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Abstract

This essay will review black holes in higher dimensional flat space. Due to prediction

made by the ADD theory and several unifying theories it is thought to be meaningful

to examine general relativity in higher dimensions. Several black hole solutions have

been found; static and stationary solution as well as the more exotic black rings and

black strings, which disproves uniqueness in higher dimensions. The black strings have

been proven to be unstable and the endstate of such strings violates the cosmic censor-

ship conjecture. A branch of black strings is further found to able to change topology.

Interestingly these have analogies in fluid dynamics.
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Introduction

The aim of this work is to give an review of black hole solutions and black hole dynamics

in dimension d>4, for classical general relativity.

1.1 Justification

While General Relativity in higher dimensions has been a increasing area of study for

the last couple of years, it might not be perfectly obvious why this is interesting. There

is however a number of reasons justifying this as an important field and worth further

study.

1.1.1 Scientific curiosity

From a purely theoretical point of view there is nothing stopping us at four dimensions

when examining black holes and General Relativity. Rather, it turns out, the special

characteristics of four-dimensional space-time restricts the possible solutions and is the

cause of for example the uniqueness theorem of black holes. Uniqueness refers to the

fact that for given black hole parameters (mass, charge and angular momentum) there

only exists one possible unique black hole, rather than a variety. This was proven in

four-dimensions, where the proof relies on the fact that the horizon topology of the

black hole had to be S2 [1].

In higher dimensions this is not necessarily true and it turns out that uniqueness

sometimes breaks down for black holes. While uniqueness still holds for the static

case in d>4, the Schwarzschild-Tangherlini black hole solution, there is no uniqueness



1.1 Justification 2

theorem for the stationary cases [2]. There are even several counter-examples where

you explicitly show non-uniqueness. The consequence is then that for the same mass,

charge and angular momentum there exist several black hole solutions with different

horizon topology. Phase transitions between the different phases is also allowed[3].

This implies that black holes in d>4 do not necessarily need to be stable. It has

been found that dynamical instabilities due to tensor perturbations exist, which are

dependent on the wavelength of the perturbation. This is called Gregory-Laflamme

instability and was first described in 1993 [4].

The horizon topology of the black hole solutions are also considerably different and

varied from that of a four-dimensional case, where only S2 is allowed. The topology no

longer needs to be spherical. One of the most straight forward examples of this is the

black strings, where a black hole in q dimensions is extended by simply adding a spatial

dimension. The new horizon will then have a geometry of Sq⊗R. This does not need

to stop here, if Rp could be added making up a black brane, with horizon Sp ⊗ Rp.

One could also make a circle of the added dimensions to make a black string, with

topology Sq ⊗ S1. This might at first glance be unstable, however with added rotation

working against the gravitational pull, stable solutions are possible.

There is also the possibility of multi-black hole solutions, for example a stationary

black hole surrounded by a black ring. This particular solution is called a black Saturn

solution.

This richness and variety of solutions points to a great difference between the case of

four-dimensional black holes and higher dimensional black holes. The physics of higher

dimensional black holes is much more complicated with features such as non-uniqueness,

non-spherical horizons and dynamical instabilities. It could then be valuable to compare

d>4 with d=4 to see which principles of General Relativity hold generally and which

are unique for d=4. This could be meaningful as it might give insight and deepen the

understanding of the General relativity and black holes.
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1.1.2 Unification

Other than scientific curiosity, it could also be of importance to investigate general

relativity in higher dimensions.

It has been the suspicion of physicists for almost a century that if General Relativity

is to be unified with quantum mechanics it is vital that higher dimensions are introduced.

One of the first, and quite important, attempts to unify the forces was made by Theodor

Kaluza in a paper in 1921 [5]. He managed to show that General Relativity in five

dimensions, the product of four-dimensional Minkowski space and S1, not only contains

four-dimensional gravity but also the theory of electromagnetism. This theory was later

extended by Oscar Klein who improved the mathematical framework [6]. Unfortunately,

the theory contains inherent problems with the introduction of fermions, making it

unphysical. However still to this day Kaluza-Klein theory is used as a toy theory.

There are still strong beliefs and hopes that all the fundamental forces might be

unified in one great theory. More contemporarily, String Theory or M-theory is being

put forward as this possible Theory of Everything. String theory seems to be able to

describe both the quantum gravity, and further seems to be renormalisable. The theory

prefers to exist in higher dimensions, usually either ten (”critical dimension”) or eleven

dimensions. This preference is brought about by the fact that quantum anomalies cancel

in ten dimensions, which is required for the weakly coupled string theories [7]. To fully

understand such a theory it would then be required to study General Relativity in higher

dimensions [8].

An interesting extension of String Theory has also been proposed, by Juan Malda-

cena in 1997 [9], which relates superstring and M-theory with large N-limit of Conformal

Field Theory(CFT). There is a conjectured equivalence between CFT and M-theory on

Anti-de-Sitter space (AdS) [8]. Black holes in d dimensions can then be related to the

properties of Quantum Field Theory in d-1 dimensions.
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1.1.3 The Hierarchy Problem

One of the most gapping problems with present day physics, which future possible uni-

fied theories must explain, is the hierarchy problem of the standard model. A hierarchy

problem occurs when fundamental parameters calculated are very different than those

measured. In terms of the standard model problem is in simple words the question [10];

why is gravity 1033 times weaker than the weak force?

At the moment it looks like physics operates on two entirely different scales, the

Planck scale mpl and the electroweak scale mew [11]. Further when attempts are made

to calculate quantum corrections to the Fermi’s constant of the electroweak theory; it

appears as if this constant is significantly larger than it should. Rather it should be of

the order of the Newtons constant which rules gravity. Fermi’s constant should not of

the size it is unless there is some exact quantum cancellation, which is also problematic

because it indicates fine tuning [12].

One solution to this problem would be supersymmetry, a theory where ordinary

particles are each related to a supersymmetric partner. Another very appealing theory

is that there exist higher dimensions, usually compact, imbedded in our space-time. This

model is known as the ADD model, and the idea was first put forward by Arkani-Hamed

et al. [12] in 1998.

If extra dimensions exist that could possibly explain why gravity is so much weaker.

It would also unify the mpl and mew, as the mpl would not be a fundamental scale

rather the effective four dimensional gravity. It would get its size as a consequence of

the rather large size of the extra dimensions proposed [13] [11] [10].

This theory has some rather interesting consequences, the most important being

that the scale of which quantum gravity effects could be seen is significantly earlier

than previously believed, at scales of mew ∼TeV [12].

Several papers where quite quickly published pointing out that if quantum gravity

effects where possible to achieve at orders of TeV, it was a real possibility of black holes

being created at the Large Hadron Collider [14] [15].
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The black holes produced in such a scenario are significantly smaller than the size of

the extra dimensions. This in essence means that the black holes will behave as if they

are living on flat space, making it meaningful to examine the properties of black holes

in higher dimensional spacetime. Should this theory hold, miniature black holes might

form, and then quickly disapear through Hawking Radiation, and thus be observed (for

review of such black holes please see Kanti [16]). If this turned out to be the case, that

would present an uniqe oppertunity to study a very exotic phenomena. This might also

give further insight and data into the theory of Quantum Gravity.

1.2 Difference between d=4 and d>4

As previously mentioned the number and variety of black holes are far larger and more

intricate than that of four dimensions. A very obvious reason for this would be the

fact that higher dimensions get messier due to increased degrees of freedom. In four

dimensions you have 4 − 1 = 3 degrees of freedom of spatial dimensions. Add another

dimension, and you get four spatial dimensions, which means two independent planes,

each associated with one independent rotation. For d dimensions you then get N =

(d−1
2 ) independent rotations, which can be written as U(1)N . Each of these carry an

angular momentum Ji, where i = 1, ..., N .

Even though part of the answer lies in the fact that the equations get complicated

with more degrees of freedom, this is not the full explanation. Rather it has to do

with why four dimensions are so special for general relativity. This is the smallest

possible dimensions where the theory is not trivial. In three dimensions general relativity

is topological and the Weyl tensor cancels perfectly, resulting in that objects do not

interact. And while Einsteins field equations, which rule relativity, are non-trivial and

highly non-linear there has been many extremely successful methods developed to handle

them in four dimensions [17].

One example of a theory specific for four dimensions is the Newman-Penrose for-

malism. This formalism combines tetrad calculus and spinor calculus into one compact

set of equations, making it possible to explicitly write out the Einstein equations. This
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makes dealing with Einsteins equations, which are non-linear, much easier. As it turns

out it has been hard to extend this formalism into higher dimensions [18].

Further solutions with very high symmetry are usually studied. Spherically static

using the Birkhoffs theorem and stationary solutions are the easiest and most common.

In four dimensions this implies that there are two symmetries, time translation and axis

rotation, which reduces the Lagrangian density specific form, and thus the theory into

a sigma model.

There are some natural ways to extend this to higher dimensions, however these have

some problems. If the axis symmetry is described by a O(d− 2) group, the axial orbits,

(d − 3) spheres, are of non-zero curvature. The Lagrangian then gains a exponential

term, which prevents straight-forward integration of the equations [17].

If commuting U(1) symmetries are used, we get a U(1)(d−3) spatial symmetry which

at first glance fixes the problem, and results in a integratable sigma model. However

this is only possible for d = 4, 5. This is why there has been great success in expanding

black hole theory to five dimensions but d > 5 has proven difficult [19].

Lastly a very big difference is that the potential of gravity is dimensionally dependent

with

UGR = −GM
rd−3

(1.1)

The centrifugal potential on the other hand, which counteracts the gravity for rotating

black hole, looks like

Ucentrifugal =
J2

M2r2
(1.2)

This is not dimensionally dependent as it is dependent on a rotation in a plane. This

is particulaily interesting in the case of d=5, where (1.1) and (1.2)cancel eachother

perfectly. This characteristic is important for the black rings, which first were thought

to be unique to five dimensions [20]. This is however not thought to be the case anymore

[21].
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1.3 Outline

This review will be divided into 3 different sections excluding the introduction and

conclusion.

General Relativity in d > 4

This section will talk about the generalisations necessary when extending general rela-

tivity from four dimensions to higher dimensions. Einstein’s equation and the geodesic

are stated. Further two different methods to derive the conserved charges. The concept

of singularities is also discussed.

Black hole solutions

The higher dimensional analogies of Kerr and Schwarzschild black holes, the Tangherlini

and Myers-Perry solutions are introduced. The similarities and differences between them

and their lower-dimensional brothers are discussed.

The black ring solution mentioned before is presented. Its existence will break

uniqueness in higher dimensions. Further, curiously there exist multi black hole solu-

tions, for example the black Saturn solution or two rings rotating around each other.

The rod structure of black holes, which is a solution generating technique and black

hole thermodynamics will be briefly discussed as well.

Dynamics

The different dynamics of black holes is examined. It was discovered in 1993 by Gre-

gory and Laflamme [4] that black strings were not inherently stable, rather they had a

wavelength-dependent instability which later came to be called the Gregory-Laflamme

instability. The endstate of such instability was widely discussed, because it might pos-

sibly violate the cosmic protection conjecture. It was found that this was indeed the

case.
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The special case when the instability is stationary, in a so called non-uniform black

string is presented, as well as the instability of ultra-spinning black holes.
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General Relativity in d>4
Corrections need to be made to General Relativity to generalize to d dimensions. In

this section the basis framework for d-dimensional general relativity is given.

2.1 Basic Framework

The most common concepts of General Relativity are reviewed to establish conventions

for future references.

2.1.1 Einstein’s Field Equations

The basic idea of General Relativity is that space-time can be thought of as a smooth

d-dimensional manifold M (where d=4 for conventional relativity) which contains a

metric. This kind of manifold is called a Riemannian manifold. This manifold contains

local Lorentzian covariance. A line element on such a manifold is defined as:

ds2 = gµνdx
µdxν (2.1)

for four dimensions µ,ν=0,...,3. However for arbitrary d dimensions we instead sum

over µ,ν=0,...,d−1. The factor dxµ is a oneform gradiant of some coordinate xµ on

M. The line element further contains information about the structure of the spacetime.

When ds2<0, the spacetime is timelike,when ds2>0 the spacetime is spacelike andds2=0

represents lightlike spacetime[22].

The metric gµν is central to relativity, as it defines different types of spacetimes and

is used to raise and lower indicies. The signature of the metric used is (−+ ... +)[23].
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To generalize the partial derivative, ∂µ, in curved space the notion of covariant

derivative, ∇µ, is introduced. The covariant can take different forms depending on which

spacetime you are considering. The Riemann tensor(or curvature tensor) is defined by

commutating the covariant derivative and letting it act on a vector field V as follows

[23]

[∇µ,∇ν ]Vρ = RµνρσV
σ (2.2)

The Riemann tensor is in essence a measure of locally how close the metric is to

that of Euclidian space. From explicitly writing out the Riemann tensor one can find

several symmetric properties, namely[24]

Rµνρσ = R[µν][ρσ] = Rρσµν Rµ[νρσ] = 0 (2.3)

The Riemann tensor also obeys the Bianchi identity [24]

∇[µRνρ]στ = 0 (2.4)

It is often of value to consider the contraction of the Riemann tensor, the Ricci tensor,

which is defined as[25]

Rµν ≡ gρσRµρνσ (2.5)

Similar to the Riemann tensor, the Ricci tensor is a represenation of how much the

volume element of the geodisic in a manifoldM differs from that of a sphere in Euclidian

space . The Ricci tensor can be futher reduced to a Ricci scalar, which is defined as[25]

R ≡ gµνRµν (2.6)

which is also a measure of curvature. By twice contracting (2.4) we find that

0 = gτρgσµ(∇muRνρστ +∇νRρµστ +∇ρRµνστ )

= ∇σRνσ −∇νR+∇τRντ (2.7)



2.1 Basic Framework 11

or

∇σRνσ =
1

2
∇νR (2.8)

Then by defining a tensor, the Einstein tensor, as follows

Gµν = Rµν −
1

2
Rgµν (2.9)

the Bianchi identity(2.7) is reduced to

∇µGµν = 0 (2.10)

The geometry of spacetime is determined by the Einstein Equations, which in natural

units look like

Gµν = 8πTµν (2.11)

Tµν is the stress-energy tensor, which is the tensor generalisation for mass density[24].

This is the General Relativity equivalence to Newton’s third law, which can be recovered

in classical limits.

If the cosmological constant is added the equations become

Gµν + Λgµν = 8πTµν (2.12)

Please note that, as Durkee [23] points out, there are different conventions for how Λ

is defined in higher dimensions. It is quite common to make the cosmological constant

dimension dependent by replacing Λ with 2Λ
d−2 .

Further if flat vacuum space is assumed Einstein’s equation reduces to

Rµν = 0 (2.13)

Finally, as the Ricci tensor and the Ricci scalar are contractions they encrypt in-

formation about the trace of the Riemann tensor, not the full Riemann tensor. It is
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therefore useful to define a tensor that contains all the aspects of the Riemann tensor,

the Weyl tensor

Cµνρσ = Rµνρσ −
2

n− 2
(gµ[ρRσ]ν − gν[ρRσ]µ) +

2

(n− 1)(n− 2)
Rgµ[ρgσ]ν (2.14)

The complicated formations are so that all contractions of the tensor disappear,

and so that the Weyl tensor keeps all the symmetric properties of the Riemann tensor

defined in (2.3). An important property of the Weyl tensor is that it is invariant under

conformal transformations [24].

2.1.2 The geodisic equation

Other than Einstein’s field equations, a central feature in General Relativity is that of

the geodesic. Geodesics are non-Euclidian spacetime equivalences to straight lines, and

encode important information about the space and the movement of particles. A straight

line can be defined as the shortest possible path length between two points, or more

formally as the path where the tangent vector is parallel transported[24]. Studying the

properties of solutions to the geodesic can be of importance as it can reveal structures

and characteristics of a specific space.

On a d-dimensional Riemannian manifold M the geodesic equation is

∇µV = 0, (2.15)

where V can be written as V µ = ẋµ, in some coordinate system xµ. A covenient way

to find the geodesic is to start from the Lagrangian

L =
1

2
gµν(x)ẋµẋν (2.16)

The Killing vector fields combined with the derivative of the Lagrangian, ∂L/∂ẋµ defines

conserved quantities or symmetries of a spacetime. These symmetries combined with

the hidden symmetries associated with the Killing-Yano tensor turned out to render

the geodesic integratable in the case of the Kerr metric[26]. It was futher proved that
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Spacetime 4 5 6 7 8 9 10 11 ≥12

Schwarzschild
⊙ ⊙ ⊕ ⊙

−
⊕

−
⊕

−
Schwarzschild-de Sitter

⊕ ⊙
−

⊙
−

⊕
−

⊕
−

Reissner-Nordrm
⊙ ⊙

−
⊕

− − − − −
Reissner-Nordrm-de Sitter

⊕ ⊙
−

⊕
− − − − −

Table 2.1: Table is from Hackmann et al. [28]. The
⊙

represent exact solutions by
elliptic functions and the

⊕
solutions of hyperelliptic functions. The − indicates,

by known methods, unsolvable geodesic.

space-time in which the metric admitting a Killing-Yano tensor [27] makes the geodesic

equation completely integratable.

Unfortunately this does not always generalize to higher dimensions; however sev-

eral geodesics in higher dimensions have been solved exactly. Table 2.1 shows which

spacetimes currently have solutions. Please see the article by Hackmann et al. [28] for

in-depth calculations and discussions.

2.2 Conserved charge

2.2.1 Hamiltonian approach

Using a Hamiltonian approach, one can deduce the conserved charges in higher dimen-

sional flat space (for full calculations please see Jamsin [29]). This approach requires

that the spacetime is broken into space and time components. The Hamiltonain is given

by

H[gij , π
ij ] =

∫
dD−1(N(x)H(x) +N iH〉) (2.17)

where πij is the conjugate momenta, N = −(g00)−
1
2 , Ni = g0i and H the Hamiltonian

density. By using canonical variables, the disturbance created by a Killing field ξ =

ξ⊥n + ξiei is

Q[ξ] = Q0 + I[ξ] =

∫
dd−1x(ξ⊥(x)H+ ξi(x)Hi(x)) + I[ξ] (2.18)
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where I[ξ] is the boundary term. The term I[ξ] describes the conserved charge for some

Killing field ξ(x), when taking constraints into account. By taking an infinitesimal vari-

ation of Q[ξ] and Q0[ξ], and requiring that they have defined derivatives, the following

general expression is found for the conserved charge

δI[ξ] =

∮
dd−2slG

ijkl(ξ⊥δgij;k − ξperp,k δgij)

+

∮
dd−2(2ξkδπ

kl + (2εkπjl − ξπjk)δgjk) (2.19)

where Gijkl = 1
2

√
g(gikgjl + gilgjk − 2gijgkl).

An explicit expression for the conserved charges can be found by looking at the

asymptotic behaviour of the metric gµν . For asymptotically flat space a general metric

has the form

gµν = ηµν + hµν (2.20)

where ηµν is the metric of Minkowski space and hµν is a perturbation. As the space is

asymptotically flat, that is it approaches Minkowski space at infinity, the perturbation

hµν−→0 when r−→∞. By requiring that the solution should be valid at infinity and

invariant under the Poincare group the RHS of (2.19) can be written as

δ(

∮
dd−2sr(η

ikηjr − ηijηkr)(ξ⊥hij;k − ξ⊥,khij) + 2

∮
dd−2srπ

r
kξ
k) (2.21)

which reduces the equation to

I[ξ] =

∮
dd−2sr(η

ikηjr − ηijηkr)(ξ⊥hij;k − ξ⊥,khij) + 2

∮
dd−2srπ

r
kξ
k (2.22)

Explicit calculations of the charge can be made. For example energy E, created by

time translation symmetry, and angular momentum JI , created by rotational symmetry,

can for a stationary black hole be written as

E =
(d− 2)Ωd−2

16πG
µ (2.23)

Ji =
Ωd−2

8πG
µai (2.24)
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2.2.2 Pertubation of Einstein’s Equation

Using again an asymptotically flat metric (2.20), we may rewrite the Christoffel symbol

as follows [22]

Γρµν =
1

2
gρλ(∂µgνλ + ∂νgλµ − ∂λgµν)

=
1

2
ηρλ(∂µhνλ + ∂νhλµ − ∂λhµν) (2.25)

Since we assume the perturbation h−→0, the calculations can be limited to the first

order of Γ, all higher orders are disregarded. The Riemann tensor then becomes [24]

Rµνρσ = ηµλ∂ρΓ
λ
νσ − ηµλ∂σΓλνρ

=
1

2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂rho∂µhνσ (2.26)

Contracting, the Ricci tensor becomes

Rµν =
1

2
(∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−�hµν) (2.27)

and the Ricci scalar becomes

R = ∂µ∂νh
µν −�h (2.28)

where h = ηµνhµν and � is the d’Alembertian. These expressions can then be substi-

tuted back in the Einstein equation to give

Gµν = Rµν −
1

2
ηµνR

=
1

2
(∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−�hµν − ηµν∂µ∂νhµν + ηµν�h) (2.29)

By using the Lorentz gauge

∂µh
µ
λ −

1

2
∂λh = 0 (2.30)

we can then simplify the expression further as follows [19]

− 16πGTµν = �hµν −
1

2
ηµν�h = �hµν (2.31)
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where hµν = hµν − 1
2hηµν . As we have a first order pertubation, which is flat at infinity,

the sources of mass M and angular momentum J are the same as pointlike sources,

situated at the origin xµ.

This can be solved using the Green function [30]

hµν(xi) =
16πG

(d− 3)Γd−2

∫
Tµν

|xi − yi|d−3
dd−1yi (2.32)

and by determining the input of the stress-energy tensor as

∫
T00d

d−1x = M (2.33)

and ∫
T0id

d−1x = 0 (2.34)

The angular momentum tensor is defined as

Jµν =

∫
(xµT ν0 − xνTµ0)dd−1x (2.35)

By integrating the Green equation (2.32) to first order, an expression for hµν can be

found, and subsequently

h00 =
16πG

(d− 2)Ωd−2

M

rd−3
(2.36)

hij =
16πG

(d− 3)(d− 2)Ωd−2

M

rd−3
deltaij (2.37)

h0i =
8πG

Ωd−2

xkJki
rd−1

(2.38)

If angular momentum matrix Jij can be put into a diagonal matrix form and polar

coordinate coordinates are introduced, (2.38) can be written as [19]

h0φa = −8πgJa
Ωd−2

µ2
a

rd− 3
(2.39)

where µa = ra
r . These results will yield identical results to the results from the Hamil-

tonian approach.
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With these we can define the Newtonian gravitational potential energy

Φ = −1

2
h00 (2.40)

and the Newtonian force

F = −∇Φ =
(d− 3)8πGM

(d− 2)Σd−2rd−2
r̂ (2.41)

Further as we would like to compare properties of different black hole solutions it

is meaningful to introduce scale-invariant variables for the physical parameters, namely

the area of the horizon, Ah, and the angular momentum ,Ja. The following dimensionless

quantities, aH for surface area and ja for spin, are suggested by Emparan et al. [31]

jd−3
a = cj

Jd−3
a

GMd−2
(2.42)

ad−3
H = ca

Ad−3
h

(GM)d−2
(2.43)

where the constants are

cj =
Ωd−3(d− 2)(d−2)

2d+1(d− 3)
d−3
2

(2.44)

ca =
Ωd−3(d− 2)d−2

2(16π)d−2
(
d− 4

d− 3
)
d−3
2 (2.45)

2.3 Singularities

Before continuing to the different black hole solutions to the Einsteins equation and

their properties, the actual concept of singularities will be discussed. A singularity can

be defined as either a spacelike singularity, where matter collapse into on single point,

or timelike, where infinite curvature exists but photons are still allowed to escape.

In a sense, this is an area where general relativity stands out from other theories.

Often space and time is assumed before a theory is defined, as in electromagnetism.

This means that for law of nature, such that Coloumbs law, there is no problem to
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define where the solutions blow up and create a singularity, which would be at r = 0 in

this case [25].

In general relativity however, this is very much different as space-time is indepen-

dent from the theory, but at the centre of it. A singularity in general relativity could

instinctively be defined as where the metric or a curvature scalar is infinite or undefined.

This is a problem as it is required for the manifoldM and the metric gµν to be defined

to define an occurrence in general relativity. This means that a singularity in general

relativity is not necessarily a time or a place as it is the definition of spacetime itself

that breaks down, it is not even a part of the manifold M [24].

There is also a problem with the precise definition of a singularity. One way would be

to use the curvature, the Riemann tensor Rµνρσ, and find where it blows up as a measure.

However this is inherently difficult because it is not always perfectly obvious where this

blow up is due to an actual singularity or due to a misbehaving coordinate system.

An extension of this thought would then be to examine the scalar contraction of the

Riemann tensor, for example the Ricci scalar R or the Kretschmann scalar RµνρσRµνρσ.

This however also has its drawbacks as these measures might become infinite at r −→∞,

which is not desired. Further some solutions will have a singular curvature scalar even

though they are well defined and there is no singularity [25].

A much better way of measuring singularities is to look at the geodesic around the

singularity. If the geodesic is assigned affine values but cannot be extended, the geodesic

is called incomplete. A singularity will then possess at least one incomplete geodesic

[32].

Further, there is the question about how scientifically accurate the idea of a singu-

larity is. The predictions of singularities are often based on perfectly symmetric models.

If there is a small perturbation of these models, will there still be a singularity? The

question was answered by Penrose and Hawkings, with their singularity theorem. The

singularity theorem proved that singularities do exist and are a generic aspect of general

relativity. For an exhaustive proof of this theorem please see chapter 9 of Wald [25].
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– 3 –

Black Hole Solutions

Solution for d = 4

Static (J=0) Stationary (J6=0)

No charge (Q=0) Schwarzchild Kerr

Charged (Q 6=0) Reissner-Nordstrom Kerr-Newman

Table 3.1: The existing solutions for different parameters in four dimensions.

Solution for d > 4

Static (J=0) Stationary (J6=0)

No charge (Q=0) Schwarzchild-Tangherlini Myers-Perry

Charged (Q 6=0) Tangherlini −

Table 3.2: The equivalent to the solutions of table 3.1, in higher dimensions.
Please note there exist higher dimensional solutions with non-spherical topology

Black holes have long been at the centre of the examination of general relativity.

They have proven essential in the understanding of the theory and highlight the incom-

patibility of GR and quantum mechanics.

For the Einstein equation there exists four known exact black hole solutions in four

dimensions. The black holes are described by eleven different parameters, as stated

by the no-hair theorem; mass M, charge Q, three position variables xi, three linear

momentum variables Pi and three angular momentum variables Ji. Table 3.1 shows the

known solutions in four dimensions.

Table 3.2 shows higher dimensional equivalents to the four dimension black holes.

So far there has not been a proof of the Kerr-Newman solution in d > 4.

This section will discuss the solutions in d > 4 with 4d equivalents, as well as

solutions unique to higher dimensions will introduced.
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3.1 Schwarzschild-Tangherlini Solution

3.1.1 The metric

The spherically symmetric solution to Einstein solution, presented by Schwarzschild

in 1969 [33], was one of the first exact solutions found. This solution was instrumen-

tal in proving general relativity, when it predicted small departures from Newtonian

mechanics. This solution can be generalized to d dimensions.

The metric for spherically symmetric space can be written generally as [22]

ds2 = −f2dt2 + g2dr2 + r2dΩ2
d−2 (3.1)

where r2dΩ2
d−2 is a line element on a unit (d-1)-sphere, where f and g are functions of

r, f(r) and g(r).

If we assume a vacuum Einstein equation, so that Rµν = 0, it can be deduced that

[30]

f = g−1 =

(
1− C

rd−3

) 1
2

(3.2)

Using the linearized perturbation introduced in section 2.2.2. for a static source,

and the gauge transform [19]

r−→r − 8πG

(d− 2)(d− 3)Ωd−2

M

rd−3
(3.3)

the integration constant, C, can be found in terms of the mass, M. The final metric is

then [34]

ds2 = −(1− µ

rd−3
)dt2 +

dr2

(1− µ
rd−3 )

+ r2dΩ2
d−2 (3.4)

This was found by Tangherlini in 1963 [34] and generalized the Schwarzschild black hole

solutions to d dimensions. This solution is often called the Schwarzschild-Tangherlini

solution.

The constant µ is introduced as a dimension dependent mass parameter which is
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defined as [19]

µ =
16πGM

(d− 2)Ω(d−2)
(3.5)

First thing to be noticed is that this simplifies to the normal Schwarzschild metric

when d = 4 [25]. Secondly even the higher dimensional version is very similar to the

four-dimensional one. The only real difference is that the falloff, 1
r , is replaced with the

dimension dependent falloff 1
rd−3 .

If the mass parameter µ < 0 then we get a naked singularity. However this is not

physical. If µ > 0 we get a event horizon at

1− µ

rd−3
0

= 0 −→ r0 = µ
1
d−3 (3.6)

This is the same result as the classical calculations would give [35]. In Newtonian

mechanics the horizon is where K + Φ = 0. Using natural units so that the escape

velocity c is v = c = 1, the kinetic energy becomes K = 1
2 . Combined with the

knowledge from equation (2.41) we get

Φ +K = −1

2
h00 +

1

2
= 0 −→ h00 = 1 (3.7)

Replacing for h00 from equation (2.36) we get

r0 = (
16πGM

(d− 2)Ωd−2
)

1
d−3 (3.8)

which corresponds to (3.6).

3.1.2 The motion of particle and light

For a Killing vector Kµ we know that [24]

Kµ =
dxµ

dλ
= constant (3.9)
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Further for a metric (3.4) we know will be constant along a path so that [36]

ε = −gµν
dxµ

dλ

dxν

dλ
(3.10)

ε depends on what kind of particle is examined. For a massive particle we have ε = 1.

If we chose λ = τ we get

ε = −gµνV µV ν = +1 (3.11)

where V µ is the velocity. If we have a lightlike particle we get ε = 0 and for a spacelike

geodesic we have ε = −1 [25].

Each Killing vector represents a conserved quantity; invariance under the time trans-

lation leads to conservation of energy and invariance under the d − 1 component of

angular rotation leads to conservation of angular momentum. As the direction of the

angular momentum is conserved, the coordinate system can be rotated so that this

direction always is the equatorial plane. This implies that θ = π
2 [24].

The remaining Killing vectors represent the angular momentum and the energy.

Energy arises from symmetry in time so that

Kµ = ∂t =

(
−
(

1− µ

rd−3

)
, 0, ...

)
(3.12)

The magnitude of the angular momentum comes from

L = ∂φ = (0, ..., r2 sin2 θ) (3.13)

Since our choice of the direction of the angular momentum sets θ we get that sin θ = π
2

[25]. Using the form from (3.9) we get the two conserved quantities as follows

−
(

1− µ

rd−3

)
dt

dλ
= E (3.14)

and

r2dφ

dλ
= L (3.15)
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These quantities can be replaced back into the metric. We then obtain an expression

for the energy in terms of the velocity and angular momentum of the test particle

− E2 +

(
dr

dλ

)2

+

(
1− µ

rd−3

)(
L2

r2
+ ε

)
= 0 (3.16)

This can be written in a much more familiar form, similar to that of Newtonian me-

chanics

1

2

(
dr

dλ

)2

+ V (r) =
1

2
E2 (3.17)

where the effective potential V (r) is [24]

V (r) =
1

2

(
1− µ

rd−3

)(
L2

r2
+ ε

)
(3.18)

The form of the potential again sheds light on a difference between the four dimen-

sional gravity and higher dimensional gravity. In four-dimensional gravity there exists a

bounded circular orbit, outside of Schwarschild gravitational hole. Such orbits contain

two turning points for the radial coordinate. These two points, r1 and r2, correspond to

constant energy. The potential V (r) has a minimum between these two turning points

so that r1 > rmin > r2. At the minimum we have E = V (rmin), and the orbit of the

test particle is circular [24].

A circular orbit is a necessary condition for bounded orbits. It is known that no

such orbits exist in Newtonian gravity for d > 4. This can be shown to be true for

General Relativity as well. By replacing d− 3 with k + 1, we can impose the condition

k ≥ 1 so that the dimension is always larger than 4. By replacing µ with r0, and then

r0 and r with a new variable y =
r20
r2

we get a new form for the potential [37]

V (y) =

(
1− y

1+k
2

)(
1 +

L2

r2
0

y

)
(3.19)

For r0 > r > ∞ we have 0 > y > 1. If we take the second derivative of the effective
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Figure 3.1: The effective potential for different values of L against the radial
distance for d=5, with r0, ε = 1

potential we get

∂(V (y))

∂y2
= −k

2 − 1

4
y
k−3
2 − (k + 3)(k + 1)L2

4r2
0

y
k−1
2 (3.20)

This function will never be zero for our set values of y. This means that for y > 0

there will only be one extremum. As V (y) > 0, the function has a maximum or is

decreasing for all r, for 0 > y > 1. As y is proportional to r−2, the function V(r) will

have the same properties. The consequence then is that there exists no circular orbit

for d > 4 and thus no bounded orbits [37].

3.2 Myers-Perry Solutions

While the solution for static black holes and the solution for charged black holes were

found early after the initial formulation of general relativity, the solution for a stationary

black hole took longer. It was therefore a great success when the Kerr solution was
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found in 1963 [38]. In 1984 Myers and Perry managed to generalize the Kerr solution

to arbitrary dimensions. The Kerr solution looks like [25]

ds2
Kerr = −dt2 +

ρ

∆
dr2 + (r2 + a2) sin2 θdφ2 +

2GMr

ρ2
(a sin2 θdφ− dt)2 (3.21)

where

∆(r) = r2 − 2GMr + a2 (3.22)

and

ρ2(r, θ) = r2 + a2 cos2 θ (3.23)

3.2.1 The general Myers-Perry solution

The metric in the general solution is in the Kerr-Schild form

gµν = ηµν + hkµkν (3.24)

where kµ is a null vector with respect to the Minkowski space ηµν .

Due to the increased complexity when adding angular momentum, it is very hard

to solve the Einstein equations. Myers and Perry instead approach the problem with

making an ansatz for the metric in d dimensions as follows [30]

ds2 = −α2(r, ρ)(du+ a sin2 θdφ)2 + 2(du+ a sin2 θdφ)(dr + a sin2 θdφ)

+ρ2(dθ2 + sin2 θdφ) + r2 cos2 θdΩd−4 (3.25)

where

ρ2 = r2 + a2 cos2 θ (3.26)

α2 = 1− µ

rd−5ρ2
(3.27)



3.2 Myers-Perry Solutions 26

This can be rewritten as following

ds2 = −dt2 + sin2 θ(r2 + a2)dϕ2 + ∆(dt+ a sin2 θdφ)2 + Ψdr2 + (3.28)

ρ2dθ2 + r2 cos2 θdΩd−4 (3.29)

using the Boyer-Lindquist coordinate transforms, which are used for simplicity [39].

They are analogous to polar coordinates however instead of being spherical they are

ellipsoidal, making the relationship between them and Cartesian space a little bit more

complicated.The transforms are

dt = du− (r2 + a2)dr

r2 + a2 − µr5−d (3.30)

dϕ = dφ+
adr

r2 + a2 − mur5−d (3.31)

The constants in equation (3.25) are

∆ =
µ

rd−5ρ2
(3.32)

Ψ =
rd−5

rd−5(r2 + a2)− µ
(3.33)

This result is however not general; the case for d = odd and d = even is different due

to the full angular momentum tensor which looks like



0 J1

J1 0

0 J2

J2 0

. . .


(3.34)

For even d the last row and column of the matrix will disappear. The case for

d = odd and d = even must then be analysed separately [30].
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Odd d

For detailed derivations please see Robert C. Myers [30] By deducing expressions for

kµdx
µ and h metric can be written down for d dimensions where d=even as

ds2 = −dt2 + dr2 + (r2 + a2
i )(dµ

2
i + µ2

i dφ
2
i ) + 2µ2

i aidφidr

+
µr2

ΠF
(dt+ dr + aiµ

2
i dφi)

2 (3.35)

with

F = 1− a2
iµ

2
i

r2+2
i

(3.36)

and

Π =

N−2
2∏
i=1

(r2 + a2
i ) (3.37)

Please note that angular coordinate transforms are used as

xi = (r2 + a2
i )

1
2µi cos[φi − arctan

ai
r

] (3.38)

yi = (r2 + a2
i )

1
2µi sin[φi − arctan

ai
r

] (3.39)

The first part of the equation (3.35) is the metric for flat space while the rest is from

the null vector field. The angle φi specifies the angle in each xi − yi plane. The metric

can be put into Boyer-Lindquist coordinates by the following transformations

dt = dt− µr2

Π− µr2
dr (3.40)

dφi = dφi +
Π

Π− µr2

aidr

r2 + a2
i

(3.41)

to get the final form for the metric for odd d

ds2 = dt2 + (r2 + a2
i )(dµ

2
i + µ2

i dφ
2
i ) +

µr2

ΠF
(dt+ aiµ

2d
i φ

2
i )

2 +
ΠF

Π− µr2
dr2 (3.42)
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Even d

By similar logic the metric for even d is

ds2 = −dt2 + dr2 + r2dα2 + (r2 + a2
i )(dµ

2
i + µ2

i dφ
2
i ) + 2µ2

i aidφidr

+
µr2

ΠF
(dt+ dr + aiµ

2
i dφi)

2 (3.43)

where Π and F are defined above. Again this can be transformed into Boyer-Linquist

coordinates by the transforms

dt = dt− µr

Π− µr
dr (3.44)

dφi = dφi +
Π

Π− µr
aidr

r2 + a2
i

(3.45)

to obtain the metric for even d

ds2 = −dt2 + r2dα2 + (r2 +a2
i )(dµ

2
i +µ2

i dφ
2
i ) +

µr

ΠF
(dt+aiµ

2
i dφ

2
i )

2 +
ΠF

Π− µr
dr2 (3.46)

The task to explicitly show that these are solutions to the Einstein equations is extremely

tedious but is discussed in appendix A by Robert C. Myers [30].

3.2.2 The characteristics of the metric

As Emparan and Reall [19] suggests, simplifying the metric we can look at the rotation

in a single plane, to easier see the physical properties of the solution. The Myers-Perry

solution with rotation in only one direction looks like

ds2
MP = −dt2 +

ρ

∆
dr2 + (r2 + a2) sin2 θdφ2 +

GM

rd−5ρ
(dt− a sin2 θdφ)2

+
∑

dθ2 + r2 cos2 θdΩ2
d−4 (3.47)

where

ρ = r2 + a2 cos2 θ ∆ = r2 + a2 − GM

rd−5
(3.48)
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This is very similar to the Kerr solution (3.21), which is obtained by taking d=4. Just

like the Tangherlini solution [34] the most obvious difference is that the falloff now is

1
rd−3 instead of 1

r . This means that again the competition between the centrifugal force

and the gravitational force is strongly dimensionally dependent.

Further, there is obviously a horizon for the black hole where g−1
00 = 0, which means

∆(r) = 0. This means that

r2
0 + a2 − µ

rd−5
0

= 0 (3.49)

will be the radius. This again is dimensionally dependent. Solving for d = 4 case we

have

r0 = GM − (G2M2 − a2)
1
2 (3.50)

We have three possible solutions; one where G2M2 > a2 ,G2M2 = a2 and G2M2 < a2.

The extremal case is unstable and the third case corresponds to a naked singularity,

which is deemed unphysical [25].

If we repeat the calculations for d = 5 we have

r0 = (2GM − a2)
1
2 (3.51)

This is rather similar to that of the four dimensional case. This will only have a solution

up to the extremal case, which here corresponds to 2GM = a2. Solutions with GM < a

do not exist [19].

The surface area of the solutions is

AH = rd−4
0 (r2

0 + a2)Ωd−2 (3.52)

Replacing for the extremal five dimensional case, we find that the area of the horizon

is zero. Therefore this case must correspond to a naked ring singularity

For d ≥ 6 the equation for ∆(r) (3.48) will always be positive for large r as the

first term will dominate. For small r however the last term will dominate, making it

negative. Therefore ∆(r) will have one positive root which is independent of the angular
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momentum for six dimensions or higher.

The angular momentum can then be made arbitrarily large, and such black holes

are called ultra-spinning. For j >> 1 the black hole will flatten in along of the plane

which it is rotating. The limit in which j →∞ the horizon topology will approach that

of a black membrane. Emparan and Myers [40] do a in dept analysis of the shape of

such ultra-spinning black holes.

Using the equation (2.36) the expression for mass can be deduced as follows

M =
(d− 2)Ωd−2

16πG
µ (3.53)

Similarly the expression for angular momentum can be found in terms of mass from

equation (2.39)

J =
2

d− 2
Ma (3.54)

These predictions agree with those made in section 2.2.1. Using the dimensionless

variables suggested by ] we find the following expression for the angular momentum J ,

expressed as j, and horizon area AH expressed as ah

jd−3 =
πΩd−3

(d− 3)
d−3
2 Ωd−2

ν5−d

1 + ν2
(3.55)

ad−3
H = 8π

(
d− 4

d− 3

) d−3
2 Ωd−3

Ωd−2

ν2

1 + ν2
(3.56)

The variable ν = r0
a is used to furhter simplifying the equations.

The angular momentum jH against the area aH of the black hole, for different

dimensions, can now be plotted for comparison. As seen in figure 3.2 the case of d = 5

is different from that of higher dimensions, which is a consequence of the existance of

ultra-spinning black holes.
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Figure 3.2: The dimensionless area aH vs the dimensionless angular momentum
j for d=5,6,10,11

3.2.3 Motion of particles and light

Just as in the case with the Schwarzschild-Tangherlini solution, the Myers-Perry solution

does not have bounded orbits. This proof is limited to five dimensions. This can be

shown using the Hamiltonian-Jacobi method which allows separation of variables. By

using the Hamiltonian to define [37]

− ∂S

∂λ
= H =

1

2
gµν

∂S

∂xµ
∂S

∂xν
(3.57)

where S is the action. The full expression for S can be deduced to show the two partial

derivatives

∂Sθ
∂θ

= ωθ
√

Θ (3.58)

∂Sr
∂r

= ωθ
√
X (3.59)
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where Θ = Θ(θ) and X = X(r). The circular orbits in the equatorial plane for a

Myers-Perry metric would then have the property

X = 0 (3.60)

∂X
∂r

= 0 (3.61)

where X = 4∆2X and ∆ = (x + a2)(x + b2) − r2
0x. Again by looking at the second

derivative of the X (r) function the nature of the extremum point can be deduced. The

second derivative is

∂2X
∂x2

= 2[(E2 −m2)(3r + a2 + 2b2)− θ2 + r2
0m

2] = 0 (3.62)

which clearly only has one solution for r, making it impossible for it to be a minimum.

The Myers-Perry black hole does not have a circular orbit and thus no bound orbits in

five dimensions [37].

3.3 Black Strings and Branes

Uniqueness is proven in four dimensions and prevents any other horizion topology than

that of a sphere. However this is not applicable in higher dimensons and you could easily

construct a new category of black holes, black strings. Black strings are the product of

a black hole solution and a new spacetime direction and look like [19]

ds2
d+1 = ds2

bh + dxidxi (3.63)

where d is the dimension of the black hole metric, ds2
bh. The full dimension of the

solution is then d+1. It has horizon topology Sd−2 ⊗ R.

Another set of solutions where there is no restriction on the dimension of R. We

could add a arbitrary number of new spacetime directions. The solutions will then look

like [4]

ds2
d+q = ds2

bh +

q∑
i=1

dxidxi (3.64)
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The horizon toplogy is Sd−2 ⊗ Rq.

Both these solutions are valid as they are the product of two Ricci flat manifolds,

which makes a Ricci flat manifold. The black branes and black strings turn out to be

important as they can be pertubated and decay [19].

This is a non-unique object, with a cylindrical event horizon. The mass of the black

string will be infinite for an arbitrary dimension. However if the extended space z is

compact and finite, with a length L, this problem can be avoided [41].

This black string in five dimensions still looks like an ordinary black hole in four

dimensions. There is however new physic involved as the added space is a new degree of

freedom and it appears at energies of order L−1. The fact that the extra space dimension

is of finite size means that the extra dimension in practice introduces a period in one

direction.

For a large extra dimension, L >> µ, the solution will approach the five dimensional

Schwarzschild solution [7]. However if the mass is bigger it is hard to find exact solutions

and the black hole is often examined numerically. The black hole can be too big to fit

in the extra dimension, creating string-like solutions called non-uniform black strings.

3.3.1 Caged black hole

For space with extra dimensions which has a periodicity L, it should be possible to

construct a small black hole which is so small that it does not feel the presence of the

extra dimension. However if the black hole gains mass and grows it should start to

notice the effects of the extra dimension and due to that become deformed [2].

It is not possible to theoretically describe such a black hole, rather it has to be

examined numerically [42], [43]. Further such a black hole might be examined through

pertubative expansion [44].
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Figure 3.3: A black ring with surface topology S2 ⊗ S1.

3.4 Black Rings

Imagine the black string, Sd−3 ⊗R, being curved into a ring with the horizon topology

Sd−3 ⊗ S1. These solutions are called black rings. Intuitively these solutions should be

unstable, however if the ring is given an angular momentum the centripetal force will

work against the gravitational force. In the case of five dimensions the centripetal force

cancels perfectly with gravity. The black rings were found in five dimensions in 2002 by

Emparan and Reall [45]. While the solutions so far are limited to five dimensions, it is

thought that this could be extended to higher dimensions.

3.4.1 Solution in five dimensions

The original metric for a black ring was found by Emparan and Reall [45] in 2001 and

was rotating in the S1 direction as seen in figure 3.3. However the solution was slightly

clumpsy. Since then a more elegant solution has been found. One such is given by [46]

ds2 = −F (y)

F (x)

(
dt−R1 + y

F (y)
dψ

)2

+
R

(x− y)2
F (x)

(
− G(y)

F (y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+
G(x)

F (x)
dφ2

)
(3.65)
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where the functions F(ε) and G(ε) are

F (ε) = 1 + λε (3.66)

G(ε) = (1− ε2)(1 + νε) (3.67)

and

C =

√
λ(λ− ν)

1 + λ

1− λ
(3.68)

The coordinates in the case of a rotating black ring are described in terms of torioidal

coordinates,(t, x, y, φ, ψ) [47]. The limits for (x, y) are

−∞ ≤ y < −1 − 1 ≤ x ≤ 1 (3.69)

The ring is rotating in the ψ direction and λ and ν are dimensionless parameters in the

range 0 < ν ≤ λ < 1. The parameter ν measures the ratio of the radius of the S1 and

the S2. When λ, ν −→ 0 flat spacetime is recovered, which in torodial coordinates looks

like

ds2 =
R2

(x− y)2

(
(y2 − 1)dψ2 +

dy2

y2 − 1
+

dx2

1− x2
+ (1− x2)dφ2

)
(3.70)

This is not obviously flat space, however it can be transformed to the more familiar

form for flat space if the following transformations are used [20]

y = − R2 + r2
1 + r2

2√
(r − 12 + r2

2 +R2)2 − 4R2r2
2

(3.71)

x =
R − r2

1 − r2
2√

(r2
1 + r2

2 +R2)2 − 4R2r2
2

(3.72)

The remaining metric after the transforms looks like

ds2 = dr2
1 + r2

1dφ
2 + dr2

2 + r2
2dψ

2 (3.73)

which clearly is flat space for two radial and two angular coordinates. Further as the

limits for (r1, r2) is 0 ≤ (r1, r2) < ∞, the limits in (3.69) can be deduced from the
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functions (3.71) and (3.72).

An obvious problem with the metric is that there are apparently too many variables.

As it is required for the angular momentum and gravity to be balanced, the radius of

the black ring is expected to be fixed. Therefore we should find two variables; measures

of mass and angular momentum. Instead we have three parameters in λ, ν and R [45].

Another problem with the metric in the current form is that the orbits of ψ and φ

do not close smoothly, creating conical singularities [20]. To avoid this, the angle can

be set with periodicity. Firstly we have singularities at x, y = 1 which is avoided if

∆ψ = ∆φ = 2π

√
1− λ

1− ν
(3.74)

Further to avoid conical singularity at x = +1 we must set

∆φ = 2π

√
1 + λ

1 + µ
(3.75)

Combining (3.74) and(3.75) fixes the value for λ in terms of ν as

λ =
2µ

1 + ν2
(3.76)

This actually fixes the problem with too many variables as well, leaving us with only

two, ν and R.

From R and ν all the physical parameters can be deduced (see [48] for details);

M =
3πR

4G

λ

1− ν
(3.77)

J =
πR3

2G

√
λ(λ− ν)(1 + λ)

(1 + ν)2
(3.78)

(3.79)
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Figure 3.4: The dimensionless aH vs j for a Myers-Perry black hole in five di-
mensions, and for the two branches of black rings.

3.4.2 Non-uniqueness of black holes

Using the dimensionless variables introduced in section 2.2.2, we find that

aH = 2
√
ν(1− ν) (3.80)

j =

√
(1 + ν)3

8ν
(3.81)

By looking at the derivative with respect to ν we find

daH
dν

=
1− 2ν√
−(ν − 1)ν

= 0 at ν =
1

2
(3.82)

dj

dν
=

1√
32

(ν + 1)2(2ν − 1)

ν2

√
ν

(ν + 1)3
= 0 at ν =

1

2
(3.83)

As can be seen in figure 3.4 there obviouslyis a turning point at ν = 1
2 . For aH ;

ν = 1
2 is a maximum at aH = 1. For the j; ν = 1

2 is a minimum at j =
√

27
32 [19].

The point ν = 1
2 is a meeting point for two branches of solutions. The thin black
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ring solutions extend from ν = 0 to ν = 1
2 . For this branch as ν −→ 0, j −→ ∞ and

aH −→ 0.

The fat black ring solutions go from ν = 1
2 to ν = 1 and have a smaller area than

the thin black rings. The range for ν −→ 1 is j −→ 1 and aH −→ 0. This solution

meets the Myers-Perry black hole in the naked singularity at j = 1, aH = 0.

As seen in figure 3.4 for the values
√

27
32 ≤ j < 1 there exist three possible horizon

topologies for the black hole with the same angular momentum; the Myers-Perry black

hole, the fat black ring and the thin black ring. This clearly violates the uniqueness

theorem, and is a definite proof that uniqueness to not generalised to higher dimensions

[46].

3.4.3 Two angular momentum

The first black ring solution discovered by Emparan and Reall [45] was described with

one angular momentum, along the S1 ring. Pretty soon after that paper was published,

Mishima and Iguchi [49] and Figueras [50] described solutions with angular momentum

along the S2 but not along the S1. These solutions turned out to be unstable as the

rotation no longer works against the gravity and thus have conical singularities.

Pomeransky and Sen’kov [51] presented a solution where the ring had rotation in

both the S1 direction and the S2 direction. This solution was found working with the

Weyl solution described in section 3.6 (for details please see Pomeransky and Sen’kov

[51]). The metric found turned out to be rather compact and looks like

ds2 = −H(y, x)

H(x, y)
(dt+ Ω)2 − F (x, y)

H(y, x)
dψ2 − 2

J(x, y)

H(y, x)
dψdφ− F (y, x)

H(y, x)
dφ2

− 2k2H(x, y)

(x− y)2(1− ν)2

(
dx2

G(x)
− dy2

G(y)

)
(3.84)
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The coordinates are essentially the same as used before [20] . The variable Ω is given

by

Ω = −
2kλ

√
(1 + ν)2 − λ
H(y, x)

(
(1− x2)y

√
νψ +

(1 + y)

(1− λ+ ν)

×(1 + λ− ν + x2yν(1− λ− ν) + 2νx(1− y))dφ

)
(3.85)

The functions G, H, J and F are defined as [51]

G(x) = (1− x2)(1 + λx+ νx2) (3.86)

H(x, y) = 1 + λ2 − ν2 − 2λν(1− x2)y + 2xλ(1− y2ν2) + x2y2ν(1− λ2 − ν2) (3.87)

J(x, y) =
2k2(1− x2)(1− y2)λ

√
ν

(x− y)(1− ν)2
(1 + λ2 − ν2 + 2(x− y)λν − xyν(1− λ2 − ν2) (3.88)

F (x, y) =
2k2

(x− y)2(1− ν)2
(G(x)(1− y2)

([
(1− ν)2 − λ2

]
(1 + ν) + yλ(1− λ2 + 2ν − 3ν2)

)
(3.89)

+ G(y)(2λ2 + xλ

(
(1− ν)2 + λ2

)
+ x2

(
(1− ν)2 − λ2

)
(1− ν) + xλ(1− λ2 − 3ν2 + 2ν3)

Similar to the case of one angular momentum, the number of variables is reduced to

avoid conical singularities .

The one angular momentum with rotation along the S1 direction can be recovered

by taking ν → 0, renaming λ→ ν and substitute R2 = 2k2(1 + λ)2. Further flat space

is recovered when λ = 0 [19].

The solutions with rotation only along the S2 cannot be recovered as a balance

condition is inherent to this solution [20].

There are restrictions on what angular momentum is allowed for the J(S1) if the

angular momentum for S2, J(S2) is fixed. Non-zero J(S2) means that this bit of the

black ring behaves as a Kerr black hole, and thus follow the limits for angular momentum

on the Kerr black hole. As the size of S2 cannot become arbitrarily small, which means

that that there cannot be an arbitrarily large J(S1) [52].

Another feature of this solution is that for large values of J(S2), the fat ring branch

will disappear. For details please see Elvang and Rodriguez [52].
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3.5 Multiple Black Hole Solutions

Other than the black hole solutions introduced, several concentric multi-black hole so-

lutions have been found.

3.5.1 Di-ring

Figure 3.5: The di-ring solution, figure from Godazgar [53].

This is described as the simplest of the multiple black ring solutions. This is two

black rings in five dimensions, with horizon topology S2 ⊗ S1, with different radius

rotated along S1 in the same plane, as seen in figure 3.5.

Iguchi and Mishima [54] first derived these solutions in 2007. The same year Evslin

and Krishnan [55] derived di-rings using an inverse scattering method. For detailed

derivations please see these papers.

Iguchi and Mishima [54] suggests that for the same mass and angular momentum,

black di-rings can literally take an infinite number of parameters. This means that the

solution is continuously non-unique.

3.5.2 Bicycle black ring

Figure 3.6: The bicycle black ring solution, figure from Godazgar [53].

The bicycle black rings are solutions with two black rings. This is a similar solution

to the black di-ring solution; however they rotate around perpendicular plane opposed
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to the same plane in the black di-ring as seen in figure 3.6. This system was first

described by Elvang and Rodriguez [52] in 2008

The way this system is set up, the rotation along S1 for the rings affects the rotation

along S2 for the other ring due to frame dragging. This means that even if there is only

initial momenta along S1 the angular velocity will be non-zero along both S1 and S2.

The particular solution introduced by Elvang and Rodriguez [52] only contains four

independent parameters; mass for both rings and angular momenta along S1. It should

however be expected that there exists a general solution with six parameters; 2 masses,

2 angular momenta along S1 and two angular momenta along S2.

3.5.3 Black Saturn

Figure 3.7: The black saturn solution, figure from Godazgar [53].

A black Saturn solution is a Myers-Perry black hole surrounded by a black ring. The

black hole and the black ring will interact due to gravitational effects and the interaction

will create quite curious phenomena. It was found by Elvang and Figueras [56] in 2007.

The black Saturn have stable solutions for both co-rotation of the individual black

holes and counter-rotation. The different black holes will interact due to frame dragging.

If the black rings and the black hole are counter-rotating it is possible for the angular

velocity of the Myers-Perry black hole to cancel. This means that the solution will be

stable with an rotating black ring and a non-rotating black hole.

Like the previous solutions there will be a continuous non-uniqueness however in the

case of black Saturn the non-uniqueness is 2-fold. This relationship is further compli-

cated if both thin and fat black rings are admitted.
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3.6 Rod Structure of Black Holes

3.6.1 The Weyl solution for d=4

Several solution-creating methods where discovered after the introduction of general rel-

ativity. One of the most important one is the Weyl solution which assumes axisymmetry,

stationary and (d-2) Killing vectors.

This can be derived in four dimensions as follows. By assuming that a solution is sta-

tionary, that the solution contains isometries σt with timelike orbits, and axisymmetry,

that the solution further contains isometries κφ with closed spacelike orbits, the general

solution can be simplified. A further condition is that the actions of the symmetries

commute, i.e. that the rotation commutes with the time translation. A metric for such

a system will be independent of the time coordinate, t, and the angular coordinate, φ,

and look like Wald [25]

ds2 = Σµ,νgµν(x2, x
3)dxµdxν (3.90)

Here the metric, gµν , will be 10 unknown function of two variables. However by choosing

an appropriate coordinate system together with the assumption that the tangent spaces

of the killing fields associated with the isometries are integrable will limit the options for

the functions contained in gµν greatly. By tweaking the coordinates and implementing

restraints due to being in vacuum equation 2.13 and assuming two commuting killing

vectors we get the very much simplified version of the metric [57]

ds2 = −e2U (dt− wdφ) + e−2U [r2dφ2 + e2γ(dr2 + dz2) (3.91)

U will be a function of (r, z) axisymmetric solution to Laplaces equation in flat (d− 1)

dimensional space. The metric for such space will be

ds2 = dr2 + r2dφ2 + dz2 (3.92)

This is a powerful solution generating technique for four-dimensional general relativity
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and was first discovered by Weyl in 1917. What is peculiar is that since the function U

is harmonic it can be thought of as a potential produced by a source. For example, the

Schwarzschild solution is retained if U is set to be a zero-radius rod with a density of 1
2

per length [19].

3.6.2 Weyl solution for d>4

This technique has been generalized to higher dimensions for spaces which contain

(d − 2) killing vector fields. As it turns out the higher-dimensional solution will also

have harmonic functions corresponding to thin rods. Many of the multi-black hole

solutions were derived using this method. The metric in arbitrary dimensions will look

like

ds3 = Σd−2
i=1 εie

2Ui(dxi)2 + gabdy
adyb (3.93)

where the local coordinate transformation

gabdy
adyb = e2CdZdZ (3.94)

is assumed to always be possible [19].

This form for a d-dimensional metric with d-2 commuting killing vectors can be used

to solve the Einstein equation. This becomes the equation

∂Z∂Z exp

(
ΣjUj

)
= 0 (3.95)

which has the general solution

∑
j

Uj = log(w(Z) + w(Z)) (3.96)

Taking the example of flat space, the two solutions will be [57]

U1 =
1

2
log[a∓ z +

√
(a∓ z)2 + r2] + constant (3.97)

U2 =
1

2
log[−a± z +

√
(−a± z)2 + r2] + constant (3.98)
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where U1 represent the solution that extend from −∞ → a1, while U2 extends from

a1 → ∞. These two choices can be represented graphically as seen in figure 1. The

rods are all along the z-axis and have zero thickness and represent an interval along

the z-axis where the Killing vector of the space has a fixed point, for spacelike killing

vectors, or becomes null, for timelike killing vectors [58].

Figure 3.8: This figure shows the rod structure of flat space, where the rods
represent the places in space where Killing vectors have fixed points. Ui is the
sources for time and space potential sources

3.6.3 Rod structure of black holes

Dimensions Commuting Killing vectors Difference

4 2 2

5 3 2

6 3 3

7 4 3

8 4 4

9 5 4

Table 3.3: The number of commuting Killing vectors for different dimensions.
The Weyl method only works if the difference is 2, that is for d=4,5

The technique requires that there exists (d-2) commuting Killing vector fields. How-

ever the maximum amount of commuting Killing vector fields in higher dimensions are

1 +
d− 2

2
(3.99)

As seen in table 3.3, as the solutions require that that there is (d−2) commuting killing

vectors, this method is not useful for higher than five dimensions. However the rod

structure then clearly has a great potential not only for finding solutions of the Einstein

equation but for visualizing black holes. The rods in general represent fixed points in

Killing vector fields [57].
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Figure 3.9: This figure shows how the most common way to visualise rod structure
works. The z-axis is devided into rods; they are represented by ’rods’ on the line
depending on which Killing vector field it involves.

The normal way to visualise rods is to divide the z-axis for into sections [−∞, a1, .., ak,+∞].

Depending on which Killing vector the rod represent, different lines is used, as seen in

figure 3.9 [59].

The general structures for rods is that if the rod is that they are intervals along the

z-axis where the action of a specific Killing vector has fixed points, if the Killing vector

is spacelike, or where the Killing vector becomes null, for timelike. That is for finite

time Killing vectors, it represent an event horizon in spacetime while for semi-infinite

the rod corresponds to an accelerated horizon. The rod sources for spatial coordinates

represent a fixed point in the orbits of the specific Killing vector in question. If the rod

extends to infinity, the fixed point for that particular obit will also extend to infinity,

which usually represents an axis of rotational symmetry.

Emparan and Reall [57] created a classification for rod-structures. Class 0 is the

class where there are no finite rods, only infinite rods, or semi-infinite rods. Flat space

belongs to this class, as seen in figure 3.8.

Figure 3.10: The rod structure of a four-dimensional Schwarzchild black hole.

Class 1 is if there is one finite rod. The Schwarzschild black holes belong to this
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class. For four dimensional Schwarzschild black holes there is a finite rod for the time

Killing vector, which represent the horizon at (a1, a2). Semi-finite rods exist for the

same angular Killing vector, goring from (−∞, a1) and from (a2,+∞). This can be

seen in figure 3.10. A five dimensional black hole again has the only one finite rod

where the timelike Killing vector is null, representing the horizon. There is however

semi-infinite rods for two different angular Killing vectors. Myers-Perry Black hole will

have the same rod structure as Schwarzschild in five dimensions.

Figure 3.11: The rod structure for a five-dimensional Schwarzchild-Tangherlini
black hole or a Myers-Perry black hole.

Class 2 is where there exist two finite rods and two semi-infinite rods. A black ring

can be drawn using this method. Here one of the rods represent the time Killing vector,

that is the horizon, while the other is a fixed set of orbits for one of the angular Killing

vectors. This can be seen in figure 3.11.

The multiple black hole solutions can further be put into a rod structure. This can

be seen in figure 3.12.

3.7 Black Hole Thermodynamics

By analysing the quantum mechanical effects of black holes, Stephen Hawking reached

a quite stunning conclusion in his paper from 1975; the thermodynamical rules could be

applied to black holes. This is extraordinary as this approach connects quantum effects

with classical physics. Black hole thermodynamics will not be examined in detail;

however the most important results will be represented.

For classical gravity the laws for uncharged black holes are
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Figure 3.12: (a) Rod structure of black di-rings, (b) the rod structure of black
bicycle rings, (c) the rod structure of black saturns.

• The zeroth law Classically if system A is in thermal equilibrium with system B

and system B is in thermal equilibrium with system C, then system A is in thermal

equilibrium with system C [60]. For black holes the analogy is that the surface

gravity κ will be constant over the horizon [24].

• The first law The infinitesimal transfer of heat into a system and work done on

the system is equal to the change in internal energy or [60]

dU = dQ+ dW (3.100)

The black hole version of this law is

dM =
κ

8π
dA+ ΩdJ (3.101)

for an uncharged black hole. M is the mass, κ is the surface gravity, A is the

horizon area, Ω the angular velocity and J the angular velocity [24].

• The second law The entropy of all system must stay the same of increase, ∆S ≥ 0

[60]. The equivalence is then that for any allowed physical process the area of the

horizon of the black hole can never decrease, ∆A ≥ 0 [24].
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• The third law For thermodynamics, this law states that it is impossible to cool a

system to absolute zero [60]. The analogy for black holes is that it is impossible

to decrease the surface gravity κ to zero [24].

These laws can be extended to higher dimensions, where the constants change how-

ever the general meaning of each law will stay the same.
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Dynamics

In this section the dynamics of black strings and non-uniform black strings is discussed,

as well as the fate of their fluid analogies.

4.1 Thermodynamical argument for instability

A heuristic argument involving black hole thermodynamics can be used to argue that

instabilities are innate to black strings. The terms of thermodynamics the most stable

configuration is the one with largest entropy. This corresponds to the second law of

thermodynamics introduced in section 3.9, where in black hole terms this means that

the horizon area can never shrink. If there exist two states with different entropy one

will inherently be preferred over the other, that is the black hole with largest event

horizon [60].

Black hole thermodynamics connects the horizon area of the black hole with the

entropy, S = A
4 where A is the black hole horizon area [3].

By adding an extra dimension we have changed the Planck mass, which is dimension

dependent. This means that the gravitational constant G is changed as [41]

G5 = G4L = L (4.1)

where G4 = 1 in natural units. The scale is then renormalized by the size of the extra

dimension, L. By relating the area of a black hole, A, with the entropy as S = A
4 , we

can compare the entropy for a black string with dimension size L and a caged black
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hole. This will then be [41]

SBH =
π2r3

5

2L
(4.2)

SBS = πr2
+ (4.3)

where ri is the radius of the horizon for the black hole and the black string respectively.

Solving for black hole mass we get

Md=5 =
3πr2

5

8L
(4.4)

Entropy can then be re-written for the same mass as [4]

SBH = 4πM2 8L

27πM
(4.5)

SBS = 4πM2 (4.6)

Here we clearly have different size of the two entropies. For a large L, the black holes

will be preferred over black strings. This hints to the fact that the black strings will

decay into black holes. If there is an unstabililty for the black string, it would be quite

logical to come to the conclusion that black strings should decay into black holes. This

was the thoughts of Gregory and Laflamme [4] when they introduced the work that

showed that black strings are indeed unstable.

4.2 Perturbation of metric

The instabilities can also explicitly be show by perturbing the metric, using the form

(3.64) introduced in section 3.3. Using the perturbation gab −→ gab + hab, where hab <<

1, we get a Ricci tensor [61]

Rab −→ Rab −
1

2
∇Lhab (4.7)
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where ∇L is the curved space wave function for two massless particles as [41]

∇Lhab = � + 2Rabcdh
cd − 2Rc(ahb)c − 2∇(a∇chb)c +∇a∇bh (4.8)

In empty spacetime from (2.13) we then have the condition

∇Lhab = 0 (4.9)

Further we have the de Donder gauge transform

∇ahab = 0 = h (4.10)

which reduced equation (4.8) to

∇Lhab −→ �hab + 2Rabcdh
cd = 0 (4.11)

One important property of General Relativity is that it is invariant under general

coordinate transforms, generated by ξa. The metric transforms as

gab −→ gab + 2ξ(a;b) (4.12)

which means that the pure gauge perturbation is

hab = 2ξ(a;b) (4.13)

The ξa is divergence free and harmonic, which means that this perturbation satisfies

both (4.11) and (4.10). The degrees of freedom is (N−2)(N+1)
2 to the Lichnerowicz,

(N − 1) is pure gauge while the rest is in fact physical [4].

There are however a issues with the boundary conditions of this problem; the horizon

is a singularity in Schwarzschild coordinates which makes it hard to define hab << 1

close to the horizon . As the singularity in the Schwarzschild coordinates is a coordinate

singularity this whole problem can be avoided by transforming into Kruskal coordinates
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[41].

It is now possible to find the perturbation using separation of the variables as well

as the symmetries present. The symmetries in this case is rotational symmetries, time

symmetry and is invariant along z. Considering the spherical symmetries it can be de-

duced that there will be no off-diagonal inputs for the angles. This puts the perturbation

into the form [4]

hab = eΩteiµix
i



htt htr 0 0 ... htz

htr hrr 0 0 ... hrz

0 0 hθθ 0 ... 0

0 0 0 hθθ sin2 θ ... 0

.. .. .. ..
. . . ...

htz hrz .. .. .. hzz


(4.14)

The time-symmetry leads to an oscillating behaviour described by eiµiz, where µ =

µ(k) and the z-symmetry leads to a growing instability eΩt, where Ω is the inverse decay

time. As proven by Gregory and Laflamme [4] for any unstable mode the inputs for

hzz and for hzµ must vanish for any unstable solution. This can be show explicitly.

For simplicity the d=5 case is examined. Them we can write hzz = eiµzeΩth and hence

obtain the equation [41]

h+

(
2r − r+

r − r+

)
h

r
− (µ2r(r − r+) + Ω2r2)

h

(r − r+)2
= 0 (4.15)

Looking at the two limits we obtain the behaviour

h −→ e±
√

Ω2+µr as r −→∞ (4.16)

h −→ (r − r+)±Ωr+ as r −→ r+ (4.17)

Looking at the limit behaviour any solution must disappear at the horizon and at ∞,

and hence must have a turning point between the two values. This solution however

does not allow for such a turning point, resulting in hzz must disappear. With similar
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Figure 4.1: This figure shows the black string after some arbitrary time of insta-
bility. The λ is the wavelenght of the instability, the r(z) the changed radius and
R0 the original radius.

argument it can be deduced that hzµ also must disappear [41].

The result then is a matrix which contain four components and can be described as

hµν = eiµizeΩthµν(r). With gauge condition the equation reduced to the second order

differential equation as

0 =

[
− Ω2 − µ2V +

(D − 3)2( r+r )2(D−3)

4r2

]
Htr −

[
µ2[(D − 2)− 2

(r+

r

)D−3
+ (4−D)

(r+

r

)2(D−3)]

+
Ω2[(D − 2) + (2D − 7)

( r+
r

)D−3
]

rV
+

3(D − 3)2
( r+
r

)2(D−3)
[(D − 2)−

( r+
r

)D−3
]

4r2V

]
Htr

+

[
(µ2 +

Ω2

V
)2 +

Ω2(4(D − 2)− 8(D − 2)
( r+
r

)D−3 − (53− 34D + 5D2)
( r+
r

)2(D−3)

4r2V 2

+
µ2[4(D − 2)− 4(3D − 7)

( r+
r

)D−3
+ (D2 + 2D − 11)

( r+
r

)2(D−3)

4r2V

+
(D − 3)2

( r+
r

)2(D−3)
[(D − 2)(2D − 5)− (D − 1)(D − 2)

( r+
r

)D−3
+
( r+
r

)2(D−3)

4r4V 2

]
Htr (4.18)

This was the form of the perturbation found by Gregory and Laflamme [4]. Please

notice that the D used in this context is not the dimension rather the dimension of the

sphere, i.e. for dimension d the surface topology is SD ⊗Rd−(D+1) [3].
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4.2.1 Significance of the Instability

The equations determining the perturbation must be numerically solved. A subtly

however is that there will not exist satisfying solutions to all values of µ and Ω. There

will however for every particular µ be a specific wavelength Ωµ that yields a solution

Figure 4.2: This is the calculations from Gregory and Laflamme [4], showing the
values for µ and Ω for which there is a solution for different dimensions.

As seen in figure 4.2, for each Ω, there is a specific µ for which Ω goes to zero.

This cutoff value will be of importance later, and is usually called critical mode for

Gregory-Laflamme instabilities.

It has been proven that there exists a perturbation which results in an instability

that is physical, however what is the consequence of having this present? As shown this

instability will grow with time and change the shape of the event horizon [7].

By using Kruskal coordinates, it can be explored what happens in details what

happens to the horizon under the effect of the instability by looking at the geodesic.

Again looking at the five dimensional case, for unperturbed space, the null geodesic

is described as R = ±T +R0. R = T describes the future event horizon. The geodesic

is [41]

(
dR

dT

)2

= 1 +
1

U
(hTT + 2hTRṘ+ hRRṘ

2)

= 1 + ε cosmz(R+ T )2r+Ω−2

(
1 +

dR

dT

)
(4.19)

where ε << 1, representing the magnitude of the initial perturbation. The horizon is
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shifted to, in Kruskal coordinates

R = T + ε cosmzT 2r+ω−1 (4.20)

which are, in more recognizable Schwarzschild coordinates look like

r = r+ + εT 2Ω cosmz (4.21)

The horizon gained a oscillatory dependence on z, and will fluctuate as seen in figure

4.3. The consequence is clearly that the shape of the horizon no longer is cylindrical in

shape; rather it will get larger in some places while it gets smaller in some placer. The

total horizon area will in this process grow which is consistent with the thermodynamical

arguments introduced, as area is a measure of the entropy [62].

Figure 4.3: This is a 3d image of the inital string and then the string some time,
from Gregory [41].
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The logical endpoint of these ripples would be for them to pinch off, creating smaller

black holes which turned out to quite controversial [63]. These small black holes would

then be caged within the larger extra dimension. Further it would seem like at the

exact point when the cylinder pinches off, a naked singularity will be created. This

starts the discussion on whether or not naked singularities can exist. The cosmic cen-

sorship conjecture states that naked singularities do not exist (other than Big Bang); a

singularity is always behind a horizon [25]. The final answer of what the endstate for

Gregory-Laflamme unstable black strings where would not be discovered for almost two

decades after Gregory and Laflamme [4] initial paper on the topic.

4.3 The final state of the Gregory Laflamme instability

Gregory and Laflamme [4] to suggest that for black holes with L > r0, black holes have

larger entropy than that of the black string. This should suggest that the black strings

in theory should be distorted into black holes. The same instability exists for black

branes, which then would suffer a similar fate.

4.3.1 The cosmic censorship conjecture in four dimensions

In the earlier days of General Relativity there were discussions concerning the nature

of black holes and singularities. The main concern was that the exact nature of a

singularity was unknown, as the physics of such phenomena has not yet been properly

discovered [64]. In these regions classical physics breaks down and have to, in the

future, be replaced with quantum gravity. This could possibly result in spacetime

failing to be asymptotically predictable, making it impossible to tell the outcomes.

However if the singularities was behind an event horizon, causality would be regained.

The horizon would hide the misbehaving singularity, making the effect of the unknown

physics impossible to spot by an outside observer [65].

This led to Roger Penrose conjecturing that naked singularities do not exist in 1969

[66], in what he called the cosmic censorship conjecture. It stated that an outside

observer could never observe a singularity from future null infinity. He revisited the
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definition of the conjecture in 1979, which resulted in a newer version of the conjecture.

Wald [25] stated in physical terms the conjecture as following;

All physical reasonable spacetimes are globally hyperbolic, i.e. apart from a possible

initial singularity (such as big bang singularity) no singularity is ever visible to any

observer.

While there does not exist any evidence either for or against the conjecture, there

have been a peculiarly persistent lack of counterevidence [67]. There have exhaustive

attempts to try to find naked singularities in four dimensions, both theoretically and

numerically, which have always been unsuccessful. No naked singularities where could

be created, as long as the system had physical initial parameters [25]. This has led to

strong suspicions that the conjecture is true. The final state of the instability of long

wavelengths have been studied in detail as it could possibly shed light on the comic

censorship conjecture in higher dimensions.

4.3.2 The cosmic censorship conjecture in d > 4

If the cosmic censorship conjecture is assumed to be correct, the black strings should

collapse to a new black string state, never bisecting the horizon. This fate of the black

string was argued by Horowitz and Maeda [63], who stated theoretically that naked

singularities should be impossible to achieve.

They conjectured that it would be impossible for the horizon to pinch off in a finite

affine time, drawing the conclusion that a black string must settle down into a new

non-uniform black string state.

The proof argues that for the horizon to pinch off the parameter θ in the metric

must approach zero in a finite time. This is proven to impossible for a time parameter

λ.

It was highlighted by Horowitz and Maeda [63] of the article that there was a loophole

in the proof, namely that it was possible for decay of the horizon in the form

L = e−(lnλ)α (4.22)
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with the variable 0 < α < 1
2 . It was argued that for the time parameter this decay

would be very slow, resulting in basically was a new static form of a black string and

was disregarded as unnatural.

The search for such possible states however turned out to be problematic. There was

several examples of just such stable, non-uniform black states found [68] [69]. However

it was shown that they all had a entropy which was smaller than that of a uniform black

string. Lehner and Pretorius [3] showed that it was impossible for these solutions to be

endstates for the uniform black string, at least in d < 13.

Further as it turned out this proof was wrong, as shown by Marolf [70] and Garfinkle

et al. [61]. As it turns out the form of the decay 4.22 is actually exactly how the decay

of the horizon will look like.

Further the affine time parameter used, λ was not the time for a static observer,

rather it was the time at the horizon. As one might expect, this time will behave

strangely as the horizon size of the horizon approaches zero.

As it turns out, it is possible for the horizon to pinch off in finite advanced time,

which is preferred over the affine time parameter used by Marolf [70]. λ will approach

infinity in a finite time for an outside observer, making it possible for the horizon to

decay.

The behaviour of the affine time parameter λ compared to the advanced time of a

static outside observer was examined in a numerical analysis by Garfinkle et al. [61].

As seen in figure 4.4 the parameter s, which is a measure of λ as λ = es, will quickly

grow very large very quickly compare to the advanced time of an outside observer, t.

The options of a black string evolving into smaller black holes are still a possibility.

4.4 Dynamics of instabilities on black strings

4.4.1 Using linear perturbation approximation

The findings of the endstates comes from numerically solve instability of the black

strings. As stated before, it has been conjectured that the end-state of a system should
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Figure 4.4: This figure is taken from Garfinkle et al. [61] and shows the affine
time s, where λ = es, vs the advanced time t. The different curves come from three
different simulations of identical initial data but different resolution.

result in the horizon of the black string being pinched off at even intervals, creating a

naked singularity. This conjecture comes partly from thermodynamical consideration;

the black string has smaller entropy than that of a spherical black hole [41].

This is quite extraordinary as it is a system without un-physical initial parameters

that reaches naked singularities, that is evolving to a state where quantum gravity would

be needed to exactly solve the system Wald [25].

Initial trials to find the end-states where made using a linear perturbation. This was

done by amongst others Choptuik et al. [62] in 2003. They numerically solved the full

equations of motions, and then simulate it. The results found by Gregory and Laflamme

[4] was recovered. The strings developed uncertainties for L > Lc but where stable for

L < Lc.

Further they found that the black string evolved into a state of consecutive S3 black

holes connected by a very thin black string. Result was achieved as seen in figure 4.5

; the black strings decayed towards black holes which still where connected by a very

thin string.
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Figure 4.5: This figure is taken from Choptuik et al. [62] and shows the apparent
horizon at different timesteps for the coordinates r and z. The dimensions of θ and
φ have been suppressed for simplicity.
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Two possible scenarios was suggested by Choptuik et al. [62]; either the black string

is pinched off in finite time or that there was a new, non-uniform state.

However it turned out to problematic to go further as the code for these simulations

consistently seemed to crash before the real end-state was reached. This was thought

by the authors to be due to a large gradient being developed in one of the functions

used, which is theorised to be due to the coordinate choices made.

4.4.2 Higher Order Perturbation Approximations

A quite logical step would then be that the black string connecting the black hole would

also be subjected to the Gregory-Laflamme instability, creating a cascade effect. This

was exactly what was found by Lehner and Pretorius [71]. They managed to come up

with a method of numerical analysis that allowed for evolution further than Choptuik

et al. [62].

The initial data used by Lehner and Pretorius [71] was the same as that by Choptuik

et al. [62]. The boundary values where found by looking at the intrinsic metric and

curvature of the space, which at t = 0 can be used to define Hamiltonian and momentum

constraints.

The coordinates used where of the form (t, x, y, z, w) ≡= (t, r cosφ sin θ, rsinφ sin θ, r cos θ, z),

where φ and θ is angular coordinates of the two-sphere and w = z is the direction of

the string.

The perturbation introduced has the form

γΩ = 1 +A sin

(
w

2πq

L

)
e

−(r−r0)
2

δ2r (4.23)

and is a perturbation along the z and r direction. A determines the size of the pertur-

bation, q describes the spatial frequency in the z-direction and r0 and deltar control the

perturbation in the r-direction. The variables describes are set at constant values [3].
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Cartesian Harmonic gauge was implemented, which has the form

∇ν∇νxµ =
1√
−g

∂ν(
√
−ggνε∂epsilonxµ) ≡ 0 (4.24)

This makes it possible to explicitly write the metric in symmetric hyperbolic evolution

equations.

By writing the constraints as

Cµ ≡ gµν∇ε∇εxν = 0 (4.25)

the time derivative can be related back to the Hamiltonian and momentum constraints.

As it turns out, this was hard to solve numerically as truncation errors resulted in a non-

zero Cµ. The solution used by Lehner and Pretorius [3] was to introduce a constraint

dampening to the Einstein equations. This introduces two new parameters, κ and ρ

which damps unwanted zero-wavelengths which grew along z.

As Gregory and Laflamme [4] showed that there only exist a instability in the z-

direction, it is possible to reduce the number of dimensions to make the code more

efficient by enforce the existing SO(3) symmetry. This is called the cartoon method [72]

[73] and makes it possible to only evolve at y = z = 0 slices of spacetime.

As the dynamics of the black string is found by looking at the horizon, it is the

horizon that should be described by the simulation. However the real horizon is hard to

find in numerical simulations, making it more appropriate to study the apparent horizon,

which is the outermost surface where outward null expansion is zero and inward null

expansion is less than zero [3]. It has been shown that the apparent horizon is more or

less indistinguishable from the event horizon [74].

4.4.3 Violating the cosmic censorship

Lehner and Pretorius [71] used Runge-Kutta of fourth order to evolve the black strings,

while monitoring several quantities.

The first quite obvious result of evolving a black string over time is that the horizon
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Figure 4.6: This figure is taken from Lehner and Pretorius [71] and shows the
surface area of the black string vs time, in normalised units, for three different
resolutions.

surface area, which is analogous to the entropy, increases over time as expected, as seen

in figure 4.6. As discussed in the paper, the result reached with the lowest resolution,

that is a final area of 1.374A0, is exactly the same area of what a five-dimensional black

holes of the same mass would have [3].

Further the horizon of the black string can be examined. As seen in figure 4.7, the

apparent event horizon takes the same shape as seen in the work of Choptuik et al. [62];

spherical black holes connected by thin black strings.

However as Lehner and Pretorius [71] is able to further evolve the strings, the cascade

effect mentioned before becomes apparent. The strings separating the black holes are

inherently unstable and will decay towards smaller black holes, again separated by

black strings. This pattern repeats it turns out, making it possible to approximate the

endstate of the string by looking at the generations of ever smaller black holes. A new

generation is defined as when the black hole has a radius r, which is 1.5 times larger

than that of the surrounding string. A time ti which describes the time it takes for a

new generation to be created from connecting string segments can be deduced. This

time seems to grow smaller the higher the number of generations gets [3].

As it takes a finite time for a new generation of ever smaller black holes to be created

by instabilities in the strings, it can be approximated when the radius of the connecting

string segments reaches zero. As it turns out the time tn+1 for a generation n+ 1 seems
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Figure 4.7: This figure is taken from Lehner and Pretorius [71] and shows the
cascade effect for black holes at three different times.

to be dependent on the former generation as tn+1 = tn
X , where X is some number. For

the parameters used by ], X = 4. The total time to reach the endstate is then finite as

tfinal∝
∑∞

i=0
t1X

i =
t1

1−X
(4.26)

as this is simply a geometric series [3].

A finite time to reach an endstate, which has the property that the radius of strings

goes to zero, is an explicit violation of the cosmic censorship for generic initial data.

The conclusion drawn is then that the cosmic censorship conjecture do not seem to hold

in higher dimensions and confirms the suspicions presented by ] almost two decades

earlier.
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4.5 Non-uniform black strings

Several investigation were made into the critical mode for Gregory-Laflamme instabili-

ties, that is when Ω = 0 and k = kc in equation as seen in figure 4.8 ??.

Figure 4.8: (a) shows Gregory-Laflamme instability for the critical mode of a
black string. (b) showes the shape of a non-uniform balck string. This figure is Kol
[7]

This sets the equation to

(∇L)ρωµν(Pc,ρωe
ikcz/r0) = 0 (4.27)

This is the threshold mode for the Gregory-Laflamme instability that depends directly

upon the string dimension, z. This branch of solutions is called non-uniform black

strings. This branch of solutions has a topology S1⊗Sd−2, where the S1 is a circle due

to the Kaluza-Klein compactification. The non-uniform black strings meets the uniform

string branch at µ = µGL and has a local SO(d-2)symmetry.

For each dimension a critical value of µGL can be found, corresponding to where

k = kGL and Ω = 0 [4]. By looking at a number γ(µ = µGL further information about

the behaviour of γ; if γ > 0 the non-uniform black string will increase in mass, if γ < 0

the mass will decrease which results in different entropies [75].

This leads to a vastly different behaviour depending on the sign of γ. As found by
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Sorkin [76] γ is always positive for d < 14 while it seems to be negative for d ≥ 14.

This means that there is a critical dimension where there the system changes behaviour,

d = 14.

4.5.1 Phase diagram for non-uniform black hole

The question of what happens with caged black holes as they increase in size has been

asked. The most popular scenario as to date is that the caged black hole will develop

into a non-uniform black string [44]. This however means that the topology would have

to change, which at the meeting point of the two solutions impossible to explain using

currently known physics [7].

For caged black holes is that n→ 0 as µ→ 0 [77]. This indicates that the solution

will approach that of a Schwarzschild solution as the mass becomes very small [75].

Metrics for a caged black hole was found by an ansatz in [44]. More references. There

have also been numerical analyses of the caged black holes for different dimension (see

[69] [2] [78]. Similarly there have been several numerical analyses of the non-uniform

strings (see [79] [43]).

Figure 4.9: This figure is from [2] with data from Wiseman [69], Sorkin [76] and
Kudoh and Wiseman [80]. It shows the phase diagram for a non-uniform black
string for five dimensions (left) and six dimensions (right). The red line is a stable
black string, the purple line is a caged black hole and the blue lne a non-uniform
string.

By plotting these results in a phase diagram (µ, n), the notion that the two branches

meet is implied. This can be seen in figure 4.9 where the blue branch is a non-uniform
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string while the purple branch is a caged black hole, in five and six dimensions. The

red line is uniform black string branch.

Figure 4.10: This figure is from Kol:2004ww and shows the apperant horizon for
a six dimensional black hole and non-uniform black string.

This can further be seen in figure 4.10, where the distortion of caged black holes

clearly approaches that of a non-uniform black string.

4.6 Fluid analogy of black strings

Just as black holes seem to have an eerie connection to thermodynamics, it was similarly

found to have a connection to fluid dynamics. The first hint of this was the introduction

of a toy model by Kip S. Thorne [81] called the membrane paradigm, with the goal to

create a more accessible theory for physicist with a nonrelativistic background. This

theory suggested that the horizon of a black hole could be described by the Navier-
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Figure 4.11: This figure is taken from Cardoso and Dias [83] and shows the
growth rate Ω vs the wavenumber k for a cylinder experiencing Rayleigh-Plateau
instability. The surface-tension and density is the same as that of a black string.

Stokes equation. These findings dates back to the 70s when it was found that external

gravitational forces deforms the horizon just as if it were viscous [82].

This analogy between the two fields turns out to be important for the dynamics

of black strings. As Cardoso and Dias [83], there is similarities between the Gregory-

Laflamme instabilities and the classical instability of a membrane, the Rayleigh-Plateau

instability. A system ruled by the Rayleigh-Plateau instability does in fact pinch off.

The two instabilities are not perfectly equal; they have different relationship between the

growth rate Ω and the wavelength k. The shape of the relationship however is similar, as

can be seen by comparing figure 4.11 and figure 4.2. Further both instabilities disappear

for modes other than the s-modes.

Further the endpoint of a Rayleigh-Plateau instability is the cylinder pinching off

and drops forms [84]. A beam of fluid will have the satellite formation shown in black

strings; between large drops smaller and smaller drops will be created. The sizes of these

drops are dependent on the viscosity of the fluid; the lower viscosity the more drops.

A picture of such phenomena can be seen in figure 4.12, which shows an extended fluid

breaking up. This behaviour is similar to that of the black string (for idept review see

[84]).
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Figure 4.12: This figure is take from Eggers [84] and shows an extended fluid
suspended in another fluid, at different times.
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4.7 Beyond the classical regim

It would be highly likely that the final stages of black strings being pinched off would

be governed by quantum gravity. The result reviewed here are all assuming classical

physics. This classical examination has shown a cascading behaviour, similar to that of

a fluid, along the horizon of the black string [3].

When the horizon grows smaller and smaller the classical gravity would no longer

be warranted. The effects of quantum mechanics would have been considered. This is

usually thought to happen at scales smaller than the Planck length that is when the

radius of the black string r lp = 1.62× 10−35 [2].

Another possible problem which could hinder the use of classical physics is if the

timescale of Hawking radiation τH becomes smaller than that of the instability τGL. It

can be show however that this do not happen until after the Planck time scale is reached

[2].
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Conclusion

Higher dimensional general relativity has been an area of increasing interest lately, due

to several unifying theories demanding more than four dimensions. Flat space black

hole is further of interest as it is a possibly that micro-black hole may be created in the

Large Hadron Collider, made possible by the ADD theory.

It has not however been perfectly straight forward to generalize all the concepts

from the familiar four-dimensional general relativity, such as uniqueness, to higher di-

mensions. While uniqueness is an inherited part of classical gravity this partly due to

the special features of four-dimensional space. In higher dimensions there is nothing

that limits the horizon topologies to be spherical, making it possible to have a number

of different black holes.

Except the higher dimensional equivalences to Schwarzschild and Kerr black holes,

the Tangherlini and Myers-Perry black hole, one of the first unique to higher space

solutions found was the black string. The existence of black strings explicitly violates

uniqueness in five dimensions. It is further possible to find multiple black hole solutions

which consist of several black rings or black rings and black holes.

One of the most interesting new branches of black holes however is the black string,

or more generally the black membrane. This is a black hole crossed with a spatial

dimension, with the topology Sp ⊗ R for string and Sp ⊗ Rq for branes. As shown by

Gregory and Laflamme [4] it is possible to evolve this kind of black hole solutions using

a instability called the Gregory-Laflamme instability.

As shown by Lehner and Pretorius [71] this instability on a string will end up

violating another well-established concept in four dimensions; the cosmic censorship
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conjecture. This conjecture prohibits the existence of naked singularities. The endstate

of Gregory-Laflamme evolved black string however seems to be several smaller black

holes, which means that the horizon of the string must pinch off. At the bifurcation of

the horizon a naked singularity would be created.

Other quite surprising results come from the study of a specific kind of black strings,

non-uniform black strings. These are strings with a specific wavelength which creates

strings with constant perturbation. It seems like the non-uniform black string can

change its topology if evolved, from a non-uniform black string to a black hole.

To fully understand these results a theory describing quantum gravity is needed.

However until a theory of quantum gravity is (hopefully) discovered investigating these

phenomena gives important insights to the structure and frame work for such a possible

theory. Examining higher dimensional black holes is also important to be able to analyse

the result from the Large Hadron Collider for micro-black holes, for the affirmation or

repudiation of the ADD theory.

5.1 Future work and open questions

There are several open questions which could be asked and possible future work

• It would be highly desirable to be able to find and classify all higher dimensional

black hole solutions in flat space. This could be problematic due to the amount

of possible black holes in higher dimensions, unless effective solutions generating

techniques are found.

• It would be interesting to try to generalize the Kerr-Newman black hole in higher

dimensions. There have been higher dimensional black holes found with charge,

but usually they are constructed to have gauge charge which does not properly

correspond to the Kerr-Newman case [85]. While Kerr-Newman might exist in

higher dimensions it might be considerably more complicated than in the four

dimensional case. This remains an unsolved problem for higher dimensional black

holes.



5.1 Future work and open questions 73

• For Gregory-Laflamme instabilities it would be very interesting to extend the

study to other black hole branches for example black strings which are perturbed

by unstable modes. As previously mentioned an ultra-spinning black hole behaves

in its limits as a black membrane. This kind of object would also be interesting

to examine, as well as to see if initial charge of the black strings changes the

evolution.

• It would also, of course, always be of interest to improve the simulation to higher

order, for more accurate results. While it has be simulated for a long time pe-

riod by Lehner and Pretorius [71], it would still be interesting to investigate the

topology of the string close to when and where a possible naked singularity could

appear.

• Further as hinted by Sorkin [76], the behaviour of black strings is dimension

dependent. Black strings seem to have a critical dimension, d = 14; below that

dimension black holes have higher entropy however above it seems like the string

have higher entropy. This allows for the question of how dimension dependent the

phase diagrams of black strings and non-uniform black strings are. It would be

interesting to examine the dynamics of black strings around the critical dimension

by simulating the behaviour and to try to find the endstate for d > 13.

• Though not touched upon in this essay, it would be interesting to examine the

Gregory-Laflamme instability in (anti)-de-Sitter space, where the curvature is non-

zero.

• The apparent violation of the cosmic censorship conjecture discussed in section im-

plies that naked singularities are formed in unstable black strings. It would be in-

teresting to try to find a solid mathematical construction of the cosmic censorship

conjecture, to in-depth study the consequences of Gregory-Laflamme instability.

• Lastly the fluid analogy of the black strings implies a deeper relationship be-

tween fluid dynamics and black hole dynamics, as suggested by the membrane

paradigm. This would be useful to study further as it might be possible simulate
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Gregory-Laflamme instabilities as a Rayleigh-Plateau instabilities, and apply fluid

dynamical concept on black holes.
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