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Abstract 

Intensive research on Black holes properties has been carried out in the last 50 years. The 

most significant discoveries are the No hair Theorems. Some of these theorems are explained 

with a series of proofs. Bekenstein approach is studied as well as a generalised proof by Saa. 

A way to avoid these theorems is presented for scalar field hair and SU (N) Einstein Yang 

Mill theory with a negative cosmological constant and the MTZ model is introduced.  

Introduction 

We will start by giving some reminders on general notions used throughout this dissertation. 

Reminders on general relativity  

Einstein equations are described by      
 

 
           , where     is the Ricci tensor, 

  the Ricci scalar, G the Newtonian constant and     the energy-momentum tensor.   We 

remind the metric for Schwarzschild         
   

 
        

   

 
 
  

         . 

The electrically charged black holes or the Reissner-Nordstrom black holes are characterised 

by the metric                                    [26]. This black hole has a non 

zero electromagnetic field which acts as a source of energy-momentum. The energy 

momentum tensor for electromagnetism is          
 
 

 

 
       

   where     is the 

electromagnetic field strength tensor. 

Killing Horizon 

An asymptotically flat space-time is the one for which the future null infinity, the past null 

infinity and the spacelike infinity have the same structure as for Minkowski. The future event 

horizon is the surface beyond which timelike curves cannot escape infinity and an analogous 

definition holds for the past event horizon. 

The most important feature of a black hole is its event horizon. An event horizon is a 

hypersurface separating the space-time points that are connected to other space-time points 

which are far away from the black hole (far enough to assume that the space-time is described 

by Minkowski metric) by a timelike path from the rest. The gradient     is normal to the 

hypersurface . If the normal vector is null, the hypersurface is said to be null and the normal 
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vector is also tangent to  . Null hypersurfaces are considered to be a collection of null 

geodesics       called the generators of the hypersurface. The tangent vectors to these 

geodesics are called    and they are proportional to the normal vectors. They also serve as 

normal vectors to the hypersurface.[26] 

Now if a Killing vector field    is null along some null hypersurface   we say that   is a 

Killing horizon of   . The vector field    is normal to   since a null surface cannot have to 

linearly independent null tangent vectors. 

Event horizon and Killing horizon are closely related in space-times with time translation 

symmetry. Every event horizon   in a stationary asymptotically flat space-time is a Killing 

horizon for some Killing vector field   [26]. 

Soliton 

The soliton is an intrinsically non linear solution of the field equation with remarkable 

stability and particle like properties. This local travelling wave pulse with a coherent structure 

represented a revolution in the non linear science. The soliton is the result of a balance 

between two forces: one is linear and acts to disperse the pulse the other has the opposite 

effect it is non linear and acts to focus the pulse. Non linearity is essential for balancing the 

dispersion process.[9] 

Note: throughout the dissertation the prime denotes the partial derivative with respect to the 

radial coordinate   and the convariant d’Alembertian is        

1. The uniqueness theorem 

For the no hair theorems, the uniqueness theorem is essential. At the centre of the uniqueness 

problem lies the proof that the static electro-vacuum (electrovac) black hole space times (with 

no degenerate horizon) are described by the Reissner-Nordstrom (RN) metric, whereas the 

circular ones (i.e., the stationary and axisymmetric ones with integrable Killing fields) are 

given by the Kerr-Newman metric. A lot of work has been put towards classifying static 

black holes in vacuum. The works of Chase, Bekenstein, Hartle and Teitelboim show that 

stationary black hole solutions are hairless in a variety of theories where classical fields are 

coupled to Einstein gravity. The pioneering investigations in this field were attributed to 

Israel, Muller zum Hagen and Robinson. The alternative approach to the problem of the 

uniqueness of black hole solutions was proposed by Bunting and Masood-ul-Alam and then 
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strengthened to the Einstein-Maxwell (EM) black holes. Heusler included the magnetically 

charged RN solution and static Einstein-σ-model case [28]. The condition of non-

degeneracy of the event horizon was removed and it was shown that Schwarzschild black 

hole exhausted the family of all appropriately regular black hole space-times. It was revealed 

that RN solution comprised the family of regular black hole space-times under the restrictive 

condition that all degenerate components of black hole horizon carried a charge of the same 

sign. 

In the late sixties, the main contributors to the proof of the uniqueness theorem for the 

asymptotically fat, stationary black hole solutions of the Einstein-Maxwell equations were 

Israel, Penrose and Wheeler. Using very rigorous proofs, they established that all stationary 

electro-vacuum (electrovac) black hole space-times are characterized by their mass, angular 

momentum and electric charge This result has a direct implication: all stationary black hole 

solutions can be described in terms of a small set of asymptotically measurable quantities. In 

the static case it was Israel who, in his pioneering work, was able to establish that both static 

vacuum and electrovac black hole space times are spherically symmetric. In particular he 

proved in one of his papers that one can consider the limiting external field as a 

gravitationally collapsing asymmetric body as static [10]. As a consequence a series of papers 

were published showing that the unique non-degenerate electrovac static black hole metrics 

are the Reissner-Nordstrom family [11]. 

It is only in 1989 these statements were disproved when several authors presented a 

counterexample within the framework of SU (2) Einstein-Yang-Mills (EYM) theory. The 

main argument was to say that although the new solution was static and had vanishing Yang-

Mills charges, it was different from the Schwarzschild black hole and, therefore, not 

characterized by its total mass (one of the main reasons the discovery hasn’t happened before 

was  the belief that EYM equations admit no soliton solutions). Following this discovery a 

whole variety of new black hole configurations violating the generalized no-hair conjecture 

were found during the last few years. These include, for instance, black holes with Skyrme, 

dilaton or Yang-Mills-Higgs hair [8].  As a consequence of the diversity of new solutions, the 

different steps of the proof of the uniqueness theorem had to be reconsidered. In particular 

questions were asked as to whether there are steps in the uniqueness proof which are not 

sensitive to the details of the matter contents.  
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The classical uniqueness theorems were, established for space-times which are either circular 

or static. The circularity theorem by Kundt and Trumper and Carter[29] does not hold for the 

EYM system unless additional constraints are imposed and the the staticity theorem 

establishes the hypersurface orthogonality of the stationary Killing field for electrovac black 

hole space times with non-rotating horizons. 

The uniqueness theorem for stationary and axisymmetric black holes is mainly based on the 

Ernst formulation of the Einstein -Maxwell equations. The key result consists in Carter's 

observation that the field equations can be reduced to a 2-dimensional boundary value 

problem. An identity due to Robinson then establishes that all vacuum solutions with the 

same boundary and regularity conditions are identical [31]. The uniqueness problem for the 

electrovac case remained open until Mazur and Bunting independently succeeded in deriving 

the desired divergence identities in a systematic way [29]. 

During the last years the discovery of new black hole solutions in theories with nonlinear 

matter fields led scientists to study topics related to the stationary problem of non-rotating 

black holes as well as the subject of the stationarity of these objects. Taking into 

consideration nonlinear matter models or general sigma models in the present research, the 

problems of black hole solutions of the late 1960s and 1970s are reconsidered. Historically 

the idea of a staticity theorem was put forward by Lichnerowicz for the simple case in which 

there was no black hole. He used the example of a stationary perfect fluid that was 

everywhere locally static i.e. its flow vector was aligned with the Killing vector [30]. The 

Killing vector itself would have the staticity property of being hypersurface orthogonal. 

Hawking extended the research by generalising the proof of staticity to the vacuum case. He 

considered black holes that were non-rotating i.e. the null generator of the horizon was 

aligned with the Killing vector. Following Hawking contribution, Carter considered an 

extension of this problem to the case of electromagnetic fields and obtained the desired result 

to some extent. Using the Arnowitt-Deser-Misner (ADM)formalism, Sudarsky and Wald 

considered an asymptotically flat solution to Einstein-Yang-Mills (EYM) equations with a 

Killing vector field which was timelike at infinity. Using the example of an asymptotically 

flat maximal slice with compact interior, they established that the solution is static when it 

had a vanishing Yang-Mills electric field on the static hypersurfaces. If an asymptotically flat 

solution possesses a black hole, then it is static when it has a vanishing electric field on the 

static hypersurface. They also presented a new derivation of the mass formula and proved 

that every stationary solution is an extremum of the ADM mass at fixed Yang-Mills electric 
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charge. On the other hand, every stationary black hole solution is an extremum of the ADM 

mass at fixed electric charge, canonical angular momentum, and horizon area [27]. One 

should also mention the work of Sudarsky and Wald, in which they derived new integral 

mass formulas for stationary black holes in EYM theory. Using the notion of maximal 

hypersurfaces and combining the mass formulas, they obtained the proof that non-rotating 

Einstein-Maxwell (EM) black holes must be static and have a vanishing magnetic field on the 

static slices. Hawking's strong rigidity theorem which states that that the event horizon of a 

stationary black hole space-time is a Killing horizon represents the basis for the uniqueness 

theorem. The theorem establishes a connexion between the event horizon and the Killing 

horizon. The theorem requires that the matter fields obey well behaved hyperbolic field 

equations and that the stress-energy tensor satisfies the weak energy condition, the theorem 

asserts that the event horizon of a stationary black hole space-time is a Killing horizon. This 

also implies that either the null-generator Killing field of the horizon coincides with the 

stationary Killing field or space-time admits at least one axial Killing field. This theorem 

emphasizes that the event horizon of a stationary black hole had to be a Killing horizon; i.e., 

there had to exist a Killing field    in the spacetime which was normal to the horizon. If this 

field did not coincide with the stationary Killing field    then it was shown that the space-

time had to be axisymmetric as well as stationary. It follows that the black hole will be 

rotating; i.e., its angular velocity of the horizon   will be nonzero (  is defined by the 

relation            where    is an axial Killing vector field) and the Killing vector field 

  will be spacelike in the vicinity of the horizon. The black hole will be enclosed by an 

ergoregion. On the other hand, if    coincides with    (so that the black hole is non-rotating) 

and    is globally timelike outside the black hole, then one can show that the spacetime is 

static. The standard black hole uniqueness theorem leaves an open question of the problem of 

the potential existence of additional stationary black hole solutions of EM equations with a 

bifurcate horizon which is neither static nor axisymmetric. The situation was recuperated by 

Wald. He showed that any non-rotating black hole in EM theory, the ergoregion of which 

was disjoint from the horizon, had to be static, even if the tm was not initially presupposed to 

be globally timelike outside the black hole. Chrusciel reconsidered the problem of the strong 

rigidity theorem and gave the corrected version of the theorem in which he excluded the 

previous assumption about maxi- mal analytic extensions which were not unique [32]. The 

uniqueness theorems for black holes are closely related to the problem of staticity. However, 

the uniqueness theorems are based on stronger assumptions than the strong rigidity theorem. 



7 
 

Namely, in the non-rotating case one requires staticity whereas in the rotating case the 

uniqueness theorem is established for circular space-times. The foundations of the uniqueness 

theorems were laid by Israel who established the uniqueness of the Schwarzschild metric and 

its Reissner-Nordstrom generalization as static asymptotically flat solutions of the Einstein 

and EM vacuum field equations. Then, Muller zum Hagen et al. in their works were able to 

weaken Israel’s assumptions concerning the topology and regularity of the two-surface 

      
          . Robinson generalized the theorem of Israel concerning the 

uniqueness of the Schwarzschild black hole. Finally, Bunting and Masood-ul-Alam excluded 

multiple black hole solutions, using the conformal transformation and the positive mass 

theorem. Lately, a generalization of the results to electro-vacuum space-times was achieved. 

The uniqueness results for rotating configurations, i.e., for stationary, axisymmetric black 

hole space-times, were obtained by Carter, completed by Hawking and Ellis and the next 

works of Carter and Robinson. They were related to the vacuum case. Robinson also gained  

a complicated identity which enabled him to expand Carter’s results to electrovac spacetimes. 

A quite different approach to the problem under consideration was presented by Bunting and 

Mazur. Bunting’s approach was based on applying a general class of harmonic mappings 

between Riemannian manifolds while Mazur’s was based on the observation that the Ernst 

equations describe a nonlinear s model on symmetric space [33]. A recent review which 

covers in detail various aspects of the uniqueness theorems for non-rotating and rotating 

black holes was provided by Heusler. Heusler and Straumann considered the stationary EYM 

and Einstein dilaton theories. They showed that the mass variation formula involves only 

global quantities and surface terms; their results hold for arbitrary gauge groups and any 

structure of the Higgs field multiplets. The same authors studied the staticity conjecture and 

circularity conditions for rotating black holes in EYM theories. It turned out that contrary to 

the Abelian case the staticity conjecture might not hold for non-Abelian gauge fields like the 

circularity theorem for these fields. Recently, it has been shown that in the non-Abelian case 

stationary black hole space-times with vanishing angular momentum need not to be static 

unless they have vanishing electric Yang-Mills charge[28]. Heusler demonstrated that any 

self-coupled, stationary scalar mapping (s model! from a domain of strictly outer 

communication, with a non-rotating horizon, has to be static. He also proved the no-hair 

conjecture for this model.  
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2.No hair theorems: 

There are two kinds of no hair theorems in gravitational physics. The first one is the cosmic 

non hair theorem which leads to the conclusion that the inflation is a natural phenomenon and 

would validate this theory to explain the homogeneity and isotropy of the universe we 

observe today [12]. Here we are interested in the black hole no hair theorem. 

Historically, a series of no hair theorems appeared when physicists began looking at the 

possible interaction of black holes with any kind of matter. Naturally the attention was turned 

to scalar fields, which makes the most realistic candidate. The no hair theorems excluded for 

a long time scalar fields, vector fields, massive vectors, spinors and Abelian Higgs hair from 

stationary black hole exterior. The turning point was the discovery of coloured back holes in 

Yang Mils theory and a series of solutions for hairy black holes have been found since then. 

Bekenstein was the first one to suggest a no hair theorem but it was quickly proved to be 

unstable so we suggested a new one which is the one we are interested in.  The statement that 

black holes have no hair means that they can only be dressed by field that obey the Gauss law 

like the electromagnetic field. Conformal coupling to gravity permitted the discovery of 

extremal Reiner Nordstrom geometry because the scalar hair diverges at the horizon; this put 

the scalar fields under the no hair theorem.  

The presence of a cosmological constant (positive or negative) the Kerr Newman solution to 

the Einstein Maxwell equations becomes the Kerr Newman de sitter solution whose space 

time is the asymptotically flat the sitter space. The presence of a cosmological constant 

changes the asymptotic behaviour and structure of space times. In our example all no hair 

theorems have been proves assuming that the space-time is asymptotically flat. 

There are different approaches to prove the No Hair Theorems. Scaling arguments provide an 

efficient tool for proving nonexistence theorems in at space-time but they are restricted to 

highly symmetric situations, this arguments if considered in a more complex way lead to a 

first proof of the no-hair theorem for spherically symmetric scalar fields with arbitrary non-

negative potentials. Another proof is based on a mass bound for spherically symmetric black 

holes and the circumstance that scalar fields (with harmonic action and non-negative 

potentials) violate the strong energy condition [8]. 

One of the most impressive solutions is the colored black hole solution of the Einstein-Yang-

Mills (EYM) system. Although this solution was found to be unstable in the gravitational 
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sector, non-Abelian hair is generic, and many other non-Abelian black holes were discovered 

after the colored black hole.[18] 

3. Bekenstein approach: 

In his 1995 paper [1] Bekenstein proves the no hair theorem for a black holes dressed with a 

multicomponent scalar field. This paper show significant modifications compared to his first 

works on no hair theorems. In fact Sudarsky showed that there are some exceptions to the no 

hair theorems as first formulated which lead Bekenstein to write a Novel no hair scalar hair 

for black holes. 

We will follow step by step the proof. 

Bekenstein takes the case of a static scalar field in a static black hole background 

    
 

 
       

                                                                                               (1) 

Using the action, the field equation is obtained, multiplies by   and integrated over the black 

hole exterior at a given time. The result obtained is: 

                                                                                                            (2) 

The metric     is positive definite with the indices   and   being spatial coordinates 

A theorem states that if        is non negative and vanishes only at some discrete values    

then the field is constant outside the black hole and its value corresponds to one in the 

interval [0,   ]. It is particularly the case for Klein Gordon field for which if we consider   as 

the field’s mass we have         . Bechmann and Lechtenfeld objected to Bekhestein 

logic and claimed that an exponentially decaying scalar hair can be attached to a static 

spherical black hole (BL solution). However in the BL case the potential is not a closed 

expression and in some regions the potential is negative which makes it unphysical as it 

violates the condition        . It is necessary to highlight that the theorem fails for any 

field violating the condition         for example in the case of the Higgs hair with a 

double well potential for which       is negative in some regions although some 

improvements have been made towards providing proofs of a couple of no-hair theorem for 

black holes in the Abelian Higgs model, in arbitrary dimension and for arbitrary horizon 

topology [13]. 
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For his proof, Bekenstein considers a multiplet of scalar fields in to the following action: 

                                                                                                         (3) 

And from the first derivatives of   and  , we can form 

            

            

            

In nature there are no elementary fields therefore Bekenstein uses the most general form for a 

scalar field. He assumes also minimal coupling to gravity and that the energy density carried 

by the scalar field is non-negative. The energy momentum tensor corresponding to action in 

(3) is : 

  
 

     
 

              
               

               
       

           (4) 

The local energy density seen by an observer with four-velocity    is: 

                    
 
               

 
                   

                (5) 

Where   is an energy density therefore it has to be positive or null. Like for a static black 

hole with scalar hair we suppose that the field has a time like killing vector. We can assume 

that      in Eq. (5) providing the observer moves along the Killing vector     
   . 

Therefore, for this specific field we have: 

                                                                                                                                           (6) 

and this proves the condition that the energy density   has to be positive or null. Going back 

to Eq. (3), if we take the case when       one can see that the terms involving derivatives 

dominate  . Combining this information with the condition     one can conclude that the 

dominant terms must be non negative (in our case   is a three velocity with which a second 

observer moves relative to Killing vector observer. For the case of a free falling frame of 

reference co-moving momentarily with the first observer we have               , and  

              where we remind that    is the four-velocity).       and       are 

positive provided the conditions below are satisfied
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       ,                                                                                                                (7) 

                                                                                                                 (8) 

To proceed further, Bekenstein assumes (in the case of a spherically symmetric black hole) 

the existence of a self consistent asymptotically flat solution for the Einstein and the scalar 

field. In this case the metric outside the horizon can be written as: 

                                                                                   (9) 

The event horizon radius is at       where              . This last equation has several 

solutions and the horizon always corresponds to the outer zero.  

In this proof asymptotic flatness is assumed as well as the non triviality of the scalar field 

(this last assumption leads to the conclusion that   and   depend on    ). As a consequence 

we have                   as    . 

Because of the coordinate invariance of the scalar’s action, the energy momentum tensor 

obeys the conservation law: 

      
                                                                                                                                    (10) 

A well know result by Landau and Lifshitz shows that the   component of Eq. (10) can be 

written in the form (the prime here corresponds to the partial derivative with respect to  ): 

          
    

 
                                                                                      (11) 

     
   must be diagonal and     

       
  

  because of the static and spherical symmetry of the 

solution we can write Eq (11) as: 

    
   

     
   

 

       
   

        
       

        
                                                       (12) 

The terms containing the derivative of    with respect to   cancel and we are left with the 

expression: 

         
   

 
                 

        
                                                                     (13) 
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By using the symmetries condition and Eq. (4) we obtain the result:   
     

     . Using 

this in the right hand side of Eq. (13) and rearranging the derivatives, we obtain the following 

equation: 

         
   

 
                                                                                                                (14) 

This is a very important equation and has a central role in Bekenstein proof. 

The term at the horizon (boundary term) vanishes when we integrate Eq. (14) from      to 

a generic  , because      and    
   is finite at that boundary. After integration we obtain: 

  
       

     

           
 
   

 

   
                                                                                        (15) 

Sufficiently near the horizon        has to grow with    and this is because      is 

positive outside it the horizon and null on the horizon. Then from condition in (6) and Eq. 

(15) on can conclude that sufficiently near the horizon we have   
    . 

The differentiation of equation (14) is carried out to obtain 

   
                      

 
     

                                                                                  (16) 

And from Eq. (4) one can write: 

     
                  

            
                                                    (17) 

We notice that     
     everywhere because conditions (7) and (8) guarantee the positive 

definiteness of the quadratic form in Eq. (17). The previous conclusions about        and 

from Eq. (16) we can conclude that like    
   , sufficiently near the horizon the derivative of 

  
   with respect to   is negative. 

If we take Eq. (16) and apply the condition        asymptotically, we have that   
     

To guarantee asymptotic flatness of the solution   must decrease at least as     when    . 

We can then conclude that and    
    decreases asymptotically as    and that the integral in 

Eq. (15) converges. Asymptotically we also have that    
       so we can deduce that as 

      
   must be positive and decreasing with increasing . Remember that we found near 

the horizon   
     and    

       . Taking everything into consideration, Bekenstein states 

that in some interval          we have     
       and that   

   changes sign at some    with 
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         being positive in         . Bekenstein shows then that this conclusion is 

gravitationally unstable. To do so he goes back to the Einstein equations: 

                          
                                                                             (18) 

                          
                                                                                        (19) 

To solve Eq. (18) we use the following equation 

                          

   
                                                                            (20) 

In Eq. (20) M is a constant of integration which can basically be considered to be the bare 

mass of the black hole,   the gravitational constant and       .  We require that       

for       so that       . Moreover we have           because of the condition on 

asymptotic flatness which requires that        . Having    would be incompatible with a 

regular black hole solution because this would mean a change in the metric signature. This 

taken into consideration and using Eq. (20) Bekenstein comes to the conclusion that      

throughout the black hole exterior. 

The next step is to write Eq (19) in the following form  

                
 
       

                                                                           (21) 

Using the inequality             one can conclude another inequality which is: 

                
 
       

                         
   

Remember we found that in             
     so we have the implication that 

                
 
   in this interval. Moreover using Eq. (16) we have that    

        

thorough our interval. The next step is essential in the proof because with it, Bekenstein 

establishes the No hair theorem for static spherically symmetric black holes. Earlier we have 

determined that    
        throughout the bigger interval       . Therefore there is a 

contradiction in our inequalities and solving these contradiction means accepting that the 

scalar field components , , ... are constant thorough the black hole exterior. These constants 

must have values such that all components of   
   vanish identically i.e. values such that: 

                                                                                                                          (22) 



14 
 

In his argument Bekenstein uses the trivial solution for the scalar equation as a boundary 

condition and in order to obtain a trivial solution for the scalar equation in the free empty 

space, such values for the scalar field components satisfying Eq. (22) must exist. The 

important conclusion that can be made is that the black hole solution must be Schwarchild. 

The black hole would have been Reissner-Nordstrom black hole in the case it was electrically 

and/or magnetically charged and the scalar fields uncoupled to electromagnetism. 

This theorem is very important and lead to several applications. One of them is using a 

analogous argument for the Higgs field   with an action similar to the one in Eq. (1). To 

exclude Higgs hair, we suppose the potential         has several wells and we assume the 

presence of a global minimum which is    . The energy density of the field is positive 

definite and we can choose    to be one of the values of   for which     .    can serve as 

a boundary condition for an asymptotically flat solution which requires that the energy 

density vanishes as      .but according to the theorem throughout the black holes exterior, 

     which is sufficient to rule out Higgs hair. 

5.Saa approach 

In his paper published in 2008 [7] Saa presents a generalisation of Bekenstein method. He 

adopts the conventions previously used in [14] to presents a theorem that excludes finite 

scalar hairs of any asymptotically flat static and spherically symmetric black hole solution. 

However in his paper he doesn’t consider situations where the divergence of the scalar field 

is not related to the singularity and where a scalar hair is. The divergence of scalar fields play 

an important part in the existence of hairs and this point was further investigated in Zannias 

paper [16] considered to exist. To do so he chooses the action  

                                                                                               (23)                                                     

Where      and      are positive 

In the literature the most common non minimally coupling for the scalar field is        

    and       . The Bekenstein method allows Saa to construct the exact solution from 

the solutions of the minimally coupled case. The case   
 

 
 corresponds to the conformal 

coupling case and there is also a method to generate solution for arbitrary   which is explored 

in [15] 

He proceeds as follows; he provides a covariant method to provide solutions for our action. 
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We start from the minimally coupled case with the action: 

                                                                                                               (24) 

We have two set of Euler Lagrange equations: 

For the first action in Eq. (1) we obtain: 

                            
 

 
                                                        (25a) 

                                                                                                        (25b) 

And for the action in Eq. (2) we have: 

                                                                                                                             (26a) 

                                                                                                                                      (26b) 

Saa considers the conformal transformation      
      in order to obtain the relation 

between Eq. (25) and Eq. (26). The choice for the conformal transformation allows the 

curvature scalar to transform as            
                 

He chooses deliberately 

       
  

                                                                                                                          (27) 

Using the conformal transformation and Eq. (1) we get: 

                          
 

 
 

 

  
       

 

 
    

    
                                      (28)       

The next step is to define a new function       as 

          
 

 
 

 

  
       

 

 
    

    
 

 

 
                                                                                (29) 

The result obtained is                           (here we are using an arbitrary   which is 

determined by boundary conditions). 

Because of the assumption made earlier on the positiveness of    and   leads to the 

consequence that the right handed side of Eq. (29) is a monotonically increasing function of 

 .  Therefore the Eq. (27) and (29) represent a covariant transformation because it is 
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independent of any symmetry assumption and this transformation that maps ( a one-to one 

map) a solution         of both equations in (25) into a solution            of both equations 

in (26). If      admits a killing vector   for which        then   is also a killing vector 

for    and this is true because the transformation used also preserves symmetries. This fact 

leads us to a very important conclusion for the rest of the proof: if we know all 

solutions          with a given symmetry we know all         with the same symmetry.  

For the set of equations in (26) some properties of the asymptotically flat static and 

spherically symmetric solution           were investigated in the paper [17] and the solutions 

are well known and given by two parameters        family of solutions presented here: 

             
   

                                                                                                       (30a) 

 

                          
  
 

                                                     (30b) 

We have    
    

    
  and we can choose the parameter   to be positive and smaller than 1.  

It is interesting to notice that by using the transformation               and for    , 

the solution is the exterior vacuum scharwchild solution with the horizon at   
     . Due to 

the fact that that the surface       is not a horizon, if we take the case       our set of 

equations in (30) does not represent a black hole. If we calculate the scalar curvature, we find 

that in this specific case it represent a naked singularity. 

This shows that the proof is in accordance with Bekenstein no hair theorem because the only 

black hole solution for the set of equation in (30) corresponds to the case where      which 

is  true for the usual Schwarzschild solution (when    ). The used conformal 

transformation does not allow        for any     . 

The important result of Saa approach is that using the transformation in Eq. (26) and Eq. (29) 

any flat static and spherically symmetric solution of  Eq. (25) can be obtainded from Eq.(30). 

This leads to the theorem: 
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The only asymptotically flat static and spherically symmetric exterior solution of the system 

governed by the action                                        , with the field 

  finite everywhere is the Shwarchild solution.  

6. Solution on black holes in 4D 

It has been proven that solution of hairy black holes exists. Most of them are unstable. In this 

section we will discuss the different types of hairy black holes and the stability of solution. 

We will depart from action which encompasses the characteristics of the system and derive 

Einstein and scalar equations from which we will deduce whether the system is stable or not.  
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Dressing a black hole with non minimally coupled scalar field hair: 

This section is mainly based on paper in [4]. This paper investigates the possibility of 

dressing a black hole with a classical non-minimally coupled scalar field in 4 dimensions. 

The model includes a cosmological constant. The action describing the system is: 

                                                                             (31) 

In this paper the simplest case for the self interacting scalar potential is considered which is 

      . In Eq. (1)   is the cosmological constant and   is the Ricci scalar curvature. For 

the coupling constant  , we have     in the case of a minimally coupled scalar field and in 

the case of conformal coupling the most common form is used, i.e.       . 

If we take the variation of our action we obtain the Einstein equations and the scalar field 

equation 

                                                       

                                                                                                                                   (32) 

   
                                                                                                                              (33)                                                                                            

We want to eliminate higher order derivatives of the metric from Eq (3). To do that we can 

use the scalar field equation (33) to substitute for    
   in the expression of the Ricci scalar. 

On way of obtaining the Ricci scalar is by taking the trace for (32) and we obtain: 

  
               

           
                                                                                                                (34) 

The next step is to assume that the scalar field    depends on on the radial coordinate, then 

we consider a static spherically symmetric black hole geometry with the metric: 

        
     

 
 

   

 
                  

     

 
 

   

 
 
  

          

                                                                                                                                     (35) 

We can obtain the Einstein equations for this new system: 

 

  
                

 

 
                        

  

 
                       (36a) 

 

 
                                                                                             (36b) 
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There is also a scalar field equation for the system: 

             
  

 
                                                                                         (37) 

Where      is defined as: 

       
     

 
 

   

 
                                                                                                         (38) 

We are interested in black hole solutions with regular non extremal event horizon at      

and we always assume that asymptotically the geometry approaches anti-de Sitter (AdS) 

space (negative cosmological constant). We want to able to numerically integrate Eq. (36a), 

Eq. (36b) and Eq. (37). To do so we eliminate the Ricci scalar curvature from Eq. (37) using 

Eq. (34) and we eliminate    from both the Einstein equations (36a) and (36b). 

These assumptions allows the scalar field to take the following form 

                                                                                                                            (39) 

Here     . We can use the scalar field equation (37) to find an expression for  . By solving 

the polynomial             we obtain: 

  
 

 
                                                                                                                 (40) 

In Eq. (39)    is a constant however, in order to maintain the consistency between the 

Einstein equations (36a) and (36b) and Eq. (34) we need to have the condition     . 

Because the potential is null in our system    doesn’t depend on the cosmological constant. 

Let us analyse the results found so far and what the different values of   correspond to. The 

geometry has to asymptotically approach AdS space in a manner compatible with Ricci scalar 

curvature in Eq. (34) so we can already rule out the case where   diverges as    . We 

need the scalar field to converge to zero at infinity therefore for all   ,   has a positive real 

part. The case of a non-minimally coupled scalar field in AdS with a non zero scalar potential 

is studied in [18]. Regarding the stability of the solution the paper came to the conclusion that 

the scalar field    must oscillate around zero with decreasing amplitude as   tends to infinity. 

This happens specifically when   is no longer real but has a non zero imaginary part which 

corresponds to the case       . In the case where      we have one root of   which is 

negative and one root which is positive, this means that the scalar field diverges at infinity. In 
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the case        the scalar field   monotonically decays to zero from its value on the event 

horizon. 

We want to know how    and    behave. For   , after  substituting the expression for   

given in Eq. (39) into Einstein equation (36a) we obtain the approximation             . 

We use the second Einstein equation (36b) to obtain the approximation              

therefore                with    being a constant. It is useful to add that near      

we have                     . Using [19] which studies a similar situation we have 

that when        the constant   is complex and its real part is exactly equal to     this 

leads to the conclusion that            as    . Moreover   is real when we take the 

positive root in Eq.(40) we have      . In this case               as     and 

     converges to the constant   at infinity.  

It is well known that stable and non trivial solutions exists when     or 1/6. Moreover the 

no hair theorem in our system has been proven everywhere in space except when   

         . It is therefore useful to study the existence and stability of hairy black holes in 

this specific case but we will only find the solution for which our conformal transformation is 

valid, namely: 

                                                                                                                                    (41) 

 To find these solutions we use a specific method which is presented in [20] for conformally 

coupled scalar fields which consists in integrating numerically our minimally coupled field 

equations in Eq. (36a) and Eq. (36b) and the solutions are transformed back to the non-

minimally coupled system. 

To illustrate the results we can show two typical solutions (numerically found) 
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Figure.1: Examples of typical hairy black-hole solutions with a non-minimally coupled scalar 

field, when ξ = 0.1 (dotted) and ξ = 0.2 (solid). For these solutions, the event horizon radius is 

taken to be             for the ξ = 0.1 solution and            for the ξ = 0.2 

solution, the cosmological constant          and the value of the scalar field at the event 

horizon       . Solutions for other values of the parameters   ,   , ξ and       behave 

similarly. 

 

Figure.2: Example of a typical hairy black-hole solution with a non-minimally coupled scalar 

field, when ξ = 0.2 > 3/16. The values of the other parameters are as in Figure.1. The first 

oscillation in   about zero can be seen in the main graph, while the inset shows the second 

oscillation. 
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The paper in [21] establishes that many of the black hole solutions in literature are unstable 

when subjected to a small perturbation. Let us discuss the stability of our system. 

A linear spherically symmetric perturbation of the metric and scalar field is considered. The 

perturbation for the scalar field is    and following the method used in [19] we can obtain a 

perturbation equation for   : 

                                  

The perturbation equation for the system represents a perturbation which is periodic in time 

therefore it has the standard Schrödinger form: 

     
   

   
                                                                                                                   (42) 

Here    is the tortoise coordinate in our asymptotically AdS space. We can choose a specific 

value for the constant of integration such that the tortoise coordinate lies in the 

interval.       and it is related to the radial coordinate by  
   

  
 

   

 
. 

The perturbation potential that we call   is given by: 

  

                                             

                                                      

                                                                                                                                     (43) 

It vanishes at the event horizon      and at infinity it follows the approximation 

  
     

 
      . For the case       the potential remains bounded at infinity. For the 

case        this means that the potential diverges to positive infinity like     as     

and diverges to negative infinity like          . Now to check the stability we do it 

numerically for those solutions with       for which the perturbation potential   is 

positive everywhere outside the vent horizon, we can conclude that the perturbation equation 

has no bound state solutions and the black hole is linearly stable. 

Now for        it is a slightly more complicated case because the potential diverges to    

as     . The method used is to define a new variable     such that        and   is 

positive or null and if     we have    . The idea is to examine the zero mode solutions 
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of Eq. (42) which are time independent solutions of our perturbation equation. The new 

perturbation equation in terms of our new variable   can be written as: 

     
   

                                                                                                                     (44) 

We can show the graph corresponding to the potential in figure 3: 

 

 

Figure.3: Sketch of the perturbation potential U as a function of y = −r  for the black-hole 

solutions shown in Figure.1 

Now in [22] an important result shows that the number of bound states of the Eq. (44) is 

equal to the number of zeros of the zero mode      such that       . If we define the zero 

mode as   and impose on it suitable initial conditions at the event horizon  we can find zero 

modes        of the equivalent perturbation equation are found numerically using: 

                  
 
                                                                                        (45) 

as      we examine the form of the solution of (45) it is a well known result that    

behaves like     where: 

   
 

 
                                                                                                                   (46) 

We are interested in the case        because the real part of   is positive and as      

     tends to zero.  
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For example we can take the black hole solutions in figure 1 and we can plot the the 

corresponding zero mode function     , because these are numerical solution we will 

describe them like they are in the paper. 

Here is the figure: 

 

Figure.4: The zero mode solutions of the perturbation equation (45) for the equilibrium black-

hole solutions plotted in Figure.1, and the corresponding solutions when ξ = 0.17 and 0.18. 

The cosmological constant is   = −0.1. 

The zero mode functions have no zeros and simply increase away from their value at the 

event horizon, For       it depsnds on whether        or       . If       

      then from   
 

 
               the constant   is real and the zero mode function   

monotonically decrease to zero as    . However for       the zero mode functions 

have at least one zero and may oscillate many times with decreasing amplitudes as   

 ..This mean that for        there is at least ne bound state solution of the perturbation 

equation With      and the black holes are unstable. 
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Hairy black hole solution of Einstein yang mills theory with a negative cosmological 

constant. 

Over the last years much has been learned about the classical interaction of Yang–Mills fields 

with the gravitational field of Einstein’s general relativity. Most investigations have 

concentrated on Yang–Mills fields with the gauge group SU (2) starting with Bartnik and 

Mckinnon’s discovery of globally regular and asymptotically flat numerical solutions. Their 

global existence was analytically proved and many further properties like stability of these 

particle-like or Soliton solutions and the corresponding black hole solutions were investigated 

numerically as well as analytically. Moreover, many different matter fields can be minimally 

coupled to the gravitational and Yang–Mills fields, and corresponding spherically symmetric 

solutions have been, mostly numerically, but sometimes also analytically studied.  

The proof presented here and based on [4] is a generalisation of black hole solutions of the 

SU (2) Einstein –Yang-Mill equations in four dimensional asymptotically flat space-time 

found in [3]. The difference between the two paper is that [3] considers topological black 

holes too whereas paper in [4] considers only spherically symmetric black holes. In this proof 

  is the cosmological constant,   is the Ricci scalar and the metric signature is          . 

We are interested in static spherically symmetric Soliton and black hole solutions of the field 

equations which are derived by varying the action. This proof is more complex than the ones 

given before. 

Here we will present the model and the boundary conditions, the solutions are found 

numerically and are too complicated to investigate. 

For the SU (N) EYM theory the action negative cosmological constant is: 

  
 

 
                        

                                                                             (47) 

And the subsequent field equations are: 

          
 

 
          ,           

  
     

  
       

  
                                        (48) 

The YM stress energy tensor is defined by: 

             
   

 

 
          

                                                                                        (49) 

The metric is written in standard Schwarzschild like coordinate and corresponds to: 
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                                                                                             (50) 

Like we have seen before, the metric functions   and   depend on the radial coordinate only 

i.e.        and       . The metric function      can be written as: 

       
     

 
 

   

 
                                                                                                         (51) 

According to [23]  the most spherically symmetric ansatz for the SU(N) gauge potential is: 

          
 

 
         

 

 
                                                       (52) 

Using a choice of Gauge specified in [23] and because we know that we are only interested in 

purely magnetic solutions so we can set     and     from the beginning but we define 

these matrices nonetheless. Matrices   and   depend only on the radial coordinate   and are 

purely imaginary traceless diagonal (N N) matices. In Eq. (52) we defined    is the 

hermitian conjugate to   and   is a constant (N N) matice defined by  

                                                                                               (53) 

For           the matrix   is nilpotent and defined as: 

              
                                                                                                                  (54) 

Where    are gauge field functions.  

For any           if       are non zero one of the YM equations becomes 

                                                                                                                                         (55) 

This is proven in [23] and we will just assume this result here. 

A direct consequence is a new expression for the ansatz in Eq. (52) becomes: 

  
 

 
         

 

 
                                                                                     (56) 

This anzats for the Yang Mills potential is not the only possible one in SU (N) EYM. All 

spherically symmetric SU(N) gauge potentials can be found in [26]. 

The gauge field is described by     functions        because the only non-zero entries of 

the matrix   are              . The ansatz in Eq. (56) is particularly convenient because we 
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have exactly     YM equations for the     gauge field functions   .           . 

For our YM fields equation we have: 

      
            

    

 
   

                                                                         (57) 

With    
 

   
     

      
         

 
  

                                                                 (58) 

And         
  

 

 
     

      
                                                                                    (59) 

In this case, the Einstein equations take the form 

            and  
  

 
 

  

 
                                                                                               (60) 

 

  and   are unknown functions and we have      
     

   . As a result we have     

ordinary differential equations for    unknown functions,    ,     ,      . For each   

independently it is useful to note that the field equations (57) and (60)are invariant under 

transformation 

                                                                                                                                (61) 

and under the substitution 

                                                                                                                                    (62) 

The boundary conditions are very important in this proof. Because the cosmological constant 

is negative, there is no cosmological horizon. However the field equations are singular at the 

origin     at the event horizon      and at infinity when    . Let us briefly present 

the boundary conditions. 

At the origin 

The boundary conditions at the origin are most complicated of the three singular points. 

We proceed by assuming that     ,     ,       have regular Taylor series expansions 

(expansions about the singular point about    ). 

We present the Taylor expansions here: 

               
                                                                                         (63a) 
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                                                                                              (63b) 

                      
                                                                                    (63c) 

The metric and the curvature are regular at the origin because we impose the condition 

     (since the metric only involves derivatives of  ,    is otherwise arbitrary) and   ,   , 

     are constants. 

As a result, the constants and the metric functions are defined as  

                                                                                                            (64) 

and                                                                                                                      (65) 

Because of the invariance of the metric under transformation (61) we can take the positive 

root square in Eq. (65). To determine the values of the remaining constants we substitute the 

Taylor expansion into the field equations (57) and (60). 

At the event horizon: 

At      where the metric function      has a single zero we assume that here is a regular 

non extremal event horizon for black hole solutions and this condition fixes the value of 

     : 

          
   

 

 
                                                                                                                (66) 

Like for the singular point at the origin we use taylor expansions of the field variables. We 

assume that the variables     ,      ,      have regular Taylor expansions about      

                               
                                                                  (67a) 

                           
                                                                  (67b) 

               
                   

                                                                (67c) 

We set         in (57) and this fixes the derivatives ofthe gauge field functions       at 

the horizon     : 

  
     

            

          
             

    
                                                                                        (68) 
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For a fixed cosmological constant the Taylor expansions in (67a), (67b), (67c) are determined 

by     quantities       ,      ,   . Without loss of generality we can consider        . 

At the event horizon we need to have a condition which weakly constrains the values of the 

gauge fields functions       . Moreover if want the event horizon to be non-extremal we 

have to have the condition:           
             

                                                                                            

At infinity  

As     we put a condition on the metric in Eq (50): it has to approaches AdS space-time 

the field variables     ,      ,     converge to constant values. 

In a similar way as before we assume that the field variable have Taylor expansion as    : 

                                                                                                                        (69a) 

                                                                                                                           (69b) 

                                                                                                                        (69c) 

Regarding the values of      if the cosmological constant is negative there no constraints on 

the values of      and the AdS black holes will be magnetically charged. But we can impose 

the condition that the space-time is asymptotically flat and with a null cosmological constant 

and constrain the values to be  

                                                                                                                           (70) 

According to [4] this condition means that these solutions have no global magnetic charge so 

at infinity they are indistinguishable from Schwarzschild black holes. At the singular point 

which is infinity the fact that the boundary conditions less restrictive when the cosmological 

constant is negative leads to the expectation of many more solution in that specific case. 

 

MTZ model 

The MTZ black hole, named after Cristian Martinez, Ricardo Troncoso and Jorge Zanelli, is a 

black hole solution for (3+1)-dimensional gravity with a conformally coupled self-interacting 

http://en.wikipedia.org/wiki/Black_hole
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scalar field The model includes a positive cosmological constant, the space-time is 

asymptotically locally AdS and  the event horizon is a surface of constant negative curvature. 

The advantage of this model is that it reproduces the local propagation properties ok Klein 

Gordon field equations on Minkowski space-time better than minimally coupled fields. 

Moreover this model allows non trivial black hole solutions. 

We will here present the MTZ model and sketched the derivation of two solutions based on 

[6] 

In this model the action is: 

  
 

 
                          

 

 
         

 

  
                           (71) 

We have the presence of a scalar field   conformally coupled to gravity with and   is a 

coupling constant, a electromagnetic field     and a quatric self-interaction potential. Euler 

LaGrange Equations are obtained by varying the action with respect to the scalar field the 

Maxwell potential and the metric respectively: 

   
 

 
                                                                                                              (72a) 

                                                                                                                                    (72b) 

            
 

    
                                                                                                     (72c) 

And the stress energy tensors are: 

   
 

        
 

 
    

         
 

 
                

       
                   (72d) 

   
   

 

  
           

 

 
                                                                                       (72e) 

We deliberately chose a non-minimally coupled scalar field with a quadric self interaction so 

that (72a) and (72b) are invariant under conformal transformations of the form    
     a 

        and      
     and equations and the stress energy tensors transform as   

 
 

 
     

 
,    

    
     

   under the same transformation. 

Identically to        
      the trace of    

 
 vanishes on shell 

http://en.wikipedia.org/wiki/Scalar_field
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                                                                                    (73) 

Using the system f equations (72a), (72c), (72d) and (72e) and taking the trace of equation 

(72c) we obtain an important relation between the cosmological constant and Ricci scalar: 

                                                                                                                                      (74) 

In the case where      with      (  being a constant) we obtain a new system for the 

field equations in (72): 

   
  

 

 
           

         
                                                                                 (75a) 

       
                                                                                                                      (75b) 

                                                                                                                                    (75c) 

These are Einstein equations with an effective Newton constant which given by:      

   
 

   
 
  

  and the case where   
 

   
    is unphysical because it corresponds to 

repulsive gravitational forces. This case is further investigated in [25]. 

 Again using (75b) we and taking the trace of (75a) we obtain:  

  
   

 

  
                                                                                                                              (76) 

We notice that using Eq. (76) the Eq. (75b) gives Eq. (74) again and that (75a) takes a 

simpler form: 

   
 

   
               

                                                                                              (77) 

In this proof, because it seems to admit a wider range of solutions, we are particularly 

interested in the case where the coupling constant is   tuned with the cosmological constant 

as: 

   
 

  
                                                                                                                                 (78) 

So a distinction can be made between these kind of theories which can be called special 

theories where    
 

  
 and the generic theories where    

 

  
. 
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The field equations for special theories become 

   
                                                                                                                                   (79a) 

                                                                                                                               (79b) 

                                                                                                                                    (79c) 

In the case   
   . There is an important remark to be made on    

     because it implies 

that      . However it doesn’t mean that the gravitational field is unconstrained. 

In this paper only static spherically solutions for solutions for the case       are explored 

and the scalar field depends on the radial coordinate   only (      ). The space is defined 

by:                                          

                         
                                                                                  (80) 

Instead of (72a) we will use a simpler field  

   
 

 
                                                                                                                (81) 

In [25] the exact solution was found to be 

                         
                                                                                (82) 

There are two sets of solutions MTZ1 and MTZ2. 

The first set of solutions with a constant scalar field  
   

 

  
  is MTZ1. 

 

By imposing the condition           on Eq. (82) we can obtain      for generic 

theories. For special theories the only constraint on Eq. 982) is Eq. (74) 

The conditions in special theories are less restrictive than the ones for generic the theories 

therefore we will have a wider set of solutions for special theories. 

In fact for for generic theories we have the following set of equations:  

       
  

 
 

 

 
   and       

  

  
 
   

                                                                         (83) 
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For special theories we have two integration constants instead of one: 

       
  

 
 

 

  
 

 

 
   and                                                                                (84) 

In this paper, the singularity at     is hiden behind the event horizon because only static 

black hole solutions with a sensible stress energy momentum tensor are of interest and we 

want    
 

 to satisfy the appropriate energy conditions for that. It should be added that these 

solution are extremely unstable under perturbation of the metric. 
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