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Abstract

During the last decades motivations for modified gravity have originated from
both theoretical and observational level. The f(R) gravity is the simplest
generalisation and hence has received increased attention. This dissertation is
a review of certain implications of f(R) in the description of gravity. Starting
from the field equations; after showing how they are derived in the metric
formalism, an FLRW background is imposed and it is examined how inflation
and Dark Energy dominated period are realised in the context of metric
f(R) gravity. In each case, typical f(R) models are referred as examples. In
addition there is a brief account of the standard cosmological picture for
the above cosmological periods. In the end is displayed a summary of the
viability conditions that f(R) theories should satisfy in order to be consistent.
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Introduction

Modern cosmology would have never been a robust science without the ap-
pearance of Einstein’s General Relativity. Before Einstein introduced his
theory, describing the force of gravity, cosmology was more of a philosophi-
cal approach to the question, how the universe was created. The new theory
not only enabled physicists to explain phenomena on the scale of the solar
system, but it was actually the stepping stone that led them to the origins
and the evolution of the whole universe.

Since 1915, when G.R. was introduced, many of its implications have been
tested successfully through various experiments and astrophysical observa-
tions. It has also been the basis for numerous cosmological models, like the
Big Bang which is now accepted as the theory best describing the beginning
of everything from a spacetime singularity some 13,7 billion years ago. So all
in all General Relativity is quite a successful theory and there is got to be a
very good reason if someone wants to alter it.

Modifying Einstein’s General relativity is not a new thing. The first per-
son who suggested a slightly different version of G.R was Einstein himself.
At the time Le-Maitre and Friedmann found exact solutions of Einstein’s
equations predicting an expanding universe most of the physicists, including
Einstein, believed in a static universe. So Einstein modified the initial action
of his theory, including the famous cosmological constant Λ in order to avoid
the predicted expansion.

Other attempts for a different approach to the theory, came from scien-
tists a few years right after its introduction. It was in 1919 and in 1923,
when Weyl and Eddington first considered modifications of the theory by
including higher order invariant terms in its action. Of course it was not an
experimental or theoretical failure of the theory that motivated these efforts,
rather than pure scientific will to obtain a better insight in the newly pro-
posed theory. Though, as time passed, there were more and more indications
that changing the action of general relativity would have its benefits.

The first important motivation came from the search for a unified theory
of all fundamental forces. One of the steps towards an ultimate theory is to
quantize gravity, in the same context of quantum fields as for the rest of the
interactions. However this task is proved to be extremely subtle, with one
of the main problems being the non renormalisability of general relativity.
One way to get around this problem is to modify the standard G.R. ac-
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tion. In 1962, Utiyama and DeWitt showed that renormalization at one-loop
demands that the Einstein-Hilbert action be supplemented by higher order
curvature terms. Following that, Stelle showed that higher order actions
are indeed renormalizable (but not unitary). More recent results show that
when quantum corrections or string theory are taken into account, the effec-
tive low energy gravitational action admits higher order curvature invariants.

The latest motivations for modified gravities originate from contempo-
rary astrophysical and cosmological observations. Two kinds of these type
of observation are significant to us.

The first is the current matter-energy composition of the universe. By
making accurate measurements of the cosmic microwave background fluctua-
tions, WMAP is able to measure the basic parameters of the Big Bang model
including the density and composition of the universe. We now know that
this total density breaks down to: 4% ordinary baryonic matter, 20% dark
matter, 76% dark energy.

Dark matter is an unknown form of matter, that remains unobserved in
the laboratory. This elusive form of matter behaves the same way as ordinary
matter under gravitation but it does not interact at all through electroweak
or strong interactions. In addition to WMAP the existence of dark mat-
ter has been suggested as an explanation to the ”missing mass” problem of
galaxy clusters and individual galaxies.

The second observation has to do with dark energy and the growing
amount of evidence that the universe is now undergoing an accelerated ex-
pansion phase. Data coming from type Ia supernovae observations suggest
that this accelerated phase started when the universe was around 6 or 7
billion years old, when it is assumed that Dark Energy became dominant
and took over the expansion, which was until then decelerating and driven
by baryonic matter. So Dark energy is yet another unknown form of energy,
with the unusual characteristic to act as a repulsive force, canceling the effect
of gravity on large scales.

This late period acceleration is additional to the proposed early inflation-
ary phase, which is used to solve many problems of standard cosmological
model, like the horizon, the monopole and the flatness problem and as a
mechanism to produce the initial perturbations that led to the current large
scale structure. The difference between the two accelerated phases, is that
inflation cannot be attributed to Dark Energy. That’s because radiation and
matter decelerating epochs must follow that of inflation, in order to achieve
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light element formulation through Big Bang Nucleosynthesis and the creation
of the large scale structure amongst other observed features of our universe.

Taking all that into account it becomes apparent that deriving a picture
for the evolution and the matter-energy content of the universe, from a theory
that is in accordance with the observed, is at least challenging. The currently
proposed cosmological model is the so called ΛCDM (Λ-Cold Dark Matter) or
concordance model, supplemented with an inflationary phase, usually based
on some scalar field. In this model Dark Energy is considered to be the same
as with the energy of the vacuum, it has negative gravitational pressure and
its effect is equivalent with a cosmological constant Λ. However this model
is more of a phenomenological fit to the data, rather than a fundamental
theory from which the observed universe is the unambiguous outcome. As
such it does not explain the origin of inflation or the nature of Dark Matter
and is inherited with the well known cosmological constant problem and the
coincidence problem. The first one having to do with the magnitude problem,
according to which the observed value of the cosmological constant is minus-
cule in comparison with the vacuum energy of the matter fields, about 120
orders of magnitude smaller. The later problem has to do with the strange
coincidence, that the extremely small period of time when the energy density
of the cosmological constant is comparable with that of matter, happens to
be just now that we are here to observe it.

As long as the solution to this puzzles is not yet obtained in the context of
standard General Relativity, attempts to a modified theory of gravity sound
at least reasonable. So in this dissertation we are interested in examining
how does f(R) modification succeeds on giving an answer to some of the
aforementioned problems.
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Chapter 1

The three types of f(R) gravity

So f(R) gravity is simply a generalisation of the Einstein-Hilbert action,
whose Lagrangian is just the Ricci scalar SEH =

∫
d4x
√
−gR, to an ac-

tion in which the Ricci scalar gets replaced by an arbitrary function f(R):
S =

∫
d4x
√
−gf(R)

There are three versions of f(R) gravities, depending on the formalism
i.e. the variational principle we apply to the action in order to get the
field equations. The standard way is to vary the action with respect to the
metric, giving the metric f(R)gravity. The second way is to use the Palatini
approach, which is to consider the connection independent of the metric and
vary the action with respect to both the metric and the connection yielding
the Palatini f(R) gravity, assuming of course that the matter action does not
depend on the connection. We should note that these two methods lead to
the same field equations in the case of the usual Einstein-Hilbert action. But
in the context of f(R) their respective field equations differ. The third and
most general way is the metric-affine f(R)gravity, in which we use the Palatini
formalism abandoning the assumption that the matter action is independent
of the connection.

1.1 Metric f(R) gravity

To get the field equations of f(R) gravity we have to vary with respect to the
metric gµν the action (1.2)

S =
1

2κ2

∫
d4x
√
−gf(R) + SM(gµν , ψ) (1.1)

Where κ2 = 8πG and we have added a matter action and ψ refers collec-
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tively to all matter fields.

1.1.1 Variation of the f(R) action in the metric formal-
ism

We will derive the field equations varying the inverse metric

gµν → gµν + δgµν (1.2)

The variation on the action(1) then becomes

δS =

∫
d4xδ(

√
−gf(R))

δS =

∫
d4x
√
−gδ(f(R)) +

∫
d4xδ(

√
−g)f(R) (1.3)

We need to calculate the variation of
√
−g. To do that we use the identity

Tr(lnM) = ln(detM), where M is an invertible matrix and lnM is defined
by exp(lnM) = M . Varying this identity and using the cyclic property of
the trace, yields

Tr(M−1δM) =
1

detM
δ(detM) (1.4)

Applying this to the inverse metric M = gµν , and detM = g−1 = detgµν

we get

Tr(gµνδg
µν) = gδ(g−1)

δ(g−1) =
1

g
gµνδg

µν

Hence the variation of
√
−g works out to be

δ
√
−g = δ[(−g−1)−1/2] = −1

2
(−g−1)−3/2δ(−g)

= −1

2

√
−ggµνδgµν (1.5)

The variation of f(R) is equal to:

1Without considering the matter action which will give the energy momentum tensor,
and dropping for a while the κ2 term
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δf(R) =
∂f

∂R
δR =

∂f

∂R
(δgµν)Rµν +

∂f

∂R
gµνδRµν

So the variation of the action has three parts

δS = (δS1) + (δS2) + (δS3) (1.6)

with

(δS1) =

∫
d4x
√
−g
[
∂f

∂R
Rµν

]
δgµν (1.7)

(δS2) =

∫
d4x
√
−g
[
∂f

∂R
gµν
]
δRµν (1.8)

(δS3) =

∫
d4x
√
−g
[
−1

2
gµνf(R)

]
δgµν (1.9)

Where the (δS1) and (δS3) terms are in the desired form, of a quantity
multiplied by (δgµν). To get the second term in the same form we need the
variation of the Ricci tensor which is given by the Palatini equation

δRµν = ∇λδΓ
λ
µν −∇νδΓ

λ
µλ (1.10)

So the second term in the variation of the action becomes2

(δS2) =

∫
d4x
√
−gF (R)gµν [∇λδΓ

λ
µν −∇νδΓ

λ
µλ]

=

∫
d4x
√
−gF (R)[∇λg

µνδΓλµν −∇νg
µνδΓλµλ]

=

∫
d4x
√
−gF (R)[∇σg

µνδΓσµν −∇σg
µσδΓλµλ]

=

∫
d4x
√
−gF (R)∇σ[gµνδΓσµν − gµσδΓλµλ] (1.11)

We can now insert the variation of δΓσµν in terms of δgµν as given in [5]3

δΓσµν = −1

2
[gλµ∇ν(δg

λσ) + gλµ∇µ(δgλσ)− gµαgνβ∇σ(δgαβ)] (1.12)

Using that in (1.11)

2From here and on F (R) = ∂f
∂R

3Chapter 4.3, page 162, equation(4.64)
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(δS2) =

∫
d4x
√
−g(−1

2
F (R))∇σ[δλν∇ν(δg

λσ) + δλν∇µ(δgλσ)− gαβ∇σ(δgαβ)

− δσρ∇ν(δg
λρ)− gµσgρλ∇µ(δgλρ) + δσβgλα∇λ(δgαβ)]

(δS2) =

∫
d4x
√
−g(−1

2
F (R))∇σ[∇λ(δg

λσ)−∇λ(δg
λσ) +∇µ(δgµσ)

− gαβ∇σ(δgαβ)− gµσgρλ∇µ(δgλρ) + gλα∇λ(δgασ)]

(δS2) =

∫
d4x
√
−g(−1

2
F (R))∇σ[∇µ(δgµσ) +∇α(δgασ)

− gαβ∇σ(δgαβ)− gρλ∇σ(δgλρ)]

(δS2) =

∫
d4x
√
−g(−1

2
F (R))∇σ[∇µ(δgµσ) +∇µ(δgµσ)

− gµν∇σ(δgµν)− gµν∇σ(δgµν)]

(δS2) =

∫
d4x
√
−g(−1

2
F (R))∇σ[gµν∇σ(δgµν)−∇µ(δgµσ)]

Having found that, the total variation of the action reads out

δS =
1

2κ2

∫
d4x
√
−g{

[
∂f

∂R
Rµν

]
δgµν

+ (−1

2
F (R))∇σ[gµν∇σ(δgµν)−∇µ(δgµσ)]

+ [−1

2
gµνf(R)]δgµν} (1.13)

1.1.2 Field equations of metric f(R) gravity

So from (1.13) the variation of the action (1.1) with respect to the metric
gives the following field equations4

δS

δgµν
= F (R)Rµν −

1

2
f(R)gµν −∇µ∇νF (R) + gµν�F (R) = κ2Tµν (1.14)

4Using the fact that F(R) is a scalar quantity and can go through the covariant deriva-
tive.
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Where �F = 1√
−g∂µ(

√
−ggµν∂ν) and the energy momentum tensor of matter

is defined as

Tµν = − 2√
−g

δSM
δgµν

(1.15)

Which satisfies the continuity equation

∇µTµν = 0 (1.16)

To find the trace of (1.14) we multiply with gµν , leading to

F (R)Rµ
µ −

1

2
f(R)δµµ −∇µ∇µF (R) + δµµ�F (R) = κ2T µµ

Using the fact that δµµ = 4 and that ∇µ∇µ ≡ � the trace of the field
equations is

F (R)R + 3�F (R)− 2f(R) = κ2T (1.17)

For f(R) = R and F (R) = 1 we retrieve the Einstein field equations
and their trace which is R = −κ2T , and thus in this case the Ricci scalar
R is determined by the matter. Comparing the two cases we see that in
the f(R)gravity, the term �F (R) does not vanish, and we have an extra
propagating degree of freedom φ ≡ F (R), called ”scalaron”, whose dynamics
are determined by the trace equation (1.17).

A realisation of a universe undergoing an accelerated expansion is through
the de Sitter solution, which corresponds to a vacuum solution of the equa-
tions where the Ricci scalar is constant i.e. �F (R) = 0. So for an f(R) model
to give a de Sitter like solution it must satisfy the equation

F (R)R− 2f(R) = 0 (1.18)

A model with f(R) = aR2 satisfies the previous condition and gives rise to
an exact de Sitter solution. Furthermore the first model to produce inflation
was proposed by Starobinsky with f(R) = R+aR2. In this model accelerated
expansion stops when the term aR2 becomes smaller than R. We will examine
this model further in the following chapter.
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1.2 Palatini f(R) gravity

As we said in the Palatini formalism we treat the metric gµν and the con-
nection Γαβγ as independent variables. In the case of standard G.R. the two
variations lead to the same field equation. But in the case of f(R) the extra
curvature terms will provide two separate equations. So varying the action
(1.1) with respect to gµν we get a similar result with the metric formalism

F (R)Rµν(Γ)− 1

2
f(R)gµν = κTµν (1.19)

Where Rµν(Γ) is the Ricci tensor corresponding to the connections Γαβγ and
it is in general different from the Ricci tensor calculated in terms of metric
connections Rµν(g). The trace of (1.19) is

F (R)R− 2f(R) = κ2T (1.20)

And we immediately see that there is no term with �F like in the metric
formalism.

Now if we vary with respect to the connection Γαβγ we get another field
equation (see [6]) which is

Rµν(g)− 1

2
gµνR(g) =

κ2Tµν
F
− FR(T )− f

2F
gµν +

1

F
(∇µ∇νF − gµν�F )

− 3

2F 2
[∂µF∂νF −

1

2
gµν(∇F )2] (1.21)
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Chapter 2

Cosmology within metric f(R)
gravity

At this chapter we are interested in reproducing some basic features of the
standard cosmological model in the context of f(R) gravities, which as we
mentioned motivated the research for General Relativity alternatives. For
that, we will focus on the metric f(R) gravity and see how the field equations
give rise to the equivalent of the Friedmann equations. And following that
we will show how inflation and late time acceleration are being achieved.

2.1 Field equations in flat FLRW universe

As we know in the heart of the concordance model lies the cosmological princi-
ple that admits a universe which is flat, homogeneous and isotropic. This uni-
verse is described by FLRW (Friedmann-Lemaitre-Robertson-Walker) metric
tensor with flat geometry.

ds2 = gµνdx
µdxν = −dt2 + a2(t)dx2

So the only non zero elements of the metric are

g00 = −1

gii = a2(t)

And for the inverse metric g00 is the same and

gii =
1

a2(t)
(2.1)

As for the determinant g it is easy to be read off
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g = a6(t)⇒
√
−g = a3(t) (2.2)

So, introducing this metric into the field equations we will find the equiv-
alent Friedmann equations for our modified gravity. To do so, we first need
to calculate the components of the Ricci tensor through the Cristoffel sym-
bols and since we are in the metric formalism these are given by the known
relation

Γαµν = −1

2
gαδ(gνδ,µ + gµδ,ν − gµν,δ)

Where the comma denotes partial derivatives.

In our particular case of flat (FLRW) geometry the only non-vanishing
Cristoffel symbols are

Γ0
ii = aȧ (2.3)

Γi0i =
ȧ

a
(2.4)

We can now proceed in the evaluation of the Ricci tensor. This is the
only possible contraction between two indices of the Riemann tensor, that is
compatible with its symmetries. So it follows up from the definition of the
Rieamann tensor that in terms of the connection the Ricci tensor is

Rµν = Γαµν,α − Γαµα,ν + ΓαεαΓεµν − ΓανεΓ
ε
µα

Based on the Cristoffel symbols (2.3) the (00) component of the ricci
tensor is

R00 = Γα00,α − Γα0α,0 + ΓαεαΓε00 − Γα0εΓ
ε
0α

= −3Γ1
01,0 − 3(Γ1

01)2

= −3
∂

∂t

(
ȧ

a

)
− 3

(
ȧ

a

)2

= −3
äa− ȧ2

a2
− 3

(
ȧ

a

)2

= −3
ä

a
= −3[Ḣ +H2] (2.5)

And the (ii) component is
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Rii = Γαii,α − Γαiα,i + ΓαεαΓεii − ΓαiεΓ
ε
iα

= Γαii,α + Γα0αΓ0
ii − Γ0

iiΓ
i
i0 − Γii0Γ0

ii

= Γαii,α + 3Γ1
01Γ0

ii − 2Γ0
iiΓ

i
i0

= Γαii,α + Γi0iΓ
0
ii

= Γ0
ii,0 + Γi0iΓ

0
ii

=
∂

∂t
(ȧa) +

ȧ

a
ȧa

= ȧ2 + aä+ ȧ2

= 2ȧ2 + aä (2.6)

The Ricci scalar, which is a contraction between the two indices of the
Ricci tensor takes the form

R = gµνRµν = g00R00 + 3giiRii

= (−1)

(
−3

ä

a

)
+ 3

1

a2
(2ȧ2 + aä)

= 6

[
äa+ ȧ2

a2

]
= 6

[
äa− ȧ2

a2
+ 2

ȧ2

a2

]
= 6[Ḣ + 2H2] (2.7)

Using this we can rewrite the (00) component of the Ricci tensor as

R00 = −3[Ḣ +H2]

= −1

2
6[Ḣ + 2H2 −H2]

= −1

2
R + 3H2 (2.8)

To proceed in finding the modified Friedmann equations we need the
expression for the energy-momentum tensor. The simplest case is to assume
that the universe is filled with a perfect fluid with an energy-momentum
tensor

T µν = diag(−ρM , PM , PM , PM) (2.9)

Tµν = gαµT
µ
ν (2.10)
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Before plugging these in the field equations it is useful first to see what
the zero component of the conservation of energy equation (1.16) yields in
this case

0 = ∇µT
µ
0

= ∂µT
µ
0 + ΓµµλT

λ
0 − Γλµ0T

µ
λ

= −∂0ρ− 3
ȧ

a
(ρ+ P ) (2.11)

The next step is to replace (2.8)into (1.14) which leads to

F (R)R00 −
1

2
f(R)g00 −∇0∇0F (R) + g00�F (R) = κ2g00T

0
0 (2.12)

Working out explicitly the fourth term of the LHS we have

g00�F (R) = (−1)(
1√
−g

)∂0

(√
−gg00∂0F

)
= − 1

a3

∂

∂t

(
−a3 ∂

∂t
F

)
=

1

a3
3a2ȧḞ +

a3

a3
F̈

= 3HḞ + F̈ (2.13)

The third term with the covariant derivatives will just become −∂0∂0F
since F(R) is a scalar quantity, and thus it will cancel the F̈ term coming
from the last expression. So the remaining terms are

F (3H2 − 1

2
R) +

1

2
f + 3HḞ = κ2ρM

And the first modified Friedmann equations is

3FH2 = (FR− f)/2− 3HḞ + κ2ρM (2.14)

For the second equation we take the (ii) part of (1.14):

F (R)Rii −
1

2
f(R)gii −∇i∇iF (R) + gii�F (R) = κ2giiT

i
i (2.15)

As before the last term of the LHS is equal with
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gii�F (R) = (a2)(
1√
−g

)∂µ
(√
−ggµν∂νF

)
= a2(

1√
−g

)∂0

(√
−gg00∂0F

)
+ a2(

1√
−g

)∂i
(√
−ggii∂iF

)
= a2 1

a3
∂0

(
a3(−1)Ḟ

)
+ a2 1

a3
∂i

(
a3 1

a2
∂iF

)
= −a2 1

a3
3a2ȧḞ − a2a

3

a3
F̈ +

1

a
(∂ia)(∂iF ) +

a

a
∂i∂iF

= −3a2HḞ − a2F̈ +
1

a

(
∂t

∂x

∂

∂t
a

)(
∂t

∂x

∂

∂t
F

)
+ ∂i∂iF

= −3a2HḞ − a2F̈ +
ȧ

a

(
∂t

∂x

)2

Ḟ +∇i∇iF

= −3a2HḞ − a2F̈ + a2HḞ +∇i∇iF

= −2a2HḞ − a2F̈ +∇i∇iF (2.16)

Where I have used the fact that for flat FLRW metric (∂t/∂x)2 = a2.
Now using the fact that the ∇i∇i cancels the term −∇i∇iF (R) in the field
equation, plugging (2.6) in (2.15) we have

(2ȧ2 + aä)F − a2

2
f − 2a2HḞ − a2F̈ = κ2a2PM(

2ȧ2 + aä

a2

)
− 1

2
f − 2HḞ − F̈ = κ2PM(

aä− ȧ2

a2
+ 3

ȧ2

a2

)
F − 1

2
f − 2HḞ − F̈ = κ2PM

We now replace the third term of the LHS from (2.14) with

−f/2 = 3H2F − 1

2
FR + 3HḞ − κ2ρM

Leading to

ḢF + 3H2F + 3H2F − 1

2
FR + 3HḞ − 2HḞ − F̈ = κ2(ρM + PM)

ḢF + 6H2F − 1

2
F6(2H2 + Ḣ) +HḞ − F̈ = κ2(ρM + PM)
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Rearranging we get the second modified Friedmann equation

−2ḢF = F̈ −HḞ + κ2(ρM + PM) (2.17)

This equation along with

3FH2 = (FR− f)/2− 3HḞ + κ2ρM (2.18)

Determine the background dynamics of a flat FLRW universe, governed
by an f(R) gravity model.

For comparison the standard Friedmann equations that determine the
evolution of the universe in the concordance model are derived from the
Einstein equations Gµν = κ2Tµν , in the same way taking the (00) and (ii)
components, since the Ricci tensor and scalar are the same cause we use the
FLRW metric. So the resulting equations are

H2 =
κ2

3
ρ (2.19)

ä

a
= −κ

2

6
(ρ+ 3P ) (2.20)

And in both cases we have the continuity equation (2.11)

ρ̇+ 3H(ρ+ P ) = 0 (2.21)
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2.2 Inflation

In modern cosmology inflation is used to solve a number of cosmological
problems such as the horizon problem, the flatness problem and the origin
of the primordial density fluctuations. In the concordance model inflation
is produced by a scalar field. The energy density of this field is the dom-
inant ingredient of the very early universe, some time after the symmetry
breaking of the electroweak force. To produce inflation we use the slow roll
approximation which is to assume that the field is slowly rolling down to
the minimum of its potential. In this case the energy density of the inflaton
remains almost constant and its pressure is equal to P ' −ρ, which vio-
lates the strong energy condition i.e. ρ + 3P < 0 and we have accelerated
expansion of the universe. However this picture is inherited with various
inconsistencies. For example it leads to the production of certain topolog-
ical defects and it requires significant fine tuning, since the initial value of
the field should be carefully chosen for inflation to begin. As an alternative
to this subtleties we will examine how inflation can be realised in f(R) gravity.

2.2.1 Inflation from scalar field

Before looking into the f(R) case, we will give an overview of the inflation
theory in the the LCDM model.

The standard cosmological model gives a picture of the sequence of the
various epochs of the early universe, implied by the Big Bang theory. The
inflationary epoch, generated by a single scalar field φ called inflaton1, starts
right after the breaking of the SU(3)×SU(2)×U(1) symmetry of the funda-
mental forces, when the universe was 10−36sec old and lasted until 10−32sec.
At that period the universe’s energy density is dominated by that of inflaton
which drives the inflation and increases the volume of the universe by 1078

times, during this small fraction of cosmic time.
In order to have accelerated expansion (i.e. ä > 0) and inflation we can

see from (2.20) that the strong energy condition should be violated, instead
of that we must have

(ρ+ 3P ) < 0 (2.22)

In the perfect fluid approximation we have an equation of state p = ωρ
for each possible ingredient of the universe determined by the parameter of

1There are a number of theories that use more than one scalar fields to produce inflation,
like the hybrid inflation that uses two scalar fields.
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the state ω2. Therefore the acceleration condition becomes

ρ(1 + 3ω) < 0⇒ ω < −1/3 (2.23)

In the following we will examine how to get exponential expansion from
the inflaton.

The Lagrangian of a scalar field is with a potential V (φ)

L =
1

2
gµν∂

µφ∂νφ− V (φ) (2.24)

Under a general coordinate translation xµ → xµ + αµ the Lagrangian
remains constant δL = 0 and from Noether’s theorem we have the conserved
current

T µν =
∂L

∂(∂µφ)
∂νφ− gµνL

= ∂µφ∂νφ− gµν
[

1

2
gαβ∂αφ∂βφ− V (φ)

]
(2.25)

This equation defines the energy-momentum tensor for the inflaton field.
Equating this with the energy-momentum tensor for a perfect fluid along with
the assumption that φ is spatially homogeneous ignoring thus the gradients
(∇φ), it will give us the energy density and pressure for the inflaton.

ρ =
1

2
φ̇2 + V (φ) (2.26)

P =
1

2
φ̇2 − V (φ) (2.27)

We can get the equation of motion of the inflaton by replacing the above
into (2.21).

For that we need the time derivative of ρ

ρ̇ =
d

dt

(
1

2
φ̇2 + V (φ)

)
= φ̇φ̈+

dV

dφ
φ̇

and we also need the sum of ρ with P

ρ+ P =
1

2
φ̇2 + V (φ) +

1

2
φ̇2 − V (φ) = φ̇2

2For example radiation has ω = 1/3 and dust has ω = 0
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So the energy conservation equation (2.21) gives

φ̇φ̈+
dV

dφ
φ̇+ φ̇2 = 0

φ̈+ 3Hφ̇+ V ′(φ) = 0 (2.28)

This equation determines the evolution of the scalar field during inflation.
In addition we have the two Friedmann equations taking the form

H2 =
1

3m̄2
p

(
1

2
φ̇2 + V (φ)

)
(2.29)

Ḣ +H2 = − 1

3m̄2
p

(
φ̇2 − V (φ)

)
(2.30)

Which we wrote in this way, with Ḣ+H2 = ä
a

and m̄2
p = 1

κ2
being the reduced

Planck mass, for convenience in our later discussion.
Now we can see from (2.22) that a primary condition for accelerated ex-

pansion, is the kinetic energy of the scalar field to be less than the potential
energy 1/2φ̇2 < V (φ). It is therefore the shape of the potential and its dom-
inance over kinetic term are significant in sustaining inflation, when these
terms become comparable inflation stops.

A very useful approach on inflation, which is based exactly on that, is the
slow roll approximation, in which inflation occurs if the evolution of the field
is gradual that the potential dominates the kinetic energy, and the second
derivative of φ is small enough to maintain this state for a sufficient period,
i.e. we want

φ̇2 � V (φ)

|φ̈| � |3Hφ̇|, |V ′(φ)|

Satisfying these conditions requires the smallness of two dimensionless quan-
tities, known as slow roll parameters

ε =
1

2
m̄2
p

(
V ′

V

)2

(2.31)

η = m̄2
p

V ′′

V
(2.32)

So when ε, η � 1 the field has the chance to roll down slowly and inflation
can occur. These conditions are not sufficient, since one can choose initial
conditions with |1/2φ̇2| so large that slow roll is not applicable. However
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most of the initial conditions are attracted to an inflationary phase if the
slow roll parameters are small.

The usefulness of this approximation is that we can neglect the terms
1/2φ̇2 and φ̈. Thus the energy density the pressure and the equation of motion
of the inflaton along with the Friedmann equation become respectively:

ρ ' V (φ) (2.33)

P ' − V (φ) (2.34)

3Hφ̇ ' − V ′(φ) (2.35)

H2 ' 1

3m̄2
p

V (φ) (2.36)

Even though the smallness of ε and η is not a sufficient condition for slow
roll to be applicable. We can show that the condition ε � 1 is sufficient to
produce accelerated expansion i.e. ä/a > 0 or

Ḣ +H2 > 0⇒ − Ḣ

H2
< 1 (2.37)

To see that this inequality is equivalent with ε� 1, we start differentiat-
ing (2.36) and using (2.35) and V ' 3m̄2

pV (φ)H2 to get

2HḢ =
1

3m̄2
p

φ̇V ′(φ)

2HḢ = − 1

3m̄2
p

V ′

3H
V ′

2Ḣ = − (V ′)2

3m̄2
p3H

2

2Ḣ = −(V ′)2

3V

− Ḣ

H2
=

1

2
m̄2
p

(
V ′

V

)
= ε (2.38)

(2.39)

The equality of these two quantities shows that ε � 1 is equivalent to
accelerated expansion. A result that we will use in the next section as well.

As a simple example we can use the potential of a non interacting scalar
field with mass m

V (φ) =
1

2
m2φ2 (2.40)
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It easy to show that in this case the two slow roll parameters are the same

ε = η =
2m̄2

p

φ2
(2.41)

Thus we only have a unique condition for a valid slow roll determining the
initial value of the field

ε� 1⇒ m̄2
p � φ/2 (2.42)

Under this condition the approximate motion and Friedmann equations
(2.35),(2.36) become

3Hφ̇ = −m2φ (2.43)

H2 =
1

6m̄2
p

m2φ2 (2.44)

This is a system of two differential equations that we can solve and calculate
the evolution of the field and the scale factor during inflation.

Writing the Hubble parameter as H = mφ√
6m̄p

and replacing in the equation

of motion we have the evolution of the inflaton.

φ̇ =

√
6m̄p

3m

φ = φi −
√

6m̄p

3m
t (2.45)

Plugging this in the expression for the Hubble parameter we find

ȧ

a
=

m√
6m̄p

(
φi −

√
6m̄p

3m
t

)

a = aiexp

[
m√
6m̄p

(
φit−

√
6m̄p

3m
t2

)]
(2.46)

Which of course shows that during inflation the scale factor grows exponen-
tially.

Inflation will cease when the slow roll condition is no more satisfied i.e.
when ε ∼ 1.

Finally, it is possible for someone to calculate the amount of inflation
through the increase of the scale factor a. Using the fact that during inflation
we have exponential growth of a this implies:

a(t) = aiexp(Ht)⇒ln
(
a(t)

ai

)
= Ht (2.47)
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As a measure for the amount of inflation we use the number of e-foldings
from the start to the end of the inflationary period i.e. which in our case is

N ≡
∫
ln

(
a(tf )

a(ti)

)
da =

∫ tf

ti

Hdt (2.48)

We can write this in terms of the initial and final values of φ

N =

∫ tf

ti

H
dt

dφ
dφ =

∫ tf

ti

H

φ̇
dφ = − 1

m̄2
p

∫ φf

φi

V

V ′
dφ (2.49)

Where for the ratio H/φ̇ we have divided (2.36) by (2.35). In any case under
slow roll we have

N ' 1

m̄2
p

∫ φi

φf

V

V ′
dφ (2.50)

For our example of V = 1/2m2φ2 this gives

N =
1

m̄2
p

∫ φi

φf

φ

2
=

1

2m̄2
p

(φ2
i − φ2

f ) (2.51)

And since inflation stops when ε = 2m̄2
p/φ

2 is of the order of unity we can
approximately say that the final value of inflaton field is

φ2
f ' 2m̄2

p (2.52)

And so the number of e-foldings is determined by the initial value of the field

N ' 1

2m̄2
p

φ2
i − 1 (2.53)

For an inflationary model to be successful in terms of solving the horizon,
flatness and monopole problems of the big bang model we require that N &
70 and from this requirement we can determine a lower limit for the initial
value of the field.

2.2.2 f(R) inflation: the general case

In contrast with the previous picture of a scalar field leading to inflation, in
this case inflation arises as a consequence of the model.

We consider models of the form3

f(R) = R + bRn, (2.54)

3I will use the letter b for the coefficient rather than the usual a, so not to confuse it
with the scale factor
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with (b > 0, n > 0)
In this case the derivative of f with respect to R becomes

F =
∂

∂R
f(R) (2.55)

=
∂

∂R
(R + bRn) (2.56)

= 1 + nbRn−1 (2.57)

To see what form the field equation takes, we need the following product

FR = (R + nbRn) (2.58)

Along with the time derivative of F

Ḟ =
∂

∂t
F =

∂

∂t
(1 + nbRn−1)

= n(n− 1)bRn−2Ṙ (2.59)

Replacing that in (2.14), the first modified Friedmann equation takes the
form

3(1 + nbRn−1)H2 =
1

2
(R + nbRn −R− bRn)− 3Hn(n− 1)1 + nbRn−1

3(1 + nbRn−1)H2 =
1

2
(n− 1)bRn − 3Hn(n− 1)1 + nbRn−1 (2.60)

Cosmic acceleration can be realised in the regime F = 1 + nbRn−1 � 1.
So dividing (2.60) with 3nbRn−1, under the approximation F ' nbRn−1 gives

H2 =
1

6

[
(n− 1)bRn

nbRn−1

]
− 3H

n(n− 1)bRn−2Ṙ

3nbRn−1

=
1

6

n− 1

n
R−HṘ

R
(2.61)

=
n− 1

6n

(
R− 6nH

Ṙ

R

)
(2.62)

From (2.7) the time derivative of R is

Ṙ =
∂

∂t
[6(2H2 + Ḣ)]

= 6(4HḢ + Ḧ) (2.63)
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So we have the quantity

Ṙ

R
=

6(4HḢ + Ḧ)

6(2H2 + Ḣ)

=
HḢ

(
4 + Ḧ

HḢ

)
H2
(

2 + Ḣ
H2

)
=

4HḢ

2H2
= 2

Ḣ

H

Where we have used the approximations | Ḣ
H2 � 1| and | Ḧ

HḢ
� 1| that are

valid during inflation where the Hubble parameter H evolves slowly. In the
end (2.14) can be written in the form

H2 =
n− 1

6n

(
6(2H2 + Ḣ)− 6nH2

Ḣ

H

)
H2 =

n− 1

6n

(
6(2H2 + Ḣ)2nḢ

)
H2 =

n− 1

n

[
2− (2n− 1)

Ḣ

H2

]
n

n− 1
= 2− (2n− 1)

Ḣ

H2

2− n

n− 1
= (2n− 1)

Ḣ

H2

Ḣ

H2
=

2(n− 1)− n
(n− 1)(2n− 1)

=
n− 2

(n− 1)(2n− 1)

Or in other words

Ḣ

H2
' −ε (2.64)

Where ε = 2−n
(n−1)(2n−1)

is the equivalent slow roll parameter for our f(R) model.
Integrating for positive ε

dH
dt

H2
= −ε⇒ dH

H2
= −εdt⇒ 1

H
= εt⇒ H =

1

εt
(2.65)
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Which means that the scale factor evolves as

ȧ

a
=

1

εt
⇒ da

a
=

1

εt
dt⇒ lna =

1

ε
lnt = lnt

1
ε ⇒ a ∝ t

1
ε

⇒ a ∝ t
1
ε (2.66)

Inflation is equivalent to a rapid expansion of the universe in a small
cosmological period. So according to the previous result inflation occurs
when ε < 1, which means that

2− n
(n− 1)(2n− 1)

< 1

2− n < 2n2 − 3n+ 1

2n2 − 2n− 1 > 0

2[n− 1

2
(1−

√
3)][n− 1

2
(1 +

√
3)] > 0

n >
1

2
(1 +

√
3) (2.67)

For n = 2 we have ε = 0 so that the Hubble parameter is constant in the
regime F � 1. Models with n > 2 lead to super inflation with Ḣ > 0. So
the standard inflation with decreasing H could be achieved in models with
1
2
(1 +

√
3) < n < 2.

2.2.3 Starobinsky’s inflation

As a simple example we will examine the Starobinsky model. As we said
this was the first model of modified gravity, that was used as an origin of
inflation other than the usual scalar field option. The model is determined
by the function

f(R) = R +
R2

6M2
(2.68)

So we have a case with n = 2 and b = 1
6M2 , where M is a constant with

dimensions of mass.

Rn = R2 = [6(2H2 + Ḣ)]2 = 36(4H4 + Ḣ2 + 4H2Ḣ) (2.69)

∂

∂t
[6(2H2 + Ḣ)] = 6(4HḢ + Ḧ) (2.70)
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Replacing in (2.60)

3(1 + 2
1

6M2
R)H2 =

1

2

1

6M2
R2 − 6

1

6M2
HṘ

3(1 + 2
1

3M2
6(2H2 + Ḣ))H2 =

1

12M2
36(4H4 + Ḣ2 + 4H2Ḣ)− 1

M2
H6(4HḢ + Ḧ)

3M2H2 + 12H4 + 6ḢH2 = 12H4 + 3Ḣ2 + 12ḢH2 − 24ḢH2 − 6HḦ

3M2H2 + 6HḦ + 18H2Ḣ − 3Ḣ2 = 0

Dividing the last line with 6H we get

Ḧ +
1

2
M2H + 3HḢ − 1

2

Ḣ2

H
= 0

Ḧ − 1

2

Ḣ2

H
+

1

2
M2H = −3HḢ (2.71)

As we said during inflation the Hubble parameter evolves very slowly,
which means that the first two terms in (2.71) are negligible, allowing us to
write Ḣ ' −M2/6, solving this one we get

∫ H

Hi

dH ' −
∫ t

i

(M2/6)dt

H'Hi − (M2/6)(t− ti) (2.72)∫ a

ai

da

a
'
∫ t

ti

Hidt−
∫ t−ti

0

(M2/6)(t− ti)d(t− ti)

a'aiexp[Hi(t− ti)− (M2/12)(t− ti)2] (2.73)

With Hi and ai being the Hubble parameter and the scale factor at the
beginning of inflation (t = ti) and

R ' 12H2 −M2 (2.74)

Inflation continues as long as the slow rolling condition is satisfied

ε = − Ḣ

H2
' M2

6H2
. 1

⇒ H2 &M2 (2.75)
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At time (t = tf ) we have the slow roll parameter becoming of the order
of unity ε ' 1 and inflation stops. So at the end of inflation from (2.64) we
see

Ḣf

H2
' 1⇒Hf'M/

√
6 (2.76)

Plugging this into (2.72) we have that

M/
√

6 ' Hi − (M2/6)(tf − ti)
(M2/6)tf ' Hi + (M2/6)ti −M/

√
6

tf '
6Hi

M2
+ ti (2.77)

Where we have discarded a term
√

6/M since the latest measurements
from WMAP constrain the mass scale to be very small M ' 13Gev

And from (2.74) at this epoch the Ricci scalar decreases to R 'M2.

Using the result from (2.77) the number of e-foldings in our model is equal
to

N ' Hi
6Hi

M2
− M2

12

(
6Hi

M2

)2

' 3H2
i

M2
' 1

2ε(tf )
(2.78)

Where in the last equality we used ε ' M2/6H2. We already mentioned
that we need at least N & 70, to solve the horizon and monopole problems.
Which means that ε(tf ) . 7× 10−3.
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2.3 Generating Dark Energy in metric f(R)

We already mentioned that the existence of Dark Energy in the universe is
supported by two of the most significant modern cosmological observational
facts. The first one is the composition of the universe, which shows that
Dark Energy constitutes 72% of the total energy density. And the second
one is the strong indications coming mainly from the type Ia Supernovae
(SN Ia) observations that the universe is currently undergoing an accelerated
expansion phase, which has followed that of the matter epoch.

In order to have accelerated expansion (i.e. ä > 0) we sawe from the
second Friedmann equation of classic G.R.

ä

a
= −4πG

3
(ρ+ 3p) (2.79)

We need some form of energy-matter approximated as a perfect fluid with
an equation of state, determined by the parameter ω,that would violate the
strong energy condition.

The simplest candidate for Dark Energy is the Cosmological Constant
Λ, which is considered to be equivalent with the vacuum energy of particle
physics. And the reason is exactly that its equation of state is ω = −1 which
obviously violates the above condition and leads to accelerated growth of the
scale factor.

However there exist the problems of coincidence and magnitude attached
to this picture. Specifically for the magnitude problem if the origin of the cos-
mological constant is a vacuum energy, then a huge disagreement arises from
the comparison between the calculated energy scale of the vacuum relative to
the Dark Energy density today. The zero point energy of some field of mass
m with momentum k and frequency ω is given by E = ω/2 =

√
k2 +m2/2.

Summing over the zero-point energies of this field up to a cut-off scale
kmax(� m), we obtain the vacuum energy density

ρvac =

∫ kmax

0

d3k

(2π)3

1

2

√
k2 +m2 (2.80)

Since the integral is dominated by the mode with large k(� m), we find
that

ρvac ≈
∫ kmax

0

4πk2dk

(2π)3

1

2
k =

k4
max

16π2
(2.81)

Taking the cutoff scale kmax to be the Planck mass mpl, the vacuum energy
density can be estimated as ρvac ' 1074GeV4. This is about 10121 times
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larger than the observed value ρ
(0)
DE ' 10−47GeV4

So, as we said this particular discrepancy, along with the coincidence
problem, have strongly motivated the search for other explanations about
the origin of Dark Energy.

2.3.1 The effective parameter of state

The way to realise Dark Energy in f(R) models is to define an effective state
parameter and to seek the kind of models that their resulting ωeff satisfies
(2.23).

ωeff < −
1

3

At first we can write the metric field equations (1.14) in a more standarised
form, with the Einstein tensor on the left hand side, as:

Gµν ≡ Rµν − 1/2gµνR = κ2
(
T (M)
µν + T (curv)

µν

)
(2.82)

Where Gµν ≡ Rµν − 1/2gµνR and

κ2T (curv)
µν = gµν(f −R)/2 +∇µ∇νF − gµν�F + (1− F )Rµν (2.83)

Since ∇µGµν = 0 and ∇µT
(M)
µν = 0, it follows that

∇µT (curv)
µν = 0 (2.84)

Thus the continuity equation holds equally well for this effective energy-
momentum tensor T

(curv)
µν .

So what we do in this way is to separate the usual matter tensor, coming
from the variation of the matter action, from the rest of the field equations
which we treat as an effective energy tensor which essentially is an additional
curvature source determined by each f(R) model and can be used to describe
the dark energy presence in the universe.Since we use for our other sources the
perfect fluid approximation, we can do the same for this curvature source,
i.e. T

µ(curv)
ν = diag(−ρcurv, Pcurv, Pcurv). Then we can define the effective

parameter of state as

ωeff =
Pcurv
ρcurv

(2.85)

The continuity equation in this case leads to

ρ̇curv + 3H(ρcurv + 3Pcurv) = 0 (2.86)
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Inserting the effective equation of state for the geometric fluid then we
have

ρ̇curv
ρcurv

= −3H(1 + ωcurv) (2.87)

We can deduce the effective energy density either by (2.83) or from the
first modified Friedmann equation (2.14) after rewriting it as

H2 =
1

3f ′
[κ2ρM + (f ′R− f)/2− 3HḞ ] (2.88)

So if we compare this with (2.19) we see that it is in the form

H2 =
κ2

3f ′
ρM +

κ2

3
ρeff

Where the effective energy density is equal

ρeff =
1

f ′

[
(f ′R− f)/2− 3Hḟ ′

]
=

1

f ′

[
(f ′R− f)/2− 3Hf ′′Ṙ

]
(2.89)

There are to ways to get the effective state parameter. The first is from the
equation of state ωeff = ρcurv/Pcurv, using (2.83) to find Pcurv. Or we can
use (2.87)

ωeff = −1− 1

3H

ρ̇curv
ρcurv

(2.90)

Following the last way, we have to take the time derivative of ρcurv which
is equal to

ρ̇curv =
d

dt

[
1

f ′

[
(f ′R− f)/2− 3Hf ′′Ṙ

]]
= − 1

f ′2

(
1

2
(f ′′ṘR + f ′Ṙ− f ′Ṙ)− 3Ḣf ′′Ṙ− 3Hf ′′′Ṙ2 − 3Hf ′′R̈

)
= − 1

f ′2

(
1

2
f ′′Ṙ6(Ḣ + 2H2)− 3Ḣf ′′Ṙ− 3Hf ′′′Ṙ2 − 3Hf ′′R̈

)
= − 1

f ′2
(6H2f ′′Ṙ− 3Hf ′′′Ṙ2 − 3Hf ′′R̈) (2.91)

Dividing the last with 3H yields

ρ̇curv =
1

f ′2
(R̈f ′′ + Ṙ(f ′′′Ṙ− 2Hf ′′)) (2.92)
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Substituting this result in (2.90) then we see that the effective state pa-
rameter is

ωeff = −1 +
1

f ′
R̈f ′′ + Ṙ(f ′′′Ṙ− 2Hf ′′)

(f ′R− f)/2− 3Hf ′′Ṙ
(2.93)

There is a number of f(R) models that give an ωeff that satisfies the
condition (2.23) and produce late time accelerated expansion, as stated in
[14].

An example is models with f(R) = f0R
n, where n is a real number. If

we assume that the scale factor grows as a generic power law a = a0(t/t0)α

then ωeff as a function of n works out to be

ω = −6n2 − 7n− 1

6n2 − 9n+ 3
(2.94)

For n 6= 1, which is the limit where f(R) reduce to the usual Einstein
gravity, and the parameter α is given in terms of n from

α =
−2n2 + 3n− 1

n− 2
(2.95)

Obviously there are many values of n that give the desired ωeff . For
instance, n = 2 which is the Starobinsky model for inflation studied in the
previous section, gives ωeff = −1 and α =∞ as expected.

Power-law solutions for a(t) can be found in this family of models, that
provide a satisfactory fit to SNeIa data and a good agreement with the esti-
mated age of the Universe in the range 1.366 < n < 1.376

An additional example is models of the form f(R) = R − µ2(n+1)/Rn,
where µ is a suitable parameter. Again if we assume power law solutions for
the scale factor then the effective state parameter in this case is

ωeff = −1 +
2(n+ 2)

3(2n+ 1)(n+ 1)
(2.96)

The most typical model of these is f(R) = R − µ4/R, which has ωeff =
−2/3

The difference between these two examples is that in the later we have
terms inversely proportional to R for positive n, contrary to the case of Rn.
This is important because in the late time acceleration, we want the extra
curvature term to be negligible at early times and dominate at the late stages
of cosmic evolution. Consequently models with terms 1/Rn are more suitable
for Dark energy, since these terms are negligible relative to R, at the early
universe when curvature is bigger and become important when R→ 0 at late
times.
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2.3.2 Dark Energy using dynamical equations

There is a more general method addressing the problem of Dark Energy,
introduced in detail in [1] and discussed in chapter 4 of [6], which we are
going to mention in order to give a complete overview of the case.

Considering non relativistic matter and radiation, whose energy densities
ρm and ρr satisfy

ρ̇m + 3ρm = 0 (2.97)

ρ̇r + 4Hρr = 0 (2.98)

The starting point of this method is the two modified Friedmann equa-
tions (2.14) and (2.17)

3FH2 = (FR− f)/2− 3HḞ + κ2(ρm + ρr) (2.99)

−2ḢF = F̈ −HḞ + κ2[ρm + 4/3ρr] (2.100)

For a general f(R) model we introduce the following dynamical variables

x1 ≡ − Ḟ
HF

, x2 ≡ − f
6FH2 , x3 ≡ R

6H2 , x4 ≡ κ2ρr
3FH2

Also here it turns out to be convenient to work with the density parameter

ΩX ≡
κ2
X

3FH2
(2.101)

Where X = m, rad or DE
It is then obvious from (2.99) that we have

ΩM ≡
κ2

3FH2
= 1− x1 − x2 − x3 − x4 (2.102)

Together with the density parameters for radiation and Dark Energy.

Ωr ≡ x4, ΩDE ≡ x1 + x2 + x3

Using the form of the equations of motion and the above density pa-
rameters, it is straightforward to derive the following system of equations
concerning the previously defined dynamical parameters.

dx1

dN
= −1− x3 − 3x2 + x2

1 − x1x3 + x4

dx2

dN
=
x1x3

m
− x2(2x3 − 4− x1)

dx3

dN
=
x1x3

m
− 2x3(x3 − 2)

dx4

dN
= −2x3x4 + x1x4
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Where N = lna is the number of e-foldings, and

m ≡ dlnF

dlnR
=
Rf ′′(R)

f ′(R)

r ≡ − dlnf
dlnR

= −Rf
′(R)

f
=
x3

x2

Additionally we have in this case the effective equation of state defined
as

ωeff ≡ −1− 2Ḣ2/(3H2) = −(2x3 − 1)/3 (2.103)

It is possible now to find the values of the variables x1, x2, x3 and x4, that
model dependent.

The fixed points of the system correspond to models of f(R) that describe
universes with different properties and some of them have properties, like an
effective equation of state, that match with the real universe we live in.

So, in the absence of radiation (x4 = 0) the fixed points of the above
dynamical system are

P1 : (x1, x2, x3) = (0,−1, 2) Ωm = 0 ωeff = −1
P2 : (x1, x2, x3) = (−1, 0, 0) Ωm = 2 ωeff = 1/3
P3 : (x1, x2, x3) = (1, 0, 0) Ωm = 0 ωeff = 1/3
P4 : (x1, x2, x3) = (−4, 5, 0) Ωm = 0 ωeff = 1/3

P5 : (x1, x2, x3) = ( 3m
1+m

,− 1+4m
2(1+m)2

, 1+4m
2(1+m)

) Ωm = 1− m(7+10m)
2(1+m)2

ωeff = − m
1+m

P6 : (x1, x2, x3) = (2(1−m)
1+2m

, 1−4m
m(1+2m)

,− (1−4m)(1+m)
m(1+2m)

) Ωm = 0 ωeff = 2−5m−6m2

3m(1+2m)

Examining theses six points we have the interesting remarks

• The matter-dominated epoch (Ωm ' 1 and ωeff < 0) can be realized
only by the point P5 for m close to 0.

• Either the point P1 or P6 can be responsible for the late-time cosmic
acceleration. The former is a de Sitter point (ωeff = −1) with R = −2,
in which case the condition (1.18) is satisfied.

• The point P6 can give rise to the accelerated expansion (ωeff < −1/3)
provided that m > (

√
3−1)/2, or −1/2 < m < 0, or m < −(1+

√
3)/2.
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Discussion

All in all, what we have shown is simplified cases in which metric f(R)
gravity can produce the desired characteristics of the universe for which the
concordance model explanations are inherited with various inconsistencies
and motivate the search for other theories. We have seen in particular how
inflation and late time acceleration, attributed to dark energy, can be realised
in various f(R) models.

However apart from providing alternatives for these inconsistencies, a
modified theory of gravity should reproduce the well established theoretical
results and provide a satisfactory fit to the observations where General Rel-
ativity has been proven triumphant. Among others, it should pass the tests
imposed by Solar System and terrestrial experiments on relativistic gravity,
it should give a coherent picture of the universe with an inflationary phase
followed by radiation and matter era, where we have the formulation of the
light elements and the evolution of the initial perturbations to the Large Scale
structure, leading to a period of late time acceleration. Finally it should also
be consistent with other fundamental physical theories, such as quantum field
theories that describe the rest of the natural forces.

All this means that a viable f(R) model is subject of certain constraints.
A summary of these constrains as given in [8] is

1. possess the correct cosmological dynamics

2. not suffer from instabilities, which is equivalent with f,R and f,RR, and
ghosts

3. have the correct Newtonian and post-Newtonian limit

4. give rise to cosmological perturbations compatible with the data from
cosmic microwave background and large scale structure surveys

5. have a well posed Cauchy problem

So concerning the above constraints the current state of the various f(R)
models is:

• Metric f(R) gravity: there are models that pass all the theoretical
and observational constrains. The most popular of these are given in
Table (3.1). The biggest problem is whether curvature singularities
exist for relativistic strong field stars.
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Table 2.1: Explicit forms of f(R) in (i) Hu-Sawicki, (ii) Starobinsky, (iii)
Tsujikawa, and (iv) the exponential gravity models.

model f(R) constant parameters

i) R− c1RHS(R/RHS)p

c2(R/RHS)p+1
c1, c2, p(> 0),RHS(> 0)

ii) R + λRS

[(
1 + R2

R2
S

)−n
− 1

]
λ(> 0), n(> 0), RS

iii) R− µRT tanh
(

R
RT

)
µ(> 0), RT (> 0)

iv) R− βRE

(
1− e−R/RE

)
β,RE

• Palatini f(R) gravity: these theories failed for various reasons; they
contain a nondynamical scalar field, the Cauchy problem is ill-posed,
and discontinuities in the matter distribution generate curvature sin-
gularities.

• Metric-affine gravity: this class of theories is not yet sufficiently
developed to assess whether it is viable according to the criteria listed
here, and its cosmological consequences are unexplored.

Finally, a new way to test a theory of gravity on very Large scales, comes
from the Chandra observation of galaxy clusters. A modified gravitational
force should also affect the rate at which the initial density perturbations
can grow during the evolution of the universe and become massive clusters of
galaxies, providing a sensitive test of the theory. Recent studies on theoretical
analysis of Chandra’s cluster data4 strongly support that Einstein’s gravity,
which until now was only tested from laboratory to Solar System scales, is
also valid on scales larger that 130 million light years. In one of these studies
they used Einstein’s theory to calculate the number of massive clusters that
have formed under the force of gravity during the last five billion years, which
is in complete agreement with the observations.

Results like these strengthen the position of General Relativity, against
opponent theories and place even tighter constrains, for modifications such
as f(R) gravities, which they must pass if they are to be consider realistic.

In any case, even if f(R) is proven an unsatisfactory alternative is not at all
ill-motivated, for it is certain that investigating f(R) models, will have provide
a deeper insight in several aspects of Einstein’s theory and its generalisations,
and secure our view of General Relativity as the unique fundamental theory
of gravity.

4See for example [12] and [11] for detail.
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