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Abstract

The aim of this dissertation is to provide an introduction to Seiberg-Witten curves,

their occurrence in string theory and some of their more modern applications. First,

the relationship between the Coulomb branch of an N = 2 supersymmetric gauge

theory with G = SU(2) and the Seiberg-Witten curve is derived. This is then gener-

alised to include higher rank classical gauge groups and further to cases where matter

is included. Following this, the use of string theory in the understanding of these

curves covered. The curve will be given a physical interpretation through Type IIA

brane configurations and M theory. Recent work using SW curves will then be dis-

cussed. New dualities of N = 2 theories can be found by analysing the degenerations

of the SW curve. This leads to new classes of SCFTs as well as a different M theory

interpretation.
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1. Introduction

Invariably when a physics student first encounters quantum field theory it is in the

guise of perturbation theory. One solves the vacuum equations of motion and ex-

pands about this solution as a power series in terms of the coupling constant. This

expansion can be neatly represented in terms of Feynman diagrams along with an ac-

companying set of rules. One could be forgiven for thinking that perturbation theory

is the be all and end all of quantum field theory. In fact one of the most remarkable

agreements of theory and experiment, calculation of ge in QED is done via perturba-

tion theory. Despite these successes perturbative expansions have limited regions of

validity, specifically the coupling constant must be small, � 1. Theories which are

strongly coupled, when the coupling constant is of O(1) or greater, are completely

opaque to perturbative techniques. Examples of such theories include QCD.

That life beyond perturbation theory is drastically different can be seen via non-

perturbative solutions called solitons. These are finite energy solutions whose energy

is inversely proportional to the square of the coupling constant. Thus if all one knew

were pertubation theory they would have no hope at all of encountering solitons. The

coarsest classification of such solutions is through their codimension, codimension 1

solitons are domain walls or kinks, codimension 2; vortices, codimension 3; monopoles

and codimension 4; instantons. Both domain walls and vortices drastically change the

spacetime around them. Domain walls as suggested by there name actually partition

the spacetime allowing discrete jumps in fields across them. Vortices introduce a

logaritmic branch cut in the spacetime. While not having as drastic effects on the

spacetime the other two solitons monopoles and instantons will never the less play a

vital role in this dissertation.
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The most powerful technique one can utilise to study strong coupling aspects of

theories is duality. When two different theories describe the same physics it is said

there is a duality between them. Generically the two dual theories have differing

ranges of validity. Electric-magnetic duality is the archetype, if a theory is in a

regime where electric degrees of freedom are strongly coupled the dual theory, in

terms of magnetic degrees of freedom, is weakly coupled and vice versa. The coupling

constants of the two theories are inversely proportional allowing one to investigate

strong coupling aspects of both dual theories. There is still a region however when

the coupling is O(1) where even with the help of this duality nothing definitive can be

said. This type of duality is known as a weak-strong duality. Supersymmetric, and in

particular, string theories provide many examples of dualities. The strong coupling

limits of type II string theory are examples of this. Type IIA at strong string coupling

is M theory wrapped on a circle with the string coupling and the radius of the circle

are proportional. Thus if one wants information about strongly coupled Type IIA, M

theory on a large circle is studied.

In this dissertation certain interesting properties of 4 dimensional N = 2 will be

reviewed. N = 2 supersymmetry provides an ideal setting in which to study strong

coupling properties of gauge theories. As mentioned above supersymmetry allows

for more dualities, thus providing access to strong coupling regions. In addition

perturbative quantum effects do not go past one loop for N = 2 supersymmetry

due to non-renormalisation theorems [34], giving one the hope of finding analytical

solutions. This is in contrast to N = 4 where there are no perturbative quantum

corrections (the β function vanishes) and N = 0, 1 higher order corrections play a

role.Non perturbative corrections may still be present to complicate the situation but

nevertheless one could hope to discover perhaps generic strong coupling behaviour

which could help in the understanding in the more realistic realms of N = 0, 1

supersymmetric theories.

Another interesting aspect of supersymmetric gauge theories is that they allow

spaces of inequivalent vacua. N = 1 supersymmetry allows for a superpotential

in the low energy action which lifts these vacua, more supersymmetry forbids this

8



superpotential and the space of vacua persists. The aim of this dissertation is to

review works studying such moduli spaces of inequivalent vacua. In particular the

focus will be on the remarkable equivalence between the moduli space of vacua and

the moduli space of families of elliptic or hyperelliptic curves. This equivalence was

discovered by Seiberg and Witten in the mid 90s, [1], and led to a large amount

of research exploring its implications and extending it to other scenarios [2]-[13]. It

became an important technique in the study of N = 2 theories and is still utilised in

research being carried out today [27]-[29].

This dissertation is organised as follows. In chapter 2 the topic of Seiberg Witten

curve is introduced. The initial work of Seiberg and Witten is reviewed as well as

extensions of this to higher rank gauge groups and the inclusion of matter. Chapter

3 uses string theory to provide an intuitive method for construction of SW curves as

well as give them a physical interpretation. In chapter 4 the techniques developed in

the preceding chapters are used to explore new dualities of N = 2 SCFTs.
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2. Seiberg-Witten Gauge Theory

This chapter starts with a review of [1]. The goal of this work was to obtain strong

coupling information about N = 2 gauge theories, specifically with gauge group G =

SU(2). The amount of supersymmetry present meant that the low energy effective

action could be exactly determined using an auxiliary geometric object known as

the Seiberg Witten curve. The discovery of the SW curve was the real long lasting

accomplishment of this work. Properties of a theory can be deduced by studying its

SW curve without having to resort to equations of motion or a Lagrangian, which are

often not known. Extensions of this to higher rank gauge groups [3] [4] [5] [7] [8] [9]

and the inclusion of matter [2] [10] [11] [12] [13] will also be reviewed.

This new formalism for describing supersymmetric gauge theories led to explana-

tions of previously known phenomena as well as new exotic theories. Charge confine-

ment of pure N = 1 theories was explained via monopole condensation in [1], [6] and

explicit constructions of non local theories were found in [7] will be briefly discussed.

2.1 Pure SU(2) Super Yang-Mills

2.1.1 R-symmetries and chiral anomaly

Extended supersymmetry algebras admit global symmetries known as R-symmetries.

For the N = 2 algebra this is SU(2)R × U(1)R with the SU(2)R rotating super-

charges of the same chirality into one another and U(1)R acting on positive chirality

supercharges with charge −1 and negative chirality with +1.

The two main multiplets of N = 2 supersymmetry are the vector multiplet (here-
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after referred to as a V-plet) and hypermultiplet (hyper). The V-plet consists of a

gauge field Aµ, complex scalar φ and two Weyl fermions λ and ψ. Both Aµ and φ are

singlets under SU(2)R while the fermions form a doublet. It can be written in terms

of N = 1 multiplets (V,Φα) where V is the N = 1 V-plet with field strength Wα and

Φα the chiral multiplet. (V,Φα) transforms in the adjoint representation of the gauge

group. The hypermultiplet contains two compex scalars and two weyl fermions. As

with the V-plet it can be represented using N = 1 multiplets, by 2 chiral multiplets

(Q, Q̃). Q and Q̃ transform in conjugate representations of the gauge group. The

complex scalars are singlets under SU(2)R while the fermions again form a doublet.

One can form a Dirac spinor out of the two weyl fermions in both of these multi-

plets. The Abelian part of the R-symmetry then acts as eiαγ5 on these Dirac fermions

i.e. as a chiral symmetry. Thus the classical U(1)R is broken to a discrete subgroup

by the chiral anomaly. To find the subgroup one first requires the notion instantons

of fermion zero modes.

Any non abelian gauge theory contains solitonic solutions known as instantons.

These are non perturbative finite energy solutions of the gauge field. They have a

moduli space of inequivalent solutions parametrised by a set of collective coordinates.

A particular type of collective coordinate called fermion zero modes will be needed

here. These are zero energy deformations of the instanton solution due fermions

coupled to the gauge group. Each left handed fermion in the adjoint rep contributes

2Nc zero modes and only a single zero mode if it is in the fundamental or anti

fundamental. For a correlator to be non-zero in an instanton background requires

extra fermion terms (one per zero mode) to be included in order to absorb these zero

modes. The first non zero correlator is

G(4Nc−2Nf ) = 〈λ(x1) . . . λ(x2Nc)ψ(y1) . . . ψ(y2Nc)ψq(z1) . . . ψq(zNf )ψ̃q(u1) . . . ψ̃q(uNf )〉

(2.1)

Under U(1)R, G(4Nc−2Nf ) → eiα(4Nc−2Nf )G(4Nc−2Nf ). Thus U(1)R → Z4Nc−2Nf . The

global symmetry is, however, not the product of this with SU(2)R. The Weyl group

element of SU(2), Z2 is already contained in Z4Nc−2Nf . Therefore to avoid double
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counting this, the global symmetry is

SU(2)R × Z4Nc−2Nf

Z2

(2.2)

2.1.2 Moduli Space

The action of a pure N = 2 gauge theory is

S =

∫
d4x

[
Im
( τ

16π2
d2θTrWαW

α
)

+
1

4g2

∫
d4θTrΦ+e−2gV Φ

]
(2.3)

The scalar potential is V ∝ Tr[φ, φ+]2. This is minimised if φ is an element of the

Cartan subalgebra of SU(2). For SU(2) pick 〈φ〉 = diag1
2
(a,−a). A non zero value

for a will break the Z8 R-symmetry to Z4 (as it has charge 2 under the anomalous

R-symmetry). The Weyl transformation of the SU(2) gauge group acts a → −a so

use

u =
1

2
a2 = 〈Trφ2〉 (2.4)

to parametrise the moduli space, M, of inequivalent vacua. U(1)R acts as Z2 on u.

For higher rank gauge groups the Weyl group WSU(Nc) 6⊂ Z4Nc−2Nf except at special

submanifolds so the moduli space has a Z2Nc symmetry. At a generic point in the

moduli space the gauge group is broken to U(1) and W± bosons become massive.

Classically there is a singularity at the origin of the moduli space where the gauge

group is enhanced to SU(2) and W± become massless again.

2.1.3 Low energy Action

To make the analysis of the full quantum theory more tractable only the low energy

theory is studied. In the Wilsonian approach to obtaining a low energy theory all

states above a certain renormalisation scale, µ, are integrated out. The full theory is

asymptotically free with dynamically generated scale Λ, if the renormalisation scale

is chosen to be much larger than a, the symmetry breaking scale, then the masses of

W± are negligible and the asymptotic freedom persists. If however the scale is below
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a, W± will be integrated out and the low energy is U(1) gauge theory which flows to

zero coupling. In the following µ = a.

The Wilsonian low energy action is determined in terms of a holomorphic function

of the V-plet, F(A), called the prepotential. The massive W± bosons are integrated

out and the action is

S =
1

4π

∫
d4xIm

[∫
d4θF ′(A)A+ +

1

2

∫
d2θF ′′(A)WαWα

]
(2.5)

The second derivative of the prepotential is the coefficient of the gauge kinetic term.

As such it plays the role of the gauge coupling in the low energy theory, τ(a) =

θ
2π

+ 4πi
g2(a)

. The coupling is now a function of a, which sets the scale of the theory. No

superpotential can be added to this and preserve the N = 2 supersymmetry, therefore

the vacuum degeneracy is not lifted by quantum effects. The topology of the moduli

space is changed however. It is a Kahler manifold with Kahler potential

K = Im
(
F ′(A)A+

)
(2.6)

whose metric is ds2 = ImF ′′(a)dada∗ = Imτ(a)dada∗. Classically F(A) = 1/2τclA
2

where τcl is the classical gauge coupling. This receives quantum corrections, per-

turbatively at one loop level but also from non perturbative effects as well. The

perturbative correction is found by integrating the one loop β function expression

adg
da

= −b0
16π2 g

3, b0 = 2Nc−Nf . The non perturbative corrections are due to instantons.

The action for a k-instanton is

e−8π2k/g2 =

(
Λ

a

)4k

(2.7)

where the right hand side is due to the β function. Upon integrating these one gets

F1−loop(A) =
i

2π
A2 ln

A2

Λ2
, Fnp(A) =

∞∑
n=1

an

(
Λ

A

)4n

A2 (2.8)
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2.1.4 Duality

For the metric on the Kahler manifold to be well defined Im τ(a) must be positive

definite. At large a non perturbative effects can be discounted and 2.8 differentiated

τ(a) =
i

π

(
ln

(
a2

Λ2

)
+ 3

)
(2.9)

This is a multivalued function with positive definite imaginary part. If τ(a) were

globally defined it would be harmonic and so have no minimum. This would contradict

the positive definiteness. τ(a) is therefore not globally defined and new variables are

required to make it so. One could also note that the non perturbative effects become

increasingly more dominant as a gets smaller, in particular the instanton sum will

no longer converge. It can be made to converge by re-summing in new ‘magnetic’

variables. Write

ds2 = ImdaDda∗ =
−i
2

(daDda∗ − dada∗D) (2.10)

where aD = F ′(a) is a locally good parameter. Changing from a to aD is essentially

electric-magnetic duality. In terms of any other parameter

ds2 =
−i
2
εαβ

daα

du

da∗β

du∗
dudu∗, aα = (aD, a) (2.11)

This is invariant under an Sp(2) ' SL(2,R) rotation of aα (this will later be reduced

to SL(2,Z)) and also under addition of a constant i.e. under a→Ma+ c. SL(2,R)

is generated by

Tb =

1 b

0 1

 S =

 0 1

−1 0

 b ∈ R (2.12)

Tb : aD → aD+ba but as aD = F ′(a), under Tb τ(a) shifts by b. This corresponds to a

shift in the θ parameter of the theory by 2πb and so is a symmetry only if b ∈ Z. This

reduces the duality group to SL(2,Z). S acts by aD → a, which seems to imply that

S implements a form of electric-magnetic duality. To confirm this suspicion, study

the action of S on the gauge fields.

The usual method of implementing a duality transformation on a Lagrangian is
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to introduce a Lagrange multiplier. Starting first with N = 1 fields and the gauge

kinetic term
1

8π
Im

∫
d4xd2θτ(A)W 2 (2.13)

Taking Wα as the independent field, the Bianchi identity, ImDW = 0 is enforced by

adding to 2.13

1

4π
Im

∫
d4xd2θVDDW =

1

4π
Re

∫
d4xd2θiDVDW = − 1

4π
Im

∫
d4xd2θWDW (2.14)

with VD, an N = 1 V-plet, the Lagrange multiplier and DVD = WD. Completing the

square and then performing the Gaussian integral one arrives at the dual action

1

8π
Im

∫
d4xd2θ

−1

τ(A)
W 2
D (2.15)

Doing the same for N = 2 requires a transformation A→ AD as it appears explicitly

in 2.3 rather than just through the gauge kinetic term. After making the following

definitions F ′ = h (which⇒ h′ = τ), AD = h(A) and hD as minus the inverse function

of h, hD ◦ h = −id then

Im
(
F ′(A)A+

)
= Im

(
h(A)A+

)
= Im (AD(−hD(A))∗) = Im

(
hD(AD)A+

D

)
(2.16)

The last equality comes from the fact that the imaginary part of a complex number

is minus the imaginary part of its complex conjugate. By differentiating hD ◦h = −id

one comes to
−1

τ(A)
=
−1

h′(A)
= h′D(AD) ≡ τD(AD) (2.17)

With this, the dual Lagrangian is actually seen to be the same as 2.5 except that

all the fields are instead dual ‘magnetic’ fields, labelled by the subscript D. Now we

come to the point of all this. The duality sends AD → A and A→ −AD and thus is

actually S. The action of S on τ

τ(A)→ τD(AD) =
−1

τ(A)
(2.18)
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justifies the labelling of this SL(2,Z) transformation as an electric-magnetic duality.

Therefore we have that the moduli space is parametrised by the gauge invariant

quantity u. aD, a are functions of this and provide good local coordinates in different

regions. a is appropriate at large u and the relationship between the two is given by

2.4. As one moves towards strong coupling a duality transformation can be performed,

after which the theory is weakly coupled in these new fields, for instance it will soon

be shown that there is a strong coupling point at u = Λ2. In the region of this point

aD(u) is a good local coordinate. The dual theory in this region is a weakly coupled

U(1) theory with fields AD.

2.1.5 Central Charge and BPS States

Another aspect of extended supersymmetry is the appearance of a central charge,

Z, in the superalgebra. The central charge is an operator that commutes with all

elements of the algebra. It modifies the commutators so that {QI
α, Q

J
β} = 2

√
2εαβZ

IJ .

The Clifford algebra formed from this is defined by {aα, a†β} = δαβ(M+
√

2Z), {bα, b†β} =

δαβ(M −
√

2Z). These imply a lower bound for the mass of a state M ≥
√

2|Z|. If

M =
√

2|Z| one of these commutators will vanish and the state will be in a short

representation of the superalgebra (4 polarisation modes instead of the usual 16 for

a massive rep). States of this kind are known as BPS.

Classically the central charge is Zcl = a(ne + τclnm). Here the charges ne, nm are

normalised as follows; particles in reps of SO(3), gauge bosons for example, have

ne ∈ Z while particles in SU(2) reps, fundamental hypers, have ne ∈ Z/2. At present

no hypers will be considered but later when they are, a redefinition of the coupling

will be used to ensure all particles have integer charge.

The central charge is modified quantum mechanically. To see why, consider cou-

pling a single BPS hyper (Q, Q̃) to the gauge theory. The terms that couple the hyper

to the V-plet are
√

2neAQQ̃,
√

2nmADQQ̃ (2.19)
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The mass for the hyper is given by the scalar component of the V-plet. Thus

Z = nmaD + nea (2.20)

In the classical limit aD = F ′cl = τa and Zcl is recovered. As
√

2Z is the mass of this

coupled hyper it should be invariant under the duality transformation. (aD, a) →

M(aD, a) ⇒ (nm, ne) → (nm, ne)M
−1. If (aD, a) → M(aD, a) + c the addition of c

cannot be compensated for, so c = 0.

BPS states are protected from decay to non-BPS states as that would require

a jump from a short rep to long rep. There are not enough degrees of freedom,

however, to facilitate this. This property is also true in the quantum theory. While

they cannot decay to non-BPS particles, under certain circumstances they can decay

to other BPS states. A state with central charge Z = nmaD+nea can decay to several

with Zi = nimaD + niea if charge is conserved, (nm, ne) =
∑

i(n
i
m, n

i
e). By the triangle

inequality

|Z| ≤
∑
i

|Zi| ⇒ M ≤
∑
i

Mi (2.21)

Hence decay is possible when there is equality in 2.21. This requires that Zi and Z

be aligned, aD/a ∈ R. If a state has charge (nm, ne) with nm, ne mutually prime and

aD/a 6∈ R then it is stable against decay, if the theory enters a region of the moduli

space where aD/a ∈ R it is then susceptible to decay and will no longer exist in the

BPS spectrum even if the theory re-enters aD/a 6∈ R.

2.1.6 Monodromies

From 2.9 one can see that the regime of weak coupling is associated to large a.

Perturbative effects dominate here and

aD =
2ia

π
ln
a

Λ
+
ia

π
(2.22)

aD is therefore a multivalued function in this region. It indicates a singularity with

a non trivial monodromy at large a in the moduli space, the complex u plane. The
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monodromy should be an element of SL(2,Z). To get its exact form send u → e2πi

which, at at weak coupling causes a→ eπia = −a and

aD →
2ieπia

π
ln
eπia

Λ
− i a

π
= −aD + 2a (2.23)

The monodromy matrix, M∞, for this weak coupling singularity is then

M∞ = PT−2 =

−1 2

0 −1

 , P = −id, T =

1 1

0 1

 (2.24)

P is present in the classical system, it is just the Weyl transformation a → −a,

aD → −aD. It arises because a path from a to −a is actually a closed path in the u

plane. Physically it reverses the sign of the EM charges. The part T−2 arises only in

the quantum theory and is due to the logarithm in 2.22.

Each monodromy is associated to a non-trivial closed path in the moduli space

e.g. M∞ is associated to any path that loops about the singularity at infinity. Mon-

odromies are therefore a representation of the fundamental group of the space M′,

π1(M′). WhereM′ is the moduli space with any singularities replaced by punctures.

Were π1(M′) to be abelian, all the monodromies would commute. Consequently a

would be a good coordinate everywhere on M. This is not the case however, so

π1(M′) is non abelian and there must be at least two other singularities, related

by the Z2 symmetry of M with associated non commuting monodromies. These

singularities are at finite values of u and are called strong coupling singularities.

Usually a singularity in a moduli space corresponds to some degrees of freedom

becoming massless and a breakdown in the ability of 2.5 to describe the theory.

Assuming that is the case here, one can ask what are these new massless degrees

of freedom. In the classical theory the singularity at u, a, aD = 0 indicated the W±

bosons becoming massless. In the full quantum theory, strong coupling singularities

are not due to massless bosons, but rather massless monopoles and dyons. Massless

bosons would imply the existence of a U(1)R current which is not present.

If one assumes it is a monopole becoming massless then it will do so at the point
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u0, 2.20, where aD(u0) = 0. Near this point aD = c(u−u0) is a good coordinate. The

low energy theory is a U(1) gauge theory and about u0 have

τD ∼=
−i
π

ln
aD
Λ

(2.25)

The definition of hD implies that a(u) = −hD(u) and combined with the definition

of τD, 2.17 gives

a(u) = a0 +
i

π
aD ln

aD
Λ

(2.26)

where a0 is a non zero constant. The monodromy about this point is obtained by

u→ e2πiu which results in aD → aD and

a→ a0 +
i

π
(u− u0)(ln

(u− u0)

Λ
+ 2πi) = a− 2aD (2.27)

the monodromy matrix, Mu0 is

Mu0 = ST 2S =

 1 0

−2 1

 (2.28)

To obtain the monodromy at the other strong coupling point −u0 one simply notes

that by a contour deformation

M∞ = Mu0M−u0 (2.29)

Which can be solved to give

M−u0 =

−1 2

−2 3

 (2.30)

This singularity should also correspond to a state becoming. The charges of this

state should be invariant under the monodromy implying that n = (nm, ne), is the

left eigenvector of M−u0 . Therefore a dyon of charge (1,−1) becomes massless at the

third singularity. The two strong coupling singularities are located at u = ±Λ2
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2.1.7 Seiberg Witten curve

The analysis of the previous sections has provided the following description of the

moduli space. M is the complex u plane endowed with a Z2 symmetry, u → −u

and three singularities at u = ±Λ2,∞. The monodromies about these singularities

generate Γ(2), meaning that π1 (M′) = Γ(2). This is a description of the space

H/Γ(2) where H is the upper half plane, therefore

M∼= H/Γ(2) (2.31)

Now comes the crux of the argument, H/Γ(2) is also the moduli space a family of

elliptic curves defined by the equation

y2 = (x− Λ2)(x+ Λ2)(x− u) (2.32)

This equation describes a two sheeted cover of the x plane, branched at the points

x = ±Λ2, u,∞ and also is the defining equation for a genus 1 Riemann surface, Σu.

One can confirm this using the Riemann-Hurwitz formula, which relates the number

of branch points to the genus,

g(Σu)− 1 = −deg(π) +
1

2
b (2.33)

π is the projection of the surface to the x plane, it has degree 2 and b is the branching

index, for the cases considered this is simply the number of branch points. This gives

g(Σ) = 1.

Thus M is both the moduli space of an SU(2) gauge theory and also of a family

of genus 1 Riemann surfaces. As one moves around the moduli space the nature of

the gauge theory changes, e.g. if u is large the theory is weakly coupled. Likewise

the shape of the Riemann surface changes as u varies, in particular if any two of the

branch points collide the Riemann surface degenerates e.g. as u → ±Λ2 a cycle of

the surface shrinks to zero size.

The coordinates a, aD are functions of u and transform under SL(2,Z), they are
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thus sections of an SL(2,Z) bundle over the complex u plane. Such a bundle also

exists on the geometry side of this relationship. The first cohomology group of Σu,

H1(Σu,C) are fibres of an SL(2,Z) bundle over M. The two independent cycles of

Σu γ, γD are such that γ encircles the cut from Λ2 to −Λ2 while γD encircles the

branch points at u = Λ2 and u crossing bot cuts in the process. Having done this

a, aD are defined to be

a =

∫
γ

λ, aD =

∫
γD

λ (2.34)

where λ is a meromorphic one from on Σu and as such can be expanded in the basis

of one forms

λ = g1(u)λ1 + g2(u)λ2, λ1 =
dx

y
, λ2 =

xdx

y
(2.35)

Deforming the cycles by an SL(2,Z) transformation corresponds to a duality trans-

formation on a, aD. If the cycles are deformed across a pole of λ, a or aD would

be shifted by a constant proportional to the residue of λ there. It has already been

argued that such shifts are not allowed hence λ should actually be holomorphic.

A geometric interpretation for τ(u) is still required. Recall that it is defined by

τ = daD/da and has the property that Imτ(u) > 0. The complex parameter of the

Riemann surface, τu also has this property. It is defined to be

τu =
ω2

ω1

(2.36)

where

ω2 =

∫
γD

λ1, ω1 =

∫
γ

λ1 (2.37)

τ(u) and τu can be equated if λ satisfies certain conditions

τ(u) =
daD
da

=
daD
du

/
da

du
=
ω2

ω1

if
∂λ

∂u
= f(u)λ (2.38)

up to an exact form, the addition of which would not affect 2.34. The differential
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equation for λ can be integrated giving

λ =

√
2

2π

ydx

x2 − 1
(2.39)

inserting this into 2.34 the monodromies about the different singularities can be con-

firmed to agree with those computed on the gauge theory side. This serves as a

consistency check of the proposed equivalence, such a check will be left to the next

section where higher rank gauge groups will be considered.

Equipped with this equivalence between the Coulomb branch of a gauge theory

and a Riemann surface one can interpret the behaviour of one in terms of the other.

At the strong coupling singularities, u → ±Λ2 either a monopole or dyon becomes

massless. In this region the validity of 2.5 shrinks to zero, the new massless degrees

of freedom must be included in the Lagrangian in the form of a hyper coupled to the

gauge theory. In terms of the weak coupling field A the theory is strongly coupled.

Duality allows us to make a transformation to ‘magnetic’ variables in which the dual

theory is weakly coupled and the massless hyper is ‘electrically’ coupled to these new

fields. The same duality transformation takes the weak coupling coordinate a to

local coordinate in this region. For example in the region of u = Λ2, aD is a good

coordinate, AD is the weakly coupled field and the singularity corresponds to aD = 0

The same point in the moduli space corresponds to the degeneration of the Rie-

mann surface. One of γ, γD or a linear combination of them shrinks to zero size.

Using 2.34 one sees that either a, aD or a linear combination of them also vanishes.

For example at u = Λ2 the branch points at x = u,Λ2 have collided thus causing γD

to shrink and forcing aD = 0. At u = −Λ2 the cycle γD − γ has shrunk meaning

aD − a = 0

Every shrinking cycle of the Riemann surface corresponds to a BPS state becoming

massless. Indeed the central charge is

Z = nmaD + nea =

∫
nm·γD+ne·γ

λ (2.40)

To every linear combination of γ, γD one can associate a BPS state.
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2.1.8 Monopole Condensation

One can break the supersymmerty to N = 1 via the addition of a superpotential of

the form W = mTrΦ2 which gives a mass, m, to the chiral superfield part of the

V-plet. At low enough energies this will be integrated leaving a pure N = 1 gauge

theory. Such a theory is known to have a mass gap, after breaking in this fashion

however it does not seem to. To produce the expected behaviour requires some light

fields that can be used to Higgs the gauge field. Fortunately, such fields do exist at

the strong coupling singularities.

For low mass TrΦ2 appears in the low energy action as mU , where U is a chiral

superfield with scalar component u. In a region near where a monopole becomes

massless the superpotenetial is given by

W =
√

2ADMM̃ +mU (2.41)

With the local coordinate being aD. Denoting the scalar components of the monopole

hyper by (M, M̃) one gets that

√
2ADMM̃ +m

du

daD
= 0 (2.42)

aDM = aDM̃ = 0 (2.43)

When m = 0 this reduces to the usual N = 2 vacua with |M | = |M̃ | = 0. For non

zero mass however the solution is aD = 0,

M = M̃ =

(
− m√

2

du

daD

∣∣∣∣
aD=0

)1/2

(2.44)

Thus in this the only vacuum that survives is the strong coupling singularity. The

gauge field acquires a mass through the Higgs mechanism and the theory has a mass

gap. This Higgs mechanism is different from the usual form, in that it involves the

condensation of monopoles this leads to confinement of electric charge in the N = 1

theory.
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In the regular Higgs mechanism there is a condensate of electric charges which

causes the screening of any background electric field. All magnetic field lines are

excluded (Meissner effect) meaning that flux tubes must form and magnetic charge

is confined. In the present situation there is confinement of electric charge due to a

dual Meissner effect.

In the region of the other strong coupling singularity a similar process occurs.

Therefore the two stong coupling singularities are the only N = 1 vacua. When

G = SU(N) is considered the same behaviour can be seen. There are N points where

N − 1 dyons become massless, these points are the N = 1 vacua.

2.2 SU(N)

For an SU(N) N = 2 gauge theory the moduli space of inequivalent vacua is obtained

by minimising the scalar potential V ∝ Tr[φ, φ+]2 which means that

〈φ〉 =
N∑
i=1

aiH
i, with

N∑
i=1

ai = 0 (2.45)

where H i are elements of the Cartan subalgebra of U(N),
∑N

i=1 ai = 0 restricts 〈φ〉

to be in the Cartan of SU(N) instead. Thus the classical moduli space is

Mcl
N =

TN
SN

(2.46)

TN = {ai|ai ∈ C,
∑N

i=1 ai = 0} and SN the permutation group of N objects, is the

Weyl group of SU(N). Generically a non zero value for 〈φ〉 will break SU(N) →

U(1)N−1. There are special submanifolds where the ai coincide and SN does not

act freely. Along these submanifolds the gauge symmetry is not completely broken

but enjoys an enhancement to some non abelian subgroup, in particular when all ai

coincide, ai = 0 ∀i and SU(N) is unbroken.

The W±
ij bosons gain masses ∝ |ai − aj| and will be integrated out when the low
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energy theory is considered. The low energy action is

Seff =
1

4π

∫
d4x Im

[∫
d4θAiDA

+
i +

1

2

∫
d2θτ ijWα

i Wj α

]
(2.47)

where AiD = ∂iF and τ ij = ∂i∂jF , F being the prepotential. The duality group is

Sp(N − 1,Z), it acts on A = (AiD, A
i) by A→MA and on τ ij by

τ ij → Aτ +B

Cτ +D
, M =

A B

C D

 (2.48)

A,B,C,D are N − 1×N − 1 matrices.

The chiral anomaly breaks U(1)R → Z4N . φ has charge 2 under this meaning that

TN has a Z2N symmetry ai → e
iπ
N ai. To parametrise MN use the gauge invariant

coordinates

uk = 〈Trφk〉 =
∑
i

aki (2.49)

The Z2N symmetry acts uk → e
iπk
N uk. One could also use the elementary symmetric

polynomials

sk = (−1)k
∑

i1<···<ik

ai1 . . . aik (2.50)

which are related to the uk s by

ksk +
∑
l

sk−lul = 0, s0 = 1, s1 = 0, u0 = 0, u1 = 0 (2.51)

2.2.1 SW Curve

We now attempt to find the curve which describes the Coulomb branch physics of an

SU(N) gauge theory. Following the previous section, the gauge couplings τ ij should

be equated with the period matrix of the Riemann surface described by the SW curve

and ai, a
i
D, i = 1, . . . , N − 1 with periods of a holomorphic differential λ. Thus one

concludes that the SW curve describes a genus N − 1 surface. To start, consider the
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hyperelliptic curve

y2 =
2N∏
l=1

(x− el) = F (x) (2.52)

This is a two sheeted covering of the x plane branched at 2N points, el. Using the

Riemann-Hurwitz formula one sees that 2.52 describes a genus N − 1 surface. A

curve y2 = F with F degree 2N − 1 in x will also describe a genus N − 1 surface

but requires a branch point at infinity. This is the form of the curve derived in the

preceding section for SU(2). Having all the branch points at finite values, however,

will make the analysis of the monodromies much easier.

The coefficients of F must be gauge invariant parameters, uk or sk, and/or Λ the

dynamically generated scale of the theory. When Λ→ 0 or equivalently |ai−aj| � Λ

the curve should reproduce the properties of the gauge theory at weak coupling. The

curve should be singular along the special submanifolds where the gauge symmetry

is enhanced; the branch points collide when the ais coincide. Thus as Λ → 0, F (x)

contains a factor P (x) =
∏N

i=1(x − ai). In addition at weak coupling there is an

ever present singularity which does not depend on the specific values of ai. Such a

singularity occurred in the SU(2) case, physically it comes from the logarithm in the

equation for the coupling 2.62 and also from the fact that paths that are closed in

Mn may only be closed in TN up to a Weyl group transformation (c.f. 2.24). This

behaviour is reproduced in the curve if at weak coupling every root of the right hand

side of 2.52 is a double root i.e. y2 = P (x)2.

As one moves towards weak coupling instanton effects become more important.

This can be reflected in the curve by the emergence of terms proportional to the one

instanton amplitude. All these elements combined, lead to the following proposal for

the SW curve

y2 = P (x)2 − Λ2N =

(
N∑
k=0

skx
N−k

)2

− Λ2N (2.53)

It will be shown in subsequent sections that this curve reproduces the correct mon-

odromies observed of the gauge theory. This can be interpreted as two copies of the

classical curve, P (x), which at weak coupling lie atop one another but a stronger
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coupling are separated by a distance of 2ΛN in the sN direction. By assigning R

charges N to y and 1 to x the curve exhibits the same Z2N symmetry as the moduli

space. This can be restored to the full U(1)R by further assigning Λ charge 1.

2.2.2 Weak Coupling Monodromies

One can always break SU(N)→ SU(N −1) by choosing v.e.v.s of the SU(N) theory

appropriately. Therefore a copy of MN−1 should be contained in MN , at least at

weak coupling. The SW curve encodes this and can be checked by letting ai v a,

i = 1, . . . , N − 1 and aN = (1−N)a with |a| � Λ. After this the curves is

y2 =
N∏
i

(x− ai)2 − Λ2N = (x− a)2(N−1)(x− (1−N)a)2 − Λ2N (2.54)

a shift of x→ x+ a gives

x2(N−1)(x+Na)2 − Λ2N (2.55)

There are now 2N branch points clustered near the origin and a pair near x = −Na.

By sending this pair off to infinity, the curve for SU(N − 1) should be reproduced.

Doing this in a consistent fashion requires holding Λ2N

a2
= Λ

2(N−1)
N−1 fixed. This is the

standard renormalisation group matching, it occurs because when one integrates out

a color the couplings should run into each other, implying
(

Λ
a

)2N
=
(

ΛN−1

a

)2N−2

. By

rescaling y → y(x+Na) and then taking the limit, the SU(N −1) curve is produced.

Having checked this, it is now possible to confirm that the weak coupling mon-

odromies are correctly reproduced. As already discussed each weak coupling mon-

odromy is related to an action of the Weyl group, closed paths in MN may be only

closed in TN up to the action of SN . Thus there are multiple weak coupling mon-

odromies for higher rank groups. It has just been checked that at weak coupling there

is a copy ofMN−1. Hence all that needs to be checked is that the single monodromy

present inMN but not inMN−1 is correctly reproduced. An inductive argument then

ensures that the others are present as well. The element of the Weyl group associated
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to this is π ∈ SN , π = (123 . . . N) which permutes all the ais. This element is not

related to any region of enhanced gauge symmetry, as opposed to, say, π′ = (23 . . . N)

which corresponds to a region where SU(N)→ SU(N − 1).

First the monodromy will be computed using the SW curve and then checked

against results from perturbation theory. It can be computed by following a path in

MN which is only closed in TN up to the action of π. Let aJ = ωJa = e
2πiJ
N a, which

causes sk = 0,∀k 6= N . The appropriate path is then aJ(t) = ωJ+ta, 0 ≤ t ≤ 1,

sN → e2πisN . With sk = 0,∀k 6= N 2.53 becomes

y2 = (xN + sN)2 − Λ2N = x2N + s2
N

(
1− Λ2N

s2
N

)
+ 2sNx

N (2.56)

=

[
xN + sN

(
1− ΛN

sN

)][
N + sN

(
1 +

ΛN

sN

)]
(2.57)

As this is weak coupling sN � ΛN and the curve factorises

y2 =
N∏
J=1

(
x+ ωJs

1/N
N

(
1− ΛN

sN

))(
x+ ωJs

1/N
N

(
1 +

ΛN

sN

))
(2.58)

The branch points are arranged in N pairs labelled by J at −ωJs1/N
N

(
1± ΛN

sN

)
,

with cycles of the surface labelled as in figure 2.2.2 (by contour deformation
∑

i γi = 0,

this is the same condition as
∑

i ai = 0). Under sN → e2πisN the J th pair moves to the

position of the J+1th pair. Each pair also performs a full counter clockwise rotation

about its centre in the process. The effect of this is to send the cycles γi → γi+1or

γi → P j
i γj where P j

i = δji − δNi+1 and also wind γiD around each branch cut it passes

through, see figure 2.2.2. Therefore the monodromy matrix is

M =

1 Q

0 1

tP−1 0

0 P

 (2.59)

With Q a N − 1 × N − 1 matrix to be determined. The second matrix implements

γi → γi+1, the factor of tP−1 is present as γiD are only affected by the rotation of

the individual pairs not the overall rotation of the whole system. The first matrix
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Figure 2-1: Here the arrangement of branch cuts and labelling of the cycles for SU(3)
is depicted.(This figure is taken from [3])

Figure 2-2: On the left a full rotation of the branch cut has resulted in γD being
wound around it. By deforming the cycles one sees that it is equivalent to the scenario
depicted on the right (This figure is taken from [3])

29



corresponds to the winding of γiD about a branch cut. These two operations commute

and combining this with the former operation being order N gives

MN =

1 NQ

0 1

 (2.60)

After traversing the path in the sN plane N times, γiD is wound N times around

each cut that it intersects, namely the ith and N th. These can be unwound by the

procedure illustrated in figure 2.2.2 giving

γiD → γiD − 2Nγi + 2NγN = δijγ
j
D +NQijγj, Qij = −2(δij + 1) (2.61)

The different signs in front of the factors of 2 arise as 〈γiD, γi〉 = 1 but 〈γiD, γN〉 =

〈γiD,−
∑N−1

j γj〉 = −1. Using 2.61 in 2.59 gives the monodromy matrix M .

This must now be checked against the result on the gauge theory side. At weak

coupling aiD = τ ijaj where

τ ij =
i

2π

[
δij
∑
k

ln aikaki + δij ln ainani − ln aijaji +
∑
k

(δik + δjk + 1) ln aknank

]
(2.62)

and aij = |ai − aj|. Performing sN → e2πisN , ai → ai+1 implies aij → e2πi/Naij and

ln aijaji → ln aijaji + 2πi( 2
N

) and hence τ ij → τ ij +Qij,

aiD = τ ijaj → τ ijP k
j ak +QijP k

j ak (2.63)

This looks different form 2.61 but the low energy couplings are symmetric in each of

the U(1) factors ⇒ τP =tP−1τ , which agrees with the SW curve result. For SU(2)

it was seen that M∞ factorised into two, a classical part P and a quantum one T−2.

The same is true here
(

1 Q
0 1

)
being the quantum part that can be attributed to the

logarithm in 2.62.
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2.2.3 Strong Coupling Monodromies

As was the case for SU(2), strong coupling singularities in the moduli space indicate

that dyons or monopoles are becoming massless. The mass of BPS state is given

by the central charge 2.20 and in the appropriate local coordinates the singularity is

located at nmaD(u)+nea(u) = 0 which is a complex codimension 1 locus. This picture

becomes more intricate when higher rank groups are considered. The loci where single

dyons become massless are now N − 2 complex dimensional submanifolds. These are

allowed to intersect and at these intersections multiple dyons will become massless.

If the massless states correspond to cycles that do not intersect then they are called

mutually local. At vacua with mutually local massless dyons a duality transformation

can be performed. The dual theory is weakly coupled and each of the massless states

will be coupled ‘electrically’ to different U(1) factors. If, on the other hand, the

cycles intersect the massless states are called mutually non local. There is no duality

transformation that can bring this to a theory with only electric degrees of freedom.

Such regions with mutually non local massless dyons are known as Argyres-Douglas

(AD) loci, in this region the theory has no Lagrangian description. In fact these AD

loci provided the first explicit construction of non local theories. Monodromies are

encountered when one circles about a singular manifold. The monodromies due to

each individual massless state will commute if they are mutually local but wont if

they are non local.

To begin, consider the singularity, P , due to a single massless dyon of charge

n = (nm, ne)
t. Near P a duality transformation A → UA, can be performed, The

theory is a U(1) theory which flows to zero coupling and the charge is ñ = (0, ñe)
t.

In local coordinates, ã, the location of P is given by ã = 0 and

τ ij =
−i
2π
δij(ñie)

2 ln(ñieãi) (2.64)
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The monodromy about this is then

M ′ =

Id (ñie)
2

0 Id

 (2.65)

This matrix can then be conjugated by U to give the general strong coupling mon-

odromy matrix

M ′ =

Id + nienm
j nien

j
e

−nimnjm Id− njmne i

 (2.66)

To study the monodromies produced by the SW curve, one must first locate

the strong coupling singularities and determine their type. This can be done by

considering the discriminant of the polynomial on the right hand side of 2.53, F (x) =

(P (x)− ΛN)(P (x) + ΛN) = F−(x)F+(x),

∆(F (x)) = ∆(F−)∆(F+)
∏
i<j

(a+
i − a−j )2 (2.67)

Where a±i are the roots of F±. Using F+ − F− = 2ΛN and
∏

i<j(a
+
i − a−j )2 =∏

i(F+(a−i ))2 one sees

∆(F ) = 22NΛ2N2

∆(F−)∆(F+) (2.68)

The vanishing of the discriminant signals a multiple root and so the collision of

branch points or in other words singularities of the moduli space. When only one of

∆(F±) = 0 a single dyon becomes massless, when both are zero there are multiple

massless dyons. These may be mutually local or non local. They are mutually non

local if either of ∂F±
∂sk

= 0,∀k at these points also.

To continue further, we specialise to the case of SU(3) and use the SW curve to

study the different singularities and check the monodromies are correct. The SW

curve is

y2 = (x3 + s2x+ s3)2 − Λ6 = (x3 − ux− v)2 − Λ6 (2.69)

The discriminants are ∆(F±) = 4u3 − 27(v ± 2Λ3)2. There are thus 6 singular sub-

manifolds where a single dyon becomes massless. In addition there are 5 points of
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intersection between these. There are three located at v = 0, u3 = (3Λ2)3, called Z2

vacua. They preserve this subset of the global Z6 symmetry and involve two mutually

local states becoming massless. They are rotated into each other by u→ e2πi/3u. The

other two are at u = 0, v = ±2Λ3 and are called Z3 vacua. At the Z3 vacua three

mutually non local dyons become massless. The Z2 points are not lifted when one

breaks to N = 1 supersymmetry via the addition of a superpotential and are thus

the N = 1 vacua. In general there are N − 1 points where the maximum number of

mutually local dyons become massless. These are the N − 1 different vacua for the

N = 1 SU(N) gauge theory.

Computing all strong coupling monodromies can be a lengthy process, especially as

their number increases rapidly as the rank goes up. Here we restrict to computing one

of the Z3 monodromies. Using the local coordinates near the vacuum, s2 → s2−2
2
3 3Λ2

with |sk| � Λk the curve is

y2 = (x−1 +
√
s2 + s3)(x−1−

√
s2 + s3)(x+ 1 +

√
s2 + s3)(x+ 1−

√
s2 + s3)(x2−4)

(2.70)

(Λ has been set as 21/3 for conveninece). There are two branch cuts located near

±1. First look at the branch cut stretching between 1 +
√
s2 + s3 and 1−

√
s2 + s3.

Traversing at path in the s2 + s3 plane s2 + s3 → e2πi(s2 + s3) keeping s2 − s3 fixed,

causes the branch cut to perform a 180◦ rotation about its centre point. This leaves

γ1, γ2, γ2
D, γ

3 unaffected but winds γ1
D around the cut. This can be unwound as in

figure 2.2.2 to give γ1
D + γ1. Note the factor of two is missing as is the γ3, this is

because the cut was only rotated half way while the cut encircled by γ3 was unaffected.

If instead one follows the path s2 − s3 → e2πi(s2 − s3) with s2 + s3 fixed, the other

branch cut near -1 is rotated with similar effect. The two monodromies are thus

M1 =


1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

 , M2 =


1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 (2.71)
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Which are the same as those in 2.65. Conjugating these matrices by the duality

transformation that took us to the local coordinates will bring them to the form 2.66

which allows one to read off the charges of the massless dyons. Doing this for all the

Z2 vacua gives the following set of dyon charges.

n1 = (1, 1,−1, 0) n2 = (0, 1,−1, 1)

n3 = (1, 0,−1, 1) n4 = (0, 1,−1, 1)

n5 = (0, 1, 0,−1) n6 = (1, 0, 1, 0)

(2.72)

They are arranged so that the rows are pairs of mutually local dyons that become

massless at the Z2 vacua. The columns are the three mutually non local dyons that

become massless at Z3 vacua.

2.2.4 SW Differential

In order to be able to equate the couplings and the period matrix of the Riemann

surface the SW differential is required. For higher genus surfaces the period matrix

is given by τ ij =
∑

lA
i
l(B

−1)lj where

Ail =
∂aiD
∂sl

=

∫
γiD

λl , Bjl =
∂aj
∂sl

=

∫
γj

λl (2.73)

Here λl = xN−ldx
y

, l = 2, . . . , N form a basis of holomorphic differentials on the surface.

In order to have

aiD =

∫
γiD

λ , ai =

∫
γi
λ (2.74)

the SW differential must satisfy the following condition

∂λ

∂sl
∝ λl (2.75)

up to the addition of an exact form. Which can be done by choosing

λ =
−1

2π

∂P

∂x

xdx

y
(2.76)
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by differentiating λ one sees that the condition is indeed satisfied up to the exact form

1
2π

d
(
xN+1−l

y

)
with proportionality constant 1

2π
. Other definitions of the differential

are possible but 2.76 is the simplest.

2.2.5 SU(2) revisited

The SW curve, 2.53, derived in this section applied to gauge group SU(2) gives

y2 = (x2 − u)2 − Λ4, u = −s2 (2.77)

which seems considerably different from 2.32, for one thing the curve above is quintic

as opposed to cubic. It has already been discussed, however that polynomials of

degree 2N and 2N − 1 can both be used to describe a genus N − 1 curve. In fact one

can map 2.32 to 2.77 via a fractional linear transformation which takes the branch

points of one curve to the other. This brings all the branch points to finite values of

x, putting them all on the same level.

2.2.6 Other Classical Groups

Given that the SW curve for any unitary gauge group is simply a classical curve

perturbed by a one instanton process it is straightforward to generalise this to other

classical groups. As an example consider rank r orthogonal groups. The condition

that 〈φ〉 is in the Cartan of the gauge group means that

〈φ〉 = diag(A1, . . . , Ar), Ai =

 0 ai

−ai 0

 (2.78)

The moduli space is parametrised by the gauge invariant parameter u2k which at

weak coupling are

u2k =
r∑
i=1

a2k
i (2.79)
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or the elementary symmetric polynomials s2k = (−1)k
∑

i1<···<ik a
2
i1
. . . a2

ik
which are

related to the u2ks by 2.51 with s0 = 1, s2 = 0. Thus the SW curves for SO(N) are

y2 =

(
r∑

k=0

s2kx
2r−k

)2

− Λ2(N−2)x2 N odd (2.80)

y2 =

(
r∑

k=0

s2kx
2r−k

)2

− Λ2(N−2)x4 N even (2.81)

The coefficients of the instanton factors ensure that the curves have the correct trans-

formation properties under the R-symmetries. The SW differential is the same as for

the unitary curves.

2.3 Seiberg-Witten Curves with matter

2.3.1 Central Charge and Duality

Before attempting to derive the SW curves, a few facts regarding supersymmetric

gauge theories with matter must be stated. First, coupling hypers to the gauge

theory requires adding a hypermultiplet kinetic term to the Lagrangian as well as the

superpotential

W =
√

2Q̃i
aΦ

j
iQ

a
j +

∑
a

maQ̃
i
aQ

a
i (2.82)

a = 1, . . . Nf . The global symmetry now contains an extra group factor called the

flavor symmetry. Classically this is U(Nf ) but can enjoy some enhancement depend-

ing on the representation of the hypers. If they transform in a real rep of the gauge

group the flavor symmetry is Sp(2Nf ) while if the rep is pseudo real it is SO(2Nf ).

Generically non zero masses will break the flavor symmetry to U(1)Nf .

The central charge was earlier identified with the mass of a BPS state, M =
√

2|Z|,

and as such should be modified by the inclusion of bare masses to

Z = nima
i
D + niea

i + Sama (2.83)
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where Sa is the U(1) charge of the ath massive hyper. Fundamental quarks have Sa =

±1. In the previous chapter all fields transformed in the adjoint of the gauge group

and a choice was made so that they had integral charges. Under this, fundamental

hypers had half integral charge. One can ensure all particles have integral charge by

multiplying nie by 2 and dividing a by 2 which keeps 2.83 invariant. These are also

accompanied by a rescaling of the coupling to τ(a) = θ
π

+ 8πi
g(a)2

.

The extra bare mass terms in the central charge facilitate an enlargement of the

duality group from Sp(2r,Z) for a pure theory to Sp(2r,Z) n (Z)Nf when matter is

included. When duality was encountered previously it was noted that the group could

actually have the action a → Ma + c but the shift was precluded as it could not be

compensated for. The new terms provide a way to compensate for such a shift and

the group is enlarged accordingly. The action is now

a→Ma+ Cm, n→t M−1n (2.84)

and S → S − Cn (2.85)

where C =
( Sanie
−Sanjm

)
is a 2N − 2×Nf integer matrix and M given by 2.66.

2.3.2 Singularities

The introduction of matter causes further singularities in the moduli space which are

due to massless quarks rather than massless dyons. To study these singularities we

consider G = SU(2), Nf = 3 with degenerate masses ma = m � Λ,∀a. The flavor

symmetry Spin(6) = SU(4)1 is broken to SU(3)×U(1) by the non zero bare masses.

There are singularities when |a + Sama| = 0, setting Sa = 1 means that there is a

single singularity at weak coupling a + m = 0. At this point three quarks become

massless. These three quarks transform in the 3 of the flavor symmetry. At a point

1The fundamental of SU(2) is pseudo real so there is an enhancement of the flavor symmetry to
SO(2Nf ). The hypers transform as 2Nf half hypers in the fundamental of SO(2Nf ). Like instantons
the monopoles of the theory also have zero modes, one per left handed fermion in the fundamental
of the gauge group. There are thus 2Nf fermion zero modes for the monopole. These form a 2Nf
dimensional Dirac algebra, therefore the monopole transforms as a spinor of SO(2Nf ) this suggests
that the quantum flavor symmetry is Spin(2Nf ).
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in M with u � m2 the quarks have no effect and the theory has Nf = 0. By the

renormalisation group matching Λ4 = m3Λ′ where Λ is the dynamically generated

scale of the Nf = 0 theory and Λ′ is that of the Nf = 3 theory.

By decreasing the bare mass the quark singularity will move away from the weak

coupling region. If the bare mass vanishes then the full SU(4) flavor symmetry is

restored. The massless fields at the singularities must now form representations of

SU(4). There are five massless fields shared over the singularities. To be consistent

with the flavor symmetry there must be only two singularities, one with fields in

the 4 of SU(4) and the other with a flavor singlet field, both of which are at strong

coupling. Naively one might think that the quark singularity has combined with one

of the other singularities and the four massless fields are simply three quarks and one

dyon (or monopole) this is not the case however. The four fields all have charge (1, 0)

while at the other singularity the singlet field has charge (2, 1).

The cases of Nf = 1, 2 can similarly be analysed although in theses cases the R-

symmetry further constrains the singularities. When m is large the quark singularity

is at weak coupling and the massless fields transform in reps of the broken flavor

symmetry. At u� m2 the theory appears to be Nf = 0 and there are the usual two

strong coupling monodromies with massless flavor singlet fields. For Nf = 2 there is a

Z2 symmetry and when m = 0 the full flavor symmetry Spin(4) = SU(2)× SU(2) is

restored. This suggests that there are only two singularities with two massless fields

at each. They transform in the spinors of Spin(4). If Nf = 1 then there is a Z3

symmetry implying that there are always three singularities each with one massless

field in a singlet of SO(2).

2.3.3 SW Curves

Having studied the SW curves without matter and the new effects and features en-

countered when it is introduced we can now state some rules for the construction of

the curves with Nf < 2Nc.
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Classical Curve: The curve should take the form of some classical curve perturbed

by instanton corrections. When Λ→ 0 this classical curve should emerge. In addition

the discriminant of the full curve should have zeros at the singularities. Therefore as

Λ→ 0 it should be of the form

∆ ∝ ∆2
Nc∆NfNc (2.86)

where ∆2
Nc

=
∏

(ai − aj)2 is the factor due to the symmetry breaking of the gauge

theory and ∆Nf ,Nc =
∏Nf

a=1

∑Nc
k=0(sk(−ma)

Nc−k) has zeros at the quark singularities

ai+ma = 0. The order of vanishing of the discriminant indicates the number of fields

becoming massless at that point as it is the number of codimension 1 varieties that

intersect there. This is also the dimension of the representation of flavor symmetry

that the fields transform in.

Instantons: The instanton corrections should be proportional to the one instanton

amplitude. They take the form

Λ2Nc−Nf (2.87)

R Symmetry: The curve should exhibit symmetry under Z2Nc−Nf . This is achieved

by the following assignment of charges

y x ma Λ uk sk

Nc 1 1 1 k k

The assignment of charge 1 to Λ will restore the full U(1)R symmetry of the curve.

Integrating out a flavor: A flavor can be integrated out by sending a bare mass

to infinity m→∞ such that

Λ
2Nc−Nf+1
Nf−1 = mΛ

2Nc−Nf
Nf

(2.88)

is held fixed. Upon doing this the resulting curve should be of the from of a Nf − 1

theory.
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SW Differential: The SW differential was constrained to be holomorphic when

there was no matter present. The new form of the duality transformation now allows

for poles provided that the residues are linear combinations of the bare masses

2πiRes(λ) =
∑
a

nama, na ∈ Z (2.89)

2.3.4 Examples of Curves

The most general form of the curve when Nf < Nc is

y2 = P (x)2 − Λ2Nc−NfG(x,ma) (2.90)

The first factor is required so that the classical symmetry breaking of the gauge group

is reproduced. Only one instanton processes can be used due to the R-symmetry

charge which also implies that G(x,ma) is a degree Nf polynomial in x,ma. G(x,ma)

must also be symmetric in ma which suggests the curve for SU(Nc), Nf < Nc is

y2 = P (x)2 − Λ2Nc−Nf
Nf∏
a=1

(x+ma) (2.91)

This can be confirmed by using the residue properties of the SW differential

λ =
xdx

2πiy

[
PG′

G
− P ′

]
(2.92)

Which has poles at εa, the zeros of G. At these points y = ±P (εa) which combined

with Res(G
′

G
)
∣∣
x=εa

= na na being the order of the pole implies 2πi Res(λ)|x=εa
=

±naεa. Which confirms G(x,ma) =
∏Nf

a=1(x+ma). The sign in front on the instanton

factor is chosen so as to reduce to 2.53 upon integration of a quark. As an example

consider Nc = 3, Nf = 1,

y2 = (x3 − ux− v)2 − Λ5
1(x+m) (2.93)
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If one sends m → ∞ and Λ1 → 0 such that Λ5
1m = Λ6

0 2.93 reduces to the Nf = 0

curve 2.69. The discriminant of this polynomial can be calculated and to lowest order

in Λ1 is

64Λ15
1 (4u3 − 27v3)(m3 −mu− v) +O(Λ16) (2.94)

which exhibits the correct singularity structure.

When 2Nc > Nf ≥ Nc two instanton processes are allowed by R-symmetries.

Using the same methods as above the SW curves can be calculated. To save on space

the result will just be presented ([11])

y2 = (P (x) + Λ2Nc−NfH(x,ma))
2 − Λ2Nc−Nf

Nf∏
a=1

(x+ma) (2.95)

H(x,ma) is a degree Nf − Nc polynomial in x and ma. The requirement that H be

symmetric in ma fixes it to be

H(x,ma) =
1

4

Nf−Nc∑
k=0

xNf−Nc−itk(m), tk(m) =
∑

a1<···<ak

mi1 . . .mik (2.96)

The factor of 1/4 comes from matching to the curves which are derived from first

principles for SU(2) in [2]. 2.95 can be used as the curve for all Nf < 2Nc theories by

choosing H = 0 when it has negative degree By letting Q = P (x) + Λ2Nc−NfH(x,ma)

the SW differential is given by

λ =
xdx

2πiy

[
QG′

G
−Q′

]
(2.97)

2.3.5 Theories with Nf = 2Nc

The case of Nf = 2Nc needs to be considered separately as the theory has vanishing

β function. The main implication for the SW curves is that there can now be explicit

dependence on the UV gauge coupling τ . The method of derivation presented here is

from [10] and uses the same principles as the previous cases. The procedure will take

a top down approach instead, the most general curve is proposed for SU(2Nc), Nf =
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2Nc and reduced to the desired curve by integrating out colors. The curve is further

constrained by matching to solutions derived from first principles in [2].

The most general curve for SU(2Nc), Nf = 2Nc is that of the classical curve P̃ (x)2

perturbed by instanton effects (The variables of the larger asymptotically free theory

are denoted by tildes). Both one and two instanton processes can be included as the

amplitude is proportional to Λ2Nc thus giving

y2 = P̃ 2 − Λ2NcQ̃+ Λ4NcR̃ (2.98)

Here P̃ , Q̃, R̃ are degree 4Nc, 2Nc, 0 polynomials. The gauge group can be broken

SU(2Nc) → SU(Nc) × SU(Nc)
′ × U(1) by letting ãi = M + ai, i = 1, . . . Nc and

ãj = −M+aj, j = Nc+1, . . . 2Nc. Only quarks coupled to the first SU(Nc) should be

left after the decoupling limit is taken. This is achieved by choosing m̃a = −M +ma,

M � ai, aj,ma.

To decouple the SU(Nc)
′ gauge group one takes the limit M →∞ while holding(

Λ
M

)2N ∝ q ≡ eiπτ . The right hand side of this expression comes from the renormalisa-

tion group matching but is only perturbatively correct. To take into account possible

instanton corrections let
(

Λ
M

)2N
= f(q) with f(q) ∝ q +O(q2) at weak coupling.

The bare masses may also be renormalised in this limit. There are two possible

renormalisations, one for the trace of the mass matrix which is a flavor singlet and the

other for the traceless part, which transforms in the adjoint of SU(Nf ) . Denoting

the singlet by µ = 1/Nf

∑
ma and the adjoint masses µa = ma − µ one has m̃a =

−M + µ+ µa at weak coupling but the correct matching condition is

m̃a = µ̃+ µ̃a = (−M + g(q)µ) + h(q)µa (2.99)

Where g(q), h(q) v 1 +O(q).

Taking this limit in the SW curve should correspond to the degeneration of the

Riemann surface into two parts each with genus g = Nc − 1. Making these substitu-
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tions in 2.98 gives

y2 =
Nc∏
i=1

(x−M − ai)2

2Nc∏
j=Nc+1

(x−M − aj)2 − Λ2NcQ̃+ Λ4NcR̃ (2.100)

A shift of x → x + M will take P̃ 2 =
∏Nc

i=1(x − M − ai)
2
∏Nc

i=j(x − M − aj)
2 to

v x2Nc(x+ 2M)2Nc . This has 2Nc branch points near x = 0 and 2Nc near x = −2M

and so describes the degeneration sought. The rest of the curve must also factorise

in such a fashion. After a rescaling y → (2M)Ncy and for x�M the curve becomes

y2 = P (x)2 − f(q)Q̃(x+M, m̃a, ãi) + f(q)2M2NcR̃ (2.101)

This should be the curve for SU(Nc), Nf = 2Nc. It can only depend on the SU(Nc)

parameters and not the SU(Nc)
′ ones and must be independent of M . Therefore

R̃ = 0 and Q̃(x + M, m̃a, ãi) = Q̃(x + g(q)µ, h(q)µa). To determine the form of Q̃

the SW differential is used in the same way as the previous section with a slight

modification.

In the present context in is convenient to use a different form of the SW differential

λ = a ln

(
P − y
P + y

)
dx (2.102)

This satisfies the conditions 2.75 and so is a valid differential. It does however have

logarithmic singularities at Q̃(εa) = 0, these can be turned into poles however by

adding the exact form

d

[
a(x+ b) ln

(
P + y

P − y

)]
(2.103)

which does not affect the conditions 2.75. The resulting differential is

λ = a(x+ b)d

[
ln

(
P − y
P + y

)]
(2.104)

There are now poles at x = εa the residues of which are ±a(εa + b). The zeros of

Q̃ are thus linear combinations of the masses which can only appear in the curve
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in flavor symmetric combinations. This implies Q̃ =
∏

(x + g(q)µ + h(q)µa). One

renormalisation can be set to 1 by a redefinition of the coupling, h = 1. The condition

on the poles of λ is that the residues are linear in the bare masses. Using this the

constants a, b are found

± 2πia(εa + b) = ∓ma = ∓(µ+ µa) ⇒ a =
1

2πi
, b = (g − 1)µ (2.105)

With these values the SW differential has a pole at∞ with residue ±2Ncµg(1−f)−1/2.

This can be made to satisfy the residue condition by setting f = (1 − g2)1/2. The

final from of the curve is

y2 = P (x)2 − (1− g(q)2)
2Nc∏
a=1

(x+ g(q)µ+ µa) (2.106)

The function g(q) is as yet undetermined. To do this requires matching to the curve

for SU(2), Nf = 4 which is derived from first principles in [2]. The result is given in

terms of the Jacobi theta functions

g(q) =
θ4

2 + θ4
1

θ4
2 − θ4

1

or g(q) =
θ4

3 − θ4
1

θ4
3 + θ4

1

(2.107)

Where θ4
1 = 16q + O(q3), θ4

2 = 1 = 8q + O(q2), θ4
3 = 1 + 8q + O(q2). They

have the properties θ4
1(τ + 1) = −θ4

1(τ), θ4
2(τ + 1) = θ4

3(τ), θ4
3(τ + 1) = θ4

2(τ) and

θ4
1(−1

τ
) = −τ 2θ4

2, θ4
2(−1

τ
) = −τ 2θ4

1, θ4
3(−1

τ
) = −τ 2θ4

3. Therefore the two possibilities are

related by τ → τ+1 and invariant under τ → τ+2. The curve is also invariant under

τ → −1/τ if µ→ −µ which suggests that the S-duality group of SU(Nc), Nf = 2Nc

is Γ̃0(2).

The SW curve governs the low energy behaviour of the gauge theory, meaning that

Γ̃0(2) may only appear to be the S-duality group at low energies. In [14], however,

it was shown to be exact. This was done by embedding the scale invariant theory in

a larger asymptotically free theory. By scaling appropriately it was found that the

coupling space of the smaller theory is a submanifold of the Coulomb branch of the

larger theory. The exact global symmetries of Coulomb branch are inherited by the
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coupling space and become the S-duality group.

Curves for other classical gauge groups with matter can be constructed using the

methods presented in this section [12], [13]. The next chapter however, will see the

introduction of a more intuitive method for constructing all SW curves and will be

left till then.
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3. A String Theory Perspective

In this section Type IIA string theory and its S-dual theory M theory are used to

further understand the association between the Coulomb branch of a gauge theory

and the moduli space of certain Riemann surfaces. Brane configurations in type IIA

which have N = 2, 4d worldvolume (w.v.) theories will be considered. Taking the

strong coupling limit of these theories results (via Type IIA S-Duality) in an uplift of

the configuration to M theory. It turns out that this is a single M5 brane wrapping

a Riemann surface described by the SW curve, ΣSW , of the 4d theory [19].

Thus ΣSW , which was a purely auxiliary object in the field theory, is given a

physical interpretation by considering by a string theory embedding. Using this type

IIA\M theory picture one can quickly find curves for theories with product gauge

groups. These cannot be found via the methods previously espoused as they are not

hyperelliptic. This method can also provide a first principles derivation of previously

encountered curves, one which does not rely on a hyperelliptic ansatz. The inclusion

of symplectic and orthogonal group factors is facilitated by orientifold planes [24] [25]

[26].

That an insight such as this is gained via a string theory perspective is not sur-

prising. Previous to [19] field theory phenomena such as Montonen-Olive duality [17]

and mirror symmetry in 3 dimensions [18] were given explanations through type IIB

string theory. In [18] configurations of D3 branes suspended between NS5 branes and

D5 branes are studied. The Coulomb branch of the D3 worldvolume theory is associ-

ated to D3s suspended between two NS5s while the Higgs branch to D3s between two

D5s. S-duality of type IIB swaps D5s with NS5s and vice versa while keeping D3s in-

variant. Thus the Higgs and Coulomb branches are exchanged and mirror symmetry
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Figure 3-1: A configuration of two NS5s with a number of D4s suspended between
them. The vertical axis is the v direction and the horizontal the x6 direction (this
figure is taken from [19]).

is realised as type IIB S-duality. 1

3.1 Type IIA Brane Confiurations, M Theory and

Unitary Groups

To obtain a 4d N = 2, theory configurations of D4s suspended between NS5s are

considered. All branes span xµ, µ = 0, 1, 2, 3, which will be the spacetime of the 4d

theory and lie at the origin of xµ, µ = 7, 8, 9. NS5s will also span x4, x5, combined

into one complex variable v = x4 + ix5, while being pointlike in x6. The D4s are

point like in v and of finite extent in x6, being suspended between pairs of NS5s, see

figure 3.1. This configuration preserves N = 2 supersymmetry on the worldvolume

of the D4s. As they are finite in x6 the D4 w.v. theory is effectively a 4d N = 2

theory. D6s and orientifolds will later be added without breaking supersymmetry any

further. The D6s will span xµ, µ = 0, 1, 2, 3, 7, 8, 9 and be pointlike in v and x6.

1Mirror symmetry as discussed above is different from the perhaps better known mirror symmetry
of Calabi-Yau manifolds although in a string theory setting they are related. In both cases objects
which receive no quantum corrections, Higgs branch, are mapped to ones that do, Coulomb branch.
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The ends of the D4s are real codimension 2 vortices in the NS5 w.v. As such they

introduce a logarithmic branch cut on the NS5. The x6 position of the NS5 far from

NS5-D4 juncture is

x6 = k ln |v|+ constant (3.1)

with k a constant depending on the brane tensions. For multiple D4s with v positions

ai

x6 = k
∑
i=1

qi ln |v − ai|+ constant (3.2)

where qi = +1 if the D4 ends on the right of the NS5 and qi = −1 if it ends on the

left. From this one sees that a D4 on the right bends the NS5 such that x6 → ∞

as v → ∞ and a D4 on the left the other way. The v → ∞ value of x6 will only be

defined if
∑

i qi = 0. The extra dimension of M theory can be incorporated in 3.2 by

x6 + ix10 = R
∑
i=1

qi ln(v − ai) + constant (3.3)

If one encircles ai by v → e2πiv then x6+ix10 → x6+i(x10±2π). The extra coordinate,

x10, is periodic in 2π and thus the singularity at the NS5-D4 juncture is cured by

uplifting to M theory. Denote x6+ix10

R
= s.

A configuration of n+ 1 NS5s with kα D4s suspended between the αth and α−1th

NS5s gives, upon taking a certain limit whereby the NS5 dynamics decouple, a quiver

gauge theory with G =
∏n

α=1 SU(kα) see figure 3.1. The gauge group factors being

SU(kα) rather than U(kα) is set by the following condition.

The αth NS5 kinetic energy due to the adjoining D4s is

∫
d4xd2v(∂µx

6∂µx6) = k2

∫
d4xd2v

∣∣∣∣∣∂µ∑
i

qiRe (ln(v − ai))

∣∣∣∣∣
2

(3.4)

= k2

∫
d4xd2v

∣∣∣∣∣Re

(∑
i

qi∂µai

(
1

(v − ai)

))∣∣∣∣∣
2

(3.5)

which converges if
∑

i qi∂µai = 0 or
∑

i qiai = lα, lα constant. The positions of

the D4s, given by the the vevs of the associated V-plets, parameterise the Coulomb
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Figure 3-2: A configuration of four NS5s with k1 = 2, k2 = 3, k3 = 2 D4s. The gauge
group of the 4d w.v. theory is SU(2)1×SU(3)2×SU(2)3 with bifundamental matter
in reps (21, 32), (32, 23) (this figure is taken from [19]).

branch. Thus for the kα D4s, and so the kα V-plets, of the αth group factor only

kα − 1 are free the other being ‘frozen’ out. The remnant after ‘freezing’ is SU(kα)

3.1.1 Matter Content

The gauge theory is coupled to n hypermultiplets in the bifundamental of adjacent

gauge groups i.e in the (k1, k2)⊕ (k2, k3)⊕· · ·⊕ (kn−1, kn). One can add fundamentals

coupled to SU(k1) and SU(kn) by allowing semi-infinite D4s to end on the left of

the first and on the right of the last NS5, see figure 3.1.1. As they extend to ±∞

in x6 direction they are much heavier than the other D4s and so their dynamics are

not seen in the decoupling limit. They only serve to add fundamental flavor and not

extra gauge group factors.

the masses of the bifundamentals are

mα =
1

kα

kα∑
i=1

ai −
1

kα+1

kα+kα+1∑
j=kα+1

aj (3.6)

i.e the differences of the average positions of D4s on the left and right. The mass of
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Figure 3-3: A configuration involving semi infinite D4s. Here the quiver theory will
have gauge group SU(3)1×SU(3)2×SU(3)3 with two bifundamentals in reps (31, 32)
and (32, 33). The semi infinite D4s couple three hypers each to the the first and last
gauge groups. Every group factor is coupled to six hypers, so all β functions vanish
(this figure is taken from [19]).

the fundamentals is given by v position of the related D4s.

3.1.2 Coupling Constants

The n coupling constants are encoded in the x6 separations of neighbouring NS5s

1

g2
α(v)

=
x6
α(v)− x6

α−1(v)

gs
(3.7)

gs being the string coupling. The θ parameters are similarly encoded in the x10

separations and are combined to give (in appropriate units)

− iτα(v) = sα(v)− sα−(v) (3.8)

for large v (ignoring the D4 positions)

−iτα ∼= (kα − kα+1 − (kα−1 − kα)) ln v (3.9)

= (2kα − kα−1 − kα+1) ln v (3.10)

This is the standard gauge coupling formula for an asymptotically free theory.

The scale is set by v and Nc = kα, Nf = kα+1 + kα−1. Group factors with vanishing
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β functions will be later associated to pairs of NS5s that are parallel at ∞

3.1.3 M Theory

The above description of a
∏n

α=1 SU(kα) gauge theory in terms of Type IIA branes

is a semi classical one. To explore its full quantum exact properties one must go

to strong coupling which coincides with the strong string coupling limit. Strongly

coupled Type IIA is S-dual to M theory on S1. The NS5s are mapped to M5s and

D4s to M5s wrapped on S1. All branes span the R1,3 labelled by xµ, µ = 0, 1, 2, 3

and are at the origin of xµ, µ = 7, 8, 9 so we concentrate on Q = R3 × S1 with

coordinates (v, s). The NS5s span v so are topologically punctured spheres in Q.

The D4s are topologically cylinders connecting the NS5 spheres. Thus we see that

the whole configuration is in fact a single M5 wrapping a noncompact 2d surface, Σ,

embedded in Q. The genus of Σ is g =
∑

α kα−1. In chapter 5 we will see a different

M theory description in which multiple M5s wrap a 2d surface. This description is

appropriate when the quiver gauge theory is superconformal.

Working with t = e−s a curve Σ holomorphically embedded in Q can be described

as the zero locus of a polynomial in t and v, F (t, v) = 0. At fixed v the roots of

F (t, v) are the positions of the NS5s. The degree of F in t is n + 1, the number of

NS5s. To see the form of the polynomial consider the case of n = 1, two NS5s with

k D4s between them (figure 3.1).

A(v)t2 +B(v)t+ C(v) = 0 (3.11)

the roots t±(v) give the NS5 positions while for t− ≤ t ≤ t+ fixed the solutions vi(t)

give the positions of the D4s, so F is degree k in v. If v is chosen to be a zero of

C(v) then t− = 0 and x6 = ∞ for the right hand NS5. This is the same asymptotic

bending behaviour seen when a semi infinite D4 joins to the right of the second NS5.

Zeros of C(v) are thus interpreted as the positions of such D4s. Likewise a D4 to the

first of the left hand NS5 will send t+ → ∞ giving A(v2)t2 = 0. Zeros of A(v) are

the positions of semi infinite D4s joining from the left. To get a pure SU(k) theory
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set A = 1 and C = Λ2k

t2 +B(v)t+ Λ2k = 0 (3.12)

Shifting t→ t+ B
2

to get rid of the linear term

t2 =
B(v)2

4
− Λ2k = 0 (3.13)

Which is the SW curve for a pure SU(k) theory with B(v) = vk−
∑k

i=2 uiv
k−i. Thus

the SW curve is realised physically through M theory as the 2d surface on which an

M5 is wrapped. From now on throughout this chapter the Λ scale will be set to 1 for

convenience.

3.1.4 BPS spectrum

The relationship between the BPS spectrum and vanishing cycles of the SW curve

can also be explained using M theory. As there are only two dynamical objects in M

theory it is perhaps obvious to consider M2 branes as the BPS states of the gauge

theory [21],[22],[23]. For an M2 to be the BPS states we want them to be it must

couple to the M5 w.v. theory and also appear as a particle in the 4d spacetime. Thus

the M2 w.v. must be R′ × D where R′ ⊂ R1,3 is the worldline of the BPS particle

and D ⊂ Q such that ∂D = C, C a cycle of Σ. In order for such an M2 to be BPS

it must be of minimal area. This condition is satisfied if C is a non trivial cycle of Σ

and if the M2’s contribution to the central charge of the 11d supersymmetry algebra

is

Z v
∫
D

ds ∧ dv =

∫
C

λ (3.14)

Where λ = v dt
t

is the SW differential for these M theory models. The spectrum of M2

w.v. topologies is interpreted as the spectrum of BPS particles of the gauge theory.

If C = nmγD + neγ, where γD, γ are the cycles as defined in chapter 2, then the

resulting BPS particle has charge (nm, ne). The full BPS spectrum of gauge theory

can be realised in this manner. For instance in a higher rank gauge theory, the W±

bosons of the theory are electrically charged under two U(1)s of the low energy theory.
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Figure 3-4: The cycles associated with quarks, Q, gauge bosons, W, and monopoles,
M. From these one sees that V-plets are interpreted as M2s with the topology of a
cylinder while hypers are M2s with the topology of a disc. (this figure is taken from
[23]).

The corresponding cycle is γi + γj. Therefore a W± is realised in M theory as an M2

with the topology of a cylinder, likewise monopoles and quarks are M2s with the

topology of a disc. Generally a V-plet is associated to a cylinder and a hyper to a

disc.

The deformation of the M2 w.v. can give an insight into the decay of BPS states.

A disc can deform to two discs that intersect at a point. Their non zero intersection

means that the corresponding cycles intersect. Thus a hyper can decay into two

mutually non local hypers, the decay spectrum is the list of pairs of mutually non

local particles whose charges add up to the parent’s and sympectic product is one.

Similarly a cylinder can deform to two discs intersecting at two points, a V-plet can

decay into two mutually non local hypers with apropriate conditions on their charges.
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3.1.5 Coupling Space

Even though there may be no semi infinite D4s present, the solutions for t → 0,∞

still represent the asymptotic bending of the NS5s. The large |v| positionsof the first

and second NS5s are given by t→∞, t ' cvk and t→ 0, t ' c′v−k respectively. The

constants c, c′ encode the UV gauge coupling of the theory. This is different from

the k − 1 IR couplings which come from the period matrix of the SW curve. The

IR couplings are dpendent on the Coulomb branch parameters u(i)α while the UV

couplings do not. To see this behaviour more clearly, add 2k semi infinite D4s to the

right of the configuration. The β function vanishes as Nf = 2Nc and the curve, is

t2 =
B(v)2

4
− f

2k∏
j=1

(v −mj) (3.15)

The constant f , present here cannot be omitted even if Λ = 1, it is actually a

function of the gauge coupling not of some scale (c.f ??). For large v this becomes

y2 + y + f = 0 where y = tv−k with roots y = λ±. The asymptotic positions of

the NS5s are given by t± = λ±v
k. The space of UV gauge couplings of the theory

is parameterised by the position of these roots. It is therefore M(2,2),0 the moduli

space of 4 punctured spheres with two of the points distinct. The S-duality group

is π1

(
M(2,2),0

)
= Γ̃0(2). Collisions of the punctures correspond to the various cusps

and fixed points of F(Γ̃0(2)).

3.1.6 Generalisation

The above analysis has an immediate generalisation to product gauge groups
∏n

α=1 SU(kα).

A configuration of n + 1 NS5s with D4s between them but no semi infinite D4s is

considered. The β function coefficient of each gauge group factor is b0,α = −2kα +

kα+1 + kα−1,
∑

α b0,α = −k1 − kn < 0. In order for all the β functions to vanish one

would need to add extra flavors at the first and last node of the quiver either through

semi infinite D4s or D6s (see next section). In the absence of such extra flavors and
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with the dynamically generated scale set to 1 the SW curve is given by

tn+1 + p1(v)tn + p2(v)tn−1 . . . pn(v)t+ 1 =
n∏

α=0

(t− tα(v)) = 0 (3.16)

The asymptotic positions of the NS5s take a similar form to the previous case tα(v) v

hαv
δα where δ0 ≥ δ1 ≥ · · · ≥ δn, which labels the NS5s so that the αth is to the right

of the α− 1th. Relating these to the UV couplings

−iτα = sα − sα−1 = ln
tα−1

tα
= −b0,α ln v + constant (3.17)

gives δα−1 − δα = b0,α. Proceeding via induction on α one can show

δα = kα+1 − kα (3.18)

which relates the asymptotic bending of an NS5s to the net D4 charge on it. Com-

paring with 3.16 the degree of pα(v) are seen to be
∑α−1

j=1 δj = kα. Expanding pα(v)

pα(v) = cα,0v
k1 + cα,1v

k1−1 + . . . (3.19)

One observes that the highest order coefficients are related to hα v cα+1,0/cα,0 which

determine the constant in 3.17. The roots of pα(v) = 0 give positions of D4s associated

to the αth group factor and the bifundamental masses are given by

mα =
1

kαcα,0
cα,1 −

1

kα+1cα+1,0

cα+1,1 (3.20)

If one includes semi infinite D4s at either end p0 and pn will be polynomials in v,

their roots being the masses of the fundamentals they introduce. A more elaborate

method to introduce fundamental matter is through the inclusion of D6 branes.
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3.1.7 D6 Branes

As previously mentioned D6 branes can be added to the type IIA configuration and

still preserve N = 2 supersymmetry in R1,3. Strings stretched between D6s and

D4s couple a hypermultiplet to the w.v. V-plet while strings between D6s and NS5s

do not contribute. D4s can be stretched between a D6 and a NS5 but due to the

differing boundary conditions at both ends they are non-dynamical. Thus placing dα

D6s between the α − 1th and αth NS5s couples dα hypermultiplets to SU(kα). The

β function coefficient is modified to −b0,α = 2kα − kα+1 − kα−1 − dα. The Coulomb

branch physics is actually independent of the x6 position of the D6s. Figure 3.1.7

shows two equivalent systems related by a Hanany-Witten transition. When a D6

brane moves in the x6 direction so that it crosses an NS5 it drags a D4 behind it.

Alternatively a D4 between a D6 and an NS5 can be destroyed by the reverse process.

Of the d D6s between the NS5s in 3.1.7 one can push any amount, saydl, to −∞ and

the remainder, dr to +∞. This creates the d semi infinite D4s seen on the right

of the figure. The gauge theory in both cases is SU(k) with d flavors. This phase

transition is realised in the SW curve via a simple rescaling of t. Equation 3.15 gives

the SW curve with 2k flavors coming from semi infinite D4s to the right. Rescaling

t→ t
∏2k

j=1(v −mj) gives the curve for flavors coming from D4s to the left.

The M theory uplift of a D6 is a KK monopole which changes the flat 11d space-

time to R1,6 × Q where Q is now a Taub-NUT space. The metric for this is known

but it will be easier to work with one of its complex structures instead.

The full brane configuration will lift to an M5 brane with w.v. R1,3×Σ with Σ ⊂ Q̃

a multi centre Taub-NUT space. Q̃ can be embedded in C3 with C coordinates (y, z, v)

yz = P (v) =
d∏
a=1

(v − ea) (3.21)

where ea, a = 1, . . . d are the v positions of the D6s. This is independent of x6 positions

but as mentioned above so is the Coulomb branch. For d = 0 reduces to yz = 1 and

y = t, z = t−1. Taub-NUT space is asymptotically flat implying y = t, z = t−1 is the
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Figure 3-5: This figure depicts two different brane configurations related by a Hanany-
Witten transition. On the left the Xs represent D6s. These can be pushed to the left
or the right. When they cross an NS5 they drag a D4 behind them. If they are then
brought out to ±∞ they configuration is the one on the right with semi infinite D4s
instead of D6s.

large v behaviour.

Again starting with the n = 1 case with k D4s F (y, v) = A(v)y2 +B(v)y +C(v).

No semi infinite D4s means no solution for y → ∞ and y = 0 or z → ∞. The

first condition is satisfied by A(v) = 1. The second, after a change of coordinates

z = P (v)/y,

C(v)z2 +B(v)z + P (v)2 = 0 (3.22)

requires C|BP , C|P 2. The zeros of C(v) are thus v = ea with multiplicities 0,1 or 2.

Writing

C(v) = f

i0∏
a=1

(v − ea)2

i1∏
b=i0+1

(v − eb) (3.23)

implies

B(v) = B̃(v)

i0∏
a=1

(v − ea) (3.24)

and after rescaling y → y
∏i0

a=1(v − ea) F is

y2 + B̃(v)y + f

i1∏
a=i0+1

(v − ea) = 0 (3.25)
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which matches the curve for SU(k) with i1 − i0 flavors (c.f. 3.15). Of the d D6s

initially introduced only i1 − i0 are apparent, those located at ea, a ≤ io and a > i1

are interpreted as being to the right and left of the configuration respectively. Their

physics decouples from the main system.

3.1.8 Generalisation

The curve for n+ 1 NS5s,
∑n

α=1 kα D4s and d D6s is

A0(v)yn+1 + A1(v)yn + . . . An+1 = 0 (3.26)

Having no semi infinite D4s fixes A0 = 1 and that An+1|P n+1−αAα, the zeros of An+1

are also zeros of P (v) this time with multiplicities at most n+ 1.

An+1 =

i0∏
a=1

(v − ea)n+1

i1∏
i0+1

(v − ea)n · · ·
in∏

in−1+1

(v − ea) (3.27)

as before after rescaling y → y
∏i0

a=1(v − ea) gives the SW curve

yn+1 +p1(v)yn+p2(v)J1(v)yn−1 +p3(v)J2
1 (v)J2(v)yn−2 + · · ·+f

n∏
s=1

Jn+1−s
s = 0 (3.28)

where Js =
∏is

a=is−1+1(v − ea). Again D6s at ea, a ≤ io and a > in+1 do not appear.

They are the v positions of D6s to the right and left, respectively, of the configuration.

Further iα is the total number of D6s to the left of the αth NS5 and dα = iα − iα−1.

Each β function can be made to vanish by an appropriate choice of dα, dα =

2kα − kα+1 − kα−1. The degree in v of pm(v), the coefficient of yn+1−m, is

km +
m−1∑
s=1

(m− s)ds = mk1 (3.29)

When all β functions vanish. For large v in terms of x = yv−k1

xn+1 + c1,0x
n + · · ·+ cn,0x+ f = 0 (3.30)
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The cα,0 and f parametrise the UV coupling space M(n+1,2),0, the moduli space of

an n + 3 punctured sphere where two of the punctures are marked and n + 1 are

unmarked. The S-duality group is π1

(
M(n+1,2),0

)
. S-duality permutes the unmarked

punctures and collisions of punctures correspond to various weak and strong coupling

limits of the theory. One can see through the M-theory picture that π1

(
M(n+1,2),0

)
is the exact S-duality group rather. This could also be seen without recourse to M

theory via an embedding in a larger asymptotically free as described at the end of

chapter 2, [15].

Any of the gauge group factor can be Higgsed or decoupled. To Higgs a group

factor one chooses an NS5 and forces the D4s to either side to line up and recombine.

The NS5 can then be made move away in xµ, µ = 7, 8, 9. Decoupling a group factor

corresponds to moving the two NS5s associated to that factor so that their separation

diverges. For example the first factor can be decoupled by t0 →∞.

3.1.9 Elliptic Models

This section explores models in which x6 is compactified on S1. It will turn out that

with this modification of the initial setup one can re derive the curves for N = 4

theories, as well as other interesting theories.

The compactification identifies branes ending to the left of the first NS5 and to

the right of the last. Thus what were fundamental hypers coupled to the first and

last group factors are now bifundamentals in the (k1, kn) representation. The quiver

diagram is the extended An Dynkin diagram. In addition

∑
α

mα =
1

k

∑
α

(∑
i

ai,α −
∑
j

aj,α+1

)
= 0 (3.31)

the global mass vanishes. Setting k0 = kn, kn+1 = k1 we see that

∑
α

b0,α = −k1 − kn + k0 + kn+1 +
∑
α

dα =
∑
α

dα ≥ 0 (3.32)
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To have non positive β functions, dα = 0,∀α which implies b0,α = 0,∀α

0 =
∑
α

kαb0,α = −
∑
α

(kα − kα−1)2 ⇒ kα = k,∀α (3.33)

The full gauge group is actually G = U(1) × SU(k)n. The extra U(1) is present

because the condition imposed by 3.4 can only ‘freeze’ n − 1 U(1)s, physically the

remaining abelian group factor is the centre of mass motion along the x6 direction.

It decouples from the rest of the physics and so will be ignored in what follows. The

case of n = 1 is of particular interest. There is only one NS5 with a single hyper

in the (k, k) rep which is the adjoint. The vanishing of the global mass means the

theory has N = 4 supersymmetry. A non zero global mass can be introduced via a

certain topological twist of the spacetime. For elliptic models (v, x6) are coordinates

in T = C× S1 which is obtained by the identification x6 → x6 + 2πL. If instead one

simultaneously identifies

x6 → x6 + 2πL (3.34)

v → v +m (3.35)

for m constant, T becomes a non trivial affine C bundle over S1. The overall effect

of this twist is to allow a non vanishing global mass
∑

αmα = m .

The M theory spacetime requires two identifications x6 → x6 + 2πL, x10 → x10 +

2πR. This results in Q = Eτ × C, where Eτ is a torus with complex parameter

τ (the appearance of this elliptic curve is where these models derive their name

from). The second identification fixes the global θ parameter to vanish,
∑

α θα =∑
α

(
x10
α − x10

α−1

)
/R = 0. The following simultaneous identifications however allow

for both non vanishing global mass and θ parameter

x6 → x6 + 2πL (3.36)

x10 → x10 + θR (3.37)

v → v +m (3.38)
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The further identification x10 → x10 + 2πR gives the appropriate M theory spacetime

R1,3 × Qm × R3. Where the product space Q is replaced by a non trivial affine C

bundle over Eτ , denoted Qm. The SW curve, Σ ⊂ Qm

We begin the analysis of the solutions of such models with the case of m = 0.

There are k D4s between each pair of NS5s, which can be viewed as a deformation

of k D4s wrapping Eτ spanning the n NS5s. In this way one can interpret Σ as the

k-fold cover of Eτ . More precisely the projection π : Q0 → Eτ maps Σ → Eτ with

the fibre of this map being {vi}. As it is a k-fold cover of Eτ , Σ has the form

Σ : vk+1 + f1(x, y)vk + . . . fk(x, y) =
k∏
i=1

(v − vi(x, y)) = 0 (3.39)

Eτ : y2 = (x− e1(τ))(x− e2(τ))(x− e3(τ)) (3.40)

(c.f. Taub-NUT embedding of Σ, 3.21) where fi(x, y) are meromorphic functions

on Eτ . They have simple poles at the locations of the n NS5s and the residues of

the differential f1(x, y)dx
y

are the mass parameters of the bifundamentals, as it is a

meromorphic function the sum of these residues must be zero. The other fi(x, y)

encode the Coulomb branch parameters.

The spacetime twist v → v+m requires a modification 3.39. Here we simply state

the conditions that the curve must now satisfy, which were derived in [19]. Away

from the point x = y =∞ 3.39 is still a valid description of the SW curve. At infinity

one must make a change of coordinates to w, z, ṽ

x = w−2, y = zw−3, ṽ = v +
my

2kx
(3.41)

In terms of these coordinates the SW curve at infinity is

ṽk + f̃1(z, w)ṽk−1 + · · ·+ f̃k(z, w) = 0 (3.42)

f̃i(z, w) are meromorphic functions which can have poles of order at most i at u = 0.

The global mass parameter m is the residue of f1(x, y) at infinity.
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3.1.10 Coupling Space

As always the gauge couplings of the theory are given by the separation of the NS5s

in (x6, x10) i.e. by their position in Eτ . One can change the couplings not only by

moving the NS5s in Eτ but also by varying the complex parameter τ of Eτ
2. Thus

the space of gauge coupling is Mn,1, the moduli space of a genus 1 Riemann surface

with n indistinguishable punctures. The duality group is then given by π1 (Mn,1).

For n = 1 π1 (M1,1) = SL (2,Z) as expected for the N = 4 theory.

3.2 Orientifolds and Symplectic and Orthogonal

Groups

The previous section derived curves for unitary gauge groups only. Extending this to

the SO and Sp series requires placing orientifold planes in the type IIA configuration.

Orientifolds are non dynamical branes with R-R charge and tension and are the fixed

plane of a spacetime Z2 orbifold. There are two ways of introducing orientifolds while

still preserving the N = 2 supersymmetry; an orientifold 4-plane, O4, positioned

parallel to the D4s or an orientifold 6-plane, O6, parallel to the D6s. Depending on

the R-R charge of the orientifold an orthogonal or symplectic gauge group appears

on the w.v. of a stack of branes placed parallel to it.

3.2.1 Orientifold 4-planes

An O4 plane is placed at the origin of xµ, µ = 4, 5, 7, 8, 9 spanning R1,3 and x6. The

O4 is the fixed plane of v → −v, (x7, x8, x9) → −(x7, x8, x9). The charge of an O4

can be ±1 in D4 units, negative and positively charged planes are denoted O4−, O4+.

An O4− parallel to a stack of D4s projects an orthogonal gauge group onto their

w.v. while an O4+ will give a symplectic gauge theory. If there are D6s present an

O4 will have the opposite effect on their w.v.. An O4−, for instance, will project a

2τ is fixed by the constants θ and L and is related to the gauge couplings by
∑
α τα ∝ τ . Thus

the complex parameter of Eτ is the coupling of a diagonal subgroup of G = SU(k)n
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Figure 3-6: The double cover of a spacetime including an O4 and three NS5s plus
their mirrors. The gauge group is either S(6) × Sp(4) or Sp(6) × SO(4) depending
on the sign of the O4 to the left (this figure is taken from [24])

symplectic gauge group on a stack of D6s, this is consistent with the known flavor

symmetry of orthogonal and symplectic gauge groups. For k D4s in the presence O4−

and d D6s the resulting 4d theory is SO(2k) coupled to d hypers transforming as 2d

half hypers in the vector of Sp(2d).

Figure 3.2.1 depicts the double cover of a configuration of n + 1 NS5s with kα

D4s between each pair (plus their mirror branes) in the presence of an O4−. The αth

group factor is SO(2kα) coupled to kα−1 + kα+1 hypers. The flavor symmetry of this

group factor is symplectic thus neighbouring group factors must be Sp(kα±1). The

orientifold changes charge when it crosses the NS5, becoming an O4+. The actually

gauge group is G = · · · × SO(2kα−1)× Sp(2kα)× SO(2kα+1)× . . . as opposed to the

naive
∏
SO(2kα). To begin with we look at the simple cases of 2 NS5s and derive

the SW curves for SO(2k), SO(2k + 1) and Sp(2k).

3.2.2 SO(2k)

k D4s (plus mirrors) suspended between two NS5s, parallel to an O4− plane will give

a pure SO(2k) gauge theory. The M theory curve, ΣSO, should be invariant under

the spacetime orbifold v → −v and reflect the fact that for every D4 at v = ai there
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Figure 3-7: The geometry of a pair of NS5s near an O4 plane. the left NS5 has net
D4 charge -2 due to the O4 while the right has +2(this figure is taken from [24]).

is a mirror D4 at v = −ai. This leads to

A(v2)t2 +B(v2)t+ C(v2) = 0 (3.43)

The net D4 charge on the first NS5 due to the orientifold is +2, to the right of this

NS5 the orientifold is an O4− and to the left a O4+. Similarly the second NS5 has

-2 net charge due to the orientifold. The asymptotic bending of the NS5s means that

for large v 3.43 must have solutions

t1 v v2k−2 , t2 v v−(2k−2) (3.44)

(there are 2k D4s ending on each NS5 including mirrors). The NS5s are unaffected

by the spacetime orbifold. They feel the effect of the O4 only through the induced D4

charge on them. Near the O4, the M5 geometry is determined by this charge, the first

NS5 is bent t → ∞, x6 → −∞ as v → 0 and while the second is t → 0, x6 → −∞,

see figure 3.2.1. 3.43 must have solutions t = 0,∞ for v = 0. Incorporating these two

conditions gives

v2t2 +B(v2)t+ v2Λ4k−4 = 0 (3.45)
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Figure 3-8: The near O4 geometry of a pair of NS5s for a symplectic gauge group
(this figure is taken from [24]).

where B(v2) is degree 2k in v. After a rescaling v2t→ t−B/2 to get rid of the term

linear in t, the SW curve is reproduced.

t2 =
B(v2)2

4
− v4Λ4k−4, B(v2) = v2k + u2v

2k−2 + · · ·+ u2k (3.46)

One can cure the v → 0 NS5 bending by moving a D4, plus its mirror to lie on the

O4−. This cancels the orientifold charge. In the gauge theory this corresponds to

setting u2k = 0. After dividing out by v2 (3.46) no longer has solutions t = 0,∞.

3.2.3 Sp(2k)

Swap the O4− in the previous set up for an O4+ and the resulting theory is pure

Sp(2k). The net D4 charges induced by the O4 on the NS5s are changed by this

replacement. The asypmtotic bending takes a similar form

t1 v v2k+2, t2 v v−(2k+2) (3.47)

The near O4 geometry of the NS5s is completely different however, the net charge

induced on the first NS5 by the O4 is now +2 while for the second it is -2. These
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changes force the NS5s to bend towards one another rather than away. They reach

an equilibrium at the point where they touch. At this point each NS5 is flanked by

an O4− giving zero net charge and thus preventing any further bending see figure

3.2.2. The upshot of for ΣSp is that there are no solutions for t = 0,∞ but a double

zero at v = 0 (where the NS5s touch). ΣSp is thus described by

t2 + (v2B(v2)− 2Λ2k+2)t− Λ4k+4 = 0 (3.48)

with B(v2) degree 2k in v. A shift t→ t+ v2B(v2)/2 gives

t2 =

(
v2B(v2)− 2Λ2k+2

)2

4
− Λ4k+4 (3.49)

the SW curve for Sp(2k).

3.2.4 SO(2k+1)

An odd number of D4s (including mirrors) can be facilitated if one of the D4s is forced

to lie on the O4−. This reduces the induced charges to be -1 for the first NS5 and

+1 for the second. The two NS5s still bend away from each other but the asymptotic

bending is different

t1(v) v v2k−1, t2 v v−(2k−1) (3.50)

ΣSO(2k+1) is given by

vt2 +B(v2)t+ vΛ4k−2 = 0 (3.51)

Again a shift of t→ vt−B/2 brings 3.51 to the familiar form

t2 =
B(v2)2

4
− v2Λ4k−2 (3.52)

The v → 0 bending can this time not be cured. Moving a D4 and its mirror to lie on

the O4− causes the NS5s to bend inward instead.
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3.2.5 Adding D4 Flavor

Semi infinite D4s can be attached to either side of the configuration to couple hypers

to the theory. The curves for SO(2k) and SO(2k + 1) are modified in the usual

fashion, A(v2) and C(v2) have roots at the D4 positions. With NL,R D4s to the left

and right of the initial setup and Λ = 1 for convenience

ΣSO(2k) : v2t2
NL∏
i=1

(v2 −m2
i ) +B(v2)t+ v2

NL∏
j=1

(v2 −m2
j) = 0 (3.53)

ΣSO(2k+1) : vt2
NL∏
i=1

(v2 −m2
i ) +B(v2)t+ v

NL∏
j=1

(v2 −m2
j) = 0 (3.54)

For Sp(2k) the double zero condition must be enforced after the extra flavor is added,

e.g. for NR and NL D4s to the right and left, NL +NR < 4k ΣSp is given by

ΣSp : t2
NL∏
i

(v2 −m2
i ) +

(
B(v2)t− c

)
+

NR∏
j

(v2 −m2
j) = 0 (3.55)

a double zero at v = 0 implies

c = 2(−1)(NR+NL)/2

NL∏
i

NR∏
j

mimj (3.56)

The semi infinite D4s must appear in pairs at Z2 symmetric locations. A single D4

to either side can be added on top of the O4−, this however will couple a half hyper

to the theory, breaking the supersymmetry to N = 1 at least.

The theory SO(2k) coupled to 2k − 2 hypers transforming as half hypers in the

vector of Sp(4k− 4) has vanishing β function. It is constructed by adding k− 1 semi

infinite D4s plus their mirrors to both sides of the SO(2k) configuration. At large v

the curve reduces to

t2 + t+ f = 0 (3.57)

The solutions govern the large v positions of the NS5s. The coupling space is thus

M(2,2),0 with S-duality group π1

(
M(2,2),0

)
= Γ̃0(2)
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3.2.6 Generalisation

Generalising to a system of n + 1 NS5s with kα D4s between each pair, the gauge

group is an alternating product of orthogonal and symplectic groups. The matter

content will be n+1 sets of half hypers transforming as (2kα, 2kα+1). The asymptotic

behaviour of the NS5s is

tα(v) v v2kα+1−2kα−2ωα (3.58)

where the ωα is the charge of the O4 to the right of the αth NS5. ω0 is the charge of

the left most section of the O4. If ω0 = 1 or 1/2 the first group factor is SO and Sp

when ω0 = −1. The general form for the M theory curve is

P0(v2)tn+1 + P1(v2)tn + · · ·+ Pn(v2) = P0(v2)
n+1∏
α=1

(
t− tα(v2)

)
= 0 (3.59)

Using the same analysis as below 3.18 one sees that the degree of Pi(v
2) denotes pi

satisfies

pi −
i−1∑
α=1

δα + p0 = 2ki − (1− (−1)i)ω0 + p0 (3.60)

Matching these to the curves for single gauge groups gives p0 = 2 for a first factor

of SO(2k1), p0 = 0 for Sp(2k1) and p0 = 1 for SO(2k1 + 1). First consider groups

· · · × SO(2kα) × Sp(2kα+1) × . . . . There are four cases corresponding to ω0 = ±1,

n + 1 odd or even. If n + 1 is even the first and last group factors are the same and

different if n+ 1 is odd. For example, n+ 1 odd and ω0 = −1 result in a curve of the

form

tn+1 +
(
v2B1(v2) + c1

)
tn+B2(v2)tn−1 + · · ·+

(
v2Bn(v2) + cn

)
t+v2 +cn+1 = 0 (3.61)

Bi are the usual degree 2ki polynomials governing the Coulomb branch of the ith

group factor. The ck are determined by the near O4 geometry of the NS5s, there

must be n/2 double zeros at v = 0 and a solution at t = 0 (the last group factor is
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SO(2kn)). At v = 0

tn+1 + c1t
n + u

(2)
2k2
tn−1 + · · ·+ u

(n)
2kn

+ cn+1 = 0 (3.62)

cn+1 = 0 so as to ensure a t = 0 solution. The ck are thus determined in terms of u
(1)
2ki

by

tn + c1t
n−1 + u

(2)
2k2
tn−2 + · · ·+ u

(n)
2kn

=

n/2∏
i=1

(
t− ti(v2)

)2
(3.63)

One can also have · · · × SO(2kα + 1) × Sp(2kα+1) × . . . . This requires one to

place an unpaired D4 on top of every O4− section. In the process a half hyper is

coupled to the adjacent Sp gauge groups. The only way for such a configuration to

preserve the N = 2 supersymmetry is for every Sp group to be sandwiched between

two orthogonal groups so that Sp(2kα) is coupled to 2kα+2kα+1 +2 half hypers. n+1

must be even for product groups involving SO(2k + 1) factors.

3.2.7 D6s

Just as for configurations without orientifolds D6s can be introduced to couple fun-

damental matter to the group factors. The M theory curve Σ is embedded in a multi

centre Taub-NUT space. First we tackle the n = 1 case with d D6s plus mirrors in

an O4− background. The gauge theory is SO(2k) with d′ hypers transforming as 2d′

half hypers in the vector of Sp(2d′)

Σ : v2y2 +B(v2)y + v2C(v2) = 0 (3.64)

Q̃ : yz = P (v2) =
d∏
a=1

(
v2 − e2

a

)
(3.65)

Applying the conditions C|BP , C|P 2 and rescaling appropriately

v2y2 +B(v2)y + fv2

i1∏
a=i0+1

(
v2 − e2

a

)
(3.66)
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which is the same as 3.53 with NL = 0, nR = i1 − i0. Similarly 3.53 and 3.55 can be

reproduced using D6s. Including D6s in n > 1 models follows the same construction

as unitary gauge groups. For example in the case of SO(2k1) × · · · × SO(2kn), Σ is

given by

yn1 + p1(v2)yn + p2(v2)J1(v2) + · · ·+ f +
n∏
s=1

Jn+1−s
s = 0 (3.67)

where Js =
∏is

a=is−1+1(v2 − e2
a), dα = iα − iα−1. The extra constants for Sp groups

are determined as before by the near O4 geometry.

3.2.8 Elliptic Models

The ‘unfrozen’ U(1) appearing in the gauge group for unitary elliptic models does

not appear in an orientifold background. The U(1) is related to a c.o.m motion

of the entire system. An orientifold however is non dynamical and thus precludes

such motion. The additional D4 charge induced on the NS5s due the O4 changes

the condition for vanishing β functions. WLOG the first factor can be taken to be

SO(2k1) so that the asymptotic bending of the NS5s is

t1 v v2k1−2kn−2, t2 v v2k2−2k1+2, t3 v v2k3−2k2−2, . . . (3.68)

implying G = SO(2k)× Sp(2k − 2)× · · · × SO(2k)× Sp(2k − 2).

The topological twist previously introduced to give non vanishing global parame-

ters is not compatible with the orientifold projection, v = 0 would not be invariant

⇒ Q = Eτ × C the straightforward product space. We would like to interpret Σ as

a 2k-fold cover of Eτ . How could this be however when the number of D4s between

each pair of NS5s alternates between 2k and 2k− 2. The answer is that even though

the Sp factors are associated to 2k − 2 D4s the polynomial governing their position

is degree 2k. Thus the 2k-fold cover of Eτ given by

Σ : v2k + f1(x, y)v2k−2 + · · ·+ fk(x, y) = 0 (3.69)

Eτ : y2 = (x− e1(τ))(x− e2(τ))(x− e3(τ)) (3.70)
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is the appropriate description of Σ. The fi(x, y) are meromorphic functions Eτ with

the same properties and singularity structure as for unitary models.

3.2.9 Orientifold 6-planes

The use of O6 planes to produce orthogonal and symplectic gauge groups is more

complicated than the case of O4s, it will however give curves involving non funda-

mental matter and different product groups as well. The complication arises when

one tries to lift an O6 to M theory, just as for D6s an O6 will lift to a non trivial

M theory spacetime. For an O6− this is an Atiyah-Hitchin space while the exact

spacetime for an O6+ is not known. To embed an M theory curve in these spaces we

use the following (c.f. 3.21 )

Q̃+ : yz = v4 (3.71)

Q̃− : yz = v−4 (3.72)

The first is motivated by noticing that far away from an O6+ it should look like four

coincident D6s. The second is a complex structure of the Atiyah-Hitchin space. The

O6s will be located at v = 0, x6 = 0 and induce a spacetime projection v → −v,

x6 → −x6. Placing the usual type IIA configuration to the right of an O6+ will give

group of the form G = SO(N)×
∏
SU(ki) and G = Sp(N)×

∏
SU(ki) if an O6− is

used instead.

3.68 can be checked by rederiving the curves for a single SO and Sp group. To

do this consider 2 NS5s and 2k D4s including mirrors in an O6+ background. The

general 2 NS5 curve 3.11 is modified by yz = v4 to give the conditions C|v8, C|B(v)v8

which along with invariance under v → −v furnishes two solutions

I : C(v) = v4, B(v) = B(−v) = B(v2) (3.73)

II : C(v) = v−4, B(v) = −B(−v) = vB̃(v2) (3.74)
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Figure 3-9: Configuration of NS5s, D4s and D6s arranged symmetrically with respect
to an O6(this figure is taken from [25]).

choosing I or II, Σ is

I : y2 +B(v2)y − v4 = 0 (3.75)

II : y2 + vB̃(v2)y − v4 = 0 (3.76)

which related to 3.46 and 3.52 respectively via a shift in y. If an O6− were to be

included instead Σ is

y2 + y(v2B(v2) + Av−2) + v−4 = 0 (3.77)

Note that now negative powers of v appear, this is a consequence of 3.68 not describing

an Atiyah-Hitchin space at small v. Away from the O6−, one can rescale y → yv−2

and obtain the curve for Sp(2k) upon setting A = −2.

3.2.10 Generalisation

Figure 3.2.9 depicts n NS5s with kα D4s and dα D6s between each pair plus their

mirrors. The spacetime Z2 orbifold implies ki = k2n−i, di = d2n−i the two NS5s

abreast of the O6 will produce a single SO or Sp group the other pairs contribute
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SU(ki) to the product while the Z2 serves to identify SU(ki) v SU(k2n−i). The full

group is
∏n−1

i=1 SU(ki)×SO(kn), kn even or odd for an O6+ and
∏n−1

i=1 SU(ki)×Sp(kn).

The matter content is n− 1 hypers in bifundamentals (kα, kα+1), α = 1, . . . n− 1, dα

hypers in the fundamental of SU(kα) and dn/2 in the vector of SO(kn). To describe

both D6s and an O6+ requires embedding in the space

yz = P (v) = (−1)dv4

2d∏
i=1

(v −mi) (3.78)

where 2d =
∑

i di. Using the same techniques as the previous D6 cases one obtains

the M theory curve

y2n + g1(v)y2n−1 + · · ·+ gi

i−1∏
s=1

J i−ss y2n−i + · · ·+ f
2n−1∏
s=1

J2n−s
s = 0 (3.79)

where Js(v) = cs
∏is

is−1+1(v − mj), subject to Js(v) = J2n−s(−v) and cs = 1, s =

1, . . . n−1, cn = (−1)dn/2v4, cs = (−1)ds , s = n+1, . . . 2n−1. The spacetime orbifold

introduced by the orientifold acts as (v, y, z)→ (−v, z, y) and for 3.77 to be invariant

under this gives two possible solutions

I : f = 1, gi(v) = g2n−i(−v) (3.80)

II : f = −1, gi(v) = −g2n−i(−v) (3.81)

Option I corresponds to kn even and II to kn odd. Note that this brane configuration

can only make manifest an SU(kn−1) ⊂ Sp(2kn−1) of the flavor symmetry for the

SO group factor. The adjacent pair of NS5s contribute an SU(kn−1) as opposed to

Sp(2kn−1) that would be required.

3.2.11 SU(N) with symmetric and anti-symmetric matter

Three NS5s including mirrors arranged symmetrically with respect to the O6 will

result in an SU(N) theory coupled to matter in a two index representation. The

unpaired NS5 must be at v = 0 with the N D4s suspended between it and the NS5s

73



to its left and to its right, each stack having an SU(N) w.v. theory. The orientifold

causes these two groups to be identified implying the actual gauge group is a single

SU(N) and the matter is a single hyper in a two index rep of this group. There are

not enough degrees of freedom available for this to form an adjoint and so it must be

either the symmetric or antisymmetric. Which of the two it is depends on the charge

of the O6.

First choose an O6+, 3.77 generalises to

y3 + y2

N∏
i=1

(v − ai) + (−1)Nyv2

N∏
j=1

(v + aj) + v6 = 0 (3.82)

One might expect that due to the nature of the O6+ projection on a stack of D4s

that the representation would be symmetric. To show this explicitly, recall that

the curve ?? must exhibit invariance under the unbroken discrete R-symmetry, Zb0 .

Assigning charge N to y and 1 to v one sees that b0 = N−2. Matching to the general

equation for the β function coefficient b0 = 2N − 2Im gives the index of the rep as

Im = (N + 2)/2. The matter is in the 2 index symmetric representation.

Using an O6− will result in antisymmetric matter. To confirm this, one again

examines the Zb0 invariance of the M theory curve.

y3 + y2(p(v) +Bv−1 + Av−2) + v−2y(q(v)−Bv−1 + A−2) + v−6 = 0 (3.83)

p(v) = q(−v) =
∏N

i=1(v − ai) and A,B constants. Setting Λ = 1 one sees b0 = N + 2

⇒ Im = (N − 2)/2, the index of the antisymmetric. The constants can be fixed by

requiring the curve reproduce certain degeneration in the brane configuration: Where

one to allow the D4s either side of the O6+ to line up with their mirror partner and

recombine. The unpaired NS5 could then decouple leaving an Sp type configuration.

The positions of the D4s are made to match by setting p(v) = q(v) = p(v2). The

curve will factorise appropriately if B = 0

(
y + ΛN+2v−2

) (
y2 + y(p(v2) + (A− 1)v−2) + v−4

)
= 0 (3.84)
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The second factor is the Sp curve 3.48 when A = −1, up to a rescaling of y.

3.2.12 Elliptic Models

As an O6 is pointlike in x6, the compactified direction, two O6s will appear, one

at either end of the spacetime. The charges of these O6s can actually be chosen

independently form one another thus providing three different backgrounds O6+-O6−,

O6+-O6+, O6−-O6−. Here only the ‘balanced’ scenario O6+-O6− will be examined.

A theory with gauge group of the form Sp×
∏
SU×SO is constructed by placing

n + 1 NS5s between the two O6s. If one specifies that β = 0 in all factors then the

content is fixed to be

G = Sp(2k)×
n∏
l=1

SU(2k + 2l)× SO(2k + 2n+ 2) (3.85)

with bifundamental matter. Again the ‘unfrozen’ U(1) is projected out by the orien-

tifold.

If one places an additional NS5 on top of the O6− the gauge group will change to

G = SU(2k)×
n∏
l=1

SU(2k + 2l)× SO(2k + 2n+ 2) (3.86)

with the usual bifundamental matter plus an extra hyper in the symmetric two index

representation of SU(2k), the first factor. When one restricts to n = 0, the single

NS5 intersects the O6− and the resulting theory is SO(2k+ 2) with a massless hyper

in the symmetric, which is the adjoint. This is the brane construction of the N = 4

SO(N) with N even or odd.

Alternatively, placing the additional brane so it intersects the O6+ results in

G = Sp(2k)×
n∏
l=1

SU(2k + 2l)× SU(2k + 2n+ 2) (3.87)

with again the usual bifundamental hypers and an extra hyper in the antisymmetric

of the last group factor SU(2k + 2n + 2). An N = 4 theory can also be constructed
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Figure 3-10: Two configurations, one including an O6+, which are equivalent via a
Hanany-Witten transition. The figure on the right has a trivial spacetime as there is
no longer any D6 charge present.(this figure is taken from [26]).

here by letting n = 0. The theory is Sp(2k) with a hyper in the antisymmetric

two index representation. As the adjoint of Sp(2k) is antisymmetric this theory has

N = 4 supersymmetry.

Finally, combining these last two scenarios so that an NS5 lies on each O6 gives a

gauge group with SU groups at both ends coupled to symmetric and antisymmetric

matter. The minimal model for this case requires two NS5s, one at each O6. The

resulting theory is not N = 4 but rather SU(N) coupled to both symmetric and

antisymmetric hypers.

The derivation of M theory curves for elliptic models encountered previously relied

on the interpretation of it as a many-fold cover of Eτ . In the present scenario it is

not apparent that such an interpretation exists. In fact one does but it requires

generalising the Hanany-Witten transition to deal with O6s

The Hanany-Witten transition for O6 planes follows the same principles as for

D6s, moving D6 charge across a NS5 causes a D4 to be dragged behind it. For an

O6+ there is a +4 D6 charge at the origin, pushing this off to∞ creates non dynamical

D4s when it crosses NS5s. The remnant has no charge and is simply the fixed plane

of the spacetime orbifold, see figure 3.2.12.

To see how this manifests in the SW curve consider the pure SO(2k) curve

y2 +B(v2)y + v4 = 0 yz = v4 (3.88)
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Figure 3-11: Two configurations, one including an O6−, which are equivalent via a
Hanany-Witten transition. The figure on the right has had the spacetime trivialised
by bringing in D6s from infinity cancelling any D6 charge present.(this figure is taken
from [26]).

As with the transition for D6s the configuration on the right of ?? is related to the one

left by a change of coordinates which trivialises the spacetime. Changing to y = y′v2,

z = z′v2 results in

v2y′2 +B(v2)y′ + v2 = 0 y′z′ = 1 (3.89)

For an O6−, D6s are brought in from infinity to cancel the negative D6 charge at the

origin (see figure 3.2.12). A similar change of coordinates can reproduce this in the

SW curve. For example consider the pure Sp(2k) theory

y2(B(v2)− 2v−2)y + v−4 = 0 yz = v−4 (3.90)

Letting y′ = yv2, z′ = zv2 results in

y′2 + (v2B(v2)− 2)y′ + 1 = 0 y′z′ = 1 (3.91)

Using this one is able to construct the M theory curves for elliptic models with O6s.

As an example consider the O6+-O6− configuration with no NS5s intersecting the

orientifolds. The gauge group is Sp(2k) × · · · × SO(2k + 2l + 2). During the HW

transition, the number of new non dynamical D4s between pairs increases by 2 with

every pair further away from the O6+ (see figure 3.2.12). After this it is then possible
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Figure 3-12: An O6+-O6− configuration with k = 1, l = 2. The
⊕

are the remnants
of O6+s and the

⊗
an O6− remnant. The red horizontal lines indicate the non

dynamical D4s created.

to interpret the M theory curve as the 2k + 2l + 2-fold cover of Eτ

Σ : v2k+2l+2 + f1(x, y)v2k+2l+1 + · · ·+ f2k+2l+2(x, y) = 0 (3.92)

Eτ : y2 = (x− e1(τ))(x− e2(τ))(x− e3(τ)) (3.93)
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4. N = 2 Dualities

In this section the work of [28] is reviewed. The aim of this work is to extend the

strong coupling dualities found in [27] to SU(N) gauge groups and products there of.

In the process, a different M theory description of certain superconformal theories to

that which was espoused in chapter 5 will be presented. The discovery of these new

dualities relies on a realisation of the SW curve as a multi sheeted covering over a

punctured Riemann surface.

For example, the theory SU(N)n with bifunamental matter and fundamentals

coupled to the first and last groups has vanishing β function in all factors. The

new M theory description of this will be the w.v. theory of N coincident M5 branes

wrapping a Riemann sphere with n+ 3 punctures two of which are distinguished. In

general, any 6d (2, 0) An−1 theory, compactified on a punctured Riemann surface (in

such a way as to preserve 8 supercharges) will result in a 4d N = 2 SCFT whose SW

curve is an N sheeted covering of the Riemann surface and space of UV couplings is

the moduli space of such surfaces.

It is possible to classify all theories of this kind by exploring the possible degen-

erations of the surface [29]. The punctures of the surface are associated, in a precise

way, to certain subgroups of the flavor symmetry. Different types of punctures to

different subgroups. By considering collisions and permutations of punctures, all dif-

ferent dual weak and strong coupling limits of the theory are obtained. The maximal

degeneration of a surface is a collection of three punctured spheres. One can consider

these as building blocks and by glueing them together all possible theories described

above can be constructed. To begin with we deal with SU(2) then SU(3) and lastly

SU(N)

79



Figure 4-1: The various weak coupling cusps of SU(2), Nf = 4. At the top are
the depicted the generalised quivers of the theory. A box is a subgroup of flavor
while a circle is a weakly coupled gauge group. Below these are the corresponding
arrangements of punctures to which that cusp is related. (this figure is taken from
[28]).

4.1 AS and G Dualities

4.1.1 SU(2)

SU(2) coupled to 4 fundamental hypers has vanishing β function, the hypers trans-

form as 8 half hypers in the vector of SO(8). The S-duality group is SL(2,Z) which

combines with the triality of SO(8) to permute the representation of the 4 hypers

among the 8d representations of SO(8). If one considers the 4 hypers as two groups

of two, SO(8)→ SO(4)× SO(4) = SU(2)a× SU(2)b× SU(2)c× SU(2)d, each hyper

has its own SU(2) of flavor. The basic representations decompose as

8v → 2a × 2b ⊕ 2c × 2d (4.1)

8s → 2b × 2c ⊕ 2a × 2d (4.2)

8c → 2a × 2c ⊕ 2b × 2d (4.3)

so in this subgroup of the flavor the effect of triality is to permute SU(2)a, SU(2)b,

SU(2)c, SU(2)d. The hypers can be given masses, ma,mb,mc,md and these will be

permuted along with the SU(2)s by S-duality.

The gauge coupling space for this theory isM4,0, the moduli space of a Riemann
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Figure 4-2: On the left is the regular quiver of the SU(2)2 theory. In the middle the
generalised quiver making expicit the SU(2)5 subgroup of flavor symmetry. On the
right is the associated punctured Riemann surface. (this figure is taken from [28]).

sphere with 4 indistinguishable punctures 1. SL(2,Z) permutes the punctures so to

each one we associate an SU(2) subgroup of flavor and a mass. Collisions of the

punctures corresponds to weak coupling limits of the theory, for example a and b

colliding result in τ → i∞.

Is it possible to have the same relation between punctures and flavor subgroups

for gauge groups that are products of SU(2)? Start with SU(2)1 × SU(2)2 with one

bifundamental and two fundamentals coupled to each group figure 4.1.1. This theory

has two marginal gauge couplings τ1, τ2 and has the following subgroup of the full

flavor, SU(2)a × SU(2)b × SU(2)c × SU(2)d × SU(2)e. Four of these SU(2)s come

from the fundamentals and the other from the bifundamental ( the bifundamental is a

real representation so the falvor symmetry is enhanced form U(1) to Sp(2) ∼= SU(2).

If SU(2)2 is sent to weak coupling then the gauge group reduces to SU(2)1 with

subgroup of flavor SU(2)a × SU(2)b × SU(2)e × SU(2)2. S-duality of a single SU(2)

gauge theory will permute each of the SU(2)a, SU(2)b, SU(2)e, SU(2)2 among them-

selves. By turning the coupling of SU(2)2 back on and sending τ1 → i∞ the other

SU(2)s can be permuted thus all five flavor SU(2)s are permuted by S-duality. The

full flavor group is not SL(2,Z) × SL(2,Z) as the SL(2,Z)s of each gauge group

factor do not commute.

1 In chapter Chapter 5 the coupling space of all SU theories was found to be M(n+1,2),0 but for
SU(2) there is an enhancement to M4,0. This can be understood by noting that SU(2) = Sp(2).
The coupling space of Sp theories is different and their combination gives M4,0
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Figure 4-3: On the left is a generalised quiver where a gauge group has been com-
pletely decoupled leaving behind the two flavor subgroups highlighted. On the right
the corresponding Riemann surface, it has degenerated to two surfaces. The connec-
tion between them represents the group that was decoupled (this figure is taken from
[28]).

By comparison with the previous case one might suspect that the full S-duality

group is π1 (M5,0) withM5,0 the space of UV gauge couplings and collisions of punc-

tures corresponding to weak and strong coupling limits. The S-duality group acts

on the punctures by permutation. This could be further extended to SU(2)n gauge

group. There is an SU(2)n+3 subgroup of the flavor symmetry, one for each of the

n− 1 bifundamentals and 1 one for each the the 4 fundamentals. The corresponding

coupling space would beMn+3,0 with duality group π1 (Mn+3,0) permuting the punc-

tures. The collision of punctures again corresponds to the various coupling limits.

As all the punctures are permuted by S-duality the only limits are the weak coupling

τα → i∞, see figure 4.1.1. Completely decoupling a gauge group factor in this manner

causes the Riemann surface to degenerate to two Riemann surfaces and the coupling

space Mn+3,0 →Mm+3,0Mn−m+2,0.

For example SU(2)1×SU(2)2×SU(2)3 would have coupling space isM6,0 taking

the middle group factor τ2 → i∞ means the theory is now two uncoupled SU(2),

Nf = 4 gauge theories each with a subgroup of flavor coming from SU(2)2. The mass

parameter of this SU(2)2, m2
2 comes from the Coulomb branch parameter u2 = TrΦ2

2.

At this limit one is at a point in M6,0 where the six punctured sphere degenerates

to two four punctured spheres, see figure 4.1.1. From the point of view of either one
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Figure 4-4: At the cusp τ2 C6,0 degenerates to two 4 punctured spheres. The extra
punctures on each part appear to be the result of the collision of three punctures (this
figure is taken from [28]).

of the resultant four punctured spheres, three punctures have collided and formed a

new puncture. This new puncture is associated to the newly created SU(2)2 of flavor

and its mass, m2.

The next extension one could consider is quivers that contain g loops. The cou-

pling space is thenMn,g the moduli space of an n punctured genus g Riemann surface.

Such theories will be denoted Tn,g[A1]. Thus far no concrete evidence has been given

for this proposed relation between punctures and flavor symmetry. To do so we anal-

yse the SW curves of the above theories and see that the described behaviour is

reproduced.

4.1.2 SW Curves

First the case of a single SU(2) gauge group will examined to see how relationship

manifests itself in the SW curve. This analysis will then be extended to product

gauge groups and give the desired ‘proof’. The SW curve for massless SU(2), Nf = 4

constructed using the methods of chapter 5 is

v2t2 + c1(v2 − u)t+ c2v
2 = 0, λ = v

dv

t
(4.4)
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which can be rearranged to give

(t− t1)(t− t2)v2 = ut, λ =

√
u√

t(t− t1)(t− 1)
dv (4.5)

t2 can be set to 1 as only the ratios of c1 and c2 matter. The gauge coupling τ is the

complex parameter of the torus

y2 = t(t− 1)(t− t1) (4.6)

The torus degenerates as t1 → 1, 0,∞ which correspond to the limits τ → i∞, 0, 1.

These three cusps are equivalent due to the nature of the torus or correspondingly

due to the S-duality of the gauge theory. There is, therefore, only one actual cusp

τ → i∞.

By changing coordinates to the following, the SL(2,Z) duality can be made more

manifest. v = tx, t →
(
az+b
cz+d

)
, x → (cz + d)2x so dt → dz

(cz+d)2
brings the SW curve

and differential to

x2 =
u

∆4(z)
, λ = xdz (4.7)

where ∆4(z) is a degree 4 polynomial in z, which is a coordinate on C4,0 a four

punctured sphere. The roots of ∆4(z) give the locations of the punctures. x is the

fibre coordinate of the cotangent bundle of C4,0. This new form of the SW curve

x2 = φ2(z), λ = xdz, (x, z) ∈ T∗C4,0 (4.8)

makes explicit its realisation as a two sheeted cover of a punctured Riemann surface.

φ2dz2 is a quadratic differential on C4,0. It has simple poles at the punctures and

develops a double pole when two punctures collide i.e. at the weak coupling cusps.

Thus the SW curve is at once an elliptic curve whose degeneration corresponds to the

gauge theory becoming weakly coupled and a 2 sheeted covering of a four punctured

sphere where the theory is weakly coupled when the punctures collide. In the first

realisation, by reinstating t2, only the coupling space M(4,2),0 is apparent whereas in
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the second the full M4,0 is exhibited.

We now look to extend this to product gauge groups. The SW curve for such a

theory is

v2tn+1 + c1(v2 − u1)t+ · · ·+ cn+1v
2 = 0 (4.9)

or
n∏

α=0

(t− tα)v2 = Un−1(t)t (4.10)

The subscript of a polynomial denotes its degree in the argument shown. The coeffi-

cients of Un−1(t) are proportional to the Coulomb branch parameters ui. Performing

the change of coordinates listed above 4.7 gives

x2 =
Un−1(z)

∆n+3(z)
= φ2(z), λ = xdz (4.11)

(x, z) ∈ T∗Cn+3,0. The quadratic differential φ2dz2 has simple poles at the punctures

of Cn+3,0. The location of the simple poles parametrises the coupling space (c.f 3.30)

which is thereforeMn+3,0. The different coupling limits occur when the simple poles

coincide. To see the effect of S-duality on the coupling space masses are introduced.

The mass deformed 4.9 is

(v−m1)(v−m2)tn+1+c1(v2−m3v−u1)tn+· · ·+cn+1(v−mn+3)(v−mn+4) = 0 (4.12)

or
n∏

α=0

(t− tα)v2 = Mn+1(t)v + Un+1(t) (4.13)

Each coefficient of Mn+1(t) as well as the first and last of Un+1(t) are mass parameters.

There are n+ 4 such coefficients but a shift in v eliminates one of these leaving n+ 3

physical masses. Solving 4.13 for v one sees that at t = tα one of the roots v±(t)

diverges. The differential λ thus has a pole on one branch at t = tα, it also has poles

on both branches at t = 0,∞. The residues of the poles at t = tα are the masses

of the αth bifundamental, while the differences of the residues on both branches at

t = 0,∞ are the masses for the 2 sets of fundamentals at both ends. The structure
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of the residues in this form only makes an U(1) subgroup of flavor manifest for the

bifundamentals. To be able to make a connection between the punctures and SU(2)s

of flavor, λ must be modified so its has poles on both branches. To do this one shifts

v → v +M/2
∏

(t− tα) so as to remove the term linear in v

n∏
α=0

(t− tα)2v2 = Un+1(t)
n∏

α=0

(t− tα)− 1

4
Mn+1(t)2, λ =

vdt

t
− Mn+1dt

t
∏

(t− tα)
(4.14)

λ now has poles on both v branches whose residues sum to zero. These are the

properties of an element of the Cartan of SU(2). Thus to each puncture we associate

an SU(2) subgroup of flavor.

The shift of v caused the differential λ to be brought to an undesirable form it

can be returned to λ = vdv/t by adding Mdt/t
∏

(t − tα). This addition also has

residues that are the mass parameters and it does not affect the condition that the

derivatives of λ providing a basis of holomorphic differentials on the SW curve (2.75)

it is therefore harmless.

To complete the picture perform the change of coordinates ala 4.11

x2 =
P2n+2(z)

∆n+3(z)2
= φ2(z), λ = xdz, (x, z) ∈ T∗Cn+3,0 (4.15)

φ2dz2 is a quadratic differential on Cn+3,0. For the mass deformed theory it has double

poles at the punctures whose residues are the mass parameters, m2
α of the theory.

4.1.3 Degeneration limits

To describe the collision of any m punctures one can use S-duality to enter a frame

where it is t0, t1, . . . tm−2 coalescing with the puncture at t = 0. By 3.17 this corre-

sponds to τm−1 → i∞ i.e. the m − 1th node becoming weakly coupled. When this

happens the quiver will become two disconnected pieces and the position in Mn+3,0

corresponds to the degeneration of the n+ 3 punctured sphere to an n−m+ 4 punc-

tured sphere and an m+ 1 punctured sphere. To reproduce this behaviour in the SW

curve one focuses on each of the resultant spheres individually.
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Starting with the n−m+4 punctured sphere. Letting tα → εtα, α = 0, 1, . . .m−2,

and then ε→ 0 will scale the punctures at t0, t1, . . . tm−2 uniformly to 0. In doing so

a factor of ε−2(m−1) appears in the residues of the poles at those punctures, coming

from ∆n+3. To keep the residues, and hence the masses, finite P2n+2 must scale as

ε2(m−1) at the punctures tα. Therefore P2n+2(t) → t2(m−1)P2n−2m+4(t) while ∆n+3 →

tm∆n−m+3(t) (there are m punctures in total colliding at t = 0 hence the exponent

of t). This leaves a double pole at t = 0, whose residue is um−1 the Coulomb branch

parameter of the m− 1th gauge group. The SW curve is

x2 =
P2(n−m+2)(z)

∆n−m+4(z)
(4.16)

which is the curve for an n−m+ 1 node quiver with coupling space Mn−m+4,0.

From the point of view of the second sphere the other n−m+ 3 punctures collide

at infinity. To reproduce this tα, α = m − 1, . . . n are scaled uniformly to infinity

by ε−1. Keeping the masses finite requires ∆n+3(t) → tn−m+2∆m+1(t) resulting in a

double pole at infinity whose residue is um−1. Performing the usual transformations

gives

x2 =
P2(m−1)(z)

∆m+1(z)
(4.17)

the SW curve for an m− 2 node quiver with coupling space Mm+1,0.

Thus at a cusp of the theory Tn+3,0[A1]→ Tn−m+4,0[A1]×Tm+1,0[A1] for m > 2. By

continually decoupling the last node of the quiver i.e. colliding m = 2 punctures one

sees that the maximal degeneration corresponds to a collection of three punctured

spheres, Tn+3,0[A1]→ T3,0[A1]n. Each T3,0[A1] has SW curve

x2 =
P2(z)

∆3(z)
(4.18)

and when considered by itself is a non interacting theory of 4 hypers transforming as

half hypers with SU(2)3 flavor symmetry. Note that each of the coefficients of P2(z)

are mass parameters, there are no Coulomb branch parameters which is correct for a

non interacting theory.
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This collection is arranged as a graph with the three punctured spheres at the

nodes. A line between a pair of nodes associates a puncture on each sphere, the

connection itself represents the weakly coupled gauge group and the pair of punctures

the flavor symmetry if left behind.

4.1.4 Tn,g[A1] Theories

The elliptic models of the previous chapter are a special case of an Tn,g[A1], g = 1

theory. They will be used as a starting point with which to suggest a form for the

SW curve of the general case. For SU(2) 3.39 reduces to

v2 = f1(z)v + f2(z), (v, z) ∈ C× Cn,1 (4.19)

if there are no masses f1(z) = 0. The term linear in v can be eliminated via the shift

v → x+ 1/2f1(z)

x2 = f2(z)− 1

4
f1(z)2 = φ2(z) (4.20)

where (x, z) ∈ T∗Cn,1. The quadratic differential φ2(z)dz2 has double poles at the

punctures z = zα (the n NS5 positions) whose residues are the square of the mass

parameters of the αth bifundamental. The coupling space is thus Mn,1. The surface

Cn,1 has two possible types of degeneration. The first is as before, colliding m punc-

tures sees Cn,1 degenerate into Cn−m+1,1 and Cm+1,0. While the second corresponds a

pinching of a handle of Cn,1 resulting in a genus zero surface with two extra punctures

occurring where the surface was pinched. In the process the separation of a pair of

punctures either side of the pinch will diverge. Thus a single gauge group in the

loop becomes weakly coupled. φ2dz2 acquires double poles at the new punctures with

residue being the u parameter of the decoupled group.

Therefore Tn,1[A1]→ Tn+2,0[A1] or Tn−m+1,1[A1]× Tm+1,0[A1]. Again the maximal

degeneration is a collection of three punctured spheres Tn,1[A1]→ T3,0[A1]n−1.

The generalisation of this to Tn,g[A1] is immediate. The SW curve is

x2 = φ2(z), (x, z) ∈ T∗Cn,g (4.21)
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φ2dz2 is a quadratic differential on Cn,g with simple poles at the punctures and double

poles for non zero masses, the residues being m2. The coupling space is parametrised

by the positions of these poles and so is Mn,g with duality group π1 (Mn,g).

4.1.5 SU(3)

Some new features are encountered when dealing with SU(3) gauge groups. All cusps

of these theories are no longer weakly coupled. Strong coupling cusps are present as

the S-duality group is not as large it was for SU(2) (see figure 4.1.5). For example

SU(3) coupled to 6 hypers has flavor symmetry U(6) and duality group Γ̃0(2). This

duality group leaves two cusps, the usual weak coupling τ → i∞ and a strong coupling

τ → 1. At this strong coupling point the theory is actually also weakly coupled via

a different form of duality known as Argyres-Seiberg (AS) duality. The dual weakly

coupled theory which emerges via AS duality is not the original SU(3) theory at weak

coupling but rather an SU(2) gauge theory coupled to one hyper. The SU(2) is a

gauged subgroup of the E6 flavor symmetry of an interacting rank 1 SCFT.

Evidence for this duality is found in the degeneration of one SW curve to the

other. One can immediately see that it passes some basic consistency checks.The

ranks must agree on both side of the duality. SU(2) is rank one as is the E6 theory so

the total rank is two the same as SU(3). The flavor symmetries also match. The AS

dual theory has SU(6) flavor, the commutant of SU(2) in E6 plus an SO(2) ∼= U(1)

from the single hyper giving U(6) which is the flavor symmetry of SU(3), Nf = 6. A

further requirement is that there are the same number of exactly marginal couplings.

SU(3) has one as does the dual theory coming from the gauging of the SU(2) (That

it is exactly marginal can be confirmed by computing the the central charge of the

flavor current algebra for the E6 theory, [27]).

As in the previous sections we concentrate on certain subgroups of the full flavor

symmetry. Splitting the 6 hypers of the single group theory into two sets makes

explicit an SU(3)2 × U(1)2 subgroup of the flavor. In the AS dual theory the focus

will be on SU(3)×SU(3)×U(1) where SU(3)×SU(3) ⊂ SU(6) and the U(1) is the

flavor of the single hyper. Already this signals a departure from the SU(2) theories,
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Figure 4-5: The fundamental domains of Γ̃0(2) (solid lines) and Γ0(2)(dashed line),
there is an identification across the Imτ axis. Γ̃0(2) is the duality group for SU and
SO groups, Γ0(2) is the duality group for Sp. Strong coupling cusps are present τ → 1
for SU and τ → 1 for Sp. The intersection of the two domains is the fundamental
domian of SL(2,Z)(this figure is taken from [14]).

there are now two types of flavor subgroups.

Consider a linear quiver of SU(3) gauge groups and send a middle node to strong

coupling while keeping the rest at weak coupling. At the strongly coupled node there

is an SU(3)× SU(3) flavor group which is weakly gauged at the neighbouring nodes

as well as a U(1)2 coming from the 2 bifundamentals. As τ → 1 the AS dual theory

emerges. The weakly gauged SU(3)× SU(3) is a subset of SU(6) the commutant of

SU(2) in E6 while the two U(1)s combine to give the SO(2) flavor of the single hyper

with a U(1) left over which is the commutant of SU(3)× SU(3) ⊂ SU(6).

Were this SU(2) to be ungauged the symmetry of the interacting SCFT will grow

to E6 and decouple from the rest of the theory. The flavor symmetry at the adjacent

nodes will grow from the U(1) of the bifundamentals to SU(3) which is the commutant

of the SU(3)× SU(3) ⊂ E6.

As there are two different types of flavor subgroups there will be two types of

associated punctures. Correspondingly the gauge coupling space will be M(f1,f3),g ,
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Figure 4-6: An example of a quiver corresponding to a theory with U(1)n+3 flavor.
Below is the corresponding Riemann surface and its subsequent degeneration when
the middle SU(3) is decoupled. (this figure is taken from [28]).

the moduli space of a genus g surface with f1 basic punctures, associated to U(1)s,

and f3 ‘maximal’ punctures associated to SU(3)s. All degenerations of C(f1,f3),g are

related to different generalised quivers which are the various S-dual weak coupling

frames of a single N = 2 SCFT theory denoted T(f1,f3),1[A2]. It has a subgroup of

flavor U(1)f1 × SU(3)f3 .

The collision of punctures in the previous case of SU(2) gauge groups always re-

sulted in the total number of punctures being increased by two and the associated

cusp being τm−1 → i∞. This will also be true in the present case but the type of

puncture produced and the cusp associated to such a collision must be determined

must be determined and will depend on the situation. A theory with no maximal

punctures or loops and f1 = n + 3 has G = SU(2) × SU(3)n−2 × SU(2) coupled to

n− 1 bifundamentals and additionally single hypers coupled to each SU(2) factor as

well as the first and last SU(3) (See figure 4.1.5). Colliding m > 2 punctures corre-

sponds to decoupling one of the SU(3) factors. The associated Riemann surface thus

degenerates to two punctured spheres each with a maximal puncture corresponding

to the SU(3) of flavor left after decoupling the SU(3). If m = 2, n + 1 the gauge

group being weakly coupled is SU(2). The surface degenerates to a three punctured

sphere and a surface with n + 2 punctures. From the point of view of the n + 2

punctured sphere two basic punctures have coalesced to form a single maximal one.

The decoupled SU(2) is a subgroup of an SU(3), the flavor group it leaves behind
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grows to SU(3). Thus T(f1,0),0[A2]→ T(f1−m,1),0[A2]× T(m,1),0[A2] m ≥ 2

Thus one can transition between the quiver theory figure (??) with G = SU(2)×

SU(3)n−2×SU(2) to the more standard G = SU(3)n−2 by colliding first 2 punctures

then n punctures to form two new maximal punctures i.e. decoupling the 2 SU(2)

gauge groups. The opposite transition can also be made, starting with G = SU(3)n−2,

an SU(2) subgroup of the SU(3) flavor at the end nodes can be gauged. Here, the

two maximal punctures have been pulled apart to each give two basic punctures,

C(n+1,2),0 → C(n+3,0),0.

Starting with T(6,0),0[A2] which has gauge group G = SU(2)×SU(3)×SU(2). Col-

liding any two of the basic punctures causes one of SU(2) gauge groups. There are

three such pairwise collisions and performing them all decouples three SU(2) gauge

groups, the third being a hidden SU(2) ⊂ SU(3). The resulting theory T(0,3),0[A2] is

the interacting E6 SCFT. The flavor symmetry left after decoupling a single SU(2)

leaves an SU(3) flavor symmetry, decoupling another this symmetry to the commu-

tant of SU(3) in E6, decoupling all three enhances the symmetry to the full E6.

The maximal degeneration of T(f1,f3),0[A2] will be a collection of three punctured

spheres of three different types; C(0,3),0 corresponding to the E6 theory, C(1,2),0 being

a free theory of nine hypers transforming in the (3, 3) of the SU(3) × SU(3) flavor

symmetry and a sphere with two basic punctures and one irregular puncture (see

section on Tinkertoys) which represents a free theory of two hypers in the fundamental

of SU(2) flavor.

The theory involving higher genus surfaces, T(f1,f3),g[A2], will have different de-

generations other than those resulting from punctures colliding. These occur when a

handle of the surface is pinched off which reduces the genus by one but adds two new

maximal punctures, T(f1,f3),g[A2]→ T(f1,f3+2),g−1[A2]. By colliding punctures however

the genus can be reduced in greater steps, T(f1,f3),g[A2] → T(f1−f ′1,f3−f ′3+1),g−g′ [A2] ×

T(f ′1,f
′
3+1),g′ [A2]. At cusps of M(f1,f3),g get all possible degenerations of C(f1,f3),g which

are related to all possible S-dual coupling limits of T(f1,f3),g[A2]. Generic cusps corre-

spond to all possible maximal degenerations of the Riemann surface into a collection

of three punctured spheres. They are arranged into a graph with g loops. The con-
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nections between the spheres correspond to the weakly coupled gauge groups which

this time can be SU(2) of SU(3).

4.1.6 SW Curves

The proposed behaviour discussed above can be confirmed by analysing SW curves.

The curve for G =
∏
SU(3) quiver theory with β=0 in all factors and no masses

v3tn+1 + c1(v3 + u
(2)
1 v + u

(3)
1 )tn + · · ·+ cn+1v

3 = 0 (4.22)

the u
(d)
i are Coulomb branch parameters. Rearranging as before gives

n∏
α=0

(t− tα)v3 = U
(2)
n−1(t)tv + U

(3)
n−1(t)t (4.23)

the coefficients of U
(2)
n−1(t), U

(3)
n−1(t) are u

(2)
i , u

(3)
i respectively. For example when n = 1

(t− 1)(t− t1)v3 = u(2)tv + u(3)t (4.24)

or with v = tx

x3 =
u(2)

(t− 1)(t− t1)t
x+

u(3)

(t− 1)(t− t1)t2
(4.25)

performing a fractional linear transformation brings this to the new form of the curve

for SU(3) product groups

x3 = φ2(z)x+ φ3(z), λ = xdz (4.26)

(x, z) are coordinates on the cotangent bundle of a punctured sphere. φ2(z)dz2 is

a quadratic differential and φ3(z)dz3 a cubic differential on the punctured sphere.

φ2(t)dt2 has simple poles at all the punctures while φ3(t)dt3 has simple poles at

t = 1, t1, call these punctures basic and double poles at t = 0,∞ call these maximal.

As always the coupling space is determined by the position of these punctures and so

is M(2,2),0.
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If t1 → 1 the AS dual theory should emerge, the curve goes to

x3 =
u(2)

(t− 1)2t
x+

u(3)

(t− 1)2t2
(4.27)

φ2(t)dt2 now has a double pole at t = 1 which indicates a mass deformation of the

theory. The residue of this pole, u(2), is the square of the mass parameter associated

to the flavor symmetry left behind by ungauging the SU(2). Setting u(2) = 0

x3 =
u(3)

(t− 1)2t2
(4.28)

which is SW curve for the E6 SCFT (The Coulomb branch described by 4.28 has

dimC = 1 and is parametrised by a dimension 3 operator, the only rank 1 theory with

such a Coulomb branch is the E6 theory). Here (x, z) ∈ T∗C(0,3),0 thus confirming the

identification of T(0,3),0[A2] with the E6 theory.

From 4.23 one sees that generally φ2(t)dt2 has only simple poles as does φ3(z)dz3

except at t = 0,∞, the maximal punctures. The others being basic punctures. The

coupling space is M(n+1,2),0.

At this point another way of viewing the Coulomb branch, C becomes apparent.

The quadratic and cubic differentials are parametrised respectively by u
(2)
i , u

(3)
i . Thus

C is actually a graded vector bundle V over M(f1,f3),g

V = V2 ⊕ V3 (4.29)

where Vk is the space of K-differentials with appropriate poles at the punctures z =

zi.Or to put it another way, to each Coulomb branch parameter one associates a

meromorphic section of the bundle of k-differentials on C(f1,f3),0. The dimension of Vk

is

dk = (2k − 1)(g − 1) +
n∑
i=1

p
(i)
k (4.30)

where p
(i)
k is the order of the ith pole of φkdz

k.

To begin associating punctures with flavor subgroups we start we the case of
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Figure 4-7: The brane configuration of the quiver depicted in 4.1.5. The blue lines
represent two coincident semi infinite D4s one of which combines with a D4 (now
nondynamical and shown in red) in first or last pair. This has the effect of reducing the
first and last gauge groups to SU(2) while coupling a single hyper to these SU(2)s as
well as to the first and last SU(3). This can be realised via Hanany-Witten transition
from a configuration with D6s. The brane realisation of pulling apart a maximal is
seen as the forcing together of D4s.

U(1)n+3 flavor symmetry. Such a theory was discussed in the previous section,T(n+3,0),0[A2],

its curve is

v3tn+1 + c1v(v2−u(2)
1 )tn + c2(v3−u(2)

1 v−u(3)
1 )tn−1 + · · ·+ cnv(v2−u(2)

n )t+ cn+1v
3 = 0

(4.31)

The brane set up used to construct this theory is depicted in figure 4.1.6. It consists

of n + 1 NS5s with 3 D4s suspended between each pair and 3 semi infinite D4s at

each end. Two of the semi infinite D4s at either end are coincident while one of the

D4s in the first and last lines up with these coincident pairs. Each coefficient of u
(2)
i

has a factor tk, k ≥ 1 while the coefficients of u
(3)
i all have a k ≥ 2, hence

n∏
α=0

(t− tα)v3 = U
(2)
n−1(t)tv + U

(3)
n−1(t)t2 (4.32)

or

x3 =
U

(2)
n−1(t)∏n

α=0(t− tα)t
x+

U
(3)
n−3(t)∏n

α=0(t− tα)t
=
U

(2)
n−1(z)

∆n+3(z)
x+

U
(3)
n−3(z)

∆n+3(z
(4.33)
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All the poles are simple, the gauge coupling space is M(n+3,0),0. As the flavor sym-

metry here is U(1)n+3 each of these punctures, with simple poles, will be related to a

U(1), thereby justifying their labelling as basic punctures. To make the relationship

more precise masses must be introduced. The massive form of 4.31 is

(v −m1)(v −m2)2tn+1 + c1(v −m2)(v2 −m3v − u(2)
1 )tn + c2(v3 −m4v

2 − u(2)
2 v − u(3)

1 )tn−1+

· · ·+ cn(v −mn+3)(v2 −mn+2v − u(2)
n )t+ cn+1(v −mn+3)(v −mn+4)2 = 0

or with v = tx

n∏
α=0

(t− tα)v3 = Mn+1(t)v2 + V
(2)
n+1(t)v + V

(3)
n+1(t) (4.34)

At t→∞,

v3 = (2m2 +m1)v2 − (m2
2 + 2m1m2)v +m1m

2
2 +O(1/t) (4.35)

which implies vα(t) v (m1 +O(1/t),m2 +O(1/t),m2 +O(1/t)) and similarly as t→ 0

vα(t) v (mn+3 + O(t),mn+4 + O(t),mn+4 + O(t)). Thus λ has poles on all three v

branches at t = 0,∞. At the other punctures however there is only a pole on one of

the branches. To ensure pole on all three branches at every puncture one must shift

v → v + Mn+1/3
∏n

α=0(t − tα) to eliminate the term quadratic in v. This also has

the effect of forcing the residues on all branches at a punctures to sum to zero. The

shifted curve is

v3 =
1
3
M2

n+1(t) + V
(2)
n+1(t)

∏n
α=0(t− tα)∏n

α=0(t− tα)2
+

2
27
M3

n+1(t) + 1
3
M2

n+1(t)V
(2)
n+1(t) + V

(3)
n+1(t)∏n

α=0(t− tα)3

(4.36)

and at all poles the residues are of the form (2m,−m,−m). The constant m is the

mass parameter of the associated U(1). The final form of the curve is

x3 =
P

(2)
2n+2(z)

∆2
n+3(z)

x+
P

(3)
3n+3(z)

∆2
n+3(z)

(4.37)

96



To identify maximal punctures with SU(3) subgroups of flavor use 4.23. The massive

curve is

(v −m1)(v −m2)(v −m3)tn+1 + c1(v3 −m4v
2 − u(2)

1 v − u(3)
1 )tn + . . .

· · ·+ cn(v3 −mn+3v
2 − u(2)

n v − u(3)
n )t+ cn+1(v −mn+4)(v −mn+5)(v −mn+6) = 0

as t→∞

v3 = (m3 +m2 +m1)v2 − (m1m2 +m2m3 +m1m3)v +m1m2m3 +O(1/t) (4.38)

hence the residues are unrestricted vα(t) v (m1 +O(1/t),m2 +O(1/t),m3 +O(1/t))

while for t → 0 vα(t) v (mn+4 + O(t),mn+5 + O(t),mn+6 + O(t)). As before there

are poles only on one of the branches for the punctures t = tα. After a shift of v will

ensure poles on all branches at every puncture. After this the residues at the t = 0,∞

are (ma +mb,−ma,−mb) which are of the form of a Cartan of SU(3). The labelling

of these as maximal punctures is thereby justified. The curve for the general theory

T(f1,f3),0[A2] is

x3 =
P

(2)
2f1+2f3−4(z)

∆2
f1

(z)∆2
f3

(z)
x+

P
(3)
3f1+3f3−6(z)

∆3
f1

(z)∆3
f3

(z)
(4.39)

A consequence of the shift in v is to make basic and maximal no longer distinguishable

by the order of the poles, instead they are distinguished by the structure of the residues

of λ at the punctures. This is a more natural way to classify the punctures and will

be employed when dealing with SU(N).

4.1.7 Degeneration Limits

In T(n+3,0),0[A2] the decoupling of the m − 1th gauge group corresponds to scaling

t0, t1, . . . tm−2 to t = 0 c.f. 3.17. For m = 2 the decoupled group factor is an SU(2).

The massless curve is 4.31, by sending t0 → 0 the differentials develop double poles

at t = 0

x3 =
U

(2)
n−1(t)∏n

α=1(t− tα)t2
x+

U
(3)
n−3(t)∏n

α=1(t− tα)t2
(4.40)
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The residue of the double pole φ2(t)dt2 is u
(2)
n−1, the Coulomb branch parameter of

the end SU(2). This is the square of the mass parameter, m2
1 of the SU(3) of flavor

left behind by the decoupling group factor. As φ3(t)dt3 only has a double pole rather

that a triple the residue is (m1,−m1, 0). This is expected, the decoupling SU(2) only

has one Coulomb branch parameter to convert into a mass.

The collision of n− 1 > m > 2 punctures results in an SU(3) gauge group being

decoupled. Scaling tα, α = 0, 1, . . . ,m−2 to 0 uniformly by ε introduces extra factors

of ε−2(m−1) in the residues at t = tα. Keeping the masses finite requires appropriate

scaling of P
(2)
2n+2 → ε2(m−1)P

(2)
2n+2−2(m−1), P

(3)
3n+3 → ε3(m−1)P

(2)
3n+3−3(m−1). The final form

of the curve is

x3 =
P

(2)
2(n+3−m)−2(z)

∆2
n+3−m(z)∆2

1(z)
x+

P
(3)
3(n+3−m)−6(z)

∆3
n+3−m(z)∆3

1(z)
(4.41)

which is the curve for T(n+3−m,1),0[A2].

4.1.8 T(f1,f3),g[A2]

Elliptic models with SU(3) gauge groups serve as a starting point for studying theories

involving arbitrary loops. From 3.39 the curve is

v3 = f1(z)v2 + f2(z)v + f3(z), λ = vdz (4.42)

(x, z) are this time coordinates on the cotangent bundle of a punctured torus. Residues

of the simple poles of f1(z) at the punctures are mass parameters, thus the massless

theory has f1(z) = 0. A shift of v → x+ f1/3 brings 4.42 to

x3 = (
1

3
f 2

1 + f2)x+ (
2

27
f 3

1 +
1

3
f1f2 + f3) = φ2(z)x+ φ3(z) (4.43)

φ2(z)dz2 and φ3(z)dz3 are quadratic and cubic differentials on the torus with double

and triple poles at the punctures. For zero masses there are only simple poles, an

elliptic model without D6s only has bifundamental matter hence basic punctures. A
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general quiver with g loops, f1 U(1)s and f3 SU(3)s will have SW curve

x3 = φ2(z)x+ φ3(z), (x, z) ∈ T∗C(f1,f3), g (4.44)

where for zero masses φ2(z)x+φ3(z) has simple poles at the punctures as does φ3(z)dz3

except at the maximal punctures where it has double poles. When the masses are

all non zero the quadratic and cubic differentials have double and triple poles at all

punctures. The residues of the poles of λ are of the form (2m.−m,−m) at the basic

punctures and (m1 +m2,−m1,−m2) at the maximal punctures.

4.1.9 SU(N)

As the rank of the constituent gauge groups are increased the number of puncture

types grows also. They will no longer be classified according to the order of the poles

they induce in the differentials. Instead they are labelled according to form of the

residues of the poles they induce in λ (when the masses are all zero, λ is holomorphic so

revert to previous system of classification) To start labelling the different puncturesone

first needs the SW curve. The natural generalisation of 4.44 to SU(N) is

xN =
N∑
k=2

xN−kφk(z), λ = xdz (4.45)

where (x, z) ∈ T∗C(f), g, f indicating the number of punctures of each type. φk(z)x+

φk(z) are k-differentials on C(f), g with poles of order at most k − 1 for zero masses

or k at the punctures.

To each puncture associate a Young diagram with N boxes. Each puncture will

have N residues, one on each branch which sum to zero (there is no xN−1 term in

4.45). Some of these residues may be the same. If there are ht identical residues

the Young diagram has a a column of height ht, see figure 4-8. The flavor symmetry

associated to this puncture as well as the pole structure are encoded in this Young

diagram. If Nh is the number of columns of height h then the Nh sets of h identical

residues to form a Cartan element of U(Nh), therefore the flavor subgroup of such a

99



Figure 4-8: The Young diagrams for the SU(5) theory. (a) The basic puncture with
pole structure pi = {1, 1, 1, 1} and residues (4m,−m,−m,−m,−m) the associated
flavor is U(1). (b) pi = {1, 1, 2, 2}, (m,m,−2/3m,−2/3m,−2/3m), U(1). (c) pi =
{1, 2, 2, 2},(m1,m2,−1/3(m1 +m2),−1/3(m1 +m2),−1/3(m1 +m2)), U(1)×SU(2).
(d) pi = {1, 2, 2, 3}, (2(M1 + m2),−m1,−m1,−m2,−m2), U(1) × SU(2) (e) pi =
{1, 2, 3, 3}, (−1/2(m1+m2+m3),−1/2(m1+m2+m3),m1,m2,m3), U(1)×SU(3). (f)
The maximal puncture pi = {1, 2, 3, 4}, (m1 +m2 +m3 +m4,−m1,−m2,−m3,−m4),
SU(5)

puncture is S
(∏N

h=1 U(Nh)
)

. The pole structure of the massless theory is obtained

by numbering the boxes. Starting at the top left with 0 and moving along a row. At

the end of a row start on the next with the same number. The order of the poles

is given by this list (ignoring the initial zero). A diagram with one column height

N − 1 and one of height 1 has poles p1 = {1, . . . , 1) corresponds to basic puncture,

U(1) flavor. A diagram with only one row of N boxes has pi = i− 1 ans is a maximal

puncture.

4.1.10 Gaiotto Duality

Now we examine the behaviour of SU(N) theories at various cusps before confirm-

ing this by analysing 4.45. For SU(3) the collision of basic punctures produced a

maximal puncture, to see if this is true in general consider the theory with only U(1)

flavors, i.e. only basic punctures. The gauge group is
∏N−1

i=2 SU(i)×SU(N)n−2(N−2)×∏N−1
i=2 SU(N + 1− i) the end nodes are coupled to single hypers (see figure 4-9).

Colliding m = 2, n − 1 punctures corresponds to one of SU(2) going to weak

coupling. This leaves behind at least an SU(2) of flavor. The puncture produced

by this collision has diagram with three columns one of height N − 2 and two of

height 1. The flavor associated to this is U(1) × SU(2) for N = 3 this is enhanced
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Figure 4-9: An example of a general quiver with only U(1) flavor subgroups for N = 4
(this figure is taken from [28]).

to SU(3). The collision of 2 < m < N − 1 will decouple an SU(m), the resulting

puncture will have one column of height N −m and m of height 1, flavor subgroup

being S (U(1)× U(m)) ((c) of 4-8 for example). If m > N − 2 an SU(N) decouples

and a maximal puncture should be produced, indeed following from above the Young

diagram has N columns of height 1 and flavor SU(N).

Specialising to the case of SU(N), Nf = 2N one should see the emergence of a

new dual theory through the generalisation of AS duality called Gaiotto Duality. The

associated Riemann surface is C(2,0,...,0,2),0. The dual theory will emerge at the τ → 1

cusp which corresponds, by comparing with the N = 3 case, to the collision of two

basic punctures. From above, we know that at this cusp an SU(2) subgroup decouples.

This SU(2) is a gauged subgroup of an interacting SCFT with SU(2)×SU(2N) flavor

symmetry. When N = 3, SU(2)× SU(2N) enjoys an enhancement to E6 but this is

unique to this case.Here colliding two basic punctures is equivalent to colliding two

maximal punctures. The other possible collision corresponds to the ‘usual’ S-dual

weak coupling limits of the SU(N) group.

To study the collision of a basic puncture with a generic puncture, one obvi-

ously requires a theory with basic punctures and at least one generic. Such a theory

can be constructed by modifying the linear quiver in figure 4-9. The portion with∏N−1
i=2 SU(i) is replaced by

∏k
i=i SU(ni). To remain conformal 2ni−ni−1−ni+1, n0 = 0

hypers must be coupled to each SU(ni) node. The Young diagram for the generic

puncture has k rows of length ni+1−ni see figure 4-10. By colliding a basic puncture
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Figure 4-10: A modification of the general quiver in 4-9. The generic puncture is
associated to the Young diagram shown

with the generic one SU(n1) will be decoupled. The resulting quiver will have SU(n2)

at the first node. The puncture produced in this collision has k − 1 rows of length

ni+1−ni where now n1, n0 = 0. The Riemann surface has degenerated into two parts,

one with a basic punctures and the ‘new’ generic puncture the other with one basic

puncture, the ‘old’ generic puncture and one other which may be irregular. Colliding

s < k+ 1 basic punctures with the generic one will decouple an SU(ns) and split the

quiver in two. From the point of view of the longer quiver a generic puncture has

been produced, the Young diagram of which has k − s rows the first of which has

length ns. If s > k an SU(N) decouples leaving a maximal puncture.

As with the case of T(f1,f3),g[A2], a generic cusp of T(f),g[An−1] will correspond to

the maximal degeneration of C(f1,f3),g to a collection of three punctured spheres. The

spheres are arranged in a graph with g loops, the connections between the spheres

represent the gauge groups that have been weakly coupled.

4.1.11 SW Curves

We now look to confirm the above arguments using SW curves. The simplest SW

curve that can be considered is that of massless SU(N), Nf = 2N

vN t2 + c1(vn − u(2)vn−2 − · · · − u(n))t+ cn+1v
N = 0 (4.46)
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or with v = tx

xN =
N∑
k=2

u(k)

(t− 1)(t− t1)tk−1
xN−k (4.47)

The poles of the differentials φidz
i at t = 1, t1 are thus of the order pi = 1,∀i while for

t = 0,∞ pi = i− 1. To associate these to basic and maximal punctures respectively

requires the mass deformed curve

N∏
i=1

(v −mi)t
2 + c1(vN − u(2)vN−2 − · · · − u(N))t+ c2

2N∏
j=N+1

(v −mj) (4.48)

After collecting powers of v

V N =
M2(t)

(t− 1)(t− t1)
vN−1 +

∑
i

U (i)(t)

(t− 1)(t− t1)
vN−i (4.49)

As t → ∞ vα v (m1 + O(1/t),m2 + O(1/t),m3 + O(1/t), . . . ) and for t → 0 vα v

(mN+1 +O(t),mN+2 +O(t),mN+3 +O(1/t), . . . ). Thus λ has poles on all branches

of v at t = 0,∞ but only on a single branch for t = 1, t1. A shift of v that eliminates

the term vN−1 ensures poles on all branches at all punctures and that their residues

sum to zero. The residues are of the form ((N − 1)m,−m,−m, . . . ,−m) at t = 1, t1

and (
∑

imi,−m1, . . . ,−mn−1) at t = 0,∞. The punctures are therefore basic and

maximal, associated to U(1) and SU(N). After the shift and a fractional linear

transformation get 4.45 with (x, z) ∈ T∗C(2,0,...,0,2), 0.

By sending t1 → 1 the generalised AS dual theory should emerge. If u(2) = 0 one

gets the curve for the SU(2)× SU(2N) interacting SCFT

xN =
N∑
k=3

u(k)

(t− 1)2tk−1
xN−k (4.50)

The associated Riemann surface is a sphere with two maximal punctures and one with

pi = {1, 2, 2, . . . } labelled by a Young diagram with one column of height N − 2 and

two of height 2 (for N = 3 ther are three maximal punctures). This three punctured

sphere will form part of the collection of spheres which correspond to a generic cusp
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of T(f),g[An−1].

For the theory with one generic puncture and the rest basic the SW curve is

constructed in a similar manner to 4.31.

vN tn+1c1v
N−n1(vn1 − u(2)

1 vn−2 − . . . )tn + c2V
N−n2(vn2 − . . . )tn−1 + . . .

+ck+1(vN − u(2)
k+1v

n−2 − . . . )tn−k+1 + · · ·+ cn−1(v3 − u(2)
n−1v − u

(3)
n−1)t2

+cnv
N−2(v2 − u(2)

n )t+ cn+1v
N = 0

The coefficients of u
(i)
d have factors of tk, i−1 ≤ k ≤ n up to i ≤ n1. For u

(ni)
d however

ni − 1 ≤ k ≤ di where di = n + 1− s for ns−1 ≤ i ≤ ns. Therefore the curve can be

rearranged ∏
α

(t− tα)xN =
N∑
i=2

U
(i)
di−i+1t

−1xN−i (4.51)

One sees that t = 0, tα are basic punctures and that φi(t)dt
i have poles at t = ∞ of

order pi = {1, 2, . . . , n1, n1, . . . , n2−n1− 1, n2−n1− 1, . . . }. Such a pole structure is

given by the Young diagram attributed to this puncture in the last section.

4.1.12 M Theory

All the SW curves encountered thus far in this chapter were constructed by considering

type IIA brane configurations without D6s, the extra hypers at certain nodes coming

semi infinite D4s. The configurations are such, that at the origin of the Coulomb

branch and for zero masses they consist of N infinite D4s intersected at points in

x6 by a number of NS5s. The M theory uplift of this configuration is N coincident

M5s wrapping a two punctured Riemann sphere being intersected by transverse M5s

wrapping Cv. This is opposed to the previously seen single M5 wrapping ΣSW , the

later, however, is a deformation of the first. In the limit where the transverse M5

physics decouples they appear only as codimension 2 defects on the w.v. of the

coincident branes or punctures on the Riemann sphere. Thus T(f),g[An−1] are the

low energy limits of N coincident M5s wrapping C(f),g. This tallies with the new

realisation of the SW curve as an N -sheeted cover of C(f),g.
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Figure 4-11: The two possible degenerations of a four punctured sphere. Both repre-
sent S-dual weak coupling cusps of T(2,2),0[A2] (this figure is taken from [29]

Alternatively, one could consider the (2, 0) AN−1 6d theory compactified on C(f),g.

Performing a KK reduction, in such a way as to preserve N = 2 supersymmetry, will

result in T(f),g[An−1].

4.2 Tinkertoys

A generic cusp of any T(f),g[AN−1] corresponds to the degeneration of C(f),g to a

collection of three punctured spheres, hereafter referred to as fixtures, arranged in a

graph with g loops. These fixtures when considered individually may correspond to

either free or interacting theories. The connections between fixtures, hereafter called

cylinders, join a pair of punctures, one on each sphere, and represent a gauge group

that is weakly coupled at that cusp. These can be SU(m),m = 2, . . . , N or sometimes

other classical groups.

All possible degenerations of the original Riemann surface C(f),g to such a collection

of fixtures and cylinders represent all possible S-dual cusps of T(f),g[AN−1], see figure

4-11 for an example with N = 3.
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By cataloguing the different fixtures and cylinders and formulating a set of rules

governing how they fit together one can construct all possible AN−1 theories. To state

this set of rules requires the notion of irregular punctures.

4.2.1 Irregular Punctures

An irregular puncture is one to which a Young diagram can not be assigned but which

nevertheless has an allowable pole structure and set of residues. An example of such

a puncture has already been encountered in the previous section. The collision of two

basic punctures inM(n+3,0),0 corresponded to the degeneration Cn+3,0 → Cn+1,0×C3,0

and the production of a maximal puncture on one side and an irregular puncture on

the other. This particular example will be discussed in more detail later. In general

an irregular puncture satisfies the following

1. p1 = 0, p2 = 1

2. max(k − 1, pk−1) ≤ pk ≤ min(2k − 3, pk−1 + 2)

3.
∑N

k=1 pk > N(N − 1)/2

4. ∃ a conjugate pole structure {p′k} defined by

p′k =

 pk if pk = k − 1

2k − 1− pk if pk > k − 1

that is regular

The flavor symmetry associated to an irregular puncture is given by the subset {pk′} ⊂

{pk} that satisfy pk′ = k′−1. The integers k′ then give the dimension of the Casimirs

of the flavor subgroup. For example pk = {1, 2, 3, 5} has k′ = 2, 3, 4 is associated to

SU(4) while pk = {1, 3, 3, 5} has k′ = 2, 4 giving Sp(4).
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4.2.2 Fixtures

Not all three punctured spheres are fixtures. For example one cannot have a fixture

with three basic punctures for N > 2 as no collision of punctures can produce a basic

puncture. The dimension of the Coulomb branch for a three punctured is dS =
∑

k dk

where dk is given by 4.30. If dk = 0,∀k then the sphere corresponds to a free theory

or an interacting theory otherwise. A free theory obeys

2k − 1 =
∑
i=1

p
(i)
k (4.52)

If one puncture is basic then p
(2)
k , p

(3)
k = k − 1, the other two punctures are maximal.

This the fixture that results after colliding a basic and maximal puncture. It is a free

theory of N2 hypers in the (N,N) representation of SU(N)×SU(N). The collision of

two basic punctures always results in a free fixture the third puncture in the fixture

is determined by 4.52 to be pk = 2k − 3. It has two hypers transforming in the

fundamental of the SU(2) coming form this third puncture. The sphere previously

identified with an interacting SU(2) × SU(2N) SCFT has two maximal punctures

and one with pk = 1, 2, . . . , 2 and indeed d = N − 2.

4.2.3 Cylinders

Cylinders are not universal, they can only connect certain pairs of punctures.To be

able to connect a pair the reverse process must exist. If a collision of punctures

results in a gauge group GT being decoupled and the production of punctures with

pole structure {sk}, {rk} then these two punctures can be connected by a GT cylinder.

In addition to this the dimension of the Coulomb branch must be unchanged after

the degeneration of the Riemann surface. Consider the coalescence of two punctures

{pk}, {p′k} resulting in the degeneration of the Riemann surface to a fixture, S, a

cylinder, T , and the remainder of the surface C. S has punctures {pk}, {p′k}, {sk},

C has, among others, {rk} and T connects {sk} and {rk}. The Coulomb branch

107



dimension due to S is

dS = N − 1− 2
N∑
k=2

+
∑
k

pk + p′k + sk (4.53)

The requirement that the dimension does not change amounts to

dS + rank(GT ) +
∑

rk =
∑

pk + p′k (4.54)

⇒ rank(GT ) = N2−1−
∑
sk +rk. The rules for a cylinder connecting two punctures

{sk} and {rk}are the following;

1. denoting qk = min(sk, rk), {qk} is regular

2. GT ⊂ Gqk where Gqk is the flavor associated to a {qk} puncture

3. rank(GT ) = N2 − 1−
∑
sk + rk

4. either sk = rk = k − 1 or sk + rk = 2k − 1

5. the Casimir dimensions of GT are the set of integers k such that sk = rk = k−1

By colliding basic punctures with all other a free fixture is produced with the third

puncture being determined by 4.52 all fixtures containing a basic puncture are found.

After this one can collide the next simplest puncture pk = {1, 2, 2, . . . , 2} with all

other types, proceeding in this manner a full catalogue of all possible fixtures can be

produced. All possible cylinders are found by systematically considering all pairs of

regular and irregular punctures.

4.2.4 Example: SU(3)

As an example we look to construct all possible A2 theories. There are two types

of regular puncture, the basic, {1, 1} and the maximal, {1, 2} in addition there is a

single irregular puncture {1, 3}. This was already shown to exist, being the result of

the collision of two basic punctures. Using the rules for irregular punctures one sees
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Figure 4-12: The three fixtures for used in the construction of T(f1,f3),g[A2]. The pink
sphere on the left is a free theory of two hypers, the sphere on the right is also free
and has four hypers. The middle sphere is the interacting E6 SCFT

this is the only irregular puncture. There are three possible fixtures 4-12 and two

cylinders

{1, 2} ←→ {1, 2} (4.55)

{1, 3} ←→ {1, 2} (4.56)

4.55 is related to SU(3) and 4.56 to SU(2)
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5. Conclusion

The aim of this dissertation was to study Seiberg-Witten curves, their appearance in

string theory and applications of them in modern research. In Chapter 2 the original

work of Seiberg and Witten, relating the Coulomb branch of an N = 2 super Yang

Mills theory to a family of elliptic curves that describe genus 1 Riemann surfaces,

was reviewed. We then saw that this relationship could be extended to higher rank

classical gauge groups with or without matter, the curves this time being hyperelliptic

and describing higher genus surfaces. In Chapter 3 brane configurations of Type IIA

string theory were used to construct such Seiberg-Witten gauge theories. From this

perspective the curves were given a physical interpretation: the M theory uplift of

the configuration is an M5 brane wrapping the surface described by the curve. Using

this string theory picture allows a more intuitive construction of SW curves as well

as enabling one to find curves for product gauge groups. The last chapter reviews

more recent work which relies on SW curves. We saw that, to certain SCFTs one

can associate punctured Riemann surfaces. The moduli space of such surfaces is

the coupling space of the theory and different collisions of punctures corresponded

to different dual weak coupling cusps of the theory. Entering a generic cusp of the

theory causes the Riemann surface to degenerate to a collection of spheres with three

punctures each. These spheres then served as building blocks with which to construct

a range of new SCFTs.

In the future it would be nice to further study the subject of Gaiotto duality

and tinkertoys. Recent work extending this subject to include the DN series [30]

and attempts to incorporate exceptional groups [31] indicate that there are many

interesting avenues to explore.
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While this dissertation attempted to cover many of the different aspects and uses

of SW curves it is by no means comprehensive. Due to time constraints some sections

needed to be shortened, those concerning the inclusion of matter and other classical

gauge groups in chapter two but in particular the sections on elliptic models and

tinkertoys deserved lengthier discussions. Having said this, it is hoped that this

dissertation provides a good introduction to SW curves and would serve as a helpful

starting point to those seeking to conduct research along the lines of Gaiotto duality

and tinkertoys.
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