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Abstract

The mass of this topological defect created in the (λφ4)1+2 model was measured using

the 3-dimensional Ising model due to the fact that the specific spin model and the λφ4

model live in the same universality class. In fact, the implementation of the model was

done using Monte Carlo Simulations and the mass was measured using two different non-

perturbative methods. The first one involved the free energy of the defect found by the

difference between the free energies of the system with twisted and periodic boundary

conditions and it had already been used in other works for finding similar quantities. The

second method was a new one that was checked to be working in (1 + 1) dimensions and

involves correlation functions from which the mass can be extracted directly. The results

between the two methods have a significant difference which might be explained by the

finite lattice effect.
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Chapter 1

Introduction

The whole world is governed by physical laws. Due to the curious nature of the human

beings, people never stopped asking what the underlying physics behind what we see

and even importantly behind what we are not able to see is. From the microscopic to

the macroscopic scales, theoretical physicists develop models hoping that a better un-

derstanding of our Universe will be achieved. The hope that a Grand Unified Theory,

i.e. a theory that will unify the strong with the electroweak force at all energy scales,

can be achieved let many physicists search for a new gauge symmetry that will give a

unified coupling constant. One candidate that might achieve this dream is String Theory:

a quite recent area of physics but yet one of the most revolutionary proposals that has

ever occurred. Any model of the GUT predicts the existence of topological defects such

as cosmic strings, monopoles and domain walls. The latter, has been investigated by

cosmologists who developed many cosmological models to explain the structure of our

universe and it believed that as the hot universe was cooled down a domain wall was

formed which has an effect in the homogeneity of the present universe. Furthermore, the

domain wall gets a ”string nature” in the problem of the confinement of QCD at the point

where the phase transition occurs between the deconfinement and confinement regime.

In the first half of the 19th century the evolutionary idea that the world we live in is
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not classical but quantum mechanical raised new perspectives of all the theories that

were postulated by then. Quantum field theory was proven to be one of the most im-

portant fields that contributed the most in the understanding of the behaviour of our

universe. However, the quantization of a field theory is not always trivial and many

times arises complex problems. The main way to estimate quantized solutions is by

applying perturbation theory around the classical solution. Even though this has been

proven powerful, for non-linear systems perturbation theory ignores many effects which

are actually important. Thus finding a non-perturbative way to examine quantization of

a system is of high importance.

Non-linear systems take many forms. Theoretical physicists, during their attempt to

find a Grand Unified Theory, came up with revolutionary ideas that changed the whole

view of the universe. By studying the topology of the non-linear field equations, which

arise from different field theories, they introduced the idea of topological solitons. Fol-

lowing, they became able to characterize interfaces, kinks, vortices or monopoles that

were present in the theories of their research as topological defects. Nowadays, a signif-

icant number of people is working on them and many papers regarding them have been

published.

In this dissertation, our focus is on interfaces created in three dimensions which can

be visualized as an extended kink in 2 dimensions, i.e. a domain wall or a spatial t’ Hooft

loop. When someone deals with the 3-dimensional Ising Model, which is a spin statistical

model, it can easily be seen that by investigating the magnetization which is an order

parameter, a second order phase transition occurs in the phase where the global Z2 sym-

metry is spontaneously broken. By changing the boundary conditions of the model, an

interface is created in the broken phase which is considered to be the topological defect in

the theory and its properties can be investigated. The main task is to find its mass using

two different methods, out of which only the one has already been tested in previous
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works. Both methods are non-perturbative methods so no effects are excluded. The first

method is that of the finite free energy differences which was applied many times to a va-

riety of field theories but has the disadvantage that all the measurements have to be taken

from a point where the free energy is known and so it has a cost in the computational

time. The new method that is tested here was first proposed in [1] in which it was shown

to be working in (λφ4)1+1 model. In this work, the latter method is extended to (λφ4)1+2

model which is implemented by the 3-dimensional Ising Model. The behaviour of the two

models is the same close to the critical point, since they live in the same universality class.

Interfaces created in theories with phase transitions have gained the interest of many

people and they seem to have a wide range of applications in various fields. They were

investigated in biology, chemistry and soft condensed matter especially in phase tran-

sitions between two different fluids or fluids and their vapours [2], [3], [4]. However,

our motivation to investigate further the interfaces created as topological defects, comes

mostly from the perspective of theoretical physics and specifically cosmology and the

problem of the confinement in QCD. Interfaces that are created in the λφ4 theory have

gained the interest of cosmologists since it is believed that a domain wall was created as a

topological defect in the symmetry-breaking phase transition of the radiation-dominated

FRW Universe at early times and thus it becomes a candidate for the structure formation

of the Universe [5]. On the other hand, the interface that is created in the 3D Ising Model

by imposing antiperiodic boundary conditions, has been investigated by people that base

their research in the problem of the confinement in QCD. In QCD, it is well-known that

a phase transition occurs between the confining and the deconfining regime. Thus, the

investigation of this transition, it is believed that can lead to the understanding of the

confinement problem. In fact, this phase transition takes place in the broken phase of the

centre symmetry of the Yang-Mills theory which is a gauge theory. Using Group Theory

as a powerful tool, it can be shown that actually the d+ 1-dimensional Yang-Mills gauge

theory lives in the same universality class as the d-dimensional Ising Model close to the
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critical point. Thus the interface created can be considered as a spatial t’ Hooft loop

which scales with the surface area. So, a string realization of the confining-deconfining

transition is achieved.

The structure of the dissertation is given as below: Firstly, the main ideas behind both

the 3D Ising Model and the Quantum Field Theory model which is considered here are

explained in Chapter [2]. A small introduction to the topological defects can be read

in Chapter[3] where also a brief discussion between the use of the model in the under-

standing of the confinement problem in QCD and cosmology is given. Following, the two

methods for measuring the mass of the domain wall are presented in Chapter[4]. Then

the algorithm that was used for the implementation and results of the 3D Ising Model

with periodic boundary conditions are shown in Chapters [5] and [6] respectively. Finally,

in the last two chapters, results of the mass of the domain wall obtained using the two

different methods are shown and discussed and the final conclusion with possibilities of

further work that can be done are presented.
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Chapter 2

The (λφ4)1+2 model and its

correspondence to the 3D Ising

Model

2.1 The Ising Model

Statistical mechanics play an important role in physics, therefore toy spin models based

on them were used throughout the years for the investigation of a wide range of physical

aspects in a variety of fields of physics. The most well-known model for finding phase

transitions and basic physical properties such as the average magnetization or the energy

of a system is the Ising Model. The basic idea behind this model is to consider the system

as a lattice in D-dimensions with ND lattice points at each of which there is a spin that

points either up or down, i.e it can take values of the group Z2. The Ising Model has

been investigated for many years since it is one of the most successful but yet simple

models to develop, especially after the development of supercomputers or even simple

computers which can do calculations extremely quickly. The 1D and 2D Ising Models

had been investigated in depth both analytically and numerically and there was a very

accurate match between the values of the properties measured using both methods. For
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further reading on it and especially an extent of the case of D = 2 Ising Model one can

refer to [6]. In D ≥ 3 the Ising Model becomes too complicated and it does not have an

analytical solution, however for the case of 3-dimensions, very accurate numerical results

have been published over the years and even phenomenological approaches were done

such as the one in [7].

Even though, the Ising Model was first introduced as a ferromagnetic model, it was

then extended to many areas of physics, in which many physical models were described

and investigated using the statistical nature of it. Some examples are those of the con-

densed matter and especially the investigation of spin glasses and theoretical physics in

which the investigation of gauge theories is taking place using the duality between the

Ising Model and the gauge Ising Model.

The contribution of the Ising Model to Quantum Field Theory is significant enough,

leading to an enormous amount of papers being published in which the specific spin

model in D dimensions, mostly in D=2 to 4, is investigated and it is related to different

Quantum Field Theory models. For the purposes of this dissertation, the 3D Ising Model

will be used for reasons that will be stated followed by some basic concepts in Statistical

Mechanics and some properties of the model.

2.1.1 Basic Statistical Mechanics

For better understanding of the Ising Model it is useful to state a few basic statistical

concepts that are important.

Firstly, let us recall that the Boltzmann weight is given by e−H/kT where H is the Hamil-

tonian (energy) of the system, k is the Boltzmann constant and T is the temperature.

By defining β = 1/kT this reduces to e−βH. The partition function, which plays a very

8



important role in statistical physics and probabilities, is then defined as the sum over all

the Boltzmann weights as in Equation (2.1):

Z =
∑
s

e−βH(s). (2.1)

The partition function is of a great importance since it renormalizes the probability

distribution given by:

P(s) =
1

Z
e−βH(s) (2.2)

and one can find expectation values of observables using it by the standard form of

thermal averages of observables:

〈O〉 =
1

Z

∑
s

Oe−βH. (2.3)

In statistical physics the free energy, F , plays an important role and all observables can

be expressed as derivatives of it. It is defined to be proportional to the natural logarithm

of the partition function as shown in Equation (2.4):

F = −kT lnZ. (2.4)

2.1.2 Basic Properties of the Ising Model

In the Ising model it is assumed that the magnetic moments are highly anisotropic,

such that the spin at each lattice point can take one of the two available spin values

(e.g.±1), i.e. the spins can point either up or down. Each spin interacts with the nearest

neighbouring spins and the Hamiltonian is given by:

H = −J
∑
<i,j>

SiSj − µB
∑
i

Si (2.5)
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where J is the interaction strength, Si are the spins, µ is the magnetic moment, B is

the applied external magnetic field and by < i, j > the sum over neighbouring spins is

implied.

By setting B = 0 so that there is no external field, thermodynamic quantities can be

measured such as the average magnetization of the system given by Equation (2.6):

M =
1

N

N∑
i=1

Si (2.6)

or the internal energy U which is given by the average of the Hamiltonian. In the case

of the 3D Ising Model the Hamiltonian explicitly is given by the following equation:

H = −J
3∑
i=1

SiSi+1. (2.7)

2.2 The λφ4 model

2.2.1 The action of the model in the continuum

In the world of high energy physics one of the most well known models is that of the mas-

sive self-interacting scalar field theory, i.e. the λφ4 model. The Lagrangian of the theory

might appear to be slightly different in papers that were published over the years, however

it describes the same model and the main physical concepts behind it remain unchanged.

In this dissertation the following Lagrangian in (1+2) dimensions is considered:

L =
1

2
(∂µφ)(∂µφ) +

1

2
m2φ2 − λ

4!
φ4 (2.8)

where the potential, V , is identified to be V (φ) = −1
2
m2φ2 + λ

4!
φ4 ; λ > 0
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Then the action in Minskowski space is given by :

∫
dtd2xL (2.9)

One can easily go to Euclidean space by Wick rotating the action, that is by imposing

t→ −iτ.

Then the action becomes:

iS =

∫
dtd2x

[
1

2

(
∂φ

∂t

)2

− 1

2

(
∂φ

∂xi

)2

− V (φ)

]

= −
∫
dτd2x

[
1

2

(
∂φ

∂τ

)2

+
1

2

(
∂φ

∂xi

)2

+ V (φ)

]

= −
∫
d3x

[
1

2

(
∂φ

∂xi

)2

+ V (φ)

]

= −SE

(2.10)

where SE is the Euclidean action since in the 3D Euclidean space the metric is just

gij = diag(1, 1, 1) and thus time and space are indistinguishable.

2.2.2 The λφ4 model on a lattice

So far the field theory is considered in the continuum. However, in order to implement

it using a spin model, it has to be discretized on a lattice. All that is needed to be

done is to divide the lattice extension into small intervals of length α, transform all the

integrals into sums over the whole lattice space and replace continuous derivatives by

their mathematical definition. That is, mathematically the following are done:

1. x = L1/α ; y = L2/α ; z = L3/α

2.
∫

dx → α
∑L/a

n=0 and for a cubic lattice :
∫

d3x→ α3
∑L3/a

n=0
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3.
∂φ
∂x = φ[(n+t)·α]−φ[n·α]

α

For our convenience α is set to 1, thus the discretized Euclidean action becomes :

SE = −
∑
n,t

φ(n)φ(n+ t) +
∑
n

[(
3− m2

2

)
φ(n)2 +

λ

4!
φ(n)4

]
(2.11)

In field theory, the path integral formulation proposed by Dirac and completed by Feyn-

man, became very important since it provides symmetry in space and time. One can

start from simple quantum mechanics and derive the path integral which can be thought

of as a sum over all possible configurations of a system that satisfy certain boundary

conditions. Its importance in Quantum Field Theory is mostly realized when someone

wants to measure values of observables which are found using :

〈φ(x)〉 =
1

Z

∫
Dφe−SEφ(x). (2.12)

where
∫
Dφ is considered to be the integral over all possible field configurations in all

directions including space and time and Z[J ] is the generating functional given by:

Z[J ] =

∫
DφeiS+i

∫
ddxJ(x)φ(x). (2.13)

In the absence of J , this can be considered as

Z[J ] =

∫
DφeiS =

∫
Dφe−SE (2.14)

In the discretized case this becomes

Z[J ] =
∑
x,y,z

e−SE (2.15)
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Comparing Equations (2.1) and (2.15) one can see that the generating functional in Quan-

tum Field Theory is the equivalent of the partition function in Statistical Mechanics by

identifying SE = βH

2.3 Using the Ising Model in λφ4 theory

It is natural for someone to address the question why we can use the Ising Model to

implement the φ4 theory. The answer to this is simply that the 3D Ising Model and φ4

theory live in the same universality class. The concept behind universality lies in the

critical point of the Ising Model. At high temperatures the symmetry of the phase is

unbroken, therefore 〈φ〉 = 0, whereas at low temperatures 〈φ〉 6= 0 and the symmetry is

spontaneously broken. The point at which the phase is broken is the critical point where

the phase transition occurs. Equivalently, the λφ4 model can live in two phases: the bro-

ken one if m2 > 0 where the vacuum field expectation value is given by 〈φ〉 = ±m
√

6/λ

and occurs at low temperatures and the symmetric phase where the vacuum field expec-

tation value is just 〈φ〉 = 0.

In [8] and [9], they actually show by considering the spectrum in the critical limit, that

implementation of the two models would give results that should match within statistical

errors. They are treating non-perturbative states of the φ4 theory in the broken symme-

try phase as bound states and they show that they exist by both theoretical explanation

and numerical results. This gives the advantage to use the 3D Ising model in the imple-

mentation of the φ4 model in Quantum Field Theory.
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Chapter 3

Topological Defects

3.1 Basic Ideas behind Topological Defects

Elementary particles as studied and observed so far, have no topological structure. How-

ever, studies of the field theory in its non-linear form revealed solitons, that is solitary

wave-like excitations of the theory which are actually characterized by their topological

structure. Therefore they have the name topological solitons. Their topological struc-

ture is determined by a winding number, an integer N , which is the so called topological

charge and basically indicates the number of topological solitons that are present. Their

energy can be directly interpreted as their mass since, compared to the observed elemen-

tary particles the mass of which has an extra factor of ~, soliton mass does not have this

factor, leading it to a much higher value compared to the elementary particles.

In a theory, one usually considers solitons as topological defects which take different

forms depending on the dimensions and the theory they are dealing with. These can be

kinks, domain walls, vortices, monopoles and many others. The studying of topological

solitons is a quite recent area of research. However, a significant amount of researchers

in a variety of fields of physics have taken them into account in their theories. Cosmolo-

gists are investigating domains walls created in the early universe in addition with cosmic
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strings and their effect in the CMB radiation, string theorists consider branes to behave

as topological defects and people working in condensed matter started investigating the

conductivity in the presence of a topological defect. A very exciting open research topic

is that of the confinement in QCD which might be explained by the studies of topological

solitons.

Most of the studies of topological solitons are done in systems with phase transitions,

since in the spontaneously broken phase it is able for a topological defect to be created

and then an order parameter can be constructed based on it. One of the main purposes

of most of the previous studies was to measure their mass, their excitation spectrum

and similar properties. Before 2009, there were mainly two non-perturbatively ways for

constructing an order parameter and getting the properties of a theory out of that.

Firstly, one can consider a creation operator 〈µ〉 in the phase where the symmetry is

spontaneously broken. This operator was proposed in [10] and [11] by applying Operator

Algebra in the two dimensional Ising Model. In [12] they used this operator to find the

soliton mass on the (λφ4)1+1 .

The second method of measuring the mass is by considering the free energy of the sys-

tem. In [13] they explain that when topological defects are present, there is an N winding

number and an associated free energy of :

FN = − lnZN (3.1)

When N = 0, it means that there is no topological defect and thus the free energy goes

to zero. Therefore, the mass of it can be found by the free energy difference between the

system with a topological defect present (N = 1) and with no topological defect (N = 0).
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Finally, a new method was proposed a couple of years ago by Rajantie and Weir which

deals with the correlation functions in the sector where the topological defect is present [1].

In this dissertation the 3D Ising Model is considered and the topological defect that

can be created gets the meaning of a domain wall. Thus, the mass of this domain wall

can be measured using the methods proposed above. Due to inefficiency of the first,

actually only the two latter methods are implemented.

3.2 Topological defect of the 3-dimensional Ising Model

and its relation to QCD

Before embarking into the actual procedure that was done for measuring the mass of the

topological defect that is present in the model, it is useful to see the importance of its

investigation. In Chapter 2 the Ising model and the λφ4 theory were described. However

there was no reasoning why such a large amount of people base their research on them and

how these models are related to the topological defects. Every single theoretical physicist

has come across the problem of confinement in QCD. This is a research topic that has

been investigated for many years without anyone coming up with a final conclusion.

Firstly, ’t Hooft published a series of papers in which he explained that the deconfinement

and confinement are distinguished by the center symmetry Z(N)c of the SU(N) gauge

group [14],[15]. Svetitsky-Yaffe conjecture states that a d + 1 dimensional gauge theory

with a second order deconfinement transition and a d dimensional spin model with a

ZN symmetry belong to the same universality class [16]. From this, it is concluded that

the 4-dimensional SU(2) Yang-Mills theory and the 3D Ising Model close to the phase

transition, must be in the same universality class. This was in fact shown using Finite

Size Scaling in [17]. In Yang-Mills theory, it can be shown that at high temperatures the
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center symmetry is spontaneously broken and this corresponds to the deconfining phase.

This seems misleading, since according to what it was discussed for the 3D Ising Model it

is known that its broken phase occurs at low temperatures. However, it is actually true

and this is due to the duality between the 3D Ising Model and the 3D Z2 gauge model.

In [8] and [9], they argue that the Ising Model in 3 dimensions which obeys a global

Z2 symmetry and the Z2 gauge model are related by a duality. They have actually shown

that the bound states of the 3D Ising Model are mapped to the glueball states of the gauge

Model. In [9] they state that this duality is given by a relation between the partition

function of the two models as:

Zgauge(β) ≺ Zspin(β̃); β̃ = −1

2
log[tanh(β)] (3.2)

So high temperatures of the gauge model correspond to low temperatures of the spin

model and vice versa. Thus the broken phase of the Ising model is mapped to the con-

fining phase of the gauge theory. Furthermore, this duality implies that the point at

which the phase transition occurs in our spin model corresponds to the point where the

deconfinement transition happens.

The order parameter that is used in the Yang-Mills theory comes from the works of

Polyakov [18] and Susskind [19] and it is the so called Polyakov loop P (~x) operator. The

Polyakov loops at high temperatures have a spontaneously broken phase and they physi-

cally describe static quarks when Euclidean action is taken into account. By twisting the

boundary conditions of the SU(2) theory on a lattice close to the deconfining transition,

i.e. to impose P (~x)P †(~x+ Lẑ) = −1, a spatial center vortex is created which is called a

spatial ’t Hooft loop and is dual to the Wilson loop. This is considered to be a topological

defect and it turns out to correspond to the spin interface which is created by twisting

the boundary conditions of the 3D Ising Model [20], [21].
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From what it was discussed above, it is clear that the confinement - deconfinement tran-

sition is related to the 3D Ising model. Thus, by measuring the surface tension or the

mass of the domain wall that appears after twisting the boundaries of the model will be

equivalent to measuring the above properties of the spatial ’t Hooft loop created in the

4-dimensional SU(2) Yang-Mills theory. Even more, the latter has a representation of the

real scalar field in three-dimensional λφ4 model which is in the same universality class as

the 3D Ising Model, thus it is not surprisingly that the two models have this correspon-

dence. All in all, investigation of the properties, such as the mass or the surface tension

and critical exponents of the domain wall appearing in the 3D Ising model after twisting

the boundaries, might play a significant role in the understanding of the confinement in

QCD. A more detailed analysis of the QCD and the phase transitions between confining

and deconfining phases is given in [22].

3.3 Topological defects of the λφ4 theory in cosmol-

ogy

Despite all the above, as stated in the introduction, the investigation of the interfaces

created as defects in λφ4 theory have been investigated extensively by cosmologists.

Kirzhnits and Linde were the first to propose that the idea of spontaneously symme-

try breaking in condensed matter systems applies to elementary particle theories as well

[23], [24]. In cosmological models, it is believed that the hot universe went through a

phase transition while it was cooling down and symmetry breaking occurred. Dealing

with finite-temperature field theory, in [25] and [26], they have shown, that in the effec-

tive potential, which has a similar form of the one given in Equation (2.8), the sign of m
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is dependent on the temperature i.e.

m2 ' (T 2
c − T 2) (3.3)

where the critical temperature at which the phase transition occurs is defined as:

Tc =

√
24

λ
m. (3.4)

At temperatures lower than Tc, m becomes positive and by observing the Lagrangian of

the λφ4 model as given in Equation (2.8), it can be seen that the symmetry is sponta-

neously broken, i.e. the vacuum expectation value of the field will not be zero anymore

but instead it will be able to take one of the two available values. The Hot Big Bang

model implies that as the universe was cooled down, temperatures lower than the critical

one were reached. Kibble proposed that after it undergoes a phase transition the field can

fall into one of the two available vacua without any preference, resulting in the formation

of a domain wall [27].

Actually the Kibble Mechanism predicts various topological defects that are present in

cosmological models such as cosmic strings, domain walls and monopoles, depending on

the nature of the symmetry that is broken and can be found by observing the topology of

the model. The manifold in which the fields can fall and the homotopy group associated

with it determine the nature of the topological defect. If there are two disconnected parts

of the manifold,M, then the first homotopy group π1(M) implies that depending on the

number of independent generators of it, different structures of the strings that appear as

topological defects can form. Similar arguments apply for the second homotopy group,

π2(M), which state that if the latter is non-trivial for the vacuum manifold, M and the

unbroken symmetry group of the theory has a non-trivial fundamental group same as the

first homotopy group then topological defects are present in the theory in the form of

monopoles.
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Domain walls, are associated with the breaking of a discrete symmetry when the mani-

fold,M, consists of two disconnected components, i.e. π0(M) is not trivial. The surface

tension of the domain walls plays an important role in the understanding of the structure

of the universe since it is believed that if it is large, there should be an impact on the

homogeneity of the universe. Therefore, measurements of the surface tension and the

mass of the domain wall are of high importance in the understanding of the structure of

the universe.
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Chapter 4

Measuring the mass of the domain

wall

4.1 Twist of the boundaries

In lattice theory, there are non-perturbative ways to measure the mass of a topological

defect as stated in the previous chapter. In [28], it was proposed that by twisting the

boundaries of a system a dislocation is formed. This dislocation is considered to be a

topological defect. In the same paper, they proposed that the surface tension of the

dislocation is proportional to the difference between the free energy using twisted and

periodic boundary conditions as :

σ ≺ FTW − FP
L(d−1)

(4.1)

where σ is the surface tension, F is the free energy, twisted boundary conditions are

labeled as TW and periodic boundary conditions as P .

In the case of the 3D Ising Model, when the boundary conditions are twisted in one

direction, a domain wall with a string realization is created and can be considered as the
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topological defect of the model. When the dislocation that is formed is considered to be

square, the surface tension in the case of 3 dimensions is defined as:

FTW − FP = A+ σL2 (4.2)

directly from Equation (4.1).

However, the Ising Model, as Hasenbusch showed in his PhD thesis, goes into a roughen-

ing transition at a β almost twice as the critical one, that is at around βr ' 0.4074. So,

at inverse temperatures between the βc and βr, there is a rough phase of the system. The

Equation (4.2) was used in two of his papers in the calculations of the surface tension [29],

[30]. However, in [31], they showed that in the roughening regime the two loop expansion

gives a correction to the free energy as :

FS = A+ σL2 − 1

4σL2
+O

(
1

(σL2)2

)
. (4.3)

Actually, in [30], it was obvious that at inverse temperatures between the critical point

and the roughening transition point, the value of σ/(2β) is almost linear to β - especially

at values closer to the critical one. On the other hand, if someone goes at high enough

values of β, where the phase is smooth, this value becomes almost constant to β and

specifically close to 1. This is indeed in agreement with what it is predicted using the

extrapolated low temperature expansion series [32] as :

σ = 2β +
17∑
n=2

anu
n +O(u18) (4.4)

where u = e−4β and the coefficients an were determined by mainly Weeks and Arisue [33],

[34].

This is a good point to investigate further how one can calculate the free energy of
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the surface, Fs. The domain wall that is formed is presented at temperatures below the

critical one, Tc , at which spontaneous symmetry breaking occurs. Then, the free en-

ergy of the topological defect can be found by the difference between the free energy of

the system with the domain wall , i.e. with twisted boundary conditions and the system

without the domain wall, i.e with periodic boundary conditions. By using Equation (3.1),

this is just:

∆F ≡ FDW = FTW − FP = − ln
ZTW
ZP

(4.5)

In a recent paper [35], in which they are dealing with a topological defect in (3+1)

dimensions, they are giving with reasoning the exact form of the partition functions of

both the twisted and the periodic boundary conditions. The equivalent of those in the

model that is considered here are:

ZTW = 2Z0

(
Z1e

−MT +
Z3

1

3!
e−3MT + ...

)
(4.6)

ZP = Z0 + 2Z0

(
Z2

1

2!
e−2MT + ...

)
(4.7)

where Z1 = (ML2/2πT )
1/2

, T and L are the lattice dimensions in time and spatial direc-

tion respectively and M is the mass of the topological defect.

By applying these equations to Equation (4.5), as it can be seen in Appendix A, an

equation of the free energy of the topological defect is obtained as following:

FDW = MT − ln 2− 1

2
ln
ML2

2πT
+O

(
e−2MT

)
(4.8)

which takes into account the free translation of the topological defect in time direction,

i.e. in one degree of freedom. From this, one can obtain the mass of the domain wall.

However, the extra term of the natural logarithm that contains the mass, M , makes its

estimation more difficult. As a first approximation, the mass of the domain wall was
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taken to be:

M ' 1

T
(FDW + ln 2) (4.9)

but further the mass was found using the full Equation (4.8).

Although this calculation seems straight forward, in Monte Carlo simulations, which

are explained in Chapter [5], values of the partition function cannot be calculated di-

rectly. Thus, instead of finding the free energy itself, one can calculate derivatives of it

with respect to the inverse temperature as following:

dF

dβ
=

d

dβ
(lnZP − lnZTW )

= 〈HTW 〉 − 〈HP 〉.
(4.10)

Then, to find the mass all that has to be done is to integrate over beta as below:

FDW = FDW (β0) +

β∫
β0

dβ′(〈HTW 〉 − 〈HP 〉). (4.11)

The value of β0 can be taken to be the critical inverse temperature βc at which it is known

that the domain wall disappears thus there is no interface energy and the term FDW (β0)

can be set to zero.

Another approach of this method is to measure the differences in free energy by the

finite difference method, i.e. the difference in the free energy between twisted and peri-

odic boundary conditions for small intervals ∆β and then summing over all the differences

as following:

F =
N−1∑
i=1

(∆FTW −∆FPBC)i (4.12)
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where

∆Fi = F (βi + ∆βi)− F (βi)

= − ln 〈e−∆βH〉βi
(4.13)

Then in principle the free energy difference is given by :

∆Fi = (F (β + ∆β)− F (β))i = −
(

ln
〈e−∆βH〉β,TW
〈e−∆βH〉β,P

)
i

(4.14)

and the total mass of the topological defect is then found by solving numerically the

Equation (4.8) by putting FDW to be the sum over all the finite free energy differences

as in Equation(4.12).

4.2 Measuring the mass using correlation functions

As mentioned above, in [1] a new way of measuring the mass of a topological defect was

proposed. The main idea was to find a way of measuring the mass using correlation

functions. This method has many advantages, the most important of which is that the

mass can be found at the desired value of the parameter that is changed by only mea-

suring the correlation function at that particular value. That is, in the 3D Ising Model

where β is the parameter that is changed, the mass of the domain wall can be determined

at any value of the inverse temperature without having to start from the critical value, βc.

It is known that the two-point correlation function of an operator is given by

C(t2 − t1; k) = 〈O(t1)O(t2)〉 (4.15)

The operators in the above expression, though, are in momentum space so those that

imposed in position space, have to be Fourier transformed into momentum space as
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following:

O(k) =

∫
dxdyeikxeikyO(x). (4.16)

where the above expression depends on the spatial dimensions that are present in the

theory.

By inserting the complete set of states and Fourier transforming the fields, the corre-

lation function becomes:

C(t2 − t1; k) =
∑
α=0

〈0|O|α〉〈α|O|0〉e−i(t2−t1)Eα (4.17)

where |0〉 is the ground state and |α〉 is the set of states with energy Eα. In order to go

into Euclidean space, the wick rotation t → −it is done and then the final form of the

correlation function is given as below:

C(t2 − t1; k) =
∑
α=0

〈0|O|α〉〈α|O|0〉e−(t2−t1)Eα . (4.18)

Focusing, on the theory that is implemented here, the operators that are used are the

spins for each lattice point and since the model is considered in a lattice theory, the

integral is transformed into a sum. Therefore, the spins in momentum space are given by

the following equation:

S(t; k) =
∑
x,y

eikxeikyS(t, x, y). (4.19)

In the presence of the topological defect in this theory, where antiperiodic boundary

conditions are imposed, momentum is set to k = (2n + 1)π/L in the twisted direction

and k = 2nπ/L in the other two directions. In that case a scalar particle can be absorbed

and re-emerged by the defect if it hits it while it is traveling. Actually, in the case of

this dissertation, the particle hits the domain wall giving it a momentum of k and thus
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causing it to move until at time t the particle is re-emerged and due to conservation of

momentum the wall loses momentum of value −k. Consequently, the correlation function

for the specific case becomes:

C(t; k) =
∞∑
α=1

〈0|S(0; k)|α〉〈α|S(t;−k)|0〉
〈0|0〉

e−t(Eα−E0) (4.20)

where E0 = M as a result of defining the |α〉 states relative to the ground state.

All states |α〉 have a total momentum of k, due to conservation of momentum. The

lightest corresponds to the topological defect and the others to the excited states of the

latter or states consisting both of the domain wall and the boson. In [36] they actually

claim that for t ≥ 1/2M the gap between the first state, which corresponds to the domain

wall and the rest states is large, resulting into suppression of the latter and thus the state

of the topological defect becomes dominant.

Also due to periodic boundary conditions that are imposed in time direction, travel-

ing forward in time until time T is reached, is equivalent of going back to time 0. In [1]

it is shown that the correlation function takes the following form:

C(t; k) ≺ exp

(
−(Ek − E0)

t(T − t)
T

)
≡ exp

(
−Et(T − t)

T

)
(4.21)

where T is the lattice dimension in time direction, E0 equals the mass M and the energy,

Ek, is given by:

Ek =
√
k2 +M2. (4.22)

Hence, the total mass is found by:

M =
k2 − E2

2E
. (4.23)
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It is also useful to see the behaviour of the correlation functions in the case of periodic

boundary conditions where no topological defect is present. A scalar particle is created

at time 0 and travels until it is detected in time t. The correlation of this particle that is

allowed to travel free is given by:

C(t; k) ≺ e−Et + e−E(T−t) (4.24)

taking into account that traveling forward in time is like going back to time t = 0 since

periodic boundary conditions are imposed. Also, due to the specific boundary conditions,

momentum can be set to k = 0 and thus the energy E =
√
k2 +m2 reduces to just E = m.

In fact, the mass is equivalent to the inverse correlation length which is defined as:

ξ ≺ |T − Tc|−ν (4.25)

where ν is a critical exponent which is universal. So, the correlation length is expected

to be independent of the lattice size but to depend on the temperature.

In fact the contribution due to the free scalar particle, which is given by Equation (4.24),

has to be taken into account in the correlation function when the topological defect is

present. So the final form of the two-point function is given by:

C(t; k) = A1 exp

(
−Et(T − t)

T

)
+ A2

(
e−mt + e−m(T−t)) (4.26)

In principle, this method has the advantage that one only needs to deal with the twisted

boundary conditions and results for the periodic boundary conditions case are not needed.

However, when computing the mass using this method, the program can be checked to be

28



working by imposing periodic boundary conditions. In that case the correlation function

will have the form of Equation(4.24) and values of m can be obtained. As discussed

above, this is equivalent to the inverse correlation length and values of it can be found

in literature. Also, its value can be used to make easier the fit of Equation (4.26) to the

data that our program obtains for the correlation with anti-periodic boundary conditions.

Therefore, the procedure of finding the mass of the domain wall is simplified.

29



Chapter 5

Monte Carlo Simulations

5.1 Introducing the idea of Monte Carlo Simulations

The idea of Monte Carlo Simulations was first introduced by Neumann, Ulam and

Metropolis who came up with the idea that by generating pseudorandom numbers for a

long time the desired result can be reached. Since then, Monte Carlo simulations have

become very popular and they have been used to solve different problems both in Physics

and Mathematics.

The Ising Model can be solved using the Mean Field Theory. However, it becomes

very complicated in 3 dimensions, so the introduction of a different approach in order to

find solutions to the model was necessary. After the idea of simulating the Ising Model

using Monte Carlo simulations was introduced, the values of observables found both an-

alytically and by numerical simulations, for the case of D=1 and D=2, were in perfect

match.

The Monte Carlo Simulations process is based on the generation of a Markov chain,

that is a memoryless sequence of spin configurations. The initial configuration is chosen

to be random and each of the rest configurations is generated from its previous one. The
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generation of a new spin configuration, s′, from a current configuration, s, is given by the

transition probability T (s→ s′) which satisfies:

∑
s′

T (s→ s′) = 1 (5.1)

After a sufficient number of iterations of Monte Carlo steps, since every spin configuration

is generated by only its previous one, the final spin configuration becomes independent

of the first one, which was chosen randomly. At this point, it is said that the system has

reached equilibrium and the probabilities of the spin configurations follow a Boltzmann

distribution.

In order to implement Monte Carlo simulations there are a lot of algorithms which are

based on the Markov process. However, to ensure that the algorithms are generating the

correct system and they work properly, there are two conditions that are needed to be

satisfied: ergodicity and detailed balance.

By ergodicity it is meant that in a Markov process it is possible, in principle, to reach any

other configuration from the current one. By this, it is ensured that all spin configurations

are included in the calculations and thus they are generated by their correct Boltzmann

probabilities. However, in order for the spin configurations to follow the Boltzmann prob-

ability distribution and not any other distribution, the algorithm must obey the detailed

balance conditions. This condition implies that the transition probability rate in and out

of a configuration must be equal, i.e. satisfy the following equation:

T (s′ → s)P(s′) = T (s→ s′)P(s) (5.2)

where P(s) is the Boltzmann probability given by Equation (2.2). Combining Equations

(2.2), (5.1) and (5.2) it is clear by Equation (5.3) that the transition probability rate
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depends only on the difference in energy:

T (s→ s′)

T (s′ → s)
=
P(s′)

P(s)
= e−β(H(s′)−H(s)) = e−β∆H. (5.3)

Another important property of this condition is that it implies that the process is re-

versible. Real systems must have detailed balance symmetry since time-reversal violation

is not permitted. Thus, ensuring that the algorithm of our program satisfies this condition

implies that it would give results similar to those of systems in the real world.

5.2 The Metropolis Algorithm

The most well known Monte Carlo algorithm is the Metropolis algorithm proposed in

1953 by Nicholas Metropolis et al. in [37]. In this algorithm the transition probabilities

depend on the difference in the energy between the old and the new spin configuration.

A selection of probabilities g(s→ s′) is made which gives the probability of selecting each

of the spin states. Assuming that all spins have the same probability to be selected this

is just 1/N . Therefore the transition rate as discussed in Section 5.1 and using Equation

(5.3) is given by:

T (s→ s′)

T (s′ → s)
=
g(s→ s′)

g(s′ → s)

P(s′)

P(s)
= e−β∆H (5.4)

In fact the Metropolis Algorithm consists of three basic steps:

1. Choose a random spin state and flip the sign.

2. Calculate the difference in the energy ∆H of the system.

3. If ∆H < 0 then accept the flip of the sign, otherwise accept the flip of the sign with

a probability of e−β∆H.
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5.3 Equilibration

In order to get accurate results, we should ensure that the system has reached equilibrium

before taking any actual measurements. To achieve this, the equilibration time should be

found, i.e. the number of Monte Carlo steps needed for the system to reach equilibrium.

This is also referred as thermalization process.

This equilibration time is found by letting the system do a number of Monte Carlo steps

and at each step measure the total magnetization or total energy of the system. When

these values appear to be roughly constant then it is said that the system has reached

equilibrium and it is safe to take actual measurements. A sample of the way the equili-

bration time was measured, is shown in Figure 5.1, in which the behaviour of the total

energy and magnetization versus time (Monte Carlo steps) for two different cubic lattices

N=14, 18 is shown. It is clear that at low temperatures the equilibration time can be

estimated easily. However, at T close to Tc there are significant fluctuations that increase

the error in the measurements. This indicates that a large number of Monte Carlo steps is

needed to be performed after thermalization in order to get more accurate results. Also,

it is easily observed that the equilibration time depends on the lattice size, i.e. the bigger

the lattice the higher the number of Monte Carlo steps needed until equilibrium is reached.

However, one might think that the system might not be in its global minimum but

instead it might be stuck in a local minimum for a while, resulting to give us a constant

value of the total energy or magnetization over time. A way to ensure that the estimated

equilibration time is the correct one was proposed in [38]. In that book, they performed

the thermalization process two times starting at different temperatures each time. Firstly,

they started from T = 0 where all spins are aligned and they repeated it starting at a

high temperature where the configuration of the system is random. The equilibration

time using both starting temperatures must be the same if we are reaching the global
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minimum. In Figure 5.2 we can see a comparison of the two methods.

L=14

(a) Total Magnetization (b) Total Energy

L=18

(c) Total Magnetization (d) Total Energy

Figure 5.1: Plots of the Absolute Magnetization and Total Energy across Monte Carlo steps
for L = 14 and L = 18. These measurements were taken for T = 6.0, T = 4.6 and T = 0.2 As
a safe value for the thermalization steps we took M = 30000000 for L=14 and M = 120000000
for L=20.
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L=14

(a) Total Magnetization (b) Total Energy

L=18

(c) Total Magnetization (d) Total Energy

Figure 5.2: Plots of the Absolute Magnetization and Total Energy across Monte Carlo steps
for L = 14 and L = 18. They were plotted using data starting from T = 6.0 and going to
T = 0.1 and vice versa. The equilibration time agrees with both methods and we can say that
the system has reached its global minimum.

5.4 Error analysis

Monte Carlo simulations is a statistical way of determining values of observables, there-

fore it contains large statistical errors. There is a variety of factors that contribute in

these errors.
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Firstly, the finite lattice effect must be taken into account. From several tests that

were done, it was clear that for a higher lattice size we could get more accurate results

for the second order phase transitions. However, this has a cost in the computational

time required, therefore in this dissertation the lattice dimensions that were used were

in the range of 143 and 203. There is still a small contribution in the error due to finite

lattice-effect but these lattice sizes were the best that could be used taking into account

the amount of time available for the completion of this dissertation.

Furthermore, the number of measurements taken leads to an additional error. Since

we are dealing with a purely statistical model, the higher the number of measurements

the lower the statistical error. In the whole dissertation the number of measurements

taken was dependent on what it was measured such that the computational time for one

run of every program used would not exceed 24 hours. There was an attempt to increase

the number of measurements as much as possible in order to reduce significantly its er-

ror contribution. This was done especially in the calculation of the mass using the first

method proposed in Section 4.1 in which, for accurate results, ∆β had to be taken to be

really small and the number of Monte Carlo steps to be very large.

However, the most important error in Monte Carlo simulations arises from the auto-

correlation function. As it was seen in Section 5.1, we are dealing with a Markov-chain

in which all the configurations are statistically dependent since they are generated by the

previous ones. Therefore, it is said that they are autocorrelated. In order to estimate the

autocorrelation time the autocorrelation function is used which is defined as following:

C(t) =
1

N − 1

N∑
∆t=1

[(O(t)− 〈O〉)− (O(t+ ∆t)− 〈O〉)] ≺ e−t/τ (5.5)

The procedure that was followed was to plot the autocorrelation function C(t)
C(0)

versus t

for every temperature and then estimate the time at which C(t)/C(0) ' 1/e. In Figure
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5.3, an example of what it was measured for every temperature can be seen.

Figure 5.3: The normalized autocorrelation function across time. The value of t at which
C(t)/C(0) ≺ 1/e is considered to be the autocorrelation time τ .

After finding the autocorrelation time the error of the observable is given by :

∆O =

√
〈O2〉 − 〈O〉2

N − 1
2τ . (5.6)

as shown in [39]. This works well for temperatures below or above the critical tempera-

ture. However, in [40] it was stated that τ ≺ ξz, where z is a dynamic exponent and ξ

is the autocorrelation length. The latter diverges as it comes closer to the second order

phase transition. In the case of Metropolis Algorithm, after many simulations, its expo-

nent was estimated to be z ≈ 2 and thus τ diverges at T ' Tc failing to give accurate

values of observables close to the critical temperature.
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Chapter 6

Results of the 3D Ising Model using

Periodic Boundary Conditions

The main target of this dissertation is to measure the mass of a domain wall that is created

by twisting the boundaries. More about it was explained in Section 4.1. To do this, a

program was written, in which the 3D Ising Model was simulated by imposing twisted

boundary conditions in one direction. However, in order to ensure that the program

that was used was correct, a test using periodic boundary conditions was done. In this

chapter, the way of implementing the 3D Ising Model using Monte Carlo simulations in

FORTRAN programming language, graphical results of the measured observables and a

way of estimating the critical temperature are presented. Also, the program used is given

in Appendix C.1.

6.1 Method and Conventions

To find values of observables such as the magnetization and internal energy of the system,

the 3D Ising Model was simulated using the Metropolis Algorithm. As it was discussed in

Section 5.2 this is an algorithm that obeys ergodicity and detailed balance and gives quite

accurate results. Of course there are more efficient algorithms such as Swednsen Wang
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Cluster Algorithm, Wolff Cluster Algorithm or Hybrid Metropolis Algorithm which give

even more accurate results and they reduce the computational time. However, for the

purpose and the length of this dissertation it was decided that the Metropolis Algorithm

is sufficient.

Firstly, a few conventions that were used in the code are listed below. The interac-

tion energy, J , was set to 1 for our convenience as well as the Boltzmann constant, k,

such that β = 1/T . The parameter that was changed throughout the program was the

temperature and the results that are presented here were obtained by taking measure-

ments from high to low temperatures and thus the initial configuration was chosen to be

random. Despite this, the program was tested and it gives similar results implementing

it either from high to low temperatures or vice versa.

For the periodic boundary conditions, it was ensured that the first and the (N + 1)th

spin in every lattice site are the same, so that if one wants to visualize the cubic lattice

embedded in a manifold, it would give a 3-torus, T3.

6.2 Magnetization and Energy of the system

For each temperature there was a number of N Monte Carlo steps of which the first M

were used for equilibration. After equilibration, measurements of the energy, the magne-

tization and their squares were taken every 1500 Monte Carlo steps. From these, their

average values could be recorded for every temperature.

Following, in this section, there are graphs of the model for the periodic boundary condi-

tions presenting the absolute value of the average magnetization and the average energy

per lattice point. In Figures 6.1a and 6.1b the magnetization for two different lattice
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sizes is plotted across the temperature. The behaviour of these graphs is the expected

one since magnetization is close to 0 at high T, where the system is highly disordered

and goes to 1 at low T, at which the system is oriented. In between, going from 0 to 1

there is a discontinuous phase, which shows that the system goes through a second order

phase transition. From this, it can be seen that the transition temperature should be

around Tc ' 4.5. Also, it can be noticed that the errors of the values corresponding to

temperatures closer to the critical one are higher than the others and this is due to the

autocorrelation time which diverges at the phase transition.

(a) L = 14 (b) L = 20

Figure 6.1: Plots of the Average Magnetization across Temperature for L = 14 and L =
20. The phase transition appears to occur at around T ' 4.5. At this point the error appears
to be higher than the others due to the divergence of the autocorrelation time at the critical
temperature.

Moreover, in Figure 6.2 the energy per site of the lattice is shown and its behaviour

is the expected one: the energy is lower at lower temperatures where the system is or-

dered, that is the spins are aligned. Since a three-dimensional spin model is taken into

account, each spin has six neighbouring spins. However, to avoid over-counting in the

calculations of the energy, either it has to be divided by two or only the three spins that

are next to the current spin in the forward direction should be considered. That is, if

we are dealing with the spin S(x, y, z) we have to take its interaction with the spins
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S(x + 1, y, z), S(x, y + 1, z) and S(x, y, z + 1). So, in the specific model, considering the

definition of the energy given by Equation(2.5), when all spins are parallel, the interaction

energy of every spin will be H = −3. This is indeed the case as shown in Figures 6.2a

and 6.2b.

(a) L = 14 (b) L = 20

Figure 6.2: Plots of the Energy per lattice space across Temperature for L = 14 and L =
20. The discontinuous phase is obvious to be around T = 4.5 which is considered as the critical
temperature.

6.3 Magnetic susceptibility and Specific Heat

For a better understanding of the phase transitions, the specific heat and the magnetic

susceptibility were also studied. These observables are given by the values that were

already measured and they have a peak at the temperature at which the phase transition

occurs. Specifically the specific heat is given as below:

Cv =
∂ 〈H〉
∂T

= β2∂ 〈H〉
∂β

= β2∂
2 lnZ

∂β2
= β2 ∂

∂β

(
1

z

∂Z

∂β

)
= β2

[
1

Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2
]

= β2
(〈
H2
〉
− 〈H〉2

)
(6.1)
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and similarly the magnetic susceptibility is given by:

χ = β
( 〈
M2
〉
− 〈M〉2

)
. (6.2)

An idea of how χ and Cv versus temperature look like is given in Figures 6.3 and 6.4.

Specific Heat

(a) L = 14 (b) L = 20

Figure 6.3: Plots of the Specific Heat across the temperature for L = 14 and L = 20. The
phase transition is clear to be at around T = 4.5

Magnetic susceptibility

(a) L = 14 (b) L = 20

Figure 6.4: Plots of the Magnetic Susceptibility across Temperature for L = 14 and L = 20.
Here, it is much clearer that the phase transition occurs at around T=4.5.
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6.4 Estimating the critical temperature Tc

From what it is discussed above in this chapter, it is clear that there is a phase transition

and magnetization is an order parameter. Therefore, it can be used in finding critical

exponents and the bulk transition temperature Tc.

A way to measure them was proposed by Binder in [41] in which he deals with di-

mensionless quantities. He shows that by finding the ’Binder Cumulant’ or Binder ratio

for different lattice sizes, one can find the temperature at which the curves cross. The

Binder Cumulant is defined as:

UL = 1− 〈M4〉
3 〈M2〉2

(6.3)

Since the quantity is dimensionless, this temperature is considered to be the critical tem-

perature Tc.

In the simulations presented in this work, UL was computed using a program written

again in FORTRAN which had the same structure as the program used for the results

in Sections 6.2 and 6.3. The main differences were that records of the energy were not

taken and instead quantities such as M4 and M8 were calculated. The latter was needed

in finding the error δUL which was estimated to be:

δUL = UL

√(
δ 〈M4〉
〈M4〉

)2

+ 4

(
δ 〈M2〉
〈M2〉

)2

(6.4)

where δ 〈M4〉 and δ 〈M2〉 were found using the standard deviation.

However, since the program run for a long time doing many Monte Carlo iterations,

the contribution in the error given by Equation (6.4) was negligible. Therefore, the error

bars are not visible on the graph in Figure 6.5 and the error of the critical tempera-
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ture was found by estimating the difference between the two nearest points close to the

crossing of the plots. This value was estimated to be:

Tc = 4.51± 0.01 (6.5)

or equivalently:

βc = 0.2217± 0.0005 (6.6)

which is in the range of the values estimated in previous works by many researchers who

used different approaches[42],[43],[44].

Figure 6.5: The Binder Cumulant for the 3D Ising Model. The temperature, at which the
lines cross, is the critical temperature. The three different curves correspond to L=12, L=14
and L=18 and they meet at around Tc = 4.51± 0.01.
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Chapter 7

Results of the mass of the

topological defect

7.1 Results using finite free energy differences

As discussed in Chapter 4, the mass of the domain wall was found using two different

methods. In the first method, finite energy differences were calculated and from those

the mass could be extracted. To ensure that the statistical error was minimized and

the interval ∆β was small enough to give accurate results, the method used in [45] was

applied, where the expectation value of the free energy is calculated using two different

ways :

f1 = − ln〈e−∆βH〉β1 and f2 = ln〈e∆βH〉β2 (7.1)

Then, Equation (4.14) becomes :

∆Fi =
1

2
[f1,TW + f2,TW − f1,P − f2,P ] . (7.2)

The error in each fi, δfi, can be found using standard error analysis since the expectation

value of the exponential of the energy is just the average over a number of measurements.

Thus, the associated error in the mass difference is given by:
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δ(∆Fi) =
1

2

√[
δf 2

1,TW + δf 2
2,TW + δf 2

1,P + δf 2
2,P + (f1,TW − f2,TW )2 + (f1,P − f2,P )2

]
(7.3)

The difference in free energies, as given in Equation (7.2), was measured for different

lattice sizes, starting at the critical point β ' 0.22165 where the domain wall vanishes.

Actually measurements were taken for cubic lattices of size 143, 163, 183 and 203 for in-

verse temperatures ranging between 0.225 and 0.23. The free energy of the topological

defect, calculated using the above method, is shown in Figure 7.1 where the results for

different temperatures and different lattice sizes are plotted. As expected, the free en-

ergy grows with the inverse temperature and it is highly dependent on the lattice size,

especially as one goes deeper into the broken phase.

Figure 7.1: The free energy of the topological defect for lattice sizes of 143, 163, 183 and 203.
The lattice effect is clear since for higher lattice sizes the free energy increases. Also the higher
the inverse temperature, the higher the free energy of the defect.

It is also noticeable that the errors, especially at lower inverse-temperatures, are very
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large, reaching even values of 22%. As discussed in Section 5.4, this is mainly due to the

autocorrelation time which is dominant close to the critical point.

In order to find the mass, as a first approximation, we applied Equation (4.9), which

involved a trivial calculation. However, especially at small values of β , the factor of

ln(ML2/2πT ) must have a significant effect so the mass was found using the full expres-

sion of the free energy difference - Equation (4.8) - up to and including corrections of

the order of (e−MT ). This was solved with respect to M using numerical methods and

in fact the assumption that the extra term that was not included in the first approxima-

tion does indeed contribute in the mass calculations was confirmed. This can be seen in

Figures 7.2a and 7.2b where plots of the mass using the first approximation and the full

expression for two different lattice sizes are presented.

(a) N=16 (b) N=20

Figure 7.2: Mass measured using both the first approximation according to Eq. (4.9) and the
full Equation (4.8). Values of A were obtained using the former and values of B using the latter
in both graphs. The corrections that are taken into account, as shown in B, are significant at
low inverse temperatures and especially at smaller lattice sizes.

The method for finding the free energy of the topological defect that was used in this

chapter had already been applied for the same model by mainly Caselle and Hasenbusch

in a series of papers [29], [30], [31], [46]. The mass of the defect was estimated in none

of these papers, however results of the surface tension of the 3-dimensional Ising Model
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were published. In fact, in [29] and [30], they used Equation (4.2), from which σ was

estimated and in [31] they used the full Equation (4.3). Values of the measured surface

tension for the temperatures that are used in this work are given only in [30].

Figure 7.3: Surface tension measured by making a fit of the data to Eq. (4.3). The results
are comparable to those found in literature taking into account the different approach that was
used in literature.

The data of the free energy of the defect for the four different lattice sizes that were

used (14,16,18,20) were fitted to Equation (4.3) and from that the surface tension was

found for every temperature. The results could be compared with those given in [30] tak-

ing into account that in that paper they did not include the corrections of order (1/σL2)

but instead, they included a term of lnT in the free energy to take into account the

entropy due to the free translation of the surface in one direction. The comparison can

be seen in Figure 7.3, where it seems that there is a general agreement of the values

estimated in this dissertation with those found in literature.

In addition, as stated in Section 4.1, the quantity σ/2β should be linear to beta. To
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confirm that the estimated values follow this trend, a graph of σ/2β versus β was plotted

(Figure 7.4) and a straight line was fitted to the data points. From the fitting the value

of R-squared was found to be almost 1 which shows that the relation between the two

plotted values is indeed linear. Also, the values of the gradient of both the results of this

work and those of [30] were found to be in agreement within an error of 0.3%.

Figure 7.4: The value σ/2β plotted versus β. It gives a linear plot as expected from the low
temperature series expansion [32].

7.2 Results using correlation functions

The new method which is explained in Section 4.2 was applied here in order to estimate

the mass of the topological defect, M . A Program in FORTRAN 95 was written which

also involves Monte Carlo Simulations (Appendix C.2). However, instead of measuring

free energies for twisted and periodic boundary conditions starting from the critical point,

the program was chosen to run at a particular inverse temperature, that could be given

by the user and find the correlation function at that particular value imposing twisted
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boundary conditions.

Even though, for the estimation of the mass of the domain wall, only twisted bound-

ary conditions are needed, in this dissertation periodic boundary conditions were also

used from which the mass of the scalar particle could be measured. Basically, the inves-

tigation of the two cases of the boundary conditions was done using the same program

with only two differences. Firstly, the boundary conditions in Monte Carlo Simulations

were fixed appropriately so that if periodic boundary conditions were needed, the spins

at point Si and Si+L were the same whereas if twisted boundary conditions were needed,

the above spins were chosen to be opposite. The other difference that was made was in

the fixed value of k, the momentum that was used in the Fourier transform of the field

or the spin in this case. Specifically, k was chosen to be zero for the periodic boundary

conditions and π/L for the twisted boundary conditions. The value of k was kept fixed

throughout the program and thus the mass could be extracted from the correlation func-

tion.

An idea of what it was seen when periodic boundary conditions were imposed can be

seen in Figure 7.5. This is the expected behaviour of the correlation function with peri-

odic boundary conditions since by Equation (4.24) it is clear that it should be symmetric.

Also, it is expected that a plateau should be present where the correlation function goes

to zero. The plateau is more apparent at larger lattice size and at temperatures away

from the critical point.

By fitting the data to Equation (4.24) the energy of the scalar particle can be found. In

the process of fitting the data to the equation, three points from each end were excluded

to avoid including the short-range behaviour. Since periodic boundary conditions were

used and k was set to be zero the energy is equivalent to the mass of the scalar particle. In

fact, as stated in Section 4.2, the latter is a measure of the inverse correlation length which
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Figure 7.5: Correlation function as measured for lattice size 20 at inverse temperature β =
0.23 with periodic boundary conditions. A plateau can be seen in this case.

is given by Equation (4.25). Values of the mass were estimated by the above method and

they were comparable to the values given in [30] for several inverse temperatures. This

indicates that the program used to measure the correlation function is correct. A table

of the masses of the scalar particle for different lattice sizes and different temperatures

can be found in Appendix B.1.

For the calculations of the mass of the domain wall, the boundary conditions were set

to be antiperiodic. In the calculations of the correlation function the periodicity in time

direction was used to include the whole available space. Then the data of the correlation

function was fitted to Equation (4.21), excluding a few points at each end to achieve the

best fit. An example of how the correlation function looked like and the fitting that was

achieved can be seen in Figure 7.6. Then the whole expression as given in Equation(4.26)

was used, where the mass of the scalar particle as measured before was given to the

program to simplify the fitting procedure. It was actually clear that the values of the

mass of the domain wall, M , found using both first and second fitting, were in a good

agreement.
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Figure 7.6: The correlation function found using the twisted boundary conditions and the
fitting of the Equation (4.21) to the data points excluding 4 points from each end. The specific
plot was done for lattice size L, T = 20 and β = 0.225

Following, the values of the mass of the domain wall found by the correlation func-

tion were compared to those found using the finite energy differences method as shown

in Section 7.1. In Figure 7.7 the mass of the domain wall for two different lattice sizes as

measured using both methods is shown. It is clear that there is a significant difference

between the two estimated values especially at small lattice sizes. It seems that they

differ by an almost constant value which might be a result of a correction term that is

not taken into account.

Actually, this difference between the masses might occur due to many reasons. The most

obvious one that could be investigated is the finite lattice effect. From Figure 7.7 it is

noticeable that for L = 16 there is a bigger difference between the values compared to

that of L = 20. This leads to the conclusion that there must be an effect from the lattice

size. Even though, due to limitation in the machines and the time, the investigation

of higher lattice spaces was not possible in this dissertation, the finite lattice effect was

tested quantitatively using the surface tension, i.e. the mass per unit length. In principle,

52



(a) N=16 (b) N=20

Figure 7.7: A comparison of the measured values of the mass using the two different methods
for lattice sizes N = 16 and N = 20 is presented. N denotes dimensions of both time and spatial
directions since a cubic lattice was considered. There is a clear difference between the values
which indicates that there is a factor that has not been taken into account in the second method.
This difference is smaller for higher lattice sizes so the difference might be explained by the finite
lattice effect.

the surface tension should be independent of the lattice size and therefore be constant for

different lattice sizes. However, due to a strong finite lattice effect, here it was observed

that the surface tension was dependent on the lattice size. In the earlier calculations the

surface tension was found using Equation (4.3). Also, the surface tension as measured

from the mass obtained by the finite energy differences using the complete Equation (4.8)

was found to be in the range of the estimated value within errors. This indicates that the

first method for the mass calculations included the finite lattice effect that was imposed

by the logarithmic terms. By plotting the surface tension using the masses that were

obtained using both methods, it is obvious that if one goes to higher lattice sizes, they

should expect to have an agreement between the values estimated using both methods.

This can be seen in Figure 7.8 for two different values of the inverse temperature. This

indicates that the difference that is present between the masses measured by the two

different methods arises mostly from the fact that small lattices are used.

Furthermore, observing Figure 7.8, one can say that there is still a small lattice effect

in the first method as well. By fitting a straight line to the values of surface tension,
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(a) β = 0.228 (b) β = 0.23

Figure 7.8: The surface tension as measured using the two methods across 1/L. The straight
constant line represents the surface tension that was calculated using the data of the free energy
of the defect and Eq. (4.3) and the points that almost fit to this line(FE-A) represent the
surface tension measured as M/L from the estimated mass by Eq. (4.8). The points given by
crosses (Cor) show the surface tension, M/L, that was found using the masses obtained by the
correlation function and a straight line was fitted to them. From this plot the finite lattice effect
in the correlation method is apparent and it seems that if one goes to higher lattice spaces, e.g.
L = 64 the values obtained by the two methods will agree.

M/L, using the mass found by the first method, the point where the two straight lines

meet changes slightly. However, the assumption that if one goes at higher lattice sizes of

L ' 64 they will get masses that should match using both methods, still holds. This is

shown in Figure 7.9.

However, there might be more effects that contribute and are not taken into account in

the second method resulting in giving the big difference between the masses. Even though

the length of this research project does not allow further investigation, following a few

of the possible explanations other than the finite lattice effect are stated. The second

method was checked to be working in two models which deal with point-like particles. In

the model that is presented here, the topological defect cannot be considered as point-

like particle since it gets the meaning of a domain wall. Thus, there are fluctuations on

the latter that are not taken into account. However, the fluctuations can be very small

compared to the mass of the wall and not have a significant effect.
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(a) β = 0.228b (b) β = 0.23b

Figure 7.9: The surface tension plotted across 1/L using the two different methods. The
investigation is similar to those in Fig. 7.8, however in this plot a straight line (linear fit 1)
was fitted to the surface tension obtained using M/L where M is the mass found by the finite
energy differences method. The crossing point is slightly lower in these graphs which indicates
that one should go to higher lattice sizes but the assumption of L = 64 still holds.

Also, for the lattice sizes that were used here, the mass of the domain wall is less than

the mass of the scalar particle. Therefore, there might be loop corrections in the mass

of the wall that are significant and are not taken into account. Assuming that the mass

grows linear with the lattice size, an extrapolation of a straight line, fitted on the masses

for different lattice sizes for a specific inverse temperature, will give an idea on the size

of the lattice at which the mass of the topological defect becomes almost the same as

the mass of the scalar particle. The graphs for two different lattice sizes that were used

for the investigation of this effect, can be found in Appendix B.2 and from those it was

concluded that for the lattice size of L = 64 proposed above, one would most probably

get values for the mass of the domain wall that are higher than the mass of the scalar

particle.
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Chapter 8

Conlcusion and Future Work

By the completion of this dissertation, the way of measuring the mass of topological

defects with two different non-perturbative methods using Monte Carlo Simulations be-

came clear. Specifically here, the domain wall that is created in the 1 +2-dimensional λφ4

model was implemented by using the Ising Model since they live in the same universality

class. In the broken phase of the Ising Model, a topological defect is created if twisted

boundary conditions are imposed in one of the spatial directions.

Firstly, the mass was found by applying a widely known method which involves finite

energy differences. However, for using this method one has to know the exact inverse

temperature at the critical point. Thus, the first thing that was done in this disserta-

tion was to measure this critical temperature using the Binder Cumulant for the case of

periodic boundary conditions. After the critical temperature was known, the partition

function of the twisted boundary conditions over the one of the periodic boundary con-

ditions was found for small intervals of ∆β. Then by adding the natural logarithms of

these values from the critical point up to the inverse temperature that was needed, the

free energy of the topological defect was obtained. Using the latter and a few logarithmic

corrections, the mass of the defect was then estimated. This method works well, however,

one has to deal with the problem that the computational time increases if mass measure-
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ments at temperatures away from the critical one are needed. This is due to the fact that

since the method is additive, with the starting point to be the critical one, the higher

the temperature, the higher the number of measurements needed to be taken and added.

Since, in this dissertation the mass is measured at values of the inverse temperature that

are close to the critical point, good results were obtained compared to previous works.

The second method that was used involves correlation functions when the topological

defect is present. For this method all the fields were transformed into momentum space

and momentum took values depending on what the boundary conditions were in each

direction. Specifically in x-direction k = π/L was used whereas in time and y-direction k

was set to zero. The data obtained by a program that was written to find the correlation

function was fitted to the form of the latter and since momentum was known the mass

could be extracted from the fit. The results obtained using this method had a similar

behaviour as the results obtained using the first one, however they were not in a good

agreement. Specifically there was a difference between the obtained values that appeared

to be almost constant for each lattice size that was imposed.

The difference between the values of the mass obtained using the two different methods

was explained by the fact that small lattice sizes were used in this dissertation. Unfor-

tunately, the machines available for the completion of this dissertation that were used

-standard computers- and the limitation of time did not allow higher lattice dimensions to

be implemented and thus further investigation could not be achieved. However, in order

to show that the lattice has an effect to the mass measurements, the surface tension was

measured using both methods by finding the mass per unit length. In the second method

it was clear that the surface tension was strongly dependent on the lattice size and by

extrapolating the line that was fitted to the points, it is believed that if someone goes to

higher lattice sizes, as that of L = 64, an agreement between the values can be achieved.

Also, using small lattices, the mass of the scalar particle becomes dominant over the mass
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of the defect and this might also have an effect in the mass measurement. By using the

lattice size that is proposed above, as shown in Chapter 7, it is believed that it will make

the mass of the domain wall higher than the mass of the scalar particle.

Even if after higher lattice sizes have been used, a disagreement between the values

is still present, then one should think about other corrections that might contribute and

are not taken into account. The main reason that this might happen is due to the fact

that the method using the correlation functions was tested to be working in two different

cases, however the defects that were present in both models that were investigated could

be interpreted as point-like particles. In contradiction, in this dissertation, a domain wall

is present and its string realization might add effects that are not taken into account.

The disagreement between the masses and the reasons that might causing it that are

stated above unveil interesting further work that one can do. Firstly and most impor-

tantly, it is suggested that one can use a supercomputer to implement the model into

larger lattices. As a first trial, my proposal is firstly, a lattice size of L = 48 to be used

and then go into L = 64. Also, it will be useful to go further away from the critical point

and investigate the behaviour of the mass at those temperatures. However, one has to

be very careful when dealing with lower temperatures since the domain wall might gain

an effect from the lattice and thus it will not be able to be interpreted as living in the

continuum anymore.

Moreover, dealing with simulations is very interesting but yet very demanding on the

machines and algorithms available. As it was already stated, the Metropolis Algorithm

fails to give accurate results close to the critical point. Even if it is one of the simplest

and well-known algorithms in the world of physics and it was sufficient for the length of

this dissertation, there are more efficient algorithms that could be used to obtain better

results especially close to the phase transition. In most of the papers that are mentioned
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above, the Cluster Algorithm was used which gives quicker results and does not have the

divergence in the error that appears close to the critical point in the Metropolis algorithm.

The efficiency of these algorithms, though, has a cost in the time that they require to be

written. So, as a future work for a more extended research project, a program using one

of the more efficient algorithms could be written to check if there is a significant change

in the results.

Overall, even though this dissertation did not give the match between the results us-

ing the two different methods, it has given the basis for further work. Either the method

will work for higher lattice sizes or the method will ignore some effects that are significant

and thus understanding of the underlying physics behind the topological defect in the

(λφ4)1+2 model will open a new area of research. It is actually a really exciting topic

for further investigation since, as it has already been mentioned, the specific topological

defect has a relation with the confinement problem in QCD and the domain wall that

it is believed that was created in the early universe. Thus, investigating it more can

have applications in the theories of both cosmologists and string theorists. Hopefully, in

the prospect of future work, this dissertation will have a small contribution in further

investigation of the topological defects that are so important in the understanding of the

behaviour of our universe.
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Appendix A

Finding the mass of a topological

defect using the free energy

In this appendix, the explicit derivation of Equation (4.8) given in Section 4.1 is shown.

Equations (4.5), (4.6) and (4.7) were used.

∆F = − ln
ZTW
ZP

= − ln

(
2Z0

(
Z1e

−MT + 1
3!
Z3

1e
−3MT + ..

)
Z0 (1 + Z2

1e
−2MT + ...)

)

= ln 2− ln

(
Z1e

−MT + 1
3!
Z3

1e
−3MT

1 + Z2
1e
−2MT

)
= − ln 2− ln

(
Z1e

−MT

1 + Z2
1e
−2MT

)
+O(e−2MT )

= − ln 2− ln
(
Z1e

−MT
)

+ ln(1 + Z2
1e
−2MT ) +O(e−2MT )

= − ln 2− lnZ1 +MT +O(e−2MT )

= MT − ln 2− 1

2
ln

(
ML2

2πT

)
+O(e−2MT )

where in the final result was obtained by substituting the definition of Z1 as :

Z1 =

(
ML2

2πT

)1/2

.
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Appendix B

Further Results

B.1 Mass of scalar particle

@
@
@
@
@

β

N
14 16 18 20

0.225 0.281 ±0.003 0.285 ±0.005 0.285 ±0.003 0.285 ±0.008

0.226 0.329 ±0.017 0.321 ±0.005 0.328 ±0.003 0.329 ±0.005

0.227 0.388 ±0.007 0.392 ±0.004 0.400 ±0.004 0.396 ±0.005

0.228 0.426 ±0.004 0.425 ±0.003 0.417 ±0.007 0.429 ±0.009

0.229 0.477 ±0.006 0.476 ±0.016 0.479 ±0.005 0.475 ±0.007

0.230 0.507 ±0.005 0.507 ±0.018 0.508 ±0.004 0.509 ±0.009

Table B.1: The mass of the scalar particle as measured using the correlation function
with periodic boundary conditions. It can be seen that varying the lattice size but keeping
the temperature constant the value of the mass of the scalar particle remains the same
within errors.
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B.2 Investigation of relation between mass of topo-

logical defect and mass of scalar particle

The two graphs that are presented here are those discussed in Section 7.2. It is clear that

by extrapolating the straight line that fits the values for the masses obtained, there is a

point at which it crosses the line which represents the mass of the scalar particle. This

crossing point roughly indicates the critical lattice size that one should use to achieve a

mass of the defect higher than that of the scalar particle. If the mass of the domain wall is

much larger than the scalar particle, then any corrections that are not taken into account

will be very small and thus not contribute in the estimation of the mass of the defect.

Although, it is clear that this lattice size depends on the temperature, one can take a

safe limit of L = 50 to be considered as a lattice size that would result in a dominant

mass of the topological defect over the mass of the boson.

(a) β = 0.228 (b) β = 0.23

Figure B.1: The mass of the domain wall and a linear fit to the data points across the lattice
size is shown here. The line which is constant for all values of L indicates the mass of the scalar
particle. At higher lattice size the mass of the domain wall becomes dominant.
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Appendix C

Programs used in this dissertation

C.1 Program for implementing the Ising Model

The main program presented here is an original work of the author and it was written
in FORTRAN 95. However, the function to generate random numbers was taken from
a report that was found online. Periodic Boundary conditions were used in the specific
program.

PROGRAM is ing 3D
i m p l i c i t none
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! 3D ISING MODEL us ing Metropo l i s Algorithm − p e r i o d i c boundary c o n d i t i o n s
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Var i ab l e s
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i n t e g e r : : i , j , k ,m, n , p
r e a l : : Je = 1 .0
in t ege r , a l l o c a t a b l e : : A( : , : , : ) , ER( : )
r ea l , a l l o c a t a b l e : : E ( : , : , : )
i n t e g e r : : n1 , n2 , n3 , ConfigType
r e a l : : temp , beta , high temp , low temp , t emp in te rva l
i n t e g e r : : npass , ipas s , nequ i l , t r i a l s p i n , s t ep s
i n t e g e r : : nscans , i scan , output count
r e a l : : l o g e ta , deltaU , tauto
r e a l : : magn , magn ave , magn2 ave , magn4 ave , dm, dm2, varianceM , varianceM2
r e a l : : E ave , E2 ave , E4 ave , energy , dE , dE2 , varianceE , varianceE2
r e a l : : cv , dcv , dchi , ch i

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Reading i n i t i a l parameters , de f i n ed by the user , from a f i l e
! input f i l e = ’ i s i n g . txt ’
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
open ( un i t = 11 , f i l e = ’ i s i n g . txt ’ , s t a t u s = ’ o ld ’ , a c t i on = ’ read ’ )

read ( 1 1 , ∗ ) ; read (11 ,∗ ) n1
read ( 1 1 , ∗ ) ; read (11 ,∗ ) n2
read ( 1 1 , ∗ ) ; read (11 ,∗ ) n3
read ( 1 1 , ∗ ) ; read (11 ,∗ ) npass
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read ( 1 1 , ∗ ) ; read (11 ,∗ ) nequ i l
read ( 1 1 , ∗ ) ; read (11 ,∗ ) high temp
read ( 1 1 , ∗ ) ; read (11 ,∗ ) low temp
read ( 1 1 , ∗ ) ; read (11 ,∗ ) t emp in te rva l
read ( 1 1 , ∗ ) ; read (11 ,∗ ) ConfigType

c l o s e (11)

s t ep s = 1500

nscans = i n t ( ( high temp − low temp )/ temp in te rva l ) + 1

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! A l l o ca t e array o f sp ins , energy and e r r o r s
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a l l o c a t e (A( n1+2, n2+2, n3+2))
a l l o c a t e (E( n1+2, n2+2, n3+2))
a l l o c a t e (ER( nscans ) )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Output f i l e s : energy . dat , magnet izat ion . dat
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

open ( un i t = 33 , f i l e = ’ magnet izat ion . dat ’ , s t a t u s = ’ r e p l a c e ’ , a c t i on = ’ wr i t e ’ )

open ( un i t =34, f i l e = ’ energy . dat ’ , s t a t u s = ’ r e p l a c e ’ , a c t i on = ’ wr i t e ’ )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Read the a u t o c o r r e l a t i o n func t i on f o r each temp from a f i l e
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
open ( un i t =37, f i l e = ’ e r ro r20 . txt ’ , s t a t u s = ’ o ld ’ , a c t i on = ’ read ’ )

do i =1, nscans
read (37 ,∗ ) ER( i )

end do

c l o s e (37)

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! I n i t i a l sp in c o n f i g u r a t i o n − depends on ConfigType given
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s e l e c t case ( ConfigType )

case (1 ) ! complete ly ordered + 1

do i =1, n1+2
do j =1, n2+2

do k=1, n3+2
A( i , j , k ) = 1

end do
end do

end do
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case (2 ) ! random c o n f i g u r a t i o n
do i =2, n1+1

do j =2, n2+1
do k=2, n3+1

i f ( ran1 (5)>0.5) then
A( i , j , k)=1
wr i t e (32 ,∗ ) A( i , j , k )

e l s e
A( i , j , k)=−1
Write (32 ,∗ ) A( i , j , k )

end i f
end do

end do
end do
A( 1 , : , : ) = 1
A( n1 + 2 , : , : ) = 1
A( : , 1 , : ) = 1
A( : , n2 +2 , : ) = 1
A( : , : , 1 ) = 1
A( : , : , n3+2) = 1

case (3 ) ! checkerboard

do i =2, n1+1
do j =2, n2+1

do k=2, n3+1
i f (mod( i+j+k , 2 ) . eq . 0 ) then

A( i , j , k ) = 1
e l s e

A( i , j , k ) = −1
end i f

end do
end do

end do
A( 1 , : , : ) = 1
A( n1 + 2 , : , : ) = −1
A( : , 1 , : ) = 1
A( : , n2 +2 , : ) = −1
A( : , : , 1 ) = 1
A( : , : , n3+2) = −1

case d e f a u l t
p r i n t ∗ , ’ Error ! Check ConfigType ’
stop
end s e l e c t

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Loop f o r each temp i n t e r v a l ( from high to low )
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s can loop : do i s c an = 1 , nscans
wr i t e (∗ ,∗ ) i s c an
temp = high temp − t emp in te rva l ∗( i scan −1)
beta = 1.0/ temp

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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! Metropo l i s a lgor i thm
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

magn ave = 0 .0
magn2 ave = 0 .0
magn4 ave = 0 .0
E AVE = 0.0
E2 AVE =0.0
E4 AVE = 0.0
output count =0

MC passes : do i p a s s =1, npass

! Choose a random spin i−>m, j−>n , k−>p and f l i p s i gn

m = nint ( ( n1−1)∗ ran1 (5 ) + 2)
n = nint ( ( n2−1)∗ ran1 (5 ) + 2)
p = nint ( ( n3−1)∗ ran1 (5 ) + 2)
t r i a l s p i n = −A(m, n , p)

! Energy change a f t e r f l i p p i n g
deltaU = −Je∗ f l o a t (2∗ t r i a l s p i n ∗(A(m−1,n , p)+A(m+1,n , p)+A(m, n−1,p)+A(m, n+1,p)

+A(m, n , p−1)+A(m, n , p+1)))

i f ( deltaU . l e . 0 ) then
A(m, n , p) = t r i a l s p i n

e l s e
l o g e t a = log ( ran1 ( 5 ) )
i f (−beta ∗deltaU . gt . l o g e t a ) then

A(m, n , p) = t r i a l s p i n
end i f

end i f

! Fix the boundar ies to be p e r i o d i c

i f ( ( deltaU . l e . 0 ) . or . ( ( deltaU . gt . 0 ) . and.(− beta ∗deltaU . gt . l o g e t a ) ) ) then
i f (m==2) A( n1+2,n , p)= t r i a l s p i n
i f (m==n1+1) A(1 , n , p) = t r i a l s p i n
i f (n==2) A(m, n2+2,p) = t r i a l s p i n
i f (n==n2+1) A(m, 1 , p) = t r i a l s p i n
i f (p==2) A(m, n , n3+2) = t r i a l s p i n
i f (p==n3+1) A(m, n , 1 ) = t r i a l s p i n

end i f

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! A l l c a l c u l a t i o n s that we want a f t e r e q u i l i b r a t i o n and every ’1500 ’ s t ep s
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( ( i p a s s . gt . n equ i l ) . and . ( mod( ipas s , s t ep s ) . eq . 0 ) ) then
output count = output count + 1

! Magnet izat ion c a l c u l a t i o n s
magn = sum(A( 2 : n1 +1 ,2: n2 +1 ,2: n3+1))
magn ave = magn ave + magn/( n1∗n2∗n3 )
magn2 ave = magn2 ave + (magn/( n1∗n2∗n3 ))∗∗2
magn4 ave = magn4 ave + (magn/( n1∗n2∗n3 ))∗∗4
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! Energy c a l c u l a t i o n s
energy = 0 .0
do i =2, n1+1

do j =2, n2+1
do k=2, n3+1
E( i , j , k)=−Je∗ f l o a t (A( i , j , k )∗ (A( i −1, j , k)+A( i +1, j , k)+A( i , j −1,k )

+A( i , j +1,k)+A( i , j , k−1)+A( i , j , k+1)))
energy = energy + E( i , j , k )/2

end do
end do

end do
E AVE = E AVE + energy /( n1∗n2∗n3 )
E2 AVE = E2 AVE + ( energy /( n1∗n2∗n3 ))∗∗2
E4 AVE = E4 AVE + ( energy /( n1∗n2∗n3 ))∗∗4

end i f

end do MC passes

magn ave = magn ave /( output count ∗n1∗n2∗n3 )
magn2 ave = magn2 ave /( output count )
magn4 ave = magn4 ave /( output count )
ch i = beta ∗( magn2 ave − ( magn ave )∗∗2)

E AVE = E AVE/( output count ∗n1∗n2∗n3 )
E2 AVE = E2 AVE /( output count )
E4 AVE = E4 AVE /( output count )
cv = beta ∗∗2∗(E2 AVE −(E AVE∗∗2))

tauto = ER( i s can )

varianceM = magn2 ave − magn ave∗∗2
varianceM2 = magn4 ave − magn2 ave∗∗2

dm = s q r t ( ( varianceM ∗(2∗ tauto ) ) / ( output count ) )
dm2 = s q r t ( ( varianceM2 ∗(2∗ tauto ) ) / ( output count ) )

varianceE = E2 ave − E ave ∗∗2
varianceE2 = E4 ave − E2 ave ∗∗2
dE = s q r t ( ( var ianceE ∗(2∗ tauto ) ) / ( output count ) )
dE2 = s q r t ( ( varianceE2 ∗(2∗ tauto ) ) / ( output count ) )

dchi = beta ∗ s q r t (dm2∗∗2+4∗(magn ave∗dm)∗∗2)
dcv = beta ∗∗2∗ s q r t (dE2∗∗2+4∗( E ave∗dE)∗∗2)

wr i t e (33 ,∗ ) temp , ABS( magn ave ) , dm, ch i , dchi

wr i t e (34 ,∗ ) temp , E AVE, dE , cv , dcv

end do scan loop

c l o s e (33)
c l o s e (34)
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pr in t ∗ , ’ Program complete ’
p r i n t ∗ , ’ Check energy . dat and magnet izat ion . dat ’

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Function to generate random number
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
conta in s

r e a l f unc t i on ran1 ( idum )
i m p l i c i t none

r e a l : : r (97)
in t ege r , i n t e n t ( IN) : : idum
save
in t ege r , parameter : : M1=259200 , IA1=7141 , IC1=54773
rea l , parameter : : RM1=1.0d0/M1
intege r , parameter : : M2=134456 , IA2=8121 , IC2=28411
rea l , parameter : : RM2=1.0d0/M2
intege r , parameter : : M3=243000 , IA3=4561 , IC3=51349
i n t e g e r : : IX1 , IX2 , IX3 , j j j
i n t e g e r : : i f f =0

i f ( idum<0. or . i f f ==0) then
i f f = 1
IX1 = mod( IC1−idum , M1)
IX1 = mod( IA1∗IX1+IC1 , M1)
IX2 = mod( IX1 , M2)
IX1 = mod( IA1∗IX1+IC1 ,M1)
IX3 = mod( IX1 , M3)

DO j j j =1 ,97
IX1 = mod( IA1∗IX1+IC1 , M1)
IX2 = mod( IA2∗IX2+IC2 , M2)
r ( j j j ) = ( f l o a t ( IX1 ) + f l o a t ( IX2 )∗RM2)∗RM1

END DO

END IF

IX1 = mod( IA1∗IX1+IC1 , M1)
IX2 = mod( IA2∗IX2+IC2 , M2)
IX3 = mod( IA3∗IX3+IC3 , M3)
j j j = 1+(97∗ IX3 )/M3
i f ( j j j >97. or . j j j <1) PAUSE
ran1 = r ( j j j )
r ( j j j ) = ( f l o a t ( IX1)+ f l o a t ( IX2 )∗RM2)∗RM1

end func t i on ran1

end program i s ing 3D

72



C.2 Program for finding the mass using correlation

functions

Manipulating the program given in Appendix C.1, the correlation function of the fields,
in the case of this dissertation the spins, was found. By fitting the data extracted from
this program to Equation 4.26, the mass of the domain wall could be calculated.

PROGRAM c o r r e l a t i o n
i m p l i c i t none
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Program to f i n d the c o r r e l a t i o n func t i on in order to f i n d the mass .
! I t uses the I s i n g Model , Monte Carlo S imulat ions with Metropo l i s Algorithm
! and twi s t ed boundary c o n d i t i o n s in x−d i r e c t i o n .
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Var i ab l e s
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i n t e g e r : : i , j , k ,m, n , p
in t ege r , parameter : : i k = s e l e c t e d i n t k i n d (16)
r e a l : : p i = 3.14159265
r e a l : : Je = 1 .0
in t ege r , a l l o c a t a b l e : : A( : , : , : )
r ea l , a l l o c a t a b l e : : E ( : , : , : ) , FT( : , : ) , C( : , : ) , iS ( : ) , S ( : ) , eC ( : , : )
i n t e g e r : : n1 , n2 , n3 , ConfigType
r e a l : : temp , beta , kmom, tauto
i n t e g e r : : t r i a l s p i n , s t ep s
i n t e g e r ( kind=ik ) : : npass , ipas s , n equ i l
r e a l : : high temp , low temp , t emp in te rva l
i n t e g e r : : nscans , i scan , output count
r e a l : : l o g e ta , deltaU
r e a l : : cor , i co r , cor2 , i co r2 , dcor , dcor2 , idcor , i d co r2
r e a l : : sumS , sumS2 , dsumS

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Reading i n i t i a l parameters , de f i n ed by the user , from a f i l e
! input f i l e = ’ i n f o . txt ’
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
open ( un i t = 11 , f i l e = ’ i n f o . txt ’ , s t a t u s = ’ o ld ’ , a c t i on = ’ read ’ )

read ( 1 1 , ∗ ) ; read (11 ,∗ ) n1
read ( 1 1 , ∗ ) ; read (11 ,∗ ) n2
read ( 1 1 , ∗ ) ; read (11 ,∗ ) n3
read ( 1 1 , ∗ ) ; read (11 ,∗ ) npass
read ( 1 1 , ∗ ) ; read (11 ,∗ ) nequ i l
read ( 1 1 , ∗ ) ; read (11 ,∗ ) beta
read ( 1 1 , ∗ ) ; read (11 ,∗ ) tauto
read ( 1 1 , ∗ ) ; read (11 ,∗ ) ConfigType

c l o s e (11)

temp = 1/ beta
s t ep s = 10000
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WRITE(∗ ,∗ ) ’N = ’ , n1
WRITE(∗ ,∗ ) ’ temp = ’ , temp

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! A l l o ca t e ar rays
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a l l o c a t e (A( n1+2, n2+2, n3+2))
a l l o c a t e (S( n3+2))
a l l o c a t e ( iS ( n3+2))
a l l o c a t e (FT( n1 +2 ,2))
a l l o c a t e (C( n3 +2 ,2))
a l l o c a t e (eC( n3 +2 ,2))

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Create array with the f o u r i e r trans form va lue s − k = constant
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

kmom = pi /n3

do i =1, n1
FT( i , 1 ) = cos (kmom∗( i −1))
FT( i , 2 ) = s i n (kmom∗( i −1))
WRITE(∗ ,∗ ) FT( i , 1 )

end do
FT( n1+1, 1) = FT(1 , 1 )
FT( n1+1, 2) = FT(1 , 2 )
FT( n1+2, 1) = FT(2 , 1 )
FT( n1+2, 2) = FT(2 , 2 )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Output f i l e : cor . dat and i c o r . dat
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

open ( un i t = 38 , f i l e = ’ cor . dat ’ )

open ( un i t = 39 , f i l e =’ i c o r . dat ’ )

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! I n i t i a l sp in c o n f i g u r a t i o n − depends on ConfigType given
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s e l e c t case ( ConfigType )

case (1 ) ! complete ly ordered + 1

do i =1, n1+2
do j =1, n2+2

do k=1, n3+2
A( i , j , k ) = 1

end do
end do

end do
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case (2 ) ! random c o n f i g u r a t i o n
do i =2, n1+1

do j =2, n2+1
do k=2, n3+1

i f ( ran1 (5)>0.5) then
A( i , j , k)=1
wr i t e (32 ,∗ ) A( i , j , k )

e l s e
A( i , j , k)=−1
Write (32 ,∗ ) A( i , j , k )

end i f
end do

end do
end do
A( 1 , : , : ) = 1
A( 2 , : , : ) = 1
A( n1 + 1 , : , : ) = −1
A( n1 + 2 , : , : ) = −1
A( : , 1 , : ) = 1
A( : , 2 , : ) = 1
A( : , n2 +2 , : ) = 1
A( : , n2 +1 , : ) = 1
A( : , : , 1 ) = 1
A( : , : , 2 ) = 1
A( : , : , n3+1) = 1
A( : , : , n3+2) = 1

case (3 ) ! checkerboard

do i =2, n1+1
do j =2, n2+1

do k=2, n3+1
i f (mod( i+j+k , 2 ) . eq . 0 ) then

A( i , j , k ) = 1
e l s e

A( i , j , k ) = −1
end i f

end do
end do

end do
A( 1 , : , : ) = 1
A( n1 + 2 , : , : ) = −1
A( : , 1 , : ) = 1
A( : , n2 +2 , : ) = −1
A( : , : , 1 ) = 1
A( : , : , n3+2) = −1

case d e f a u l t
p r i n t ∗ , ’ Error ! Check ConfigType ’
stop
end s e l e c t

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Metropo l i s a lgor i thm
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!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

output count =0
C( : , : ) = 0
eC ( : , : ) = 0

MC passes : do i p a s s =1, npass

! Choose a random i−>m, j−>n , k−>p and f l i p s i gn
m = nint ( ( n1−1)∗ ran1 (5 ) + 2)
n = nint ( ( n2−1)∗ ran1 (5 ) + 2)
p = nint ( ( n3−1)∗ ran1 (5 ) + 2)
t r i a l s p i n = −A(m, n , p)

! Energy change a f t e r f l i p p i n g
deltaU = −Je∗ f l o a t (2∗ t r i a l s p i n ∗(A(m−1,n , p)+A(m+1,n , p)+A(m, n−1,p)+A(m, n+1,p)+A(m, n , p−1)+A(m, n , p+1)))

i f ( deltaU . l e . 0 ) then
A(m, n , p) = t r i a l s p i n

e l s e
l o g e t a = log ( ran1 ( 5 ) )
i f (−beta ∗deltaU . gt . l o g e t a ) then

A(m, n , p) = t r i a l s p i n
end i f

end i f

! Fix the boundar ies to be ant i p e r i o d i c in x−d i r e c t i o n
i f ( ( deltaU . l e . 0 ) . or . ( ( deltaU . gt . 0 ) . and.(− beta ∗deltaU . gt . l o g e t a ) ) ) then

i f (m==2) A( n1+2,n , p)= − t r i a l s p i n
i f (m==n1+1) A(1 , n , p) = − t r i a l s p i n
i f (n==2) A(m, n2+2,p) = t r i a l s p i n
i f (n==n2+1) A(m, 1 , p) = t r i a l s p i n
i f (p==2) A(m, n , n3+2) = t r i a l s p i n
i f (p==n3+1) A(m, n , 1 ) = t r i a l s p i n

end i f

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! A l l c a l c u l a t i o n s that we want a f t e r e q u i l i b r a t i o n and every ’1500 ’ s t ep s
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( ( ipas s>nequ i l ) . and . ( mod( ipas s , s t ep s )==0)) then
output count = output count + 1

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Do f o u r i e r trans form o f the sp in s − f o r every t i . e k
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

S ( : ) = 0
iS ( : ) = 0
sumS = 0.0
sumS2 = 0 .0

do k=1, n3
do i =1, n1

do j =1, n2
S( k ) = S( k ) + FT( i , 1 )∗A( i , j , k )
iS ( k ) = iS ( k ) + FT( i , 2 )∗A( i , j , k )
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end do
end do
sumS = sumS + S( k )
sumS2 = sumS2 + S( k )∗∗2

end do

sumS = sumS/n3
sumS2 = sumS2/n3
dsumS = s q r t ( ( sumS2 − sumS∗∗2)/( n3 ∗( n3 +1)))

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Find the c o r r e l a t i o n func t i on us ing p e r i o d i c i t y in time d i r e c t i o n − k
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

do m=0, n3

cor =0.0
i c o r = 0 .0
cor2 =0.0
i c o r 2 = 0 .0

do k=0, n3−1
cor = cor + S( k+1)∗S(mod( k+m, n3)+1)+ iS ( k+1)∗ iS (mod( k+m, n3)+1)
cor2 = cor2 + (S( k+1)∗S(mod( k+m, n3)+1)+ iS ( k+1)∗ iS (mod( k+m, n3 )+1))∗∗2
i c o r = i c o r + iS ( k+1)∗S(mod( k+m, n3)+1) − S( k+1)∗ iS (mod( k+m, n3)+1)
i c o r 2 = i c o r 2 + ( iS ( k+1)∗S(mod( k+m, n3)+1) − S( k+1)∗ iS (mod( k+m, n3 )+1))∗∗2

end do

cor2 = cor2 /n3
cor = cor /n3
dcor = s q r t ( ( cor2 − cor ∗∗2)/( n3 ∗( n3−1)))
cor = cor− sumS∗∗2

i c o r 2 = i c o r 2 /n3
i c o r = i c o r /n3
id co r = s q r t ( ( i c o r 2 − i c o r ∗∗2)/( n3 ∗( n3−1)))

dcor2 = dcor∗∗2+ (2∗sumS∗dsumS)∗∗2
idco r2 = i dc o r ∗∗2+ (2∗sumS∗dsumS)∗∗2

C(m+1 ,1) = C(m+1,1)+ cor
eC(m+1 ,1) = eC(m+1 ,1) + dcor2
C(m+1 ,2) = C(m+1 ,2) + i c o r
eC(m+1 ,2) = eC(m+1 ,2) + idco r2

end do

end i f

end do MC passes

do m=0, n3
C(m+1 ,1) = C(m+1 ,1)/ output count
C(m+1 ,2) = C(m+1 ,2)/ output count
eC(m+1 ,1) = s q r t ( ( eC(m+1 ,1)∗ tauto )/ output count )
eC(m+1 ,2) = s q r t ( ( eC(m+1 ,2)∗ tauto )/ output count )
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WRITE(38 ,∗ ) m, C(m+1 ,1) , eC(m+1 ,1)
WRITE(39 ,∗ ) m, C(m+1 ,2) , eC(m+1 ,2)

end do

c l o s e (38)
c l o s e (39)

d e a l l o c a t e (A)
d e a l l o c a t e (FT)
d e a l l o c a t e (S)
d e a l l o c a t e ( iS )
d e a l l o c a t e (C)
d e a l l o c a t e (eC)

p r in t ∗ , ’ Program complete ’
p r i n t ∗ , ’ Data saved in cor . dat and i c o r . dat ’

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Function to generate random number
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
conta in s

r e a l f unc t i on ran1 ( idum )
i m p l i c i t none

r e a l : : r (97)
in t ege r , i n t e n t ( IN) : : idum
save
in t ege r , parameter : : M1=259200 , IA1=7141 , IC1=54773
rea l , parameter : : RM1=1.0d0/M1
intege r , parameter : : M2=134456 , IA2=8121 , IC2=28411
rea l , parameter : : RM2=1.0d0/M2
intege r , parameter : : M3=243000 , IA3=4561 , IC3=51349
i n t e g e r : : IX1 , IX2 , IX3 , j j j
i n t e g e r : : i f f =0

i f ( idum<0. or . i f f ==0) then
i f f = 1
IX1 = mod( IC1−idum , M1)
IX1 = mod( IA1∗IX1+IC1 , M1)
IX2 = mod( IX1 , M2)
IX1 = mod( IA1∗IX1+IC1 ,M1)
IX3 = mod( IX1 , M3)

DO j j j =1 ,97
IX1 = mod( IA1∗IX1+IC1 , M1)
IX2 = mod( IA2∗IX2+IC2 , M2)
r ( j j j ) = ( f l o a t ( IX1 ) + f l o a t ( IX2 )∗RM2)∗RM1

END DO

END IF

IX1 = mod( IA1∗IX1+IC1 , M1)
IX2 = mod( IA2∗IX2+IC2 , M2)
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IX3 = mod( IA3∗IX3+IC3 , M3)
j j j = 1+(97∗ IX3 )/M3
i f ( j j j >97. or . j j j <1) PAUSE
ran1 = r ( j j j )
r ( j j j ) = ( f l o a t ( IX1)+ f l o a t ( IX2 )∗RM2)∗RM1

end func t i on ran1

end program c o r r e l a t i o n
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