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Abstract

This MSc thesis is a study of matrix models for two-dimensional quan-

tum gravity and a higher-dimensional analogue thereof, group field

theory. These are zero-dimensional field theories whose Feynman dia-

grammatic expansion yields a sum over topologies for a path-integral

setting of quantum gravity. Care has been taken to provide detailed

calculations and to point out subtleties and open issues.
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Chapter 1

Introduction

In this thesis, I will attempt to illustrate a particular viewpoint on the problem of

quantizing gravity by using simplified toy models, namely gravity in two and three

dimensions. The following brief introduction serves to argue for the necessity of

a theory of quantum gravity and to motivate the particular approach presented

in this work.

1.1 Why quantum gravity?

On a variety on theoretical and conceptual fronts, indications are that our under-

standing of both gravitation and quantum theory is left fundamentally incomplete

if they remain two disparate theories in disparate mathematical frameworks. De-

spite the inability of current particle accelerators to access the relevant energy

scales directly, a scheme for treating quantum effects and gravity in a unified

manner is consequently desirable:

• Both quantum field theory and general relativity on their own are plagued

by ultraviolet divergences and curvature singularities, respectively, both of

which are sensitive to assumptions on short-distance physics. The fate of

these mathematical pathologies is up to now unclear, much like the infinities

that arose in early attempts to understand blackbody radiation before the

advent of quantum theory in the early twentieth century.
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CHAPTER 1. INTRODUCTION

• Black hole singularities seem to imply a loss of unitarity in the time evo-

lution of quantum theory [Hawking, 1976]. This lead to the black hole in-

formation paradox, a resolution of which necessitates a theory of quantum

gravity. If singularities are affected in such a framework, there similarly

might be implications for cosmological singularities and the origin of the

universe.

• A more mathematical argument has been given in [Thiemann, 2001]. The

field equations of Einstein’s theory state that

Gµν = κTµν , (1.1)

where κ is a constant, Gµν is a combination of the Riemann tensor and

the Ricci scalar, and Tµν is the energy-momentum tensor for the matter

distribution in spacetime. In quantum field theory however, the latter is

an operator T̂µν acting on a Hilbert space, which can not be equated to

a classical field such as Gµν in a straightforward way. A possibility is to

replace T̂µν with its expectation value 〈T̂µν〉. The computation of its value in

field theory requires specifying a background metric g, while the subsequent

solution of (1.1) will generally yield a metric g′ 6= g. One might backfeed

this solution to recompute 〈T̂µν〉. This iterative procedure however need

not converge in general. A possible conclusion is that consistency can only

be achieved by promoting g itself to an operator.

1.2 How quantum gravity?

Early attempts at quantizing gravity included the perturbative procedure that

yielded the countless successes of quantum field theory. However, the perturba-

tive nonrenormalizability as found in [Goroff and Sagnotti, 1986; ’t Hooft and

Veltman, 1974] limited the applicability of this approach to a treatment of phe-

nomena well below the Planck scale. Yet, a conservative interpretation is that

this does not imply a quantum field theory of gravity cannot be found, and renor-

malization might be achieved in a nonperturbative framework. This scenario

2



1.2. HOW QUANTUM GRAVITY?

has prominently been advocated in the context of the functional renormalization

group [Gomis and Weinberg, 1996]. The focus of this thesis will be the comple-

mentary but related approach of lattice theory, namely putting the theory on a

triangulation instead of a smooth manifold.

On a different note, it has long been speculated whether the topology of

spacetime might in fact be dynamical as well: Wheeler coined the pictorial term

“quantum foam” for quantum dynamics of the metric field at the Planck scale,

subject to large topology-changing quantum fluctuations [A. and Wheeler, 1957].

A related unresolved question is whether the metric is in fact the appropriate

dynamical variable. In particular, it has been argued that if a gauge connection

is used instead, topology change is unavoidable [Horowitz, 1991]. The question

whether toppology change does play a role being unanswered, it is desirable to

solve this issue dynamically and not a priori. In that context, the approach to

quantize gravity canonically in a Hamiltonian framework, requiring a fixed topol-

ogy, is ill-suited, suggesting a path-integral approach to address the question of

dynamical topology.

For these reasons, this thesis will focus on a path-integral approach to lattice grav-

ity.

I close the introduction with a conceptual remark [Freidel and Louapre, 2003].

In practice, a sum over topologies in a path integral is hard to define: in a sum

over all possible triangulations of three-manifolds, the gravity partition function

is bounded from below [Ambjorn et al., 1991],

Z ≥
∑

N3

λN3N(N3) (1.2)

where λ is a constant, N3 is the number of three-simplices in the triangulation and

N(N3) the number of possible triangulations for a given N3. From combinatorial

arguments, N(N3) ∝ N3! if no topological restrictions are made. This factorial

growth seems to obstruct any attempt to make a sum over topologies well-defined.

In this thesis, I will attempt to illustrate a different take on this issue. Interpreting

a triangulation not as a lattice regularization, but as a diagrammatic amplitude in
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CHAPTER 1. INTRODUCTION

a perturbative expansion offers a new perspective: It was first shown in [Dyson,

1952] that physical quantities in interacting quantum theory are non-analytic

functions of the coupling constant. This is manifested in a vanishing radius of

convergence for a series expansion that is at best asymptotic. Understanding

this expansion as arising from a nonperturbatively defined quantity may allow

standard tools from quantum field theory to be employed to give a well-defined

meaning to its value. In the context of lattice gravity, this can be achieved

by reinterpreting a sum over lattices as a sum over Feynman diagrams of an

underlying zero-dimensional field theory. This particular viewpoint is the core

theme of this work1.

The thesis is structured as follows: in chapter 2, I will present a simple matrix

model as a particular realization of the idea that a sum over topologies can arise

as the perturbative expansion of an underlying path integral expression. Chapter

3 serves to set grounds for a realization of a similar scenario in three dimensions:

I will present BF theory and argue that in three dimensions, it is equivalent to

general relativity. I will outline a discretization procedure to arrive at the corre-

sponding lattice theory and quantize it in a path integral framework. Chapter 4

will then put these ingredients together: I will first demonstrate how in two di-

mensions, the framework of group field theory is equivalent to the matrix models

presented in the first chapter. Thereafter I will show that in three dimensions,

it gives rise to a sum over topologies for lattice quantum gravity. In chapter 5,

I will conlcude with pointing out open issues and further lines of development

towards more realistic models.

1Let me emphasize that this viewpoint is by no means a very new one, and in particular
not my own idea. A good exposition of the idea can be found in [Freidel and Louapre, 2003],
and many other references I will give throughout the thesis.
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Chapter 2

Matrix Models

The equivalence of lattice models of two-dimensional gravity and theories of dy-

namical matrices was first advocated in [David, 1985]. These types of models

turned out solvable in the large N limit [Bessis et al., 1980; Brézin et al., 1978],

with results for fixed topology in agreement with those obtained by the contin-

uum theory, where computable. Later, a continuum limit was found nonpertur-

batively, including contributions from all topologies [Douglas and Shenker, 1990].

This sparked hope for a nonperturbative definition of string theory and quantum

gravity in two dimensions. In the following sections, we will sketch the results

crucial for gaining an intuition for an approach towards the three-dimensional

case.

2.1 Gravity in two dimensions

Given a smooth, orientable two-manifold M, the Einstein-Hilbert action in two

dimensions with cosmological constant is given by

SEH[g] =
1

2κ

∫

M

d2x
√

|g|(R− 2λ), (2.1)

where g is the metric tensor, |g| the modulus of its determinant and R the cur-

vature scalar. Here, κ is dimensionless and λ has dimensions of inverse area. In

5



CHAPTER 2. MATRIX MODELS

two dimensions, the identity

Rµν =
1

2
gµνR (2.2)

holds algebraically and the resulting set of classical solutions for gravity is conse-

quently trivial if M is diffeomorphic to S2. Upon quantization however, off-shell

geometries contribute and large quantum fluctuations may change the genus of

the surface. For higher genera the corresponding phase space is more compli-

cated, rendering the corresponding quantum theory nontrivial. Using the fact

that for a given topology, the area of M is given by Σ =
∫

M
d2x
√

|g|, and the

Euler characteristic of M by 4πχ =
∫

M
d2x
√

|g|R, we can integrate the action to

give

SEH[g] =
2π

κ
χ− λ

κ
Σ. (2.3)

A corresponding quantum theory including a sum over topologies can be defined

by making sense of the symbolic functional integral expression

Z2D =
∑

h

∫

Dge−
λ
κ
Σ+ 2π

κ
χ. (2.4)

Here, h is the genus of the surface, related to the Euler characteristic by χ =

2 − 2h. One such proposal, dating back to [Weingarten, 1982] is to replace1 M

with a triangulated surface ∆, and sum over connected triangulations of all genera

h,

Z2D =
∑

h

∑

∆ connected

e−
λ
κ
Σ+ 2π

κ
χ. (2.5)

The goal of the next section is to present a tentative model that serves as a

definition for the above sum (2.5) in terms of a perturbative expansion of a

nonperturbatively defined quantity.

1For a concise review of the construction, see [Ambjorn, 1994].
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2.2. MICROSCOPIC MATRIX ACTION

2.2 Microscopic matrix action

Consider an ensemble of N × N hermitian Matrices M = M †, with dynamics

governed by the U(N)-invariant action

S(M) = N

(

1

2
trM2 − gtrM3

)

, (2.6)

with g a coupling constant and tr the trace. Let us examine the diagrammatic

expansion of the partition function

Z =

∫

[dM ]e−S(M), (2.7)

with the measure defined by integrating the independent components over C,

[dM ] =

N
∏

i=1

dM i
i

∏

i<j

dM i
j dM

∗i
j . (2.8)

Here, the index positions refer to the transformation behaviour of M under U(N),

which is given by the adjoint action

M i
j → M ′i

j = U(g)ikM
k
lU(g

−1)lj, g ∈ U(N). (2.9)

In the last equation and in what follows, repeated indices will be summed over.

The generating functional is

Z[J ] =

∫

[dM ]e−Ntr( 1
2
M2+JM)

=

(

2π

N

)N2/2

e
N
2
trJ2

,

(2.10)

where J is a hermitian N × N matrix serving as an external current. Denoting

Z[J ]|J=0 = Z0, we can find the propagator by taking the second derivative with

respect to M ,

〈M i
jM

k
l 〉 =

1

Z0

∂2Z[J ]

∂J ji∂J
l
k

∣

∣

∣

∣

∣

J=0

=
1

N
δilδ

k
j . (2.11)
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CHAPTER 2. MATRIX MODELS

= 1
N
δilδ

k
j

i l

j k

= gNδ
j
kδ

l
mδni

j i

k

l m

n

Figure 2.1: Feynman rules for the matrix model.

The vertex contribution can be read off from the action as

gNδjkδ
l
mδ

n
i. (2.12)

The Feynman rules can conveniently be depicted graphically in terms of oriented

double lines1 as shown in Fig. 2.1. Vertices will thus contribute positive powers

of gN , internal lines powers of N−1, and each closed loop another factor of N

from the resulting index contractions. The expansion of (2.7) will generate graphs

without external legs only. In this expansion, the amplitude associated to a single

graph Γ with V vertices, E edges (internal lines) and F faces (closed loops) is

thus

A(Γ) = gVNVN−ENF = gVNχ(Γ), (2.13)

where χ(Γ) = V −E + F is the Euler characteristic of Γ. The amplitude of each

graph defines an amplitude for a triangulation ∆ of a two-dimensional oriented2

surface in the following way: associate to each vertex an equilateral triangle, with

a double line passing through each edge. Join the triangles along edges that are

connected with propagators. Using the fact that then, χ(Γ) = χ(∆), we can

associate (2.13) with an amplitude for a two-dimensional simplicial complex ∆

1This notation was first introduced by ’t Hooft in his seminal paper to study the large N

limit of SU(N) Yang-Mills theory [’t Hooft, 1974].
2Had we used real symmetric matrices instead of hermitian matrices, upper and lower

indices would be equivalent and consequently the lines in the Feynman diagrams unoriented,
thus generating unoriented triangulations.
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2.2. MICROSCOPIC MATRIX ACTION

Figure 2.2: A Feynman diagram occuring in the expansion of (2.16) corresponding
to a triangulation of S2, proportional to g4N2. Labellings and orientations have
been suppressed.

with T triangles:

A(∆) = gTNχ(∆). (2.14)

An example is depicted in Fig. 2.2. Given A(∆), upon inspection and comparison

with (2.3), we may rename N = e−2π/κ, g = eλΣ0/κ, where Σ0 denotes the area of

a single triangle such that T = Σ/Σ0. Then we have

A(∆) = exp

(

λ

κ
Σ− 2π

κ
χ

)

= e−SEH . (2.15)

Applying Wick’s theorem, we see that at order n, the expansion of (2.7) gen-

erates all possible gluings of n triangles, weighted with the exponential of the

Einstein-Hilbert action in two dimensions. To make contact with our initial goal

of defining the path integral for two-dimensional quantum gravity, we can take

the logoarithm of (2.7) to generate connected diagrams only, corresponding to

triangulations of connected surfaces. We then arrive at the conclusion, that the

free energy F of the matrix model provides a tentative definition of the partition

function for two-dimensional gravity,

F = logZ =
∑

h

∑

∆ connected

e−SEH . (2.16)

9



CHAPTER 2. MATRIX MODELS

2.3 Continuum limt

Intuitively, to define a continuum limit, one needs the matrix model to approach

a critical point for some value gc of the coupling g, such that in the vicinity

of gc, the partition function function is dominated by graphs with a divergent

number of vertices. This is reasonable because the average dual triangulation

will correspondingly contain a divergent number of triangles, the areas of which

can then be scaled to zero, keeping the physical area Σ = n · Σ0 fixed.

Another important remark is that while in the last section, we explicitly chose

an interaction V (M) = λtrM3, a priori, we need to allow for arbitrary potentials

V (M) =
∑

k λktrM
k to consistently deal with all possible quantum corrections.

The crucial point however for finding a continuum limit by means of a critical

point is that universality applies: while the critical values of the coupling con-

stants λn depend on the form of V (M), the critical exponents and the existence

of phase transitions do not. A continuum limit will thus exist for any reasonable

choice of V (M) [Di Francesco et al., 1995].

Let me first demonstrate the existence of a simple continuum limit in which

only surfaces of genus zero contribute, and thereafter discuss a more interesting

limit for which all genera remain relevant. Writing χ(Γ) = 2− 2h, we can recast

(2.13) explicitly in powers of two expansion parameters, g and 1/N2:

A(Γ) = N2gV
(

1

N2

)h

, (2.17)

where we can expect the expansion in h to be reliable for large N . The genus

expansion of Z then reads

Z(N, g) =
∑

h

N2−2hZh(g)

= N2Z0(g) + Z1(g) +
1

N2
Z2(g) + O

(

1

N4

)

.

(2.18)

This expression clearly suggests that in large N -limit, the partition function is

dominated by contributions of genus zero. Let us for the moment work in this

regime. The genus zero contribution Z0 can now be expanded in powers of g.

Next, we make the following

10



2.3. CONTINUUM LIMT

Claim [Di Francesco et al., 1995, and references therein]. The function

Z0(g) diverges at a critical value gc of the coupling constant g, with the singular

piece having large-n behaviour

Z0(g) ∝
∑

n

nγ−3

(

g

gc

)n

∝ (gc − g)2−γ, (2.19)

where γ is a critical exponent.

Consequently, near criticality, the expectation value of the area, being determined

by the expectation value of the number of vertices 〈n〉, behaves as

〈Σ〉 = Σ0〈n〉 ∝
∑

n

n · nγ−3

(

g

gc

)n

∝ Σ0
∂

∂g
logZ0(g) ∝

Σ0

g − gc
.

(2.20)

This allows to define a continuum limit of the matrix model action (2.6) by

simultaneously taking

N → ∞, g → gc, Σ0 → 0 with Σ =
Σ0

g − gc
fixed. (2.21)

Instead of taking the limit N → ∞ first, and the limit g → gc second, there is

another possibility to obtain a different continuum theory by taking both limits

simultaneously in a coordinated manner. To make this apparent, let us not yet

take the large-N limit. We make another

Claim [Di Francesco et al., 1995, and references therein]. The functions

Zh(g), h ≥ 0 diverge at the same critical value gc as does Z0(g), scaling at large

orders n as

Zh(g) ∝
∑

n

n(γ−2)(1−h)−1

(

g

gc

)n

∝ (gc − g)(2−γ)(1−h). (2.22)

Close to criticality, contributions from higher genera h ≥ 1 are thus enhanced to

contribute more significantly. At the same time, the divergent behaviour of 〈n〉

11



CHAPTER 2. MATRIX MODELS

is preserved. In this regime, the genus expansion (2.18) can be rewritten

Z(N, g) =
∑

h

N2−2hZh(g)

∝
∑

h

N2−2hfh(g − gc)
(2−γ)(1−h)

∝
∑

h

fhg
2h−2
s ,

(2.23)

where we defined gs = [N(g − gc)
(2−γ)/2]−1. We can then take the limit

N → ∞, g → gc, gs = [N(g − gc)
(2−γ)/2]−1 fixed. (2.24)

This is commonly referred to as the double scaling limit. Of course, still having

Σ0 as a free parameter at our disposal, we can take a corresponding continuum

limit with fixed physical area just as before. This procedure gives a continuum

theory to whose amplitude surfaces of all genera contribute significantly.

As a final remark, let us note that the continuum limit is intrinsically non-

perturbative in g. This stems from the fact that in this limit, large powers of g

dominate over lower order contributions. This is incompatible with the assump-

tion of small g needed for perturbation theory, for which the critical point hence

remains invisible.
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Chapter 3

BF Theory

The first appearance of BF theories as a class of topological field theories and

the relation to three-dimensional gravity dates back to [Horowitz, 1989; Schwarz,

1978]. This chapter will first give a review of the classical theory and demon-

strate its equivalence to three-dimensional general relativity. Thereafter, I will

discretize BF theory on a simplicial lattice. While certainly not unique, I shall

demonstrate that the discretization procedure does not invoke any approxima-

tions. The simplicial lattice serves as a regularization for the path integral mea-

sure, and subsequent quantization will lead us to an expression for the partition

function of a form first proposed by Ponzano and Regge [Ponzano and Regge,

1968]. The quantization procedure itself has appeared frequently in the litera-

ture [see e.g. Freidel and Krasnov, 1999], albeit sketchy and partially glossing over

technical subtleties. The purpose of the last section in this chapter is thus to pro-

vide a more detailed exposition and comment on the relation between the initial

proposal by Ponzano and Regge and the partition function for three-dimensional

BF theory. This yields a crucial cornerstone to arrive at the generalized matrix

models presented in the last chapter.

3.1 Classical Theory

Given a smooth, orientable manifold M with local coordinates {xµ} and a Lie

group G with Lie algebra g ∼= T1G, BF theory in three dimensions is described

13



CHAPTER 3. BF THEORY

by the set of g-valued one-form fields

A = A i
µ t

idxµ, B = B i
µ t

idxµ, (3.1)

with {ti} the basis of g. In the following, latin indices i = 1, ...dim(g) will always

refer to the Lie algebra, and greek indices µ = 1, 2, 3 to M. Using A as a gauge

field, we can now introduce its curvature1:

F = dA+ A ∧ A, (3.2)

Note that the second term in F vanishes only when G is abelian. The BF action

is

SBF [A,B] =

∫

M

tr(B ∧ F ), (3.3)

where tr is a nondegenerate bilinear form on g. The extremum conditions for the

action are given by

0 =
δSBF
δA

= dAB, 0 =
δSBF
δB

= F. (3.4)

The first equation states that B is covariantly constant, and the second implies

the flatness of the connection. Here, dA is the gauge covariant derivative on forms,

dA· =







d + A ∧ · acting on the fund. rep.

d + [A, ·] acting on the adjoint rep.
(3.5)

The action has the following three symmetries:

1. Let g ∈ G. Then the gauge transformation

A→ A′ = gAg−1 + gdg−1,

B → B′ = gBg−1
(3.6)

1Note that dAA 6= F , while dAδA = δF .

14



3.1. CLASSICAL THEORY

leaves SBF invariant. The infinetesimal form is given by

δXA = dAX,

δXB = [B,X ],
(3.7)

with X a g-valued scalar and [·, ·] the commutator on g.

2. Let φ ∈ g. Then, as a direct consequence of the Bianchi identity dAF = 0,

the translation

δφA = 0,

δφB = dAφ
(3.8)

is a symmetry of SBF up to a boundary term. Moreover, since dAB = 0, lo-

cally there is always a zero-form φ such that B = dAφ by Poincarés lemma.

Together with the fact that all flat connections are locally equivalent, this

implies that all solutions to (3.4) are locally the same up to gauge trans-

formations. Theories with this property are referred to as topological, as

locally, they have no physical degrees of freedom.

3. The action is manifestly invariant under diffeomorphisms. For the next

discussion, an explicit form for infinitesimal diffeomorphisms is instructive:

let ξ be an arbitrary vector field on M. Then under a diffeomorphism

generated by ξ, the fields transform as

δξA = d(ıξA) + ıξ(dA),

δξB = d(ıξB) + ıξ(dB),
(3.9)

where ı denotes the interior product on forms.

One can now show that the above symmetries are not entirely independent. More

specifically, consider the simultaneous transformations

δA = dAX + ıξ(dAA),

δB = [B,X ] + dAφ+ ıξ(dAB).
(3.10)

15



CHAPTER 3. BF THEORY

On-shell, these are simply a combination of a gauge transformation and a trans-

lation. Picking X = ıξA and φ = ıξB everywhere, these take the form of a

diffeomorphism generated by ξ if the equations of motion (3.4) are satisfied. This

implies an on-shell equivalence between diffeomorphisms and local combinations

of gauge transformations and translations.

3.2 Relation with GR

The relation to general relativity in 2 + 1 dimensions can be drawn as follows.

A smooth 2 + 1-dimensional manifold is equipped with a corresponding tangent

space TpM at every point p ∈ M. Introducing a g-valued connection requires

an additional abstract vector space Vp at every point, with isometry group G.

However, upon choosing G = SO(2, 1), these two spaces are isomorphic. One

can then introduce a so(2, 1) ∼= su(1, 1)-valued one-form field e = eiµt
idxµ with

i = 1, 2, 3 and ti = −iσi/2, with σi the three Pauli matrices. Then we have that

[ti, tj ] = ǫijkηklt
l, where ǫijk is the usual totally antisymmetric tensor and ηkl =

diag(−1,+1,+1). e then serves as an explicit choice for an isomorphism between

these vector spaces at every point [Witten, 1988]. Let us now demonstrate how

this isomorphism finds its place in BF theory. Choosing G = SO(2, 1), we make

the identifications

Ai =
1

2
ǫijkωjk, Bi = Gei, (3.11)

with G a coupling constant of mass dimension [G] = 1 to make e dimensionless.

The gauge transformations (3.6) are now the local frame rotations of the triad

and the spin connection with a tangent space of Lorentzian signature1. Indeed,

the appropriately rescaled action now takes the form

S[e, ω] =
1

32πG

∫

M

ǫijke
i ∧ Rjk, (3.12)

which is the usual Palatini-Kibble first-order action for gravity in three dimen-

1The Riemannian counterpart is obtained by replacing g = su(2) ∼= so(3).
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3.2. RELATION WITH GR

sions. The field equations (3.4)

dωe = 0 (3.13)

R = 0 (3.14)

now acquire the interpretation of imposing vanishing torsion and spacetime cur-

vature. General relativity in 2 + 1 dimensions can thus be regarded as a special

case of BF theory. To comment on the relation to the usual metric forumulation

of gravity, let us identify the components of the metric and its inverse,

g = ηije
i ⊗ ej , g−1 = ηije−1

i ⊗ e−1
j , (3.15)

or in components,

gµν = e i
µ e

j
ν ηij , gµν = eµie

ν
jη
ij (3.16)

where eµi is the inverse triad. Equipped with an invertible triad, one can also

define the Riemann curvature tensor,

Rα
βµν = eαie

j
β R

i
jµν . (3.17)

This allows to rewrite the action as

16πGS[e, ω] =
1

4

∫

M

ǫijke
i
µ R

jk
νρdx

µdxνdxρ

=
1

4

∫

M

ǫijke
i
µ e

j
α e

k
β ǫ

µνρRαβ
νρd

3x

=

∫

M

(det e)δναδ
ρ
βR

αβ
νρd

3x

=

∫

M

√

|g|Rd3x,

(3.18)

where g denotes the determinant of the metric and the identities

det e =
√

|g|, ǫµαβǫ
µνρ = 4δ[να δ

ρ]
β (3.19)
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CHAPTER 3. BF THEORY

have been used. The last line in (3.18) is exactly the Einstein-Hilbert action in

terms of the metric in three dimensions.

Let us however note that while BF theory and the first-order formulation

of gravity are equivalent in three dimensions, the metric formulation is subtly

different:

• The set of solutions in the first order formalism is larger than that of metric

gravity: the equations of motion (3.13), (3.14) are also solved by non-

invertible triads, for which

ds2 = ηije
iej = 0. (3.20)

These degenerate solutions have no analogue in the metric formulation of

gravity as the inverse metric and the curvature tensor are ill-defined.

• A second difference becomes manifest in presence of a matter term SMatter

in the action. If SMatter depends on ω, equation (3.13) acquires additional

terms. This happens for kinetic terms for spinors, where the covariant

derivative is of the form

▽µψ = ∂µψ + ω ij
µ γiγjψ, (3.21)

where the spinor indices have been supressed and the γi denote Dirac’s

matrices. This leads to torsion since then locally, dωe 6= 0. This is never

the case for metric gravity.

For the purposes of this thesis let us simply note that up to now, the four-

dimensional analogues of both formulations are compatible with experiments.

The latter ultimately has to decide whether torsion plays a rôle in the dynamics

of spacetime. Moreover, as we have seen, first-order gravity has a larger set of

solutions and is thus slightly more general. With foresight to studying couplings

to matter fields, let us furthermore note that coupling spinor fields to gravity

requires a spin connection as present in the first-order formalism [Wald, 1984].

For these reasons, and for the fact that quantization methods for gauge theories
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3.3. DISCRETIZATION

are readily available, we choose to stick with the first-order formalism for gravity

in the following, and in particular with its BF-theoretic incarnation. As a con-

sequence of degenerate metrics being a solution, we have to deal with dynamical

topology change in the quantum theory [Horowitz, 1991].

3.3 Discretization

The ultimate goal of this chapter is to provide a calculation of the path integral

for BF theory, symbolically

∫

DADBeiSBF [A,B]. (3.22)

To define this expression more rigorously, we need to make a choice of regular-

ization and provide an appropriate definition of the measures DA, DB. Our

choice will be to discretize M by replacing it with a simplicial complex corre-

sponding to a triangulation of M, and then consider the discretized fields as the

dynamical data for the path integral in analogy with lattice gauge theory. One

would then in principle need to specify a procedure for taking a continuum limit

that coincides with the initial continuum action. Owing to the topological na-

ture of three-dimensional gravity, this procedure will however turn out trivial.

To carry out the discretization, we need to establish a few conventions regard-

ing simplicial complexes and triangulations. In what follows, we will therefore

recall a few definitions, and construct discrete analogues of basic operations on

differential forms such as the wedge product, exterior derivative and Hodge dual.

The treatment will largely follow the presentation given in [Sen et al., 2000] and

[Thiemann, 2001]; the wedge variables introduced at the end of this section go

back to [Reisenberger, 1997]. This machinery will allow us to derive the starting

point for the path integral quantization given in the next section.

Definition 3.3.1. A p-simplex σ(p) = [v0, ...vp] in RD is the convex hull of p+ 1

vectors,

σ(p) :=

{

p
∑

k=0

akvk|ak ≥ 0,

p
∑

k=0

ak = 1

}

. (3.23)
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CHAPTER 3. BF THEORY

An orientation of σ(p) is induced by the order in which its vertices vk appear in the

list [v0, ...vp]. For a permutation π ∈ Sp+1, we say that [v0, ...vp] and [vπ(0), ...vπ(p)]

are equally oriented if π is even, and oppositely oriented if π is odd.

Definition 3.3.2. The boundary ∂σ(p) of a p-simplex σ(p) is defined as the set

of points for which ak = 0, with k = 0, ...p. This defines a set of p + 1 different

(p− 1)-simplices σ
(p−1)
k = [v0, ...vk−1, vk+1, ...vp], the faces of σ(p).

Definition 3.3.3. The barycentre of a p-simplex σ(p) = [v0, ...vp] is defined as

the point

σ̂(p) :=

∑p
k=0 vk
p+ 1

. (3.24)

The faces share the orientation of σ(p) if k is even, and oppositely oriented if k is

odd.

Definition 3.3.4. A simplicial complex K is a collection of simplices σ
(p)
i , p =

0, ...D, i = 1, ...Np, with the following properties:

1. All the subsimplices of each σ
(p)
i also belong to K.

2. Two simplices σ
(p)
i , σ

(p)
j intersect at most in a common subsimplex, which

has opposite orientation in σ
(p)
i and σ

(p)
j

It can be shown that any differential manifold M admits a partition into a simpli-

cial complex. The complex is then called a triangulation of M, and its topology

is inherited from the manifold. Such a triangulation will provide the lattice for

our discretization of the dynamical variables.

Definition 3.3.5. Let K = {σ(p)
I |p = 0, ...D, i = 0, ...Np} be a simplicial complex.

1. A p-chain c is defined as the formal real linear combination,

c =

Np
∑

i=1

ciσ
(p)
i , ci ∈ R ∀ i. (3.25)

The resulting vector space of all p-chains is denoted Cp(K).
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2. We turn Cp(K) into a Hilbert space, with an orthonormal basis provided by

the p-simplices, by defining the inner product

〈σ(p)
i , σ

(p)
j 〉K := δij ∀ i, j = 1, ...Np. (3.26)

3. The boundary operator on p-chains is defined by

∂ : Cp(K) −→ Cp−1(K)

σ
(p)
i 7−→ ∂σ

(p)
i :=

p
∑

k=0

(−1)k[v0, ...vk−1, vk+1, ...vp].
(3.27)

To proceed with a regularization of (3.22), we need to relate p-forms and p-chains

and find an analogue of the wedge product. We are then sufficiently geared to

discretize the form fields A, B on K. This is achieved by the following

Definition 3.3.6. Let K be a simplicial complex and let Λp(K) the space of

p-forms defined on K.

1. The Whitney map is defined by

WK : Cp(K) −→ Λp(K)

σ(p) 7−→ p!

p
∑

k=0

(−1)kakda0 ∧ ...dak−1 ∧ dak+1 ∧ ...dap,
(3.28)

where the ak, k = 0, ...p are the coefficients as defined in 3.3.1. Here, they

are understood as local coordinates on σ(p).

2. The de Rham map is defined by

RK : Λp(K) −→ Cp(K)

〈RK(ω), σ
(p)〉K :=

∫

σ(p)
ω.

(3.29)
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3. The wedge product on p-chains is defined by

∧K : Cp(K)× Cq(K) −→ Cp+q(K)

σ(p) ∧K σ(q) := RK

(

WK(σ
(p)) ∧WK(σ

(q))
)

.
(3.30)

A variety of properties of the above operations will be useful in our derivation of

a lattice version of BF theory, which we assemble in the following

Theorem 3.3.7. The operations WK, RK and ∧K obey the following relations:

σ(p) ∧K σ(q) = (−1)pqσ(q) ∧K σ(p)

RK ◦WK = 1
∫

σ(p)
WK(σ

′(p)) = 〈σ(p), σ′(p)〉
(3.31)

We refer the reader to [Whitney, 2005] for a proof. One more crucial piece for

our discretization procedure is missing, namely what is called the dual complex

⋆K, which we define in what follows.

Definition 3.3.8. Let K = {σ(p)
i |p = 0, ...D, i = 1, ...Np} be a simplicial com-

plex. For any σ
(p)
j0

∈ K consider all possible (D − p)-tuples of simplices σ
(p+k)
jk

with k = 1, ...D − p and 1 ≤ jk ≤ Np+k, subject to the following condition:

For all l = 0, ...D− p− 1, the simplex σ
(p+l)
jl

is a face of σ
(j+l+1)
jl+1 with the induced

orientation.

For each such (D−p)-tuple of simplices construct the (D−p)-simplex [σ̂
(p)
j0
, σ̂

(p+1)
j1

, ...σ̂
(D)
jD−p

],

where we have used the barycentres of the respective simplices as defined in 3.3.3.

The cell dual to σ
(p)
j0

is then defined by the map

⋆K : Cp(K) −→ CD−p(⋆K)

σ
(p)
j0

7−→ ⋆K [σ
(p)
j0
] :=

⋃

σ
(p+l)
jl

⊂∂σ
(p+l+1)
jp+l+1

l=0,...D−p−1

[σ̂
(p)
j0
, σ̂

(p+1)
j1

, ...σ̂
(D)
jD−p

], (3.32)
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where the cell complex ⋆K dual to K is obtained by joining dual cells along com-

mon subcells.

As the (D− p)-cells in ⋆K are in one-to-one correspondence to the p-simplices of

K, we can define a ⋆⋆K-operation on ⋆K as the inverse of ⋆K on K. Note that

in general, ⋆K is not a simplicial complex, but a cell complex of more general

type, composed of arbitrary polyhedra. Consequently, the operations we defined

on simplicial complexes cannot be extended straightforwardly to ⋆K. To repair

this, we need a notion of a simplicial complex in ⋆K. This is achieved by what

is called barycentric refinement:

Definition 3.3.9. Let π ∈ Sp+1 and let for each k = 0, ...p

σ̂(k)π :=

∑k
l=0 vπ(l)
k + 1

(3.33)

be the barycentre of the k-subsimplex [vπ(1), ...vπ(k)]. Then

1. The barycentric subdivision of σ(p) is defined as the set of (p+1)! p-simplices

σ
(p)
π := [σ̂

(0)
π , ...σ̂

(p)
π ].

2. The barycentric refinement B(K) of K is defined as the set of barycentric

subdivisions for all simplices in K.

Obviously, K ⊂ B(K). Moreover, since the p-cells of ⋆K are unions of the p-

simplices of B(K), it follows that also ⋆K ⊂ B(K). Since B(K) is simplicial,

all operations ∂, WK , RK , ∧K and ⋆K on K can now be extended to B(K) and

thus also to ⋆K, because Cp(⋆K) is a subspace of Cp(B(K)). Furthermore, we

can define an inner product 〈·, ·〉⋆K on CD−p(⋆K) as 〈·, ·〉B(K) on Cp(B(K)) by

declaring dual cells to be orthonormal.

We can now state the following helpful

Theorem 3.3.10. Let K be a triangulation of a differential manifold M and

let x ∈ Cp(K), y ∈ CD−p(K). Let furthermore E(x) and E(y) be the linear
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combinations of elements in Cp(B(K)) giving the sets x and y, respectively. Then

〈⋆K(x), y〉⋆K =
(D + 1)!

p!(D − p)!

∫

M

WB(K) (E(x)) ∧WB(K) (E(y))

〈⋆⋆K(y), x〉K =
(D + 1)!

p!(D − p)!

∫

M

WB(K) (E(y)) ∧WB(K) (E(x))

(3.34)

A proof was given in [Adams, 1996]. Now, all necessary ingredients to discretize

the BF action (3.3) are at our disposal. The final result is given by the following

theorem:

Theorem 3.3.11. Let M be an orientable differential three-manifold and let K

be a simplicial complex triangulating M. Let the form fields B and F be defined

as in section 3.1. Then

∫

M

tr(B ∧ F ) =
∑

σ(1)∈C1(B(K))

∫

⋆Kσ(1)
tr(FXσ(1)), (3.35)

where Xσ(1) =
∫

σ(1)
B.

Proof. Using the second identity of theorem 3.3.7, we can rewrite

SBF [A,B] =

∫

M

tr(B ∧ F )

=

∫

M

tr
[

WB(K)

(

RB(K)(B)
)

∧WB(K)

(

RB(K)(F )
)]

.

(3.36)

Next, using the skew-symmetry of the wedge product and invoking theorem

3.3.10, we find

SBF [A,B] = tr〈⋆⋆KRB(K)(F ), RB(K)(B)〉K . (3.37)

Note that ⋆⋆KRB(K)(F ) ∈ C1 (B(K)), since our manifold is three-dimensional

and F is a two-form. We can thus insert a resolution of the identity in C1 (B(K))
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into (3.37), giving

SBF [A,B] =
∑

σ(1)∈C1(B(K))

tr
(

〈⋆⋆KRB(K)(F ), σ
(1)〉K〈σ(1), RB(K)(B)〉K

)

. (3.38)

By definition of the de Rham map,

〈σ(1), RB(K)(B)〉K =

∫

σ(1)
B. (3.39)

This defines an element of the Lie algebra for each σ(1) ∈ C1 (B(K)),

∫

σ(1)
B =: Xσ(1) ∈ g. (3.40)

Using 3.3.10 and the skew-symmetry of the wedge product once more, we can

rewrite the field-strength contribution

〈⋆⋆KRB(K)(F ), σ
(1)〉K =

∫

M

WB(K)

(

E(σ(1))
)

∧WB(K)

(

RB(K)(F )
)

= 〈RB(K)(F ), ⋆Kσ
(1)〉⋆K

=

∫

⋆Kσ(1)
F,

(3.41)

where in the last step we used the de Rham map. Putting everything together,

we find that

SBF [B,A] =
∑

σ(1)∈C1(B(K))

∫

⋆Kσ(1)
tr(FXσ(1)), (3.42)

which completes the proof.

This defines the action for BF theory on a simplicial complex K. Remarkably,

(3.42) is exact and in particular independent of the chosen triangulation K of M.

This is a particular feature of topological theories and can not be expected to

hold for gravity in dimensions higher than 3.

Eventhough (3.42) can already be taken as a starting point for a path integral,
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I will in the last part of this section introduce a slight refinement of variables using

the barycentric refinement B(K). This will come in handy in section 3.4, where

we will deal with a generating functional and couple the theory to an external

current. First, let us define a set of two-cells called wedges:

Definition 3.3.12. Let [v0, ...v3] = σ
(3)
v be a tetrahedron in C3(K). Call its

barycentre v = σ̂(3) a vertex. Label its four boundary triangles as

σ
(2)
0,v = [v1, v2, v3],

σ
(2)
1,v = [v0, v2, v3],

σ
(2)
2,v = [v0, v1, v3],

σ
(2)
3,v = [v0, v1, v2],

(3.43)

with respective barycentres bi := σ̂
(2)
i,v . Label the three boundary edges of each

triangle as σ
(1)
ij,v := σ

(2)
i,v ∪ σ

(2)
j,v , with barycentres bij := σ̂

(1)
ij,v. Then the wedge wvij is

defined as

wvij := [v, bi, bij] ∪ [v, bij , bj ]. (3.44)

The construction of a wedge is illustrated in Fig. 3.1. A wedge can be under-

stood as a two-cell given by the union of two triangles belonging to the baryonic

refinement B(K). It is bounded by the loop

∂wvij = [v, bi] ◦ [bi, bij ] ◦ [bij , vj] ◦ [bj , v]. (3.45)

To make use of these two-cells, we first decompose K into tetrahedra σ
(3)
v , one

for each vertex v, and thereafter apply theorem 3.3.11:

∫

M

tr(B ∧ F ) =
∑

σ
(3)
v ∈C3(K)

∫

σ
(3)
v

tr(B ∧ F )

=
∑

σ
(3)
v ∈C3(K)





∑

σ
(1)
v ∈C1(σ

(3)
v )

tr





∫

⋆
σ
(3)
v

σ
(1)
v

F

∫

σ
(1)
v

B









(3.46)

Now we note that the σ
(1)
v are exactly the edges σ

(1)
ij,v, and their duals ⋆

σ
(3)
v
σ
(1)
v with
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v

bi

bj

bij

b
b

b

b

wv
ij

Figure 3.1: Definition of a wedge. The tetrahedron σ
(3)
v is indicated in black,

elements of the dual complex in blue.

respect to σ
(3)
v are the wedges wvij as defined in 3.3.12. Given their one-to-one

correspondence, we can thus label all variables by the wedges alone, and sum over

all wedges in the complex, writing in short-hand

SBF [A,B] =
∑

w

∫

w

tr(FXw). (3.47)

Again, this identity holds exactly, and is independent of the choice of K. This

provides our starting point for the path integral quantization in the next sec-

tion, and thanks to the exactness of the result, an otherwise required check that

our choice of discretization approximates the initial continuum action becomes

redundant.
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3.4 Path integral quantization

We will now use the discretized form of the action to obtain a well-defined expres-

sion for the path integral of BF theory. For the sake of mathematical simplicity,

in what follows we will deal with defining the path integral of BF theory for

Riemannian signature, i.e. choose g = su(2). At the classical level, it was irrel-

evant whether the corresponding gauge group was SU(2) or SO(3). This choice

will however affect properties of the quantum theory. Historically, also with the

motivation of coupling spinor fields to the theory, the choice G = SU(2) was

favored [Ponzano and Regge, 1968], which we shall stick with in the following.

Note that a path integral for Riemannian signature is a different notion from

the Euclidean path integral obtained from Wick rotation in quantum field the-

ory. The latter defines a thermodynamic partition function, while in contrast the

former remains a quantum-mechanical path integral, with a factor i in front of

the action. Formally, we can see the importance of the factor i by noting that

this procedure correctly implements the flatness constraint on the connection by

means of a delta-functional,

∫

DADBei
∫
M

tr(B∧F ) ∝
∫

DAδ(F ). (3.48)

The distribution δ(F ) then enforces the condition that the holonomy of every

contractible loop is trivial. To proceed, following [Freidel and Krasnov, 1999], we

introduce a source two-form J and define the generating functional,

Z[J ] =

∫

DADBeiS[J ],

S[J ] =

∫

M

[tr(B ∧ F ) + tr(B ∧ J)],
(3.49)

for which we now attempt to find a lattice counterpart using the results of section

3.3. Introducing a triangulation K of M, the action in discrete variables reads

S[J ] =
∑

w

∫

w

[tr(FXw) + tr(JXw)] . (3.50)

Next, we need to specify a suitable integration measure. Since Xw ∈ su(2),
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h

g′
h′

g

bij

bj

b v

bi

wv
ij

Figure 3.2: Holonomy of the connection around a wedge.

the discrete B-field will by integrated over the Lie algebra of SU(2) for each

wedge. To find a way to integrate over the connection, we will have to invoke an

approximation, taking inspiration from ordinary lattice gauge theory. Consider

a single wedge wvij , and define the group elements

g := P exp

(
∫

[v,bi]

A

)

, h := P exp

(

∫

[bi,bij ]

A

)

,

h′ := P exp

(

∫

[bij ,bj ]

A

)

, g′ := P exp

(

∫

[bj ,v]

A

)

,

(3.51)

where P denotes path-ordering. Then, their product

ghh′g′ := Uw ∈ SU(2), (3.52)

gives the holonomy of the connection around the wedge1, as illustrated in fig. 3.4.

For Uw close to the identity [Göckeler and Schucker, 1989],

Uw ≈ 1+

∫

w

F,

tr(UwXw) ≈ tr(Xw +

∫

w

FXw) = tr(

∫

w

FXw),

(3.53)

where Uw was implicitly taken in the fundamental representation of SU(2) and

1There is an ambiguity in choosing the base point of the holonomy. Here, it has been chosen
so as to ensure the invariance of (3.54) under the discrete counterpart of gauge transformations
(cf. [Freidel and Krasnov, 1999])
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tr is now generally the trace on 2×2 complex matrices. For the second equation,

we used the fact that elements of su(2) are traceless. Using this approximation,

and abbreviating Jw :=
∫

w
J , the action becomes

S[J ] =
∑

w

[tr(UwXw) + tr(JwXw)]. (3.54)

Note that at this point, the correspondence between (3.54) and the initial ac-

tion is not exact anymore. The approximation (3.53) is however remniscient of

the procedure in lattice gauge theory to define a lattice ation, and lattice refine-

ments should improve this approximation. Moreover, off-shell configurations with

holonomies Uw increasingly far from the identity should be subject to increasingly

distructive interference in the path integral, since classically, only flat connections

are solutions.

Using (3.54), our set of variables is a collection of group elements (g’s and

h’s) corresponding to the connection, and a collection of Lie algebra elements

corresponding to the B-field. For integrating functions of group elements, we can

naturally employ the Haar measure dg on L2[SU(2)], and for the Lie algebra the

usual Lesbegue measure on R3. We can thus finally define the path integral as:

Z[J ] =

[

∏

∫

SU(2)

dg

∫

SU(2)

dh

]

[

∏

w

∫

su(2)

dXw

]

ei
∑

w[tr(UwXw)+tr(JwXw)]. (3.55)

with dg the Haar measure and dXw the Lesbegue measure on su(2), and the

first product is understood to run over all g- and h-variables in B(K). Before

carrying out the integrals, a gauge-fixing procedure would be necessary to avoid an

overcounting of physically equivalent configurations. I will at this point however

work with (3.54) directly, without deriving a Faddeev-Popov determinant. As a

result of the noncompactness of the translational symmetry (3.8), this will leave

us with a divergent expression for the partition function. In this thesis, we will

only be concerned with the formal expression to relate our results to the structure

of group field theory later on. I refer the reader to [Freidel and Louapre, 2004] and

[Freidel and Livine, 2003] for a careful treatment of symmetries and gauge-fixing,

which in the end is indispensable to obtain a well-defined partition function.
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We first perform the integration over the Lie algebra, given by a product of

integrals of the form

∫

su(2)

dXeitr(UX+JX). (3.56)

To rewrite this as an explicit function of g’s and h’s, we use the identity

∫

su(2)

dXeitr(gX) = 4π[δSU(2)(g) + δSU(2)(−g)] ∀g ∈ SU(2), (3.57)

which is proven in Appendix B. We see that the support of the integrand is on

1 and −1, effectively giving the delta function on SO(3). The general approach

in the literature [Freidel and Krasnov, 1999; Freidel and Louapre, 2004] has been

to replace this expression by hand with a delta function on SU(2),

∫

su(2)

dXeitr(gX) → δSU(2)(g). (3.58)

This was mainly motivated by the fact that this choice yields the original Ponzano-

Regge model [Ponzano and Regge, 1968]; let us however note that this is an ad

hoc manipulation that does not derive from first principles. Using the Plancherel

decomposition

δSU(2)(g) =
∑

j

(2j + 1)χj(g), j ∈ N0

2
, (3.59)

where χj(g) denotes the SU(2) character for the j-representation, the partition

function takes the form1

Z[J ] =

[

∏

∫

SU(2)

dg

∫

SU(2)

dh

]

∏

w

∑

jw

(2jw + 1)χjw(Uwe
Jw). (3.60)

Next, we will carry out the integration over the h’s. Consider two adjacent wedges

belonging to the same face of the dual complex, as shown in Fig. 3.3. The integral

1Had we proceeded with the original form (3.58), the sum over representations would include
only j ∈ N0 – yielding representations of SO(3) only.
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h1

h′

2

h′

1

h2

g′1

g2

g1

g′2

b

b

w2

w1

Figure 3.3: Two adjacent wedges. The blue dots indicate the holonomy base
points.

over h1 is of the form

...

∫

SU(2)

dh1χ
j1(g1h1h

′
1g

′
1e
J1)χj2(g2h2h

′
2g

′
2e
J2)... (3.61)

From Fig. 3.3, one can see that h−1
1 = h′2, as both group elements are assigned to

the same edge shared by the two wedges. The unitarity of the Wigner matrices

then implies that Dj
ab(h

′
2) = D

j

ba(h
′−1
2 ) = D

j

ba(h1). Expanding the characters into

representation matrices, the integration thus takes the form

...

∫

SU(2)

dh1D
j1
ab(g1)D

j1
bc(h1)D

j1
cd(h

′
1)D

j1
de(g

′
1)D

j1
ea(e

J1)

Dj2
fg(g2)D

j2
gh(h2)D

j2
ih(h1)D

j2
ij (g

′
2)D

j2
jf(e

J2)...

(3.62)

Using Schur’s orthogonality relation for the Wigner matrices (A.4) and keeping

track of the resulting matrix contractions, the character expression after integra-

tion over h1 is

...
1

2j1 + 1
χj1(h′1g

′
1e
J1g1g

′
2e
J2g2h2)... (3.63)

In this expression, the group element g1g
′
2 corresponds to the path-ordered expo-

nential along the 1-simplex [v1, bi] ◦ [bi, v2] ≡ ⋆Kσ
(2)
i connecting the barycentres

v1, v2 of the tetrahedra the two neighbouring wedges belong to, with σ
(2)
i being
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their shared triangle. We can make a change of variables defining g1g
′
2 := g

σ
(2)
i

as

the group element associated to ⋆Kσ
(2)
i . Repeating these steps for all wedges in

the complex, we arrive at

Z[J ] =
∏

σ
(2)
i

∫

SU(2)

dg
σ
(2)
i

∏

σ(1)

∑

j
σ(1)

(2jσ(1) + 1)

χjσ(1)

(

exp(J1
σ(1))gσ(2)1

... exp(J
N(σ(1))

σ(1)
)g
σ
(2)

N(σ(1))

)

(3.64)

Here,
∏

σ(1) indicates the product over all 1-simplices in K or, equivalently, all

faces of the dual complex. N(σ(1)) the number of edges composing the boundary

of ⋆Kσ
(1). At this stage, each edge σ(1) ∈ C1(K) (equivalently, each face ⋆Kσ

(1) ∈
C2(⋆K)) is labelled by a representation label jσ(1) , and each face σ(2) ∈ C2(K)

(equivalently, each edge ⋆Kσ
(2) ∈ C1(⋆K)) by a group element g⋆Kσ(2) which we

will now integrate over. Since every face in K is bounded by three edges, upon

expanding the corresponding characters, each group element will appear three

times in mutually uncontracted Wigner matrices. All g-integrals will thus be of

the form

∫

SU(2)

dgχj1(...eJ1geJ
′

1...)χj2(...eJ2geJ
′

2...)χj3(...eJ3geJ
′

3...)

=

∫

SU(2)

dgDj1
a1m1

(...eJ1)Dj1
m1m′

1
(g)Dj1

m′

1a1
(eJ

′

1...)

×Dj2
a2m2

(...eJ2)Dj2
m2m′

2
(g)Dj2

m′

2a2
(eJ

′

2...)

×Dj3
a3m3

(...eJ3)Dj3
m3m′

3
(g)Dj3

m′

3a3
(eJ

′

3...)

= Dj1
a1m1

(...eJ1)Dj2
a2m2

(...eJ2)Dj3
a3m3

(...eJ3)

(

j1 j2 j3

m1 m2 m3

)

×
(

j1 j2 j3

m′
1 m′

2 m′
3

)

Dj1
a1m′

1
(eJ

′

1...)Dj2
a2m′

2
(eJ

′

2...)Dj3
a3m′

3
(eJ

′

3...),

(3.65)

where the primed quantities refer to one tetrahedron, and the unprimed to the

other sharing the same face. The spins j1, j2 and j3 label the respective edges

bounding that face. In the last step we used the identity (A.10) relating the
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group integral of three Wigner matrices to the product of two Wigner 3j-symbols.

Finally, we can regroup the factors in the partition function into common factors

for each tetrahedron. From (3.65), we see that for each tetrahedron, each of the

four faces comes with a factor given by three Wigner matrices and a Wigner 3j-

symbol. Any two adjacent faces will however share one of these representation

matrices and the corresponding current. We can thus introduce the function

A({ji, Ji}) =
6
∏

i=1

Dji
mini

(eJi)

×
(

j1 j2 j3

m1 m2 m3

)(

j1 j5 j6

n1 m5 m6

)(

j4 j5 j3

m4 n5 n3

)(

j4 j2 j6

n4 n2 n6

) (3.66)

to express the generating functional as a product over edges σ(1) and tetrahedra

σ(3),

Z[J ] =
∏

σ(1)

∑

j
σ(1)

(2jσ(1) + 1)
∏

σ(3)

A({jσ(3)i , Jσ
(3)

i }). (3.67)

This is the final expression for the generating functional. Interistingly enough,

this is a purely combinatoric formula, containing only half-integers as a conse-

quence of the compactness of SU(2). From this, a variety of computations can

be carried out, e.g. expectation values of observables or perturbation theory for

interactions. Most straightforwardly, we can obtain the partition function for

three-dimensinal BF theory, that is, the partition function for quantum gravity

in three dimensions. Using the identities (A.3) and the reflection symmetry of

the 3j-symbold to invoke the definition (A.12) of the Wigner 6j-symbol in terms

of four 3j-symbols. We then find

ZBF = Z[J ]|J=0 =
∏

σ(1)

∑

j
σ(1)

(2jσ(1) + 1)
∏

σ(3)

{

jσ
(3)

1 jσ
(3)

2 jσ
(3)

3

jσ
(3)

4 jσ
(3)

5 jσ
(3)

6

}

. (3.68)

It can be shown that the expression (3.68) depends on the topology only [Bar-

rett and Naish-Guzman, 2009]. This means the above quantization procedure
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appropriately preserved the topological character of BF theory, and that upon

regularization the partition function actually gives a topological invariant of K,

and thus M [Turaev and Viro, 1992].
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Chapter 4

Group Field Theory

The last chapter has proceeded very much in the spirit of lattice gauge theory,

which in a way is an orthogonal approach to evaluating physical quantities by

a perturbative expansion in terms of Feynman diagrams. We are now arguing

that in the context of quantum gravity, both notions might well be the same

[Reisenberger and Rovelli, 2001]. This is the key conceptual step that allows us

to interpret spacetime lattices as Feynman diagrams of an underlying field theory.

The core structure of Feynman rules can be described as follows:

• Lines corresponding to particles are labelled by irreducible representations

ρ of the Lorentz group SL(2,C). Antiparticles are represented by lines

labelled with the respective dual representation ρ∗. A set of n particles is

then depicted by a set of n lines labelled with the tensor product ρ1⊗...⊗ρn.

• An interaction with n ingoing and m outgoing particles is described by a

vertex with n ingoing and m outgoing lines, labelled by an intertwiner

T : ρ1 ⊗ ...⊗ ρn −→ ρ′1 ⊗ ...⊗ ρ′m.

• An amplitude is then given by a labelled graph, in which the representation

labels are mutually contracted as dictated by the vertex structure.

For instance, quantum electrodynamics is described by a spinor field ψab in

the fundamental representation ρψ of SL(2,C) and a gauge field Aµ in a four-
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dimensional real representation ρA. The three-point interaction is encoded in the

structure of the gamma matrices

(γµ) b
a : ρψ ⊗ ρψ −→ ρA.

Now, the partition function of BF theory on a simplicial complex derived in the

last chapter has the same structure, except that SU(2) replaces SL(2,C): the

simplicial complex with its geometrical data is in essence a graph labelled by

unitary representations ji of SU(2). The 3j- and 6j-symbols are intertwiners

that map inbetween 3 and 6 representations, respectively, because they carry 3

and 6 spin labels. The evaluation of the partition function is fully determined

by the representation labels and the contraction rules. In this light, a lattice

refinement can also be depicted as going to a higher order in perturbation theory

corresponding to a larger number of vertices. From this point of view, the model

proposed falls into the general class of spin foam models, a term first coined by

Baez in light of this interpretation [Baez, 1998].

This chapter will finally use the introduced concepts to present a potential

generalization of matrix models to gravity in three dimensions, and it turns out

that these proposals are exactly in line with the perspective outlined above. A

major challenge is that in dimensions higher than two, it becomes notoriously hard

to control topology and indeed as of now, the classification of topologies in D ≥ 3

remains an open mathematical problem. Consequently, the naïve generalization

of matrices to three-index tensors [Ambjorn et al., 1991; Godfrey and Gross,

1991; Sasakura, 1991] was soon realized to contain an insufficient number of free

parameters to perform a topological expansion. As we have seen in the first

chapter, the corroboration of the presence of a universal critical point allowing

for a continuum limit rested crucially on the possibility to expand in genera at

large N . To this end, Boulatov proposed a different type of model [Boulatov,

1992], which belongs to a general class of theories now commonly referred to as

group field theory [see e.g. review in Freidel, 2005; Oriti, 2009]. Defining such

a theory requires the choice of a group G, and different choices lead to different

topological invariants as weights for the complexes. This choice plays the rôle of

an additional parameter, endowing group field theory with a richer structure than
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tensor models. After a warm-up, this chapter will focus on the particular choice

G = SU(2) motivated from insights of the last chapter. The lattice amplitudes for

gravity will then appear as the Feynman diagram amplitudes in the perturbative

expansion of the corresponding group field theory.

4.1 Two dimensions

Before discussing a model for a three-dimensional generalization of matrix mod-

els, it is instructive to cast the matrix model presented in the first chapter into

the formalism of group field theory. The generalization to higher dimensions then

appears in a more straightforward way. To this purpose, let us consider a dy-

namical variable in the space of square integrable functions on two disjoint circles

φ ∈ L2[U(1)× U(1)],

φ : U(1)× U(1) −→ C, (4.1)

with the property that φ(g1, g2) = φ∗(g2, g1) ∀g1, g2 ∈ U(1). Let the dynamics

be governed by the action

S[φ] = T [φ] + V [φ];

T [φ] =
1

2

∫

U(1)×U(1)

dg1dg2|φ(g1, g2)|2,

V [φ] =
λ

3!

∫

U(1)×U(1)×U(1)

dg1dg2dg3φ(g1, g2)φ(g2, g3)φ(g3, g2).

(4.2)

We can expand the field in fourier modes χm(g) = eimg on U(1) ∼= S1,

φ(g1, g2) =M i
j χi(g1)χ

j(g2). (4.3)

Here and in the following sections, we will always sum over repeated indices

unless stated otherwise. The symmetry requirement on the field translates into

the hermiticity of the Fourier coefficients, M i
j = M∗ i

j . Using the orthogonality

of the U(1) characters,

∫

U(1)

dgχi(g)χ
j(g) = δji , (4.4)
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one finds that

T [φ] =
1

2
M j

kM
∗ m
l δljδ

k
m,

V [φ] =
λ

3!
M i

jM
k
lM

m
n δ

n
i δ

j
kδ
l
m.

(4.5)

The Fourier transformed action thus reads

S[φ] =
1

2
trM2 +

λ

3!
trM3. (4.6)

In fact, since there is an infinity of modes on the circle, giving rise to an infinite

number of representations of U(1), the matrices in (4.6) are of infinite size. This

action thus corresponds to the N → ∞ limit of the initial matrix model action

(2.6) in chapter 2. We can use a cutoff on the mode expansion (4.3), letting m

and n run to a finite value N . Indeed, renormalization group transformations for

matrix models have been studied by integrating out matrix components, giving a

change in scale N + 1 → N [Brézin and Zinn-Justin, 1992]. This transformation

acquires a natural interpretation in changing the cutoff scale for the Fourier modes

of group field theory; theN → ∞ limit simply corresponds to removing the cutoff.

To prepare for the three-dimensional model, let us now replace U(1) by SU(2)

to arrive at a different toy model for two-dimensional random surfaces. As a

dynamical variable, we take a field P [φ(g1, g2)], where P is the projector

P [φ(g1, g2)] :=

∫

SU(2)

dh[φ(g1h, g2h) + φ∗(g2h, g1h)] (4.7)

projecting an arbitrary φ onto its hermitian right-invariant part, such that P [φ(g1, g2)] ∈
L2[(SU(2)× SU(2))/SU(2)], where (SU(2)× SU(2))/SU(2) is understood as a

right coset. We start from accordingly modified kinetic and potential terms,

T [φ] =
1

2

∫

SU(2)×2

dg1dg2|P [φ(g1, g2)]|2,

V [φ] =
λ

3!

∫

SU(2)×3

dg1dg2dg3P [φ(g1, g2)]P [φ(g2, g3)]P [φ(g3, g2)].

(4.8)
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One can again expand φ into modes,

φ(g1, g2) = φa1a2b1b2j1j2
D
j1
a1b1(g1)R

j2
a2b2

(g2). (4.9)

The Fourier transform on the coset space can be found by first expanding φ and

then implementing the projecter P : using the orthogonality of the D-matrices

(A.4), the projected field can then be written as

P [φ(g1, g2)]

= (φa1b1a2b2j1j2
+ φ∗a2b2a1b1

j2j1
)D

j1
a1c1(g1)D

j2
a2c2(g2)

∫

SU(2)

dhD
j1
c1a1(h)D

j2
c2a2(h)

=
√

2j + 1Φabj D
j

ac(g1)D
j
bc(g2),

(4.10)

where we defined

Φa1a2j1
:=

1√
2j1 + 1

(φa1b1a2b2j1j2
+ φ∗a2b2a1b1

j2j1
)δj1j2δb1b2 (4.11)

and renamed indices. The components of the tensor Φ are the Fourier coefficients

for the mode decomposition of elements of L2[(SU(2) × SU(2))/SU(2)]. They

inherit the field symmetries, Φ = Φ†. The kinetic term can then be written as

SK =
1

2

√

2j + 1
√
2k + 1Φabj Φ

∗cd
k

×
∫

SU(2)×2

dg1dg2D
j

am(g1)D
j
bm(g2)D

k
cn(g1)D

k

dn(g2)

=
1

2
Φabj Φ

∗ab
j .

(4.12)

The potential becomes

SI =
λ

3!

√

2j1 + 1
√

2j2 + 1
√

2j3 + 1

∫

SU(2)×3

dg1dg2dg3

×D
j1
a1c1

(g1)D
j1
b1c1

(g2)D
j2
a2c2

(g2)D
j2
b2c2

(g3)D
j3
a3c3

(g3)D
j3
b3c3

(g1)

=
λ

3!
√
2j + 1

Φa1a2j Φa2a3j Φa3a1j ,

(4.13)
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giving the action

S =
∑

j

(

1

2
trΦ2

j +
λ

3!
√
N
trΦ3

j

)

(4.14)

for an infinite tower of noninteracting N × N hermitian matrix models labelled

by j, with matrix size N = 2j + 1. After a rescaling
√
NMj := Φj , we re-

cover the initial form of the matrix action (2.6) from the first chapter, S =
∑

j N
(

trM2
j /2 + λtrM3

j /3!
)

.

4.2 Three dimensions

For a model of three-dimensional gravity, we again choose G = SU(2), but now

a field

φ : SU(2)×3 −→ C. (4.15)

Let us demand the reality condition φ(g1, g2, g3) = φ∗(g1, g2, g3), yielding unori-

ented lines in the diagrammatic expansion. Again, we will also demand SU(2)-

right-invariance:

φ(g1, g2, g3) = φ(g1h, g2h, g3h) ∀h ∈ SU(2) (4.16)

and furthermore, for a permutation π ∈ S3 with signature |π|,

φ(g1, g2, g3) = (−1)|π|φ(gπ(1), gπ(2), gπ(3)). (4.17)

Equation (4.16) implies that φ ∈ L2[SU(2)×3/SU(2)]. For notational simplicity,

we will in the following assume that φ posssesses the required symmetries. Yet

again, these can always be explicity imposed on an arbitrary field φ′ through the

projector

φ(g1, g2, g3) = P [φ′(g1, g2, g3)]

:=
1

|S3|
∑

π∈S3

(−1)|π|
∫

SU(2)

dhφ′(gπ(1)h, gπ(2)h, gπ(3)h),
(4.18)
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where |S3| = 6 is the order of S3. We will consider an action of φ4-type defined

by

S[φ] = T [φ] + V [φ],

T [φ] =
1

2

[

3
∏

i=1

∫

SU(2)

dgi

]

φ(g1, g2, g3)
2,

V [φ] =
λ

4!

[

6
∏

i=1

∫

SU(2)

dgi

]

φ(g1, g2, g3)φ(g5, g4, g3)φ(g5, g1, g6)φ(g2, g4, g6).

(4.19)

Our goal is to examine the structure of the perturbative expansion of the quantity

Z =

∫

Dφe−S[φ], (4.20)

where the integration measure remains to be specified. For this purpose, we will

expand the field in Fourier modes and derive the Feynman rules. The mode

expansion on the coset space SU(2)×3/SU(2) can again be found by first using

the Peter-Weyl theorem to expand the field and then implementing the invariance

property. Leaving the permutation symmetry of the field implicit for notational

simplicity, we find

φ(g1, g2, g3) = P [φ′(g1, g2, g3)]

= φ
′m1k1m2k2m3k3
j1j2j3

Dj1
m1n1

(g1)D
j2
m2n2

(g2)D
j3
m3n3

(g3)

×
∫

SU(2)

dhDj1
n1k1

(h)Dj2
n2k2

(h)Dj3
n3k3

(h)

=
√

dj1dj2dj3Φ
m1m2m3
j1j2j3

Dj1
m1n1

(g1)D
j2
m2n2

(g2)D
j3
m3n3

(g3)

×
(

j1 j2 j3

n1 n2 n3

)

.

(4.21)

Here we used the integral representation (A.10) of the product of two 3j-symbols,
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abbreviated dj = (2j + 1) and defined the coset space Fourier coefficients as

Φm1m2m3
j1j2j3

:=
1

√

dj1dj2dj3
φ

′m1k1m2k2m3k3
j1j2j3

(

j1 j2 j3

n1 n2 n3

)

. (4.22)

The symmetries of the group field induce symmetries on the Fourier coefficients1,

Φ∗m1m2m3
j1j2j3

= (−1)
∑

i(ji+mi)Φ−m1−m2−m3
j1j2j3

,

Φ
mπ(1)mπ(2)mπ(3)

jπ(1)jπ(2)jπ(3)
= (−1)|π|Φm1m2m3

j1j2j3
.

(4.23)

We can now again use the orthogonality relation for the representation matrices

(A.4) and the 3j-symbols (A.11) to find the Fourier transformed kinetic term:

T [φ] =
√

dj1dj′1...dj3dj′3Φ
m1m2m3
j1j2j3

Φ
m′

1m
′

2m
′

3

j′1j
′

2j
′

3

(

j1 j2 j3

n1 n2 n3

)(

j′1 j′2 j′3
n′
1 n′

2 n′
3

)

×
[

3
∏

i=1

∫

SU(2)

dgiD
ji
mini

(gi)D
j′i
m′

in
′

i
(gi)

]

= |Φm1m2m3
j1j2j3

|2

(4.24)

Expanding the potential term in Fourier modes and exploiting the permutation

(A.8) and reflection (A.9) symmetries of the 3j-symbol gives

V [φ] =
λ

4!
(−1)

∑
i(ji+mi)Φ−m1−m2−m3

j1j2j3
Φm3−m5m4
j3j5j4

Φ−m4m2m6
j4j2j6

Φ−m6m5m1
j6j5j1

{

j1 j2 j3

j4 j5 j6

}

.

(4.25)

A natural integration measure for the partition function is thus

Dφ =
∏

{j1,j2,3}

∏

{−j≤m≤j}

dΦm1m2m3
j1j2j3

. (4.26)

1In fact, the Fourier coefficients obey all symmetries of the 3j-symbol, except for the con-
dition m1 +m2 +m3 = 0 [Boulatov, 1992]
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j1

j2

j3

j′1
j′2
j′3

= 1
3!

∑

π∈S3

∏3
i=1 δji,π(j′i)δ

mi,π(m
′

i
)

j2

j′2j5

j′5

j′3

j3

j′6

j6

j1 j′1

j′4 j4

= λ
4!

{

j1 j2 j3
j4 j5 j6

}

∏6
i=1 δji,j′iδ

mi,m
′

i

Figure 4.1: Feynman rules for 3D group field theory. The magnetic labels mi

have been suppressed; the box indicates the sum over permutations.

We can thus obtain the propagator for Φ,

〈Φm1m2m3
j1j2j3

Φ
m′

1m
′

2m
′

3

j′1j
′

2j
′

3
〉 = 1

|S3|
∑

π∈S3

3
∏

i=1

δji,π(j′i)δ
mi,π(m

′

i). (4.27)

Due to the abscence of derivatives in the kinetic term, this propagator is inde-

pendent of the labels j, m of the attached fields. We see however that the factor

δji,π(j′i)δ
mi,π(m

′

i) forces conservation of these labels along the lines of propagation,

analogous to momentum conservation in ordinary quantum field theory. The

vertex contribution is

λ

4!

{

j1 j2 j3

j4 j5 j6

}

3
∏

i=1

δji,j′iδ
mi,m

′

i . (4.28)

Equipped with these Feynman rules, let us now study the amplitudes of graphs

occuring in the expansion of (4.20). Only graphs without external legs will con-

tribute. Symbolically, the amplitude A(Γ) of such a graph Γ with n vertices v is
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thus given by

A(Γ) =
(−λ)n
symΓ

∑

{ji,mi}

∏

vertices

{

j1 j2 j3

j4 j5 j6

}

, (4.29)

where we have reintroduced an explicit sum over ji and mi, and symΓ denotes a

symmetry factor. As this amplitude is independent of the magnetic indices mi,

the sum over the latter simply yields a factor 2jl+1 for each single line l forming

a loop, with jl the representation label on that line. As a consequence,

A(Γ) =
(−λ)n
symΓ

∏

l

∑

jl

(2jl + 1)
∏

vertices

{

j1 j2 j3

j4 j5 j6

}

. (4.30)

We see already that this amplitude is strikingly similar to the Ponzano-Regge

amplitude derived in the last chapter. To arrive at the simplicial interpretation

of these amplitudes, let us associate a 1-simplex σ
(1)
l of length jl to each single

line. The field Φm1m2m3
j1j2j3

can then be associated to a two-simplex with edge lengths

j1, j2, j3, and boundary σ
(1)
1 ◦ σ(1)

2 ◦ σ(1)
3 . This is consistent because the field Φ

will identically vanish unless the triangle inequality (A.7)

|j1 − j2| ≤ j3 ≤ j1 + j2 (4.31)

is satisfied. This can bee seen from the Fourier expansion (4.22), which is pro-

portional to a 3j-symbol, which vanishes if (4.31) is violated. It can then be seen

that the combinatorial structure of the vertex is such that four triangles σ
(2)
i ,

i = 1...4 are joined to form a 3-simplex σ(3) with edge lengths {ji|i = 1...6} and

∂σ(3) = σ
(2)
1 ◦ σ(2)

2 ◦ σ(2)
3 ◦ σ(2)

4 , as illustrated in Fig. 4.2. Moreover, the vertex

ampliute given by the 6j-symbol vanishes for any edge configurations that fail to

match to form a closed 3-simplex, as conjectured initially in [Ponzano and Regge,

1968] and finally proven in [Roberts, 1999]. The propagator identifies faces of

3-simplices, with the matching condition for the shared triangles implemented

by the conservation of the spin labels ji along the lines of propagation. We are

thus guaranteed that each Feynman diagram corresponds to a three-dimensional

simplicial complex. We can thus associate the amplitude A(Γ) with an amplitude

A(K) for a complex K,
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b

b b

b

bc

Figure 4.2: Group field theory vertex and its dual tetrahedron.

A(Γ) ≡ A(K) =
(−λ)n
symK

∏

σ(1)

∑

σ(1)

(2jσ(1) + 1)
∏

σ(3)

{

j1 j2 j3

j4 j5 j6

}

. (4.32)

This is exactly the non-regularized form of the Ponzano-Regge amplitude as de-

rived in chapter 3. As anticipated, the lattice amplitude for BF theory we derived

in chapter 3 appears as a Feynman diagram amplitude in the perturbative ex-

pansion of group field theory. To obtain the sum over connected complexes, we

may take the logarithm to obtain the free energy for group field theory,

F = log

(
∫

Dφe−S[φ]
)

=
∑

K connected

A(K). (4.33)
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Chapter 5

Conclusion and Outlook

In this thesis, I have outlined a particular viewpoint on the quantization of gravity

and attempted to illustrate this by means of simple toy models in two and three

dimensions. In the introduction 1, I have argued that topology change can not be

ruled out to matter at the quantum level, and that in this light, a nonperturbative

path integral approach is best suited. I have furthermore tried to make plausible

that a sum over topologies in this framework can be defined by interpreting

lattices as Feynman diagrams of an underlying zero-dimensional field theory. In

chapter 2, I have presented a simple matrix model as a particular realization

of this idea for two-dimensional gravity and sketched how a continuum limit is

achieved. I went on in chapter 3 to introduce BF theory as a theory of gravity

in three dimensions, discussed its discretization on a simplicial lattice and the

quantization of the resulting lattice theory. At the beginning of chapter 4, I used

these results to reinterpret the lattice amplitudes as amplitudes for Feynman

diagrams. In the following sections, I presented the framework of group field

theory: I demonstrated the equivalence to matrix models in two dimensions, and

then gave a description of a model that generalizes the latter to a tensor-type

theory of three-dimensional gravity. The Feynman diagram amplitudes of this

theory turned out to be the lattice amplitudes derived in chapter 3, implementing

explicitly the perspective announced in the introduction.

What remains is a long list of outstanding issues that have to be adressed to

assess the viability of this general approach to yield a reasonable quantum theory

for gravity in our universe. In what follows, I will attempt to give an outlook

49



CHAPTER 5. CONCLUSION AND OUTLOOK

by briefly commenting on the most pressing of these open questions – by far not

being exhaustive.

5.1 Renormalization and continuum limit

A first crucial cornerstone to establish the viability of the model described in

the last chapter is to define the partition function in an unambiguous way. This

was achieved by the proof that the asymptotic series arising in the perturbative

expansion of the theory is uniquely Borel summable [Freidel and Louapre, 2003].

For this proof however, an additional interaction term of the form

φ(g1, g2, g3)φ(g3, g5, g4)φ(g4, g5, g6)φ(g6, g2, g1)

had to be included, which is of different combinatoric structure. This relates

to an important open issue, namely the study of arbitrary interaction terms

as opposed to the simple φ4 interaction presented herein. That issue is most

naturally adressed in a framework of renormalization for group field theory. The

reader is referred to [Rivasseau, 2010] and [Gurau and Ryan, 2011] for a general

conceptual outline of this very young field.

Moreover, whether or not group field theory may serve as a model of quantum

gravity crucially depends on whether a suitable continuum limit for the theory

can be defined at all. As we have seen, in the case of matrix models, the existence

of a continuum limit could be established beyond much doubt thanks to the exact

solvability of these models. There is however no reason to expect that one is as

fortunate in higher dimensions. An investigation of the phase diagram of group

field theory thus requires an approximation scheme of some sort. More specif-

ically, one needs to determine whether a critical point exists that corresponds

to a second-order phase transition, as was the case for matrix model. For this

purpose, it is helpful to realize that second-order phase transitions correspond to

infrared fixed points of the renormalization group flow, as has first been clarified

by Wilson [Wilson, 1971]. In this light, a study of the behaviour of group field

theory under renormalization is also a natural framework to adress the question

of a continuum limit.
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5.2 Further developments

To make this topic tractable in a thesis of this scope, it was necessary to restrict

the treatment to simplified toy models of gravity. To arrive at physically more

realistic theories, the following four generalizations have to be adressed:

1. Higher dimensions. BF theory generalizes straightforwardly to arbitrary

dimensions D by promoting B to a D − 2-form and choosing the gauge

group SO(D). The discretization procedure outlined in section 3.3, and

the quantization procedure given in section 3.4 then go through in the same

fashion. A group field theory corresponding to BF theory in D = 4 was

first given in [Ooguri, 1992].

It is however only for D = 3 that the equivalence to first-order general

relativity holds, and BF theory remains purely topological for any D. It

was Plebański who observed first that general relativity in D = 4 can be

written as a constrained BF theory [Plebański, 1977]. This lead to a large

amount of work going into spinfoam models, with the strategy to quantize

BF theory in D = 4 and impose the constraints after quantization [for a

review, see e.g. Livine, 2011]. Let us however note that this procedure is

not generally agreed upon and moreover has been argued to be inconsistent

with the rules of Dirac quantization [Alexandrov and Roche, 2011]. What is

more, even classically Plebański’s action principle is not strictly equivalent

to first-order gravity, having unphysical topological sectors that also solve

the constraints [Livine, 2011].

A possible way to avoid these issues might be given by action principles

that are of the form of a topological field theory with a symmetry break-

ing term [MacDowell and Mansouri, 1977]. The breaking of topological

symmetry turns gauge degrees of freedom into physical ones, giving rise

to an non-topological gravity action. In that case, the additional term in

the action can be treated as a honest interaction, with an expansion that

has been shown to be rapidly converging [Smolin and Starodubtsev, 2003].

One might attempt to proceed by identifying a suitable group field theory

corresponding to these action principles.
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In any case, since gravity is topological only in D ≤ 3, one cannot expect

independence of the choice of discretization in D > 3. A great virtue of

the group field theory framework is then that the sum over triangulations

implements an averaging procedure, in principle giving triangulation inde-

pendence when all orders are included.

2. Lorentzian signature. Switching to a model of Lorentzian spacetime amounts

to replacing the gauge group SO(D) with SO(D− 1, 1). The noncompact-

ness of the Lorentz group then gives rise to variety of technical issues, and

in particular a careful gauge fixing procedure is required to avoid divergent

integrals over the volume of the gauge group. For a review on how this can

be dealt with to give convergent expressions, see e.g. [Baez and Barrett,

2001].

3. Cosmological constant. Introducing a nonzero cosmological constant in BF

theory corresponds to adding a term ∝ Λ(B∧B∧B) inD = 3, or ∝ Λ(B∧B)

in D = 4 to the action. As a result, the initial gauge group gets replaced

by what is called its “quantum deformed” version [Baez, 1996]. In fact,

having only a finite number of representations, these quantum groups serve

as a regularization by cutting off otherwise infinite sums over representation

labels. As a consequence, the partition function for BF theory turns out

finite and in D = 3 yields Turaev-Viro invariant [Turaev and Viro, 1992],

a topological invariant for three-manifolds. Note that quite obviously, BF

theory only allows for a cosmological constant term in D = 3 and D = 4.

4. Matter. The literature contains a great variety of proposals on how to in-

clude matter couplings in the framework of lattice BF theory. One approach

has been to introduce the relevant degrees of freedom at the classical level

and keep track of these in the discretization procedure. In particular, point

particles [Freidel and Louapre, 2004] and gauge fields [Speziale, 2007] have

been coupled to the Ponzano-Regge model along these lines.

A phenomenologically more removed, but mathematically more straightfor-

ward way is to consider supergroups as gauge groups. As a first instance,

in D = 3, SU(2) was replaced by the supergroup OSp(1|2) [Livine and

52



5.2. FURTHER DEVELOPMENTS

Oeckl, 2004], and the distinction between matter and gravitational degrees

of freedom was done after quantization. One might anticipate that a cor-

responding group field theory1 could be constructed by considering fields

φ ∈ L2[OSp(1|2)×3/OSp(1|2)].

On a more speculative note, it has also been argued that matter degrees

of freedom could emerge from a non-supersymmetric group field theory

directly [Di Mare and Oriti, 2010].

1The author wonders whether this might allow for a new class of candidates for worldvolume
theories of extended objects in string theory.
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Appendix A

Recoupling theory of SU(2)

Herein, I will give a condensed and by far not exhaustive treatment of elementary

objects of recoupling theory. The focus will be on the particular relations needed

for the purposes of this thesis.

The unitary irreducible representations ρj of SU(2) are labelled by half-

integers j ∈ N0/2 called “spins” and are of respective dimensions 2j + 1. In-

troducting a basis of ρj in Dirac notation {|jm〉|m = −j, ...j}, the elements of

the Wigner representation matrices are given by

Dj
mn(g) = 〈jm|g|jn〉. (A.1)

The Wigner matrices are unitary

Dj
ab(g

−1) = D
j

ba(g), (A.2)

and furthermore obey

D
j

ab(g) = (−1)(a−b)Dj
−a−b(g). (A.3)

They are orthogonal with respect to the Haar measure dg,

∫

SU(2)

dgD
j

ab(g)D
k
cd(g) =

1

2j + 1
δjkδacδbd (A.4)

and thus form a basis of L2[SU(2)]. We can furthermore denote a basis on ρj1⊗ρj2
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by {|j1m1j2m2〉|mi = −ji, ...ji}. The 3j-symbol is then defined in terms of the

Clebsch-Gordan coefficient 〈j1m1j2m2|j3m3〉 as

(

j1 j2 j3

m1 m2 m3

)

:=
(−1)j1−j2−m3

√
2j3 + 1

〈j1m1j2m2|j3m3〉. (A.5)

Given three representations labelled j1, j2, j3, the 3j-symbol is, up to normaliza-

tion the unique intertwiner

{3j} : ρj1 ⊗ ρj2 ⊗ ρj3 −→ C. (A.6)

The 3j-symbol is nonzero only if the following conditions are satisfied:

m1 +m2 +m3 = 0,

j1 + j2 + j3 ∈ N,

|mi| ≤ ji ∀i,
|j1 − j2| ≤ j3 ≤ j1 + j2.

(A.7)

A permutation π ∈ S3 acts on the columns of the 3j-symbol as follows:

(

j1 j2 j3

m1 m2 m3

)

=



































jπ(1) jπ(2) jπ(3)

mπ(1) mπ(2) mπ(3)



 for π even,

(−1)j1+j2+j3





jπ(1) jπ(2) jπ(3)

mπ(1) mπ(2) mπ(3)



 for π odd.

(A.8)

A sign swap in the magnetic indices gives a phase,

(

j1 j2 j3

m1 m2 m3

)

= (−1)j1+j2+j3

(

j1 j2 j3

−m1 −m2 −m3

)

. (A.9)

A triple integral of Wigner matrices is proportional to a product of two 3j-
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symbols,

∫

SU(2)

dgDj1
a1b1

(g)Dj2
a2b2

(g)Dj3
a3b3

(g) =

(

j1 j2 j3

a1 a2 a3

)(

j1 j2 j3

b1 b2 b3

)

. (A.10)

The 3j-symbols moreover obey the orthogonality relation

∑

{ai}

(

j1 j2 j3

a1 a2 a3

)(

j1 j2 j3

a1 a2 a3

)

= 1, (A.11)

where in this equation, only the explicit sum is carried out, and other repeated

indices are not summed over.

The 6j-symbol is defined by a contraction of four 3j-symbols amoung their

magnetic indices mi,

{

j1 j2 j3

j4 j5 j6

}

=
∑

{mi}

(−1)j4+j5+j6+m4+m5+m6

(

j1 j2 j3

m1 m2 m3

)

×
(

j1 j5 j6

m1 m5 −m6

)(

j4 j5 j3

m4 −m5 m3

)(

j4 j2 j6

−m4 m2 m6

)

,

(A.12)

where again all summations are explicit. As a consequence of the symmetries of

the 3j-symbol, the 6j-symbol is nonzero only if the tuples (j1, j2,3 ), (j1, j5, j6),

(j4, j5, j3) and (j4, j2, j6) simultaneously obey the triangle inequality. The 6j-

symbol admits a natural action of the tetrahedral symmetry group S4 which is

given by the permutation of the four vertices of a tetrahedron with its six edges

labelled by the six spins. This translates into the invariance of the 6j-symbol

under any permutation of two of its columns,

{

j1 j2 j3

j4 j5 j6

}

=

{

j2 j1 j3

j5 j4 j6

}

=

{

j1 j3 j2

j4 j6 j5

}

=

{

j3 j2 j1

j6 j5 j4

}

, (A.13)

and the invariance under the exchange of upper and lower arguments in any two
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columns:

{

j1 j2 j3

j4 j5 j6

}

=

{

j4 j5 j3

j1 j2 j6

}

=

{

j1 j5 j6

j4 j2 j3

}

=

{

j4 j2 j6

j1 j5 j3

}

. (A.14)
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Appendix B

Delta function identity

Here, I restate and prove the identity used in section 3.4 relating the delta function

on the Lie algebra of SU(2) to the delta function on the group itself:

Theorem B.0.1. Let X ∈ su(2) and g ∈ SU(2). Let tr be the trace on 2 × 2

complex matrices. Then

∫

su(2)

dXeitr(gX) = 4π[δSU(2)(g) + δSU(2)(−g)], (B.1)

where δSU(2)(g) is defined with respect to the Haar measure dg on L2[SU(2)],

∫

SU(2)

dgδSU(2)(g)f(g) = f(1) ∀f ∈ L2[SU(2)]. (B.2)

Proof. We closely follow the proof as presented in [Freidel and Louapre, 2004].

Expressing the su(2) generators in terms of the Pauli matrices as ti = −iσi/2,
i = 1, 2, 3, we can write X = −iX iσi/2. We parametrize the group element as

g = cos θ1+ iniσi sin θ (B.3)

with nini = 1. Using tr(σiσj) = 2δij, we find

tr(gX) = X ini sin θ. (B.4)
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Using this, we evaluate the integral over su(2),

∫

su(2)

dXeitr(gX) =

∫

R3

d3XeiX
ini sin θ

= (2π)3δ(3)(n sin θ)

=
2π2

| sin θ|2 δ(| sin θ|),

(B.5)

where the boldface indicates that n ∈ R3, and in the last step we used the identity

δ(3)(x) = 1
4π|x|2

δ(|x|). The composition of a function f(x) with the delta function

is defined by a sum over the roots1 xi of f(x),

δ(f(x)) =
∑

i

δ(x− xi)

|f ′(xi|
. (B.6)

We can thus rewrite

2π2

| sin θ|2 δ(| sin θ|) =
2π2

| sin θ|2
∑

n∈Z

δ(θ − πn)

| cos θ|

=
2π2

| sin θ|2
∑

n∈Z

[δ(θ − 2πn) + δ(θ − π(2n+ 1))].

(B.7)

Using the parametrization (B.3), the normalized Haar measure on L2[SU(2)] ∼=
L2(S3) takes the form

dg =
2

π
dθ(sin θ)2dΣ (B.8)

where dΣ is the normalized measure on S2. From (B.2), the delta function on

SU(2) is thus

δ(g) =
π

2(sin θ)2

∑

n∈Z

δ(θ − 2πn),

δ(−g) = π

2(sin θ)2

∑

n∈Z

δ[θ − π(2n+ 1)].
(B.9)

1We assume the roots of f(x) to be simple.
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Comparing this expression with (B.7), we find

∫

su(2)

dXeitr(gX) = 4π[δSU(2)(g) + δSU(2)(−g)], (B.10)

which proves (B.1).

61



APPENDIX B. DELTA FUNCTION IDENTITY

62



References

John A. and Wheeler. On the nature of quantum ge-

ometrodynamics. Annals of Physics, 2(6):604 – 614, 1957.

ISSN 0003-4916. doi: 10.1016/0003-4916(57)90050-7. URL

http://www.sciencedirect.com/science/article/pii/0003491657900507.

3

David H. Adams. R torsion and linking numbers from simplicial Abelian gauge

theories. 1996. 24

Sergei Alexandrov and Philippe Roche. Critical Overview of Loops and Foams.

Phys.Rept., 506:41–86, 2011. doi: 10.1016/j.physrep.2011.05.002. 51

Jan Ambjorn. Quantization of geometry. arXiv:hep-th/9411179v2, 1994. 6

Jan Ambjorn, Bergfinnur Durhuus, and Thordur Jonsson. Three-dimensional

simplicial quantum gravity and generalized matrix models. Mod.Phys.Lett.,

A6:1133–1146, 1991. doi: 10.1142/S0217732391001184. 3, 38

John C. Baez. Four-dimensional bf theory as a topological quantum field theory.

Letters in Mathematical Physics, 38:129–143, 1996. ISSN 0377-9017. URL

http://dx.doi.org/10.1007/BF00398315. 10.1007/BF00398315. 52

John C. Baez. Spin foam models. Class.Quant.Grav., 15:1827–1858, 1998. doi:

10.1088/0264-9381/15/7/004. 38

John C. Baez and John W. Barrett. Integrability for relativistic spin networks.

Class.Quant.Grav., 18:4683–4700, 2001. doi: 10.1088/0264-9381/18/21/316.

52

63

http://www.sciencedirect.com/science/article/pii/0003491657900507
http://dx.doi.org/10.1007/BF00398315


REFERENCES

John W. Barrett and Ileana Naish-Guzman. The Ponzano-Regge model.

Class.Quant.Grav., 26:155014, 2009. doi: 10.1088/0264-9381/26/15/155014.

34

D Bessis, C Itzykson, and J.B Zuber. Quantum field theory techniques

in graphical enumeration. Advances in Applied Mathematics, 1(2):109

– 157, 1980. ISSN 0196-8858. doi: 10.1016/0196-8858(80)90008-1. URL

http://www.sciencedirect.com/science/article/pii/0196885880900081.

5

D.V. Boulatov. A Model of three-dimensional lattice gravity. Mod.Phys.Lett.,

A7:1629–1646, 1992. doi: 10.1142/S0217732392001324. 38, 44

E. Brézin, C. Itzykson, G. Parisi, and J. B. Zuber. Planar diagrams. Com-

munications in Mathematical Physics, 59:35–51, 1978. ISSN 0010-3616. URL

http://dx.doi.org/10.1007/BF01614153. 10.1007/BF01614153. 5

Edouard Brézin and Jean Zinn-Justin. Renormalization group approach to matrix

models. Phys.Lett., B288:54–58, 1992. doi: 10.1016/0370-2693(92)91953-7. 40

F. David. Planar diagrams, two-dimensional lattice gravity and

surface models. Nuclear Physics B, 257(0):45 – 58, 1985.

ISSN 0550-3213. doi: 10.1016/0550-3213(85)90335-9. URL

http://www.sciencedirect.com/science/article/pii/0550321385903359.

5

P. Di Francesco, Paul H. Ginsparg, and Jean Zinn-Justin. 2-D Gravity and

random matrices. Phys.Rept., 254:1–133, 1995. doi: 10.1016/0370-1573(94)

00084-G. 10, 11

Alessandro Di Mare and Daniele Oriti. Emergent matter from 3d generalised

group field theories. Class. Quant. Grav., 27:145006, 2010. doi: 10.1088/

0264-9381/27/14/145006. 53

Michael R. Douglas and Stephen H. Shenker. Strings in less than

one dimension. Nuclear Physics B, 335(3):635 – 654, 1990.

ISSN 0550-3213. doi: 10.1016/0550-3213(90)90522-F. URL

64

http://www.sciencedirect.com/science/article/pii/0196885880900081
http://dx.doi.org/10.1007/BF01614153
http://www.sciencedirect.com/science/article/pii/0550321385903359


REFERENCES

http://www.sciencedirect.com/science/article/pii/055032139090522F.

5

Freeman Dyson. Divergence of perturbation theory in quantum electrodynamics.

Physical Reviw, 85:631–632, 1952. 4

L. Freidel. Group field theory: An overview. International Journal

of Theoretical Physics, 44:1769–1783, 2005. ISSN 0020-7748. URL

http://dx.doi.org/10.1007/s10773-005-8894-1. 10.1007/s10773-005-

8894-1. 38

Laurent Freidel and Kirill Krasnov. Spin foam models and the classical action

principle. Adv.Theor.Math.Phys., 2:1183–1247, 1999. 13, 28, 29, 31

Laurent Freidel and Etera R. Livine. Spin networks for non-compact groups. J.

Math. Phys., 44:1322–1356, 2003. doi: 10.1063/1.1521522. 30

Laurent Freidel and David Louapre. Nonperturbative summation over 3-D dis-

crete topologies. Phys.Rev., D68:104004, 2003. doi: 10.1103/PhysRevD.68.

104004. 3, 4, 50

Laurent Freidel and David Louapre. Ponzano-Regge model revisited. I: Gauge

fixing, observables and interacting spinning particles. Class. Quant. Grav., 21:

5685–5726, 2004. doi: 10.1088/0264-9381/21/24/002. 30, 31, 52, 59

M. Göckeler and T. Schucker. Differential geometry, gauge theories, and gravity.

Cambridge University Press, 1989. 29

Neil Godfrey and Mark Gross. Simplicial quantum gravity in more than two di-

mensions. Phys. Rev. D, 43:R1749–R1753, Mar 1991. doi: 10.1103/PhysRevD.

43.R1749. URL http://link.aps.org/doi/10.1103/PhysRevD.43.R1749.

38

Joaquim Gomis and Steven Weinberg. Are nonrenormalizable gauge

theories renormalizable? Nuclear Physics B, 469(3):473 – 487,

1996. ISSN 0550-3213. doi: 10.1016/0550-3213(96)00132-0. URL

http://www.sciencedirect.com/science/article/pii/0550321396001320.

3

65

http://www.sciencedirect.com/science/article/pii/055032139090522F
http://dx.doi.org/10.1007/s10773-005-8894-1
http://link.aps.org/doi/10.1103/PhysRevD.43.R1749
http://www.sciencedirect.com/science/article/pii/0550321396001320


REFERENCES

Marc H. Goroff and Augusto Sagnotti. The ultraviolet behav-

ior of einstein gravity. Nuclear Physics B, 266(3-4):709 – 736,

1986. ISSN 0550-3213. doi: 10.1016/0550-3213(86)90193-8. URL

http://www.sciencedirect.com/science/article/pii/0550321386901938.

2

Razvan Gurau and James P. Ryan. Colored Tensor Models - a review. 2011. *

Temporary entry *. 50

S. W. Hawking. Breakdown of predictability in gravitational collapse. Phys.

Rev. D, 14:2460–2473, Nov 1976. doi: 10.1103/PhysRevD.14.2460. URL

http://link.aps.org/doi/10.1103/PhysRevD.14.2460. 2

Gary T. Horowitz. Exactly soluble diffeomorphism invariant theories. Commu-

nications in Mathematical Physics, 125:417–437, 1989. ISSN 0010-3616. URL

http://dx.doi.org/10.1007/BF01218410. 10.1007/BF01218410. 13

Gary T Horowitz. Topology change in classical and quantum gravity. Class.

Quant. Grav., 8:587–601, 1991. 3, 19

Etera R. Livine. A Short and Subjective Introduction to the Spinfoam Framework

for Quantum Gravity. 2011. * Temporary entry *. 51

Etera R. Livine and Robert Oeckl. Three-dimensional quantum supergravity and

supersymmetric spin foam models. Adv.Theor.Math.Phys., 7:951–1001, 2004.

52

S. W. MacDowell and F. Mansouri. Unified geometric theory of gravity and su-

pergravity. Phys. Rev. Lett., 38:739–742, Apr 1977. doi: 10.1103/PhysRevLett.

38.739. URL http://link.aps.org/doi/10.1103/PhysRevLett.38.739. 51

Hirosi Ooguri. Topological lattice models in four-dimensions. Mod.Phys.Lett.,

A7:2799–2810, 1992. doi: 10.1142/S0217732392004171. Dedicated to Huzihiro

Araki and Noboru Nakanishi on occasion of their 60th birthdays. 51

Daniele Oriti, editor. Approaches to Quantum Gravity. Cambridge University

Press, 2009. 38

66

http://www.sciencedirect.com/science/article/pii/0550321386901938
http://link.aps.org/doi/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1007/BF01218410
http://link.aps.org/doi/10.1103/PhysRevLett.38.739


REFERENCES

Jerzy F. Plebański. On the separation of einsteinian substructures. J. Math.

Phys., 18:2511, 1977. 51

Ponzano and Regge. Spectroscopy and Group Theoretical Methods in Physics.

North-Holland, 1968. 13, 28, 31, 46

Michael P. Reisenberger. A Left-handed simplicial action for Euclidean general

relativity. Class.Quant.Grav., 14:1753–1770, 1997. doi: 10.1088/0264-9381/

14/7/012. 19

Michael P. Reisenberger and Carlo Rovelli. Space-time as a Feynman diagram:

The Connection formulation. Class.Quant.Grav., 18:121–140, 2001. doi: 10.

1088/0264-9381/18/1/308. 37

Vincent Rivasseau. Towards Renormalizing Group Field Theory. PoS,

CNCFG2010:004, 2010. 50

Justin Roberts. Classical 6j-symbols and the tetra-

hedron. GEOM.TOPOL., 3:21, 1999. URL

http://www.citebase.org/abstract?id=oai:arXiv.org:math-ph/9812013.

46

Naoki Sasakura. Tensor model for gravity and orientability of manifold.

Mod.Phys.Lett., A6:2613–2624, 1991. doi: 10.1142/S0217732391003055. 38

A. S. Schwarz. The partition function of degenerate quadratic functional and ray-

singer invariants. Letters in Mathematical Physics, 2:247–252, 1978. ISSN 0377-

9017. URL http://dx.doi.org/10.1007/BF00406412. 10.1007/BF00406412.

13

Samik Sen, Siddhartha Sen, James C. Sexton, and David H. Adams. A Geometric

discretization scheme applied to the Abelian Chern-Simons theory. Phys.Rev.,

E61:3174–3185, 2000. doi: 10.1103/PhysRevE.61.3174. 19

Lee Smolin and Artem Starodubtsev. General relativity with a topological phase:

An Action principle. 2003. 51

67

http://www.citebase.org/abstract?id=oai:arXiv.org:math-ph/9812013
http://dx.doi.org/10.1007/BF00406412


REFERENCES

Simone Speziale. Coupling gauge theory to spinfoam 3d quantum gravity.

Class.Quant.Grav., 24:5139–5160, 2007. doi: 10.1088/0264-9381/24/20/014.

52

G. ’t Hooft and M. Veltman. One-loop divergences in the theory of gravitation,

1974. 2

Gerard ’t Hooft. A Planar Diagram Theory for Strong Interactions. Nucl.Phys.,

B72:461, 1974. doi: 10.1016/0550-3213(74)90154-0. 8

Thomas Thiemann. Modern canonical quantum general relativity. 2001. 2, 19

V.G. Turaev and O.Y. Viro. State sum invariants of 3 manifolds and quantum

6j symbols. Topology, 31:865–902, 1992. doi: 10.1016/0040-9383(92)90015-A.

35, 52

Robert M. Wald. General Relativity. University Of Chicago Press, 1984. 18

Don Weingarten. EUCLIDEAN QUANTUM GRAVITY ON A LATTICE.

Nucl.Phys., B210:229, 1982. doi: 10.1016/0550-3213(82)90241-3. 6

Hassler Whitney. Geometric Integration Theory. Dover Publications, 2005. 22

Kenneth G. Wilson. Renormalization group and critical phenomena. i.

renormalization group and the kadanoff scaling picture. Phys. Rev.

B, 4:3174–3183, Nov 1971. doi: 10.1103/PhysRevB.4.3174. URL

http://link.aps.org/doi/10.1103/PhysRevB.4.3174. 50

Edward Witten. (2+1)-Dimensional Gravity as an Exactly Soluble System.

Nucl.Phys., B311:46, 1988. doi: 10.1016/0550-3213(88)90143-5. 16

68

http://link.aps.org/doi/10.1103/PhysRevB.4.3174

	Contents
	List of Figures
	1 Introduction
	1.1 Why quantum gravity?
	1.2 How quantum gravity?

	2 Matrix Models
	2.1 Gravity in two dimensions
	2.2 Microscopic matrix action
	2.3 Continuum limt

	3 BF Theory
	3.1 Classical Theory
	3.2 Relation with GR
	3.3 Discretization
	3.4 Path integral quantization

	4 Group Field Theory
	4.1 Two dimensions
	4.2 Three dimensions

	5 Conclusion and Outlook
	5.1 Renormalization and continuum limit
	5.2 Further developments

	A Recoupling theory of SU(2)
	B Delta function identity
	References

