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1
Background

1.1 Introduction

First, we must review the magnetocaloric effect (MCE), giant magnetocaloric effect (GMCE)

and aspects of statistical mechanics and field theory that we will need throughout.

1.2 Magnetocaloric Effect

The MCE is a reversible magneto-thermodynamic process that forms the basis for the

magnetic cooling cycle (Fig. 1.2), a promising alternative to the conventional vapor-cycle

refrigeration, that may soon be viable for commercial and domestic applications [11]. The

effect was discovered in pure iron by Emil Warburg (1880) with a cooling effect in the

range of 0.5− 2.0KT−1, the first working prototypes being constructed in 1933.

Magnetic cooling technology would be more energy efficient (∼60% efficiency com-

pared to ∼15% efficiency for vapor-cycle cooling) and less polluting, with a considerably

smaller carbon footprint than traditional cooling technology. Ozone depleting chemi-

cals, hazardous chemicals and greenhouse gases are not needed, the only liquids present

are non-volatile heat exchange media. Unfortunately, currently available materials only

reach such efficiency in high magnetic fields of ∼5T, much higher than can be created

conveniently for domestic applications etc... With refinement, the MCE may be used to

reach extremely low temperatures, as well as the ranges used in everyday commercial

applications like fridges, depending on the design of the system.

The search is on to find better magnetocaloric materials and break down the barri-

ers to application, with recent developments in room temperature magnetic refrigeration

[12], progress is being made [13, 14] (and see [15] for a detailed review of the theory and

properties of known MCE materials). There exists several magnetic cooling prototypes

around the world, with a recent upsurge in related publications. However, advances in

our theoretical understanding are also necessary.

We will begin by understanding the MCE from a theoretical perspective. We consider

a magnetocaloric material, modeled as a magnetic lattice thermally coupled to a crystal

1



2 CHAPTER 1. BACKGROUND

lattice. Initially, considering just the magnetic degrees of freedom: the material is at

ambient temperature Tinitial above the materials Curie temperature, Tinitial > Tc; there

is no external magnetic field, ~Hext = ~0; and the electron magnetic moments at each site

are not aligned (Fig. 1.1a).

(a) At T > Tc, with no external magnetic
field ~Hext = ~0. The spins are not aligned, i.e.
there is no correlation between sites on the
lattice.

(b) At high external magnetic field ~Hext,
with reduced temperature. Eventually the
alignment may become saturated, all the
spins point in the same direction.

Figure 1.1: Regular 2-dimensional lattice of spins (magnetic moments), each spin is al-

lowed to point in any direction within the plane, with a fixed magnitude.

Applying an external magnetic field, ~Hext, aligns the electron spins, reducing the

magnetic entropy. As the magnetic field is increased, and the temperature is reduced, the

spins become more and more aligned, eventually the alignment is saturated and all the

spins point in the same direction (Fig. 1.1b).

1.2.1 Adiabatic Cycle

If the magnetization is done adiabatically, the laws of thermodynamics dictate that the

total entropy of the system (spin and lattice degrees of freedom) must be constant, as in a

reversible process. Hence the entropy lost from the magnetic degrees of freedom must be

absorbed by other degrees of freedom in the material, in this case, by the lattice degrees of

freedom. As the lattice entropy increases, the material heats up to a temperature Tfinal:

Tfinal = Tinitial + ∆T 0→H
adiabatic, (1.1)

where ∆T 0→H
adiabatic is the temperature change of the material as the external magnetic field

~Hext is increased from ~0 to ~H.

This heat is carried away to the ambient atmosphere by heat transfer, returning the

material to its starting temperature Tinitial, but now magnetized. Finally, the material

is isolated again, and the magnetic field is adiabatically removed so that the total en-

tropy remains constant. The agitating action of the thermal energy (phonons) causes

the magnetic moments to randomize again, entropy is redistributed among magnetic and

lattice degrees of freedom, and hence the material chills to a temperature below is starting

temperature:

Tfinal = Tinitial −∆T 0→H
adiabatic. (1.2)
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The material can now brought back to the ambient temperature Tinitial by heat exchange

with the material being refrigerated - heat energy is transfered from the material be-

ing refrigerated to the magnetocaloric material. We have achieved a cycle whereby the

magnetic material has been returned to its original temperature and magnetization, and

heat has been transferred from the heat load to its surroundings. Assuming any thermal

hysteresis loss from the heating/cooling cycle can be neglected, the cycle is reversible and

can be repeated for further cooling.

The MCE is intrinsic to particular materials. Currently, some of the most promising

materials, providing the biggest entropy change at near room temperature are seen in

gadolinium and its alloys, i.e. GdDy, GdTb, etc... Research is focused on increasing the

temperature change and making the process more practicable, i.e. as the temperature

change is increased, weaker magnetic fields and less material may be used.

1.2.2 Isothermal Cycle

If the magnetization and demagnetization is done isothermally, the magnetocaloric ef-

fect corresponds to the isothermal entropy change ∆S0→H
M , where the heat exchange is

proportional to the magnetic entropy change:

∆Q = T∆S0→H
M . (1.3)

Figure 1.2: Diagram of magnetic refrigeration cycle, which transports heat from the heat

load to the surroundings. Yellow shows the material without magnetic field, and green

shows the material with high magnetic field. Image taken from [16].

1.2.3 Cycle Optimization

To break down the barriers to application of the MCE, it is necessary to increase the

effect as much as possible. Hence, it is interesting to examine the thermodynamic limits

[17] of the MCE for a 1st order phase transition model so that we may compare available

materials, and investigate how to bring them to their full potential, through optimization

at all scales.
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Of course, optimization of the cycle requires optimizing the structure of the material

at all scales, examining the material properties, investigating effects of isotropy etc... as

well as optimizing the experimental setup composed of pumps, electric motors, secondary

fluids, heat exchangers etc... which all have their associated inefficiencies. However, here

we will only concern ourselves with the fundamental thermodynamic limits, and leave the

synthesis and microstructuring to the experimentalists.

Magnetic phase transitions can be conveniently described by the following two mag-

netothermal properties: the isothermal entropy change of the entire material ∆S, or the

adiabatic temperature change ∆T 0→H
adiabatic as the magnetic field is increased from ~0 to ~H.

In order to maximize the temperature change ∆T 0→H
adiabatic, we wish to maximize the

magnetic entropy change on magnetization. The entropy change due to the applied mag-

netic field is enhanced by choosing a “working temperature” of the material close to a

field-induced 1st order phase transition critical temperature Tc, i.e. a ferromagnetic low

temperature (FM) to high-temperature paramagnetic (PM) critical point.

We wish to calculate the magnetic entropy change as a function of the temperature T

and magnetic field H, ie. ∆SM (T,H). We begin by considering the Maxwell relation for

magnetic entropy: (
∂SM (T,H)

∂H

)
T

=

(
∂M(T,H)

∂T

)
H

, (1.4)

where M is the total magnetization. We note that magnetic entropy dependence on field

is maximized at at critical point T ∼ Tc, hence maximizing the left hand side of the

equation.

Rearranging and integrating Eq. (1.4), where we are interested in the magnetic en-

tropy SM (neglecting other degrees of freedom the material may have that carry entropy)

we obtain:

∆SM (T,H) = SM (T,H)− SM (T, 0) =

∫ H

0

(
∂M

∂T

)
H′

dH ′, (1.5)

for the isothermal cycle.

For the adiabatic cycle, we obtain [18] a change in temperature ∆Tadiabatic:

∆Tadiabatic(T,H) =

∫ H

0

T

Cp(T,H)

(
∂M

∂T

)
H

dH ′. (1.6)

Theoretical Limit of ∆Tadiabatic

We wish to know the theoretical limits of the adiabatic temperature change ∆Tadiabatic
in Eq. (1.6).

Several authors have shown, by considering the maximum possible ∆Tadiabatic near a

Curie transition [19], and assuming that within a small temperature interval, (∂M/∂T )|H
is constant, the optimum value of ∆Tadiabatic is

∆T optimaladiabatic =

(
MsatTHmax

Cp

) 1
2

, (1.7)

where Msat is the saturation magnetization, Hmax is the maximum field, and Cp is the

heat capacity of the material.
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1.3 Ising Model

We briefly refresh our knowledge of the Ising model, which we will later adapt to the

MCE/GMCE.

The Ising model is a central paradigm in physics, and has immense depth, and appli-

cability to a vast array of problems ranging from the familiar ferromagnetism and phase

transitions to statistical finance, econophysics, agent based systems and market behavior

[20].

The Ising model was originally developed in the 1920’s as a model for ferromagnetism.

It models a ferromagnet as a d-dimensional regular lattice of (classical) spins, which may

point either up, ↑,+1, or down, ↓,−1. The lattice parameter, a, is the spacing between

each spin. The model is particularly useful for us, in that it shows a phase transition from

a ferromagnetic to paramagnetic state at some temperature Tc, in fact the 2-dimensional

Ising model on a square lattice is one of the simplest systems showing such a phase

transition.

A discrete two-state variable, σj ∈ {+1,−1}, called the spin, describes the state of each

lattice site, labeled by j. Nearest neighbor sites interact with an exchange interactions

strength J (that may be taken to vary from site to site). We may also consider a constant

external magnetic field H interacting with each of the sites. The total energy of the

system is described by the Hamiltonian:

H = −J
∑
<i,j>

σi · σJ −H
∑
i

σi, (1.8)

where the first term on the right hand side is the energy of exchange interaction (the sum

being taken only over nearest neighbors, with each nearest neighbor pair being counted

only once), and the second term is the energy of interaction with the external magnetic

field. Note that, if J > 0, the energy is minimized for aligned spins, and hence the

interaction is ferromagnetic (vice versa for J < 0, the interaction is anti-ferromagnetic).

Also the minus sign before the external magnetic field H term means that the energy is

minimized for spins aligned with the field.

From the Boltzmann distribution, in the canonical ensemble, we obtain the probability

for the system to be in any particular configuration σ at equilibrium:

P (β, σ) =
e−βH(σ)

Zβ
, (1.9)

where β is the inverse temperature β = 1/(kBT ), kB is the Boltzmann constant, and Z(β)

is the partition function:

Z(β) =
∑
σ

e−βH(σ), (1.10)

the sum being taken over the 2N possible spin configurations (N being the total number

of sites).

At low temperatures, there exists complete magnetization with all spins aligned, and

perfect ferromagnetic long range order. As a ferromagnet is heated from below the critical

point, the thermal energy overcomes the exchange interactions, destroying the order.

Magnetization decreases continuously, vanishing at the Curie temperature Tc, at which

a change of phase occurs to a paramagnetic state above Tc. This is not a 1st order
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phase transition since the entropy (a first order derivative) changes continuously, but a

discontinuity is observed in the specific heat (a second order derivative) at Tc.

1d Ising model

The 1-dimensional Ising model has no phase transition, and was solved by Ising himself

in 1925. He proved that (see any statistical mechanics textbook, i.e. [21]), given a 1-

dimensional periodic lattice of N sites, with the Hamiltonian, Eq. (1.8) above, the free

energy density (per site) is:

f(β,H) = − lim
N→∞

1

βN
lnZ(β) (1.11)

= − 1

β
ln

[
eβJ coshβH +

√
e2βJ(sinhβH)2 + e−2βJ

]
, (1.12)

where the partition function ZN is:

ZN = eNβJ

([
coshβH +

√
sinh2 βH + e−4βJ

]N
+

[
coshβH −

√
sinh2 βH + e−4βJ

]N)
.

(1.13)

For the H = 0 case, we wish to see if there is a spontaneous phase transition from high

temperature unordered paramagnetic state, to a low temperature ordered ferromagnetic

state. The spin-spin correlation between sites i and i+ n can be calculated:

〈σiσi+n〉 = en ln(tanhK) ≡ e−n/ξ, (1.14)

where K = βJ , 〈· · · 〉 denotes a thermal average at a temperature T , and we identify the

correlation length ξ as

ξ = − 1

ln(tanhK)
. (1.15)

Since tanhK < 1, then ξ > 0, and the correlation function decays exponentially with

inreasing n at non-zero temperatures. At low temperatures (high K), we have

ln(tanhK) ' −e−2K , (1.16)

and hence

ξ ' e2K = e2J/kBT , (1.17)

and so the correlation length diverges as T → 0, thus there is no phase transition above

T = 0, the correlated ferromagnetic state is only reached at T = 0, i.e. the Curie

temperature is Tc = 0. In fact, when Ising originally discovered this solution, he concluded

the model was incorrect for ferromagnetism, as it was missing the essential phase transition

at non-zero Tc.

As the correlation length diverges, the alignment of a single spin can spread throughout

the system - the state of the system can be totally changed by a small perturbation.

Diverging correlation lengths are a central feature of systems undergoing a continuous

phase change.



1.4. CRITICAL PHENOMENA 7

Other thermodynamic quantities, such as Cv (heat capacity at constant volume), M ,

χ (magnetic susceptibility), U (total energy) etc... can all be obtained from the partition

function Z and free energy F by taking appropriate derivatives.

2d Ising model

The 2-dimensional, regular square lattice Ising model proved to be much more compli-

cated, an analytic solution, known as Onsager’s solution, being eventually discovered

in 1944. In contrast to the 1-dimensional case, Onsager’s solution shows that the 2-

dimensional Ising model does have a spontaneous ferromagnetic phase transition at non-

zero temperature. He obtained for the magnetization M as a function of temperature

T :

M(T ) =

(
1−

[
sinh

(
log
(

1 +
√

2
) Tc
T

)]−4
) 1

8

, (1.18)

where:

Tc =
2J

log
(
1 +
√

2
) . (1.19)

With this solution, it became apparent that ferromagnetic-paramagnetic phase transitions

could in-fact be described by the Ising model.

3d Ising model

In 3 dimensions, it is generally thought to be unsolvable. However, it has been show that

the 3-dimensional Ising model may be transformed into a representation in terms of non-

interacting Fermionic lattice strings which may offer some information. There are also

approximate solutions available, some quite precise, i.e. series expansions [22], renormal-

ization group calculations [23], ε-expansions [24, 25], Monte Carlo renormalization group

calculations [26–28], and Monte Carlo simulations [29].

4d Ising model and above

In 4 dimensions and above, the mean field approach becomes exact, and hence a well

understood method exists to calculate behavior around the critical point.

It was also noted by Kenneth Wilson that the 4d Ising model corresponds to the

renormalization behavior of the scalar φ4 theory.

1.4 Critical Phenomena

Critical phenomena capture the physics of critical points, which are characterized by

particular phenomena such as divergence of correlation length and fractal (scale invari-

ant/conformal) physics. Phase transitions are characterized by sudden changes in the

macroscopic properties of a system as the temperature is varied. 1st order phase transi-

tions have a finite jump in the total energy U at the transition temperature - corresponding

to the latent heat. Continuous phase transitions have zero latent heat, and no sudden

changes in microscopic variables such as the magnetization, however derivative quantities

may show divergences. These phenomena can be illustrated through the Ising model.
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Consider a simple Ising model, at a certain temperature, without external magnetic

field. The energy is given by the classic Ising Hamiltonian:

H = −J
∑
<i,j>

σi · σJ , (1.20)

where the sum is taken only over nearest neighbor pairs, and J is the constant exchange

interaction coupling constant between sites. At high enough temperatures, the thermal

energy overcomes the exchange interaction, hence the sites are uncorrelated, and the

material is in a paramagnetic state. As the material is cooled to below what is called the

Curie temperature, Tc, ferromagnetic long range order takes over, and the spins begin

to show correlation. Eventually as the temperature is lowered further, the spins become

completely aligned, and the magnetization is saturated. Below the Curie temperature,

the remaining clusters of non-aligned spins give us a natural length scale, called the

correlation length, ξ. As the Curie temperature is reached from below, these non-aligned

clusters grow clusters within themselves, and the correlation length ξ diverges at Tc. The

system at Tc, becomes fractal, with non-aligned clusters on all possible length scales, and

hence there is no global magnetization.

Above the Curie temperature, the system does not show global ferromagnetic order,

however there exists clusters of order, whose size is again called the correlation length.

These ordered clusters are destroyed with increasing temperature - the correlation length

decreases. Eventually, at infinite temperature, the correlation length falls to zero, and

the system is fully disordered.

The Critical Point

At the critical point, T → Tc, the correlation length diverges, ξ → ∞, this presents no

physical problem, however certain derived properties diverge, i.e. the susceptibility.

To see this, imagine applying a very small magnetic field to the system at the scale

invariant critical point, causing a small perturbation by magnetizing the smallest clusters.

However, since clusters exist at all possible scales, this smallest cluster may then magnetize

a slightly larger cluster, which may then magnetize another slightly larger cluster etc...

until the entire system has been affected. We see that the critical system is highly sensitive

and unstable to small perturbations - the original small magnetic field has created a small

perturbation, which grew until it affected the entire material, and hence the susceptibility

has diverged.

Other properties that are derived from the correlation length may also diverge at the

critical point.

A beautiful demonstration of this can be seen in the phenomena of critical opalescence

(see Youtube for videos), whereby a transparent liquid undergoes a continuous 2nd order

phase transition to a gas state. As the critical point is approached, density fluctuations

occur across a wider and wider range of scales. At some point, density fluctuations begin

to occur at sizes comparable to the wavelength of visible light, hence scattering light and

causing the liquid to appear cloudy. This opalescence is maintained right up to the critical

point, demonstrating the fluctuations across all scales remain at the critical point.

Critical Exponents in Magnetism

Let us define reduced variables (where we have set permeability µ = 0):
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t =
T − Tc
Tc

, h =
H

kBTc
. (1.21)

Approaching the critical point, h = 0, t = 0, it can be shown [21] that certain derived

quantities diverge as a power law for some exponent, known as the “critical exponents”.

For example:

M(T ) ∝ tβ, χ(T ) ∝ t−γ , M(H) ∝ h1/δ, (1.22)

Where the critical exponents are β for M(T ), γ (without the minus sign by convention)

for χ(T ) and 1/δ for M(H). These critical exponents may be observed experimentally,

and it is intriguing to note that often the same set of critical exponents may be observed

for very different physical systems - this phenomena is knows as “universality”, and may

be explained by the renormalization group, which is the main mathematical tool used

when studying critical points.

1.5 Mean Field Theory for the Ising Model

Mean field theory is particularly useful to describe the Ising model in dimensions of 4 or

greater, where it becomes exact.

The mean field theory replaces the exact interactions by a locally varying mean field.

The mean field, as its name suggests, is an average of a region of spins, which varies from

site to site as new spins enter the region being averaged and old spins leave. This reduces

the amount of spins we need to take into account when calculating, as an interaction

between a spin and its neighbors is determined by the average spin of the neighbors, and

not the spins individually.

The down side to this approach is that we neglect fluctuations on short scales - one

spin can no longer directly influence its neighbor, it must do so through the mean field

create by all its neighbors. However it is still possible to identify distinct phases.

In our case, take an Ising model on a d-dimensional regular lattice, with the Hamilto-

nian given in Eq. (1.8). The magnetization per site is:

m =
M

N
=

1

N

〈∑
i

σi

〉
=

1

N

∑
i

〈σi〉. (1.23)

We now express the sum over nearest neighbors in the Hamiltonian Eq. (1.8), as

σi · σj = (σi −m+m)(σj −m+m)

= m2 +m(σi −m) +m(σj −m) + (σi −m)(σj −m). (1.24)

The mean-field approximation neglects the last term on the right hand side of this equa-

tion, leaving us

σi · σj ' m2 +m(σi −m) +m(σj −m) = −m2 +m(σi + σj). (1.25)

The final term represented deviations of nearest neighbor spins from the mean, there-

fore the mean-field theory neglects fluctuations on short scales. Hence the mean-field

approximation to the Hamiltonian is
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HMF = −1

2
J
∑
<i,j>

[
−m2 +m(σi + σj)

]
−H

∑
i

σi. (1.26)

The sum can be carried out to give the mean-field approximation to the total energy of

the Ising model as:

HMF =
1

2
NJzm2 − (Jzm+H)

∑
i

σi, (1.27)

the first term being the constant contribution from the average magnetization associated

with each site. From this we can obtain the mean-field partition function:

Z = e−
1
2
NKzm2

[2 cosh(Kzm+ L)]N , (1.28)

where L = βH, and z = 2d.

Using this general mean-field procedure, we have obtained the mean-field Hamiltonian

and partition function for the Ising model. We can now go on and obtain the Helmholtz

free energy F = −kBT lnZ, magnetization per site m, susceptibility χ etc... by taking

appropriate derivatives. In this case, for H = 0, we would obtain (after some standard

manipulations), for T < Tc:

m2 = 3

(
T 2

T 3
c

)
(Tc − T ), (1.29)

where Tc = Jz/kB. Hence we extract the power law:

m ∼ (Tc − T )1/2. (1.30)

And so we see that the magnetization m→ 0 as T → Tc with critical exponent β = 1/2.

The critical point is H = 0 and T = Tc, at which we see the discontinuous onset of

spontaneous magnetization.

By a similar procedure we may obtain the power law for the zero-field susceptibility,

χ, near the critical point:

χ ∼ |T − Tc|−1, (1.31)

which diverges with critical exponent γ = 1 (in this case it is usually defined without

the minus sign), in this case the same when approaching the critical point from above or

below.

The mean field theory has allowed us to identify critical points of phase transitions

and find their critical exponents, however we have neglected fluctuations, and with this we

have lost the chance to uncover much of the physics happening at and around the critical

points. Also, the mean field exponents are inaccurate in low (d < 4) dimensions, becoming

exact in higher dimensions as each site has more nearest neighbors and hence the mean-

field is closer to the actual field experienced. To go further, we need the renormalization

group.
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1.6 Renormalization Group

We briefly outline the process of renormalization. The renormalization group (RG) has

proved to be one of the major achievements of 20th century physics. Kenneth Wilson

[23, 30] was the first to provide a physical picture to describe its action in the early 70’s.

The RG has wide applications in fields such as dynamical systems and chaos, fractals,

disordered systems etc...

Critical phenomena are hard to capture through standard mean field models which

neglect correlations and hence cannot explain their divergence as the transition is ap-

proached. The only way to build up a full picture of critical phenomena is to consider

fluctuations over all length scales and all degrees of freedom. Hence, we turn to the RG

framework to provide an understanding. The RG method takes advantage of the scale

invariant, fractal physics to explain universality and predict the critical exponents.

Wilson’s original formulation was based on the insight of Kadanoff who suggested that

near a critical point, the correlation length is sufficiently large that averaging over groups

of sites does not significantly affect the physics, just slightly modifies the parameters. By

assuming the parameters transform according to the “scaling hypothesis”, characteristic

parameters of the critical behavior can be extracted.

Figure 1.3: Kadanoff block spin picture on a 2d square lattice, with nearest neighbor

spacing a. The lattice sites are grouped into cells of size b2 of increasing size, such that

a < ba� ξ.

1.6.1 Real Space RG for the Ising Model

Renormalization by Decimation

Take the partition function, Z, of the 1d Ising model Eq. (1.10), with N sites, in the

absence of a magnetic field:

Z(β) =
∑
σ

e−βH(σ) =
∑
σ

∏
i

eKσiσi+1 , (1.32)

the sum being taken over the 2N possible spin configurations, and as usual K = βJ .

Decimation involves summing over odd spins in the partition function, see Fig. 1.4.

To do this, we first rewrite the partition function Z, separating out the terms for even
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and odd sites, and noting that spins on odd sites do not interact directly with each other,

and therefore can be summed over:

Z =
∑

{σ2i=±1}

∏
2i

 ∑
{σ2i+1=±1}

∏
2i+1

eK(σ2iσ2i+1+σ2i+1σ2i+2)


= ...

=
∑

{σ2i=±1}

∏
2i

{2 cosh [K (σ2i + σ2i+1)]} , (1.33)

we then seek to rewrite this equation in a form similar to Eq. (1.32) but with “renormal-

ized” coupling constant K ′:

Z = [ζ(K)]N/2
∑

{σ2i=±1}

∏
2i

eK
′σ2iσ2i+2 (1.34)

= [ζ(K)]N/2 Z(K ′, N/2), (1.35)

where ζ(K) is the spin-independent part. Comparing Eq. (1.33) and Eq. (1.34), after

some manipulations, one finds the explicit relation for the renormalized coupling constant

in terms of the original coupling constant:

K ′ =
1

2
ln(cosh 2K). (1.36)

This decimation procedure is repeated, and we examine the flow in parameter space of the

renormalized coupling constantK. We look for the renormalized coupling constant flowing

towards fixed points. Unstable fixed points are associated with the critical behavior of

the model at a temperature Tc.

Figure 1.4: Decimation of 1d Ising chain, sites filled in black are summed over in the

partial evaluation of the partition function.

A similar procedure can be carried out in the case of the 2d Ising model, in this case

a tower of additional perturbative interactions is generated at each renormalization step,

which we must take to be negligible.

1.6.2 Scaling Form

The scaling form can be used to calculate critical exponents associated with a fixed point

by linearizing the RG recursion relations about that fixed point

Given a generalized recursion relationship K ′i = Ri(K1,K2, ...,Kn), we may expand

linearly around the critical point K∗i :

K ′i = Ri(Kj) ' K∗i +
dRi
dKj

∣∣∣
K=K∗i

(K −K∗i ) + · · · , (1.37)
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one then calculates δK ′i = K ′i − K∗c and δKi = Ki − K∗i and rearranges Eq. (1.37) to

obtain the linearized recursion relations:

δK ′i =
n∑
j=1

∂Ri
∂Kj

∣∣∣
{Ki}={K∗i }

δKj ≡
n∑
j=1

MijδKj . (1.38)

Now, the eigenvectors and eigenvalues of the matrix M with elements Mij may be calcu-

lated: MUi = λiUi = byiUi, where λi are the eigenvalues and Ui, called the linear “scaling

fields”, are the corresponding eigenvectors for i = 1, 2, ..., n.

The singular part fs of the free energy density f can now be written in the scaling

form:

fs(U1, U2, ..., Un) = b−dfs(b
y1U1, b

y2U2, ..., b
ynUn), (1.39)

where b is the linear change of scale, and d is the dimension of the system. This form of

the free energy is called the “generalized homogeneous function”, from which we obtain

relations between critical exponents.

The scaling fields Ui are characterized as relevant if the corresponding yi > 0, irrel-

evant if yi < 0 and marginal if yi = 0. Relevant scaling fields are unstable, if they are

initially away from the critical point, they will move further away with renormalization,

relevant quantities must therefore vanish at critical points. Irrelevant scaling fields are

stable, if they are initially away from the critical point, they will move towards it with

renormalization. Marginal quantities are unaffected under the action of the renormaliza-

tion group.

1.6.3 Momentum Space RG for the Ising Model

The momentum space picture of a real space system is found by taking the Fourier trans-

form, the Fourier modes become the systems degrees of freedom. The partial summation

is done by integrating over short-wavelength modes, i.e. neglecting the short scale fluc-

tuations, just as in the real space RG. We briefly review, in outline, the stages of the

momentum space RG.

Ising Model as a Field Theory

In the case of the Ising model, we must first transform it into a field theory. We replace

the discrete spins on a discrete lattice with continuous spins in continuous space. Firstly,

recall the Hamiltonian for the Ising model without an external magnetic field H, write it

in the following, slightly modified, form:

H = −1

2

N∑
i,j=1

Jijσiσj , (1.40)

where the factor 1/2 compensate for double counting of spin pairs, and the coupling

constant Jij is taken to be J if i and j are nearest neighbors, and zero otherwise. Now,

note the following identity:
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exp

1

2

∑
ij

Kijσiσj


=

[
detK

(2π)N

]1/2 ∫ ∞
−∞
· · ·
∫ ∞
−∞

N∏
k=1

dφk exp

−1

2

∑
ij

φiKijφj +
∑
ij

σiKijφj

 , (1.41)

where K is the matrix with elements Kij . This is known as the “Hubbard-Stratonovich”

transformation. Using this identity, the partition function

Z =
∑

{σi=±1}

e
1
2

∑
ij Kijσiσj , (1.42)

can be rewritten as:

Z =

[
detK

(π/2)N

]1/2 ∫ ∞
−∞
· · ·
∫ ∞
−∞

N∏
k=1

dφk

× exp

−1

2

∑
ij

φiKijφj +
∑
i

ln

cosh

∑
j

Kijφj

 . (1.43)

This is an exact transformation of the original partition function Eq. (1.42), but expressed

in terms of continuous degrees of freedom φi at the lattice sites.

The next step is to replace the discrete lattice by a continuum in the partition func-

tion. The continuous lattice variable φi, must be replaced by a continuous function φ(~x),

where ~x = (x1, x2, ..., xd). Through various manipulations, and approximations we arrive

at the continuum expression for the partition function as a path integral over φ(~x):

Z =

[
detK

(π/2)N

]1/2 ∫
Dφ(~x)

× exp

{
−
∫ [

rφ2(~x)−Dφ(~x)∇2φ(~x) + uφ4(~x) + · · ·
]

d~x

}
, (1.44)

where, r = 1
2Kz(1−Kz), D = −1

2Ka
2(1− 2Kz) and u = 1

12(Kz)4.

Now we have our partition function transformed into a correct form for a field theory,

we can obtain equations of state by the usual derivatives of the partition function, ter-

minating the expansion in the exponent of Eq. (1.44), as necessary (i.e. to obtain easily

solvable Gaussian integrals).

RG Analysis of the Gaussian Field Theory

By terminating the expansion at 2nd order in Eq. (1.44), and manipulating, we obtain

the “Gaussian model” partition function (up to a constant of proportionality):

Z =

∫
Dφ(~k) exp

[
−
∫ Λ

0

d~k

(2π)d
(r +Dk2)|φ(~k)|2

]
, (1.45)



1.7. GIANT MAGNETOCALORIC EFFECT 15

where we have transformed into momentum ~k space, and introduced an ultraviolet cutoff

Λ, where the critical quantities should not depend on this cutoff (the cutoff is equivalent

to neglecting the short-scale fluctuations in the position space RG).

The momentum space RG transformation now consists of the following steps which

we will see in action later on:

1. Integrating over degrees of freedom corresponding to large k (equivalent to coarse-

graining blocks in the position space RG)

2. Rescaling the wavevector to restore the original range of degrees of freedom

3. Renormalization of the spin variables to restore the spatial dependence of the fluc-

tuations

1.7 Giant Magnetocaloric Effect

The giant magnetocaloric effect (GMCE), originally discovered in Gd5Si2Ge2 in 1997 by

Pecharsky and Gschneidner [12, 31], was a milestone in the field of magnetic cooling,

breathing new life into the field. Unfortunately, in Gd5Si2Ge2, it can only be used below

room temperature. The material undergoes a 1st order phase transition - the magnetiza-

tion changes discontinuously - strongly enhancing the induced entropy change ∆S0→H
magnetic.

Further research has revealed other Gadolinium compounds demonstrating the GMCE,

such as Gd5(SixGe1x)4, La(FexSi1x)13Hx and MnFeP1xAsx alloys as promising alterna-

tives. Gadolinium alloys are still considered the best materials for room temperature

magnetic refrigeration as they undergo 2nd order phase transitions, which have no asso-

ciated hysteresis.

It was also discovered that the magnetic phase transition is accompanied by a struc-

tural deformation of the lattice, this lattice deformation leads to a change in lattice entropy

which adds to the magnetic entropy change, increasing the effect [32–34] in the GMCE

(alternately the lattice entropy change may decrease the effect).

It thus became important to have a theoretical model of both the magnetic and lattice

degrees of freedom, what we will refer to as a “compresible Ising model”. It is natural

to view the magnetic lattice, to a good approximation, as a traditional Ising model, with

fixed sites. However to understand the GMCE, we must extend the traditional Ising

model to allow compressibility, and hence the effect of deformations of the crystal lattice.

1.8 Landau Theory of Phase Transitions for the MCE and

GMCE

The Landau theory of phase transitions is a phenomenological model, useful as a general

theory of 2nd order phase transitions. One must assumes that the free energy is analytic

at the critical point and obeys the symmetry of the the Hamiltonian.

In our case, it describes the free energy at the ferromagnetic to paramagnetic critical

point. The magnetization M is chosen as an order parameter, M = 0 in the disordered

phase, and M 6= 0 in the ordered phase. The free energy F is written as a general

expansion at the critical point, using only even powers (to maintain global Z2 symmetry

of the Hamiltonian in the spins), with a term for the external magnetic field interaction:
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F (M,T ) = F0(T ) +
1

2
A(T − Tc)M2 +

1

4
BM4 +

1

6
CM6 −MH. (1.46)

In this case, we have included terms up to the sixth power. We have also broken the

symmetry with the last term on the right hand side which incorporates the free energy

decrease when the spins align with the field.

Given particular coefficients, we can then calculate minimums of the free energy, in

order to find stable states at different temperatures, equilibrium magnetizations, internal

energies etc... we obtain for example, the equation of state:

H

M
= A(T − Tc) +BM2 + CM4. (1.47)

With positive A and B parameters, and C = 0, this equation is suitable for describing a

simple ferromagnet.

Now we wish to use a Landau expansion for free energy that is applicable to the GMCE,

hence we need to include a magneto-elastic coupling term to Eq. (1.46), in general (we

delve into Landau expansions for the GMCE, in proper detail later on in section Sec.

3.6), the contribution is of the form:

Fdist = k1xM
2 +

k2

2
x2, (1.48)

where x is the distortion between sites and k1, k2 are constants of the material. Minimizing

this term in the distortion x, one obtains:

Fmindist = −k
2
1M

4

2k2
. (1.49)

A sufficiently strong magneto-elastic coupling can induce a 1st order phase transition.

Hence to include the effect of lattice distortions, we include this term in the MCE landau

expansion Eq. (1.46) by taking B < 0. As the magneto-elastic coupling gets stronger, Tc
shifts to a higher temperature and we see an increased MCE.

This equation of state may be fitted to experimental results [35] with some success -

Landau theory can demonstrate the GMCE resulting from magneto-elastic coupling [36].

However Landau expansions are by nature limited, being only valid near the critical point

Tc, and being phenomenological, their is no clear physical interpretation of the B and C

terms.

The Landau theory is a mean field theory because it does not take into account spatial

fluctuation, the Ginzburg-Landau extension (originally suggested as a theory of supercon-

ductivity [37]) to the theory allows us to incorporate fluctuations, allowing us to capture

much more of the physics around the critical point.

Recall that the order parameter M in the Landau theory was a constant, we now take

M to be the average over a group of spins Gi (instead of all spins), in each group Gi, the

local magnetization Mi is:

Mi =
∑
k∈Gi

〈σk〉, (1.50)

Hence, it varies as a function of position. If the local magnetization varies slowly, we can

take Mi to be continuous function of position x: M(x). The Ginzburg-Landau total free

energy expansion is:
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F (M(x), T ) =

∫ [
F0(T ) + a(T − Tc)M2(x) + bM4(x) + c|~∇M(x)|2

]
dx, (1.51)

The first three terms on the right hand side generalize Eq. (1.46), the new term gives a

free energy penalty for a spatially varying magnetic field.

Taking variations, we may obtain the Ginzburg-Landau equation of state:

H(x) = 2a(T − Tc)M(x) + 4bM3(x)− 2c~∇2M(x). (1.52)



2
Bean-Rodbell Model

2.1 Introduction to the Bean-Rodbell Model

Previously we had modeled the spins as an Ising model in a stationary lattice, with an

exchange interaction independent of lattice spacing, which shows the usual 2nd order

phase transition from ferromagnetism to paramagnetism on heating. However, in real

materials the exchange interaction between sites depends on lattice spacing. If we allow

the lattice to deform, then it will spontaneously distort at the phase transition. The

associated entropy change may act to increase or decrease the MCE depending on the

parameters we will discuss below.

The magneto-elastic coupling between the magnetic and lattice degrees of freedom may

be very complex, with changes in crystal symmetry, bond braking, anisotropic changes

of volume etc... all possible. It is also likely that the magnetic exchange interaction is

strongly dependent on the lattice deformation.

We simplify the physics by focusing on the volume change of the material, and taking

the magnetic exchange energy to depend on this volume, this is the model of Bean-

Rodbell [2]. To take this compressibility into account, we add to the Curie-Weiss mean

field expression Eq. (3.15) the term:

Tc = T0

(
1 + β

(
v − v0

v0

))
, (2.1)

making the critical temperature Tc dependent on volume v, where T0 is the critical tem-

perature of a lattice volume v0, i.e. Tc is a linear approximation valid for small volume

changes around the equilibrium volume (Fig. 2.3a). The steepness β 1 of the exchange

interaction dependence on lattice spacing controls the behavior of the lattice at the crit-

ical point, and may be positive or negative. In minimizing the free energy, we will now

obtain a compromise between distortion and exchange interaction.

1[2] and some others refer to β as the “volume strain sensitivity” of the material.

18
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2.2 Derivation of Entropy Changes in the Bean-Rodbell

Model

Following the more modern treatment found in [38], we consider the consequence of the

new term Eq. (2.1) on the molecular mean field model in Sec. 3.7. We seek to theoretically

derive the sign and magnitude of the lattice entropy contribution in the isothermal GMCE

cycle.

2.2.1 Free Energy Expansion

We consider a generalized free energy fL for a compressible lattice of spins, made up of

contributions from the magnetic exchange interaction, the magnetic entropy SM and and

the lattice. The lattice contribution from deformations and phonons can be described by

the Debye theory. The Landau free energy density of the material is:

fL(M,ω, T ) = −1

2
W (ω)µ0M

2 − TSM (M) + fS(ω, T ), (2.2)

The first term being the mean field magnetic exchange energy dependent on volume by the

Weiss molecular field coefficient W (ω), where ω = (v− v0)/v0 is the reduced volume, v is

the specific volume, and v0 is the specific volume at T = T0. For convenience, from now on,

we will set the vacuum permeability µ0 = 1, and leave it out of expressions. The second

term −TSM (M) is the magnetic entropy contribution, where M is the magnetization

density. The final term fS(ω, T ) is the free energy of the structural lattice degrees of

freedom.

We assume that W (ω) depends linearly on the reduced volume as W (ω) = W0(1+βω).

It is sufficient for our aims to take the lattice free energy fS as a power expansion

of the free energy around ω = 0 and T = T0
2. First, we wish to write the reduced

volume ω in terms of the pressure p combined with the isothermal compressibility κT =

−(1/v0)dv/dp|T , and the temperature T − T0 combined with the coefficient of thermal

expansion αp = (1/v0)dv/dT |p, valid around p = 0 and T = T0:

ω(p, T ) = −κT p+ αp(T − T0), (2.3)

similarly, we write the structural entropy sS in the form:

sS(p, T )− s0 = −v0αpp+ bp(T − T0), (2.4)

where s0 is the entropy at T = T0 and p = 0; and bp = dsS/dT |p is the specific entropy

capacity at constant pressure, related to the specific heat capacity at constant pressure

cp by bp = cp/T . These three independent coefficients κt, αp, bp are specific properties of

the structural lattice alone, and will be taken as constants from now on. It is simple to

confirm that Eq. (2.3) and Eq. (2.4) are compatible with the Maxwell relation v0∂ω/∂T =

−∂s/∂p.
Recalling that in general, a Gibbs free energy G(p, T ) is of the form G(p, T ) = U +

pV −TS, one can obtain the structural free energy fS that is compatible with the relations

above:

fS(ω, T ) =
v0

κT

ω2

2
−
[
αpv0

κT
ω + s0

]
(T − T0)− bv

1

2
(T − T0)2, (2.5)

2Bean-Rodbell [2] and others used the Debye formula to obtain an explicit expression for fS .
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where the first term on the right comes from the “pV ” part of the free energy, the second

term comes from the specific entropy capacity at constant pressure bp, and the third term

is from the specific entropy capacity at constant volume bv = dsS/dT |v = bv − α2
pv0/κT .

2.2.2 State Equations

We obtain the state equations from the total Landau free energy fL Eq. (2.2). Using the

first condition, (1/v0)∂fL/∂ω|T = −p, we obtain the equilibrium value for the reduced

volume ω:

ω = −κT
(
p− η

3βκT
m2

)
+ αp(T − T0), (2.6)

where m = M/M0 is the reduced magnetization, and following Bean and Rodbell [2] we

have introduced the dimensionless parameter η:

η =
3

2

β2κTM
2
0W0

v0
. (2.7)

Comparing Eq. (2.6) with Eq. (2.3), we see that introducing a compressible lattice

through the structural free energy fS has introduced a new term −ηm2/(3βκT ) into

the reduced volume ω. This term is the “exchange magnetostriction” and is due to an

equivalent magneto-elastic pressure:

pW = −ηm2/(3βκT ). (2.8)

Using the second condition, ∂fL/∂M = H, we obtain:

−W (ω)M − T ∂sM
∂M

= H, (2.9)

substituting the equilibrium value Eq. (2.6) of the reduced volume ω, and dividing out

H0 = M0W0, we have for h = H/H0:

h = − [1 + β (αp (T − T0)− κT p)]m−
1

3
ηm3 − taJ

nkB

∂sM
∂m

, (2.10)

where h = H/H0, t = T/Tc0 , and

Tc0 = aJ
M2

0W0

nkB
, (2.11)

n is the density (number per unit volume) of spins of spin quantum number J , aJ is a

coefficient dependent on the magnetic moments, and kB is the usual Boltzman constant.

Rescaling, so that T0 = Tc0 , we may rewrite the term linear in m (in Eq. (2.10) as

−[1 + ζ(t − 1) − π]m. We have introduced two dimensionless parameters, the first, π =

βκT p, and the second, most important as we will soon see is

ζ = αpβTc0 . (2.12)
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2.2.3 Magnetic Entropy

To fully evaluate Eq. (2.10), we must first evaluate the magnetic entropy sM (T ). Firstly,

we not that sM (0) = nkB ln(2J + 1), where J is the total spin quantum number of the

sites, this simply reflects the fact that at T = 0 all the spins are aligned, and their are

2J + 1 possible spin values, and hence this number of degenerate microstates at zero

temperature. Next, we use the Brillouin function, MJ(x):

MJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

(
1

2J
x

)
, (2.13)

and use the result −∂sM/∂m = nkBM−1
J (m) [39]. Substituting this equation, Eq. (2.13),

into Eq. (2.10), we obtain:

h = −[1 + ζ(t− 1)− π]m− 1

3
ηm3 + tJM−1

J (m). (2.14)

2.2.4 Possible Magnetization

Solving this equation for m gives us the possible stable magnetizations. To obtain the

solutions, we take a power expansion, up to 3rd order, of the inverse function M−1
J (m):

aJM−1
J (m) ' m+ bJm

3 +O(m5) (2.15)

where

aJ =
J + 1

3J
, (2.16)

bJ =
3

10

[(J + 1)2 + J2]

(J + 1)2
. (2.17)

Substituting this equation into Eq. (2.14) gives us

h = c1m+ c3m
3 + tO(m5), (2.18)

with c1 = (t− 1)(1− ζ) + π and c3 = tbJ − η/3.

Now, we examine the possible solutions for m, depending on the values of the co-

efficients c1 and c3, and hence the possible phase transitions of the model. Firstly,

note the case h = 0, m = 0, corresponding to a paramagnetic (PM) state, is always

a solution. However, this is only a stable, energy minimum state, when c1 > 0, i.e.

(t − 1)(1 − ζ) + π > 0. If c1 < 0, PM is an energy maximum, but there exists a stable

ferromagnetic (FM) solution, with m < 0.

We note that, at the temperature t = tp = 1− π/(1− ζ), we have c1 = 0. Hence, we

obtain the significant result, that for ζ < 1 (see Eq. (2.12)), the PM state is stable for

temperatures t > tP .

For ζ > 1, we have that unusual situation that the PM state is stable for tempera-

tures t < tp, i.e. the phase transitions is reversed, with low temperature PM and high

temperature FM. Since the lattice thermal expansion αp is generally a positive number,

i.e. the material expands with increasing temperature, ζ > 1 generally implies β > 0, cor-

responding to an exchange interaction strength increasing with distance. Hence, we can

imagine as the material heats from below the critical temperature tp, it begins in a PM

state. As is heats, it expands (αp > 0), as it expands, the exchange interaction becomes
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stronger, until crossing the phase transition into a high-temperature FM state. Taking

into account the full expression for exchange interaction as a function of volume v, and

not just our linear approximation, we may find that β may eventually fall back to zero, or

negative, and hence the high temperature FM state, may, at high enough temperatures

transform again to a PM state.

The sign of c3 determines the order of the transition, a value of c3 < 0, i.e. η > 3bJ tp
gives a 1st order transition, and a value of c3 > 0, i.e. η < 3bJ tp gives a 2nd order

transition.

2.2.5 Entropy Change

Recall how we seek to maximize the MCE/GMCE by maximizing the entropy change

∆S on magnetization (for an isothermal cycle). The Born-Rodbell model now takes

into account the structural lattice entropy, since we expect the material to deform on

magnetization, the structural entropy change may increase (leading to the GMCE) or

decrease the entropy change ∆S. We now seek to understand how entropy changes across

all degrees of freedom on magnetization.

We begin by recalling that the entropy is given by s = −∂fL/∂T |m,ω, applying this to

Eq. (2.2), and using the state equation Eq. (2.6) for ω that we derived above, we have:

s = sM (m) + sW (m) + sS(p, T ), (2.19)

where sM (m) is the magnetic entropy. We note that, the magnetic entropy sM (m) has a

maximum at m = 0 in the PM state, and a minimum of zero at m = 1 (i.e. M = M0)

in the saturated FM state. The second term, sS(p, T ) is the structural lattice entropy of

equation Eq. (2.4).

The remaining term sW (m) = −αpv0pW (m) is the magneto-elastic energy, it comes

from the effect of the ferromagnetic exchange forces working through the magnet-elastic

interaction, resulting in additional structural lattice entropy. Using Eq. (2.7), Eq. (2.8),

Eq. (2.11) and Eq. (2.12), we may write the magneto-elastic entropy, sW (m) as:

sW (m) =
nkB
2aJ

ζm2 (2.20)

which again has a sign totally dependent on ζ since all the other factors are positive.

We wish to understand how the magnetic entropy, sM (m), and magneto-elastic en-

tropy, sW (m), change on magnetization, and the relative sign between the contributions.

Note that we do not need to look at the third term, the structural lattice entropy sS(p, T ),

which is independent of magnetization - the magneto-elastic coupling is entirely repre-

sented in the term sW (m).

If the low to hight temperature transition is 1st order, the entropy increases dis-

continuously on heating at the transition temperature, i.e. there is an entropy jump

∆s = sH − sL > 0, where sH and sL are the entropy at the high and low temperatures

limits of the phase transition respectively.

Let us examine the first the case ζ < 1 (low temperature FM, m 6= 0, to high temper-

ature PM, m = 0), the magnetic entropy change is clearly positive, ∆sM > 0. Further,

when ζ < 0, the magneto-elastic entropy change is also positive (see Eq. (2.20)), ∆sW > 0.

Hence, the two contributions have the same sign, the total entropy change ∆s is greater

than the magnetic entropy change alone, ∆s > ∆sM . This enhances the MCE, giving the

GMCE.



2.2. DERIVATION OF ENTROPY CHANGES IN THE B-R MODEL 23

When 0 < ζ < 1, the magnetic entropy change ∆sM is still clearly positive, however

the magneto-elastic entropy change is now negative, ∆sW < 0. There is a sign difference

between the two contributions, and hence the total entropy change is small than the

magnetic entropy change alone, ∆s < ∆sM , inhibiting the MCE. The magneto-elastic

coupling conspires to decrease the total entropy change over the phase transition.

For ζ > 1, we have the inverted transition from low temperature PM to high tem-

perature FM transition, and hence the magnetic entropy change on heating is negative,

∆sM < 0, but the magneto-elastic entropy change is positive, ∆sW > 0. The contri-

butions have opposite signs, and hence the MCE is inhibited. We ask, is it possible for

the magnitude of the magneto-elastic entropy change to be greater than the magnitude

of the magnetic entropy change, ∆sW > −∆sM , and hence achieve a positive total en-

tropy change, ∆s > 0 on heating through the phase transition despite going from low

temperature PM to high temperature FM? This would still give us a possible, though

inhibited MCE whereby the effect is comes from the magneto-elastic entropy change, and

is inhibited by the magnetic entropy change.

We answer this question by defining the reduced entropy ŝ:

ŝ = (sM (m) + sW (m))/(nkb). (2.21)

The maximum difference between the entropies in the PM state (m = 0) and the saturated

FM state (m = 1), ∆ŝmax = ŝ(0)− ŝ(1), is

∆ŝmax = ln(2J + 1)− 1

2aJ
ζ, (2.22)

where the first term on the right hand side comes from the magnetic entropy change, and

the second term comes from the magneto-elastic entropy change Eq. (2.20)

We can now see that, when ζ > ζJ = 2aJ ln(2J + 1), we have ∆sW > −∆sM , and

therefore, since ∆sW is positive (as ∆sM is clearly negative for this transition, and we

know the contributions have opposite signs), the total entropy change at the transition is

positive: ∆s = ∆sM + ∆sW > 0. However, the total entropy change has been reduced

by the magnetic entropy change, and hence ∆s < ∆sW .

To summarize the possible entropy changes as we go from the low to high temperature

states, we have:

• ζ < 1, low temperature FM to high temperature PM

· ∆sM > 0

· ζ < 0: ∆sW > 0, ∆s > ∆sM , GMCE

· 0 < ζ < 1: ∆sW < 0, ∆s < ∆sM , inhibited MCE

• ζ > 1, low temperature PM to high temperature FM, inverse MCE

· ∆sM < 0, ∆sW > 0

· ζ > ζJ : ∆sW > −∆sM , ∆s > 0, ∆s < ∆sW

· ζ = ζJ : ∆sW = −∆sM , ∆s = 0

· ζ < ζJ : ∆sW < −∆sM , ∆s < 0, ∆s > ∆sM
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2.2.6 Numerical examples

Basso [38], goes on to work out numerical solutions to Eq. (2.14) with J = 1/2, and hence

M−1
J (m) = tanh−1(m), and also aJ = 1, bJ = 1/3, p = 0. Being particularly theoretically

minded, we neglect to follow his working here, however we briefly present his results.

Firstly, we examine the case of ζ < 1, hence a transition from FM to PM states on

heating. Fig. 2.1a and Fig. 2.1b shows the magnetization m and total entropy ŝ, as a

function of temperature t respectively. Values of η = 2, ζ = −0.5, 0.0, 0.5, and h ranging

from 0 to 0.04 in steps of 0.004 are chosen.

(a) Numerical solutions to Eq. (2.14) for
magnetization m as a function of temper-
ature t for several magnetic fields h from
0 to 0.04 (left to right) in steps of 0.004.
ζ = −0.5 (lower graph), ζ = 0 (middle
graph) or ζ = 0.5 (upper graph).

(b) Numerical solutions for total entropy ŝ
as a function of temperature t for several
magnetic fields h from 0 to 0.04 (left to right)
in steps of 0.004. For J = 1/2 the maximum
entropy is ln 2 − ζ/2.

Figure 2.1: Bean-Rodbell model, numerical solutions, with FM to PM transition on

heating. J = 1/2, π = 0 and η = 2. Graphs taken from Basso [38].

From Fig. 2.1b, we can see that the entropy change ∆s increases as ζ becomes

increasingly more negative and vice versa, as expected from Sec. 2.2.5. The maximum

entropy change ∆s for FM (m = 1) to PM (m = 0) transition is ln 2 − ζ/2 from Eq.

(2.22), it is satisfying to note from Fig. 2.1b that, as expected, as we increase η, this

maximum entropy change is approached.

Now, we examine the case of ζ > 1, the inverted transition from PM to FM on heating.

Fig. 2.2a and Fig. 2.2b shows the magnetization m and total entropy ŝ, as a function of

temperature t respectively. Values of η = 2, ζ = 4, and h ranging from 0 to 0.04 in steps

of 0.004 are chosen.

In Fig. 2.2a, we note the unusual inverted transition is observed numerically, as we

predicted theoretically in Sec. 2.2.5. Also, in Fig. 2.2b, we note the entropy change

∆s > 0 on heating, since in this case, ζ > ζJ and hence ∆sW > −∆sM . Further we note

again that the total entropy change again approaches the expected limit: ln 2− ζ/2.

2.3 Physics of the Model

Before concluding our outline of the Bean-Rodbell, we wish to have some intuitive under-

standing of the physics.

If we first examine β > 0, we find that the volume now changes at the new critical

temperature Tc 6= T0 (Fig. 2.3b) if the lattice is allowed to deform. Since the force
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(a) Numerical solutions to Eq. (2.14) for
magnetization m as a function of tempera-
ture t for several magnetic fields h from 0 to
0.04 (right to left) in steps of 0.004

(b) Corresponding numerical solutions for
total entropy ŝ as a function of temperature
t. Note the maximum value of ζ/2 − ln 2 as
expected.

Figure 2.2: Bean-Rodbell model, numerical solutions for the inverted transition from low

temperature PM to high temperature FM states. J = 1/2, π = 0, η = 2 and ζ = 4.

Graphs taken from Basso [38].

between the sites is determined by the ordering of magnetic spins, as temperature is

increased and magnetic order is lost, the force on the lattice is decreased. Above the

fixed lattice critical point T0, the magnetization will continue to decrease, but since the

magnetization at these temperatures is due to the lattice deformation, which is in turn

due to the magnetization, it is impossible for the magnetization to be lost continuously.

Instead there must be a discontinuous step, i.e. a 1st order phase transition.

In a deformable lattice, the magnetization also increases from M = 0 at a the new Tc
(Fig. 2.3c). We can see that at low temperatures, the compressible system looses less of

its magnetization than the fixed lattice because the new Curie temperature, Tc, is higher

than for the fixed system, hence in a compressible Ising model, it is possible to have a

ferromagnetic state at temperatures greater than the original Curie temperature, T0, for

the fixed system.

We see thermal hysteresis because on cooling the lattice distortion, which is dependent

on the magnetization, does not appear until the fixed system critical point T0. However

when we heat the system back up again, the distortion increases the critical point from T0

to Tc, and hence the magnetization is maintained until this new critical point, at which

the volume and magnetization undergo a discontinuous drop to zero.

We discovered that the transition may be either 1st (as in, for example [40–42], MnAs)

which has been know about for a very long time) order, with the usual associated proper-

ties such as latent heat, and discontinuous density change, or 2nd order depending on the

value of η, a function of β and κp (the isothermal compressibility of the lattice), unlike

the fixed-site Ising model Sec. 1.3 which shows only a 2nd order phase transition.

We see that using Landau and Bean-Rodbell models, we may interpret MCE properties

by fitting the models to experimental data and finding the values of coefficients. By

including magneto-elastic terms coupling to the change in volume, we may include the

GMCE in our models. We may use these models to better understand what temperature

range provides the greatest magnetic entropy change ∆SM , i.e. locate the peak in ∆SM
vs. T . There are however practical limitations to this approach, i.e. the mean field

equations of state Eq. (3.15) and Eq. (??) cannot be solved analytically.
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(a) Critical temperature T ′ as a function of
volume v′.

(b) Volume v′ as a function of temperature
T ′ for fixed and compressible lattices.

(c) Magnetization M as a function of tem-
perature T ′ for fixed and compressible lat-
tices.

Figure 2.3: Schematics of the volume dependent exchange interaction for a positive of

β > 0. Graphs taken from [2].

This method may be further refined to take into account for example mixed states

and material inhomogeneities [43–45], improving the fit to experimental data.

2.4 Conclusion

We have used a Landau free energy expansion to take into account both the magnetic

and structural lattice degrees of freedom, and their interaction, by introducing a magneto-

elastic coupling in a lattice of spins. Minimizing the free energy of the system, we calcu-

lated the total entropy change ∆s = ∆sM +∆sW across the PM-FM phase transition and

have seen that the structural contribution ∆sW may increase or decrease the magnitude

of the MCE (i.e. the entropy change on magnetization) depending on the dimensionless

parameter ζ = αpβTc0 , where β is the steepness of the change of exchange force with

volume.

For ζ < 0, the two contributions to ∆s can add up, to enhance the MCE, giving rise to

the GMCE. For 0 < ζ < 1, the two contributions have opposite sign, and hence the MCE

is inhibited. Finally, for ζ > 1, the structural entropy dominates, and we have an unusual

inverted transition from a low temperature PM to high temperature FM state, and may

have a positive or negative ∆s depending on the value of ζ. Such inverted ferromagnet

transitions have been observed, for example in the Ni-Mn-Sn Heusler alloy [46], and for

Co-Mn-Si [47].

Hence, we have found that ζ is a very useful parameter for classifying MCE materials.

Since one usually expects that αp > 0, the sign of ζ is usually dictated by the sign of β, we
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can hence say that the GMCE is expected in materials with β < 0, i.e. the ferromagnetic

exchange strength decreases with increasing volume. This is confirmed by looking at

Gd5Si2Ge2, which is a GMCE material, with experimental values from [48], Basso obtains

ζ ' −0.6, which is less than zero as expected for a GMCE material. On the other hand,

for regular MCE material such as MnAs, using data from [49], Basso obtains ζ ' 0.25,

greater than zero as expected for a material only showing the MCE. In the case of MnAs,

it was know from very early on that it exhibits a discontinuous loss of ferromagnetism at

approximately 40◦C, with an associated latent heat, and discontinuous change of density

indicative of a 1st order phase transition. However, at the time (1950’s), without Bean-

Rodbell’s theoretical understanding of entropy for a compressible spin lattice, it was

thought that the transition was from ferromagnetism to anti-feromagnetism on heating.

It was no until the Bean-Rodbell model, that the 1st order MnAs phase transition could

be explained as an FM to PM transition.

Finally, although the Bean-Rodbell model answers many of our questions, it has cer-

tain flaws. For example, we have assumed that the exchange interaction is only a function

of the lattice volume, and the interaction is further assumed to be isotropic. However in

reality these assumptions are incorrect, in particular they are incorrect for MnAs. This

flaw in the Bean-Rodbell theory has been seen experimentally: the contraction of MnAs

at critical temperature is not isotropic [41].



3
Further Theories of Compressible Ising Models

Kenneth Wilson’s intuitive physical mechanism for understanding the action of the renor-

malization group in the early 70’s (see Sec. 1.6) led to a revival of interest in the RG

properties of Ising models. Hence the 70’s in particular spawned several key papers in

the history of compressible Ising models (CIM’s). A second resurgence of interest oc-

curred after the discovery of the GMCE in 1997, with the hope that general application

of magnetic cooling technology may finally be within reach.

We review some of the key literature here, furthering our understanding of the theo-

retical models useful for describing the MCE/GMCE, outlining the key models (there are

several more that we don’t mention, less frequently encountered). In the next chapter, Ch.

4, we will get to grips with some attempts to apply RG techniques to these compressible

Ising models.

3.1 General Effects of Compressibility

The standard, fixed site Ising model provides a nice picture of ferromagnetic 2nd order

phase transitions. It’s phase diagram in the pressure-volume plane contains a transition

line along which the specific heat Cv is infinite. However, it was proved by Rice [50] that

such a feature in the phase space causes the system to become mechanically unstable. As

a result of this, he showed that if an Ising system with divergent specific heat is put on a

deformable lattice at constant pressure, it must undergo a 1st order phase transition.

Hence, the standard Ising model cannot in itself be physical. To make the model

more physical, one must introduce further complexities. In our case, we have introduced

compressibility, via the magnetoelastic coupling. The effect of the magnetoelastic coupling

is to introduce 1st order transitions, which are allowed according to Rice’s result.

Throughout the 70’s, there was continuous debate about correctness of certain theo-

retical models. For example, whether or not it was necessary to include shear forces, and

not just compressibility, and arguments about the physical validity of having a tricritical

point in the phase space. Different models contradicted each other, a situation made

much worse by the lack of experimental certainty - given that real materials never show

28
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such sharp peaks as models predict, it was not always even possible to differentiate a 1st

order transition from a 2nd order transition.

However the general concept that the coupling between Ising spins and lattice degrees

of freedom modifies the behavior of the simple Ising model near the transition - in par-

ticular allowing a change from 2nd order to 1st order transition - became generally agreed

upon.

3.2 Domb Model

The earliest theoretical study into the effect of compressibility on the ferromagnetic Ising

system was carried out by Domb [1].

The Domb model is an Ising model on a compressible lattice where the exchange

parameter J linearly depends on the average lattice spacing a. This model forms the

basis for Bean-Rodbell’s later mean field solution, Ch. 2, where the critical temperature

Tc depends on the volume. Despite the models simplicity, it has been experimentally

shown to provide order of magnitude agreement with experimental values [51].

The model takes a simple Hamiltonian containing terms for kinetic energy, quadratic

potential energy and Ising terms where the exchange parameter J is a linear function of

the average lattice spacing a: J(a) = J0 − J1(a − a0), where J0, J1 and a0 are positive

constants. The partition function can be factorized into an elastic part and an Ising model

part:

Z = Zelastic × ZI(βJ), (3.1)

and the free energy is:

F (T, a) = F0(T ) +
3N

2
φ2(a− a0)2 − 1

β
logZI(βJ), (3.2)

where φ2 is a positive parameter related to the compressibility, F0(T ) is a smooth function

of T and again β = 1/(kbT ).

The model always predicts 1st order transitions, and hence cannot explain things like

lambda point transitions.

3.3 Baker-Essam Model

Baker and Essam [3] (1970) were able to solve a compressible Ising model exactly by

neglecting shear forces, but accounting for nearest neighbor compression forces. Their

model however does not have a 1st order transition. It couples the spin Ising lattice to all

the vibrational degrees of freedom, not just the uniform compression degrees of freedom

in the Domb and Bean-Rodbell models.

Baker-Essam included microscopic lattice vibrations by taking a quadratic potential

between sites of the form:

φ( ~X(ij) · ê(ij)) = φ0 +
1

2
φ2( ~X(ij) · ê(ij) − a0)2, (3.3)

where ~X(ij) is a vector connecting lattice sites i and j, and ê(ij) is a unit vector from the

equilibrium position of lattice sites i to j. There is a linear dependence of the exchange

parameter on separation:
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J( ~X(ij) · ê(ij)) = J0 + J1( ~X(ij) · ê(ij) − a0). (3.4)

The partition function again factorizes (in the force ensemble) into a rigid Ising model

part ZI and remaining elastic parts:

logZ =
3N

2
log

(
2π

βφ2

)
− 3Nβ

(
φ0 +Ka0 −

K2 + J2
1

2φ2

)
+ logZI(βJeff ), (3.5)

in 3-dimensions, where K is the external forces and

Jeff = J0 + J1K/φ2, (3.6)

i.e. ZI(βJeff ) is the rigid Ising model partition function calculated at an ’effective’

exchange interaction strength Jeff - the effect of the changing lattice spacing is absorbed

into this effective exchange strength for the magnetic degrees of freedom.

The relationship of the true lattice spacing a to the exchange interaction and the

external force is given by:

a = a0 −
K

φ2
− J1

φ2
〈σσ〉eff , (3.7)

where 〈σσ〉eff is the nearest neighbor spin-spin correlation function calculated with the

Ising model partition function ZI(βJeff ). We see that the lattice compresses with external

force - second term on the right hand side - and spin alignment - final term on right hand

side.

Note that at T = 0, 〈σσ〉eff = 1, and hence when K = K0 = −φ2J0/J1, the lattice

switches from being compressed to being expanded (see Eq. (3.7)), but more importantly

the effective exchange interaction Jeff switches sign from being ferromagnetic to antiferro-

magnetic (see Eq. (3.6)) - this is the ferromagnetic to antiferromagnetic phase transition

seen in the phase diagram Fig. 3.2. As the temperature is increased, both of these regions

in the phase space encounter a transition to the high temperature paramagnetic phase,

hence these three phase transition lines meet at the tricritical point.

Baker and Essam later extended their model by the inclusion of anti-shearing forces

[52]. The model is no longer analytically solvable, but is shown to be mechanically stable,

allowing 1st order transitions. The specific heat at constant volume and constant pressure

have been shown to become finite at the phase transitions, however the specific heat a

constant pressure remains infinite.

It is also shown to reduce to the original Baker-Essam model in the appropriate limit.

3.4 Phase Diagrams for Compressible Ising Models

Salinas [53] was the first to present and analyses the main characteristics of the phase

diagrams for the compressible Ising models in zero field, of Domb (Sec. 3.2) and Baker-

Essam (Sec. 3.3). These phase diagrams are particularly interesting in that they display

tricritical points.

For the Domb model, the phase diagram for the 2-dimensional case is seen in Fig. 3.1.

We see a pressure induced 1st order transition from antiferromagnetic to ferromagnetic

state above a (negative) pressure of −p0 = (φ2J0)/J1, and at higher temperatures, above
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Figure 3.1: Pressure ρ vs. Temperature T phase diagram for a 2-dimensional Domb

model, all the lines represent 1st order transitions. ’F’, ’A’ and ’P’ are ferromagnetic,

antiferromagnetic and paramagnetic regions respectively. Graph taken from [53].

T̃ = J2
1/(kBφ2), symmetric 1st order transitions from the ferromagnetic and antiferro-

magnetic phases to a high temperature paramagnetic phase.

For the Baker-Essam model, we see a roughly similar qualitative behavior in the phase

diagram, Fig. 3.2 but with both 1st and 2nd order transitions.

Figure 3.2: Pressure ρ vs. Temperature T phase diagram for a 2-dimensional Baker-

Essam model. Lines below ρ = 0 are 1st order transitions, lines above ρ = 0 are 2nd

order transitions. ’F’, ’A’ and ’P’ are ferromagnetic, antiferromagnetic and paramagnetic

regions respectively. Note the tricritical point as predicted in Sec. 3.3. Graph taken from

[53].

3.5 Introducting Compression and Shear forces

The Domb, Baker-Essam and Bean-Rodbell models (as we have presented them) do not

account for shear forces, only accounting for compression forces. We can attempt to
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account for both using the Hamiltonian [53] (recurring indices are summed over, including

those in brackets referring to a site):

H = Φ( ~X(m)) + Ψ( ~X(m)) + EKE − ~K(m) · ~K(m), (3.8)

where ~K(m) are the external forces in the strain term, EKE is the total kinetic energy,

and where

Φ( ~X(m)) =
∑

<m,n>

φ( ~X(m) −X(n), (3.9)

such that Φ is the potential between sites, a quadratic function like Eq. (3.3), and the

position dependent exchange interaction ψ between sites is of the form:

Ψ( ~X(m)) =
∑

<m,n>

{
−J

[(
~X(m) − ~X(n)

)
· ê(mn)

]
σmσn

}
, (3.10)

such that J is a linear function like Eq. (3.4), and (mn) indicates a sum over nearest-

neighbor sites only.

3.5.1 Decoupling Transformations

We can write the separation vectors in terms of the equilibrium positions, ~R(m), and the

remaining part ~u(m): ~X(m) = ~R(m) + ~u(m). Substituting this into Eq. (3.8), expanding,

and carrying out the transformations in [53] (or as in [54–57]), we separate the effective

magnetic and elastic parts to obtain:

H = EKE + Φ(~R(m)) +
1

2
v(m),µΦ(m,n),µνv(n),ν −K(m),µR(m),µ + Ψ(~R(m)

+
1

2
(Φ(m),µ + Ψ(m),µ −K(m),µG(m,n),µν(Φ(n),ν + Ψ(n),ν −K(n),ν , (3.11)

where the terms are explained in [53], but we note here that the last term contains the

so-called four-spin interaction, which in this model, is independent of the lattice spacing.

This resulting Hamiltonian also contains long-range components.

3.6 Landau Theory for MCE

Amaral & Amaral [36] (following on from [58–60])in particular give an overview presenta-

tion of the effect of adding magnetoelastic and magnetoelectronic couplings to the Landau

theory.

The Landau theory macroscopic free energy expansion, including even power terms

upto the 6th power of magnetization M , for a ferromagnetic transition, is (see Eq. (1.46):

F (T,M) = F0 +
1

2
AM2 +

1

4
BM4 +

1

6
CM6 −MH, (3.12)

where the coefficients A, B and C depend on temperature, i.e. (T − Tc). Energy mini-

mization is used to obtain the magnetic equation of state:

H

M
= A+BM2 + CM4, (3.13)
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and differentiation of the free energy Eq. (3.12) with respect to temperature gives us the

magnetic entropy:

SM (T,H) = −1

2
A′(T )M2 − 1

4
B′(T )M4 − 1

6
C ′(T )M6, (3.14)

where the dash indicates differentiation with respect to temperature.

In a normal ferromagnet, A, B and C, would be positive. However with the addition

of the 2nd order term for magnetoelastic coupling Eq. (1.48), and its subsequent mini-

mization Eq. (1.49), the coefficient B is decreased to a negative value. B < 0 gives a 1st

order transition, and B > 0 gives a 2nd order transition in the Landau theory.

Hence for a simple ferromagnet with 2nd order transition, and B > 0, SM (T,H)

will have a narrow peak at Tc. Further magnetoelastic contributions decrease B and

broaden the peak, while leading to a much larger magnetic entropy change, ∆SM (T,H) =

SM (T,H)− SM (T, 0), just above the critical point Tc, in Fig. 3.3.

Figure 3.3: Temperature dependence of ∆SM for positive and negative and zero B, and

various values of magnetic field H. Note that for negative B, ∆SM above the critical

point becomes much larger. Graph taken from [36].

3.7 Mean Field Theory for the MCE and GMCE

To move beyond Landau theory, we look to the mean field theory. The Weiss molecular

mean field theory of ferromagnetism was the first analytic treatment of 2nd phase tran-

sitions. In this theory, we consider the spins bathed in in the mean global field of the

material

M(H,T ) = MsatBJ

(
H + λM

T

)
(3.15)

where saturation magnetization is simply taken to be Msat = NgµBJ . The Curie-Weiss

law is used to estimate the (assumed constant) mean-field exchange parameter λ:
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λ = Tc
3kB

Ng2J(J + 1)
(3.16)

Such a simple approach does not immediately agree with experimental results, the next

step is to introduce the Bean-Rodbell model [2] (or [38] for a much more modern intro-

duction) which models 1st order transitions by considering the magneto-elastic coupling.

3.8 Insights from Monte Carlo Studies

Finally, it is worth mentioning some controversial results from Monte Carlo studies. For

example, a series of papers by D. P. Landau and others [61–64] who studied the critical

behavior of a 3-dimensional compressible Ising antiferromagnet at constant volume using

Monte Carlo methods. In their study, they found strong indication that the system

remains in the same universality class as the rigid 3-dimensional Ising model, i.e. the

same critical exponents and 2nd order phase transitions are found, contrasting with the

theories above. They later proved the same result using exactly the same model but

with ferromagnetic interactions [65]. However they conclude that the discrepancy may

be due to the finiteness of the system used in the simulation, and suggest a much larger

simulation may give different results.

3.9 A Little History

We summarize the key work done on compressible Ising models during the 70’s. The

earliest works, leading on from Rice’s result that a locus of points with a 2nd order phase

transition in the phase space was unphysical, more accurately modeled real materials by

including terms for magnetoelastic coupling. The effect of this on the 2nd order phase

transition was not well understood until the late 70’s.

First, the model by Domb appeared, which assumed the exchange interaction only

depends on average lattice volume, leading to a 1st order transition. This work was

extended by Bean-Rodbell (to a mean field approximation) and others. These models

however were criticized for not taking into account the effect of local fluctuations of the

lattice spacing on the exchange parameter J - they are all, in essence, mean field theories.

Later, Baker-Essam calculated the exact free energy for a model incorporating local

distortions via an exchange interaction linearly dependent on local lattice spacing, and an

potential energy quadratic in the site separation. There original model had the advantage

of being exactly solvable, hence it was soon proved [66, 67] that the Baker-Essam model

has a 1st order transition at negative pressure, and 2nd order transition with renormalized

critical exponents for positive pressure.

Baker-Essam extended their model to include shear forces, which, although unsolvable,

predicted the tricritical point would now happen at positive pressure.

Other models include the Wagner-Swift model [68] which took long-range interactions

into account, this model contradicted the Baker-Essam extended model by finding no

1st order transition at positive pressures. However later investigation of this model [69]

suggested it did indeed have a tricritical point at positive pressure. Another variation on

Baker-Essams model was put forward by Coplan and Dresden [70], taking a cubic Ising

model and adding an exchange interaction dependency to the second order in the spacing

between sites, with nearest neighbors only. This model is controversial again in predicting

only 2nd order transitions [71].



4
Renormalization Group Approaches to the

Compressible Ising Model

We finish this thesis by examining renormalization group approaches to the compress-

ible Ising model, in an attempt to learn more about the critical behavior at the phase

transitions.

4.1 Early Approaches

One of the earliest attempts to apply RG techniques to the compressible Ising model was

by Sak [72] in 1974, followed up by Bruno and Sake [73] in 1980. We follow closely their

approach, specializing to the Ising model.

They considered an isotropic n-component magnet (n is the number of components in

the order parameter, for the Ising model n = 1), with bulk modulus K0, shear modulus

µ0 and with surfaces free to move.

We first seek to obtain recursion relations for the coupling constants in theory, then

we can look to the fixed points, each of which describe a type of critical behavior. We can

then obtain critical exponents by linearizing the recursion relations around each of the

fixed points. Recall that relevant coupling constants for a particular fixed point are those

that are unstable to small perturbations (move away from the critical point), and hence

must be held at their critical values for the system to be at the critical point. Irrelevant

coupling constants are stable to small perturbations (move towards the critical point),

and marginal coupling constants are left unaffected by small perturbations. We note that

the nature of each coupling constant (relevant/irrelevant/marginal) may be different for

each critical point.

We take the dimension of the system to be d = 4 − ε, where ε is originally small,

allowing us to take an expansion in this parameter. Later the limit d→ 3 will be taken.

4.1.1 Effective Magnetic Hamiltonian

We begin by taking the Hamiltonian H (the Larkin-Pilkin [74] model Hamiltonian in a

continuum):

35
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H =
H

T
= Hm +He +Hem, (4.1)

where the magnetic part is the Ginzburg-Landau form for a rigid Ising model:

Hm =

∫
ddx

[
1

2
rS2(~x) +

1

2

d∑
α=1

(
∂S(~x)

∂xα

)2

+ u0S
4(~x)−HS(~x)

]
, (4.2)

where r and u0 are analytic functions of the coupling constants, H is the external magnetic

field, S(~x) is the spin density at ~x. The elastic part is given by [75]:

He =

∫
ddx

(1

2
K − 1

d
µ

)[
~∇ · ~u(~x)

]2
+ µ

d∑
α=1

d∑
β=1

(
∂uα(~x)

∂xβ

)2
 , (4.3)

where K and µ are the bulk and shear moduli of the lattice divided by temperature T ,

and the field ~u(~x) is the displacement field. The spin density S(~x) and the displacement

field ~u(~x) are not allowed to have spatial variations on scales smaller than the lattice

spacing.

The final term in the Hamiltonian is the coupling between elastic and magnetic degrees

of freedom:

Hem = g

∫
ddx

[
S2(~x)

(
~∇ · ~u(~x)

)]
, (4.4)

where the spin density is multiplied by the local compression with a coupling strength g.

We wish to construct an effective magnetic Hamiltonian Heff for the compressible

Ising model. We do this by tracing over all the elastic configurations of the system:

e−Heff ≡ Tr~u(~x)e
−H. (4.5)

However, first we must Fourier transform the local distortion ∂~u(~x)/∂xβ and separate out

the 0th order translation mode from the periodic “phonon” modes:

∂uα(~x)

∂xβ
= eαβ + L−d

∑
~k

ikβuα,~ke
i~k·~d, (4.6)

where L is the linear size of the system (number of sites per side). The first term eαβ
on the right hand side is the translation modes, i.e. translation of the α component of

distortion uα along the β direction. The second term is the higher order periodic modes

in Fourier transformed space, where k is the wavevector, and the spin density S(~x) has

been written as a Fourier transform:

S(~x) = L−d
∑
~k

S~ke
i~k·~x. (4.7)

At this point we can impose the cutoff on fluctuations below a particular scale by limiting

the range of ~k summed over to a sphere with radius k = |~k|.
Sak [73] now evaluates the Guassian integrals in the trace, Eq. (4.5), to obtain the

effective Hamiltonian Heff :
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Heff =

∫
ddx

[
1

2
rS2(~x) +

1

2

d∑
α=1

(
∂S(~x)

∂xα

)2

+ u
(
S2(~x)

)2
+ vL−d

(∫
ddyS2(~y)

)
S2(~x)−HS(~x)

]
, (4.8)

where the coupling constants are given by

u = u0 −
g2

2K

(
1 +

2µ(d− 1)

dK

)−1

, (4.9)

v =
g2

2K

[(
1 +

2µ(d− 1)

dK

)−1

− 1

]
. (4.10)

Looking at Eq. (4.8), we see that on the right hand side, the first term is a “mass

style” term, the second is a “propogator” style term, the third is a 4 point self-interaction

term. The fourth is a new interaction, generated by the procedure above, that describes

interactions between magnetic degrees of freedom (spin density) at different sites on the

lattice, it is a long-range interaction, mediated by the lattice itself.

Now we have our effective magnetic Hamiltonian, we can begin to study its critical

behavior.

4.1.2 Critical Exponents

The RG analysis begins by finding the set of recursion relations for the coupling constants

r, u, v and H. Bruno and Sak [73] do this by first Fourier transforming Eq. (4.8) to obtain:

Heff =
1

2
L−d

∑
~k

(r + k2)S~kS−~k + uL−3d
∑

~k1,~k2,~k3

S~k1S~k2S~k3S−(~k1+~k2+~k3)

+ vL−3d

∑
~k

S~kS−~k

2

−HS~0. (4.11)

They then integrate out a fraction of the degrees of freedom from the partition function,

removing all S~k with b−1 < |~k| < 1; b > 1, to obtain [72] the recursion relations:

r′ + q2 = b2−η
(
r +

q2

b2
+ 12u

∫
ddq

r + q2
+ 4v

∫
ddq

r + q2
+ · · ·

)
, (4.12)

u′ = bε−2η

(
u− 36u2

∫
ddq

(r + q2)2
+ · · ·

)
, (4.13)

v′ = bε−2η

(
v − 24uv

∫
ddq

(r + q2)2
− 4v2

∫
ddq

(r + q2)2
+ · · ·

)
, (4.14)

(where all integrals are over b−1 < |~k| < 1). These relations are shown using Feynman

diagrams in Fig. 4.1.
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Figure 4.1: Feynman diagrams for the recursion relationships Eq. (4.12), Eq. (4.13)

and Eq. (4.14). In our case (3-dimensional Ising model), n = 1. The 4 point self-

interaction vertex u is represented by a heavy dot, the propagator for v by a dashed line,

and propagator for r by a solid line. Graph taken from [72].

Examining Eq. (4.13) and Eq. (4.13) to first order in ε, Sak [72] finds four fixed

points:

1)u∗ = 0, v∗ = 0; (4.15)

2)u∗ =
2π2

9
ε, v∗ = 0; (4.16)

3)u∗ = 0, v∗ = 2π2ε; (4.17)

4)u∗ =
2π2

9
ε, v∗ =

6π2

9
ε, (4.18)

as can be verified by substitution and some tedious algebra.

The critical exponents φu, φv and ν−1 of the fields u, v and r respectively, are obtained

by linearization of the recursion relations in the neighborhood of the fixed points. The

results are shown in Table 4.1, where instead of ν−1, Sak gives α = 2 − dν, and η

determined from the q-dependent part of Eq. (4.12).

Fixed Point φu φv = α/ν α η

1) ε ε 1
2ε 0

2) −ε+O(ε2) 1
3ε+O(ε2) 1

6ε+O(ε2) 0 +O(ε2)

3) ε −ε+O(ε2) − ε
2 +O(ε2) 0

4) −ε+O(ε2) − ε
3 +O(ε2) − ε

6 +O(ε2) 0 +O(ε2)

Table 4.1: Fixed points and exponents to 1st order in ε. Table taken from [72].

4.1.3 Critical Behavior

Sak [72] goes on to investigate the nature of the 4 critical points in more detail. Recall

from Sec. 1.6.2, that the degree of instability of a critical point is measured by the number

of positive critical exponents at that point. For example, Table 4.1 tell us that fixed point

1) is unstable in the directions of u, ν and α and marginal in the direction of η, fixed point

2) is unstable in ν and α directions, but stable the u direction etc...The projection of the
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RG flow in the (u, ν) plane is give in Fig. 4.2, we note that the stable fixed point is 2),

this gives the 1st order phase transition. However we note that the domain of attraction

only exists for positive ν, but the system must begin in negative ν.

Figure 4.2: Projection of RG flow in the (u, ν) plane. Fixed points numbers as in Table

4.1. Figure taken from [73].

Bruno and Sak [73] go on to analyze this system much further. This RG technique

has been successfully applied by Baker and Essam to the β-brass system [52], where they

discuss further in great detail.

4.2 Further Results

In this document, we have only had time to review some of the key results of RG theory

applied to compressible Ising models, there is considerably more relevant literature that

we briefly note down here, so that this document may serve as a starting point for further

investigation. Further results include:

Chakrabati [76] follows on from Sak [72], but treats the lattice quantum-mechanically,

obtaining similar results, but with the critical point trivially accessible.

Bergman and Halperin [77] give a very thorough RG analysis of both cubic and isotropic

compressible Ising models.

Two results of RG calculations [78, 79] suggest that, for a cubic lattice, any elastic

anisotropy becomes increasingly important on reaching the critical point.
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Aggarwal and Samathiyakanit [80] present a path integral approach to the compress-

ible Ising model with a Wagner-Swift Hamiltonian [68], in which the exchange interaction

is expanded up to terms quadratic in the displacement. They also expand their approach

to the case of anharmonic crystals.

Barma and Kumar [81] attempted a position space RG approach to a Baker-Essam like

compressible Ising model on various lattices. They found that the rigid Ising model fixed

point was stable to weak magnetoelastic coupling, but unstable, presumably leading to

a 1st order phase transition beyond a critical magnetoelastic coupling (in contrast to the

exact solution of the original Baker Essam model, which does not have a 1st order tran-

sition, see Sec. 3.3).

Moreira, Figueiredo and Henriques [82] is a modern (2007) approach. They took a layered

compressible Ising model, with ferromagnetic and antiferromagnetic couplings depending

linearly on volume (as in Domb’s model Sec. 3.2) then carried out an RG analysis. They

find potentially accessible fixed points, with Fisher-renormalized [83] critical exponents.

Belim and Prudnikov [84] is another modern approach (2000). They tackle a similar

Larkin-Pilkin style Hamiltonian to Sak’s (above) approach, however their model adds

frozen-in structure defects, and they examine the effects of this on a tricritical point using

RG techniques. They find a significant influence from the defects.
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