consequently the Hamiltonian can be written as:

H = p2 − 2− 2
√

(1− 4V 2
0 ) cos(2x− iθ), (53)

which, following the complex shift x→ x+ 1
2
iθ, becomes the Hermitian Hamilto-

nian:

h = p2 − 2− 2
√

(1− 4V 2
0 ) cos(2x) (54)

The Hermitian, h, is related to the non-Hermitian Hamiltonian, H, through the

similarity transformation:

h = e−
1
2
QHe

1
2
Q, (55)

with Q = V0~p
2 ≡ −iθd/dx. Consequently the eigenspectra of both Hamiltonians

are identical below threshold. The Schrödinger-like equation then becomes the

Mathieu equation[18]:

[
d2

dx2
+ a− 2q cos(2x)]ψ = 0, (56)
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with q = −
√

1− 4V 2
0 and a = −β. The energy levels are then numericaly derived

as for the previous non-Hermitian case.

Above threshold the corresponding identity is

V (x) = 4[cos2(x) + iV0 sin(2x)] = 2 + 2i
√

(4V 2
0 − 1) sin(2x− iζ), (57)

with ζ = arccoth(2V0). However the equivalent Hamiltonian, h, in this case is

again non-Hermitian. In this region the corresponding Schrödinger-like equation

is:

[
d2

dx2
+ a+ i

√
(4V 2

0 − 1) sin(2x)]ψ = 0, (58)

where shifting x → x − π/2 again provides the Mathieu function but with pure

imaginary q.
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3.3 Floquet-Bloch Modes of a PT -Symmetric Lattice

The Floquet-Bloch modes of a PT -symmetric lattice also exhibit some strange

features. For complex potentials the eigenfunctions are not seen to exhibit zero

nodes at the edges of the Brillouin zone. In addition, different modes with the

same eigenvalue, β(k), are found to be complex conjugate pairs. In real lattices

the mode at k is conjugate to that at −k, yet in a PT lattice this is not the case.

For a PT -symmetric lattice:

φkn(x) 6= φ−kn ∗ (x) (59)

Consequently the band structure is said to be nonreciprocal with respect to k for

a PT -symmetric potential. This in fact follows from the nonorthogonality of the

Floquet-Bloch modes of a PT system. The orthogonality relation for the modes

of a real system is no longer valid, that is in a PT system[16]:

∫ +∞

−∞
φ∗k′m(x)φkn(x)dx 6= δn,mδ(k − k′) (60)

As a result the inner product needs to be modified if it is to project arbitrary input

waves onto the skewed PT -symmetric eigenmode basis. In fact in an infinite PT

lattice the orthogonality condition is given as:

∫ +∞

−∞
φ∗k′m(x)φkn(x)dx =

2π

D
dknδn,mδ(k − k′) (61)

This orthogonality relation is significantly different. Here both k and x are re-

flected about the axis of symmetry.
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3.4 Double Refraction and Power Oscillations

The aspects of PT -symmetry that are of most interest in an optical lattice are

those associated with the dynamic beam evolution. Figure 8 shows wide beam

excitation of a PT -symmetric lattice with V0 = 0 (Hermitian), and V0 = 0.49

(non-Hermitian). In the PT case with V0 = 0.49, the beam is seen to split in

two. This is known as double refraction. This behaviour is attributed to the

skewness of the Floquet-Bloch modes which leads to an assymetric distribution

of the modal coefficients in k space[16]. For an input signal projected onto the

orthogonal Floquet-Bloch basis these coefficients indicate the mode occupancy in

the nth band for Bloch momentum k. Moreover, the beam propogation will follow

the gradient ∇k(β), thus, Figure 8 can be intuitively understood as the promotion

of energy flow from left to right by the gain/loss dipoles.

Figure 9 demonstrates once more the nonreciprocity of a PT lattice. For V0 = 0.45,

and incident angles θ = ±2, the intensity evolution of a wide beam excitation is

displayed. The plots are different, however, for the respective angles and thus, the

system is seen to distinguish right from left. This effect is again a result of the

skewed modes[16].

The dynamics also feature notable oscillations in power with, z. In a PT -symmetric

lattice the conserved quantity is Q, the quasi power and it is defined as:

Q =

∫ +∞

−∞
E(x, z)E∗(−x, z)dx (62)

with E(x, z) the input field. In fact the actual power P =
∫ +∞
−∞ |E(x, z)|2dx is

not conserved, but instead oscillates during propogation. This oscillation is a

consequence of the unfolding of the skewed Floquet-Bloch modes[16], and is most

obvious in Figure 10 where a single channel is excited for the same values of V0

used in Figure 8. In this case secondary emissions are seen to occur.
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Figure 8: Intensity as a function of x and z for wide beam excitation at normal
incidence. LEFT: V0 = 0 (Hermitian) RIGHT: V0 = 0.49 (non-Hermitian). System
demonstrates double refraction.

,

Figure 9: Wide beam angled excitation with V0 = 0.45. LEFT: θ = 2o RIGHT:
θ = −2o. System demonstrates nonreciprocity.

,

Figure 10: Single channel excitation. LEFT: V0 = 0 (Hermitian) RIGHT: V0 = 0.49
(non-Hermitian). System demonstrates power oscilations with secondary emissions.
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3.5 The Dependence of Double Refraction on the Sinu-

soidal Shape of the Potential

In the previous section the phenomena of double refraction was identified in PT

lattices. In Figure 8 the splitting of the beam was shown for the potential V (x) =

4[cos2(x) + iV0 sin(2x)] with V0 = 0.49. It has been noted by Dr. H. F. Jones,

and presented here following private communication, that this effect is heavily

dependent on the sinusoidal shape of the potential. Figure 11 demonstrates that

as the shape of the real and imaginary parts of the potential tend from sinusoidal

functions to square wave functions, the double refraction dissapears. It is not

known why this phenomena occurs. The changing shape of the potential in Figure

11 is implemented in MATLAB by the elliptic function:

W (x) = −2ellipj((
4x

π
− 1)ellipke(ξ), ξ) + 4iV0ellipj((

4x

π
ellipke(ξ), ξ) (63)

where ellipj is the Jacobi elliptic function and ellipke is the elliptic integral of the

first kind. The Jacobi elliptic function is parameterized by ξ which takes values

0 < ξ ≤ 1. For ξ = 0, W (x) = V (x/2) and as ξ tends to 1 the function W (x)

becomes more square. The Jacobi elliptic function spreads out as the value of it’s

argument increases. The 2π periodicity is preserved here through the inclusion

of the elliptic integral in the argument. The function ellipj returns the Jacobi

elliptic function sn(u, ξ) = sin(Φ) and is defined[18] according to:

u =

∫ Φ

0

dθ(
1− ξ sin2 θ

)2 (64)

The function ellipke returns the complete elliptic integral K(ξ) defined[18] as:

K(ξ) =

∫ 1

0

1√
(1− t2)(1− ξt2)

dt (65)

31



,

,

,

,

Figure 11: Intensity evolution for elliptic function potentials. Double diffraction ap-
pears to dissapear as the potential (right) changes from a sinusoidal (top) to a square-
wave function (bottom). The real part of the potential is drawn in green and the
imaginary part in blue.
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3.6 Soliton Solutions in a Nonlinear PT Lattice

In a nonlinear PT lattice the beam dynamics obey the equation:

i∂zψ(x, z) + ∂2
xψ(x, z) + V (x)ψ(x, z) + |ψ(x, z)|2ψ(x, z) = 0 (66)

Solitons are localised self-supported wave-packets that propogate at a constant

speed. They are generally the result of a cancellation of dispersive and nonlinear

phenomena. In the 2008 paper, Optical Solitons in PT Periodic Potentials [20],

Christodoulides et al. demonstrate through numerical simulations that optical

soliton solutions are supported in 1d and 2d periodic geometries. The potential

employed is, the now familiar:

V (x) = cos2(x) + iV0 sin(2x),

and it is made 2 dimensional simply by writing:

V (x, y) = cos2(x) + cos2(y) + iV0[sin(2x) + sin(2y)] (67)

Soliton solutions are sought in the form ψ(x, z) = φ(x)eiβz, where β is the pro-

pogation constant, and φ(x) is the nonlinear eigenmode. Under such conditions

φ(x) satisfies:

φ′′ + V (x) + |φ|φ = λφ (68)

An important issue when considering soliton solutions is their stability. This is

modelled by considering infinitesimal perturbations of the solutions to (66) in the

form:

ψ(x, z) = φ(x)eiβz + ε[F (x)eiσz +G∗(x)e−iσ
∗z]eiβz (69)
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with ε � 1. F (x) and G(x) are the perturbation eigenfunctions, and σ indicates

the perturbation growth rate. It is shown in reference [20] that if σ is real the

solitons are stable, but if σ contains an imaginary part they are unstable.

The stability of each solution was tested in numerical simulations by introducing

random noise on both the amplitude and the phase. Below the linear threshold

V0 = 0.5, stationary solitons were found to exist with real propogation constants.

The instability of the solitons was found to increase with V0. Furthermore, nar-

rower beams appeared more stable and this is attributed to the enhancement of the

index guiding by the nonlinearity, which is said to perturb the local PT transition

value. Real propogation values exist for eigenmodes above threshold, however,

these are found to correspond to unstable soliton solutions.
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4 Conclusion

In summary, the work of Bender et al. found that non-Hermitian Hamiltonians

have entirely real eigenspectra, provided they commute with, and share common

eigenfunctions with, the PT operator. A threshold was identified in some Hamil-

tonians, above which, eigenfunctions of the Hamiltonian cease to be eigenfunctions

of the PT operator, even though [H,PT ] = 0 is valid, and the eigenspectrum of

the Hamiltonian becomes complex. Such a transition, from a PT -symmetric to a

broken symmetry phase, was indeed witnessed when Christodoulides et al. exper-

imentally implemented an optical realisation of PT -symmetry in a linear coupled

two-channeled system, in which the beam dynamics obeyed Schrödinger-like equa-

tions. These, and subsequent results, have been demonstrated here, aided by the

use of MATLAB and Maple simulations.

The linear PT -symmetric coupled system was shown to be nonreciprocal, owing to

the skewed basis formed by the eigenfunctions of the non-Hermitian Hamiltonian.

In the nonlinear version, the nonreciprocity was shown in cases to be be drastic,

and for waveguides longer than some critical value, zd, the intensity is seen to go

exponentially to zero in the loss channel, irrespective of the input state. As a result

of this property the system was discussed as a possible optical diode. The potential

4[cos(x)2 +iV0 sin(2x)] was considered extensively in the context of PT -symmetric

optical lattices, and, following private communication with Dr. H. F. Jones, an

equivalent Hermitian Hamiltonian was presented. PT -symmetric optical lattices

were found to exhibit properties with no analog in real-potential systems, such

as band merging, nonreciprocity, power oscillations, double refraction and phase

transitions. Further communication with Dr. H. F. Jones permitted the inclusion

of an apparent double refraction dependence on the sinusoidal shape of the poten-

tial, and graphical demonstrations were presented accordingly. Stationary soliton

solutions were found to exist in nonlinear PT lattices, and their stabilities were
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examined. Instability was found to increase with non-Hermiticity parameter V0.
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Appendices

A Maple Code for 3d Plots of Linear System in

Figures 1, 2, 3

First of all the following functions are defined:

> xi(z) := sqrt(z2 ∗ (−4 ∗ kappa2 + gamma2)) :

> E[1](z) := (cosh((xi(z))/(2)) + (gamma ∗ z ∗ sinh((xi(z))/(2)))/(xi(z))) ∗

E[1](0) + 2 ∗ I ∗ ((z ∗ sinh((xi(z))/(2)))/(xi(z)) ∗ kappa) ∗ E[2](0) : E[2](z) :=

(−cosh((xi(z))/(2)) + (gamma ∗ z ∗ sinh((xi(z))/(2)))/(xi(z))) ∗E[2](0) + 2 ∗ I ∗

((z ∗ sinh((xi(z))/(2)))/(xi(z)) ∗ kappa) ∗ E[1](0) :

> i[1](z) := abs(E[1](z))(2) : i[2](z) := abs(E[2](z))(2) :

> h := piecewise(x > 1, sin(Pi ∗ x)) : g := piecewise(x < 1,−sin(Pi ∗ x)) :

Then the 3d plots are generated as an array in the with(plots) package:

> with(plots) :

> B := Array(1..3, 1..2) :

> B[1, 1] := plot3d(h ∗ (eval(eval(i[1](z)/(i[1](z) + i[2](z)), gamma = 2 ∗ kappa ∗

alpha), [alpha = 0, kappa = 1.9, E[1](0) = 1, E[2](0) = 0]))+g∗(eval(eval(i[2](z)/(i[1](z)+

i[2](z)), gamma = 2∗kappa∗alpha), [alpha = 0, kappa = 1.9, E[1](0) = 1, E[2](0) =

0])), z = 0..5, x = 0..2, scaling = constrained, orientation = [45,−60, 180]);

B[1, 2] := plot3d(h ∗ (eval(eval(i[1](z)/(i[1](z) + i[2](z)), gamma = 2 ∗ kappa ∗

alpha), [alpha = 0, kappa = 1.9, E[1](0) = 0, E[2](0) = 1]))+g∗(eval(eval(i[2](z)/(i[1](z)+

i[2](z)), gamma = 2∗kappa∗alpha), [alpha = 0, kappa = 1.9, E[1](0) = 0, E[2](0) =

1])), z = 0..5, x = 0..2, scaling = constrained, orientation = [45,−60, 180]);
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B[2, 1] := plot3d(h ∗ (eval(eval(i[1](z)/(i[1](z) + i[2](z)), gamma = 2 ∗ kappa ∗

alpha), [alpha = 1/2, kappa = 1.9, E[1](0) = 1, E[2](0) = 0]))+g∗(eval(eval(i[2](z)/(i[1](z)+

i[2](z)), gamma = 2 ∗ kappa ∗ alpha), [alpha = 1/2, kappa = 1.9, E[1](0) =

1, E[2](0) = 0])), z = 0..5, x = 0..2, scaling = constrained, orientation = [45,−60, 180]);

B[2, 2] := plot3d(h ∗ (eval(eval(i[1](z)/(i[1](z) + i[2](z)), gamma = 2 ∗ kappa ∗

alpha), [alpha = 1/2, kappa = 1.9, E[1](0) = 0, E[2](0) = 1]))+g∗(eval(eval(i[2](z)/(i[1](z)+

i[2](z)), gamma = 2 ∗ kappa ∗ alpha), [alpha = 1/2, kappa = 1.9, E[1](0) =

0, E[2](0) = 1])), z = 0..5, x = 0..2, scaling = constrained, orientation = [45,−60, 180]);

B[3, 1] := plot3d(h ∗ (eval(eval(i[1](z)/(i[1](z) + i[2](z)), gamma = 2 ∗ kappa ∗

alpha), [alpha = 1.2, kappa = 1.9, E[1](0) = 1, E[2](0) = 0]))+g∗(eval(eval(i[2](z)/(i[1](z)+

i[2](z)), gamma = 2∗kappa∗alpha), [alpha = 1.2, kappa = 1.9, E[1](0) = 1, E[2](0) =

0])), z = 0..5, x = 0..2, scaling = constrained, orientation = [45,−60, 180]);

B[3, 2] := plot3d(h ∗ (eval(eval(i[1](z)/(i[1](z) + i[2](z)), gamma = 2 ∗ kappa ∗

alpha), [alpha = 1.2, kappa = 1.9, E[1](0) = 0, E[2](0) = 1]))+g∗(eval(eval(i[2](z)/(i[1](z)+

i[2](z)), gamma = 2∗kappa∗alpha), [alpha = 1.2, kappa = 1.9, E[1](0) = 0, E[2](0) =

1])), z = 0..5, x = 0..2, scaling = constrained, orientation = [45,−60, 180]) :

display(B);
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B Maple Code for Plots of Analytic Solution for

Intensity at Output in Figure 4

The following analytic solutions are defined:

> xi(z) := sqrt(z2 ∗ (−4 ∗ kappa2 + gamma2)) :

> E[1](z) := (cosh((xi(z))/(2)) + (gamma ∗ z ∗ sinh((xi(z))/(2)))/(xi(z))) ∗

E[1](0) + 2 ∗ I ∗ ((z ∗ sinh((xi(z))/(2)))/(xi(z)) ∗ kappa) ∗ E[2](0) : E[2](z) :=

(−cosh((xi(z))/(2)) + (gamma ∗ z ∗ sinh((xi(z))/(2)))/(xi(z))) ∗E[2](0) + 2 ∗ I ∗

((z ∗ sinh((xi(z))/(2)))/(xi(z)) ∗ kappa) ∗ E[1](0) :

> i[1](z) := abs(E[1](z))(2) : i[2](z) := abs(E[2](z))(2) :

Having defined the functions they are evaluated ats z=2 and kappa=2, before

plotted in a plot array as functions of T.

> f1 := eval(eval(i[2](z)/(i[1](z)+i[2](z)), gamma = (5/2)∗kappa∗(1−exp(T ))), [z =

2, kappa = 2, E[1](0) = 1, E[2](0) = 0]) :

f2 := eval(eval(i[1](z)/(i[1](z)+i[2](z)), gamma = (5/2)∗kappa∗(1−exp(T ))), [z =

2, kappa = 2, E[1](0) = 1, E[2](0) = 0]) :

> f3 := eval(eval(i[2](z)/(i[1](z)+i[2](z)), gamma = (5/2)∗kappa∗(1−exp(T ))), [z =

2, kappa = 2, E[1](0) = 0, E[2](0) = 1]) :

f4 := eval(eval(i[1](z)/(i[1](z)+i[2](z)), gamma = (5/2)∗kappa∗(1−exp(T ))), [z =

2, kappa = 2, E[1](0) = 0, E[2](0) = 1]) :

> fs := Array(1..2);

fs[1] := plot([f1, f2], T = 0..2, title = typeset(”CHANNEL1EXCITED”), labels =

[T, i[1, 2]/(i[1] + i[2])]) :

fs[2] := plot([f3, f4], T = 0..2, title = typeset(”CHANNEL2EXCITED”), labels =

[T, i[1, 2]/(i[1] + i[2])]) : display(fs);
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C Maple Code for Band Structure in Figure 7

For the potentials defined below the equations are solved for k using the Floquet

method after solving the dynamical equations numericaly for a specified value of

β using the Runge Kutta method. This process is repeated in increment steps of

β that provide k values between ±1. The inverted graph is then plotted as points

joined by a line, with both graphs displayed together. This produces the left hand

picture in Figure 7.

> V 03(x) := 4 ∗ (cos(x)2 + 0.3 ∗ I ∗ sin(2 ∗ x)) :

> V 05(x) := 4 ∗ (cos(x)2 + 0.5 ∗ I ∗ sin(2 ∗ x)) :

> for i to 61 do beta[i] := 2.5− 0.075 ∗ (i− 1) end do :

> betavalues := V ector(61, (i)−Re(beta[i])) :

> kvalues03 := V ector(61, (i)− > Re(evalf [5](arccos(Re(1/2 ∗

(subs(dsolve({diff(U [1](x), ‘$‘(x, 1)) = Up[1](x), diff(Up[1](x), ‘$‘(x, 1)) = (beta[i]−

V 03(x)) ∗ U [1](x)}union{U [1](0) = 1, Up[1](0) = 0}, numeric, output =

listprocedure,method = rkf45, range = −Pi..P i), U [1](x))(Pi) +

subs(dsolve({diff(U [2](x), ‘$‘(x, 1)) = Up[2](x), diff(Up[2](x), ‘$‘(x, 1)) = (beta[i]−

V 03(x)) ∗ U [2](x)}union{U [2](0) = 0, Up[2](0) = 1}, numeric, output =

listprocedure,method = rkf45, range = −Pi..P i), Up[2](x))(Pi))))/P i))) :

> kvalues05 := V ector(61, (i)− > Re(evalf [5](arccos(Re(1/2 ∗

(subs(dsolve({diff(U [1](x), ‘$‘(x, 1)) = Up[1](x), diff(Up[1](x), ‘$‘(x, 1)) =

(beta[i]−V 05(x))∗U [1](x)}union{U [1](0) = 1, Up[1](0) = 0}, numeric, output =

listprocedure,method = rkf45, range = −Pi..P i), U [1](x))(Pi) +

subs(dsolve({diff(U [2](x), ‘$‘(x, 1)) = Up[2](x), diff(Up[2](x), ‘$‘(x, 1)) = (beta[i]−

V 05(x)) ∗ U [2](x)}union{U [2](0) = 0, Up[2](0) = 1}, numeric, output =

listprocedure,method = rkf45, range = −Pi..P i), Up[2](x))(Pi))))/P i))) :

> plota := plot([< kvalues03|betavalues >,< −kvalues03|betavalues >], color =

42



red) :

plotb := plot([< kvalues05|betavalues >,< −kvalues05|betavalues >], color =

green) :

> display({plota, plotb}, labels = [′k′,′ beta(k)′]);
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D MATLAB Code for Intensity Evolutions in

Figures 8, 9, 10, and 11

This program features the split-operator method (Appendix F) and a fast Fourier

transform.

function FieldIntensity

clear all

%variables:

v0=0.49;

%w=input (’Input width of Gaussian ’);

w=6;

jp=input(’Input Jacobi parameter ’);

%x and k grid and timesteps:

xmin=-30*pi;xmax=30*pi; % x-width

N=2^11; hx=(xmax-xmin)/N

kmax=pi/hx; hk=2*kmax/N % k-width

% theta=2*(pi/180); %Beam incident at an angle

% kk=input(’Input k/kmax ’);

% kk=kmax*kk;

dt=0.001;ntime=15000; %timesteps

% Propagators for potential and kin. energy:
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x=zeros(1,N);

expv=zeros(1,N);

for j=1:N

x(j)=xmin+hx*(j-1);

expv(j)=exp(-1i*potf(x(j),v0,jp)*dt/2);

end

p=zeros(1,N);

expt=zeros(1,N);

for j=1:N

k=-kmax+hk*(j-1);

p(j)=k;

ekin=k^2;

expt(j)=exp(-1i*ekin*dt);

end

%initial ’wavepacket’:

psi=zeros(1,N);

for j=1:N

% if x(j)>=-pi && x(j)<=pi

%psi(j)=1; %Single channel

%end

psi(j)=exp(-(x(j)/(w*pi))^2);%*exp(-1i*x(j)*kk*sin(theta)); %Gaussian

end

% psi=ones(1,N); %Constant

checki=0;

for j=1:N
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checki=checki+conj(psi(j))*psi(N+1-j);

end

checki

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Somehow check doesn’t work as soon as theta is non zero! %

% Certainly checki then becomes artificially small %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%initialise vectors to store time and amplitude:

time=zeros(ntime+1,1);

X=zeros(N,ntime);

time(1)=0;

%time propagation:

exptshift=fftshift(expt);

for n=1:ntime

time(n+1)=time(n)+dt;

psi=expv.*fftshift(ifft(exptshift.*fft(fftshift(expv.*psi))));

X(:,n)=abs(psi).^2;

end

%Note that .* stands for element-by-element multiplication

checkf=0;

for j=1:N

checkf=checkf+conj(psi(j))*psi(N+1-j);

end

checkf

check=(checkf-checki)/(checkf+checki)
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figure

imagesc(x,time,X.’)

set(gca,’YDir’,’normal’)

xlabel(’x’)

ylabel(’z’)

title([’Jacobi parameter=’, num2str(jp)])

%title=([’w=’,num2str(w)])

%title(’Single channel’)

%title([’Fig 3(b) :k/kmax=’,num2str(kk/kmax])

function y=potf(x,v0,jp)

% y=4*(cos(x)^2+1i*v0*sin(2*x));

y=2*(-ellipj((4*x/pi -1)*ellipke(jp),jp)

+2i*v0*ellipj(4*x*ellipke(jp)/pi,jp));

return

47



E MATLAB Code for Plots of Elliptic Functions

in Figure 11

function EllipPlot

clear all

%variables:

v0=0.49;

jp=input(’Input Jacobi parameter ’);

fplot(@ (x) [-4*v0*ellipj(4*x*ellipke(jp)/pi,jp),

2*(-ellipj((4*x/pi -1)*ellipke(jp),jp))] , [0 pi]);

xlabel(’x’)

ylabel(’ Real and Imaginary Parts of V(x) ’)

title([’Jacobi Parameter=’, num2str(jp)])

48



F The Split-Operator Method and the FFT (as

used in Appendix D)

The split-operator method enables an accurate approximation of an operator. In

this case we have that the time evolution of a state may be written:

ψ(x, t+ ε) = e−iĤεψ(x, t) (70)

with ε = δt some infinitesimal time, later than time t. For reasons that will be

explained it is now advantageous to split the operator, Ĥ, into p̂2 + V (x), such

that (70) becomes:

ψ(x, t+ ε) = e−i(p̂
2+V (x))εψ(x, t) (71)

The split operators in general do not commute, and consequently, the commutator

will feature in the Taylor expansion of the exponential. An accurate approximation

of the operator e−i(p̂
2+V (x))ε, with error O(ε3), exists in the form of:

e−i(p̂
2+V (x))ε = e−

i
2
V (x)εe−ip̂

2εe−
i
2
V (x)ε +O(ε3) (72)

Proof: Expand left and right hand sides of (72):

LHS = 1− i(p̂2 + V (x))ε− 1/2(p̂2 + V (x))2ε2 +O(ε3) (73)

= 1− i(p̂2 + V (x))ε− 1/2(p̂4 + V (x)2 + p̂2V (x) + V (x)p̂2)ε2 +O(ε3)

RHS = (1− i/2V (x)ε− 1/8V (x)2ε2)(1− ip̂2ε− 1/2p̂4ε2)(1− i/2V (x)ε− 1/8V (x)2ε2)

+O(ε3) (74)

= 1− i(p̂2 + V (x))ε− 1/2(p̂4 + V (x)2 + p̂2V (x) + V (x)p̂2)ε2 +O(ε3)
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Both the left and right hand sides of (72) are the same and this completes the

proof. The advantage of writing equation (70) in the form:

ψ(x, t+ ε) = e−
i
2
V (x)εe−ip̂

2εe−
i
2
V (x)εψ(x, t), (75)

is that it is now possible to multiply the two functions of x on the right of (75),

i.e. e−
i
2
V (x)εψ(x, t), in an element-by-element efficient manner in MATLAB. If

then a Fourier transform is performed so that the result is a function of p a similar

multiplication is possible with e−ip̂
2ε. Finally, after inverse transforming back to a

function of x, that result is multiplied by the first function, e−
i
2
V (x)ε. Algorithms

exist for a fast Fourier transform (FFT) that make this process computationaly

efficient.
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