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If the universe were simply the motion which follows from

a given scheme of equations of motion with trivial initial conditions, it

could not contain the complexity we observe. Quantum mechanics provides

an escape from the difficulty. It enables us to ascribe the complexity to the

quantum jumps, lying outside the scheme of equations of motion. The

quantum jumps now form the uncalculable part of natural phenomena, to

replace the initial conditions of the old mechanistic view.

—Paul A.M. Dirac, 1939
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Chapter 1

Introduction

Spoken during the relative adolescence of quantum theory, Dirac’s remarkable in-

sight stands today as almost prescient of modern cosmological understanding: the initial

conditions of our universe, which evolve into the staggering complexity of clusters and

superclusters of galaxies observed today, necessitate the existence of quantum mechan-

ics. Not only is this recognition simply extraordinary for its perspicacity, but we should

note that it was also spoken during the infancy of scientific cosmology, only a few years

after Hubble’s discovery of the expansion of the universe in 1929, and the presentation

of the Friedman-Lemâıtre-Robertson-Walker (FLRW) metric modeling a homogeneous

and isotropic universe. Nearly a half-century later, cosmologists subsequently accepted

that the initial seeds of structure were sourced by quantum fluctuations, and have, by

and large, gradually coalesced around a standard paradigm for this period in the very

early universe: inflation.

The inflationary epoch is a hypothetical period of exponential expansion by a factor

of 1026 which takes place approximately 10−34 seconds after the Big Bang singularity,

driving the universe towards a homogeneous and spatially flat FLRW cosmology. We

should note that this in itself is arguably an impressive achievement, as when infla-

tion was first introduced, the flatness of the universe was not conclusively determined

by observational data. Furthermore, the quantum fluctuations during this period re-

sult in inhomogeneities, both the initial seeds of large-scale structure and temperature

anisotropies of the cosmic microwave background.

The past two decades have been celebrated as the Golden Age of precision cosmol-

ogy, as observational cosmology has measured and constrained the parameters of our

universe to a precision never before conceivable. Much of this knowledge results from

experiments probing the temperature fluctuations of the cosmic microwave background
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(CMB). This is the remnant radiation of the last-scattering surface from when elec-

trons and protons combined to form neutral hydrogen and free-traveling photons (i.e.

the era of recombination), approximately 379,000 years after the Big Bang. Although

measured to be extremely isotropic, measuring the small fluctuations of the CMB tem-

perature map (of the order ∆/T ∼ 10−5) allows us to both characterize the observed

universe, but also investigate the conditions before the CMB formed, the period after

the Big Bang. Namely, these inhomogeneities are seen as the result of inflation, and

remain the most promising window to understanding this little-known period in time.

Such measurements from the CMB and surveys of large-scale structure (LSS) have

resulted in the concordance model of cosmology, remarkably parametrized by only a

handful of variables, detailed in the table below [15,207]:

Parameter Physical Origin Value
Baryon Fraction Ωb Baryogenesis 0.0456± 0.0015

Dark Matter Fraction ΩCDM Physics at TeV-Scale? 0.228± 0.013
Cosmological Constant ΩΛ Unknown 0.726± 0.015

Optical Depth τ First Stars 0.084± 0.016
Hubble Parameter h Cosmological Epoch 0.705± 0.013
Scalar Amplitude As Inflation (2.445± 0.096)× 10−9

Scalar Index ns Inflation 0.960± 0.013

Table 1.1: The parameters of the ΛCMD universe. Such a universe is spatially flat
with the dark energy density of the form ΩΛ = 1− Ωb − ΩCDM. Note that the Hubble
parameter h parametrizes the expansion rate of the present universe, such that H0 =
100h km s−1Mpc−1. The inflationary parameters above concern the primordial power
spectrum of scalar perturbations; we will discuss this in full below.

Cosmologists today are able to confidently specify that we live in a flat ΛCMD

universe, which began as a hot dense state as predicted by the Big Bang, composed of

a homogeneous background of 4.6% baryonic matter, 22.8% dark matter, and 74.2%

so-called “dark energy”. By observing the systematically redshifted light from distant

galaxies and supernovae, we can confirm that the universe is manifestly expanding,

and the abundances of light elements H, He, D, and Li mirror predications of Big Bang

Nucleosynthesis.

However, how confident can we be in the inflationary paradigm? We still know

practically nothing abut the specific mechanism by which inflation is driven. (For

instance, what does an inflationary action look like precisely?) Moreover, over three

decades of theoretical work has resulted in a myriad of inflationary models. Will it ever

be possible to falsify some of these models in favor of others? Will we some day be
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able to assert that the inflationary epoch is a component of our standard cosmological

model with the same confidence as, say, Big Bang Nucleosynthesis?

So far, the general inflationary scenario has passed a number of generic predictions

as cosmological data has become increasingly precise. Namely, not only has the universe

been found to be flat over cosmological scales, but primordial density fluctuations are

observed to be small, scale-invariant, Gaussian, adiabatic, and superhorizon.1

Additionally, it should be observed that different inflationary models could predict

different levels of inhomogeneity in the universe (via quantum fluctuations): the mea-

surement of these departures from homogeneity could allow us to constrain inflationary

models. Thus far, we have measured that the initial conditions of these density fluctu-

ations are consistent with being a Gaussian random field. Future probes of the CMB

(namely the Planck mission) are projected to survey the CMB with unprecedented

precision: could we possibly find deviations from Gaussian statistics? If so, what kind

of non-Gaussianity do we expect to find? Could we correlate such departures from

Gaussianity with particular inflationary models, thereby “testing” them?

The first part of paper details the efforts to constrain inflationary models with a

variety of means, particularly by non-Gaussianity. We detail the current and future

observations which may be utilized to parametrize and possibly constrain the various

inflationary models available. In addition, we mention how observations could possibly

prefer the inflationary paradigm over other alternatives (e.g. with a significant detec-

tion of gravitational wave background), or possibly falsify the inflationary paradigm

altogether.

The second part of this paper paper details a new approach to generalize infla-

tionary models and classify them based upon their observational predictions. This is

the “Effective Field Theory of Inflation”, inspired by effective field theory methods

used in high-energy particle physics. We present this method to write all single-field

inflationary models in full generality, which also allows us to systematically explore

non-Gaussian signatures of the inflationary action.

1Note that we will define and discuss these terms in full within the paper.
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Chapter 2 concerns the dynamics of inflationary models and connections to obser-

vations. We begin by detailing slow-roll inflation, and then introduce the plethora of

inflationary models and their behavior, expanding upon how observations may be able

to parametrize and even discriminate between such models.

Chapter 3 details primordial non-Gaussianity, deviations from near Gaussian per-

turbations predicted by our simplest inflationary models. We will review how shapes

of non-Gaussianity hold the promise of explicating the inflationary dynamics and could

possibly falsify inflationary models.

Chapter 4 introduces the results of the Effective Field Theory of Inflation, and il-

lustrates its advantages over other methods of inflationary model-building for exploring

non-Gaussian signatures of inflationary dynamics.

Chapter 5 concludes with future observational to search for non-Gaussian signals

and future theoretical work to improve techniques for constraining inflation.

(Note that we will largely ignore issues concerning large scale structure LSS in this

paper for the sake of brevity).
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Chapter 2

Inflationary Models and

Observations

(Motivation and background for inflation and is found in Appendix A, as well as the

rudimentary basics of cosmology and CMB physics. The necessary results from cosmo-

logical perturbation theory are detailed in Appendix B. It is assumed in the following

section that the reader is familiar with this.)

2.1 Inflationary Dynamics

Inflation [1-6] is a very unfamiliar physical phenomenon: within a fraction of a second

the universe grew exponentially at an accelerating rate. In its simplest conception, we

can introduce a potential energy V (φ) of a scalar field φ(t,x) (i.e. the “inflaton”) which

describes the change in energy density during inflation.

Recall that the three equivalent conditions for inflation are given by

d(aH)−1

dt
< 0 =⇒

d
2
a

dt2
> 0 =⇒ p < −

ρ

3
(2.1)

Inflationary acceleration ä > 0 requires a negative pressure p and energy density

ρ which slowly dilute, along with some exit mechanism into our standard Big Bang

FLRW cosmology.

Acceleration occurs when the potential energy of the field V (φ) dominates over its

kinetic energy, 1

2
φ̇
2, and thus inflation is driven by the vacuum energy of the inflaton

field. Inflation ends at φend when the kinetic energy has grown to become comparable to

the potential energy, 1

2
φ̇
2 ≈ V . CMB fluctuations are created by quantum fluctuations
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δφ over about 60 e−folds before the end of inflation. (We will justify this below).

After these 60 e−folds of expansion, the inflationary process must somehow end; this is

referred to as “reheating”. At reheating, the scalar field oscillates around the minimum

of the potential such that oscillations of the scalar field act like pressureless matter. The

energy density of the inflaton and φ-particles then decay into radiation, thus resulting

in the hot Big Bang. (Note that the theory of reheating and how inflation ends is fairly

intricate, so we must largely ignore it in this paper. Readers are advised to see [7] for

further details.)

The dynamics of a scalar field minimally coupled to gravity is governed by the

action

S =

�
d
4
x
√
−g

�1
2
R+

1

2
g
µν
∂µφ∂νφ− V (φ)

�
= SEH + Sφ (2.2)

The action is the sum of the gravitational Einstein-Hilbert action, SEH, and the

action of a scalar field with canonical kinetic term, Sφ. The potential V (φ) describes

the self-interactions of the scalar field. The energy-momentum tensor for the scalar

field is given by

T
(φ)

µν = −
2

√
−g

δSφ

δgµν
= ∂µφ∂νφ− gµν

�1
2
∂
σ
∂σφ+ V (φ)

�
(2.3)

and the field equation of motion by

δSφ

δφ
=

1
√
−g

∂µ(
√
−g∂

µ
φ) + V,φ = 0 (2.4)

where V,µ = dV

dφ
. Assuming the FLRW metric for gµν and restricting to the case of

a homogeneous field φ(t,x) ≡ φ(t), the scalar energy-momentum tensor takes the form

of a perfect fluid, such that

ρφ =
1

2
φ̇
2 + V (φ) (2.5)

pφ =
1

2
φ̇
2
− V (φ) (2.6)

The resulting equation of state

ωφ ≡
pφ

ρφ
=

1

2
φ̇
2 − V

1

2
φ̇2 + V

(2.7)

shows that a scalar field can lead to negative pressure (ωφ < 0) and accelerated
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expansion (ωφ < −
1

3
) if the potential energy V dominates over the kinetic energy 1

2
φ̇
2.

The dynamics of the homogeneous scalar field and the FLRW geometry is determined

by the equations of motion, which are found to be

H
2 =

1

3M2

P l

�1
2
φ̇
2 + V (φ)

�
, Ḣ = −

φ̇
2

2M2

P l

, φ̈+ 3Hφ̇+ V,φ = 0 (2.8)

where the first equation is the Friedman equation, the second equation is the con-

tinuity equation, and the third equations describes the evolution of the inflaton.

For large values of the potential, the field experiences significant Hubble friction for

the term Hφ̇.

2.2 Slow-roll inflation

We begin by deriving the acceleration equation for a universe dominated by a homoge-

neous scalar field in the slow-roll case as

ä

a
== Ḣ +H

2 = −
1

6
(ρφ + 3pφ) = H

2(1− �) (2.9)

where

� =
3

2
(ωφ + 1) =

1

2

φ̇
2

H2
(2.10)

Notice that in the de Sitter limit, pφ → −ρφ corresponds to � → 0. In this case, the

potential energy dominates over the kinetic energy, φ̇2 � V (φ).

The first slow-roll parameter � may be related to the evolution of the Hubble pa-

rameter H such that

� = −
Ḣ

H2
= −

d lnH

dN
(2.11)

where dN = Hdt. Accelerated expansion occurs if � < 1; as soon as � < 1 fails (i.e.

when slow-roll conditions are violated), inflation ends. Accelerated expansion will only

be sustained for a sufficiently long period of time if the second time derivative of φ is

small enough |φ̈| � |3Hφ̇|, |V,φ|.

This requires smallness of a second slow-roll parameter η of the form

η = −
φ̈

Hφ̇
= �−

1

2�

d�

dN
(2.12)

where |η| < 1 ensures that the fractional charge of � per e-fold is small.
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Alternatively, note that to ensure that inflation lasts for at least 60 e−folds, the

potential is required to be very flat, flat enough such that the slow-parameters �, η, . . .

are much less than 1 most of the time. Such slow-roll parameters are defined as the

conditions by which inflation must go through at least O(60) e−foldings, i.e. to achieve

this much inflation, the Hubble parameter H cannot change within a Hubble parameter

cannot change within a Hubble time H
−1 such that

� = −
Ḣ

H2
� O(1), η ≡

�̇

�H
� O(1) (2.13)

The slow-roll conditions, |�|, |η| < 1, may also be expressed as conditions on the

shape of the inflationary potential

�V (φ) ≡
M

2

Pl

2

�V,φ

V

�2
, ηV (φ) ≡ M

2

Pl

V,φφ

V
(2.14)

where in this case the Planck mass to make �V and ηV manifestly dimensionless.

In what follows we will set MPl = 1 again. In the slow-roll regime, �V , |ηV | � 1, the

background evolution is H
2 ≈

1

3
V (φ) ≈ constant, φ̇ ≈ −

V,φ

3H
, and the space-time is

approximately de Sitter a(t) ∼ e
Ht.

The parameters �V and ηV are called the potential slow-roll parameters to distin-

guish them from the Hubble slow-roll parameters � and η. In the slow-roll approxima-

tion the Hubble and potential slow-roll parameters are related as follows.

There in fact exists a full hierarchy of slow-roll parameters [8] which are built from

V and its derivatives V,φ, V,φφ, . . ., etc. For example, we can define a second-order

slow-roll parameter

ξ = M
4

P l

�
V,φV,φφφ

V 2

�
(2.15)

which is related to the third derivative of the potential. At first order, slow-roll

parameters � and η may be considered constant as the potential is very flat, i.e.

�̇, η̇ = O(�2, η2)

� ≈ �V , η ≈ ηV − �V (2.16)

Inflation ends when the slow-roll conditions are violated

�(φend) ≡ 1, �V (φend) ≈ 1 (2.17)

In order for inflation to last long enough to actually solve the flatness and horizon

problems, a small smooth patch small than the Hubble radius must grow to encompass
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at least the entire observable Universe. This is defined in terms of e-foldings: the

number of e-folds before inflation ends is

N(φ) ≡ ln
aend

a
=

�
tend

t

Hdt =

�
φend

φ

H

φ̇
≈

�
φ

φend

V

V,φ

dφ (2.18)

The result of which may be written as

N(φ) =

�
φ

φend

dφ
√
23

≈

�
φ

φend

dφ
√
2�V

(2.19)

To solve the horizon and flatness problems requires that the total number of infla-

tionary e-folds exceeds about 60 such that

Ntotal = ln
aend

astart
� 60 (2.20)

The precise value depends on the energy scale of inflation and on the details of

reheating after inflation. The fluctuations observed in the CMB are created during

approximately NCMB ≈ 40 − 60 e-foldings before the end of inflation. The following

integral constraint gives the corresponding field value φCMB

�
φCMB

φend

dφ
√
2�V

= NCMB ≈ 40− 60 (2.21)

2.3 Categories of Inflation

Unfortunately, physicists remain at a loss regarding fundamental questions about the

inflationary paradigm: What is the inflaton? Why did the universe begin at such a

high energy state? What is the shape of the inflationary potential? What new physics

drives inflation?

All of these questions remain unanswered.

Inflation may basically be divided into two categories upon the type of potential

V (φ), which is related to the distance which the inflaton field moves, i.e. ∆φ ≡ φCMB−

φend, as measured in Planck units:

• Small field Inflation

Small-field models [9-11] have the field moving over a sub-Planckian distance, i.e.

∆φ < MPl, which is observationally relevant as small-field models predict the

amplitude of gravitational waves too small to be detected.
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To offer a simple example of such a potential for small field inflation, observe the

Higgs potential [12]

V (φ) = V0

�
1−

�
φ

µ

�2

�2

(2.22)

which relies upon spontaneous symmetry breaking such that the field rolls off

an unstable equilibrium point toward a displaced vacuum to achieve small-field

evolution.

• Large-Field inflation

Here the inflaton field begins at large-field values and then evolves to a minimum

at the origin φ = 0. In this case the field evolution is super-Planckian, i.e.

∆φ > Mpl, and therefore gravitational waves produced by inflation should be

observable. Experiments in the near future are expected to have the capability

to detect such a gravitational wave background (more on this later).

A quintessential example for a large-field inflationary potential is given by “chaotic

inflation” [13]

V (φ) = λpφ
p (2.23)

where the coupling constant λp is independent of slow-roll parameters, and must

be set very small λp ≪ 1 to achieve the correct density fluctuations observed.

Furthermore, note for super-Planckian values ∆φ ≫ MPl, slow-parameters re-

main very small.

2.4 Inflationary Scenarios

Now let’s begin to consider to the myriad of inflationary models available, a result of

theorists struggling to understand inflationary dynamics and the implications of such

physics. Note that inflation is more of a framework, certainly not a unique theory,

and therefore theorists can achieve such inflationary expansion in a multitude of ways,

usually by writing down an action and then arguing that such a theory is theoretically

and/or phenomenologically well-motivated. However, it would be counterproductive to

rigorously detail the landscape of inflationary scenarios (we recommend [14] to inter-

ested readers). As an introduction to inflationary models beyond the simplest single-

field slow-roll scenario, we present a few broad classifications of inflationary cases:

10



• Non-canonical Kinetic Terms

In our simple slow-roll case, we used the canonical kinetic term such that

Lφ = X − V (φ), where X ≡
1

2
g
µν
∂µφ∂νφ (2.24)

Observe that we could easily extend this to include fields with non-canonical

terms such that

Lφ = F (φ, X)− V (φ) (2.25)

where the function F (φ, X) denotes derivatives of the inflaton field. A motivation

of such non-canonical terms relates to the potential V (φ): in our canonical slow-

roll scenario, inflation occurs only if the potential is very flat; non-canonical terms

can drive inflation even with a very steep potential.

• Multifield Inflation

We may extend the number of inflationary fields, which affects the dynamics of

inflation and the mechanism to produce fluctuations in countless ways. Indeed, a

downside to such an approach is that it becomes cumbersome to extract predic-

tions from many such models.

• Gravity

The vanilla action in eq. (2.2) is minimally coupled to gravity, i.e. there exists

no direct coupling between the metric and the inflaton field. Consequently, we

could easily construct models with a non-minimal coupling between the graviton

and inflaton. Furthermore, perhaps the Einstein-Hilbert term SEH may be UV-

modified via f(R) theories (or affected by any other possible modified gravity

scenario currently discussed).

2.5 Perturbations During Inflation

Before continuing to classify inflationary models, we will review the basic mechanism

of quantum fluctuations from the inflaton field δφ(t,x).

(Readers are recommended to consult the background of CMB physics in Appendix

A and cosmological perturbation theory basics in Appendix B before continuing with
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this section.)

Statistical Properties of Cosmological Fluctuations

Let’s review the basic statistics of cosmological perturbations. Cosmologists nor-

mally characterize the properties of a perturbation field in terms of the power spectrum.

As a general definition, we introduce a random field R(x). As we are working in flat

space, we can Fourier transform R(x) such that

Rk =

�
d
3
xR(x)e−ik·x (2.26)

and define the dimensionless power spectrum PR to be

�RkRk�� = (2π)3δ(k+ k�)PR(k), ∆2

R(k) ≡
k
3

2π2
PR(k) (2.27)

where the brackets �. . .� denote ensemble averaging of (in our case) the fluctuations.

This measures the amplitude of the fluctuations at a given scale ki. (Note that we have

chosen the normalization of the dimensionless power spectrum ∆2

R(k) such that the

variance of R is �RR� =
�∞
0

∆2

R(k)d ln k. Moreover, throughout the rest of the paper

R will denote the comoving curvature perturbation as detailed in Appendix A).

For the purposes of our paper, it is crucial to recognize that if the fluctuations are

exactly Gaussian, then the primordial power spectrum PR(k) contains all the informa-

tion possible. Furthermore, observe that the power spectrum is a two-point correlation

function. What are we actually calculating when we compute the power spectra of pri-

mordial fluctuations? To provide some motivation, consider QFT as used high-energy

particle physics: here, two-point correlation functions of fields describe freely propagat-

ing particles in Minkowski spacetime. Particle colliders are built to probe the more in-

teresting properties of these fields, i.e. to measure their higher order correlations. With

the assumption that quantum fluctuations sourced cosmological perturbations during

inflation, we interpret the power spectra of primordial fluctuations as describing freely

propagating particles in the inflationary background. Higher-order correlations probe

the details of inflationary dynamics (interactions, broken degeneracies, etc.). Therefore,

measuring such higher-order correlations could allow us to differentiate between and

falsify inflationary models! (We will more thoroughly discuss this in Chapter 3. See

Figure 2.1 for a schematic explanation of the power spectra in relation to inflation.)

Allow us to continue detailing the basic statistics of fluctuations: we can also mea-

sure the scale-dependence (or slope) of the power spectrum by defining the scale spectral
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index (or tilt) nf (k) such that

nf − 1 ≡
d ln∆2

s

d ln k
(2.28)

where scale-invariance corresponds to the value nf = 1. By defining the running of

the spectral index with αf

αf ≡
dns

d ln k
(2.29)

we may approximate the power spectrum by a power law in the form

∆2

f
(k) = Af (k∗)

�
k

k∗

�nf (k∗)−1+
1
2αf (k∗) ln(k/k∗)

(2.30)

where k∗ is an arbitrary reference scale.

Figure 2.1: The above diagram of inflation depicts how inflation solves the horizon prob-
lem and elucidates how perturbations were created and evolved in the early universe:
Scales of cosmological interest were far smaller than the Hubble radius at very early
times pre-inflation and re-entered the Hubble radius at very late times post-inflation.
Recall the comoving Hubble radius

�
aH

�−1
shrinks during inflationary expansion while

comoving scales k
−1 scales remain constant. Thus perturbations exit the horizon, are

frozen until horizon re-entry (as causal physics do not effect perturbations on super-
horizon scales, Ṙ ≈ 0), and subsequently result in CMB anistropies and perturbations
which form LSS. Thus, our goal is to match observed anistropies Cl to the predicted
power spectrum PR at horizon exit.
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Scalar Perturbations

In the case of scalar (or density) perturbations in inflation, let’s begin by choosing a

gauge such that the energy density of the inflaton field is unperturbed, δρφ = 0. Using

this, all scalar degrees of freedom are expressed by the metric perturbation ζ = (t,x)

gij = a
2(t)[1 + 2ζ]δij (2.31)

where ζ is a measure of spatial curvature of constant-density hypersurfaces R(3) =

−4∇2Ψ/a
2 which remains constant outside the horizon (for adiabatic perturbations).

By taking into account the transfer functions describing the sub-horizon evolution of

fluctuations, the primordial value of ζ may be related to observations from the CMB

and LSS. What follows is a power spectrum of ζ

�ζkζk�� = (2π)3δ(k+ k�)
2π2

k3
Ps(k) (2.32)

with similar definitions of the tilt, running, and approximate power spectrum as

above.

We stress again: if ζ is Gaussian, then the power spectrum contains all statistical in-

formation, but it is possible that primordial non-Gaussianity is encoded in higher-order

correlation functions of ζ, which may differentiate between inflationary models (i.e. be-

tween very small non-Gaussianity of single-field slow-roll, to significant non-Gaussianity

of non-trivial single-field models, multifield models, or violation of slow-roll conditions).

Tensor Perturbations

In the case of tensor perturbations corresponding to gravitational wave fluctuations,

we use a gauge-invariant metric perturbation hij

gij = a
2(t)[δij + hij ], ∂jhij = h

i

i = 0 (2.33)

We define the power spectrum for the two polarization modes of hij as

�hkhk�� = (2π)3δ(k+ k�)
2π2

k3
Pt(k) (2.34)

where hij = h
+
e
+

ij
+ h

×
e
×
ij
, h ≡ h

+
, h

×.

Defining the power spectrum of tensor perturbations as the sum of the power spectra

for the two polarizations

∆2

t ≡ 2∆2

h
(2.35)
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Analogously, we define the scale-dependence as

nt ≡
d ln∆2

t

d ln k
(2.36)

(where for historical reasons it is written without −1). This gives us an approximate

∆2
t (k) given as

∆2

t (k) = At(k∗)
�
k

k∗

�nt(k∗)
(2.37)

As detailed in Appendix C, the parameter r is given as

r ≡
∆2

t

∆2

h

(2.38)

This ratio of tensor power to scalar power is sensitive to CMB polarization mea-

surements.

2.6 Primordial Power Spectra

Now we can summarize the results of the primordial power spectra for scalar and tensor

fluctuations, cosmological observables which allows us to constrain (and falsify) various

inflationary models. Although the previous section provided a modest sketch of these

results in terms of statistical properties, we fully derive these results in Appendix C.

The power spectrum of ζ and the power spectrum of inflation fluctuations δφ are

related as follows

�ζkζk�� =

�
H

φ̇

�2

�δφkδφk�� (2.39)

For slow-roll inflation, quantum fluctuations of a light scalar field (i.e. mφ � H) in

quasi-de Sitter space (i.e. H ≈ const.) scale with the Hubble parameter H such that

�δφkδφk�� = (2π)3δ(k+ k�)
2π2

k3

�
H

2π

�2

(2.40)

where the right hand side of eq. (2.40) is to be evaluated at k = aH, the horizon

exit of a given perturbation.
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Inflationary quantum fluctuations produce following power spectrum for ζ

Ps(k) =

�
H

φ̇

�2�
H

2π

�2
�����
k=aH

(2.41)

Quantum fluctuations during inflation excite tensor metric perturbations hij . Their

power spectrum is simply that of a massless field in de Sitter space

Pt(k) =
8

M
2

Pl

�
H

2π

�2
�����
k=aH

(2.42)

Summary of Slow-roll Predictions

(We again advise readers to consult Appendix C for details.)

Models of single-field slow-roll inflation makes definite predictions for the primordial

scalar and tensor fluctuation spectra. Under the slow-roll approximation one may

related the predictions for Ps(k) and Pt(k) to the shape of the inflaton potential V (φ).

To compute the spectral indices one uses d ln k ≈ d ln a where (H ≈ constant). To first

order in the slow-roll parameters � and η one finds

Ps(k) =
1

24π2M
4

Pl

V

�

�����
k=aH

, where ns − 1 = 2η − 6� (2.43)

Pt(k) =
2

3π2

V

M
4

Pl

�����
k=aH

, where nt = −2�, r = 16� (2.44)

We note that the value of the tensor-to-scalar ratio depends on the time-evolution

of the inflation field, such that

r = 16� =
8

M
2

Pl

�
φ̇

H

�2

(2.45)

We also point out the existence of a slow-roll consistency relation between the

tensor-to-scalar ratio and the tensor tilt which, at lowest order, has the form

r = −8nt (2.46)
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2.7 Current Observational Constraints from WMAP

Using WMAP 5-year temperature and polarization data [15], we present current ob-

servational constrains on the primordial spectra Ps(k) and Pt(k). Furthermore, we can

refine these constraints with data of the angular diameter distance of Baryon Acoustic

Oscillations (BAO) [16] at z = 02 and 0.35, and data of the luminosity distance of Type

Iα Supernovae (SN) [17] at z ≤ 17.

Parameter 5-yr WMAP WMAP+BAO+SN
ns 0.963+0.014

−0.015
0.960+0.013

−0.013

ns 0.986± 0.022 0.970± 0.015
r < 0.43 < 0.22
ns 1.031+0.054

−0.055
1.017+0.042

−0.043

αs −0.037± 0.028 −0.028+0.020

−0.020

ns 1.087+0.072

−0.073
1.089+0.070

−0.068

r < 0.58 < 0.55
αs −0.050± 0.034 −0.058± 0.028

Table 2.1: Results of 5-year WMAP constraints for (ns), (ns, r), (ns,αs), and (ns, r,α)
as used in the power-law parametrization of the power spectrum using both WMAP
data and WMAP data combined with SN and BAO data.[15,207]

Using the power-law parametrization of the scalar power spectrum at horizon cross-

ing k∗ = a(t∗)H(t∗) of the form

Ps(k) = As(k∗)
�
k

k∗

�ns(k∗)−1+
1
2αs(k∗) ln(k/k∗)

(2.47)

we find the amplitude of scalar fluctuations at k∗ = 0.002 Mpc−1

As = (2.445± 0.096)× 10−9 (2.48)

and the scale-dependence of the power spectrum

ns = 0.960± 0.013 (2.49)

where we’ve assumed no tensors, i.e. (r ≡ 0). Note that the Harrison-Zel’dovich-

Peebles spectrum (i.e. scale-invariant spectrum) ns = 1 is 3.1 standard deviations away

from the mean of the likelihood.
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If we consider the possibility of r �= 0, we calculate the upper bound to be

r < 0.22 (95% CL) (2.50)

using data from temperature �TT � and temperature-polarization �TE� cross-correlation

measurements. With a non-zero r, r �= 0, our constraint on ns becomes

ns = 0.970± 0.015 (2.51)

Furthermore, WMAP has detected no evidence for curvature (−0.0179 < Ωk <

0.0081), running (−0.068 < αs < 0.012), or isocurvature.

2.8 Inflationary Model Building

Now we are prepared to present an overview of the varieties of inflationary models

and their associated phenomenology. What’s the standard approach to all this? Well,

theorists usually write down some Lagrangian (normally with one or many scalar fields)

and make arguments about how natural or well-motivated or consistent this theory is.

Then, we try to extract predictions from these theories and test them (e.g. via a

detection of a gravitational wave background).

Another approach is to take observations, and present a model based on those

considerations. We’ll discuss one such model in section 2.83.

2.8.1 Single-Field Slow-Roll

We have introduced slow-roll single-field previously as a canonical scalar field φ mini-

mally coupled to gravity

S =
1

2

�
d
4
x
√
−g

�
R− (∇φ)2 − 2V (φ)

�
(2.52)

A measurement of the amplitude and the scale-dependence of the scale and tensor

spectra directly constrains the shape of the inflaton potential V (φ). That is, by nor-

malizing the potential on CMB scale such that v(φ) ≡ V (φ)/V (φCMB), the parameters

r and ns become

r = 8(v�)2
��
φ=φCMB

, ns − 1 =
�
2v�� − 3(v�)2

���
φ=φCMB

(2.53)

and thus determine the shape of the inflaton potential (v�, v��) at φCMB.

18



2.8.2 Beyond slow-roll single field

We have also discussed previously several ways to construct inflationary theories beyond

simple single-field slow roll. We will categorize these models as follows:

• Non-trivial kinetic terms

S =
1

2

�
d
4
x
√
−g

�
R+ 2P (X,φ, ∂φ, ∂

2
φ, . . .)

�
(2.54)

such that X = −
1

2
g
µν
∂µφ∂νφ and slow-roll is given by the special case P (X,φ) =

X − V (φ).

Examples of such models with non-canonical terms include K-inflation [18], DBI

inflation [19], and Ghost inflation [20, 21].

Writing P (X,φ) as the pressure of the scalar fluid, with energy density ρ =

2XP,X − P , these models may characterized by the sound speed given by

c
2

s ≡
P,X

ρ,X
=

P,X

P,X + 2XP,XX

(2.55)

• Multifield Inflation

Additionally we may employ two or more scalar fields during inflation [22-25].

As we’ve previously discussed, the major drawback of multifield models is that

their predictive power is often fuzzy. However, the “smoking gun” for more

than one scalar field at during inflation would be the detection of non-adiabatic

perturbations.

Some multifield models produce features in the spectrum of adiabatic perturba-

tions [26-33] , seeding isocurvature perturbations which could leave imprints on

the CMB [34-39] (see more information in Appendix A).

To provide some intuition into the array of predictions for inflationary models

with more than one scalar field, we will detail several classes of inflationary models

which decouple the creation of density perturbations from the inflaton dynamics

during inflation:

For “inhomogeneous heating” models [40-41], when the decay of the vacuum en-

ergy at the end of inflation is sensitive to the local values of fields other than the

inflation, primordial perturbations may be generated from such so-called “inho-

mogeneous heating” or via “modulated hybrid inflation” [42].
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In “curvaton” models, density perturbations are created via the inhomogeneous

distribution of a weakly coupled field (i.e. the “curvaton”) when the field decays

into radiation at some time after inflation. In fact, we mention such a model

as it predicts the existence of isocurvature density perturbations, which may be

produced in some particle species (e.g. baryons) whose abundance differs from

the thermal equilibrium abundance when the curvaton decays.

• Models of Non-Standard Vacuum and Time-Varying Sound Speeds

In the next chapter, we will detail inflationary models which begin in a non-

standard vacuum, such that inflation may have begun in an excited state rather

than the standard Bunch-Davis vacuum [47]. Furthermore, notice we may be able

to write consistent inflationary models with the sound speed of the fluctuations

c
2
s in eq. (2.55) in the superluminal limit [48-51].

2.8.3 Observationally Inspired Inflationary Models

As opposed to the previous procedure of connecting theoretical models to observa-

tions, let’s take the opposite approach and discuss one such inflationary model which

is primarily justified from phenomenological considerations [52-53]:

It has been consistently found that the WMAP temperature �TT � power spectrum

contains an anomalous dip at l ∼ 20 and a bump at l ∼ 40 [54-59]. One explanation for

this structure is the presence of phenomenological feature in the primordial curvature

power spectrum, which may be a relic from inflation. (Otherwise, it may just be a

statistical anomaly.) Such power spectrum features could arise when slow-roll condi-

tions are momentarily violated. We may model such an effect by considering it caused

through a “step-like” feature in the inflationary potential [60].

In order to test whether the l ∼ 20− 40 anomaly is indeed a result of inflation, we

adopt a phenomenological inflationary potential of the form V (φ) = m
2

eff
(φ)φ2

/2 where

the effective mass of the inflaton φ has a step at φ = b corresponding to the sudden

change in mass during a phase transition, such that

m
2

eff
(φ) = m

2

�
1 + c tanh

�
φ− b

d

��
(2.56)

Note that we began by considering the simplest inflaton potential V (φ) = 1

2
m

2
φ
2

and then imposed a tanh fluctuation to give a step potential. Observe that the ampli-

tude and width of the step are determined by c and d respectively, where b and m are

potential parameters in units of Planck mass.
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We may be able to test the l ∼ 20−40 hypothesis via large-scale polarization of the

CMB, as such a feature in the inflationary potential results in an E−mode polarization

spectrum similar to that in the temperature power spectrum. By deriving the slow-roll

parameters in this model, we may use current and future CMB surveys to constrain

the parameters of the inflationary potential.

A potential downside to this approach is that due to the parameters of the inflation-

ary potential, each of the possible models must generally be computed on a case-by-case

basis. However, the Planck satellite is projected to be of the statistical sensitivity to

constrain such models at a 3σ significance level, thus confirming or falsifying this ef-

fect. Moreover, it is possible that such an inflationary potential would in fact have a

detectable size of non-Gaussianity [61]. For more information, see [62].

2.9 Future Tests of Inflation

In some sense, although inflation has past generic tests (i.e. flatness of the universe

and near scale-invariance, Gaussianity, and adiabaticity of the density fluctuations)

as observations have become more and more precise, we’ve only just begun to test

and refine the inflationary paradigm itself. As our experiments are becoming sensitive

enough to distinguish between inflationary models and alternatives, we may soon learn

whether these generic predictions remain valid, or have just provided us with a false-

sense of confidence for all these years.

• Primordial Tensor Modes

As detailed in Appendix A, detecting primordial B−modes would considered a

clear signature for inflationary gravitational waves, i.e. detecting C
BB with gives

us Ph(k) with a tensor amplitude At

∆2

t (k) ≡
k
3

2π2
Ph(k) = At

�
k

k∗

�nt

, nt = −2� ≈ 0 (2.57)

Under normal assumptions (see recent paper [63] as detailed in Appendix A),

measuring At provides direct access to the energy scale of inflation. Indeed, a

robust detection of a gravitational wave signal would point towards inflationary

models with a large vacuum energy, i.e. V 1/4 � 1016 GeV. Such a detection would

in fact support the simplest slow-roll scenario, as a significant gravitational wave

background is usually negligible for inflationary models where light fields lay
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density perturbations, and alternatives such as the ekpyrotic scenario [64] and

VSL theories [48].

• Scale Dependence of Modes

In the case of scalar modes, we concentrate on the scale dependence of scalar

modes via variation the spectral index ns (or the running), denoted by αs such

that

αs ≡
dns

d ln k
(2.58)

This could either confirm (i.e. with a small running αs ∼ O(�2) is expected

in slow-roll), or question to our conceptions of inflation and the generation of

perturbations (i.e. with a large positive |αs| > 0.001 or even negative running).

Furthermore for tensor modes, a single-field slow-roll consistency relation between

tensor-to-scalar ratio r and the tensor spectral index nt is of the form

r = −8nt (2.59)

The possibility of r �= −8nt provides another test for violations of slow-roll con-

ditions.

• Isocurvature Fluctuations

In general, there can be relative perturbations modes between different compo-

nents (such as between radiation and matter)

Sm ≡ 3H
�
δργ

ρ̇γ
−

δρm

ρ̇m

�
=

δρm

ρm
−

3

4

δργ

ργ
(2.60)

Isocurvature density perturbations are scalar modes and cannot produce B−mode

polarization. However, E− mode polarization and the cross-correlation between

temperature anisotropies and E−mode polarization can discriminate between

isocurvature modes and purely adiabatic spectra with similar temperature power

spectrum. Additional light scalar fields during inflation lead to additional non-

adiabatic perturbations being frozen-in on large scales during inflation.

The detection of isocurvature fluctuations is seen as a signature of multifield infla-

tion, though exact theoretical predictions for the amplitude of such isocurvature
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perturbations are complicated due to its dependence on multifield inflationary

dynamics and post-inflationary evolution.

Current constraints are given via a correlation parameter β

β ≡
PSR

√
PSPR

(2.61)

such that PS , PR are the power spectra of isocurvature and adiabatic fluctuations

respectively with cross-correlations PSR. We can therefore parametrize the rel-

ative amplitude between the two types of perturbations with coefficient α such

that

PS

PR

≡
α

1− α
(2.62)

Presently, constraints on a possible isocurvature contribution are:

α < 0.067 at 95% CL for β = 0 (2.63)

α < 0.0037 at 95% CL for β = −1 (2.64)

where the uncorrelated case is denoted by β = 0 and the anti-correlated case

denoted by β = −1.

Obviously the above diagnostics will be crucial for confirming simple single-field

slow-roll inflation, or disfavoring the scenario in favor of the multifield case or something

else altogether. In the next chapter, we detail another powerful probe for understanding

the inflationary: deviations of Gaussian primordial fluctuations. We will detail how

such a measurement could differentiate and even falsify inflationary models.
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Chapter 3

Non-Gaussianity

3.1 Primordial Non-Gaussianity

We previously mentioned that non-Gaussian contributions to the correlations of cos-

mological fluctuations directly measure inflationary dynamics (e.g. the inflaton interac-

tions). This allows us to put constraints on inflationary models and their alternatives,

permitting us to differentiate between and constrain the litany of models available.

Similarly, non-Gaussianity may also be used to constrain and falsify/confirm alterna-

tives to the inflationary paradigm. Therefore, detecting non-Gaussianity of primordial

fluctuations may be one of the most powerful probes we have of the early universe.

In Appendix C, we expanded the inflationary action to second order in R, the

comoving curvature perturbation. This allowed us to compute the power spectrum

PR(k). If the fluctuations R are drawn from a Gaussian distribution, then the power

spectrum (or the two-point correlation function) contains all the information about the

physics of inflation. Non-Gaussianity (expanding the action into the third order for

leading non-trivial interaction terms) directly probes inflationary interactions, which

will reveal much of inflationary dynamics.

We note that in the following section we shall compute three-point (and higher

order) cosmological correlations; this is non-trivial due to the time-evolution of the

vacuum in the presence of interactions. Refer to Appendix D where the “In-In” For-

malism is reviewed. Moreover, because of the complexity of these computations, many

of the following results will not be thoroughly derived. We direct interested readers to

[67] for said derivations and more details.
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3.1.1 The Bispectrum

The Fourier transform of the two-point function is given by the power spectrum

�RkRk�� = (2π)3PR(k)δ(k+ k�) (3.1)

Then, using results via the “In-In” Formalism, we may analogously write the Fourier

equivalent of the three-point function such that

�Rk1Rk2Rk3� = (2π)3δ(k1 + k2 + k3)BR(k1,k2,k3) (3.2)

where the bispectrum BR(k1,k2,k3) is subject only to momentum conversation

via the delta-function. (Note that this is a result of translation invariance of the

background, meaning the three vectors ki form a closed triangle.)

Here the delta function (maintaining momentum conservation) is a consequence of

translation invariance of the background. BR is hence symmetric in its arguments and

is a homogeneous function of degree −6 for scale-invariant fluctuations, i.e.

BR(λk1,λk2,λk3) = λ
−6

BR(k1,k2,k3) (3.3)

Observe the number of independent variables is reduced to simply two via rotational

invariance, e.g. the two ratios ks/k1 and k3/k1.

3.1.2 Local Non-Gaussianity

Cosmologists first parametrized non-Gaussianity phenomenologically with a non-linear

correction to a Gaussian perturbation Rg known as “local non-Gaussianity” as it is

local in real space [68]. Experimental constraints are normally set on the parameter

f
local

NL
, which is defined via

R(x) = Rg(x) +
3

5
f
local

NL

�
Rg(x)

2
− �Rg(x)

2
�
�

(3.4)

This relation was first derived in terms of the Newtonian potential Φ(x), such that

Φ(x) = Φg(x) = f
local

NL

�
Φg(x)2 − �Φg(x)2�

�
. In cosmology, this is related to R in the

matter era via a factor 3/5. Thus, note that this factor 3/5 is purely conventional.

Deriving the bispectrum of local non-Gaussianity from eq. (3.4), we find

BR(k1, k2, k3) =
6

5
f
local

NL ×
�
PR(k1)PR(k2) + PR(k2)PR(k3) + PR(k3)PR(k1)

�
(3.5)
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For a scale-invariant spectrum PR(k) = ak
−3 and (without loss of generality) an

ordering of the momentum such that k3 ≤ k2 ≤ k1, this is given by the form

BR(k1, k2, k3) =
6

5
f
local

NL ×A
2

�
1

(k1k2)3
+

1

(k2k3)3
+

1

(k3k1)3

�
(3.6)

It should be observed that the bispectrum for local non-Gaussianity is largest in

the so-called “squeezed limit”, i.e. when the smallest k (here denoted k3) is very small,

k3 � k1 ∼ k2. The other two momenta are then nearly equal. In the case of the

squeezed limit, the bispectrum for local non-Gaussianity becomes

lim
k3�k1∼k2

BR(k1, k2, k3) =
12

5
f
local

NL × PR(k1)PR(k3) (3.7)

Before continuing, let’s pause to consider how we would relate the primordial bis-

pectrum above to the CMB bispectrum. Recall we can related CMB temperature

anisotropies alm to perturbations R via a transfer function ∆l(k) through the integral

alm = 4π(−i)l
�

d
3
k

(2π)3
∆l(k)RkYlm(k̂) (3.8)

where Ylm are eigenfunctions of the spherical harmonics.

The CMB bispectrum may be written as a three-point correlation of alm such that

B
l1l2l3
m1m2m3

= �al1m1al2m2al3m3� (3.9)

and via substitution, we find the relation between primordial and CMB bispectra

to be

B
l1l2l3
m1m2m3

= (4π)3(−i)l1+l2+l3

�
d
3
k1

(2π)3
d
3
k2

(2π)3
d
3
k3

(2π)3
∆l1(k1))∆l2(k2)∆l3(k3)

�Rk1Rk2Rk3�Yl1m1(k̂1)Yl2m2(k̂2)Yl3m3(k̂3)

(3.10)

Although this technically is the correct form, there are many more computational

methods required to actually analyze the CMB bispectrum and calculate possible non-

Gaussianities (e.g. statistical estimators, Fisher matrices, etc.). See [69-70] for further

details and background.
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3.2 The Shape of Non-Gaussianities

Non-Gaussian bispectra contain a wealth of information about the physics of inflation.

Recall that the Fourier modes ki form a complete closed triangle (due to momentum

conservation). As discussed in [71], this shape of non-Gaussianity relates to the different

triangular configurations predicted via individual inflationary models (i.e. the mech-

anism which laid down primordial perturbations). We may now recognize the power

of this signal: by measuring the shape of non-Gaussianity, we can therefore exclude

inflationary models which predict unique shapes!

Let’s begin by defining the shape function

S(k1, k2, k3) ≡ N(k1k2k3)
2
BR(k1, k2, k3) (3.11)

where BR is the bispectrum and N is some normalization factor. The two most

commonly cited shapes of non-Gaussianity are the “local” model, given by

S
local(k1, k2, k3) ∝

K3

K111

(3.12)

and the “equilateral” model, given by

S
equil(k1, k2, k3) ∝

k̃1k̃2k̃3

K111

(3.13)

where we’ve defined (following the notation by [72] to shorten exceptionally complex

expressions):

Kp =
�

i

(ki)
p with K = K1 (3.14)

Kpq =
1

∆pq

�

i �=j

(ki)
p(ki)

q (3.15)

Kpqr =
1

∆pqr

�

i �=j �=l

(ki)
p(ki)

q(kl)
r (3.16)

k̃ip =Kp − 2(li)
p with k̃i = k̃i1 (3.17)

such that ∆pq = 1 + δpq and ∆pqr = ∆pq(∆qr + δpr).

We previously noted that a scale-invariant fluctuations the bispectrum is only a

function of the two ratios (e.g. k2/k1 and k3/k1), which prompts us to define the

rescaled momenta xi = ki/k1.
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We may now categorize the various types of non-Gaussian triangles possible and

relate them to inflationary models (and their alternatives). It has been found that

often these models produce non-Gaussian perturbations with signals peaked in special

triangle configurations. We categorize the major cases (note that we will discuss the

details below, see Figure 3.1):

• squeezed triangle (k1 ≈ k2 >> k3)

This is the dominant mode of models with multiple light fields during inflation.

These include multifield inflation [73-85], the curvaton scenario [43,86], inhomo-

geneous heating models [40,41], and New Ekpyrotic models [87-93].

• equilateral triangle (k1 = k2 = k3)

Models with higher-derivative interactions result in signals which peak at equilat-

eral triangles. These include models such as DBI inflation [19] and Ghost inflation

[20,21], and more general models of non-trivial speeds of sound [94-97].

• folded triangle (k1 = 2k2 = 2k3)

Models with non-standard initial states result in folded triangle signals [47,94].

• For consistency, we also mention elongated triangle (k1 = k2 + k3) and isosceles

triangles (d1 > k2 = k3), which are intermediate cases of the previous signals.

We should mention that we measure the magnitude of non-Gaussianity for arbitrar-

ily shaped functions by defining the generalized fNL parameter where the amplitude of

non-Gaussianity is normalized in the equilateral configuration, given by the form

fNL ≡
5

18

BR(k, k, k)

PR(k)2
(3.18)
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Figure 3.1: The various shapes of non-Gaussianity (squeezed, equilateral, folded, elon-

gated, and isosceles) are depicted such that the triangles are parametrized by the

rescaled momenta, x2 = k2/k1 and x3 = k3/k1. Note that the triangle inequality

x2 + x3 > 1 is satisifed and the momenta are ordered x3 < x2 < 1. [12]

We summarize this section by writing the two non-Gaussian signals cosmologists

usually concentrate on, f local

NL
and f

equil.

NL
, in Fourier space [69]:

• Local Non-Gaussianity, which is peaked on squeezed-triangles in Fourier space,

where

F (k1, k2, k3) = f
local

NL Flocal(k1, k2, k3) (3.19)

such that

Flocal(k1, k2, k3) ∼ δ
(3)

��

i

ki

�� 1

k
3

1
k
3

2

+
1

k
3

2
k
3

2

+
1

k
3

1
k
3

3

�
(3.20)

• Equilateral Non-Gaussianity, which is peaked on equilateral-triangles in Fourier

space, where

F (k1, k2, k3) = f
equil.

NL
Fequil.(k1, k2, k3) (3.21)
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such that

Fequil.l(k1, k2, k3) ∼ δ
(3)

��

i

ki

���

i=1

k1 + k2 + k3 − 2ki
k
3

i

�
(3.22)

3.3 Theoretical Predictions

3.3.1 Single-Field Slow-Roll Bispectrum

It was found by Maldacena [99] that fluctuations due to single-field slow-roll inflation

are expected to be extremely Gaussian, due to the weak interactions of the inflaton

field. Normalizing S
local and S

equil such that S
local(k, k, k) = S

equil(k, k, k), we may

derive the bispectrum for slow-roll inflation to be

S
SR(k1, k2, k3) ∝ (�− 2η)

K3

K111

+ �

�
K12 + 8

K22

K

�
(3.23)

≈ (4�− 2η)Slocal(k1, k2, k3) +
5

3
� S

equil(k1, k2, k3) (3.24)

Here the bispectrum peaks at squeezed triangles and has an amplitude that is

suppressed by slow-roll parameters

f
SR

NL = O(�, η) (3.25)

(Intuitively, we would expect such a result, as slow-roll parameters characterize

deviations of the inflaton from a free field). As slow-roll parameters are of the or-

der O(10−2), fSR

NL
is expected to be f

SR

NL
∼ O(10−2) for these models. This signal is

undetectable for all current and foreseen experiments.

Moreover, we should note it has been calculated that even if inflation begins with

such extremely Gaussian primordial perturbations, non-linear effects relating to CMB

evolution will only generate a non-Gaussianity of order at most f
SR

NL
∼ O(1) [98]. It

seems unlikely that we will be able to detect such a signal in the near future. However,

these effects must be more systemically characterized, as well will discuss at the end of

this section.

3.3.2 Single-Field Inflation and the Maldacena Theorem

What about more general single-field inflationary models? For all single-field models

(i.e. the only assumption being that the single inflaton is the only dynamical field
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during inflation), Creminelli and Zaldarriaga proved a consistency relation [99,100]

stating that the three-point function in the squeezed limit is suppressed by (1 − ns),

where ns − 1 is the usual tilt of the scalar spectrum, thereby vanishing completely

for scale-invariant perturbations. Therefore, detecting non-Gaussianity in the squeezed

limit rules out vanilla single-field inflation! This result is valid irrespectively of any

other assumptions about single-field inflation (e.g. the form of the potential, the type

of kinetic term or sound speed, or the initial vacuum state).

Without loss of generality, let’s consider a squeezed triangle signal, which correlates

two short-wavelength modes, say kS = k1 ≈ k2, to one long-wavelength mode on long-

wavelength mode, kL = k3. In the squeeze limit k1 ≈ k2 ≫ k3, we may write the

theorem as

lim
k3→0

�Rk1Rk2Rk3� = −(2π)3δ(k1 + k2 + k3)(ns − 1)PR(k1)PR(k3) (3.26)

where

�RkiRkj � = (2π)3δ(ki + kj)PR(ki) (3.27)

This consistency relation could possibly falsify simple single-field inflation.

Let’s provide some motivation for the theorem:

Consider the squeezed triangle signal, which correlates two short-wavelength modes,

kS = k1 ≈ k2, to one long-wavelength mode on long-wavelength mode, kL = k3. This

results in a bispectrum

�Rk1Rk2Rk3� ≈ �(RkS )
2
RkL� (3.28)

Recall that during inflation, modes with longer wavelengths freeze earlier than

modes with shorter wavelengths. Hence by definition, kL will already be frozen outside

the horizon when the two smaller modes freeze. Furthermore, it then acts a background

field for the two short-wavelength modes.

Now, the theorem states that (RkS )
2 is not correlated with RkL if Rk is exactly

scale-invariant. Let’s sketch the proof in real-space and then write the result in Fourier

space:
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Once a mode is frozen outside the horizon, it may be written as

ds
2 = −dt

2 + a(t)2e2Rdx2 (3.29)

i.e. the long-wavelength curvature perturbationRkL rescales the spatial coordinates

within a given Hubble patch.

Therefore, the spectrum for the shorter wavelength modes �Rk1Rk2� will depend

on the value of the background fluctuations RkL already frozen outside the horizon.

Written in position space, the variation of the spectrum �Rk1Rk2� given by the long-

wavelength fluctuations RL at linear order is given by

∂

∂RL

�R(x)R(0)� · RL = x
d

dx
�R(x)R(0)� · RL (3.30)

To find the three-point function, we then multiply eq. (3.30) by RL and average

over it. Written in Fourier space gives us eq. (3.26).

Again, this is what we would expect by our intuition: the long-wavelength moves

frozen outside the horizon cannot have large interactions with the short-wavelength

modes still within the horizon. Such modes well within the horizon oscillate, and

any contributions to non-Gaussianities average out. This also provides an intuition

as to when large non-Gaussianities are possible: Consider if all modes have similar

wavelengths and exit the horizon at the same time. Large interactions will occur and

therefore large non-Gaussian contributions will result. As we will discuss in the next

section, such inflationary models which provide such interaction terms are due to higher

derivative kinetic terms.

3.4 Large Non-Gaussianity from Inflation

We’ve seen that non-Gaussianity is always very small for all single-field slow-roll models.

It was shown that under no other assumptions except single-field inflation (i.e. no other

fields evolve during inflation, only a single inflaton) that such models produce negligible

non-Gaussianity in the squeezed-limit.

Non-Gaussianities peaked at other signals may therefore arise in violations of our

simplest vanilla inflationary model, i.e.

• single-field scalar inflation

• canonical kinetic term
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• always slow-roll

• started in Bunch-Davis vacuum

• within Einsteinian gravity

For instance, single-field models can still give large non-Gaussianity if higher-derivative

terms are important during inflation (i.e. as opposed to a canonical kinetic term and

no higher-derivative corrections in slow-roll inflation).

Consider the action

S =
1

2

�
d
4
x
√
−g[R− P (X,φ)], where X ≡ (∂µφ)

2 (3.31)

where P (X < φ) denotes arbitrary function of the kinetic term X = (∂µφ)2 and

hence contains higher-derivative interactions. Such models may have a non-trivial speed

of sound for the propagation of fluctuations:

c
2

s ≡
P,X

P,X + 2XP,XX

(3.32)

Analogously with our calculation in Appendix C, the second-order action for R

(which recall gives the spectrum PR) is given by [100]

S(2) =

�
d
4
x�
�
a
3(Ṙ)2/c2s − a(∂iR)2

�
+O(�2) (3.33)

and the third-order action for R (giving the bispectrum BR) is given by

S(3) =

�
d
4
x�

2
�
. . . a

3(Ṙ)2/c2s + . . . a(∂iR)2R+ . . . a
3(Ṙ)3/c2s

�
+O(�3) (3.34)

Note that the third-order action S(3) is suppressed by an extra factor of � relative to

the second-order action, which is a reflection of the fact that non-Gaussianity is small

in the slow-roll limit, i.e. P (X,φ) = X − V (φ), c2s = 1. However, for small speeds

of sound c
2
s � 1 away from the slow-roll limit, a few interactions terms enlarge and

non-Gaussianity can become significant. (We will discuss this in full next chapter).

The signal is peaked at the equilateral triangle configuration, with

f
equil

NL
= −

35

108

� 1

c2s

− 1
�
+

5

81

� 1

c2s

− 1− 2Λ
�

(3.35)
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where

Λ ≡
X

2
P,XX + 2

3
X

3
P,XXX

XP,X + 2X2P,XX

(3.36)

Whether actions with arbitrary P (X,φ) are consistent in high-energies theories is

an important theoretical challenge for these models.

(Additionally, we note that most New Ekpyrotic models are predicted to also man-

ifest sizable non-Gaussianity peaked at the squeezed triangle. Such a signal provides a

way to falsify this alternative to inflation or favor it over other inflationary models.)

This explains the large non-Gaussianity peaked at equilateral triangles from in-

flationary models with higher-derivative terms (e.g. DBI inflation). What about the

other models? Well, in contrast with single-field slow-roll, where the interactions of

the inflaton are constrained via the slow-roll parameters dictating how inflation must

occur, models have been written to circumvent this requirement. Such models (e.g.

curvaton, inhomogeneous heating) create fluctuations via a second field which is not

the inflaton (e.g. the “curvaton”). Such models give a non-Gaussian signal peaked at

squeezed triangles.

Non-Gaussianities also arise if inflation started in a state other than the Bunch-

Davies vacuum. It has been shown that non-Gaussianity may be detectable if inflation

began in an excited state, with a signal such that

S
folded(k1, k2, k3) ∝

1

K111

(K12 −K3) + 4
K2

(k̃1k̃2k̃3)2
(3.37)

The effect however is exponentially diluted when inflation lasts much longer than

the minimal amount of e−foldings. To sketch one such example, consider that the

Bunch-Davis vacuum normally has the positive energy mode ∼ e
−ikτ . If we simply add

a component of a negative energy mode ∼ e
+ikτ , this would affect our momentum of our

three-point function such that one ki becomes −ki, thereby resulting in an enhanced

non-Gaussianity in the folded triangle limit. See [47, 101-104] for details.

One may question how unique such multifield models are in predicting unique non-

Gaussian shapes. Differentiating between such signals either would clues from other

sources (e.g. a significant detection of gravitational waves would rule against New

Ekpyrotic models; a detection of isocurvature perturbations would rule in favor of

curvaton models; etc.). As these models individually do rely upon different mechanisms,

more work must be done to distinguish them on the basis of non-Gaussianity.

This is not to say however significant progress is not being made on this front:
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To provide some intuition with regards to the complexity of extracting predictions

of non-Gaussianity for multifield models, let’s begin by considering extensions to single-

field inflation via adding more scalar fields: we consider light fields of the order ∼ H,

as heavier fields m ≫ H would not affect quantum fluctuations. Referring to these

extra scalar fields as “isocurvatons”, let’s consider the case of one massless inflaton

with massive isocurvatons:

Such massive isocurvatons decays quickly after exiting horizon via expansion. The

rate at which this decay occurs is related to the isocurvaton mass: if m >
√
sH, then

it decays faster, and if m >
√
sH, it decays slower (possibly long-after superhorizon

scales).

The former case results in a signal peaking in the equilateral limit, thus correspond-

ing to bispectra of quasi-equilateral shapes. The latter case results in a signal peaked

in the squeezed limit k3 ≪ k1 = k2 such that the bispectrum shapes correlate to

(k3/k1)1/2−ν where ν goes from 0 to 3/2 (which corresponds to m equals 3H/2 to 0).

In addition, let’s consider these isocurvatons to be massless, such that the ampli-

tudes of the isocurvaton fluctuations do not decay after exiting the horizon. In this

case, such superhorizon modes may be studied classically and their evolution is there-

fore local in space (as they evolve independently form one another). Non-Gaussianities

in this case are generated via the non-linearity of the isocurvaton evolution, resulting

in a local shape bispectrum f
local

NL
peaked in the squeeze limit, given by the form

f
local

NL =
5

6

KpqKpKq

(K2
r )

2
(3.38)

This example demonstrates how complicated extracting predictions from multifield

models can be.

We should also note recently proposed models [48, 49, 105-108] in the limit of super-

luminal sound speed cs ≫ 1, partially motivating by earlier models of a decaying sound

speed [66,109-111]. Such models give rise to highly scale-dependent non-Gaussianities.

Such theories are not UV completed at cs ≫ 1 using the S-matrix methods we’ve

employed [112]. It can be shown [48,113] in such models that the Hubble parameter at

freeze-out and the amplitude of the power spectrum are related by

H
2 = M

2

Pl

8π2
�

(1 + �)2
csPζ (3.39)

Such an expression allows us to deduce constraints on such models, as in the cs ≫ 1

limit, where the observed normalization Pζ ∼ 10−10 must match H < MPl. Such a
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constraint implies a bound of approximately 1028 e−foldings of nearly scale-invariant

and Gaussian perturbations.

In the phenomenological case previously described in Chapter 2 of the inflationary

step-potential, i.e.

V (φ) =
1

2
m

2
φ
2

�
1 + c tanh

�
φ− b

d

��
(3.40)

such a sharp feature in the potential results in a sharp change of slow-roll param-

eters, which may enhance the magnitudes of time-derivatives in many models. Thus

would boost non-Gaussianities i modes near the horizon-exit. Such features may not

be sharply peaked, but are recognizable via their periodicity, i.e. an oscillatory com-

ponent in the interaction couplings resulting in oscillations before exiting the horizon

[114]. Taking k∗ = −1τ∗ as the momentum of the mode near horizon-exit, such bispec-

tra contain a sinusoidal factor ∼ sin(K/k∗).

3.5 Current Constraints

The latest constraint on f
local

NL
and f

equil

NL
computed by Smith, Senatore, and Zaldarriaga

[115,116] are given by

−4 < f
local

NL < +80 at 95% CL (3.41)

−125 < f
equil

NL
< +435 at 95% CL (3.42)

Future experiments (e.g. the Planck satellite and the proposed CMBPol mission)

are projected to measure at a sensitivity σ(f local

NL
) ∼ 5 and σ(f local

NL
) ∼ 2 respectively.

As previously detailed with respect to slow-roll and non-linear effects from CMB

evolution, we currently expect to see a signal from secondary effects not associated

with inflation at a sensitivity of at most fNL ∼ O(1). We therefore must compute in

detail how the non-linear evolution of fluctuations can induce its own non-Gaussianity;

otherwise, we risk confusing these effects with the primordial signal. Although their

order of magnitude is estimated in [117-119], these effects have not been precisely

computed.

Clearly, a systematic and thorough account of all effects inducing observable levels

of non-Gaussianity must be soon accomplished for this approach to be successful.
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Chapter 4

The Effective Field Theory of

Inflation

4.1 Motivating EFT Inflation

In the previous sections, we began with theoretical considerations of what sort of infla-

tionary expansion is possible. We have examined various motivations for such models,

reflecting on how consistent and “natural” such scenarios would be on the basis of a

number of criteria. In addition, we have discussed the opposite approach of constructing

inflationary theories inspired by possible observational anomalies (i.e. the inflationary

step potential).

At this point, we may start to worry how systematic this entire process is. With

the countless array of inflationary scenarios on the market, how could we possibly

pick the “most natural” one, even with previously discussed observational constraints?

It is highly unlikely that we could ever somehow measure the inflaton with particle

accelerators. The prospect of confidently concluding whether inflation did or did not

actually happen gradually begins to feel like a fantasy.

In this section, we introduce a more standardized approach which describes single-

field inflation solely in terms relevant to observations. Not only does such an approach

unify (virtually) all single-field inflationary models, it allows us to consistently explore

its dynamics and associated observational predictions. The following procedure relies

upon the techniques provided by effective field theory:

The key insight offered by effective field theory over the past several decades has

been a simple but powerful one: physics at a particular energy scale, time scale, or

distance scale will not depend sensitively on detailed knowledge of physics at widely
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different scales (see [120,121] for background). With this organizational principle, we

are able to precisely isolate high-energy degrees of freedom from the low-energy degrees

of freedom of the system, while systematically keeping track of their influence of the low-

energy domain. These methods have been one of the most powerful tools of theoretical

physics, indelibly affecting condensed matter to high-energy particle physics. Recently,

these ideas have been applied to the realm of cosmology (see [122-124] for examples).

Here, we offer an overview of a promising approach of this paradigm, the “Effective

Field Theory of Inflation”, originally developed [96].

Before proceeding to motivate and detail this theory in full, let’s rather summarize

the results of the EFT of single-clock inflation and sketch the details of how the for-

malism works, highlighting why such a theory is relevant. This short, cursory outline

will serve as a reference point throughout the later discussion when we construct the

theory in detail.

4.2 Outline of EFT Inflation

Recall our definition of inflation: it is a period of accelerated cosmic expansion with an

approximately constant Hubble parameter H, i.e. Ḣ � H
2. We know that the period

of inflation must end to give way to the standard FLRW cosmology. This simple, but

non-trivial insight implies that there is a physical “clock” of inflation which controls

when inflation ends. Furthermore, perhaps the most appealing aspect of inflation is

as the originator of the seeds of large scale structure, the initial fluctuations leading

to the clusters of galaxies we see today. Indeed, not only does accelerated expansion

end to way to a FLRW universe, but inflation must end at slightly different times in

different regions of the universe, giving rise to the initial seeds of structure formation.

The quantum fluctuations in the physical clock which determines when inflation ends

are the source of these initial seeds.

Due to this physical clock that controls when inflation ends, time-translations of

the quasi-de Sitter background (i.e. |Ḣ|/H2 � 1) are spontaneously broken and there-

fore the inflationary perturbations are the associated Goldstone bosons, denoted by

π. These Goldstone modes are associated to the curvature perturbations in the scalar

field δφ, which at linear order is of the form π = δφ/φ̇, such that φ̇ is the speed of the

background solution. Note that contrary to our previously discussed methods of infla-

tionary model building, the Goldstone mode π does not in fact assume any presence

of a scalar field. Indeed, this description is far more general, as we are only assuming

there is one relevant degree of freedom during the inflationary phase. Because the EFT
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description is general and valid for any background H(t) which spontaneously breaks

time-translation invariance, we may ignore the microscopic details specific to the theory

which give rise to the de Sitter background.

We will later observe that this nuance allows us to consider inflationary models

without explicitly postulating the physics of the theory. As opposed to arguing about

whether some inflationary Lagrangian is the most “natural” and tinkering the con-

sequent potential observables, the EFT approach does not actually have to explicitly

discuss the various scalar fields, potentials, etc.—we only need to specify a few num-

bers via an action of perturbations to calculate how large the quantum fluctuations

are! Such a non-trivial insight is a major motivation for this formalism.

At leading leading order we may relate Goldstone boson π to the standard curvature

perturbation ζ such that ζ = −Hπ. (Note that such a result is valid at linear order

and also at leading order in the generalized slow-roll parameters). As usual, such

curvature perturbations may lead to CMB anisotropies. The action written for these

perturbations (via Goldstone modes) is highly constrained by symmetry (the standard

result of Goldstone bosons). In fact, we will find that such non-linearly-realized time-

translation symmetries of the quasi-de Sitter background constrain the sound speed cs

to large interactions, resulting in large equilateral non-Gaussianities, i.e f
equil.

NL
∼ c

−2
s .

Assuming the Goldstone boson π is protected by an approximate shift symmetry

which allows us to neglect terms such that π appears without a derivative acting on it,

we find the most general Lagrangian for the Goldstone boson π is of the form

Sπ =

�
d
4
x
√
−g

�
−

M
2

Pl
Ḣ

c2s

�
π̇
2
− c

2

s

1

a2
(∂iπ)

2

�

+
ḢM

2

Pl

c2s

(1− c
2

s)π̇
1

a2
(∂iπ)

2
−

ḢM
2

Pl

c2s

(1− c
2

s)

�
1 +

2

3

c̃3

c2s

�
π̇
3

−
d1

4
HM

3

�
6π̇2 +

1

a2
(∂iπ)

2

�
−

(d2 + d3)

2
M

2
1

a4
(∂2

i π)
2
−

1

4
d1M

3
1

a4
(∂2

j π)(∂iπ)
2

+ . . .

�

(4.1)

where H is the standard Hubble parameter, and cs is the speed of sound of the

fluctuations (which since the background is not Lorentz invariant does not need to be

equal to one). M is a free parameter with dimension of mass while d1, ds, d3 and c̃3 are

dimensionless parameters expected to be of order one. Higher derivative terms (which
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generally give negligible contribution to the observables) are denoted by dots.

Observe the dynamics of this Lagrangian. In the de Sitter limit Ḣ → 0, the leading

kinetic term ḢM
2

Pl
(∂iπ)2 goes to zero and terms in the last line (which relate to the

extrinsic curvature of the system) become relevant. Otherwise, away from this limit

we see this Lagrangian contains only two leading interaction terms, π̇(∂iπ)2 and π̇
3.

Moreover, the coefficients are not constrained by the de Sitter space limit and may

therefore induce detectable non-Gaussianities. For instance, observe the coefficient of

π̇(∂iπ)2 is correlated with the sound speed of the fluctuations. (This also holds for the

coefficient of π̇3, which is also dependent on the parameter c̃3, which is expected to be

1 due to UV completion; see details in [19]). This result justifies our previously claim

that large non-Gaussianities are correlated to small sound speeds cs, the velocities at

which fluctuations propagate. Consider this as another major advantage of the EFT

formalism: unifying all single-field models allows us to explore the signature space

of single-field inflation in full generality, thus discerning such correlations via each

individual operator.

4.3 Single-Field EFT Inflation

We will now proceed by attentively motivating and detailing the Effective Field Theory

of Inflation before explicitly constructing the action.

Observe that in inflation, time-diffeomorphisms are broken and therefore there exists

a Goldstone boson associated with it symmetry breaking. In practice, we choose a

particular time-slicing such that the clock field is taken to be uniform. Because inflation

spontaneously breaks time-translation symmetry, we can construct an effective action

of the Goldstone boson associated with this spontaneous symmetry breaking. Later,

we will detail how this theory is highly constrained by non-linearly realized symmetries

of the quasi-de Sitter background.

The most general effective action is then constructed by writing down all operators

that are functions of the metric fluctuations and invariant under time-dependent spatial

diffeomorphisms. The two most important objects appearing in this construction are

the metric perturbation δg
00 = g

00+1 and the extrinsic curvature perturbation δKµν =

Kµν − a
2
Hhµν , where hµν is the induced metric on the spatial slices. We use these

geometrical quantities to write down the most general action with unbroken spatial
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diffeomorphisms, given by the form

S =

�
d
4
x
√
−g

� 1

2
M

2

Pl
R+M

2

Pl
Ḣg

00
−M

2

Pl
(3H2 + Ḣ)

+
1

2!
M

4

2 (t)(δg
00)2 +

1

3!
M

4

3 (t)(δg
00)3 + . . .

−
1

2
M̄

3

1 (t)δg
00
δK

µ

µ −
1

2
M̄

2

2 (t)(δK
µ

µ )
2
−

1

2
M̄

2

3 (t)δK
µν
δKµν + . . .

�

(4.2)

Before continuing to detail the terms of this action, we should first derive it.

4.3.1 Deriving the Action in the Unitary Gauge

Let’s begin with constructing the action for the single-field (single-clock) case.

As we’ve previously mentioned, the effective field theory approach has been used

very successfully to high-energy particle physics to condensed matter systems. The

general approach is to describe a system through the lowest dimension operators which

are compatible with the underlying symmetries. Usually when constructing single-field

inflationary models, one presents a Lagrangian for a scalar field (the so-called “inflaton”

φ responding for inflation) and solve the equation of motion for φ together with the

Friedman equation for the FLRW metric (as we first accomplished in Chapter 2).

In contrast, we will now begin by taking an inflating solution, i.e. an accelerated

expansion with a slowly varying Hubble parameter H with the scalar following a ho-

mogeneous time-dependent solution φ0(t). Using perturbation theory, we then split the

inflaton φ into an unperturbed part (i.e. the background) plus a fluctuating one, such

that

φ(�x, t) = φ0(t) + δφ(�x, t) (4.3)

where we note that while φ is a scalar under all diffeomorphisms, the perturbation

δφ is a scalar only under spatial diffeomorphisms while it transforms non-linearly with

respect to time diffeomorphisms, such that

t → t+ ξ
0(t, �x), δφ → δφ+ φ̇0(t)ξ

0 (4.4)

Let’s now apply the unitary (or comoving) gauge for which δφ = 0 i.e. φ(�x, t) =

φ0(t). In this gauge, there are no inflaton perturbations, but all degrees of freedom are

in the metric. There are no matter fluctuations, only metric fluctuations.
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The scalar variable δφ is hidden in the metric or equivalently has been “eaten” by the

graviton, which now has three degrees of freedom: the scalar mode and the two tensor

helicities. This scenario is analogous to a spontaneously broken gauge theory where a

Goldstone mode, which transforms non-linearly under the gauge symmetry, is eaten by

the gauge boson (i.e. the unitary gauge) to give rise to a massive spin-1 particle. Also,

we observe that once this is implemented, our Lagrangian is no longer invariant under

full space-time diffeomorphisms but only under spatial reparametrizations.

We will now exploit the implication that inflation spontaneously breaks time-translation

symmetry. In inflation, time-diffeomorphisms are broken and therefore there exists a

Goldstone boson associated with it symmetry breaking. In practice, we chose a partic-

ular time-slicing such that the clock field is taken to be uniform. We the can construct

the most general Lagrangian with the lowest dimension operators invariant under spa-

tial diffeomorphisms.

We begin by writing down operators that are functions of the metric gµν and in-

variant under the time-dependent spatial diffeomorphisms xi → x
i+ ξ

i(t, �x). Note that

spatial diffeomorphisms remain unbroken.

Let’s first write down the most general action invariant under spatial diffeomor-

phisms in the unitary gauge. We use a preferred time slicing with function t̃(x), which

non-linearly recognizes time diffeomorphisms (e.g. if the breaking is given by a time-

evolving scalar, surfaces of constant t̃ are also of constant value of the scalar). The

unitary gauge is chosen such that the time coordinate t coincides with t̃, so the addi-

tional degree of freedom t̃ does not explicitly appear in the action.

The most general space diffeomorphism-invariant action in the unitary gauge can

be written as

S =

�
d
4
√
−gF (Rµνρσ, g

00
,Kµν ,∇µ, t) (4.5)

where all free indices in the function F must be upper 0’s. Let’s motivate this result

by considering the various terms we can build:

• Terms invariant under all diffeomorphisms

• Any generic function f(t̃) becomes f(t) in the unitary gauge, and so we may use

any generic functions of time in front of any terms in the Lagrangian.

• Polynomials of the Riemann tensor Rµνρσ and its covariant derivatives are invari-

ant under all diffeomorphisms. Note that the metric and the completely antisym-

metric tensor (−g)−1/2�
µνρσ

are used to contract the indices to give scalars.
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• The gradient ∂µt̃ becomes δ
0
µ in the unitary gauge, so we can leave a free upper

free index 0 in every tensor e.g. we can use g
00 (and functions thereof) or the

component of the Ricci tensor R00.

• In order to define the induced spatial metric on surfaces of constant t̃, such that

hµν ≡ gµν + nµnν , we define a unit vector perpendicular to said surfaces:

nµ =
∂µt̃�

−gµν∂µt̃∂ν t̃

(4.6)

Hence every tensor can be project on said surfaces using hµν . In particular, we

may use in our action the Riemann tensor of induce 3D metric (3)
Rαβγδ and

covariant derivatives with respect to this 3D metric.

• Likewise, we consider the covariant derivatives of ∂µt̃. The covariant derivatives of

nµ is a derivative action on the normalization factor which gives terms like ∂µg
00

which are covariant on their own, and therefore may be used in the unitary gauge

action. Note the covariant derivative of nµ projected on surface of constant t̃ gives

the extrinsic curvature of these surfaces Kµν ≡ h
σ
µ∇σnν , where the index ν is

already project on the surface because n
ν∇σnν = 1

2
∇σ(nν

nν) = 0. The covariant

derivative of nν perpendicular to the surface can be rewritten as n
ν∇σnν =

−
1

2
(−g

00)−1
h
µ
ν∂µ(−g

00) so as not to give rise to new terms. Therefore, we can

write all covariant derivatives of nµ can be written using the extrinsic curvature

Kµν (and its covariant derivatives) and derivatives of g00.

• The Riemann tensor of the induced 3D metric and the extrinsic curvature is

redundant as (3)
Rαβγδ can be rewritten using the Gauss-Codazzi relation as in

Wald [125]

(3)
Rαβγδ = h

µ

αh
ν

β
h
ρ

γh
σ

δ
Rµνρσ −KαγKβδ +KβγKαδ (4.7)

Therefore, using the two most important objects i.e. the metric perturbation δg
00 =

g
00 + 1 and the extrinsic curvature perturbation δKµν = Kµν − a

2
Hhµν , where hµν is

the induced metric on the spatial slices, the most general Lagrangian may be written

43



as

S =

�
d
4
x
√
−g

�1
2
M

2

Pl
R− c(t)g00 − Λ(t) +

1

2!
M2(t)

4(g00 + 1)2 +
1

3!
M3(t)

4(g00 + 1)3+

−
M̄1(t)3

2
(g00 + 1)δKµ

µ −
M̄2(t)2

2
(g00 + 1)δKµ

µ

2
−

M̄3(t)2

2
(g00 + 1)δKµ

νK
ν

µ + . . .

�

(4.8)

where the trailing dots denote terms of higher order in the fluctuations or with more

derivatives. Observe that the first term is the Einstein-Hilbert term, and that the first

three terms are the only terms which start linearly in the metric fluctuations around

the chosen FLRW solution. All others are explicitly of quadratic order or higher, as

the action must start in the quadratic order in the fluctuations.

We now want to write the Lagrangian as a polynomial of linear terms like δKµν

and g
00+1 to make it evident whether an operator starts at linear, quadratic or higher

orders. All linear terms shall contain derivatives and can be integrated by parts to give

a combination of linear terms plus covariant terms of higher order. We begin by fixing

the coefficients c(t) and Λ(t) by the requirement of having a given FLRW solution H(t),

which is equivalent to canceling all tadpole terms around this solution i.e. the terms

proportional to c and Λ giving a stress-energy tensor

Tµν = −
2

√
−g

δSmatter

δgµν
(4.9)

Note that T
µν does not vanish at zeroth order in the perturbations and therefore

contributes to the right hand side of the Einstein equations (see Appendix B in [96]).

During inflation we are interested in a flat FLRW universe such that the Friedman

equations are given by

H
2 =

1

3M2

Pl

�
c(t) + Λ(t)

�
,

ä

a
= Ḣ +H

2 = −
1

3M2

Pl

�
2c(t)− Λ(t)

�
(4.10)

It can be shown that by considering fluctuations around a FLRW background (i.e.
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solving for c and Λ) we find

S =

�
d
4
x
√
−g

�1
2
M

2

Pl
R+M

2

pl
Ḣg

00
−M

2

Pl
(3H2 + Ḣ)+

+
1

2!
M

4

2 (t)(δg
00)2 +

1

3!
M

4

3 (t)(δg
00)3 + . . .

−
1

2
M̄

3

1 (t)δg
00
δK

µ

µ −
1

2
M̄

2

2 (t)(δK
µ

µ )
2
−

1

2
M̄

2

3 (t)δK
µν
δKµν + . . .

�

(4.11)

which is the Lagrangian introduced here in eq. (4.2).

Again, recall that the first term is the Einstein-Hilbert term. Only terms which start

linearly in the metric fluctuations, shown in the first line. The second line in eq. (4.11)

contains terms which start quadratic in the fluctuations and have no derivatives. Higher

derivative terms are shown in the third line. Thus, dots denote operators starting at a

higher order in derivatives or in the perturbations.

This describes the most generic Lagrangian not only just for the scalar mode, but

also for gravity, as higher effects will be encoded in corrections of higher derivative

terms. It is in fact the most general action of single-field (“single-clock”) inflation, and

moreover, it is unique.

Observe that the operator coefficients H(t),Mn(t), and M̄n(t) are of a generic time-

dependence; however we are interested in solutions such that |Ḣ| << H
2 and therefore

such time-dependence is negligible. The effective field theory approach allows us to

organize the action in terms of a low-energy expansion of the system’s fields and their

derivatives. Because g
00 is a scalar with zero derivatives acting on it, while Kµν is

a one-derivative object, in most situations the dynamics are dominated by the terms

involving g
00.

Let’s observe how the effective action eq. (4.11) unifies single-field models of infla-

tion, a considerably advantage of this formalism:

• Note that the first line in eq. (4.11) characterizes all single-field slow-roll models

of inflation. In a model with minimal kinetic term and a slow-roll potential V (φ),

this may be written in the unitary gauge as:

�
d
4
x
√
−g

�
−

1

2
(∂µφ)

2
− V (φ)

�
→

�
d
4
x
√
−g

�
−

1

2
φ̇
2
g
00

− V
�
φ0(t)

��
(4.12)
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where−1

2
φ̇(t)2

0
= M

2

Pl
|Ḣ| and V

�
φ(t)

�
= M

2

Pl
(3H2+Ḣ) are given by the Friedman

equations. In such a case all other terms encode possible effects of high energy

physics on the simple slow-roll model.

• The second line in eq. (4.11) parameterizes all possible Lagrangian with non-

trivial kinetic terms, i.e. with at most one derivative acting on each φ. Denoting

X = g
µν
∂µφ∂νφ and evaluating at φ0(t)

L = P (X,φ) → P (φ̇0(t)
2
g
00
, φ̄) =⇒ M

4

n = ˙̄
φ
2n

∂
n
P

∂X̄n
(4.13)

The operators proportional to M
4
n start at the n−order in the fluctuations. We

will later discuss how the coefficient M2 induces a sound speed in the quadratic

action

c
−2

s ≡ 1−
2M4

2

M
2

Pl
Ḣ

(4.14)

thus deviating from the speed of light, cs � 1.

• As we previously discussed, the last line in eq. (4.11) describes all terms with

higher derivatives that cannot be eliminated by partial integrations, e.g. (�φ)2.

Normally these terms become negligible via the threshold of the physics (i.e. usu-

ally extra powers of the cutoff suppress such terms). However, they can become

important in cases like Ghost inflation [20,21] where the leading terms vanish

because M
2

Pl
Ḣ → 0.

4.4 Reintroducing the Goldstone Boson

4.4.1 Review of Non-Abelian Gauge Theory

Before continuing, let’s review some aspects of non-Abelian gauge theory, in particular

how to reintroduce the Goldstone boson.

Consider a non-Abelian gauge theory with Lagrangian

L = −
1

4
TrF 2

µν −
1

2
m

2TrA2

µ (4.15)

where Aµ = A
a
µT

a.
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Under a gauge transformation this results in

Aµ → UAµU
† +

i

g
U∂µU

†
≡

i

g
UDµU

† (4.16)

with the action consequently becoming

L =
1

4
TrF 2

µν −
1

2

m
2

g2
TrDµU

†
D

µ
U (4.17)

Observe that we can then restore gauge invariance with the so-called Stückelberg

trick: First we define U = e
iπ

a
T

a
, where T

a is a generator of the group. By choosing

unitary gauge, π ≡ 0 we reproduce the action in eq. (4.15). Including the Goldstone

scalars πa, the Lagrangian becomes gauge-invariant and can be expanded as

L = −
1

4
TrF 2

µν −
1

2
m

2TrA2

µ +
1

2

m
2

g2
(∂µπ

a)2 + i
m

2

g
Tr∂µπ

a
T
a
A

µ + c.c.+ . . . (4.18)

To understand what this means, recall the “Goldstone Equivalence Theorem” from

high-energy particle physics. First proved by Cornwall, Levin, Tiktopoulos, and Vay-

onakis [126], the Equivalence Theorem involves

“[A] certain conservation of degrees of freedom. A massless gauge boson,

which has two transverse polarization states, combines with a scalar Gold-

stone boson to produce a massive vector particle, which has three polariza-

tion states. When the massive vector particle is at rest, its three polarization

states are completely equivalent, but when it is moving relativistically, there

is a clear distinction between the transverse and longitudinal polarization

directions. This suggests that a rapidly moving, longitudinally polarized

massive gauge boson might betray its origin as a Goldstone boson.” [127]

In this case, a Goldstone boson which transforms non-linearly under the gauge

transformation provides the longitudinal component of a massive gauge boson. At suf-

ficiently high energy such Goldstone boson becomes the only relevant degree of freedom.

Hence, for a sufficiently high energy, the mixing with gravity becomes irrelevant and

the scalar π becomes the only relevant mode in the dynamics. This is the so-called

decoupling regime.

So, the purpose of reintroducing the Goldstones above in eq. (4.18) is to make the

dynamics more transparent: for higher energies E � m, the scattering of Goldstone

bosons describes well the scattering of the longitudinal mode of the gauge field. By
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taking the decoupling limit m → 0 and g → 0 with m/g ≡ fπ fixed, the Goldstone

bosons decouple from Aµ and leave us with

L = −
1

2
f
2

πTr∂µU
†
∂
µ
U (4.19)

Upon restoration of finite m and g, we expect corrections to the results from pure

Goldstone boson scattering, perturbative in m/E and g
2, where E is the energy of the

vector boson.

In consideration of what we accomplished above, let’s now consider the case of broke

time diffeomorphisms, concentrating on two operators:

�
d
4
x
√
−g

�
A(t) +B(t)g00(x)

�
(4.20)

Under a broken time diffeomorphisms t → t̃+ ξ0(x), �x → �̃x = �x, we note that

g
00 transforms as

g
00(x) → g̃

00(x̃(x)) =
∂x̃

0(x)

∂xµ

∂x̃
0(x)

xν
g
µν(x) (4.21)

An therefore, under the transformed fields, the resulting action will be written as

�
d
4
x

�
−g̃(x̃(x))

�����
∂x̃

∂x

�����

�
A(t) +B(t)

∂x
0

∂x̃µ

∂x
0

∂x̃ν
g̃
µν(x̃(x))

�
(4.22)

By changing integration variable to x̃, we find

�
d
4
x

�
−g̃(x̃)

�
A(t̃− ξ

0(x(x̃)) +B(t̃− ξ
0(x(x̃))

∂(t̃− ξ
0(x(x̃)))

∂x̃µ

∂(t̃− ξ
0(x(x̃)))

∂x̃ν
g̃
µν(x̃)

�

(4.23)

Reintroducing the Goldstone boson is similar to the gauge theory scenario we re-

viewed previously. For every ζ
0 in the action above, we simply make the substitution

ξ
0(x(x̃)) → −π̃(x̃), which results in

�
d
4
x

�
−g(x)

�
A(t+ π(x)) +B(t+ π(x))

∂(t+ π(x))

∂xµ

∂(t+ π(x))

∂xν
g
µν(x)

�
(4.24)

where we’ve dropped the tildes for simplicity. Upon assigning to π the transforma-

tion rule π(x) → π̃(x̃(x)) = π(x)− ξ
0(x), we can further check that the action above is

invariant under diffeomorphisms at all orders, not just for infinitesimal transformations.
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Let’s pause to consider what we’ve accomplished so far: notice the unitary La-

grangian eq. (4.11) describes three degrees of freedom: one scalar mode (the Goldstone

mode π) and two graviton helicities. By the Equivalence Theorem, we know the by

studying the scalar Goldstone mode at sufficiently high energies, we can observe the

physics of the longitudinal components of massive gauge bosons. Similarly in EFT

inflation, at higher energies the mixing with gravity becomes irrelevant and we can

concentrate on the Goldstone scalar, where we can retrieve information about cosmo-

logical perturbations.

Using the above procedure on the unitary action eq. (4.11), we find the Lagrangian

S =

�
d
4
x
√
−g

�1
2
M

2

Pl
R−M

2

Pl

�
3H2(t+ π) + Ḣ(t+ π)

�
+

+M
2

Pl
Ḣ(t+ π)

�
(1 + π̇)2g00 + 2(1 + π̇)∂iπg

0i + g
ij
∂iπ∂jπ

�
+

M2(t+ π)4

2!

�
(1 + π̇)2g00 + 2(1 + π̇)∂iπg

0i + g
ij
∂iπ∂jπ + 1

�2

+

M3(t+ π)4

3!

�
(1 + π̇)2g00 + 2(1 + π̇)∂iπg

0i + g
ij
∂iπ∂jπ + 1

�3

+ . . .

�

(4.25)

By reintroducing the Goldstone π from the unitary gauge Lagrangian, we can study

the physics of the Goldstone mode π at very short distances neglecting metric fluctu-

ations. We see above that the quadratic terms which mix π and gµν contain fewer

derivatives than the kinetic term of π so that they can be neglected above some high

energy scale, which depends on which operators are present. In the simplest case where

only the tadpole terms are relevant, i.e. (M2 = M3 = . . . = 0), corresponds to the stan-

dard slow-roll inflation cases where the leading term mixing with gravity comes from a

term of the form

∼ M
2

Pl
Ḣπ̇δg

00 (4.26)

After canonical normalization such that πx ∼ MplḢ
1/2

π and δg
00
c ∼ Mplδg

00, we

find that the mixing terms can be neglected for energies above Emix ∼ �
1/2

H (where �

denotes usual slow-roll parameter).

Consider another case in which the operator M2 becomes large. Here will we find

mixing terms of the form

∼ M
4

2 π̇δg
00 (4.27)
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which similarly, upon canonical normalization πc ∼ M
2

2
π, becomes negligible at

energies larger than Emix ∼ M
2

2
/MPl

So, to concentrate on the effects that are not dominated by mixing with gravity, we

must neglect the metric perturbations and just keep the π fluctuation. Here, a term of

the form g
00 in the unitary gauge Lagrangian becomes

g
00

→ −1− 2π̇ − π̇
2 +

1

a2
(∂iπ)

2 (4.28)

Let’s now assume that π has an approximate continuous shift symmetry which

becomes exact when spacetime is precisely de Sitter. This allows us to neglect terms

in π without a derivative that are generated by the time dependence of the coefficients

in the action eq. (4.25). Therefore, in the regime E � Emix, the action eq. (4.25)

becomes

Sπ =

�
d
2
x
√
−g

�
1

2
M

2

Pl
R−M

2

Pl
Ḣ

�
π̇
2
−
(∂iπ)2

a2

�
+2M4

2

�
π̇
2+π̇

3
−π̇

(∂iπ)2

a2

�
−
4

3
M

4

3 π̇
3+. . .

�

(4.29)

where . . . denote terms we’ve ignored which come from the extrinsic curvature,

as they are usually important only in the de Sitter limit, Ḣ → 0. Notice that this

Lagrangian is of the same form as eq. (4.1). As usual with EFT methods, the details

of UV effects of new physics are parametrized in higher dimensional operators.

Note that away from the de Sitter limit and M2 �= 0, we find the speed of sound to

not equal to 1, cs �= 1, by the relation

M
4

2 = −
1− c

2
s

c2s

M
2

Pl
Ḣ

2
(4.30)

At this order we have two independent cubic self-interactions π̇(∂iπ)2 and π̇
3 which

can induce detectable non-Gaussianities in the primordial density perturbations. A

large M2 forces large self-interactions of the form π̇(∂iπ)2 while the π̇3 term is not fixed

as it also depends on M3. We will later discuss how to constrain these parameters

with cosmological data, a process similar to Precision Electroweak Tests of particle

accelerators [128,129].

Although our goal is to compute predictions for future observations based on a

given inflationary model, one may be concerned that decoupling limit Sπ in eq. (4.29)

would be irrelevant for these extremely infrared scales. However, recall that in the case

of simple slow-roll single field inflation, the usual curvature perturbation ζ is constant
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at superhorizon scales at any order in perturbation theory, i.e. ζ̇ → 0 [130-131] and

that the coefficients of the action are constrained by slow-roll parameters. In this case,

we can think of this as calculating correlation functions just after the horizon crossing,

which is valid for all observables not dominated by mixing with gravity.

However, we are still able to calculate the tilt of the spectrum with Sπ in eq.

(4.29). Therefore, by setting limits on higher order terms from such constraints, we

can calculate all predictions of this model with the action eq. (4.11), even when the

mixing with gravity is considerable.

(For more discussion on the relation between low-energy EFT physics and UV-

completion for this theory, see [132]).

4.5 Non-Gaussianities from EFT Single-Field Inflation

4.5.1 The Slow-Roll Scenario

Consider the slow-roll case discussed in Chapter 2. We will begin by recalculating the

main results in this formalism:

Start by setting all higher order operators to zero, i.e. M2 = M3 = M̄1 = M̄2 . . . = 0.

As justified previously, we’ll concentrate on making predictions at scale H with the

Goldstone Lagrangian eq. (4.29), neglecting mixing with gravity. We will calculate the

conserved ζ soon after horizon crossing. By choosing the unitary gauge π = 0, we may

write the spatial metric at linear order in the form

gij = a
2(t)

��
1 + 2ζ(t, �x)

�
δij + γij

�
(4.31)

where γ is transverse and traceless, and describes two tensor degrees of freedom,

and ζ(t, �x) = −Hπ(t, �x).

Recall that for each mode k, we are only interested in the dynamics around horizon

crossing ω(k) = k/a ∼ H. Note that since the background may be approximated as de

Sitter up to slow-roll corrections during this period, the two-point function is therefore

�πc(�k1)πc(�k2)� = (2π)3δ(�k1 + �k2)
H

2
∗

2k3
1

(4.32)

where πc denotes the canonically normalized scalar and ∗ denotes the value of a

quantity at horizon crossing. Via our relation ζ = −Hπ, we hence find the spectrum
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of ζ is given by

�ζ(�k1)ζ(�k2)� = (2π)3δ(�k1 + �k2)
H

4
∗

4M2

Pl
|Ḣ∗|

1

k
3

1

= (2π)3δ(�k1 + �k2)
H

2
∗

4�∗M2

Pl

1

k
3

1

(4.33)

This is exact for all k up to slow-roll corrections since ζ is constant outside the

horizon, which allows us to calculate the tilt of the spectrum at leading order in the

slow-roll case

ns − 1 =
d

d log k
log

H
4
∗

|Ḣ∗|
=

1

H∗

d

dt∗
log

H
4
∗

|Ḣ∗|
= 4

Ḣ∗
H2

∗
−

Ḧ∗

H∗Ḣ∗
(4.34)

Note that when the leading result comes from mixing with gravity, the Lagrangian

eq. (4.29) cannot allow us to calculate all observables and we must examine subleading

corrections, i.e. re-examine our choice to set all higher order terms to zero. In addition,

observe that arbitrarily setting higher-order terms to zero is obviously not very rigorous.

Instead, we can set experimental limits on these operators, which is the very principle

and advantage of the EFT approach! However, instead of relying upon detailed results

of particle colliders (as we confined by more restricted observations from cosmological

surveys), we must extrapolate such limits with of constraints slow-roll parameters via

the primordial power spectra detailed in Chapter 2. For instance, limits on the tensor

spectral index nt = −2�∗ would constrain the higher-term operators and provide insight

into the scale as to where such physics is relevant.

4.5.2 Large Non-Gaussianities and the Sound Speed

Note that because our background is not Lorentz invariant, the sound speed of the

fluctuations c2 is not required to equal 1.

Consider the coefficient of the time kinetic term π̇
2 in eq. (4.29), which is not fully

fixed by the background evolution

(−M
2

Pl
Ḣ + 2M4

2 )π̇
2 (4.35)

In order to avoid system instabilities and an FLRW universe with Ḣ > 0 (violating

the null energy condition [133-134]), the speed of sound is written as

c
−2

s = 1−
2M4

2

M
2

Pl
Ḣ

(4.36)
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Thus, to avoid superluminal propagation, which implies the theory has no Lorentz-

invariant UV completion [112], we must haveM4

2
> 0. For more details on superluminal

models, see Appendix E.

Using this definition and ω
2 = c

2
sk

2, we assume that the Goldstone boson is pro-

tected by an approximate shift symmetry allowing us to neglects terms where π appears

without a derivative acting on it. We therefore write the most general Goldstone bo-

son action as eq. (4.1), where note mixing with gravity may be neglected at energies

E � Emix � M
2

2
/MPl, implying predictions for cosmological observables are possible

at H � M
2

2
/MPl.

Analogously to the previous section, we calculate the two-point function to be

�ζ(�k1)ζ(�k2)� = (2π)3δ(�k1+�k2)
1

cs∗
·

H
4
∗

4M2

Pl
|Ḣ∗|

1

k
3

1

= (2π)3δ(�k1+�ks)
1

cs∗
·

H
2
∗

4�∗M2

Pl

1

k
3

1

(4.37)

with contributions to the tilt due to the variation with time of the sound speed,

such that

ns =
d

d log k
log

H
4
∗

|Ḣ∗|cs∗
=

1

H∗

d

dt∗
log

H
4
∗

|Ḣ∗|cs∗
= 4

Ḣ∗
H2

∗
−

Ḧ∗

Ḣ∗H∗
−

ċs∗
cs∗H∗

(4.38)

Returning to the action Sπ in eq. (4.29), observe that the coefficient of operators

π̇(∂iπ)2 and π̇
3, which implies a reduced speed of sound enhances the three-point cor-

relator and therefore non-Gaussianities. Using the EFT approach, it becomes evident

that the coefficient of π̇(∂iπ)2 gives the leading order non-Gaussian contribution in the

limit of a small sound speed cs � 1 (i.e. spatial derivatives are enhanced with respect

to time derivatives as the mode freezes with k ∼ H/cs), a signature predicted in several

inflationary models (e.g. DBI inflation).

In the limit cs � 1, the quartic terms in the Lagrangian freeze (at around ω ∼ H)

which leaves the operator π̇(∂iπ)2 as the leading term. We can find the associated level

of non-Gaussianity to be given by the ratio

Lπ̇(∇π)2

L2

∼
Hπ

�
H

cs∗π
�2

H2π2
∼

H

c2s

∼
1

c2s

ζ (4.39)

which allows us to deduce the magnitude of non-Gaussianities in terms of parameters

fNL. Note that we used the linear order relation ζ = −Hπ where ζ ∼ 10−5 can be

used to estimate the non-linear corrections. Parametrizing fNL such that Lπ̇(∂iπ)
2/L2 ∼
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fNLζ, we find the leading contribution to be

f
equil

NL,π̇(∂iπ)
2 ∼

1

c2s

(4.40)

a clear negative correlation between non-Gaussianity and sound speed.

Considering the additional contribution to the three-point function −
4

3
M

4

3
π̇
3 (which

comes from the unitary gauge operator (g00 + 1)3) results in

f
equil

NL,π̇3 ∼ 1−
4

3

M
4

3

M
2

Pl
|Ḣ|c

−2

2

(4.41)

We will later extend this to the four-point function (and in theory, even higher order

correlators can be explored).

In passing, we should note that estimates for the unitarity cutoff can be calculated.

To summarize the results, for π̇(∂iπ)2, the cutoff is given by

Λ4

π̇(∂iπ)
2 ∼ 16π2

M
2

Pl
|Ḣ|

c
5
s

(1− c2s)
2

(4.42)

and the cutoff due to π̇
3 is of the form

Λ4

π̇3 ∼ Λ4

π̇(∂iπ)
2 ·

1

(c2s +
2

3
c̃3)2

(4.43)

See [96] for further details.

4.5.3 A Note on the Null Energy Condition

Intuitively, H cannot increase because gravity is attractive. We can conclude Ḣ ≤ 0

as a consequence of the Null Energy Condition (NEC) [135], which requires that for

all null vectors n
µ, the matter stress-energy tensor must satisfy Tµνn

µ
n
ν ≥ 0, which

implies ρ+ p ≤ 0 and therefore Ḣ ≤ 0.

The EFT approach above makes the role of symmetries highly apparent, including

the effects of Ḣ > 0, Ḣ = 0, or Ḣ < 0, elucidating the relationship between infla-

tion, various theories of modified gravity, and theories which do violate the NEC (e.g.

bouncing models [87], New Ekpyrotic Cosmology [89], etc.)

For instance, in cases of consistent inflationary models such that the squared sound

speed of the fluctuations c2s is negative would allow for a consistent violation of NEC,

thereby allowing the possibility of detecting gravitational waves with a blue tilt [21].
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4.6 Four-point Function of Non-Gaussianity

So far, we have introduced the three-point function as the most sensitive observable

of non-Gaussianities of primordial density perturbations. We previously detailed how

single-field inflation can indeed produce a detectable level of non-Gaussianity in the

three-point functions (in violations of simple slow-roll).

However, using the results of EFT inflation, we can explore inflationary models

where the leading source of non-Gaussianity is the four-point function, or “trispec-

trum.”

Recall we normalized the three-point function of bispectrum to be roughly of the

form

�Rk1Rk2Rk3� =
6

5

�
Pk1Pk2 + cyclic terms

�
(4.44)

We may similarly extend this formalism to define a four-point function or trispec-

trum of the form

�Rk1Rk2Rk3Rk4� = τNL

�
Pk1Pk3P|k1+k2| + 11 permutations

�
(4.45)

where the amplitude of the trispectrum τNL is defined as τNL =
�
6

5
fNL

�2
.

The relationship between the three-point and four-point correlation functions is

given by the “Suyama-Yamaguchi inequality”, given by

τNL ≥

�6
5
fNL

�2

(4.46)

which has been proven to hold at all levels of expansion and all loop diagrams in

inflation [136-137].

Using EFT inflation, we may show it is even possible to generate a detectable

four-point function in the absence of a detectable three-point function. This is another

incentive for using the effective field theory methods we’ve been discussing in this chap-

ter. Using EFT Inflation, we may impose an approximate continuous shift symmetry

and an approximate parity symmetry on the inflaton fluctuations, which subsequently

forbid all cubic terms. The results in a unique quartic operator π̇
4 where π denotes

inflationary fluctuations, and therefore a unique shape of the non-Gaussian four-point

function.

Recall there are only two ways to achieve a large three-point function in EFT

single-field inflation (such that the Goldstone boson is protected by a continuous shift

symmetry): Either the sound speed of the fluctuations is very small (away from the de
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Sitter limit) or in the case that the unperturbed solution is so close to de Sitter space

Ḣ → 0 such that the dispersion relation of the Goldstone boson is given by ω
2 ∼ k

4
/M

2

(where M is some mass scale related to M2 and M̄2,3). The former is found to be

fNLζ ∼
L3

L2

���
E∼H

∼
1

c2s

=⇒ fNL ∼
1

c2s

(4.47)

To review, this result implies that in the limit where the scalar perturbations propa-

gate with a small sound speed cs, this implies large interactions via non-linearly-realized

time-symmetries in the Lagrangian, and ergo large primordial non-Gaussianities. This

is a quite powerful result: non-Gaussianity increases as cs decreases, i.e.

f
local

NL ∝ 1/c2s (4.48)

Now let’s consider the four-point function:

The unitary gauge operators (δg00)2 and (δg00)3 contain many quartic operators,

e.g. the operator M4

2
(∂iπ)4. This operator induces a 4-pt function given by

�ζ4�

�ζ2�2
∼

L4

L2

���
E∼H

∼
1

c4s

ζ
2 (4.49)

We normally parametrize the four-point function by τNL = �ζ4��ζ2�3 such that

τNLζ
2
∼

L4

L2

���
E∼H

∼
1

c4s

ζ
2 =⇒ τNL ∼

1

c4s

(4.50)

Note that in order for a four-point function to be detectable,the value of τNL has

to be a factor of 105 larger than the value of fNL allowed by the data. Current limits

from WMAP [15] set fNL � 102 which would imply that c2s � 10−2. Therefore current

limits on τNL are expected to be of the order 107. Even a detection of fNL at its current

upper bound of 102 would result in τNL ∼ 104 − 105 which will not be detectable by

Planck, though future 21-cm experiments with the potential to map a large fraction of

our Hubble volume may reach fNL ∼ 10−2
, τNL ∼ 103 [138].

Note that the reason the induced four-point function was considered too be so small

previously was due to the fact that coefficients of the quadratic operators induced by

(δg00)2 and (δg00)3 were tied to the ones of cubic operators, a result of non-linear

realization of time-diffeomorphisms.

Consider an approximate Z2 parity symmetry π → π on operators (δg00)2 and

(δg00)3: it is easy to see that these operators do not respect such a symmetry because

they contain even and odd powers of π respectively.

56



Let’s identify this symmetry which induces such a four-point function. We begin

by setting operators (δg00)2 and (δg00)3 to zero, as they can be shown to be suppressed

at higher energies than (δg00)4 for τN � 1. By reintroducing the field Goldstone field

π as we’ve previously discussed, we find the terms

M
4

4 (δg
00)4 → M

4

4

�
16π̇4

− 32π̇3(∂µπ)
2 + 24π̇2(∂µπ)

4
− 8π̇(∂µπ)

6 + (∂µπ)
8
�

(4.51)

Note the π̇
4 term will induce a 4-pt function of the size

�ζ4�

�ζ2�2
∼ τNLζ

2
∼

L4

L2

���
E∼H

∼
M

4

4

ḢM
2

P l

ζ
2 =⇒ τNL ∼

M
4

4

ḢM
2

P l

(4.52)

Here we expect the terms (δg00)2 and (δg00)3 to be generated. However it can be

shown (see [139] for details) that these operators are suppressed via an approximate

parity symmetry π → −π and an approximate shift symmetry on the inflaton fluctu-

ations. In such a case, the value of fNL would just be of order O(1) while τNL could

be of order O(105)! This large of a four-point function is in fact only produced by the

single operator π̇
4 and therefore is of a unique shape. Such a configuration is peaked

in momentum space such that all momenta have similar wavelengths.

This result implies τNL may be of the order τNL > O(106), which is detectable with

the WMAP data. However, to the best our of knowledge, the current WMAP 5-yr

data has not been analyzed for such a signal. Furthermore, the theory and analysis

of a four-point function in the CMB data has largely been overlooked. In general, it

is interesting to consider the theoretical work which could be done to further classify

inflationary models via non-Gaussian four-point functions.

To summarize, EFT Inflation has allowed us to detect single-field models which

generate a detectable four-point function in the absence of a three-point function, an

observational window into inflaton previously unexplored. Such a result could have

powerful observational ramifications.

4.7 Non-Gaussianities in Single Field Inflation

(Unfortunately, the explicit details of this analysis is beyond the scope of this paper.

We will however detail the most current observational constraints below.)

Recall that we have just described a generalized description of all single-field models

with a single action in terms of the fluctuations of the inflaton. Furthermore, recall
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that in the simplest slow-roll scenario, the three-point correlation function is projected

to be nearly zero.

That is, if adiabatic curvature perturbations ζk were exactly Gaussian, then all

statistical properties would be encoded in the two-point function. Such slow-roll con-

ditions imply f
local

NL
∼ ( 5

12
)(1− ns) is far too small to be detectable (Maldacena 2003).

So, non-Gaussian signals in the squeezed limit produced by single-field inflation must

be proportional to the tilt of the power spectrum [99,100]. Therefore, barring a detec-

tion of strong deviation from scale invariance in the power spectrum, detection of this

variety of non-Gaussianity would rule out all single-field inflationary models.

However, much theoretical work has been done recently to extract non-Gaussian

predictions from non-slow-roll single field inflation, while the promise of observational

precision make such measurements tangible. Current experiments have constrained the

level of non-Gaussianity such that any deviation from Gaussian statistics is at most at

the 1% level.

Recall that we introduced in Chapter 3 two types of non-Gaussian signals: f
local

NL

where the size of the signal is peaked on squeezed triangle configurations, and f
equil.

NL
,

where the size of the signal is peaked on equilateral triangle configurations.

The most recent constraint on the f
local

NL
signal is found via WMAP 5-year data to

be [115]

−4 ≤ f
local

NL ≤ 80 at 95% CL (4.53)

(Combined with constraints from LSS which we have not discussed, this gives −1 ≤

f
loc.

NL
≤ 63 at 95% CL).

The most recent constraint on the f
equil.

NL
signal [116] has been found to be

−125 ≤ f
equil.

NL
≤ 435 at 95% CL (4.54)

Needless to point out, we have so far found no evidence for non-Gaussianity.

However, with the insight of EFT inflation, we can parametrize all possible signa-

tures of inflation, particular previously overlooked ones. That is, it has been argued that

the parameter space of the non-Gaussianities produced by the most general single-field

models where the inflation fluctuation have an approximate shift symmetry is larger

than the one characterized by f
equil.

NL
. It is rather a linear combination of two indepen-

dent shapes: the equilateral shape and a shape we will refer to as the “orthogonal”

shape. The latter is peaked at both equilateral-triangle configurations and on folded-

triangle configurations. As the sign in these two limits are opposite, the new shape is
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orthogonal to the equilateral one. Due to the approximate shift symmetry of inflaton

fluctuations, the most general primordial bispectrum is in fact a linear combination of

two independent shapes

F (k1, k2, k3) = f
equil.

NL
Fequil.(k1, k2, k3) + f

orthog.

NL
Forthog.(k1, k2, k3) (4.55)

where the “orthogonal” bispectrum is defined in Fourier space as

Forthog.(k1, k2, k3) ∼ Fequil.(k1, k2, k3) +
1

k
2

1
k
2

2
k
2

3

(4.56)

After expanding the parameter space of non-Gaussian signatures and performing

the optimal analysis [116], the most recent constraint on the f local

NL
signal is found to be

−4 ≤ f
orthog.

NL
≤ 80 at 95% CL (4.57)

thus finding no evidence of a non-zero f
orthog.

NL
.

However, the truly remarkable result is the ability to use the EFT formalism previ-

ously developed to constrain and even measure the coefficients corresponding to inflaton

fluctuations of the interaction Lagrangian. (Such a method has been used previously in

particle physics to constrain higher-dimensional operators from precision electroweak

tests [128,129]).

Indeed, such an analogy emphasizes the importance of the EFT Inflation method,

as it is highly unlikely we could ever produce an inflaton; measuring the energy scale

at which inflation happens via the Lagrangian would be a tremendous achievement.

Such an effective action has the potential to to provide a complete description of future

experimental data!

For example, without getting into too many details concerning the analysis itself

(as this would be beyond our paper), it is possible to constrain other parameters in

the EFT Lagrangian. For the shape Fπ̇(∂iπ)
2 generated by the operator π̇(∂iπ)2, Fπ̇3

generated by operator π̇
3, and F

(∂
2
j π)(∂iπ)

2 generated by operator (∂2

j
π)(∂iπ)2, we can

calculate the non-Gaussianity induced by these operators with the bispectrum

�Φ�k1
Φ�k2

Φ�k3
� = (2π)3δ(3)

��

i

�ki

��
Fπ̇(∂iπ)

2 + Fπ̇3 + F
(∂

2
j π)(∂iπ)

2

�
(4.58)

where Ψ = 3

5
ζ such that ζ is the curvature perturbation.

The values of fNL are then given by
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f
π̇(∂iπ)

2

NL
= −

85

324
·
1

c2s

� −2.662 · 103 ·
1

d
8/5

1

f
π̇
3

NL = −
10

243

�
c̃3

(d2 + d3)4
+

3

2

�
� −4.115 · 10−2

·
c̃3

(d2 + d3)4

f
(∂

2
j π)(∂iπ)

2

NL
= −

65

162
·
1

c2s

� −4.072 · 103 ·
1

d
8/5

1

(4.59)

Note there are three operators generating non-Gaussianities but only two indepen-

dent coefficients. These can be shown writing the EFT Lagrangian eq. (4.1) in terms

of cs, such that d1 disappears, leaving us with

M
4
�
π̇
2
− c

2

s(∂iπ)
2
�
+M

4
π̇(∂iπ)

2 +M
4

c̃3

(d2 + d3)
π̇
3 +M

4
c
2
s

H
(∂2

j π)(∂iπ)
2 (4.60)

A time derivative contributes a factor of H, while a spatial derivative contributes

H/cs, because non-Gaussianities are generated when modes cross the horizon, which

implies operators π̇(∂iπ)2 and (∂2

j
π)(∂iπ)2 give rise to an fNL which is parametrically

the same as O(1/c2s).

Thus, depending on which operator dominates at horizon crossing, there are two

independent shapes on non-Gaussianities. Note that without considering the orthogonal

shape, setting these bounds for cs would have required a set of strong assumptions.

Readers are encouraged to read further details found here [116].

Therefore, with EFT inflation, we can map the constraints on the two fNL pa-

rameters above into constraints on the coefficient of the interaction Lagrangian of the

Goldstone boson. Under the assumption that the primordial density perturbations are

generated by a single-field inflationary model where there is an approximate shift sym-

metry for the Goldstone boson, this mapping is unique and constrains all inflationary

models of this kind.

We again stress that no assumption that the background solution is given by a

fundamental scalar field: the Lagrangian for the fluctuations in terms of the Goldstone

boson is independent of the details through which the background solution is generated;

we only assume there is one light degree of freedom playing a relevant role during the

inflationary phase.

The speed of sound of the inflaton fluctuations cs is then constrained to be larger
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than:

cs ≥ 0.011 at 95% CL (4.61)

or smaller than

cs � 10−2(d2 + d3)
2/5 (4.62)

where the higher-derivative kinetic term proportional to (d2 + d3) is important at

horizon crossing and the non-Gaussianities depend on other coefficients.

Observe the cases such that inflationary models have a negative squared speed of

sound c
2
s for the fluctuations at horizon crossing. This would lead to an increased level

of non-Gaussianities due to the exponential growth of the perturbations before horizon

crossing. We may practically rule these out with current analyses from the WMAP

data at 95% CL.

4.8 Summary

In this chapter we have introduced the Effective Field Theory of Inflation, a formal-

ism which unifies all single-field models, allowing us to explore the signatures of the

dynamics in full generality via operators, including previously overlooked signals (e.g.

a detectable four-point function signal in the absence of a three-point function sig-

nal). This in fact increases the parameter space by which non-Gaussian signals may be

discovered. Moreover, by constraining the terms of the action via cosmological observa-

tions, this results in a Lagrangian of the fluctuations written in terms of observational

data. Such an approach is systematic, and does not directly rely upon the distinct

physics of the inflationary scenario. In contrast to discussing inflationary potentials

and kinetic terms, we can characterize inflation solely in terms of observables.
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Chapter 5

Future Prospects and

Conclusions

5.1 Future Observational Prospects

We discussed at the end of Chapter 2 efforts to constrain inflationary models with

more precise measurements could possibly detect deviations from adiabatic and scale-

invariant density fluctuations. In the former case, a violation of adiabaticity could point

to the existence to inflationary models with more than one scalar field, a signature of

mutlifield inflation (see Appendix A for further details).

The most distinct observation in favor of the inflationary paradigm would be ro-

bust detection primordial B−modes, as a background of gravitational waves is seen by

cosmologists as the “smoking gun” for inflation. Several upcoming ground-based and

balloon experiments (e.g. Planck, CMBPol, etc.) are expected to be of the capacity to

detect such a signal [140,141].

Furthermore, this paper has been devoted to classifying and constraining inflation-

ary models on the basis of deviations from Gaussian density perturbations. However,

all CMB and LSS probes in the near future (e.g. Planck) are expected not to be sen-

sitive enough to detect the nearly Gaussian signal predicted by simple slow-roll, i.e.

fNL ∼ O(10−2). We will now discuss several ideas which may have the capability to

probe such scales:

5.1.1 CMB µ−distortions

Let’s begin by reminding ourselves about a few details of CMB physics. At early times

z � 106, when free electrons were coupled to photons and baryons via Compton scatter-
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ing, the photon-baryon plasma was a nearly perfect fluid. If there are any perturbations

of the full thermodynamic equilibrium between photons and baryons, spectral distor-

tions in the CMB will result. For example, the Sunyaev-Zel’dovich distortion [142] is

due to photons from the CMB scattering through the hot gas of galaxy clusters by

rapidly moving electrons. At such times z � 106, the frequency of photon scattering

via Compton scattering was so efficient that maintaining thermal equilibrium (“ther-

malization”) was nearly perfect. Before this redshift however the CMB may be subject

to certain spectral distortions which may be observable today. We are interested in

µ−distortions [143,144] which characterize higher-redshifts (i.e. z ≥ 105), where the

number density of photons (ν) is given by the Bose-Einstein distribution

n(ν) =
�
e
x+µ(ν)

− 1
�−1

(5.1)

where µ(ν) is the frequency-dependent chemical potential. See [145] for more details.

In such a case, due to the dissipation of acoustic waves of the adiabatic mode (i.e.

“Silk damping”) [146], we could possibly use µ-distortion to constrain the primordial

power spectrum. Such a mechanism is estimated to be far more sensitive than current

techniques, as it could probe primordial perturbations which have now been completely

erased by Silk damping.

Furthermore, it has been estimated in [147,148] that such a probe could possibly

reach a squeezed-limit signal of f local

NL
∼ O(10−3), a result which could very well measure

inflationary dynamics up to the simple slow-roll limit.

5.1.2 21-cm Tomography

The next frontier of observational cosmology is study the epoch of the dark ages (i.e.

from the last scattering surface of the CMB to the formation of luminous structures,

between z ∼ 1000 and z ∼ 6). Perhaps the most promising probe discussed today

is to study the redshifted 21-cm line of hydrogen at z = 1 − 150. Indeed, a 21-cm

tomography of a three-dimensional mapping of neutral hydrogen over such a wide range

of redshifts could prove to be a more powerful probe than the CMB or galaxy surveys,

with a possible detection capability which could improve the precision of cosmological

parameters to an unprecedented level (see [149] for further details). Thus, any detected

deviation from the expected values would be a signature of new physics.

Roughly, the thermal evolution of cosmic gas was coupled to the CMB down to

a redshift z ∼ 200; after this point, the gas temperature dropped adiabatically as
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Tgas ∝ (1 + z)2 below the temperature of the CMB, Tγ ∝ (1 + z). At the epoch of

reionization (EOR) z ≤ 200, the first stars emitted photo-ionizing ultraviolet light,

thus heating the gas up again. Hence, before and after the formation of the first stars,

cosmic neutral hydrogen absorbed the CMB flux through its 21-cm transition. The

inhomogeneous density distribution of neutral hydrogen therefore creates anisotropies

in the brightness temperature measured with respect to the near blackbody CMB.

Thus the neutral hydrogen 21-cm line is the most direct probe of luminous structure

formation at 6 < z < 11.

As a result of the magnetic moments of the proton and the electron, there exists

a hyperfine spin-flip transition of neutral hydrogen from the 1S ground state, produc-

ing two distinct energy levels separated by ∆E = 5.9 × 10−6 eV corresponding to a

wavelength λ = 21 and frequency 1420 MHz.

It follows then that the results from 21-cm tomography have the potential to power-

fully constrain inflationary models. Much work has been done recently to forecast the

strength and accuracy by which 21-cm physics could parametrize inflationary models.

This includes:

• Using 21-cm data in conjunction with future Planck data to constrain the pri-

mordial scalar spectral index ns and tilt αs, which would tightly confine slow-roll

parameters, thus determining the shape of the inflationary potential [138,150].

• Recall the confusion associated with detecting B−mode polarization due to grav-

itational lensing (see Appendix A). 21-cm tomography could possibly separate

such lensing-induced CMB polarization anisotropies from inflationary gravitation

waves using anisotropies in the cosmic 21-cm radiation. B-modes may also be

produced by Faraday rotation of the 21-cm emission via the galactic foreground

emission [151].

Not only would this provide a clean signature for inflation, but together with

additional data from CMB polarization, one could roughly probe inflationary

energy scales (barring recent considerations which source gravitational waves via

other mechanisms [63]).

• Furthermore, such 21-cm experiments are forecasted to be powerful enough to

detect non-Gaussian deviations from the angular power spectrum at a far greater

sensitivity than currently known [138].

If primordial fluctuations were indeed non-Gaussian, then 21-cm anisotropies would

consequently contain such signature. In fact, this seems to be our most promising ap-

64



proach of probing and refining any non-Gaussianity associated with single-field slow-roll

beyond Planck, as we may be able to limit the primordial non-Gaussianity parameter

to fNL ≤ 0.01

Note that the development of feasible 21-cm detectors is still a burgeoning field.

There remains a number of experimental challenges today for future 21-cm measure-

ments, mainly the foreground interference from man-made terrestrial radio broad-

casting, extragalactic radio sources, etc. Such measurements remain an unparalleled

prospect to precisely constrain inflationary models.

(See reviews [152,153] for a comprehensive review of 21-cm tomography physics and

experimental development, which is outside the scope of this paper.)

5.2 Future Theoretical Work

As we discussed in Chapter 2, to realize the full potential of using non-Gaussianity

to constrain and possibly falsify inflationary models, theorists must systematically ac-

count for all effects inducing observable levels of non-Gaussianity per inflationary model.

Moreover, these predictions must take into account the non-linear effects of the per-

turbations. In this section, we summarize by discussing further ways to fortify our

knowledge of this problem, and further ideas to possibly constrain inflation.

5.2.1 Effective Field Theory Methods

It has been recently discussed as to how to extend the EFT formalism of single-field

inflation to include additional degrees of freedom, i.e. to construct an EFT theory of

multifield inflation. However, such a construction is highly non-trivial: firstly, there are

many candidates of these additional light degrees of freedom, and in some models they

are not required to be in the vacuum at the moment of horizon crossing. Even in the case

when such fields are in the vacuum, it is difficult to have naturally light scalar fields

(i.e. lighter than the Hubble length, so as to acquire long-wavelength fluctuations).

Such cases rely upon Supersymmetry, or are (pseudo-)Goldstone bosons of a global

(non-)Abelian symmetry which is spontaneously broken. Secondly, in contrast to EFT

single-field inflation, such a Lagrangian would be much less highly constrained by the

symmetries. We recommend readers to consult [154,155] for further discussion and

preliminary attempts to tackle this problem.

Correspondingly, there have been efforts to extend the consistency relation of the

three-point function in single-field inflation [99,100] for single-field models with addi-
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tional degrees of freedom such that the additional degrees of freedom do not produce

significant contributions to the density perturbations ζ [156]. Further work should be

done to explore this relationship, which could improve in an improvement of the above

EFT Multifield formalism.

Furthermore, the prospect of continuing to apply effective field theory methods to

cosmological issues presents itself as an exceptionally promising endeavor. Indeed, such

techniques have recently been introduced to study cosmological perturbations [123] and

large scale structures [124].

One fascinating proposal is to construct an EFT theory of single field quintessence.

As in the EFT Inflation case, this would allow us to generalize all of single-field

quintessence models in order to study the phenomenological consequences. The po-

tential of this formalism applied to this question of cosmology and others is extremely

exciting.

5.2.2 Chiral Gravity

Recall that cross-correlations between temperature and E− and B−modes come in six

varieties: �TT �, �EE�, �BB�, �TE�, �TB�, and �EB�.

The E−mode and B−mode power spectra may be written as

�a
E

lm
a
∗E
l�m�� = δll�δmm�C

EE

l
(5.2)

�a
B

lm
a
∗B
l�m�� = δll�δmm�C

BB

l
(5.3)

where we observe that the E−mode and B−mode patterns behave differently under

parity transformations n̂ → −n̂ such that B−patterns change signs

a
E

lm
→ (−1)laE

lm
(5.4)

a
B

lm
→ (−1)l+1

a
B

lm
(5.5)

For these symmetry reasons, �TB� and �EB� correlations vanish, i.e.

�a
E

lm
a
∗B
l�m�� = 0 (5.6)

However, if gravity in fact violated parity, this would not be true and we would
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expect a non-vanishing �TB� correlator. In fact, detecting a �TB� signal would actually

be a signature for both a gravitational wave background and chiral gravity (in contrast

to a detection of �BB�, which solely affirms the former).

(There are several motivations for considering the possibility that gravity is party-

violating. As the weak sector of the Standard Model violates parity, it is natural to

question whether P-violation may be relevant for inflation [or late-time acceleration].

Furthermore, the Cartan-Kibble formulation [157] of General Relativity as well as the

Ashtekar formalism [158] show gravity has the capacity for chirality due to terms in

the action manifesting odd parity. See [165-167] for details.)

In consideration of non-Gaussian corrections to primordial fluctuations from infla-

tion, we previously studied and classified shapes of correlation functions from scalar

fluctuations (as in Appendix C, eq. (132)). Analogously, by computing the general

two-point function, we find

�h
s1

k h
s2

k� � = (2π)3δ3(k+ k�)
1

2k3

�
H∗
MPl

�2

4δs1,s2 (5.7)

However, if gravity was parity violating, resulting in left L and right R gravitons,

such parity breaking terms result in a different amplitude for left and right gravitational

waves, leading to a neat circular polarization. Recall that in our discussion of inflation,

if the two-point correlation function above does not contain all information, higher

order correlation functions come in to play, describing non-Gaussianity. As before,

we primarily measure such non-Gaussianity with a three-point function/bispectrum,

calculated to be [159-161]

�h
s1

k1
h
s2

k2
h
s3

k3
� =(2π)3δ3(k1 + k2 + k3)

�
H∗
MPl

�4

4

(2k1k2k3)3
×

[(k2i k
2

j �
1

ij)�
2

kl
�
3

kl
− 2�1ij(k

3

l
�
2

li
)(k2m�

3

mj) + cyclic] ×
�
k1 + k2 + k3 −

k1k2 + k1k3 + k2k3

k1 + k2 + k3
−

k1k2k3

(k1 + k2 + k3)2

�
(5.8)

Indeed, this means that inflationary models which give rise to non-Gaussianity

could also give rise to parity breaking contributions, i.e. circularly polarized gravita-

tional waves. (For example, single-field slow-roll models with higher derivative terms

would cause parity breaking contributions in the two-function, etc.). Therefore, with-

out assuming linear gravitational, the tensor spectrum of fluctuations during inflation
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may expose signatures of inflationary physics associated with chiral gravity.

Thus, we should be able to classify and possibly constrain inflationary models by

signatures of chiral gravitational waves. However, this result has not been rigorously

explored for the myriad of inflationary models. In fact, there exists the possibility

that the signature of asymmetry between left- versus right-handed gravitational waves

could differentiate between inflationary models which may have similar non-Gaussian

signatures (and other features). Much more theoretical work must be done to investi-

gate this possible (as to our knowledge, a comprehensive library of how each class of

inflationary models possibly violate parity hasn’t been accomplished previously).

Furthermore, there is still much observational effort to detect such signals of the

gravitational radiation (e.g. Spider [162], EBEX [163], Planck [140], CMBPol [141],

etc.). The sensitivity of these respective experiments to detect such signals has recently

been evaluated in [164].

5.3 Falsifying Inflation

As we have detailed, so far no deviations from Gaussian fluctuations have been found.

However, with the arrival of upcoming experimental and further theoretical insight, the

potential to constrain and falsify inflationary models is highly promising.

As we asserted with the use of the EFT single-field formalism, it is possible for

single-field models to exhibit a distinct four-point signal in the absence of a three-point

signal. As far as we are aware, a rigorous analysis on existing WMAP data has yet to

be performed to search for such a signal. Moreover, the prospect of searching for such

a signal using data from future, more precise experiments is very encouraging.

In consideration of the theoretical bounds detailed previously, the non-Gaussian

squeezed limit signal is proportional to the tilt of the power spectrum. Recall that

single-field models cannot produce a signal f
local

NL
greater than the deviation of the

power spectrum from scale invariance [99,100]. Therefore, a non-Gaussian detection

of f local

NL
> 1 would confidently rule out all single-field inflationary models (barring a

significant deviation of scale invariance of the power spectrum). Furthermore, using the

Suyama-Yamaguchi τNL ≥ (6/5fNL)2 inequality discussed in Chapter 3, a significant

detection of fNL with a non-detection of τNL would practically rule out both single-

field and multifield models. Such a result would be a serious blow to the inflationary

paradigm, and would certainly impel cosmologists to rethink our interpretation of the

very early universe.
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Appendix A

The first section of this appendix largely deals with the motivation and background

for inflation, and the second section gives a background to CMB physics and how it

relates to inflation. This appendix is meant to provide sufficient background in cos-

mology, with few details and even fewer derivations. We recommend referring to any

current introductory cosmology textbook for further (and more cohesive) information

(e.g. Dodelson’s Modern Cosmology [168]).

Background Cosmology and Motivating Inflation

Inflation is a period of exponential expansion in the early universe (10−34 seconds

after the Big Bang singularity) considered to be responsible both for large-scale homo-

geneity of the universe and for the small fluctuations that were the seeds of structure

formation.

It’s undeniable that the universe is expanding from BB, with evidence ranging from

light from distant galaxies redshifted, observed abundances of the predicted light ele-

ments (H, He, and Li) from BBN (Big Bang Nucleosynthesis).

FRLW Cosmology

Assuming homogeneity and isotropy on large scales leads us to the FLRW metric for

the space-time of the universe, where a(t) is the scale factor characterizing the relative

size of hypersurfaces Σ at different times, curvature parameter k is +1 for positively

curved Σ, 0 for flat Σ and −1 for negatively curved Σ.

ds
2 = −dt

2 + a
2(t)

�
dr

2

1− kr2
+ r

2(dθ2 + sin
2
θdφ

2)
�

(9)
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or, defining dχ
2 = dr

2

1−kr2
, as

ds
2 = −dt

2 + a
2(t)

�
dχ

2 + Φk(χ
2)(dθ2 + sin

2
θdφ

2)
�

(10)

where

r
2 = Φk(χ

2) ≡






sinh2 χ k = −1

χ
2

k = 0

sin2 χ k = −1

(11)

The Hubble parameter H is the expansion rate of FLRW spacetime in units of

inverse time H ∼ t
−1 and is positive for an expanding universe. It sets the scale for the

age of the universe, and the Hubble distance sets the size of the observable universe

H ≡
ȧ

a
(12)

Observe that this is not in reality a constant but changes with time. Today, we’ve

constrained the Hubble rate to be H0 ∼ 72 km s−1Mpc−1

Conformal Time and Null Geodesics

In discussing the causal structure of the universe, observe that massless photons

follow null geodesics ds
2 = 0. In order to discuss the maximum comoving distances

light can propagate, we define conformal time

τ =

�
dt

a(t)
(13)

Using this, we define the particle horizon as the maximum comoving distance light

can propagate between an initial time ti (often taken at the origin ti ≡ 0) and some

later time t, giving

χp(τ) = τ − τi =

�
t

ti

dt

a(t)
(14)

with distance of the particle horizon defined by dp(t) = a(t)χp. This definition is

vital to understanding the various problems of the early Universe, as it imposes limits

in the past where spacetime could have been in causal contact.

Similarly, the event horizon defines the boundary at which signals at a time τ will
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never be received by an observer in the future

χ > χe =

�
τmax

τ

dτ = τmax − τ (15)

with size of the event horizon de(t) = a(t)χe.

Einstein Equations

The dynamics of the FLRW universe with scale factor a(t) is governed by the

Einstein Equations

Gµν = 8πGTµν (16)

Recall the definition of the Einstein tensor

Gµν = Rµν −
1

2
gµνR (17)

in terms of Ricci tensor Rµν and Ricci scalar R,

Rµν = Γα

µν,α − Γα

µα,ν + Γα

βα
Γβ

µν − Γα

βν
Γβ

µα (18)

where

Γµ

αβ
≡

g
µν

2

�
gαν,β + gβν,α − gαβ,ν

�
(19)

where commas denote partial derivatives, e.g. (...),µ = ∂(...)

∂xµ .

In the case of a perfect fluid (i.e. described entirely in terms of energy density ρ

and isotropic pressure p) with the metric above, we may define the energy-momentum

tensor Tµν

T
µν = (ρ+ P )uµuν + pgµν (20)

where u
µ is the four-velocity of the observer (corresponding to a fluid-element).

With this assumption, we may derive the Friedman equations, which govern the

expansion of FLRW spacetime in terms of General Relativity

H
2
≡

�
ȧ

a

�2

=
1

3
ρ−

k

a2
, Ḣ +H

2 =
ä

a
= −

1

6
(ρ+ 3p) (21)
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These may be combined to give us the continuity equation

dρ

dt
+ 3H(ρ+ p) = 0 (22)

which may be written as d ln ρ

d ln a
= −3(1 + ω). If we define the equation of state

parameter ω = p

ρ
, this us gives ρ ∝ a

−3(1+ω)

Together with the Friedman equations eq. (21), this gives the time evolution of the

scale factor

a(t) ∝





t
2/3(1+ω)

ω �= −1

e
Ht

ω = −1
(23)

such that a(t) ∝ t
2/3

, a(t) ∝ t
1/2, and a(t) ∝ exp(Ht) respectively for the a flat

(k = 0) universe dominated by non-relativistic matter/radiation (ω = 0) or relativistic

matter (ω = 1

3
) and a cosmological constant (ω = −1).

For more than one matter species (baryons, photons, neutrinos, dark matter, dark

energy, etc.) contributing significantly to the energy density, and the pressure, ρ and p

refer to the sum of all components

ρ ≡

�

i

ρi, p ≡

�

i

pi (24)

where for each species i we defined the present ratio of the energy density relative

to the critical energy density ρcrit ≡ 3H2

0

Ωi ≡
ρ
i

0

ρcrit
(25)

and the corresponding equations of state ωi ≡
pi
ρi

Problems with the Big Bang Model

While there are a multitude of theoretical issues and mysteries surrounding the

Standard Big Band Model, we will discuss the two major motivations for the inflationary

paradigm, the “Horizon Problem” and the “Flatness Problem”, which are at their core

problems of initial conditions. 1

1We should be clear that these issues are strictly speaking not inconsistencies of the Big Bang.
If we were to simply assume that the universe was flat with an initial value of Ω = 1, and that the
universe began homogeneously over superhorizon distances (with the exact level of inhomogeneity to
account for structure formation), the early universe will evolve into our FLRW universe.
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• The Horizon Problem

Expressing the comoving particle horizon τ between time 0 to t in terms of the

comoving Hubble radius (aH)−1, we find

τ ≡

�
t

0

dt
�

a(t�0
=

�
da

Ha2
=

�
a

0

d ln a
� 1

aH

�
(26)

For a universe dominated by a fluid with equation of state ω, this gives us

�
aH

�−1
= H

−1

0
a

1
2 (1+3ω) (27)

Note that this implies as the comoving Hubble radius grows, the comoving horizon

τ (i.e the fraction of the universe in causal contact) increases with time

τ ∝ a
1
2 (1+3ω) (28)

where this qualitative behavior depends on whether (1+3ω) is positive or negative.

Observe this would mean that comoving scales entering the horizon today have

been far outside the horizon at CMB decoupling (where the comoving wavelength

of the fluctuations is time-indepdent, and the comoving Hubble radius is time-

dependent). However, the CMB is homogeneous to the degree of one part in

104, which implies the unverse was extremely homogeneous at the time of last-

scattering. How could regions that a priori must be causally independent made

these regions so homogeneous?

The Horizon Problem is even more worrying if we take estimate a causal region

at Plank time, giving

dp(tPl)

dp(t0)
≈ 10−26 (29)

This implies the universe observed today would be made up of around 1078 regions

causally independent at Plank time tP l. How could that possibly be?
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• Flatness Problem

It is possible to write the Friedman equation in the form

1− Ω(a) =
−k

(aH)2
(30)

where

Ω(a) =
ρ(a)

ρcrit(a)
, ρcrit(a) ≡ 3H(a)2 (31)

In standard FLRW cosmology, the quantity |Ω− 1| must thus diverge with time

as the comoving Hubble radius (aH)−1 grows with time. This critical value Ω = 1

is an unstable fixed point; the near-flatness observed today Ω(a0) ∼ 1 requires an

extreme fine-tuning of Ω close to 1 int he early universe.

One finds the deviation of flatness from at Big Bang Nucleosynthesis (BBN) to

the Planck scale has to satisfy

|Ω(aBBN)− 1| ≤ O(10−16) (32)

|Ω(aPl)− 1| ≤ O(10−61) (33)

Inflationary Paradigm

The basic idea behind inflation [1-6] is to shrink the comoving Hubble radius suffi-

ciently in the early universe such that the comoving horizon is much greater than the

comoing Hubble radius (aH)−1, i.e. τ ≫ (aH)−1. Remember, if points are separated

by distances greater than τ , then they were never causally dependent. If points are

separated by distances greater than (aH)−1, then they are not currently in causal

contact. With this intuition in place, we turn to the conditions of inflation:

• Decreasing comoving horizon

We define the shrinking Hubble sphere as

d

dt

� 1

aH

�
< 0 (34)

This is referred to as the fundamental definition of inflation as it both most
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directly relates to the flatness and horizon problems and is key for the mechanism

to generate fluctuations.

• Accelerated expansion

Using the relation
d

dt
(aH)−1 = −

ä

(aH)2
(35)

it follows that a shrinking comoving Hubble radius implies accelerated expansion

d
2
a

dt2
> 0 (36)

This is often referred to as the definition of inflation, a period of accelerated

expansion. The second time derivative of the scale factor is related to the first

time derivative of the Hubble parameter H

ä

a
= H

2(a− �), where � ≡ −
Ḣ

H2
(37)

Acceleration therefore corresponds to

� = −
Ḣ

H2
= −

d lnH

dN
< 1 (38)

where we have defined dN = Hdt = d ln 1, which measures the number of e-

folds N of inflationary expansion. This implies the fraction change of the Hubble

parameter per e−fold is in fact small.

• Negative pressure

The condition ä > 0, i.e.

ä

a
= −

ρ

6
(1 + 3ω) > 0 (39)

requires that pressure be negative, i.e. p < −
1

3
ρ or ω < −

1

3
.

In summary, the shrinking comoving Hubble radius (aH)−1 relates to the accelera-

tion and the pressure of the universe as follows

d

dt

�
H

−1

a

�
< 0 =⇒

d
2
a

dt2
> 0 =⇒ ρ+ 3p < 0 (40)

Let’s observe how inflation is able to solve the two problems previously mentioned.
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For the Horizon Problem, scales of cosmological interest are larger than the Hubble

radius H until approximately a ∼ 10−5. So before inflation, all scales of interest

were smaller than the Hubble radius and therefore affected by microphysical processes.

At horizon re-entry much later in time, these scales came back within the Hubble

radius. The causal physics before inflation therefore established the homogeneity we

observed. To summarize, inflation stretches microscopic scales to superhorizon scales,

thus correlating spatial regions over distances apparently not in causal contact.

Without inflation, the physical horizon grows faster than the physical wavelengths

of perturbations. With inflation, the physical wavelengths grow faster than the horizon.

For the Flatness Problem, recall eq. (30): If the comoving Hubble radius decreases,

this drives the universe towards flatness (i.e. Ω = 1)

CMB Physics

This section will offer a bare minimum background to the relevant aspects of the

Cosmic Microwave Background. In particular, we will introduce what is considered

to be a definite signature for inflation (as opposed to alternatives of the inflationary

paradigm): B-mode polarization induced by an inflationary gravitational wave back-

ground. For further information and reviews of this rather expansive and detailed

subject, see the reviews by [169-171].

First discovered in 1964 [172], the radiation of the cosmic microwave background

(CMB) is the thermal afterglow of the recombination era 370, 000 years after the

Big Bang, where photons decoupled from matter. Temperature anisotropies (of or-

der ∆T/T ∼ 10−5 across 10◦ − 90◦ on the sky) created from Thomson scattering are

due to the spatial variations in the CMB temperature at recombination. On ∼ 1◦ scales,

this is associated with acoustic oscillations of the photon-baryon plasma. Furthermore,

secondary effects such as gravitational lensing and the Sunyaev-Zel’dovich effect also

leave imprints on the CMB. Cosmologists continue to refine observations of the CMB

to discover more and more precise effects.

We interpret these temperature fluctuations to be primordial density perturbations

from inflation.

Temperature Anisotropies

In order to characterize the spatial and angular distribution, we describe the tem-

perature at position x̂ of the observer in the direction n̂ of the observer’s sky. This

nearly uniform blackbody spectrum of the radiation may be written with the distribu-
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tion function

f(ν) =
�
exp(2πν/T (n̂)− 1

�−1
(41)

with observation frequency ν = E/2π and mean temperature of T̄0 = 2.725K.

Statistically isotropic, Gaussian random temperature fluctuations are expressed in

terms of spherical harmonics on a 2-sphere Ylm(n̂) such that

Θ(n̂) ≡
∆T

T0

=
�

lm

almYlm(n̂) (42)

such that

alm =

�
dΩY ∗

lm
(n̂)Θ(n̂) (43)

Note that alm is statistically independent and there is nom−dependence. For Gaus-

sian random fluctuations, the ensemble average of the temperature field is determined

by the rotationally-invariant angular power spectrum

C
TT

l
=

1

2l + 1

�

m

�a
∗
lm
alm�, such that �a

∗
lm
al�m�� = C

TT

l
δll�δmm� (44)

If the temperature field is of a pure Gaussian distribution, then all statistical prop-

erties may be extracted from the power spectrum (i.e. the 2-pt correlation function).

Note that as a result of l + 1 modes existing for each value l, there is a fundamental

uncertainty in the information we extract from Cl, called ”cosmic variance”:

�∆Cl

Cl

�
=

�
2

2l + 1
(45)

With the use of the power spectrum, we may study the acoustic oscillations to

determine features of our universe, such as the geometry of the Universe, various cos-

mological parameters, and the spectrum of primordial perturbations. Thus, the CMB

has conclusively given us confidence in a flat universe with a nearly-scale invariant

spectrum of primordial perturbations. Inflation provides the paradigm to explain the

flatness of the Universe, why the seemingly disconnected regions are in causal contact,

and where the primordial seeds for large-scale structure (LSS) come from.

Note that CMB temperature fluctuations are dominated by scalar modes R at

tensor-to-scalar ratios r < 0.3, the current constraints. With the use of a transfer
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function∆T l, we may relate the linear evolution of scalar modes R to CMB temperature

fluctuations ∆T such that

alm = 4π(−i)l
�

d
3
k

(2π)3
∆T l(k)RkYlm(k̂) (46)

Using the identity

l�

m=−l

Ylm(k̂)Ylm(k̂
�
) =

2l + 1

4π
Pl(k̂ · k̂

�
) (47)

we then relate the primordial spectrum to anisotropies via

C
TT

l
=

2

π

�
k
2
dk P (k)� �� �

Inflation

∆Xl(k)∆Y l(k)� �� �
Anisotropies

(48)

Polarization Anisotropies

Not only does the CMB contain temperature anisotropies, but it is also character-

ized by polarized anisotropies via Thomson scattering of photons by electrons during

recombination and reionization. For example, consider a photon traveling in the x̂

direction with its transverse electric field making an electron oscillate in the ŷ and ẑ

plane. Radiation is scattered in these directions, resulting in linear polarization. If

photons are incident from all directions, this results in polarization averaging to zero.

However, let’s consider two perpendicular components of scattered light of different

temperatures. In this case, a net linear polarization can occur.

We describe this linear polarization in terms of Stokes parameters Q and U and

(analogous to temperature multipole moments alm) orthogonal components Elm and

Blm.

(Q± iU)(n̂) = −

�

lm

(Elm ± iBlm)±2Ylm(n̂) (49)

such that Q and U transform as a spin-2 field under rotation by angle ψ

(Q± iU)(n̂) → e
∓2iΨ(Q± iU)(n̂) (50)

requiring harmonic analysis in terms of an expansion in terms of spin-2 spherical

harmonics.

The E− and B−modes completely specify the linear polarization field as analogues
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of curl-free and divergence-free components of a vector. E− polarization gives polariza-

tion vectors radial around cold spots and tangential around hot spots. B− polarization

is divergence-free but not curl-free, giving polarization vectors with vorticity around

any point on the sky. Their respective power spectra are defined as:

�a
E

lm
a
∗E
l�m�� = δll�δmm�C

EE

l
(51)

�a
B

lm
a
∗B
l�m�� = δll�δmm�C

BB

l
(52)

allowing using to measure the polarization map

�P (n̂) = �∇A+ �∇× �B (53)

where E− and B−modes transform differently under parity n̂ → −n̂ such that

B−patterns change signs

a
E

lm
→ (−1)laE

lm
(54)

a
B

lm
→ (−1)l+1

a
B

lm
(55)

Defining the rotationally invariant angular power spectrum

C
XY

l
≡

1

2l + 1

�

m

�a
X

lm
a
Y

lm
�, X, Y = T,E,B (56)

observe that there are six CMB cross-correlations possible: CTT

l
, C

EE

l
, C

BB

l
,

C
TE

l
, C

TB

l
, C

EB

l
.

Note that correlations �TB� and �EB� vanish due to symmetry under normal as-

sumptions (i.e. unless there are parity-violating processes in the early-universe; a de-

tection of such correlations would be a signature for chiral gravity. See our conclusions

in Chapter 5).

The cosmological significance of the CMB polarization is due to the realization that

[173,174]

• scalar/density perturbations create only E−modes, but no B−modes, i.e. pro-

duce a curl-free spatial distribution of the polarization field.
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• vector/vorticity perturbations create mainly B−modes.

• tensor/gravitational wave perturbations create both E−modes and B−modes i.e

a spatial distribution with non-zero curl.

This is a highly non-trivial result: Inflation predicts that quantum excitations of

tensor modes produces a nearly scale-invariant stochastic background of gravitational

waves [175-178]

hij ∼
H

MP l

(57)

The same mechanism that stretches the vacuum fluctuations during inflation, seed-

ing structure formation, generates a stochastic background of gravitational waves.

With the above knowledge that scalars do not produce B−modes while tensors do

has prompted observational cosmology to search for B−modes as the distinctive signa-

ture of inflation. Alternatives to inflation (e.g. ekpyrosis, VSL models, etc.) largely do

not predict a significant amplitude of primordial gravitational waves; thus, the detec-

tion of B−modes has been largely considered conclusive evidence in favor of inflation.

Measuring C
BB

l
where

C
BB

l
= (4π)2

�
k
2dk Ph(k)� �� �

Inflation

∆2

Bl
(k) (58)

would give us access to information about primordial tensor fluctuations.

For gravitational waves, we write the perturbed FLRW metric as

ds
2 = a(τ)2{−dτ

2 + [γij + 2hij(x, τ)]dx
i
dx

j
} (59)

where γij is the unperturbed flat space metric, and metric perturbation hij is trace-

less (hi
i
= 0) and transverse (∂ihij = 0), leaving two independent degrees of freedom

corresponding to the two gravitational-wave polarization.

Thus, the power spectrum of tensor perturbations due to quantum fluctuations from

inflation is given as

�h
+(k)h+(k�)� = �h

×(k)h×(k�)� =
∆2

t (k)

2
δ(k− k�) (60)

Writing the primordial power spectrum in terms of the Hubble parameter H eval-
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uated when CMB scales enter the horizon, we find

∆2

t (k) =
32πGH

2

(2π)3k3

���
aH=k

(61)

Note that in the case of slow-roll single-field inflation, H changes little when CMB

scales enter the horizon. Thus, in terms of the amplitude AT and tensor spectral index

nT , we estimate

∆2

t (k) = ATk
nT−3 (62)

where slow-roll models predict a nT ≈ 0, i.e. a nearly scale-invariant spectrum.

Not only would the detection of B−modes be seen as evidence for inflation, but the

amplitude of the signal directly measures the energy scale of inflation. Note that there

is some confusion with regards to clearly detecting B−modes anisotropies generated

by inflationary gravitational waves at recombination due to gravitational lensing. This

may deform the polarization pattern on the sky relative to that at the last scattering

surface, hence generating B type polarization even if only E−modes are intrinsically

present at the last scattering surface [179].

Recall the ratio of tensor modes to scale power is

r ≡
∆2

t (k)

∆2
s(k)

(63)

where the amplitude of scalar fluctuations is measured to be ∆2
s ∼ 10−9. Because

∆2
t ∝ H

2 ∝ V , the tensor-to-scalar ratio r such that

V
1/4

∼

�
r

0.01

�1/4

1016 GeV (64)

Scalar modes and tensor modes contain different information: features of scalar

spectra are a result of the oscillation of matter-radiation plasma throughout the period

up to recombination, thus encoding information abut the sound speed of the baryon-

radiation plasma, the baryon fraction, and other cosmological constraints.

The tensor spectrum is determined by the wave motion of the evolving gravitational

waves which primarily contain information about the expansion rate of the early Uni-

verse. Under standard assumptions, the amplitude of the GW background measures

the expansion rate during Inflation. However, it has recently been pointed [63] out

that there are mechanisms such that particles or strings act as sources for gravitational

waves during inflation, and therefore the observation of a scale-invariant spectrum of
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gravity waves does not allow us to automatically derive the energy scale of inflation.

The current observations are in agreement with the generic predictions from infla-

tion:

• Flatness

For a universe composed of baryons, dark matter, photons, neutrinos, and dark

energy,

Ωtot = Ωb + Ωcdm + Ωγ + Ων + ΩΛ (65)

inflation predicts Ωtot = 1 ± 10−5, whereas the data [15] predicts a value Ωtot =

1± 0.02. Arguably, this prediction is not very robust, as inflation achieves a flat

universe by design. However, one should remember that when Guth introduced

inflation in 1980, the flatness of the universe was a non-trivial prediction.

• Adiabatic Perturbations

The main components of the universe at the point of last scattering were baryons

b, photons γ, and neutrinos ν, characterized by a respective energy density con-

trast δi.

The adiabatic mode is such that the number of photons (or neutrinos, etc.) per

baryon does not fluctuate, i.e. there is no variation in the relative density between

different components

δρc = δρb =
3

4
δρν =

3

4
δργ (66)

Fluctuations of the inflaton field in single-field inflation shift the trajectory of

the homogeneous background field, which affects the total density at different

points of the universe but does not cause variations in the relative density between

different components. Thus, single-field inflation is predicted to produce adiabatic

primordial density perturbations such that all perturbations to the cosmological

fluid (i.e. photons, neutrinos, cold dark matter particles, and baryons) originate

from the same curvature perturbation R.

However, in inflationary models with more than one field, these perturbations

may not necessarily be adiabatic. Even if the total density and spatial curvature

is unperturbed, in the case of multifield inflation fluctuations orthogonal to the
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background trajectory affect the density between different components. There-

fore, any violation of adiabaticity would be a signature for multifield inflation.

• Scale-invariant spectrum

Recall that inflation produces a nearly constant or scale-invariant spectrum, i.e.

the amplitude of a particular Fourier mode is drawn from a distribution with

mean equal to zero and variance such that

�RkRk�� = (2π)3δ(k+ k�)PR(k) (67)

where k3PR(k) ∝ k
ns−1 and ns ≈ 1. This is referred to as the Harrison-Zel’dovich-

Peebles spectrum and a constant (i.e. no k−dependence) spectrum is predicted

by most inflationary models. Measurements so far are in agreement with this

generic prediction, though this alone isn’t very robust, as we have expected such

a spectrum without inflation.

However, the implication of this is rather non-trivial, as this suggests that all

Fourier modes have the same phase: Let’s consider a Fourier mode with phys-

ical wavelength λ inside the horizon oscillating quantum mechanically with a

frequency 1/λ. However, before the end of inflation, the mode’s wavelength is

stretched greater than the Hubble radius λ > H
−1 such that no causal physics

can alter them. After this, the amplitudes of the mode remains constant until

upon re-entering the horizon; there causal physics again becomes relevant. Ob-

serve that since the fluctuation amplitude was constant outside the horizon, as

the mode enters the horizon Ṙ is small. Thinking of each Fourier mode as a

linear combination of sine and cosine modes, only the cosine modes are excited

by inflation (defining horizon re-entry at t ≡ 0).

Using a simplistic model similar to simple harmonic motion to describe oscillations

in the density field, the curvature perturbation R sources density fluctuations δ,

evolving under gravity and pressure such that

δ̈ − c
2

s∇
2
δ = Fg[R] (68)

where c2s is the speed of sound and Fg is the gravitational source term. The CMB

therefore provides a view of the condition of the density field at recombination,

as matter density fluctuations were strongly coupled to radiation fluctuations in

the plasma of the early universe.
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This leads us to the key insight: We would expect that Fourier modes of the same

phases and various wavelengths would coherently interfere, producing peaks and

troughs (e.g. like a plucked guitar string) in the CMB power spectrum at the last-

scattering surface—this is exactly what we see in the CMB spectrum. However,

a guitar string has fixed nodes, producing a set of harmonics; there are no such

restrictions for perturbations at the early universe. We would need a mechanism

to produce coherent initial phases for all Fourier modes, which is exactly what

inflation accomplishes: fluctuations freeze upon exiting the horizon, and therefore

the phases for Fourier modes were set well before the modes of interest enter

the horizon. This is why our previous implication was so powerful, as without

such coherence such that phases were random (i.e. both sine and cosine modes

were excited, as opposed to only cosine via inflation), the CMB power spectrum

would be nearly flat (thus ruling out topological defects as the primary sources

of structure formation).

(We should note that one objection to this reasoning in the 1990s was to simply

write a theory of structure formation which obeys causality and produced only

cosine modes [180,181]. This may seem logical at angular scale smaller than a

degree l > 200; however, the negative cross-correlation �TE� between temperature

and E−mode polarization on scales 100 < l < 200 prompts us to disregard this

possibility, because such scales were not within the horizon at recombination even

though the signal is a result of phase coherence. This implies no causal physics

could have produced such a result, leaving us this an inflationary scenario again.)

84



Appendix B

Background Perturbation Theory

This is to provide a brief (and very basic) background into cosmological perturbation

theory, particularly aspects relevant to this dissertation. We recommend referring to

the review Cosmological perturbations by Malik and Wands [182] and Dodelson [168]

for more details.

Standard FLRW comsology is spatially homogeneous and isotropic. However, we

need to describe the spatial inhomogeneity and anisotropy of the distribution of matter

and energy in our observed universe (e.g. stars and galaxies forming clusters and super-

clusters of galaxies). As non-linear coupled second-order partial differential equations,

Einstein’s equations are notorious for lacking exact solutions which incorporate such

traits. Therefore, cosmologists used perturbation theory: starting with a spatially ho-

mogenous and isotropic background, we can study increasing complex inhomogeneous

perturbations order by order.

Using the symmetries of a flat FLRW background spacetime, we may decompose

perturbations into independent scalar, vector, and tensor components, reducing Ein-

stein’s equations to a set of uncoupled ordinary differential equations.

The decomposition into scalar, vector, and tensor (SVT) perturbations is readily

shown in Fourier space, where we define the Fourier components of a general pertur-

bation δQ(t, x) as

δQ(t,k) =

�
d
3
xδQ(t, x)e−ik·x (69)

We see that different Fourier modes (different wave numbers k) evolve independently

as a consequence of translation invariance.

It can also be shown using the rotational invariance of the background that helicity

scalar, vectors, and tensor evolve independently (see [182,12]).

Decomposing SVT perturbations into real space, it can be shown that:
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• A 3-scalar corresponds to a helicity scalar

α = α
S (70)

• A 3-vector βi decomposes into a helicity scalar and vector

βi = β
S

i + β
V

i (71)

where

β
S

i = ∇iβ̂, ∇
i
β
V

i = 0 (72)

• A 3-tensor decomposes into a helicity scalar, vector, and tensor. That is, a

traceless, symmetric 3-tensor can be written as

γij = γ
S

ij + γ
V

ij + γ
T

ij (73)

where

γ
S

ij =
�
∇i∇j −

1

3
δij∇

2

�
γ̂ (74)

γ
V

ij =
1

2
(∇iγ̂j +∇j γ̂i), ∇iγ̂i = 0 (75)

∇iγ
T

ij = 0 (76)

For the purposes of this paper (and the sake of brevity), the details for metric

perturbations are simply listed as follows (readers are encouraged to see Malik, Wands,

Baumann, etc. for details):

• Scalar Metric Perturbations

Four scalar metric perturbations Φ, B,i, Ψδij and E,ij may be constructed from
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3-scalars, their derivatives and the background spatial metric

ds
2 = gµνdx

µ
dx

ν

= −(1 + 2Φ)dt2 + 2a(t)Bidx
i
dt+ a

2(t)[(1− 2Ψ)δij + 2Eij ]dx
i
dx

j
(77)

where we absorbed the ∇2
Eδij part of the helicity scalar ES

ij
in Ψδij . Note that

the SVT decomposition in real space is

Bi ≡ ∂iB − Si, where ∂
i
Si = 0 (78)

and

Eij = 2∂ijE + 2∂(iFj) + hij , where ∂
i
Fi = 0, h

i

i = ∂
i
hij = 0 (79)

(Recall that vector perturbations Si and Fi are not produced during inflation,

and also decay with the expansion of the universe).

The intrinsic Ricci scalar curvature of constant time hypersurfaces is

R(3) =
4

a2
∇

2Ψ (80)

There are two scalar gauge transformations:

t → t+ α (81)

x
i
→ x

i + δ
ij
β,j (82)
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Under these coordinate transformations the scalar metric perturbations transform

as:

Φ → Φ− α̇ (83)

B → B + a
−1

α− aβ̇ (84)

E → E − β (85)

Ψ → Ψ+Hα (86)

Note tensor fluctuations are gauge-invariant. We also should note that Bardeen

[183] introduced two gauge-invariant quantities (combinations of the scalar metric

perturbations) which prove useful for extracting physical results:

ΦB ≡ Φ−
d

dt
[a2(Ė − b/a)] (87)

ΨB ≡ Ψ+ a
2
H(Ė −B/a) (88)

• Scalar Matter Perturbations

Matter perturbations are also gauge-dependent. For example, density and pres-

sure perturbations transform under temporal gauge transformations as

δρ → δρ− ˙̄ρα, δp → δp− ˙̄pα (89)

However, we should note two gauge-invariant quantities formed from matter and

metric perturbations:

First, the “curvature perturbation on uniform density hypersurfaces”

−ζ ≡ Ψ+
H

˙̄ρ
δρ (90)

measures the spatial curvature of constant-density hypersurfaces, e.g. for adia-

batic matter perturbations ζ remains constant outside the horizon.
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Second, the “comoving curvature perturbation” R, given by

R = Ψ−
H

ρ̄+ p̄
δq (91)

measures the spatial curvature of comoving hypersurfaces. Note δq is the scalar

part of the 3-momentum density T
0

i
= ∂iδq.

It can be shown with the linearized Einstein equations and the Bardeen potential

ΨB that

−ζ = R+
k
2

(aH)2
2ρ̄

3(ρ̄+ p̄)
ΨB (92)

Note that ζ and R are equal on superhorzion scales k � aH, where they become

time-independent, and their correlations functions are equal at horizon crossing.

• Vector Metric Perturbations

Vector type metric perturbations are defined

ds
2 = −dt

2 + 2a(t)Sidx
i
dt+ a

2(t)[δij + 2F(i,j)]dx
i
dx

j (93)

where Si,i = Fi,i = 0. The vector gauge transformation is

x
i
→ x

i + β
i
, βi,i = 0 (94)

They lead to the transformations

Si → Si + aβ̇i, Fi → Fi − βi (95)

• Tensor Metric Perturbations

Tensor metric perturbations are defined as

ds
2 = −dt

2 + a
2(t)[δij + hij ]dx

i
dx

j (96)

where hij,i = h
i

i
= 0
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Appendix C

A key (and perhaps most appealing) aspect of inflation is the mechanism by which

quantum fluctuations of the inflaton source all structure in the universe and thus the

primordial power spectra of scalar and tensor fluctuations Ps(k) and Pt(k). In this

appendix, we detail how quantum physics gives rise to the macroscopic observables

discussed in this paper.

Note that the amplitude of quantum fluctuations scales with the Hubble parameter

H (i.e. to the de Sitter horizon, H−1 during inflation). Furthermore, during inflation,

fluctuations are created at all length scales, or wavenumbers k. Created by quantum

fluctuations via the familiar laws of quantum mechanics, they begin inside the horizon

k � aH (i.e. “subhorizon”) and eventually exist as the comoving Hubble radius (aH)−1

shrinks during inflation. These perturbations are referred to as “superhorizon” and as

no causal physics can affect them, they are frozen until horizon re-entry at late times.

All fluctuations must re-enter the horizon after inflation.

This is a crucial insight for observations: by characterizing inhomogeneity with

comoving curvature fluctuations R and curvature perturbations on uniform density

hypersurfaces ζ (see Appendix B), we realize that both R and ζ are constant on su-

perhorizon scales such that their amplitude is not affected immediately after inflation

(which is convenient, as we know virtually nothing about reheating). Thus, upon hori-

zon re-entry, it is the constancy of R and ζ which allow us to connect fluctuations to

observables (i.e. perturbations of the cosmic fluid measured by CMB anisotropies and

LSS).

As the basis of this mechanism for generating inItial seeds of all structure is in fact

quantum mechanics, cosmologists use the quantized simple harmonic oscillator, i.e. the

time-dependent action

S =

�
dt

�1
2
ẋ
2
−

1

2
ω
2(t)x2

�
≡

�
dtL (97)
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varied such that

δS

δx
= 0 =⇒ ẍ+ ω

2(t)x = 0 (98)

with variables subsequently quantized to operators such that [x̂, p̂] = i�, to guide

them in computing quantum fluctuations in de Sitter space. Readers unfamiliar with

this system are advertised to consult any beginning to advanced textbook on quantum

theory.

Computing Quantum Fluctuations in de Sitter Space

Before computing inflationary fluctuations, recall we previously defined a gauge-

invariant curvature perturbation R which we may compute at horizon exit (thus allow-

ing us to ignore subhorizon physics and reheating until horizon re-entry of R modes).

With the intuition of the quantized simple harmonic oscillator, we may use the SHO

form to write the equation of motion for R and therefore study the quantization of

scalar fluctuations during inflation.

We summarize the following procedure for purposes of clarity and guidance: Firstly,

we expand the action for single-field slow-roll inflation to the second order in fluctua-

tions in terms of R. Secondly, we then derive the equation of motion for R, resulting

in the familiar SHO form. Next, we then approximate the solutions for this equation,

as exact solutions are difficult to write. Fourthly, we will quantize the field R, thus

giving us boundary conditions on the mode functions. We may then fix these mode

functions with the definition of a vacuum state, thus providing their large-scale limit.

With this, we may finally compute the power spectra of curvature fluctuations at hori-

zon crossing, thus providing cosmologists a connection between quantum fluctuations

and cosmic observables (e.g. CMB anisotropies).

We will begin with the case of scalar perturbations, and subsequently generalize to

the case of tensor perturbations.

(Note that the following closely the derivations of Maldacena [99] and Baumann[12]).

Scalar Perturbations

We begin with the familiar action of single-field slow-roll models

S =
1

2

�
d
4
x
√
−g[R− (∇φ)2 − 2V (φ)] (99)

Our first step is to expand this action to the second order in R. We will choose the
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following gauge for dynamical fields gij and φ

δφ = 0, gij = a
2[(a− 2R)δij + hij ], ∂ihij = h

i

i = 0 (100)

to fix time and spatial reparametrizations such that the inflaton field is unper-

turbed and all scalar degrees of freedom of parametrized by the metric fluctuations

R(t,x), where recall R measure the spatial curvature of constant-φ hypersurfaces,

R
(3) = 4∇2R/a

2. This is crucial: remember, because R remains constant outside the

horizon, we may solely compute correlation functions of R at horizon crossing.

This following procedure is rather computationally detailed, but we will walk through

the major steps:

Consider the slow-roll background

d2s = −dt2 + a(t)2δijdx
idxj = a(τ)2(dτ2 + δijdx

idxj) (101)

using the scale factor a(t) and Hubble parameter H(t) ≡ ∂t ln a.

In order to study fluctuations in the metric, we introduce ADM formalism (see

[184] for further details). In ADM formalism, we formulate General Relativity such

that spacetime is foliated into three-dimensional hypersurfaces

ds2 = −N
2dt2 + gij(dx

i +N
idt)(dxj +N

jdt) (102)

where gij is the three-dimensional metric on slice of constant t, N(x) is the lapse

function, and Ni(x) is the shift function. Note that metric perturbations Φ and B are

related to R by this formalism (i.e. represented by N(x) and Ni(x), except the latter

were chosen to be non-dynamical Lagrangian multipliers in the action, see [184]). With

this formalism, we can then write the action S of eq. (100) as

S =
1

2

�
d
4
x
√
−g

�
NR

(3)
− 2NF +N

−1(EijE
ij
− E

2)+

N
−1(φ̇−N

i
∂iφ)

2
−Ng

ij
∂iφ∂jφ− 2V

� (103)

where

Eij ≡
1

2
(ġij −∇iNj −∇jNi), E = E

i

i (104)
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Eij is related to the extrinsic curvature of the three-dimensional spatial slices Kij =

N
−1

Eij . It can be shown that constraint equations for the Lagrange multipliers N and

N
i for this action are given by

∇i[N
−1(Ei

j − δ
i

jE)] = 0, (105)

R
(3)

− 2V −N
−2(EijE

ij
− E

2)−N
−2

φ̇
2 = 0 (106)

We next define the shift vector Ni into irrotational (scalar) and incompressible

(vector) parts

Ni ≡ ψ,i + Ñi, where Ñi,i = 0 (107)

and the lapse function as

N ≡ 1 + α (108)

With this, we may solve the constraint equations above. It can be shown that eq.

(106) at first order implies

ψ1 = −
R

H
+

a
2

H
�V ∂

−2
Ṙ (109)

and eq. (107) implies

α1 =
Ṙ

H
, ∂

2
Ñ

(1)

i
= 0 (110)

where ∂
−2 is defined such that ∂−2(∂2

φ) = φ.

We then substitute the first-order solutions for N and Ni into the action eq. (104)

resulting in the second-order action

S =
1

2

�
d
4
xa

3
φ̇
2

H2

�
Ṙ

2
− a

−2(∂iR)2
�

(111)

We proceed by defining the “Mukhanov variable”

v ≡ zR, where z
2
≡ z

2
φ̇
2

H2
= 2a2� (112)

and using conformal time τ gives us an action for a canonically normalized scalar,
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the “Mukhanov action”

S(2) =
1

2

�
dτd

3
x

�
(v�)2 + (∂iv)

2 +
z
��

z
v
2

�
(113)

where we’ve differentiated with respect to τ .

And with our convention of the Fourier expansion of the field v, we arrive at the

Mukhanov Equation

v
��
k
+
�
k
2
−

z
��

z

�
vk = 0 (114)

which is exact in linear theory. Note for large (i.e. subhorizon) k, this looks exactly

like a free oscillator equation which we can quantize! However, the Mukhanov Equation

is hard to solved in full generality because z depends on background dynamics. We

hence discuss approximate solutions in the pure de Sitter case to gain some intuition

of the solutions:

As in the familiar case of the quantized SHO, we promote the field v and conjugate

momentum v
� as quantum operators

v → v̂ =

�
dk3

(2π)3

�
vk(τ)âke

ik·x + v
∗
k
(τ)â†ke

−ik·x
�

(115)

or alternatively expressed in Fourier decomposition with components vk

vk → v̂k = vk(τ)âk + v
∗
−k

(τ)â†−k (116)

where the creation and annihilation operators â†−k and âk satisfy the commutation

relation [âk, â
†
k] = (2π)3δ(k−k�) if and only if the mode functions are normalized such

as

�vk, vk� ≡
i

�(v
∗
k
v
�
k
− v

�∗
k
vk) = 1 (117)

This is in fact the first boundary condition on solutions of the Mukhanov Equation.

Now that we’ve established the quantum normalization, the second boundary condition

is chosen to fix the mode functions via a choice of vacuum. This vacuum state for

fluctuations

âk|0� = 0, (118)

is the so-called “Bunch-Davies vacuum” (i.e. the Minkowski vacuum of comoving
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observer in the far past when all comoving scales were far inside the Hubble Horizon,

τ → −∞ or k ≫ aH). In this subhorizion limit, we find a SHO equation with time-

independent frequency such that

v
��
k
+ k

2
vk = 0 (119)

As in introductory quantum mechanics, by requiring the vacuum to be the minimum

energy state, we find a unique solution. Therefore, by imposing the initial condition

lim
τ→−∞

vk =
e
−ikτ

√
2k

(120)

along with the previous boundary conditions, the mode functions are fixed on all

scales.

Now let’s consider the pure de Sitter space limit � → 0 where H is constant, and

z
��

z
=

a
��

a
=

2

τ2
(121)

In such a de Sitter background, we are given a mode equation

v
��
k
+

�
k
2
−

2

τ2

�
vk = 0 (122)

with solutions

vk = α
e
−ikτ

√
2k

�
1−

i

kτ

�
+ β

e
ikτ

√
2k

�
1 +

i

kτ

�
(123)

By fixing α = 1,β = 0 with the subhorizon limit |kτ | � 1, this gives us a unique

Bunch-Davies mode function

vk =
e
−ikτ

√
2k

�
1−

i

kτ

�
(124)
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Power Spectrum

Now let’s compute the power spectrum in quasi-de Sitter space:

By defining a field ψ̂k ≡ v̂k/a, we compute the power spectrum

�ψ̂k(τ)ψ̂
�
k(τ)� = (2π)3δ(k+ k�)

|vk(τ)|2

a2

= (2π)3δ(k+ k�)
H

2

2k3
(1 + k

2
τ
2)

(125)

Note that by taking the superhorizon limit |kτ | << 1, this approaches a constant

�ψ̂k(τ)ψ̂
�
k(τ)� → (2π)3δ(k+ k�)

H
2

2k3
, or ∆2

ψ
=

�
H

2π

�2

(126)

Observe that by using ψ = v/a in the de Sitter limit, we may now compute the

power spectrum of R = H

φ
ψ at horizon crossing a(t∗)H(t∗) = k, giving

�Rk(t)Rk�(t)� = (2π)3δ(k+ k�)
H

2
∗

2k3
H

2
∗

φ̇2
(127)

where t∗,H∗, etc. denoted evaluation at horizon crossing. This allows us to define

the dimensionless power spectrum ∆2

R(k) by

�RkRk�� = (2π)3δ(k+ k�)PR(k), ∆2

R(k) ≡
k
3

2π2
PR(k) (128)

where the real space variance of R is �RR� =
�∞
0

∆2

R(k)d ln k. This results in

∆2

R(k) =
H

2
∗

2k3
H

2
∗

φ̇2
∗

(129)

Again, we stress that because R approaches a constant on super-horizon scales the

spectrum at horizon crossing determines the future spectrum until a given fluctuation

mode re-enters the horizon. We also note that when horizon crossing a∗H∗ = k has

different values, different modes will exist the horizon at slightly different times.

Observe that our result is valid at a slowly time-evolving quasi-de Sitter space as we

computed the power spectrum at a specific instant, i.e. horizon crossing. Therefore, we

have calculated the power spectrum for single-field slow-roll inflation. (The Mukhanov

Equation usually must be solved numerically for non-slow-roll cases, as the background

evolution must be tracked in a more precise manner.)
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Tensor Perturbations

Now let’s repeat this computation for tensor perturbations, as quantum fluctuations

during inflation also excite tensor metric perturbations hij . Although the computation

itself differs, the calculation is quite similar to the scalar case previously detailed:

By expanding the Einstein-Hilbert action, we can compute the second-order action

for tensor fluctuations

S(2) =
M

2

Pl

8

�
dτdx3a2[(h�

ih
)2 − (∂thij)

2] (130)

where factors of MPl are included to emphasize hij is dimensionless.

Defining the following Fourier expansion to be

hij =

�
d3k

(2π)3

�

s=+,×
�
s

ij(k)h
s

k(τ)e
ik·x (131)

where �ii = k
i
�ij = 0 and �

s

ij
(k)�s

�
ij
(k) = 2δss� , the tensor action S(2) becomes

S(2) =
�

s

�
dτdk

a
2

4
M

2

Pl
[hs

�
k h

s
�
k − k

2
h
s

kh
s

k] (132)

with the polarization of a gravitational wave denoted by h
s

k.

We then define the canonically normalized field

v
2

k ≡
a

2
MPlh

s

k, (133)

where

a
��

a
=

2

τ2
(134)

holds in de Sitter space, resulting in

S(2) =
�

s

1

2

�
dτd3k

�
(vs

�
k )

2
−

�
k
2
−

a
��

a

�
(vsk)

2

�
(135)

Notice this is another copy of the free field action eq. (114).
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Note that we can now write the polarization of a gravitational wave as a renormal-

ized massless field in de Sitter space

h
s

k =
2

Mpl

ψ
2

k, ψ
s

k ≡
vk

a
(136)

where ψ ≡ v/a is used as before. This allows us to simply write down the answer

for ∆2

h
, the power spectrum for a single polarization of tensor perturbations with the

correct normalization factor

∆2

h
=

4

M
2

Pl

�
H∗
2π

�2

(137)

Therefore, the dimensionless power spectrum of tensor fluctuations is given as

∆2

t = 2∆2

h
(k) =

2

π2

H
2
∗

M
2

Pl

(138)

Energy Scale of Inflation

We may now define the tensor-to-scalar ratio r as

r ≡
∆2

t (k)

∆2
s(k)

(139)

Under normal assumptions, we may use this ratio to extrapolate the energy scale

of inflation: Because the amplitude of scalar fluctuations ∆2
s is fixed such that ∆2

s ≡

∆2

R ≈ 10−9 and the amplitude of tensor fluctuations ∆2
t (k) is directly proportaional

to H
2 ≈ V , we find the relation between the energy scale of inflation V

1/4 and r∗ ≡

r(φCMB)

V
1/4

≈
� r

0.01

�1/4
× 1016 GeV (140)

where r ≥ 0.01 would correspond to any inflationary energy at Grand Unified The-

ory (GUT) scales, a result which would be the first direct insight into physics at such

a scale.

The Lyth Bound

The tensor-to-scalar ratio may be related to the evolution of the inflaton field such
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that [185]

r(N) =
8

M
2

Pl

� dφ
dN

�2
(141)

It can then be calculated [186] that between the time when CMB fluctuations exited

the horizon at NCMB and the end of inflation at Nend, the total field evolution is

∆φ

MPl

=

�
NCMB

Nend

�
r

8
dN (142)

Observe the evolution of r is highly constrained by slow-roll parameters. Taking

the lower bounds of slow-roll models, we obtain the estimate

∆φ

MPl

= O(1)×
� r

0.01

�1/2
(143)

A detection of a large value of r (i.e. r > 0.01) would thus not only signify a high-

scale of inflationary energy, but also correlate with ∆φ > MPl (i.e. super-Planckian

field evolution) and therefore be considered a signature of large-field inflation.

Thus, we have successfully calculated the power spectra of inflationary scalar and

tensor perturbations, written as

∆2

s(k) ≡ ∆2

R(k) =
1

8π2

H
2

M
2

Pl

1

�

���
k=aH

(144)

∆2

t (k) ≡ 2∆2

h
(k) =

2

π2

H
2

M
2

Pl

���
k=aH

(145)

where

� = −
d lnH

dN
(146)

resulting in a tensor-to-scalar ratio at the time of horizon crossing k = a(t∗)H(t∗)

to be

r ≡
∆2

t

∆2
r

= 16�∗ (147)

We now continue by calculating the scale dependence of the spectra and the time-
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dependence of the Hubble parameter:

ns − 1 ≡
d ln∆2

s

d ln k
, nt ≡

d ln∆2
t

d ln k
(148)

Using ns and without loss of generality, we split ns into two factors such that

d ln∆2
s

d ln k
=

d ln∆2
s

dN
×

dN

d ln k
(149)

The first factor is the derivative with respect to e-folds N such that

d ln∆2
s

dN
= 2

d lnH

dN
−

d ln �

dN
(150)

where the first term is simply −2� and the second is shown to be [12]

d ln �

dN
= 2(�− η), where η = −

d lnH,φ

dN
(151)

For the second factor dN/d ln k evaluated at the horizon crossing, we calculate

dN

d ln k
=

�
d ln k

dN

�−1

=
�
1 +

d lnH

dN

�−1

≈ 1 + � (152)

Therefore, we may conclude to the first order that the slow-roll Hubble parameters

are given by

ns − 1 = 2η∗ − 4�∗ (153)

and

nt = −2�∗ (154)

As discussed throughout this paper, observational cosmology has long had the goal

of measuring ns and nt (particularly deviation from exact scale-invariance ns = 1 and

nt = 0) as probe into inflationary dynamics (e.g. slow-roll parameter � and η).

Slow-Roll Primordial Constraints

We are now in a position to summarize constraints of the single-field slow-roll in-

flation. Recall that measurements of scalar and tensor power spectra directly relate to

information concerning the slow-roll parameter and shape of inflationary potential. In
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this limit, the Hubble parameter and potential slow-roll parameters are related as

� ≈ �V , η ≈ ηV − �V (155)

Expressing the scalar and tensor spectra in terms of V (φ) and �V (or V,φ), we find

∆2

s(k) ≈
1

24π2

V

M
4

Pl

1

�V

���
k=aH

, ∆2

t (k) ≈
2

3π2

V

M
4

Pl

���
k=aH

(156)

The scalar and tensor scale dependence are therefore

ns − 1 ≡
d ln∆2

s

d ln k
≈ 2η∗V − 6�∗V (157)

nt ≡
d ln∆2

t

d ln k
= −2�∗V (158)

and the tensor-to-scalar ratio is

r ≡
∆2

t

∆2
s

= 16�∗V . (159)

Notice how we may therefore conclude the consistency condition between the tensor-

to-scalar ratio r and the tensor tilt nt

r = −8nt (160)
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Appendix D

Our aim in this appendix is to provide a background of the “In-In” formalism to

compute correlation functions in a time-dependent background [187-192].

First, let’s recall how we analysis correlation functions in Quantum Field Theory as

applied to particle physics. Here, we impose asymptotic conditions at very early times

−∞ and very late times +∞ as these states may be assumed to be non-interacting at

±∞ in Minkowski space. That is to say, the asymptotic state is set as the vacuum

state of the free Hamiltonian H0. So, we take some S-matrix of the probability for a

state |Ψ� to transition to state |Ψ�� at the far future +∞, such that

�Ψ�
| S | Ψ� = �Ψ�(+∞) | Ψ(−∞)�. (161)

Calculating cosmological correlations functions differs from the familiar technique

in quantum field theory in several respects, as we are interested in evaluating expec-

tation values of products of fields at a fixed time. In our case, we impose conditions

not at ±∞ but only in the limit of early times, when the wavelength is deep inside the

horizon, i.e. superhorizon primordial perturbations generated during inflation. Note

that fields in this scenario are fluctuations of the scalars and metric, and their conjugate

momenta. In this limit, these fields in the interaction picture have the same form as in

Minkowski space, prompting the definition of the free vacuum in Minkowski space, the

“Bunch-Davies vacuum.”

Deriving the | in� Vacuum in the Interaction Picture

First, we split the Hamiltonian into free and interacting parts

H = H0 +Hint (162)

such that the free-field H0 is quadratic in perturbations. In order to describe the
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time-evolution of cosmological perturbations to study non-Gaussianities, we must study

higher-order correlations in the interaction Hamiltonian Hint. We can define the evo-

lution of states in Hint with the time-evolution operator written as

U(τ2, τ1) = T exp
�
− i

�
τ2

τ1

dτ �Hint(τ
�)
�

(163)

where T is the time-ordering operator. U(τ2, τ1) relates the interacting vacuum at

soe time |Ω(t)� to the free Bunch-Davies vacuum |0�. To do this, we begin by expanding

in Ω(τ) in eigenstates of the free Hamiltonian

| Ω� =
�

n

| n��n | Ω(τ)� (164)

and then evolve | Ω(τ)� as

| Ω(τ2)� = U(τ2, τ1) | Ω(τ1)� =| 0��0 | Ω�+
�

n≥1

e
+iEn(τ2−τ1) | n��n | Ω(τ1)� (165)

Here τ2 = −∞(1− i�) projects out all excited states. Therefore, for the interacting

vacuum τ = −∞(1− i�) and the free vacuum | 0�, this implies

Ω(−∞(1− i�)� =| 0��0 | Ω� (166)

The interacting vacuum at some time τ may then be written as

| in� ≡| Ω(τ)� = U(τ,−∞(1− i�) | Ω(−∞(1− i�))� (167)

= T exp
�
− i

�
τ

−∞(1−i�)

dτ �Hint(τ
�)
�
| 0��0 | Ω� (168)
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Expectation Values

Now we are able to compute expectation values in this formalism. For an expecta-

tion value �W (τ)� of a product of operators W (τ) at time τ , we find

�W (τ)� ≡
�in | W (τ) | in�

�in | in�

=
�
0
���
�
T exp(−i

�
τ

−∞+
Hint(τ

�)dτ �)
�†

W (τ)
�
T exp(−i

�
τ

−∞+
Hint(τ

��)dτ ��)
����0

�

(169)

or using the notation −∞± ≡ −∞(1∓ i�) and anti-time ordering operator T̄ ,

�W (τ)� =
�
0
���
�
T̄ e

−i
� τ
−∞− Hint(τ

�
)dτ

�
�
W (τ)

�
Te

−i
� τ
−∞+ Hint(τ

��
)dτ

��
����0

�
(170)

We can now evaluate �W (τ)� perturbatively in the interaction Hamiltonian Hint to

compute higher-order correlation functions.

For example, we may use this formalism to compute three-point correlation function

for inflationary models, written as

�Rk1Rk2Rk3�(τ) =�
0
���
�
T̄ e

−i
� τ
−∞− Hint(τ

�
)dτ

�
�
Rk1(τ)Rk2(τ)Rk3(τ)

�
Te

−i
� τ
−∞+ Hint(τ

��
)dτ

��
����0

� (171)

Perturbative Expansion of Correlation Functions

Recall that by eq. (116) in Appendix C, we may promote the Mukhanov variable

v = 2a2�R to an operator and expand in terms of creation and annihilation operators

vk → v̂k = vk(τ)âk + v
∗
−k

(τ)â†−k (172)

The mode functions vk(τ) were defined uniquely by initial state boundary conditions
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when all modes were deep inside the horizon

vk(τ) =
e
−ikτ

√
2k

�
1−

i

kτ

�
(173)

The free two-point correlation function is

�0 | ˆvk1(τ1) ˆvk2(τ2) | 0� = (2π)3δ(k1 + k2)Gk1(τ1, τ2) (174)

with

Gk1(τ1, τ2) ≡ vk(τ1)v
∗
k
(τ2). (175)

Expanding eq. (173) in powers of Hint and denoting W (τ) = Rk1(τ)Rk2(τ)Rk3(τ),

we find:

• at zeroth order

�W (τ)�(0) = �0 | W (τ) | 0� (176)

where we note this term naturally vanishes for exact Gaussian conditions in bis-

pectrum calculations

• at first order

�W (τ)�(1) = 2Re
�
− i

�
τ

−∞+
dτ

�
�0 | W (τ)Hint(τ

�) | 0�
�

(177)

where this consequently is the leading term in bispectrum calculations

• at second order

�W (τ)�(2) = −2Re
� � τ

−∞+
dτ

�
�

τ
�

−∞+
dτ

��
�0 | W (τ)Hint(τ

�)Hint(τ
��) | 0�

+

�
τ

−∞−
dτ

�
�

τ

−∞+
dτ

��
�0 | Hint(τ

�)W (τ)Hint(τ
��) | 0�

� (178)

where we have used Wick’s theorem to express the result in terms of two-point

functions.

105



Appendix E

In this section we detail some of the theoretical concerns and mysteries which still

plague the inflationary paradigm and inflationary model building. Furthermore, we

discuss alternatives to inflation and the possibility to observationally distinguish or

validate these models.

Issues with Inflationary Model Building

In spite of the large varieties of inflationary models presented these past three

decades, theorists have found that in actuality, constructing a self-consistent and ex-

plicit model is a delicate task. We present two such challenges [104]:

• The Eta Problem

For slow-roll models, the mass of the inflaton field must be light enough, i.e.

m � H, to maintain a flat potential V (φ) and yet the natural mass of a light

particle of order H in the inflationary background. Such a result would impair

slow-roll inflation itself, as such inflaton masses generate contributions to the eta

slow-roll parameter. We are essentially confronted with a fine-tuning problem of

η, i.e. “Why is inflation so light?”. As the need for an inflationary universe is

arguably simply a fine-tuning issue to begin with, this implication is particularly

theoretically distressful for our simplest case of inflation [193].

• Variation of the Potential

Large-field potentials take the following general form

V (φ) =
∞�

n=0

λnm
4−n

fund.
φ
n (179)

where mfund. represents typical scales in the theory and λn’s are dimensionless
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couplings of order O(1). In order for the field theory description to hold, mfund.

must be greater than MPl. This also presents a fine-tuning problem, as the shape

of the potential varies over a scale of order mfund. � MPl [194].

Issues with Inflationary Paradigm

With these two model-dependent concerns regarding inflation, we may now turn to

some of the more conceptual problems and ambiguities which have agonized theorists

over the years. Here is a sampling:

• Fine-Tuning Problems

The initial conditions for inflation to start with are poorly understood. For in-

stance, note that the simple slow-roll analysis of inflation we have relied upon

assumes small initial inflaton velocities, and initial homogeneities in the inflaton

which are not large enough to prevent inflation. Questions concerning these and

other initial conditions of inflation have concerned the field since inception. For

instance, one such approach to study the initial state of the Universe is “Quan-

tum Cosmology,” which discusses the possible “probability” of inflation and the

boundary conditions from which it is most likely to occur [195-198]. (See [199]

for a pedagogical introduction to this field.)

For the inflationary paradigm itself, however, the question concerning the initial

conditions manifest in fine-tuning problems. Those detailed below are particularly

worrisome for small-field models ∆φ � MPl:

1. The Overshoot Problem

One manifestation of this lack of understanding is the so-called “overshoot

problem” first discussed in [200]. If the initial velocity of the inflaton near

the inflationary potential is non-negligible or if the inflaton begins at a mod-

est distance uphill from the inflationary potential, it overshoots that region

without sourcing accelerated expansion. For small-field models in particular,

the Hubble friction is not efficient enough to slow the field before it reaches

the region of interest.

2. The Patch Problem

The inflaton field must be smooth over a few times the horizon size at that

time to start inflation. However, initial inhomogeneites in the inflaton field

provide a gradient energy that also could hinder accelerate expansion [12].
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3. “Fine-Tuned” Potential Problem

For single-field models to transition from � = 1 at φend to � � 1 at φCMB,

i.e. r = 16� � 1 to � = 1, within 60 e−folds in fact would require highly

fine-tuned potentials [201].

• Reheating

Our knowledge of reheating is very limited, as the subject is composed of various

theoretical difficulties. How did inflation end? How did it result in a universe

filled much radiation and elementary particles of the Standard Model? For more

information concerning issues of reheating and preheating, see [7].

• Eternal Inflation and the Measure Problem

The idea behind eternal inflation is that although inflation ends locally to pro-

duce pockets of FLRW universes, regions exist where quantum fluctuations keep

the field at high values of potential energy. Those regions keep expanding expo-

nentially and produce more volume of inflationary regions.

This leaves us with the measure problem: the likelihood of the initial conditions

of inflation and dependency of inflationary predictions is based on the relative

probabilities of the inflationary and non-inflationary patches of the universe or

multiverse. Furthermore, arguably all fine-tuning problems we previously dis-

cussed are manifestations of the measure problem.

For more discussion of this topic, see [202-203].

Alternatives to Inflation

Naturally there could be an altogether different paradigm which resolves the various

problems with Big Bang cosmology. However, we should note that in some sense, most

of these models suffer from similar problems as inflation, particularly with regards

invoking new physics not understood. One such leading alternative is the “Ekpyrotic

(or Cyclic) Cosmology” model [64,204].

As opposed to the inflationary short burst of accelerated expansion from some

energetic initial state, the ekyprotic universe slowly contracts from a cold beginning,

then subsequently relies on a bounce (i.e. the contracting phase to smoothly connect

with the Big Bang expansion) which leads to the standard decelerating, expanding

FLRW cosmology. Thus, these models solve the various problems of standard Big

Bang cosmology. The cyclic model furthermore posits the ekpyrotic phase occurs at an

infinite number of times.
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Theoretically, the viability of this model depends on whether a bounce could possi-

bility happen or not. For there to have actually been a bounce would require a violation

of the null energy condition (NEC) (see Chapter 4) such that

2M2

Pl
Ḣ = −(ρ+ p) > 0 (180)

A different approach is provided by variable speed of light (VSL) models [66,205,206].

Instead of modifying the matter content of the Universe such that Einsteinian gravity

becomes repulsive via inflationary expansion, VSL models modify the local speed of

light to resolve the various puzzles with the Standard Big Bang model. Thus, in the

very early universe such distant regions in the expanding universe would have been

in causal contact. Likewise, in relation to our discussion above, such theories may be

described by their speed of sound: an extraordinarily large sound speed in the very

early universe would result in a sound horizon far greater than the comoving Hub-

ble radius, therefore solving the Horizon Problem. Such a sound speed decays with

time, causing the comoving sound horizon to shrink. Indeed, such a mechanism uti-

lizing a large, decaying sound speed in the early Universe has been proposed to set

scale-invariant density fluctuations [105-107]. Refer to [206] for more discussion of the

VSL theories and their various manifestations (e.g. soft-breaking of Lorentz invariance,

hard-breaking, bimetric theories. etc.), and their testability.

Note that in both the cases of ekpyrosis and VSL, a generic phenomenological

prediction is the lack of significant amplitude for gravitational waves. A significant

detection of B−modes would in fact be a clear signature for inflationary tensor modes

and therefore would distinguish the inflationary paradigm over these alternatives.
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