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Abstract

We introduce the topcic of generalised geometry as an extension of differential

geomentry on the bundle TM ⊕T ∗M . An algebraic structure is built that leads to

the formation of the generalised tangent bundle. We place a generalised Riemannian

metric on this space and show that it is compatible with the metric for a generalised

Kähler structure. We investigate the nature of supersymmetric backgrounds in type

II supergravity by discussing the usual and generalised Calabi-Yau structure. From

this we show how the formalism of generalised geometry may be used to describe a

manifold with such a structure. It’s unique appeal to physicists lies in its unification

of the fields in NS-NS sector of supergravity.
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1 Introduction

As a starting point we would like to present the motivations behind the study of

supergravity theories and its role as a low energy limit of string theory. A brief history

of the work that led to the formulation and refinement of the supergravity theories, and

people who played a role in it. Following this I will briefly introduce the origins a new

field of research known as generalised complex geometry. It is study in this area that has

led to the formalism of generlised geometry.

1.1 Early work

The first appearance of string theory was in the 1960’s as a theory of the strong

nuclear force. When dealing with the scattering amplitudes of particles with large spin,

there was the appearance of divergences, which arose at high energies. In 1968 Veneziano

devised a scattering apmlitude which would bring to light the duality between t- and

s-channels [13]. This did not lead to a good theory of the strong force. Although it did

have the pleasing feature of including massless particles, including a spin-2 particle. This

was when it was first realised that this may be a candidate for a unified theory that

brought together quantum mechanics and general relativity. While a new theory QCD

was to take its role as a theory of the strong force.

At the same time as this, work was being done on the symmetries of the S-matrix.

In their 1967 paper [7] Coleman and Mandula formulate a theorem, which states that

in at theory with a mass gap, the only conserved quantities are the Poincaré generators

Pµ and Mµν , as well as the set of Lorentz scalar internal charges Ri. This is concluded

from a number of initial assumptions, including Lorentz invariance and particle finiteness

amongst others. The symmetry group of the S-matrix is then given by the direct product

of the Poincaré group with the group of internal symmetries.

Another symmetry, which relates bosons to fermions and vice versa, was introduced
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in the late 1960’s and early 1970’s. It was called supersymmetry (SUSY) and some of

the most notable early work was that of Wess and Zumino [21], who constructed a four-

dimensional interacting field theory which included supersymmetry. But this did not fit

in with what was previously known about S-matrix symmetries. Further investigation

was made into the implications of weaking some of the constraints on the Coleman-

Mandula theorem in 1975. It was generalised by Haag, Lopuszanski and Sohnius [15] by

allowing there to be new anti-commuting generators along with the existing commuting

ones. These new generators transform as spinors under the Lorentz group, not as scalars

as was previously required. This generalises the Poincaré algebra to the Super-Poincaré

algebra. This set supersymmetry into a new framework.

As general relativity can be seen to arise from the gauging of the Poincareé algebra,

we can then ask what is the result of gauging the Super-Poincaré algebra where the

supersymmetry is local. The origins of supergravity follows from this idea. In 1976

Freedman, van Nieuwenhuizen and Ferrara [9] took the approach not to begin with a

superspace, but to take only the vierbein field Vaµ and the Rarita-Schwinger field ψµ

to start. They took trial expressions for the variations of their fields and sought to

make the Lagrangian invariant with respect to them. This gave us a formulation of the

four-dimensional supergravity action by the introduction of a quartic term.

We would like supergravity to reproduce the content of the standard model and be

compatible with the gauge group SU(3) × SU(2) × U(1). Being a theory that would

unify the strong, weak and EM forces with gravity, the spin-2 particle i.e. graviton should

appear also. These requirements put certain constraints on the number of dimensions

that a theory of supergravity may have. It was shown by Witten [23] that to be able

to have the gauge group SU(3)× SU(2)× U(1) embedded in a supergravity model, the

lowest number of dimension allowed was eleven. While on the other end, the highest

number of dimensions allowed was shown also to be eleven by Nahm [18]. As we require

the maximum spin to be spin-two we have N = 8 extended supersymmetry, which has

32 supersymmetries. Since the SUSY generators transform as spinors and for a maximal
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spinor in d dimensions the size of the spinor is given by 2
d−1
2 . We have that the highest

number of dimensions allowed is eleven.

It wasn’t until 1978 when Cremmer, Julia and Sherk presented the first example of

an eleven dimensional supergravity action [8]. This result was a classical action with the

interstinf property that upon reduction to four dimensions it was related to O(8) theory.

Also in the mid 1990’s work by Witten, Schwarz and other resulted in what is known as

one of the string theory revolutions. This was a rekindling of interest in string theory

and supergravity. This was due to the combination of the differnt string theories into five

types and the duality relations between them. This resulted in the over arching theory

called M-thoery. It was from this that major work into supergravity began anew and has

led to many of the modern revalations in string theory.

1.2 Generalised geometry

The study of generalised geometry was first presented by N. Hitchin in his work

on lower dimensional special geometry and their properties as characterised by invariant

functionals of differential forms[16]. Hitchin developed the language of generalised geome-

try, on the generalised tangent space, in the context of generalised complex structures and

generalised Calabi-Yau manifolds. This work was futher expanded upon by his students

M. Gualtieri[14], G. R. Cavalcanti[4] and F. Witt[22]. At a glance the subject of gen-

eralised geometry can be summarised as the study of even dimensional manifolds which

have complex manifolds and symplectic manifolds as their extrema. By analogy to the

more familiar example of symplectic geometry, the generalised tangent space TM ⊕T ∗M

is endowed with a bracket, which is known as the Courant bracket and it incorporates

not only the standard group of diffeomorphism but also is invariant under the action of

a closed two-form.

The structure of generlised geometry...

and the B-field transformations can be thought of as gauge transformations. But
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there is a further restriction to this. Not all closed two-forms generate gauge transforma-

tions, only B-field transformations by the curvature of a unitary line bundle on M are

considered[10].
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2 The Courant bracket

Here we introduce the basic tools to deal with generalised geometry. We study the

underlying algebraic structure by defining the Courant bracket, which takes the place of

the Lie bracket of regular differential geometry. We show how this can be applied to a

range of spaces, Ep, and focus on the case of the generalised tangent bundle TM ⊕T ∗M .

This new space incorparates the familiar diffeomorphism group but also expands the

available symmetry group by include a group of shearings generated by a closed 2-form

B. We also consider the case where B is not closed and instead induces a twisting on the

Courant bracket.

2.1 Lie algebroids

We know from the study of differential geometry, for the tangent bundle TM on a

manifold M there are a set of functions f ∈ Diff(M) that maps the manifold into

itself, f : M → M . This is the diffeomorphism group on M . The manifold can also

be equiped with a Lie bracket, which acts on sections of the tangent bundle to produce

another section, [·, ·] : Γ(TM) × Γ(TM) → Γ(TM). These sections of TM are vector

fields, X = Γ(TM) ∈ TM . The Lie bracket satisfies the Jacobi identity showing that the

action of a vector field on the algebra is a derivation.

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]] X, Y, Z ∈ TM. (2.1)

In acting with a diffeomorphim f at a given point x ∈ M we would like know what is

the corresponding transformation that this induces on the tangent space TxM such that
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it preserves the commutative diagram

TM
F //

π
��

TM

π
��

M
f
//M

and

F ([X, Y ]|x) = [F (X), F (Y )]|f(x), (2.2)

where X, Y ∈ TM . This is nothing more than the pullback of the diffeomorphism f , i.e.

F = f∗. This means that the set of functions {f∗} will leave TM invariant and Diff(M)

is the group which preserves the tangent bundle.

We would like to consider a generalisation of the vector bundle TM with a Lie bracket.

This leads us to the idea of a Lie algebroid, which is defined by (E, [·, ·], ρ) on a manifold

M [24]. This consists of a vector bundle E over M , an anchor ρ and a Lie bracket [·, ·].

The anchor is a bundle map ρ : E → TM which takes elements of E into the tangent

bundle and the Lie bracket acts on sections of the vector bundle Γ(E), just as it acted

on sections of TM before. This triple is required to satisfy the following properties

ρ([v, w]) = [ρ(v), ρ(w)], (2.3)

[v, fw] = f [v, w] + (ρ(v)f)w, (2.4)

as well as the Jacobi identity, where v, w ∈ Γ(E) are elements of sections and f ∈ C∞(M)

is a function over M . The standard tangent bundle can be recovered by letting the anchor

be the identity map ρ = id. This means that TM is a Lie algebroid given by (TM, [·, ·], id).

An example of a Lie algebroid that shall be of importance is the direct sum of the

tangent bundle with the cotangent bundle TM ⊕ T ∗M . This is called the generalised

tangent bundle. A further extension of this is by using a p-fold wedge product of the

cotangent bundle in place of the T ∗M . We denote this by Ep = TM ⊕∧pT ∗M for p ∈ N

and it is automatically compatible with our previous arguement by setting p = 0 giving

9



back TM . Throughout the rest of these discussion we wish wish to concentrate on the case

of p = 1, which shall be reffered to as the generalised tangent bundle E = TM ⊕ T ∗M .

We are now closer to being able to incorporate the action of the B-field into our structure.

Take note that a Lie algebroid may be complexifiedif E is allowed to be a complex vector

bundle and the anchor map becomes ρ : E → TM ⊗ C.

2.2 Courant bracket

The elements of the generalised tangent bundle E are generalised vectors and they

are given by x = X + ξ, where X is a vector field and ξ is a 1-form field. Generalised

vectors are sections of E. Before we can write the new bracket that acts on such vectors

we introduce the generalisation of the Lie derivative. This is called a Dorfman bracket1

∗ : Γ(E)× Γ(E)→ Γ(E) and can be expressed as

Lxy = (X + ξ) ∗ (Y + η) = [X, Y ] + LXη − iY ξ. (2.5)

Whereas the natural bracket on TM ⊕ T ∗M is the Courant bracket J·, ·K. This is given

by

JX + ξ, Y + ηK = [X, Y ] + LXη − LY ξ −
1

2
d(ixη − iY ξ). (2.6)

It is a derived bracketand is the anti-symmetrisation of the Dorfman bracket[14]. Both

the Dorfman and Courant brackets have a skew-symmetric action on generlised vectors.

What is intersting about the Courant bracket is that it does not satisfy the Jacobi identity,

meaning it does not define a Lie algebroid. This failure of the Jacobi identity can be given

by the Jacobiator

Jac(x, y, z) = JJx, yK, zK + JJy, zK, xK + JJz, xK, yK, (2.7)

1We use the asterisk here as we are reserving [·, ·] for the Lie bracket and J·, ·K for the Courant bracket.
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for x, y, z ∈ Γ(E). When the Jacobiator is zero, the Jacobi identity is satisfied. The

Courant bracket also has a larger set of bundle automorphisms that goes beyond the

group of diffeomorphism on M to include the action of a 2-form B-field.

The symmetries of the Courant bracket include Diff(M). There is a commutative

diagram that has to be preserved in order for f ∈ Diff(M) to be a symmetry of the

Courant bracket, but now with the tangent bundle TM replaced by the vector bundle

TM ⊕ T ∗M ,

TM ⊕ T ∗M F //

π
��

TM ⊕ T ∗M
π
��

M
f

//M

and F : TM ⊕ T ∗M → TM ⊕ T ∗M must preserve the Courant bracket also

F (JX, Y K|q) = JF (X), F (Y )K|f(q), (2.8)

for some point q ∈M . This implies that F = f∗⊕ f ∗. Upon setting p = 0 we revert back

to regular the Lie bracket on S1 invariant vector fields[16] on M .

But this is not the most general form of F . We must consider the action of the

exponentiated B-field on a generalised vector

eB(X + ξ) = X + (ξ + iXB), (2.9)

where B ∈ ∧2T ∗M = Ω2(M). Under a transformation of this kind the Courant bracket

becomes

JeB(X + ξ), eB(Y + η)K = eB(JX + ξ, Y + ηK)− iXiY dB, (2.10)

but this does not seem to be a symmetry of the bracket. We must impose an additional

constraint on the 2-form field so that it is closed, dB = 0. This gives us an orthogonal
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symmetry of J·, ·K. Now the Courant bracket is preserved

JeB(X + ξ), eB(Y + η)K = eB(JX + ξ, Y + ηK) (2.11)

for B ∈ Ω2
cl(M). This is a new symmetry of generalised geometry that is of interest to

physicists. It is no coincidence that we use the same notation B as the Kalb-Ramond

2-form since they are one and the same. So for a mapping F that preserves the Courant

bracket, we require it to be the composition of a diffeomorphism and a B-field transfor-

mation. Together we have that f ∈ Diff(M) and B ∈ Ω2
cl are symmetries and the group

of Courant automporphisms on TM ⊕ T ∗M is the semi-direct product Diff(M) n Ω2
cl.

2.3 Twisted Courant barcket

If it is the case that B leads to a non-vanishing H-flux, i.e. dB 6= 0; the two-form that

generates H may only be defined locally on some U(α). For the field to be consistant over

the whole manifold one must patch these local frames such that the local B-field, B(α),

satisfies

B(α) −B(β) = dΛ(αβ) (2.12)

on the intersection U(α)∩U(β). A gerbe G [19, 1] is a set of functions gαβγ that takes their

values in U(1) and are defined over the intersection U(αβγ) = U(α) ∩ U(β) ∩ U(γ), which

must satisfy the requirement

g(βλδ)g
−1
(αγδ)g(αβδ)g

−1
(αβγ) = 1. (2.13)

There is also a connective structure defined for the gerbe by the set of one-forms A(αβ).

Over the triple intersection U(αβγ) they obey the realtion

Λ(αβ) + Λ(βγ) + Λ(γα) = g−1
(αβγ)dgαβγ. (2.14)
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From the above we can deduce that now there is a globally defined H-flux given by

H = dB(α) = dB(β). (2.15)

This is the curvature of the connective structure for the gerbe. If this flux is quantised

the functions g(αβγ) can be expressed as g(αβγ) = eiΛ(αβγ) .

Earlier we required that B must be a closed two-form in order for eB to be a symmetry

of the Courant barcket. If we consider a local B-field transformation generated by B(α),

the Courant bracket now transforms into

JeB(α)(X + ξ), eB(α)(Y + η)K = eB(α)(JX + ξ, Y + ηK)− iXiY dB(α)

= eB(α)(JX + ξ, Y + ηK)− iXiYH, (2.16)

where x = X + ξ, y = Y + η ∈ Γ(TM ⊕ T ∗M). This extra −iXiYH term does not vanish

now. The closed 3-form H is used in defining the twisted Courant bracket

Jx, yKH = Jx, yK− iXiYH. (2.17)

Under the a B-field transformations the the twisted Courant bracket becomes

JeBx, eByKH = JeBx, eByK− iXiYH

= eB(Jx, yK)− iXiY dB − iXiYH

= eB(Jx, yK)− iXiY (H + dB)

= eB(Jx, yKH+dB), (2.18)

where the twisted term is unaffected by the B-field as it has no action on pure vectors

X ∈ TM . We see that H defining the bracket has been shifted by the action of eB. For

eB to a symmetry of the twisted bracket we require that dB = 0.
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3 Generalised tangent bundle

In this section we examine the generalised tangent bundle in detail and see how it is

endowed with a linear structure, which is preserved by the symmetry group O(d, d). This

spilt signature metric can then be reduced to by the inclusion of an orientation on the

manifold. We look at the corresponding Lie algebra and how it is composed of a variety of

differnt type of transformations of TM ⊕T ∗M . One of which will be of great importance

to us, that is the B-field transformation. We finish up this section by formalising the

idea of a Courant algebroid. This is the correct description used to describe generalised

structures.

3.1 Linear structure

There exists a pair of symmetric and skew-symmetric bilinear forms on TM ⊕ T ∗M .

The symmetric form will be of interest as it gives a natural pairing between generalised

vectors in TM ⊕ T ∗M . It will be reffered to as the inner product on E and is given by

〈X + ξ, Y + η〉+ =
1

2
(iXη + iY ξ)

=
1

2
(η(X) + ξ(Y )). (3.1)

The subsript shall be dropped as the skew-symmetric case will not be dealt with from

here on. The inner product can be recast for a set of local coordinates (∂µ, dx
µ) in terms

of matrices as

〈x, y〉 = 〈X + ξ, Y + η〉 =
1

2

(
X ξ

)0 I

I 0


Y
η


= xtMy, (3.2)
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where x is now a column vector and M is a symmetric matrix, which is of the form

M =
1

2

0 I

I 0

 (3.3)

and is left invariatn by transformations in O(TM ⊕ T ∗M), the orthogonal group on the

tangent bundle. By means of a similarity transform T can be shown to have split signature

(−1, . . . ,−1, 1, . . . , 1). This shows that the structure preserving group on E is isomorphic

to the orthogonal split signature group of the same dimension i.e. O(TM ⊕ T ∗M) ∼=

O(d, d). This group can be reduced to SO(d,d) due to the existance of a canonical

orientation on TM ⊕ T ∗M [14].

There is a decomposition on the highest exterior power of E such that

∧2d(TM ⊕ T ∗M) = ∧dTM ⊗ ∧dT ∗M (3.4)

and there exists a pairing between ∧dTM and ∧dT ∗M that is given by

(v∗, u) = det(v∗i (uj)), (3.5)

such that v∗ = v∗1 ∧ . . . ∧ v∗k ∈ Γ(∧kT ∗M) and u = u1 ∧ . . . ∧ uk ∈ Γ(∧kTM). This allows

us to make the identification ∧2d(TM ⊕ T ∗M) = det(TM ⊕ T ∗M) = R and this choice

of number defines the canonical orientation on TM ⊕T ∗M . But this is not preserved by

O(E). In order to to preserve the bilinear pairing as well as the orientation we take the

special orthogonal group SO(TM ⊕ T ∗M) ∼= SO(d, d) as the symmetry group. This has

the Lie algebra

so(TM ⊕ T ∗M) = {T : 〈T ·, ·〉+ 〈·, T ·〉 = 0}, (3.6)

which has the natural decomposition so(E) = End(TM)⊕∧2T ∗M ⊕∧2TM . This is the

set of endomorphism on Γ(TM), the set of bivectors on M and the set of 2-forms on M .
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This algebra consists of matrices of the form

T =

A β

B −At

 , (3.7)

where A : Γ(TM) → Γ(TM) is an endomorphism on sections of TM and correspon-

ingly At : Γ(T ∗M) → Γ(T ∗M) is an endomorphism on sections of T ∗M . Whereas

B : Γ(TM) → Γ(T ∗M) can be thought of as a 2-form B ∈ Γ(∧2T ∗M) = Ω2(M),

following from the relation iXB = B(X), and β : Γ(T ∗M) → Γ(TM) as a bivector

β ∈ Γ(∧2TM). Both the 2-form and bivector are skew-symmetric fields, i.e. Bt = −B

and βt = −β. This is in accordance with the fact that the algebra may be decomposed

into so(TM ⊕ T ∗M) = End(TM) ⊕ ∧2T ∗M ⊕ ∧2TM . As we see this is the highest

exterior power of TM ⊕ T ∗M at d = 1.

Here we have the B-field appearing at a fundamental level within the formalism of

generalised geometry. Elements of the Lie algebra can be exponentiated to give the

group action on the generalised vectors. For each case we focus on an element of so(E)

that represents one of the following three transformations. A B-field transformation is

generated by elements TB =
(

0 0
B 0

)
in so(E), giving the transformation

eTB(X + ξ) =

 I 0

B I


X
ξ

 = X + (ξ + iXB) (3.8)

on Γ(TM ⊕ T ∗M). This we have come across before, where the notation eB was used.

Take note that these two notations can be used interchangeably, specifically the latter

for simplcity. This kind of transformation is a shearing of the generalised vector in the

direction of T ∗M while fixing it in the TM direction. There is a corresponding shear in

16



the TM direction generated by Tβ. This is given by

eTβ(X + ξ) =

I β

0 I


X
ξ

 = (X + iξβ) + ξ. (3.9)

This may be refered to as a β-transformation, which keeps T ∗M fixed. Lastly, there are

the transformations on Γ(TM ⊕ T ∗M) that are generated by TA =
(
A 0
0 −At

)
. This is an

embedding of GL+(TM) into the component of SO(TM ⊕ T ∗M) that is connected to

the identity.

3.2 Courant algebroid

We have already seen that the Courant and Dorfman brackets do not define a Lie

algebroid, partly due to their violation of the Jacobi identity. A Courant algeboid can

now be introduced as a generalisation of a Lie algebroid. This came out of the work of

Liu, Weinstein and Xu on Lie bialgebroids [17]. We have waited until now to introduce

this notion as we first need the symmetric inner product 〈·, ·〉 on Γ(TM ⊕ T ∗M). It is

given by (E, ∗, 〈·, ·〉, ρ) over a smooth manifold M , where there is a vector bundle E →M ,

∗ is the Dorfman bracket, 〈·, ·〉 is the inner product, and ρ : E →M is the anchor. These

must satisfy the following set of relations

x ∗ (y ∗ z) = (x ∗ y) ∗ z + y ∗ (x ∗ z), (3.10)

ρ(x)〈y, z〉 = 〈x, y ∗ z + z ∗ y〉, (3.11)

ρ(x ∗ y) = Jρ(x), ρ(y)K, (3.12)

x ∗ fy = f(x ∗ y) + (ρ(x)f)y, (3.13)

x ∗ y + y ∗ x = 2D〈x, y〉, (3.14)

for some x, y, z ∈ Γ(E), f ∈ C∞(M) and where D = 1
2
ρ∗d. This

An exact Courant algebroid is given by a Courant algebroid that is an exact short
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sequence [14],

0 −→ T ∗M −→ E −→ TM −→ 0.

In our case this is given by the closure of the anti-symmetric two-form B. This is the

underlying algebraic structure of generalised geometry.
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4 Metric on TM ⊕ T ∗M

We have seen that there is a linear structure on TM ⊕ T ∗M . This is preserved by

the structure group O(d, d), whose algebra gives a set of endomorphism on and between

the pair of subbundles, TM and T ∗M , of E. In this section we introduce a metric

structure on TM ⊕T ∗M that reduces the O(d, d) symmetry to that of O(d)×O(d). This

framework here is built upon the Dirac structure, from which the integrability of the

following structures rely. A generlaised metric structure is introduced on the generalised

tangent bundle. We wish to find the form of this metric and how it incorporates the

B-field. To do this we highlight that a generlaised metric structure is a particular case of

generalised Kähler structure, even though we do not require Kählerity in order to have a

metric.

4.1 Dirac structure

To define a Dirac structure we must first introduce the idea of an isotropic subspace.

An isotropic subspace L ⊂ TM ⊕T ∗M is a space such that for all x, y ∈ Γ(L), which are

non-zero, the inner product vanishes, 〈x, y〉 = 0. As L is contained in TM⊕T ∗M it forms

a Courant algebroid. If this space has dimension dim(M) = d then it is a maximally

isotropic subspace. This condition can also be expressed, if

〈a, b〉 = 0 ∀a ∈ Γ(L) (4.1)

this implies that b ∈ Γ(L). A real or complex Dirac structure is an involutive maximally

isotropic subbundle L ⊂ TM⊕T ∗M or L ⊂ (TM⊕T ∗M)⊗C respectively. This lays the

ground work for the introduction of generalised complex structures. One useful property

of a maximally isotropic subbundle L is the equivalence between L being involutive and

the restriction of the Jacobiar to L vanishing

Jac|L = 0. (4.2)
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This means that the restriction of the Courant bracket to L satisfies the Jacobi identity

and now J·, ·K|L is a Lie bracket. A simple example to illustrate this is the tangent bundle

TM ⊂ TM ⊕ T ∗M , where TM is a maximally isotropic subbundle of of E that has

dimension d. As expected the Courant bracket on TM is just the Lie backet.

4.2 Generalised metric

An ordinary Riemannian metric g : TM → T ∗M maps a vector X into g(X, ·). This

can be applied to the generalised tangent bundle and induces a splitting V ⊕ V ⊥ =

TM ⊕ T ∗M . Its graph is given by Γg = {X + g(X) : X ∈ TM} and this defines

a positive-definite Dirac structure. We can check this by taking the inner product of

vectors x ∈ V ,

〈x, x〉 = 〈X + g(X), X + g(X)〉 = g(X,X). (4.3)

More generally, we have a mapping A : TM → T ∗M where A ∈ T ∗M ⊗ T ∗M .

This space of rank 2 tensors can be broken into its symmetric and antisymmetric parts

T ∗M ⊗ T ∗M = Sym2T ∗M ⊕ ∧2T ∗M . From this we gain an explicit form for A and its

graph is given as[5]

ΓA = ΓB+g = C+ = {X +B(X, ·) + g(X, ·) : X ∈ TM}, (4.4)

where B is a skew 2-form and g is the symmetric metric.

We also include the conditions that 〈Gx,Gy〉 = 〈x, y〉 and there are projectors from

E into each of the O(d) substructures, π± : TM ⊕ T ∗M → C±

π± =
1

2
(I±G). (4.5)

The maximal subspace C+ ⊂ E is such that the restriction of the inner product is positive-

definite 〈·, ·〉|C+ > 0 and the generalised tangent bundle is given as E = C+ ⊕C−, where

〈·, ·〉|C− < 0. For this to be a Dirac structure it must be involutive with respect to the
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Courant bracket. The generalised metric G : E × E → R is positive-definte on this

splitting,

G = 〈x, y〉|C+ − 〈x, y〉|C− > 0 (4.6)

for all non-zero x, y ∈ TM ⊕T ∗M . This condition may also be expressed as 〈Gx, x〉 > 0.

We note that G can be viewed as an endomorphism2 on TM ⊕ T ∗M

G : E → E∗. (4.7)

But as we can see E∗ = (TM ⊕ T ∗M)∗ = (TM)∗ ⊕ (T ∗M)∗ = E and thus this an

endomorphism of the tangent bundle. The generalised metric fulfills the condition of

being symmetric G = Gt and as it is an orthogonal transformation it squares to the

identity G2 = GGt = I.

This positive-definite metric, along with the inner product, induces a reduction of the

O(d, d) group into its maximally compact subgroup O(d)×O(d) [14]. The factors in this

product preserve the ±1-eigenspaces of C± individually. We leave the explicit form of the

generalised metric to the later subsection on generalised Kähler structures. While this

is not a necessity for the metric to of that given form, it does help to give a particular

example as motivation. The metric is a specific case of a generalised Kähler structure.

4.3 Complex structure

In working towards a definition of a complex structure we must first discuss almost

complex structures. An almost complex strucure is an endomorphism on the tangent

bundle J : TM → TM such that it satidfies J2 = −I. This may seem familiar from the

notion of the imaginary unit i, both of which square to the identity. We now have a sense

of complex multiplication on TM . There is a splitting that can be induced on the TM

2In fact G is an automorphism as it has an inverse.
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complexified by the pair of projectors

π± =
1

2
(1∓ iJ). (4.8)

This decomposes the tangent bundle into sets of holomorphic vector fields and anti-

holomorphic vector fields

TM ⊗ C = T 1,0M ⊕ T 0,1M, (4.9)

such that π+v = v, v ∈ Γ(T 1,0M) for the holomorphic bundle and π−u = u, u ∈ Γ(T 0,1M)

for the anti-holomorphic bundle. There exists an isomorphism between TM and T 1,0M ,

where TM is endowed with an almost complex structure J , and T 0,1M can be viewed as

its complex conjugate.

We are almost able to define what is meant by a complex structure on M , but there

is one condition left. We require that the almost complex structire J on M is integrable.

For J to be integrable the subbundles T 1,0M and T 0,1M must be involutive with respect

to the Lie bracket. This is in the sense of Frobenius integrability, for two vectors in a

subbundle their Lie bracket is also in that subbundle. This can be summarised as

π−{π+v, π+u} = 0 π+{π−v, π−u} = 0 (4.10)

for the holomorphic and anti-holomorphic fields, v, u ∈ Γ(TM). The bundle T 1,0M

fulfils the requirements of a Lie algebroid. The anchor in this case is the inclusion map

T 1,0M ↪→ TM ⊗C. So we have that a complex structure is an almost complex structure

where the subbundles are integrable with respect to the Lie bracket. This is not the

only way that this can be expressed. One can require that the subbundle arises from a

generalised foliation induced by the Lie algebroid structure[14]. The details of which we

shall not go into here.
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4.4 Generalised complex structure

A generalised complex structure is an endomorphism on the generalised tangent space

J : TM ⊕ T ∗M → TM ⊕ T ∗M (4.11)

with the conditions that it is both complex J 2 = −I and symplectic J t = −J . From this

we can immediately infer that J is also orthogonal and satisfies the relation J tJ = I.

We have that J defines an almost generalised complex structure, we also require that

the action of J on sections of TM ⊕ T ∗M fullfil an integrability condition. In a more

general sense a generalised complex strucure is given by a complex Dirac structure L ⊂

(TM ⊕T ∗M)⊗C such that for the +i-eigenspace and −i-eigenspace L∩ L̄ = {0} is true.

These eigenbundles are defined by the pair of projectors

Π± =
1

2
(I± iJ ) (4.12)

on the complexified generalised tangent bundle. This gives us a decomposition (TM ⊕

T ∗M)⊗C = L⊕L̄. By analogy to the construction of a complex structure, the projectors

allow us to state an integrability conditoin

Π∓JΠ±x,Π±yK = 0 (4.13)

for x, y ∈ Γ(E ⊗ C) with respect to the Courant bracket. Thus making J a generalised

complex structure.

It now becomes evident that embedded in this are the familiar complex and symplectic

structures. This can be seen by taking

JJ =

−J 0

0 J t

 , (4.14)
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where J defines a complex structure on TM and JJ satisfies the complex and symplectic

conditions. This is an extremal example of a generalised complex structure made of the

purely complex structure J . It has a corresponding Dirac structure

L = {T (0,1)M ⊕ T ∗(1,0)M}, (4.15)

where T (0,1)M is the −i-eigenbundle of J . On the other extreme we have an embedded

symplectic strucutre given by

Jω =

0 −ω−1

ω 0

 , (4.16)

where ω is the usual symplectic closed two-form on TM ⊗C. This has a Dirac structure

given by

L = {X − iω(X) : X ∈ TM ⊗ C}. (4.17)

All this works while seeming extraneous is building towards the definition of a generalised

Calabi-Yau manifold, which will be the setting for our discussion of supersymmetric vacua

in Type II supergravity.

4.5 Generalised Kähler structure

A Kähler structure on M is given by a triple (g, J, ω) [3], where the metric g is a

symmetric bilinear form g : TM × TM → R, J is an almost complex structure and ω is

a non-degenerate two-form. This three ojects must satisfy

ω(X, ·) = g(JX, ·), (4.18)

where X ∈ TM . If the closed two-form can be expressed as ω = gJ then we call it a

Kähler form. The generlaised metric on TM ⊕ T ∗M is the analogue of g as part of a

generalised Kähler structure.

We will define a generalised Kähler structure as the triple (G,J1,J2), where G is the
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generalised metric, and J1 and J2 are commuting generalised complex structures. The

metric G is compatible with a complex structure J1 if they commute. This pairing gives a

generalised Hermitian structure, which when combined give the second complex structure

J2 = GJ1. This triple can be encapsulated by the following diagram being preserved,

TM ⊕ T ∗M
J1

vv

J2

((
TM ⊕ T ∗M

G
// TM ⊕ T ∗M

The generalised metric also may be rewritten in terms of the two generalised complex

strutures, G = −J1J2, which allows us to find its explicit form. This Kähler structure

reduces the group yet again from O(d)×O(d) to U(d
2
)× U(d

2
).

A simple example of a generalised Kähler structure comes from a regular Kähler

structure. This arises from the pairing (J1,J2) = (JJ ,Jω), which is defined by

JJ =

J 0

0 −J t

 , (4.19)

and

Jω =

0 −ω−1

ω 0

 , (4.20)

which we saw earlier. This choice gives us an explicit form of the metric

G(0) =

0 g−1

g 0

 . (4.21)

Its action on a generalised vector x = X + ξ is given by

G(0)x =

0 g−1

g 0


X
ξ

 =

g−1(ξ, ·)

g(X, ·)

 = x (4.22)
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and so we can conclude that ξ = g(X, ·). This being part of the defining expression for

C+. This has partly justified our choice earlier for A = B + g, but for the case where

B = 0.

We recall that there is a shearing transformation by the B-field as applied to vectors

x = X + ξ. We can apply the same transformation to the generalised complex structures

so that the generalised complex structures are now dependant on B

(J B
J ,J B

ω ) = (eBJJe−B, eBJωe−B). (4.23)

This can be extended to the metric by the expression G = −J1J2, so that it too is

dependant on B. This transforms the metric into

G = eBG(0)e−B

=

 1 0

B 0


0 g−1

g 0


 1 0

−B 0


=

 −g−1B g−1

g −Bg−1B Bg−1

 (4.24)

There is now an inherent mixing between the metric g that encapsulates diffeomorphisms,

and the 2-form B that encapsulates the gauge transformation on M . To bring this into a

form that will be of more relevance to us later, we can transform G by the split-signature

metric 2M on TM ⊕ T ∗M . This will give

H = 2MG =

g −Bg−1B Bg−1

−g−1B g−1

 (4.25)

and its action on a generalised vector Hx = x gives the full constraint

ξ = B(X, ·) + g(X, ·), (4.26)

26



which defines Dirac structure C+. This is consistant with our earlier discussion where

the eigenspaces C± can be expressed as the graphs

ΓB±g = {X + (B ± g)(X) : X ∈ Γ(TM)}. (4.27)

Here we have generalised the arguement to include the case of the −1-eigenvalue. This

follows a similar procedure as to what is above. As we have seen for the metric, G, the

B 6= 0 case is arrived at from the B = 0 case by application of eB. The same holds true

for the graphs. So we may express ΓB±g = eBΓ±g.

Through building up a tower of structures upon M we have come to the construction

of the generalised metric H by means of a generalised Kähler structure. Although the

metric structure does not depend on the existance of a Kähler structure, it exists in its

own right. It is a symmetric bilinear automorphism of the generalised tangent bundle

TM ⊕T ∗M that brings together the metric g on TM and a two-form B ∈ Ω2(M), which

we will almost always require to be closed. In terms of Type II supergravity we have

brough together two of the three NS sector fields into one object. What remains is to

include the dilaton Φ, and work has already been done in this direction [12]. The form of

H itself is also interesting as it is familiar within the study of T-duality. The generalised

metric is a manifestation of the transformations known as the Buscher rules.
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5 Spinors on TM ⊕ T ∗M

In this section we work towards the definition of a generalised Calabi-Yau structure.

The introduction of spinors to generalised geometry comes from condering the action

of some generalised vector x on the exterior algebra ∧•T ∗M . This defines a Clifford

algebra on TM ⊕T ∗M and with that comes the spin representation. We look at how the

generalised vectors act on the spinors and from this we can impose certain constraints

which lead use to a relation between the spinors induced by a complex Dirac structure

and the generalised complex strcutures.

5.1 Clifford algebra

In its most basic form a Clifford algebra on V is defined by a collection of i objects

Γi ∈ V that satisfy the anti-commutation relation {Γi,Γj} = 2gij for some arbitrary

symmetric form g. There is a natural representation of the Clifford algebra that appears

on the generalised tangent bundle C`(TM ⊕ T ∗M) and it is defined by

x2 = 〈x, x〉 ∀x ∈ TM ⊕ T ∗M. (5.1)

The elements of C`(TM ⊕T ∗M) have an action on the exterior algebra on T ∗M denoted

by S = ∧•T ∗M , which is called the spin representation Spin(TM ⊕ T ∗M). This Clifford

module S is the space of all forms on M , i.e. Ω•(M) = ∧•T ∗M , leading to the conclusion

that spinors onM may be associated with differential forms. The action of x ∈ TM⊕T ∗M

on the space of forms is given by

(X + ξ) · ρ = iXρ+ ξ ∧ ρ (5.2)
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for some ρ ∈ Ω•(M). Two such operations may be composed giving us explicitly the

relation that defines the Clifford algebra,

x · (x · ρ) = (iX + ξ∧)(iXρ+ ξ ∧ ρ)

= (iXξ)ρ

= 〈x, x〉ρ. (5.3)

Thus rendering ∧•T ∗M a reducible Clifford module as a result of the split signature (d, d)

of TM ⊕ T ∗M , which splits S into two separate helicity components S = S+ ⊕ S− =

∧oddT ∗M ⊕ ∧evenT ∗M [16].

There is also a symmetric bilinear pairing for spinors on M called the Mukai pairing

(·, ·) : ∧•T ∗M × ∧•T ∗M → detTM∗[14]. By means of an operation σ that reverses the

order of the wedge prodect of a form, we can define the Mukai pairing by

(ϕ, ψ) = [σ(ϕ) ∧ ψ]top (5.4)

for some ϕ, ψ ∈ Ω•(M). The squared brackets take the value to be the top form of the

product i.e. a form with the highest possible degree, and it is an element of detT ∗M .

5.2 Generalised Calbi-Yau structure

The null space of a non-zero is spinor ϕ is a subspace Lϕ ⊂ TM ⊕ T ∗M such that all

x in Lϕ annihilate the spinor,

Lϕ = {x ∈ TM ⊕ T ∗M : x · ϕ = 0}. (5.5)

From the action of such a vector on ϕ we know that 〈x, y〉 · ϕ = 1
2
{x, y} · ϕ = 0. This

comes from the definition of a Clifford algebra and the representation C`(TM ⊕ T ∗M).

Thus Lϕ is an isotropic subspace of TM ⊕ T ∗M . For the case where Lϕ is maximally

isotropic the spinor ϕ is called a pure spinor and its dimension is d. Under the action of
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Spin(TM ⊕ T ∗M) a pure spinor will be transformed into another pure spinor[16].

If we take two maximally isotropic subspaces Lϕ and Lϕ′ such that Lϕ ∩Lϕ′ = 0 then

this poses a constraint on the two defining spinors (ϕ, ϕ′) 6= 0. A generalised complex

structure E ⊂ (TM⊕T ∗M)⊗C satisfies this condition of maximal isotropicity. Following

from the two examples of symplectic structure and complex structure that we saw earlier,

we can associate to each a representative spinor. In the case of a symplectic structure the

corresponding spinor is given by eiω. But for our interests we shall consider a symplectic

structure that has been sheared by a B-field giving us a B-symplecic structure[14], which

has an associated spinor

ϕe−BE = eB+iω. (5.6)

For the case of a complex structure the spinor is Ωn,0, a holomorphic n-form. Again we

will consider the sheared counterpart, which is given by the spinor

ϕe−BE = eB ∧ Ωn,0. (5.7)

This can all be generalised to give a generic type n generalised complex structure, where

n is the rank of complex form Ω, and it has a corresponding spinor

ϕ = eB+iω ∧ Ωn,0. (5.8)

This is all purely a consequence of the requirement that the subspace be maximally

isotropic. Recall that previously we introduced the twisted Courant bracket, which came

about by the non-zero H flux. The twisted de Rham differential is another result of such

a closed 3-form dHϕ = dϕ + H ∧ ϕ that acts on spinors. The integrability requirement

on the generalised complex structure that the twisted courant bracket must be closed

translates to the condition dHϕ = x · ϕ [5], where x ∈ (TM ⊕ T ∗M)⊗ C.

The conditions for the existance of a generalised Calabi-Yau structure on M are that

there must be a complex pure spinor that is given by ϕ ∈ S±⊗C, which is required to be
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closed i.e. dϕ = 0, and the pairing of this spinor with its conjugate must be non-vanishing

at all points (ϕ, ϕ̄) 6= 0. There is a need for two such pure spinors ϕ1 and ϕ2, each one

being associated with a generalised complex structure J1 and J2. Now since we can

define a generalised Kähler structure, which along with the two initial condition gives us

the generalised Calabi-Yau. We need the two spinors because the definiion of the regular

Calabi-Yau manifold is a Kähler manifold with a holomorphic top form Ω that is nowhere

vanishing.

We will use the idea of a generalised of a manifold with a generalised Calabi-Yau

structure in the following section to describe the physics of different supersymmetric

backgrounds. In particular the case of non-zero flux forms will be of interest.
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6 Supergravity

Since the second string revolution a large effort has been made to understand solutions

to supergravity. Solutions to supergravity are known as vacua. From a phenomenological

point of view the desire would be to find spontaneous broken supersymmetry that has a

N = 1 vacuum and an SU(3) × SU(2) × U(1) sector. One possible route to this is via

non-vanishing fluxes [20] that can break the N = 2 vacua down to N = 1 as a result of

mass deformation on some compactified Calabi-Yau. Non-vanishing fluxes arise from the

non-zero vacuum expectation values of field strengths for the form potentials that appear

in the theory. We wish to look at the role generalised geometry plays in the context of

these non-zero flux backgrounds. A useful reference for this is the review by Graña [11]

on flux compactifications.

6.1 Type II supergravity

We know that supergravity theories are low-energy effective actions of the correspond-

ing superstring theory. For our purposes we will concentrate on type II theories in ten

dimension and the treatment of its field content will follow the democratic formalism of

Bergshoeff et al. as introduced in [2]. The massless field content of a type II theory

contains both a bosonic sector and a fermionic sector. The bosonic sector may be further

subdivided, the NS-NS sector that contains the metric gMN , two-form potential BMN

and dilaton φ. Where the indices M,N run over all dimension of the theory i.e. 10 and

contain both external and internal indices µ and m respectively. While the RR sector

contains differing collections of form potentials depending on which theory we consider.

For type IIA the RR sector has a 1-form CM and a 3-form CMNP and type IIB has a

0-form (axion), a 2-form CMN and a 4-form CMNPQ
3. We see that type IIA comprises of

odd-form potentials, while IIB comprises of even-form potentials.

The massless fermionic sector contains two Majorana-Weyl gravitinos ΨA
M , where

3The 5-form field field strength of the 4-form potential is self-dual.
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A = 1, 2 and these two spinors have opposite chirality in type IIA and the same chirality in

type IIB. There are also two Majorana-Weyl dilatinos λA whose chiralities are the reverse

of the gravitinos for corresponding A. As we have shown there is N = 2 supersymmetry

in D = 10 dimensions and the supersymmetry parameters are εA, which have the same

chirality as the relevant gravitinos.

The field strengths of the fields in the bosonic sector give rise to non-zero flux if their

expectation value is non-zero. The field strength for B is given by

H = dB (6.1)

and in the democratic formalism the collective field strength of the remaining form po-

tentials is given by the sum over either odd or even forms

F 10 = dC −H ∧ C +meB, (6.2)

where m = F0 = dC0. This includes all potentials from 0 to 9 and to account for the

extra degrees of freedom we must impose a duality constraing

F (10)
n = (−1)b

n
2
c ? F

(10)
10−n . (6.3)

Now with the basic objects of interest defined we may see how these field strengths play

a role in supersymmetric vacua.

6.2 Supersymmetric backgrounds

We wish to compactify 6 of the 10 dimension in such a way that the 4 external

dimension prodces a maximally symmetric spacetime, i.e. Minkowski, AdS4 or dS4. This

means that the expectation values of the fermionic fields must vanish if we are to have
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maximal symmetry. The variations of the fermionic fields are given by

δψM = ∇Mε+
1

4
HMPε+

1

16
eφ
∑
n

F (10)
n/ ΓMPnε (6.4)

δλ =

(
∂/φ+

1

2
H/P
)
ε+

1

8
eφ
∑
n

(−1)n(5− n)F (10)
n/ Pnε (6.5)

where F
(10)
n/ = 1

n!
F

(10)
P1...Pn

ΓP1...Pn . Also for type IIA P = Γ11 and Pn = Γ
(n
2

)

11 σ1, and for

type IIB P = −σ3 and for n+1
2

even Pn = σ1 and for n+1
2

odd Pn = iσ2. The solutions to

these equations give us the vacua for the theory.

For the case of zero flux for a maximal spacetime reduces to a condition on the

supersymmetric parameters. It requires that they are convariantly constant

∇Mε = 0. (6.6)

To be able to investigate the internal aspect of the variation we split the spinor ε into

external and internal components. For type IIA the spinors have different decompositions

ε1 = ξ1
+ ⊗ η+ + ξ1

− ⊗ η− (6.7)

ε2 = ξ2
+ ⊗ η− + ξ2

− ⊗ η+, (6.8)

where the external component is ξ and the internal component is η. Whereas for type

IIB the decomposition is the same for both spinors

εA = ξA+ ⊗ η+ + ξA− ⊗ η− (6.9)

for A = 1, 2. What is of importance here is the internal spinor component. Using this

splitting we can find the condition on the internal spinor such that ∇mη± = 0 requires

it to be a covariantly constant spinor. While on the external manifold we have two four-

dimensional spinors, which gives us N = 2 supersymmetry on the external manifold. We
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have the condition that for compactifications with fluxes we require the manifold to be

externally Minkowski with an internal Calabi-Yau[11]. So we shall concentrate on the

case where the internal manifold is a Calabi-Yau compactification.

The covariantly constant spinor has two facets to it. Firstly there is the intial existance

of the spinor and secondly it must be covariantly constant. The first aspect is a topological

issue of the manifold, while the second is a differntial condtion of the spinor itself. If we

consider the spin representation for the 6 dimensional compact internal space, we see that

it has an SO(6) symmetry. This can be broken to an SU(3) symmetry where the spinors

transform trivially and are therefore a constant of the manifold. The same holds true

for a 2-form and 3-form field, which transform as singlets under SU(3). So these two are

constants of the manifold and are globally well defined. But there is no representation

of the vector that is globally well defined. The 2-form is real and is denoted by J . This

notation is common convention and should not be confused with the almost complex

structure introdiced earlier, although the two are related by raising the an indiex of

this new 2-form, i.e. J n
m is an almost complex strucure on the internal space. The 3-

form is complex (3, 0) and is denoted by Ω. By forming a 6-form volume element from

combinations of there two forms we can find the relation

J ∧ J ∧ J =
3i

4
Ω ∧ Ω̄ (6.10)

and they define a metric by means of a Kähler structure.

There is a direct relation between the spinor η± and the pair of forms J and Ω. They

are equivalent in the sense that they both define an SU(3) structure on the manifold and

this can be given explicity by

Jmn = ∓2iη †
± γmnη± (6.11)

Ωmnl = −2iη †
− γmnlη+ (6.12)

where γi1...ip are the gamma matrices on the internal space.
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6.3 Generalised geometry in supergravity

Now we introduce non-vanishing fluxes and analyse how this effects our choice of

background. For our purposes we want there to be the minimal N = 1 supersymmetry

preserved and for this to be the case there needs to be well globally well defined super-

currents. We look at the Clifford(6, 6) group and its spinors. We see that they may be

composed of two Clifford(3) spinors that we have discussed earlier. These are bispinors

that are non-zero at every point and given by

Φ+ = η+ ⊗ η †
+ (6.13)

Φ− = η+ ⊗ η †
− . (6.14)

Each of these in turn defines an SU(3) on the manifold

Φ+ =
1

8
e−iJ (6.15)

Φ− = − i
8

Ω. (6.16)

These are examples of generalised complex structures corresponding to J2 and J1 re-

spectively. We now have two structures from which we can define a generalised Kähler

structure and by imposing the condition

dΦ = 0 (6.17)

we can then define a generalised Calabi-Yau.

We would like to be able to translate the vanishing of the supersymmetry variations

δΨm = 0 and δλ = 0 into the language of generalised Calabi-Yau in terms of the pure

spinors Φ±. These differntial conditions should be analogues of ∇mη = 0 that resulted
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in an N = 1 supersymmetric background. For type IIA these conditions are

e−2A+φdH(e2A−φΦ̄+) = 0, (6.18)

e−2A+φdH(e2A−φΦ̄−) = dA ∧ Φ̄− −
1

16
eφ
[
(|a|2 − |b|2)FIIA− − i(|a|2 + |b|2) ∗ FIIA+

]
,

(6.19)

where A is the warp factor of the conformaly maximal spacetime and the spinors Φ are

not normalised. The field strengths FII are given by the democratic formalism, where

IIA contains the even forms and IIB contains the odd forms. While for type IIB the

conditions are

e−2A+φdH(e2A−φΦ̄+) = dA ∧ Φ̄+ −
1

16
eφ
[
(|a|2 − |b|2)FIIB− − i(|a|2 + |b|2) ∗ FIIB+

]
,

(6.20)

e−2A+φdH(e2A−φΦ̄−) = 0. (6.21)

These are the differential conditions on the generalised Clifford(6,6) spinors. The solutions

to these are the vacua of of N = 1 supergravity reduced on a Calabi-Yau 3-fold, which

is a space with complex dimension 3.
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7 Conclusion

Here we have introduced generalised geometry as an extension of differential geom-

etry. Examining the linear structure on the generalised tangent bundle led us to the

split signature group O(d, d). This was found to be consistan with a generalisation of

the Riemannian metric on TM ⊕ T ∗M , which reduced the group to O(d) × O(d). We

then worked towards a generalised Kähler structure that was compatible with the new

Riemannian metric and this allowed a further reduction of the group to SU(d
2
)× SU(d

2
).

This has applications in supergravity when applied to determining supersymmetric vacua.

We wished to reduce an N = 2 type II theory from 10 dimensions to that of a N = 1

theory in 4 dimensions. It was found that when this was done the external manifold is

the maximal Minkowski spacetime and the internal manifold is a Calabi-Yau manifold.

We then investigated what were the conditions on such a space when this reduction

was caused by non-fluxes. It was shown that this situation can be aptly described by

generalised geometry. We stated the condition for the existance of well defined spinors

on a generalised Calabi-Yau and looked at the differential conditions that were imopsed.

This is only a brief taste of the richness that generalised geometry has to offer. In

combining the metric with Kalb-Ramond 2-form we unified part of the NS-NS sector of

type II theories. There is still the dilaton to take into account. This was briefly hinted at

earlier and it has been done by Coimbra et al. in [6] by including it as a scaling factor in

the definition of the generalised vielbein. The future applications of generalised geometry

may help shed light on ways of find solutions to supergravity while including fermionic

states.
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