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Abstract

Motivated by AdS/CFT conjecture, we discussed gravitational collapse in Anti-de Sitter space-

time. We reviewed the theory and numerical work on the critical solutions of black hole thresh-

old both in flat space and AdS, and see similar critical behaviour. We also looked at some

latest work in [21] about non-critical black hole formation in d+1 dimensional (d ≥ 3) AdS,

and notice some interesting properties of AdS.
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Chapter 1

Introduction

1.1 Why study AdS collapse

There is risen interest in the study of anti de-sitter (AdS) black hole formation in different

dimensions. This is oringinated from the discovery of 2+1 dimension AdS black hole solutions[1]

and is very much due to the AdS/CFT conjecture[2]. AdS/CFT is known as the simplest

examples of gauge/gravity duality, which is a correspondence of anti-de-Sitter spacetimes and

conformal field theories[3]. The gauge/gravity duality is an equality between a gravity theory on

a d+1 dimensional spacetime (with a d dimensional asymptotic boundary) and a quantum field

theory in d spacetime dimensions. The gravity theories are string theories and the quantum

field theories are gauge theories, so this connection is also called gauge-string duality. A lot of

evidence by far shows that this ‘AdS/CFT conjecture’ is true. Because of the correspondence

of the two theories, we can solve some comparatively complicated quantum field theories by

looking at equivalent theories in AdS gravities, which can be much more straightforward.

1.2 AdS/CFT relation

In this section, we present a very bisic instruction of AdS/CFT relation without including

much detail. This relation assumes that the theory in an asymptotically AdS spacetime is

1



2 Chapter 1. Introduction

equivalent to a local quantum field theory (which we will see is a conformal field theory) on

the boundary[3]. Let us understand this by recalling some detail of AdS spacetime first. AdS

spacetime is a simplest solution of Einstein equations with a negative cosmological constant

Λ < 0. AdSd+1 is a Lorentzian manifold of d+1 dimensional hyperbolic space. It is an early

example of non-Euclidean geometry. The metric of AdS spacetime can be written as:

ds2
AdSd+1

= R2[−(r2 + 1)dt2 +
dr2

r2 + 1
+ r2dΩ2

d−1] (1.1)

where R is the radius of curvature, and r2dΩ2
d−1 is the metric of a unit sphere, Sd−1.

Figure 1.1: [3] (a) This solid cylinder is the Penrosediagram for AdS spacetime, where time axis is
in the vertical direction. The boundary contains the time direction and a sphere, Sd−1, represented
here as a circle. (b) Shows the geodesics : Massive geodesic (solid line) and a massless geodesic (dashed
line).

We can see it looks like a flat space near r = 0, where ds2 → R2(−dt2 + dr2 + r2dΩ2). Note

that as the radius r grow, −g00 and the metric on the sphere also go larger. This gives a

gravitational potential of V ∼
√
−g00 to a slowly moving massive particle in the space, which

attract it towards the origin. So if we put a particle at large enough r, it will move like a

harmonic oscillator in r direction. This implies that if a massive particle has finite energy, it

cannot escape to r =∞. But a massless geodesic can go to infinity and return. In order to see

this more clearly, we here introduce the Penrose diagram1 of AdS. If we take a factor of 1 + r2

in the metric (1.1) and define dx = dr
1+r2

, we obtain a finite radial range. Then we get a solid

1Penrose diagram is ”a two-dimensional diagram that captures the causal relations between different points
in spacetime. Locally, the metric on a Penrose diagram is conformally equivalent to the actual metric in
spacetime.”
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cylinder Penrose diagram with spatial boundary at r =∞, which is finite in x coordinate, see

Figure 1.1. The vertical direction is time and the side surface of the cylinder is the spherical

metric, Sd−1. We can easily observe a symmetry of R × SO(d) of the metric in (1.1), but the

total symmetries of AdS is known as SO(2, d). We can see such symmetries if we regard AdS

as the hyperboloid in R2,d with the form of

−Z2
−1 − Z2

0 + Z2
1 + . . . Z2

d = −R2. (1.2)

This is usful to recognize the symmetries, but we do not want to carry this too far, because the

time direction t in 1.1, is compact but we want to see this time direction to be non-compact in

most applications.

Because of such isometries of AdS, if we consider the oscillating trajectory of a massive particle,

then we can ‘boost’ it to a frame where the particle is still. So the moving particle does not

know that it is moving, which means AdS does not have a ‘center’. We can always choose a

‘center’ by defining a lowest energy state of a particle.

We may carefully choose the coordinates(because they are not the full AdS) where the AdS

metric is

ds2 = R2−dt2 + d~x2
d−1 + dz2

z2
(1.3)

The boundary here is at z = 0. We may cut off half of the cylinder to get a wedge of R×S(d−1).

If we take the limit t → ix0 we obtain hyperbolic space. It is sometimes called the Euclidean

AdS space. There is another isometry which rescales the coordinates (t, ~x, z)→ λ(t, ~x, z). These

coordinates only cover part of 1.1, but they are useful when we consider a CFT in Minkowski

space, R1,d−1.

We have mentioned the correspondence of an asymptotically AdS and a local quantum field

theory on the boundary, R × Sd−1. The action of the AdS isometries on the boundary is to

map the points on it to points on a larger boundary. This is the action of a d dimensional

conformal group, SO(2, d). So we notice that the quantum field theory here is actually CFT.

In fact, the rescaling symmetry of 1.3 can be thought as an expansion of the boundary. So the

boundary theory is scale invariant. Scale invariant theories are often conformal invariant too;
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in these theories the stress energy momentum tensor is traceless[3]. The traceless stress tensor

gives that a field theory of metric gbµν or ω2(x)gbµν is basically the same. Due to the conformal

symmetry, we can set the radius for the boundary, Sd−1, to one.

You may have noticed that we are talking about equivalence between bulk theories of defferent

dimensions (d + 1 dimensional with a d dimensional). There seem to be a contradiction when

we count the degrees of freedom. We could understand this problem by considering entropy in

the microcanonical ensemble at large energies. In a theory with massless fields, we expect the

entropy to look like S ∼ Vd−1

βd−1
. So for a boundary of CFT on R×S3 with β � 1( meaning large

temperatures compared to the radius of S3), we expect that the entropy to take the proportion

S ∝ c
1

βd−1

, (1.4)

where c a dimensionless constant counting the effective number of fields. At the same time, if

we consider from the bulk point of view, we seem to have another theory with massless particles:

the gravitons. These gravitons are of larger entropy than the region of r ∼ 1, where the volume

has order one. Thus we get this relation in d spatial dimensions

Sgas of gravitons >
1

βd
(1.5)

For small enough β we see that 1.5 is bigger than 1.4. This appear to disagree with the

assumption of AdS/CFT mentoned above. However, we have not yet taken the gravity in bulk

theory into consideration. The gravity gives bounds to entropy, which is due to the emergence

of black holes. The metric of AdS black holes is

ds2
AdSd+1

= R2(−(r2 + 1− 2gm

rd−2
)dt2 +

dr2

r2 + 1− 2gm
rd−2

+ r2dΩ2
d−1) (1.6)

where g is the ratio of Newton constant and AdS radius,

g ∝ Gd+1
N

Rd−1

. (1.7)
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The mass of the gas has the order of m ∼ 1
βd+1

, and the radius should be rz ∼ 1
β
. For β � 1

we can drop the 1 in 1.6 and obtain the Schwarschild radius of rds ∼ gm ∼ g/βd+1. For large

enough temperatures, the Schwarschild radius is bigger than the size of the system, that is

1/β > 1/g. Thus, 1.4 does not work for such large energies. In this case, we can compute

the entropy from that of the black hole, which is SBH ∼ 1
g

1
d−1

. The Hawing temperature for

big black holes is β ∝ 1/rs. Note the entropy of the system goes larger as the horizon grows,

S ∼ rd−1
s

g
. Compare with 1.4, we have

c ∝ 1

g
∝ Rd−1

AdS

GN,d+1

. (1.8)

From above computation, we clarified the earlier questions. We see that AdS/CFT combines

the entropy of a black hole with the original thermal entropy of a field theory. It displays the

black hole as an ordinary thermal state in a quantum field theory. Also, it shows us a way to

compute the thermal physics in quantum field theories with gravity dualities.

We want to be clear about the correspondence between states in AdS and states in the boundary

it is neccessary to do the quantization of the corresponding field in AdS. We consider a simple

example of an action in a massive scalar field in AdS spacetime

S =

∫
dd+1x

√
g[(Oφ)2 +m2φ2] (1.9)

The computation carried out in [3] suggests that in position space this action is of the form

S = −2νΓ(∆)

π
d
2

Γ(ν)

∫
ddxddy

φ0(x)φ0(y)

|x− y|2∆
(1.10)

The AdS/CFT dictionary states that this computation with fixed boundary conditions is related

to “the generating function of correlation functions for the corresponding operator in the field

theory” [29][30]. To look at such equality from quantum operator point, a field φ is related to
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the single trace operator O

ZGravity[φ0(x)] = ZFieldTheory[φ0(x)] =< e
∫
ddxφ0(x)O(x) > (1.11)

We evaluate the leading approximation of the gravity side by e−S. The correlation functions

are then given by

< O(x1) · · · O(xn) >=
δ

δφ0(x1)
· · · δ

δφ0(xn)
ZGravity[φ0(x)] (1.12)

The correlation function can be broken into algebraic product of two point functions. The

quadratic approximation of gravity answer is 1.10. If we include interactions in the bulk, we

can compute the leading approximation by looking at the classical, non-linear solution with

such boundary conditions and calculating the corresponding action. We can also evaluate the

Feynman-Witten diagrams in the bulk [30] for perturbative computation.



Chapter 2

Critical phenomena in flat space

gravititional collapse

2.1 Overview

In this chapter, we will generally understand the subject of critical collapse in flat space by

studying the phenomena at the black hole threshold in the example of 3+1-dimensional general

relativity. This chapter does not involve Ads spacetime.

The critical behaviour near the black hole threshold was discovered by Choptuik in numerical

simulations of a spherical scalar field[4]. The black hole threshold solution has very simple and

special structure. The black hole mass scaling and scale echoing give rise to the term ”critical

phenomena”, which are described by exact solutions of the black hole threshold. To be specific,

these phenomena can be explained in the following way.

We may take any one parameter p to represent the generic initial data in general relativity. If

we tune the value of p carefully towards the black hole threshold, and compare the resulting

spacetime solution as a function of p, in many situations, we observe the following criticle

phenomena:

7
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• Near the threshold, black holes with arbitarily small masses can be created, and the black

hole has mass scale of

M ∝ (p− p∗)γ (2.1)

where p is the initial data and black holes form for p > p∗.

• With respect to the initial data we have, the criticalexponentγ is universal and depends

only on the type of the collapsing matter. It is independent of the particular 1-parameter

family.

• Before black hole formation, the spacetime approaches the critical solution in the region

of large curvature. This solution is self-similar and also universal.

Such phenomena have been found in many other numerical and analytical studies in spherical

symmetry, and a few have been seen in the collapse of axisymmetric gravitational waves in

vacuum[5]. It is still unclear how the matter types can affect the critical phenomena in gravi-

tational collapse.

In the simplest example of a dynamical system, a critical solution can be seen as an attracting

fixed point on a surface that divides 2 basins of attraction in phase space. It is called the ‘critical

surface. This fixed point can be either a steady spacetime, or a scale-invariant and self-similar

spacetime. The latter is relevant to the critical phenomena described above (Type II).

So we can study the field of critical phenomena in gravitational collapse by looking at the

boundaries of different end states, such as black hole formation or dispersion. By fine-tuning

initial p to the black hole threshold, these self-similar critical solutions provide a way of getting

large spacetime curvature outside a black hole, and inside a naked singularity. Such solutions

are likely to be useful in cosmology and quantum gravity.

2.2 Critical collapse

In this section we describe the basic theory underlying critical collapse of the type that forms

arbitrarily small black holes (later called type II, also see Section 2.2.2 for type I).
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The mathematical sources of its three main features that mentioned in the overview are covered:

• universality with respect to initial data

• black hole mass scaling

• scale-invariance of the critical solution

2.2.1 Universality

We can see GR as an infinite-dimensional continuous dynamical system and the points in the

phase space are initial data sets which obey the Einstein constraints. If we choose a suitable

gauge for the Einstein equations, the solution curves of the dynamical system are the spacetimes

obeying the Einstein-matter equations, sliced by specific Cauchy surfaces of constant time t.

An isolated system in GR can end up in two possible stable end states: “the formation of a

single black hole in a collapse, or complete dispersion of the mass-energy to infinity” [31]. For

a massless scalar field in spherical symmetry, these are the only possible end states (see Section

2.3). A point in phase space can always be classified as ending up in one of the two types of

end state. In the simplest examples, the entire phase space splits into two halves, separated by

a “critical surface”.

By definition, a phase space trajectory that starts on a critical surface will never leave it. A

critical surface is therefore a fully independent dynamical system with d − 1 dimension if the

full system is d dimensional. We consider there is an attracting fixed point, namely a ‘critical

point’. Then the critical surface is its attracting manifold, and the point is an attractor with

codimension one in the system. This fact is visible in its linear perturbations: “It has an infinite

number of decaying perturbation modes spanning the tangent plane to the critical surface, and

a single growing mode not tangential to it” [31].

As illustrated in Figure 2.1, near the critical surface (but not necessarily near the critical point),

any trajectory moves towards the critical point in a path nearly parallel to the critical surface.

The process slows down near the critical point, and eventually moves away into the direction

of growing mode. This is the origin of universality. The initial data does not contribute here,
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except for the starting distance from the black hole threshold. When the initial phase point is

closer to the ‘critical surface’, the solution curve will go closer to the critical point too. It will

also stay close to the point for a longer time.

Figure 2.1: [31] This is the phase space picture for the black hole threshold of a continuously self-
similar (CSS) solution. The arrow lines are time evolutions and the line without an arrow is not. The
threshold is also presented by a 1-parameter family of initial data at p = p∗.

2.2.2 Type I and II

We focus on Type II critical phenomena throughout the chapter. To avoid any confusion,

however, we want to be clear about what Type I is, and their differences. In type I critical

phenomena, the same phase space picture as in Section 2.2.1 applies, but the critical solution

is now steady or periodic with time, instead of self-similar or periodic in scale. It also has a

finite mass and can be thought of as a “metastable star”. (In statistical mechanics, Type I

and II were named after first and second order phase transitions, where the order parameter is

continuous and discontinuous, respectively.) Universality here implies that the black hole mass

near the threshold is independent of the initial data. The scaling dimensionful quantity is not

the black hole mass. The lifetime tp of the intermediate state is

tp = − 1

λ0

ln |p− p∗|+ constant (2.2)

When a mass scale in the field equations becomes ‘dynamically relevant’, we see Type I critical
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phenomena. (This mass scale might not set the mass of the critical solution to be absolute.

There could be a set of critical solutions with respect to the initial conditions.) On the other

hand, type II phenomena occur when the field equations do not contain a scale, or this scale is

‘dynamically irrelevant’. This is due to the scale-invariance of the type II power law. In many

systems, such as a massive scalar field, there are both type I and type II critical phenomena,

depending on different regions of the initial data [6].

2.2.3 Black hole mass scaling

We present the computation of the critical exponent γ by considering the linear perturbations

of critical solution. The calculation was proposed by Evans and Coleman [7] and done by Koike,

Hara and Adachi [8] and Maison [9].

We take Z(x) to be a set of scale-invariant variables, such as g̃µν and correspondently rescaled

the matter variables. If we have is scale-invariant dynamics, Z(x) is then an factor of the phase

space of overall scale, with a solution Z(x, τ). We find that Z(x) is a scale initial data of one

parameter, while the overall scale is determined by τ .

Here we assume the critical solution is CSS for simplicity. The solution can be written as

Z(x, τ) = Z∗(x). The linear perturbations of Zx, τ) depend only on the exponent of τ and a

complex λ. It can be written as

δZ(x, τ) =
∞∑
i=1

Cie
λiτZi(x) (2.3)

where Ci are free constants. In the echoing region, the linear order of the solution is

Z(x.τ ; p) ' Z∗(x) +
∞∑
i=1

Ci(p)e
λiτZi(x) (2.4)

Ci depend on p in a complicated way. If Z∗ is a critical solution, there is exactly one λi that

has a positive real part 1, λ0. As τ → ∞ and t → t∗, all other perturbations vanish. We

will retain only the one growing perturbation when considering this limit. The critical solution

1in fact it is purely real
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corresponds to p = p∗ by definition, so we there must be C0(p∗) = 0. Linearizing around p∗,

we get

lim
τ→∞

Z(x, τ) ' Z∗(x) +
dC0

dp
(p− p∗)eλ0τZ0(x) (2.5)

In this approximate form we can see the universality of solution Z∗. This also explains why

we see more of the universal solutions as p is closer to p∗. There is a possible confusion here:

because the critical solution is self-similar, it is not asymptotically flat. However, it can be “the

limiting case of a family of asymptotically flat solutions in a region up to finite radius”[30]. It

can be matched to an asymptotically flat solution at large radius, which is not universal.

In a range of τ , the approximate form of the solution is 2.5. We want to extract the Cauchy

data at the value of τ = τ∗ in the range. It is defined by

dC0

dp
(p− p∗)e−λ0τ ≡ ε, (2.6)

where ε � 1 is a constant. This shows the linear approximation is still applied at this τ . We

know that τ∗ depends on p. At large enough τ , the linear perturbation will grow too much to

retain the linear approximation. This leads to a black hole formation. The important thing is

that there is no need to follow this evolution in detail, and we do not focus on the value of the

amplitude ε where the perturbation becomes nonlinear. We only need to see that the Cauchy

data at τ = τ∗ depend on r through the argument x. Here we obtain

Z(x, τ∗) ' Z∗(x) + εZ0(x) (2.7)

Changing to t, r we get

Z(r.t∗ − L∗) ' Z∗(−
r

L∗
) + εZ0(−r

(
L∗), L∗ ≡ Le−τ∗ (2.8)

The data at t = t∗ depend on the initial data at t = 0 of the overall scale L∗. The field equations

do not have an intrinsic scale, while the solution at t∗ must be universal. In proper coordinates,
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such as the polar-radial coordinates chose by Choptuik, it has the form of

Z(r, t) = f(
r

L∗
,
t− t∗
L∗

), (2.9)

where f is some function which is universal for all 1-parameter families [10]. This universality

of the solution works for all t > t∗, before and after the breaking down of the approximation

of linear perturbation around the critical solution. It is obvious that the black hole mass must

be proportional to L∗, because it has a length dimension and L∗ is the only length scale here.

So we know

M ∝ L∗ ∝ (p− p∗)1/λ0 (2.10)

Note that the critical exponent satisfies λ = 1/λ0.

The adjustment of the scaling law in the case of DSS type of critical solution was predicted in

[11], and confirmed in simulation works by Hod and Piran [12], claiming that “on the straight

line relating ln M to ln(p − p∗), a periodic “wiggle” or “fine structure” of small amplitude is

superimposed”:

ln M = λln(p− p∗) + c+ f [λln(p− p∗) + c], (2.11)

where f(z) = f(z + ∆). f is a periodic function which is universal with respect to initial data,

and the only parameter depends on the family of initial data is c. c presents a shift of the

‘wiggly’ line in the direction of ln(p− p∗).

It is obvious that for solutions near the critical one, the maximal scalar curvature scales exactly

like the black hole mass, with a critical exponent 2γ. It is simpler to “measure the critical

exponent and the fine-structure in the subcritical regime from the maximum curvature than

from the black hole mass in the supercritical regime”[13].

2.2.4 Scale-invariance and self-similarity

There is often additional symmetries of fixed points in dynamical systems. In the case of type

II critical phenomena, the critical point is a spacetime that is self-similar, or scale-invariant.

These symmetries can be either discrete or continuous. We describe the continuous symmetry
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first because it is simpler. In Newtonian physics, a solution Z is self-similar if it has the form

Z(~x, t) = Z[
~x

f(t)
] (2.12)

We call it self-similarity of the first kind if the function f(t) is derived from dimensional con-

siderations alone. An example of this is f(t) =
√
λt for the diffusion equation Z,t = λδZ. If the

questions are more complicated, we can get sigular self-similar solution at the limit, where f(t)

might include additional dimensionful constants, like (t/L)α , where α, namely an anomalous

dimension, does not depend on dimensional questions. However it is relavant to the solution of

the eigenvalue[14].

A CSS of the spacetime in GR is in correspondence to a homothetic vector field. This relation

is of the form

Lξgab = 2gab (2.13)

We can treat this as a type of conformal Killing vector, which satisfy that

LξR
a
bcd = 0 (2.14)

then we have

LξGab = 0 (2.15)

However, the inverse statement is not true: “The Riemann tensor and the metric need not

satisfy 2.13 and 2.14 if the Einstein tensor obeys 2.15”.

When it is a perfect fluid matter type, see 2.21, it satisfies 2.13, 2.15 and the Einstein equations

that

Lξu
α = −uα, Lξρ = −2ρ, Lξp = −2p (2.16)

It is similar for a massless scalar field φ type of matter, with stress-energy tensor (3.1), it

satisfies

Lξφ = κ (2.17)
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κ here is a constant.

In coordinates xµ = (τ, xi), the metric coeffiecients are

gµν(τ, x
i) = e−2τ ˜gµν(x

i) (2.18)

with τ is the negative logarithm of a spacetime scale, xi are dimensionless coordinates. In these

coordinates, the homothetic vector field is

ξ = − ∂

∂τ
(2.19)

In these coordinates, the CSS scalar field is of the form

φ = f(x) + κτ. (2.20)

And the matter type of perfect fluid with stress-energy

Gab = 8π[(p+ ρ)uaub + pgab] (2.21)

gives CSS solutions, where the direction of ua depends only on x. The density can be written

as

ρ(x.τ) = e2τf(x) (2.22)

Then we see the situation of a DSS in these coordinates. This was carried out in[15]:

gµν(τ, xi) = e−2τ g̃µν(τ, x
i), whereg̃µν(τ, x

i) = g̃µν(τ + ∆, xi) (2.23)

The conformal metric g̃µν does now depend on τ . Like the CSS, DSS has a geometric formula-

tion: If there is a discrete diffeomorphism Φ and a real constant ∆, then a spacetime is DSS,

as

Φ∗gab = e2∆gab (2.24)
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where Φ∗gab is the pull-back of gab under Φ. We see this as a definition of DSS, which is

independent of any particular vector field ξ. The Schwarzschild-like coordinates

ds2 = −a2(r, t)dt2 + a2(r, t)dr2 + r2dΩ2 (2.25)

can be brought into the form 2.23 by a simle transformation of the coordinates. The massless

scalar is then of the form

φ = f(τ, xi) + κτ, wheref(τ, xi) = f(τ + ∆, xi) (2.26)

with κ a constant.(In the Choptuik critical solution).

We want to emphasize that any coordinates xi can be introduced on the surface τ = 0, and

we may fix the surface by our own interest. In spherical symmetry, τ -surfaces can be chosen

to be spacelike in non-global coordinate systems, for example t ¡0. Also, we can find global

coordinate systems, where τ -surfaces must become spacelike at large r.

2.3 The scalar field

In this section we plan to review the Einstein field equations and Choptuiks observations at the

black hole threshold. Then we look at some recent work on the global structure of Choptuik’s

critical solution.

2.3.1 Field equations in spherical symmetry

Critical phenomena in gravitational collapse were first discovered in the model of a spherically

symmetric, massless scalar field φ minimally coupled to general relativity.

We consider a spherically symmetric, massless scalar field minimally coupled to general rela-

tivity. The Einstein equations are

Gab = 8π(OaφObφ−
1

2
gabOcO

cφ). (2.27)
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The equation of matter is

OaO
aφ = 0. (2.28)

Choptuik chose Schwarzschild-like coordinates:

ds2 = −α2(r, t)dt2 + a2(r, t)dr2 + r2dΩ2 (2.29)

where dΩ = dθ2 + sin2θdφ2 is the metric on the unit 2-sphere. In order to fix the coordinate,

Choptuik chose α = 1 at r = 0, then t is the proper time of a observer in the central. Then we

have

Φ = φ,r, Π =
a

α
φ,t (2.30)

the wave equation is a first-order system,

Φ,t = (
α

a
Π),r, (2.31)

Π,t =
1

r2
(r2α

a
Φ),r (2.32)

We find four components of the Einstein equations which are algebraically independent here.

One of the components is a linear relevant with the others, so we count it 3. These three contain

only first derivatives of the metric, namely a,t, a,r, and α,r, and are

a,r
a

+
a2 − 1

2r
= 2πr(Π2 + Φ2), (2.33)

α,r
α
− a,r

a
− a2 − 1

r
= 0 (2.34)

a,t
α

= 4πrΦΠ. (2.35)

Because of spherical symmetry, the only dynamics is in the scalar field equations 2.31 3.23
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2.3.2 The blackhole threshold

Two functions Π(r, 0) and Φ(r, 0) gives free data for the system. Choptuik calculated several

1-parameter families of such data by using the data for varied values of the parameter. p is

taken to be the amplitude of the Gaussian. For large enough amplitude the scalar field will

form a black hole, and for other small amplitude, it will disperse. Choptuik found that “in all

1-parameter families of initial data he investigated he could make arbitrarily small black holes

by fine-tuning the parameter p close to the black hole threshold. An important fact is that

there is nothing visibly special to the black hole threshold”. Close to the black hole threshold,

if we do not evolve the given data set for a sufficient long time, it is unreasonable to judge

whether it will form a black hole or not. As p → p∗ along the family, the spacetime varies

on ever smaller scales. Choptuik was able to determine p∗ to a relative precision of 10−15. He

made the smallest black holes to be 10−6 times the ADM mass. From those smallest black hole

masses up to 0.9 of the ADM mass (for some families), which is over six orders of magnitude,

the power-law scaling was always applicable. Choptuik therefore assumed that “γ is the same

for all 1-parameter families of smooth, asymptotically flat initial data that depend smoothly

on the parameter, and that the approximate scaling law holds ever better for arbitrarily small

p→ p∗”.

2.3.3 Global structure of the critical solution

The critical spacetime metric in adapted coordinates can be written as the product of an

exponent e2τ and a regular metric. We can see from this general form that τ = ∞ is a

curvature singularity. Ricci and Rieman invariants break like e4τ at the singularity (unless in

the flat spacetime). The Weyl tensor like Ca
bcd is conformally invariant. This implies that as

τ → ∞, the components with such index position remain finite. This type of singularity is

called “conformally compactifiable” or ”isotropic”.

[16] has given accurate definition of the global structure of the scalar field critical solution. It is

based on the analyticity at the past light-cone of the singularity and at the centre of spherical
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symmetry. It is called the self-similarity horizon (SSH). Then they analyze the critical solution

singularity at the future light-cone, which is the Cauchy horizon (CH). We may choose global

coordinates τ and x, in order to get the SSH, the CH and the regular center r = 0 to be linear

with respect to constant x. Also the surfaces of constant τ cannot be tangent to those lines of

x, which is shown in Figure 2.3.

Figure 2.2: The spacetime diagram of all generic DSS continuations of the scalar field critical
solution, from [16]. The naked singularity is strong timelike with negative mass. There is a unique
continuation where the singularity is replaced by a regular centre except at the spacetime point at
the base of the CH, which is still a strong curvature singularity. Cannot have other diagram if the
continuation is DSS. The lines with arrows are lines of constant x. The arrow points towards larger
curvature in the direction of ∂/∂τ .

The scalar field will, to approach the CH, oscillates infinite times with the amplitude decaying

to zero. The scalar field here is

φ(x, τ) ' Freg(τ)+ | x |ε Fsing[τ +H(τ) +Kln | x |], (2.36)

At x = 0 we get the SSH. Note here Freg, Fsing(τ) and H(τ) are periodic functions whose

period is ∆. They have been accurately computed with numerical scheme. When ε > 0, the

scalar field is continuous but not differentiable with respect to x on the CH. It is also smooth

with respect to τ . We see similar conclusion for the curvature and the metric. The ratio m/r (m

is the Hawking mass) on the CH, however, is not zero but has a value ordered 10−6. We know

that except for the singular point, the CH is regular with smooth data. So it is not obvious
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why there are different continuations. We find some explanation in [16], which considered all

DSS continuations. In a DSS analysis, the solution on the future side of the CH is similar to

Equation 2.36. We have the freedom to choose Fsing(τ) on the future side of the CH, while

Freg(τ) remains the same on both sides. There is one particular Fsing(τ) can give a regular

centre on the future side of the CH. Here the naked singularity becomes a point. The numerical

result of such continuation showed that it is nearly but not quite Minkowski, with m/r stays

small on the future side of the SSH. Other cases of DDS continuations have a “naked, timelike

central curvature singularity with negative mass”. See the continued solution of DSS spacetime

diagram in Figure 2.2.

Figure 2.3: As can be seen from the graph above, the conformal diagram which corresponds to
the critical solution mathced to an asymptotically flat one (RC: regular centre, S: singularity, SSH:
self-similarity horizon). The curved lines show the constant coordinate τ . On the other hand, the
conberging straight lines present another constant coordinate x. Assume that the initial data on the
cauchy surface CS is the exact critical solution out to the 2-sphere R, continually, we can extend the
these data smoothly to some asymptotically flat one, as a result, the future null infinity I+ does exist.
Also, the spacetime is not able to be continued above the Cauchy horizon CH. The redshift between
point A and B is finite because of salf-similarity, and for the redshift between B and C is finite because
of asymptotic flatness.

2.4 Near the threshold

Choptuiks results suggests: in smooth, generic, asymptotically flat spacetime, “fine-tuning” the

initial data to the black hole threshold gives co-dimension one set of data; the time evolution

of the critical solution contains at least a point singularity. So the cosmic censorship (see [0]

[33] for details) hypothesis must be set as “generic smooth initial data for reasonable matter
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do not form naked singularities”. Not as much as one naturally expected, Christodoulou [18]

proved that the formation of naked singularity is “not generic, but in a rather larger function

space, functions of bounded variation”; and in the past light-cone, the instability of the naked

singularity he found is not differentiable. Naturally we see in critical collapse, generic smooth

initial data can generate the naked singularity. So it is not very clear why the numerical results

shows the naked singularities are generic co-dimension one in the space with smooth initial

data.

We want to discuss how such “fine-tuning” effect the naked singularities. Firstly, we look at

the exact critical solution. Note in the critical solution, α, defined in 2.29, is bounded below

and above. So at observers at any two points on a radial null geodesic outwards to the past of

CH see a redshift which is bounded below and above. Therefore a higher curvature point can

be observed form a lower curvature point, at the exact critical solution.

Secondly, we consider a spacetime where the critical solution in the centre can be matched

smoothly to a asymptotically flat space outside. Here the flat spacetime covers part of the

critical solution including the singularity, see Figure 2.2.

Next, we look at the fine-tunning to the black hole threshold of the asymptotically flat initial

data. The approximation of such spacetimes can be found in 2.5. We see as the data approach-

ing the singularity and the approximation becoming better, most of the perturbations decay,

until a significantly growing perturbation occurs. (The growing on is claimed to be due to the

fine-running starts small.) Then we approach a highest curvature with the scale of

Rmax ∝ (p− p∗)2γ, (2.37)

which can still be seen from I +.

Finally, we consider the perfect fine-tuning limit. Here we no longer see a growing perturbation,

but all others still decay as we reach the naked singularity. We observe from 2.5 that this is

true no matter in which direction (spacelike, past, or future) the singularity is reached.



Chapter 3

Gravititional Collapse in Anti de sitter

spacetime

3.1 Overview

We have pointed out the significance of studying AdS collaspe in chapter 1 and we have reviewed

the critical phenomena observed in flat space black hole formation in chapter 2. Logically, we

think about studying the threshold of AdS black hole formation to see what kind of critical

behavior is applied. Pretorius and Choptuik gave numerical simulations of the formation of

black holes from the gravitational collapse of a massless, minimally-coupled scalar field in 2+1

dimensional AdS spacetime, and found a continuously self-similar solution and corresponding

mass-scaling exponent of approximately 1.2[22].

As we mentioned, in an isolated flat space system, large enough initial amplitudes lead to black

hole fromation while others lead to complete dispersion of the mass-energy to infinity. AdS

spacetime is different from flat Minkowski space, which is know to be stable under weakly

perturbation. What shows its difference from flat or de-Sitter spacetimes, is the existence of

a timelike boundary at (spatial and null) infinity [20]. Bizoń and Rostworowski’s results [21]

suggest that “AdS space is unstable under arbitrarily small generic perturbations”. Any initial

amplitude did not form a black hole in the first place will reflect off the boundary of AdS and

22
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increase a bit by each reflection(see section 3.3). After several times of reflection, the amplitudes

will finally reach the threshold and lead to the formation of a black hole.

In this chapter, we will study the gravititional collapse in an example of 2+1 dimensional AdS

first and focus primarily on the threshold for black hole formation (Critical AdS collapse 3.2).

Then we want to discuss the formation of a black hole with arbitrarily small initial amplitude

reflecting off the AdS boundary enough times (here we categorized as non-critical AdS blackhole

formation 3.3).

3.2 Critical AdS collapse

We present Pretorius and Choptuik’s results of a numerical study of the collapse and formation

of vacuum black holes from a massless scalar field in 2 + 1d AdS. Here we want to give some

conclusions on critical behaviour of AdS collapse rather than present the numerical data itself.

We are intersted in whether we can observe critical phenomena at the black hole threshold,

similar to what we mentioned in last chapter. If we tune the initial data carefully, can we

obtain a solution which is universal with respect to the initial data? The result shows that the

system have a CSS solution in the critical limit, with a scaling exponent γ = 1.20.05[22].

3.2.1 Coordinates and numerical scheme

The following calculation shows Pretorius and Choptuik’s choice of coordinate system. First,

we solve the Einstein field equation in 3 spacetime dimensions with cosmological constant

Λ ≡ −1/l2, coupled to a massless Klein-Gordon(KG) field

Rab −
1

2
Rgab + Λgab = κTab (3.1)

where the stress-energy tensor for the KG field φ is

Tab = φ;aφ;b −
1

2
gabφ;cφ

;c (3.2)
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In the case of simplest symmetric of a minimally-coupled scalar field here, so φ satisfies the

wave equation

�φ = φa;a = 0 (3.3)

Considering the causal structure of AdS spacetime and the boundary conditions on the field φ,

(for more details, see[22]), the coordinate system is chosen to be the form

ds2 =
e2A(r,t)

cos2(r/l)
(dr2 − dt2) + l2tan2(r/l)e2B(r,t)dθ2. (3.4)

A(r, t) and B(r, t) are functions of (r, t). It is easy to notice when A = B = 0 the above

metric is exactly AdS spacetime. In this metric, we also note radial null geodesics has a speed

dr/dt = ±1 of coordinates, which is constant. Null infinity I is at r = πl/2. The metric has

singularity at I . Boundary conditions can be set on A and B to obtain asymptotically AdS

spacetime. For the non-rotating collapse, θ has no dynamical significance. Defining

Φ(r, t) = φ,r, Π(r, t) = φ,t (3.5)

and using units where κ = 4π. Expand 3.1 3.2 3.3, we obtain these equations with the metric:

A,rr − A,tt +
1− e2A

l2cos2(r/l)
+ 2π(Φ2 − Π2) = 0, (3.6)

B,rr −B,tt +B,r(B,r +
2

lcos(r/l)sin(r/l)
)− (B,t)

2 +
2(1− e2A)

l2cos(r/l)
= 0, (3.7)

B,rr+B,r(B,r−A,r+
1 + cos2(r/l)

lcos(r/l)sin(r/l)
)− A,r

lcos(r/l)sin(r/l)
−A,tB,t+

1− e2A

l2cos2r/l
+2π(Φ2+Π2) = 0,

(3.8)

B,rt +B,t(B,r − A,r +
cot(r/l)

l
)− A,t(B,r +

1

lsin(r/l)cos(r/l)
) + 4πΦΠ = 0 (3.9)
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and

[tan(r/l)eBΦ],r − tan(r/l)[eBΠ]t = 0. (3.10)

In 3+1d, equations 3.8 and 3.9 are the Hamiltonian and momentum constraints respectively,

while equations 3.6 3.7 are combinations of the evolution and constraint equations. 3.10 is

the wave equation of the scalar field. There are two unknown geometric variablesA(r, t) and

B(r, t); hence one needs to use at least two of the four equations [3.6-3.9]. In [21], ther chose to

use 3.6 and 3.7 to evaluate A and B. And [3.8] and [3.9] can be used to estimate errors. With

respect to initial conditions, they choose to specify Φ(r, 0) and Π(r, 0). The Ricci scalar of this

spacetime is

R =
4πcos(r/l)2

e2Al2
(Φ2 − Π2)− 6

l2
(3.11)

The Weyl tensor is zero. Other non-zero curvatures can be written as polynomial expression

of R.

Regular conditions

We regular A(r, t), B(r, t),Φ(r, t) and Π(r, t) at the origin, r = 0, and at I, r = πl/2. We have

the following five conditions at r = 0,

A,t(0, t) = B,t(0, t) (3.12)

A,r(0, t) = 0 (3.13)

B,r(0, t) = 0 (3.14)

Φ(0, t) = 0 (3.15)

Π,r(0, t) = 0 (3.16)

and at r = πl/2

A(πl/2, t) = A, r(πl/2, t) = A,r(πl/2, t) = 0 (3.17)

B,r(πl/2, t) = 0 (3.18)
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Φ(πl/2, t) = 0 (3.19)

Π(πl/2, t) = 0. (3.20)

Initial conditions

We have the freedom to choose the scalar field Φ(r, 0) and Π(r, 0), the metric B(r, 0) and its

time derivative B,t(r, 0) for initial conditions at t = 0. Then they numerically solve for A(r, 0)

and A,t(r, 0) by inserting the hamiltonian and momentum constraints 3.8 and 3.9. To be simple

they set B(r, 0) = B,t(r, 0) = 0. We take a gaussian curve to the n-th power for the initial

scalar field φ(r, 0),

φ(r, 0) = Pe((r−r0)/σ)2n , (3.21)

and a family of harmonic functions

φ(r, 0) = Pcos2(rn/l), (3.22)

where P, r0, σ and n are constants. They also set Π(r, 0) = Φ(r, 0),Π(r, 0) = Φ(r, 0) or Π(r, 0) =

0 respectively.

Numerical Scheme

To solve the set of equations 3.63.7 and 3.10, Pretorius1 and Choptuik converted them to “a

system of finite difference equations on a uniform coordinate grid using a two-time level Crank-

Nicholson scheme”. They also add Kreiss-Oliger style dissipation [25] to control high-frequency

solution components, which is important to keep the method stable.

To detect black holes and excising sigularities, they implemented singularityexcision, a tech-

nique motivated by the black hole excision strategy, which was suggested by Unruh.
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3.2.2 Results

After following Pretorius and Choptuiks work, we study black hole formation from the collapse

of a minimally-coupled massless scalar field in 2+1 dimensional AdS spacetime, and now we

can draw some conclusions according to the numerical results.

Outside of the event horizon the spacetime settles down to a BTZ form; in the interior a central,

spacelike curvature singularity develops. At the threshold of black hole formation we discovered

that the scalar field and spacetime geometry evolve towards a universal, CSS form of solution.

When a point particle is present at the origin the critical solution is shifted in central proper

time by an amount with respect to the mass of the particle. Through examining the behavior

of the curvature scalar during sub-critical evolution, its deduced that the universal scaling

exponent γ for this system is roughly 1.2± 0.05. We have to admit that this value differs from

the scaling exponent 1/2 computed by Peleg and Steif [23] for the collapse of thin rings of dust

and by Birmingham and Sen [24] for particle collisions. On the other hand, those works took

other forms of matter into consideration, and the phase transition was between black hole and

naked singularity formation. Thus one would not expect to see the same exponent here.

In the end of [22], they also proposed a question asking if any small initial data in AdS will form

a black hole eventually if one waits long enough, regarding the properties of AdS boudary. We

will discuss the relevant work was carried out by Bizoń and Rostworowski[21] in next section.

3.3 Non-critical AdS black hole formation

In this section, we want to know what will happen to arbitrarily small amplitude in AdS

spacetime, which does not lead to a black hole formation in the first place. We discuss this by

looking at nonlinear evolution of a weakly perturbed AdS apace. The results of four-dimensional

AdS spherically symmetric Einstein massless scalar field equations, carried our by Bizoǹ and

Rostworowski[21], shows that AdS space is unstable under arbitrarily turbulent. Which implies

no matter how small the initial amplitude is there will always be a collapse and black hole

formation if one waits long enough. We also discussed in section 3.3.2 if this is true for any
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d+1 dimensional AdS (d ≥ 3).

3.3.1 Weak turbulence and AdS instability

For an asymptotically AdS apacetime, there is a timelike boundary at (spatial and null) infinity

which plays a role like the wall of a closed box. We obtain a Hamiltonian consevative system

,for no-flux boundary conditions, where energy cannot escape the boundary. Therefore we

will see unstability of AdS space, as shown below, when applying the KAM theory for partial

differential equations.

The Model

The model used in [21] is a self-gravitating spherically symmetric real massless scalar field in

3 + 1 dimensional asymptotically AdS. The Einstein-scalar system with negative cosmological

constant Λ is of the form

Gαβ + Λgαβ = 8πG(∂αφ∂βφ−
1

2
gαβ(∂φ)2), (3.23)

gαβOαOβφ = 0. (3.24)

For the metric we assume the ansatz

ds2 =
l2

cos2x
(−Ae−2δdt2 + A−1dx2 + sin2xdΩ2), (3.25)

where l2 = −3/Λ and dΩ2 is the metric on the round unit two-sphere. Assume that A, δ, and

φ We introduce auxiliary variable Φ = φ′ and Π = A−1eδφ, and insert 3.25 into 3.23 3.24, we

get a coupled quasilinear elliptic-hyperbolic system. The wave equation here is of the form

Φ̇ = (Ae−δΠ)′, Π̇ =
1

tan2x
(tan2xAe−δΦ), (3.26)
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and the constraints (regarding units 4πG = 1)

A′ =
1 + 2sin2x

sinxcosx
(1− A)− sinxcosxA(Φ2 + Π2), (3.27)

δ′ = −sinxcosx(Φ2 + Π2). (3.28)

The pure AdS solution is given by φ = 0, A = 1, δ = 0, and the length scale l drops out from

the equations. We want to solve the equations [3.26]-[3.28] for smooth initial data with finite

total mass. To obtain smoothness near x = 0, we get the power series expasions

φ(t, x) = f0(t) +O(x2), δ(t, x) = O(x2), A(t, x) = 1 +O(x2), (3.29)

normalization δ(t, 0) = 0 is used here. Thus, t is the proper time observed in the centre. Since

the total mass M is finite and consider the smoothness at spatial infinity, we obtain that near

x = π/2 there must be ρ = π/2− x.

φ(t, x) = f∞(t)ρ3 +O(ρ5), δ(t, x) = δ∞ + ρ, A(t, x) = 1− 2Mρ3 +O(ρ6), (3.30)

where M and free function f∞(t), δ(t, x) determine the power series expasions uniquely. There

is no need to specify boundary conditions at infinity for smooth initial data, because we do

not have freedom to impose the boudary data, wich means it is natrually defined (see[26] for

proof).

Numerical results

The numerical scheme in [21] is to solve the above system with fourth-order accurate finite-

difference code by using the method of lines and a 4th-order RungeKutta scheme to integrate

the wave equation in time. At each step the metric functions were updated by solving the

hamiltonian constraint 3.27 and the slicing condition 3.28.

Solutions shown in Figure 3.1 and Figure 3.2 were generated from Gaussian-type initial data
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Figure 3.1: [21] Horizon radius vs amplitude for initial data (9). The number of reflections off the
AdS boundary before collapse varies from zero to nine (from right to left). xH(ε) has the shape of the
right continuous sawtooth curve with finite jumps at each εn.

of the form

Φ(0, x) = 0, Π(0, x) =
2ε

π
exp(−4tan2x

π2σ2
), (3.31)

with varying amplitude ε and fixed width σ = 1/16. For large enough amplitudes we see quick

collapses. There is an horizon at xH where A(t, x) is zero. This is the sign for a collapse.

When the amplitude go smaller, the horizon radius xH also become smaller and goes to zero

for some critical amplitude ε0. The critical behaviour is generally the same as in flat space

described in last chapter. In critical behaviour here, nothing depends on the Λ constant, so

the solution with critical amplitude ε0 is just the DSS solution discovered by Choptuik in the

corresponding dimensions in flat space. For smaller amplitudes that very close to ε0 the wave

moves to infinity, reflects off the boundary, and collapses as soon as arriving the center. By

slowly lowering the amplitude we observe the 2nd critical value ε1 with xH = 0. As gradually

lowering ε, this process repeats, and we always obtain Choptuiks solution in the n − th time

the wave is at the center.

Then we look at the updating of general small initial data, focusing on early and intermediate

pre-collapse phases of the process. The Ricci scalar at the centre, R(t, 0) = −2Π2(t, 0)/l2−12/l2,

can be a indicator for instability. An upper envelope of these oscillations is shown in Figure 3.2a,

where we can tell every phase of the evolution. During the first phase the amplitude remains

nearly constant but after a while a 2nd phase which looks like exponential growth started,
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Figure 3.2: [21] (a) Π2(t, 0) for solutions with initial data for four moderately small amplitudes. For
clarity of the plot only the upper envelopes of rapid oscillations are depicted. After making between
about fifty (for ε = 6

√
2) and five-hundred (for ε = 3) reflections, all solutions finally collapse. (b)

The curves from the plot (a) after rescaling.

followed by a 3rd phases of sharper growth. And eventually it collapses. It is seen that the

time of the second phase scales as ε2 (see Figure 3.2b), which implies that small perturbations

begin to grow at this point. This behaviour demonstrates the instability of AdS space.

Bizoń and Rostworowski tried to explain the reason of above observation. They classified

data into two kinds - non-resonant (one-moda) data and resonant (two-mode) data. For non-

resonant mode the solution is always close to the initial data during the entire evolution. This

indicates stability. On the contray, for resonant mode we see an exponential instability with

time t = O(ε− 2).

They reached a agreement that such instability of AdS is triggered by a resonant mode mixing

which “gives rise to diffusion of energy from low to high frequencies”, which is still a conjecture

and not yet been proven.
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More evidence shows that such observation of weak turbulence is applicable for different

bounded domain nonlinear wave equations. Recently it has been proven for the nonlinear

Schrö dinger equation on torus [27]. The results in [21] presented above, however, is advanced

in the direction of Einstein equations.

3.3.2 AdS collapse in higher dimensions

We have known that AdS is unstable against gravitational collapse in 3+1 dimensional, but

is this also true for higher dimension cases where d ≥ 3. Jalmuzna, Rostworowski and Bizon

indicated in[27] that the weakly turbulent instability of all higher dimensional (d+1 for d ≥ 3)

AdS is true and corrected the contrary claim made in [28]. They used very similar model and

numerial method as in [21], just ajusted the equations to d+1 dimensions. So we present the

numerical result in Figure 3.3 without listing all the equations here.

We can draw similar conclusion as the 4 dimensional case shown in 3.3.1. Numerical results

shows that for small enough ε in this scaling continues almost all the way to the collapse, which

is tH(ε) ∼ ε2. The evidence for this fact is shown in Figure 3.3 which depicts the evolution of

three solutions with small amplitudes differing by a factor of
√

2.
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Figure 3.3: [27] Upper plot: the upper envelope of Π2(t, 0) for initial data with three relatively small
amplitudes. After making 95 (for ε = 0.0002), 198 (for ε =

√
2 × 0.0001, and 405 (for ε = 0.0001)

reflections, all solutions eventually collapse. Lower plot: the curves from the upper plot after rescaling
ε−2Π2(ε2t, 0) seem to converge to a limiting curve.



Chapter 4

Conclusion

In this thesis, we reviewed “critical phenomena” in gravitational collapse both in asymptotically

flat space 2 and Anti de-Sitter spacetime 3. We see samilar critical behaviour and self-similar

solutions at the black hole threshold. This gives support to the statement “Critical phenomena

give a natural route from smooth initial data to arbitrarily large curvatures visible from infinity,

and are therefore likely to be relevant for cosmic censorship, quantum gravity, astrophysics, and

our general understanding of the dynamics of general relativity.” in [31]. In the last two sections

of Chapter 3, we discussed the non-critical cases of AdS black hole formation based on numerical

work of [21] and [27]. We see an interesting conclusion that in asymptotically AdSd+1 (d ≥ 3),

any initial amplitude did not form a black hole in the first place will reflect off the boundary of

AdS and increase a bit by each reflection and finally leads to a formation a black hole. In [21],

such instability of AdS is claimed to be triggered by “a resonant mode mixing which gives rise

to diffusion of energy from low to high frequencies”.

One well-known example of AdS/CFT is AdS5 × S5/N = 4 Super Yang Mills correspondence

(see [32] for details). It will be logical to discuss further what implication might the weakly

turbulent instability of AdS5 give to N = 4 Super Yang Mills theory.

34



35

Another interesting question is whether the negative cosmological constant Λ is relavent to the

observation in the evolution. Is it a decisive factor to triggering a non-critical gravitational

collapse in a corresponding spacetime? It will be interesting to carry out further study on this

question.



Bibliography
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