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Abstract

In this MSc dissertation we investigate the recently introduced continuous

matrix product state formalism (cMPS), which lies at the intersection be-

tween quantum information theory and quantum field theory. Quantum in-

formation theoretic concepts allow for an efficient description of quantum

field states with the states obeying an area law. This efficiency in description

of what has been christened the physical corner of Hilbert space allows us

to apply the variational method to quantum fields, a goal that has been a

long-standing challenge for field theorists. In this thesis, we will derive core

aspects of this formalism and apply it to the non-relativistic Lieb-Liniger

model and the relativistic free Dirac model, carefully going through our nu-

merical implementations and results and illustrating technical and physical

subtleties involved in the machinery of the cMPS formalism when used as a

variational method. We present a new technique for demonstrating an aspect

of Dirac theory, where we solve dissipative dynamics on an auxiliary system

to show the filling of the Dirac sea. We conclude with an outlook onto future

roads of research.
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Conventions and preliminaries

Before diving into the matter, let us establish our conventions and provide

some key results and properties, which we make repeated use of.

• T and P denote time-ordering and path-ordering respectively

• Einstein summation, i.e. implicit summing over indices that appear

twice in a product, with one upstairs and one downstairs

• ∗ denotes complex and † Hermitian conjugation

• σi denote the Pauli matrices

σ1 = σx =

0 1

1 0

 σ2 = σy =

0 −i

i 0

 σ3 = σz =

1 0

0 −1


• density matrix ρ ∈ L(H) for |ψ〉 ∈ H

ρ =
∑
i

pi |ψi〉 〈ψi| tr ρ = 1 ρ ≥ 0

• partial trace: for a composite system ρAB ∈ L (HA ⊗HB)

ρA = trB {ρAB} =
∑
k

(1⊗ 〈k|) ρAB(1⊗ |k〉)

• Entanglement entropy: for a pure bipartite system ρAB = |ψ〉AB 〈ψ|

the von-Neumann entropy is a unique measure of entanglement:

S(ρA) = − tr(ρA log ρA)

vi
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• Clifford algebra in 1 + 1 dimensions with ηµν = diag (1,−1) and choice

of γµ

{γµ, γν} = 2ηµν1⇔ γ0 = σz γ1 = iσx

• Commutator product rule:

[A,BC] = B[A,C] + [A,B]C

• Trace over tensor products:

tr(A⊗B) =
∑
ij

〈ij|A⊗B |ij〉 =
∑
i

〈i|A |i〉
∑
j

〈j|B |j〉 = trA trB

Credit

This thesis is based on the seminal work by Frank Verstraete, Ignacio Cirac,

Tobias Osborne, Jutho Haegeman, Jens Eisert et al. [Verstraete and Cirac,

2010, Haegeman et al., 2010, Haegeman, 2011].



Chapter 1

Introduction

1.1 From entanglement to matrix product states

One of the most striking and astonishing features of quantum mechanics is

the phenomenon of entanglement. Entanglement is a core concept in the the-

ory of quantum information, where it lies at the heart of the theory’s most

famous results like the violation of Bell’s theorem or quantum computing.

Since then, the concept has spread into different areas of physics and there is

hope that it might shed new light onto important questions. The first funda-

mental lesson quantum information theory teaches us is that Hilbert space is

too big, which is to say physical states only populate a tiny part of Hilbert

space. New and provably efficient representations of quantum field states

can give us access to powerful new analytical tools to analyse quantum field

systems, classify quantum phases and construct solvable non-trivial models.

In addition, these representations naturally allow for variational methods for

the calculation of physical properties of matter. The canonical example for

1



CHAPTER 1. INTRODUCTION 2

where this has happened is a method called the density matrix renormal-

ization group (DMRG), which is a vastly successful method for the analysis

of strongly correlated one-dimensional systems. The success of the DMRG

method originates from the particular entanglement scaling in these systems,

where the entanglement entropy obeys an area law. For example the en-

tropy of a block of spins in one dimension scales like the boundary of the

block and is therefore bounded by a constant. The method to incorporate

this scaling of entropy is the matrix product state formalism. The matrix

product state is a particular way to write a quantum state and forms part

of a more general class of tensor network states. It allows to regulate the

degree of entanglement in our description of a system. It has been observed

that the ground states of most Hamiltonians obey such an area law [Eisert

et al., 2010] and hence it is vastly inefficient to describe them by the näıve full

Hilbert space description [Poulin et al., 2011]. This restriction to what we

call the physical corner of Hilbert space, and which roughly speaking encodes

the information from distant regions into the boundary, makes it possible to

apply the variational principle to an otherwise intractable task, and thereby

allows us to study quantum systems to new depths. In 2010, Verstraete and

Cirac proposed a continuum limit of matrix product states, hence called the

continuous matrix product state formalism [Verstraete and Cirac, 2010]. The

motivation is again to use the variational principle but this time we subject

our formalism not to lattice systems but to field theories, thereby making

the connection to a wider range of physics. The area law scaling of the en-

tanglement entropy, conjectured to be an instance of the general holographic

principle, is a phenomenon that can also be found in the forementioned types
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of theories. Looking back at the golden age of black holes one famous exam-

ple is certainly the scaling of the entropy of black holes, which does scale like

the area of the black hole and not as its volume and gave rise to black hole

thermodynamics [Bekenstein, 1973]. History aside, the cMPS formalism is

a promising direction of research for simulating field theories. The auxiliary

fields we introduce in this formalism arise in a very similar manner in the

context of cavity QED, which firstly will give us an intuitive interpretation

for our method and secondly has recently been turned on its head and used to

propose the simulatation of quantum fields by using a cavity [Barrett et al.,

2012].

1.2 Outline of this dissertation

In this dissertation, we will analyse the recently introduced cMPS formalism

for efficiently handling quantum fields. We will demonstrate its effectiveness

as a variational class by applying it to the Lieb-Liniger model, a model of a

one dimensional bosonic gas. We go through the physical and numerical im-

plementation details of the cMPS procedure. We then extend the formalism

to a relativistic setting, where we use the free Dirac equation as a toy theory.

The relativistic nature of this provides a good setting for illustrating various

subtle features of the cMPS formalism and its ability to extract meaningful

physics. The original work of this dissertation will be a new approach to

finding the filling of the Dirac sea by solving the dissipative dynamics on the

auxiliary system.



Chapter 2

The Variational Principle

2.1 The Rayleigh-Ritz method

The version of the variational principle we intend to use in this thesis is due

to Ritz [1909]. It states that the energy expectation value of any state will

always be greater or equal to the energy of the ground state:

E0 ≤ 〈ψ| Ĥ |ψ〉
〈ψ|ψ〉

(2.1)

The proof is straightforward, if we use a completeness relation in the eigen-

basis of the Hamiltonian [Shankar, 1994],

1 =
∑
E

|E〉 〈E| Ĥ |E〉 = E |E〉 , (2.2)

4



CHAPTER 2. THE VARIATIONAL PRINCIPLE 5

which we insert into the above expression

〈ψ| Ĥ |ψ〉
〈ψ|ψ〉

=
∑
E

〈ψ| Ĥ |E〉 〈E| |ψ〉
〈ψ|ψ〉

=
∑
E

E | 〈E|ψ〉 |2(〈ψ|ψ〉)−1

≥ E0
∑
E

| 〈E|ψ〉 |2(〈ψ|ψ〉)−1 = E0.

(2.3)

For the inequality in the last line we used that E0 is by definition the lowest

energy of the Hamiltonian and for the very last step we used the complete-

ness relation in reverse.

Thus, at least in theory, we have a method to find the ground state of an

arbitrary Hamiltonian: We take all states in the Hilbert space and for every

state compute the energy expectation value. We then search for the pair

(|ψ〉 , Eψ) with the lowest energy and the corresponding vector is a good

candidate for the ground state of the Hamiltonian in question. Alas, this

already indicates the crucial problem with this method, because we would

have to search through every possible state in Hilbert space. For example,

if we have a spin-chain with n sites, we would have to search through all

possible states ∑
σ1...σn

cσ1...σn |σ1 . . . σn〉 , (2.4)

where the number of coefficients cσ1...σn scales like 2n. This exponential scal-

ing of the size of Hilbert space with the system thus makes the näıve use of

the variational principle an intractable search for the needle in the haystack.
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2.2 Desiderata for a variational class

We would like to find a parametrization for a manifold of physical states,

that provides us with the three following features:

• Efficiency: a polynomical scaling in parameters as we increase the sys-

tem size

• Completeness: we would like to be able to reach all states in the full

Hilbert space

• Naturalness: the physics should be described by local observables and

the entanglement entropy should obey an area law

We see that the full Hilbert space description fails on point one and three,

it has exponential scaling in parameters and the entropy obeys a volume law

rather than an area law. The standard approach to the variational method

so far has been to use Gaussian states. However, they fail on point two as

they do not capture all states. In contrast to that cMPS is a good candidate

for a variational class that satisfies all these requirements.

2.3 Entropic area laws for local Hamiltonians

If one takes a random state out of the full Hilbert space of a system, that

state will be locally featureless and maximally entangled with its surrounding.

However, ground-states of local Hamiltonians are only slightly entangled and

typically obey the above mentioned entanglement-entropy area-laws [Eisert
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et al., 2010]. The region of Hilbert space, which contains these slightly en-

tangled states is actually an exponentially small [Poulin et al., 2011] part of

the full Hilbert space and has been christened the “physical corner of Hilbert

space”. A central goal of the matrix product states program is exactly to ca-

puture this behaviour, thereby “foliating” Hilbert space. If this parametriza-

tion has a favourable scaling, we are back in the game for the variational

principle, since now the proverbial search for the needle in the haystack can

be turned into a polynomially scaling problem, therefore allowing an efficient

use of the variational method.



Chapter 3

Matrix Product State

Representations

The matrix product state representation defines a natural hierarchy for any

Hilbert space of quantum states. That is to say, any pure quantum state can

be recast as a matrix product state. Writing a state as an MPS essentially

amounts to expressing the coefficients of the state as matrix products which

then gives the state several powerful and desirable features. Looking at the

state |ψ〉 in the spin-basis

|ψ〉 =
∑
σ1...σn

cσ1...σn |σ1 . . . σn〉 , (3.1)

we can view the complex coefficient cσ1...σn as a tensor, which we will decom-

pose into matrices by repeated use of singular value decomposition.

8
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3.1 Singular value decomposition

Every rectangular matrix M admits a decomposition of the following form,

called the singular value decomposition (SVD)

M = UDV † (3.2)

with UU † = 1, V †V = 1 and D diagonal. So in components:

Mij =
∑
k

UikDkkV
∗
jk. (3.3)

3.2 Schmidt decomposition

The Schmidt decomposition is canonical representation of pure bipartite

quantum states. Given a bipartite system with Hilbert space HAB = HA ⊗

HB, any quantum state |ψ〉 ∈ HAB

|ψ〉 =
∑
mn

amn |m〉A |n〉B (3.4)

can be decomposed by bringing the coefficients amn into their SVD form

|ψ〉 =
∑
imn

umi dii v
∗
ni |m〉A |n〉B . (3.5)

Now u and v, since they are unitary, just rotate the basis states. This can

be seen as a new orthonormal basis, which we write as
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∑
m

umi |m〉A =: |i〉A ∈ HA

∑
n

v∗ni |n〉B =: |i〉B ∈ HB. (3.6)

Thereby we get to the standard form of the Schmidt decomposition

|ψ〉 =
r∑

k=1

√
λk |k〉A |k〉B (3.7)

with orthonormal bases |k〉A and |k〉B as well as
∑

k λk = 1. The sum runs

over the number of singular values of the original coefficient matrix amn,

which is related to entanglement and is called the Schmidt-rank r of the

state |ψ〉. The Schmidt rank is an example of what we in general will call

the bond dimension and which plays a key role in our later analysis when

we deal with multipartite systems. For a given Schmidt rank we can find an

upper bound on the entanglement entropy. The reduced density matrix is

ρA = trB |Ψ〉 〈Ψ| =
r∑

k=1

λk |k〉 〈k| with
∑
k

λk = 1. (3.8)

The upper bound is given by λk = 1/r, which gives

S(ρA) = −
r∑

k=1

λk log λk ≤ −
r∑

k=1

1

r
log(r−1) = log r. (3.9)
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3.3 Matrix Product Representation

Let us now use eqn. (3.7) to decompose a general pure state of n sites

|ψ〉 =
∑
σ1...σn

cσ1...σn |σ1 . . . σn〉 . (3.10)

We recursively Schmidt-decompose the coefficient cσ1...σn as

cσ1...σn =

Dk1∑
k1

Uσ1k1dk1k1(V
†)k1(σ2...σn) = (3.11)

∑
k1

Uσ1k1ck1σ2...σn =
∑
k1k2

Uσ1k1U(k1σ2)k2c(a2σ3)(σ4...σn) = . . . (3.12)

=
∑

k1...kn−1

Uσ1k1U(k1σ2)k2 . . . U(kn−2σn−1)kn−1Uσnkn−1 , (3.13)

where we absorbed the singular value matrix dkk into V † in every step and

the ki run from 1 to the bond dimension Dki . We can understand the ki as

the matrix indices, which make this into a matrix product and σi as labels

to the individual matrices. Thus defining

Aσiab := U(aσi)b, (3.14)

we can now write the coefficents as a product over matrices

cσ1...σn = Aσ1 . . . Aσn , (3.15)

where we suppress the matrix indices and hence have found the matrix prod-

uct state representation
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|Ψ〉 =
∑
σ1...σn

Aσ1 . . . Aσn |σ1 . . . σn〉 . (3.16)

3.4 Normal form

Due to the unitarity in the SVD matrices we have

U †U = 1⇔
∑
j,σm

U †iσmjUjσmk = δik (3.17)

⇒
∑
σm

Aσm†Aσm = 1, (3.18)

which is called the left normalization condition [Schollwoeck, 2010], since we

started our decomposition of cσ1...σn from the left and in the next step we

will show it directly leads to a normalized state. We could equally well have

started on the right and go in the other direction, which would give us the

right normalized form
∑
AA† = 1 . Let us now compute the norm of the

state as

〈Ψ|Ψ〉 =
∑
σ1...σn

(Aσn)† . . . (Aσ1)†Aσ1 . . . Aσn =

∑
σn

(Aσn)† . . .

{∑
σ2

(Aσ2)†
{∑

σ1

(Aσ1)†Aσ1︸ ︷︷ ︸
=1

}
Aσ2
}
. . . Aσn = 1.

(3.19)

We see that due to the left normalization condition everything contracts

nicely and our state is normalized.
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3.5 Boundary conditions

The first and last matrices are actually a row and a column vector respec-

tively, which is the so called open boundary case. We could also promote

them to matrices and trace over the whole matrix product, which is called

the periodic boundary case. We combine these by writing

|ψ〉 =
∑
σ1...σn

trBAσ1 . . . Aσn |σ1 . . . σn〉 , (3.20)

where B = 1 for periodic boundary conditions and B = |ωR〉 〈ωL| for open

boundary conditions. We note that local observables away from the boundary

should not be able to distinguish between the two.

3.6 Gauge freedom

From the above form it is immediately apparent, that we have an overcom-

plete parametrization, since we are free to gauge a matrix A[n] at site n by

the transformation

A[n]→ X[n− 1]A[n](X[n])−1 (3.21)

with some invertible matrices X. Taken as a variational manifold, these are

gauge degrees of freedom, which leave the physical state unaffected.
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3.7 MPS and entanglement

It is clear from the generality of the Schmidt decomposition, that if we let

the bond dimension D go to infinity, we can capture any arbitrary state in

the Hilbert space and thus our representation is complete. However, up to

this point, one might wonder what the benefit might be, since we so far have

added more to the state instead of reducing it. The key insight is, that the

bond dimension, analogously to the Schmidt rank, is related to the amount

of entanglement encoded in the state. One extreme is the above mentioned

arbitrarily large bond dimension and the other extreme is a bond dimension

of one, where we then are multiplying scalars and hence have a classical

product state with no entanglement. The physical states lie between these

extremes and with moderate bond dimension we can capture any physical

state, at the same time avoiding the significant overhead which is present in

the generic Hilbert space description (eqn. 3.10). For example, D = 2 or 3

is already sufficient to describe states as significant as W-states, GHZ-states

and cluster-states. In complete analogy with eqn. (3.9) the upper bound on

the entanglement entropy is again given by S ≤ logD.

3.8 Expectation values

We would like to find expectation values for observables in this formalism,

which we need to make use of the variational method. Given some observable
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O = O1 ⊗ · · · ⊗ On we compute its expectation value

〈O〉 = 〈ψMPS| O |ψMPS〉 (3.22)

=
d∑

k1,...kn=1
k′1,...k

′
n=1

tr

(
N∏
m=1

Akm
∗
)

tr

(
N∏
m=1

Ak
′
m

)(
N∏
m=1

〈km| Om |k′m〉

)
, (3.23)

where we use the identity tr(A⊗B) = trA trB to write

= tr

 d∑
k1,...kn=1
k′1,...k

′
n=1

N∏
m=1

Akm
∗ ⊗ Ak′m 〈km| Om |kim〉

 (3.24)

= tr

 N∏
m=1

d∑
km,k′m=1

Akm
∗ ⊗ Ak′m 〈km| Om |k′m〉

 . (3.25)

We define the scattering matrix as

EOm :=
d∑

km,k′m=1

Akm
∗ ⊗ Ak′m 〈km| Om |k′m〉 . (3.26)

This allows us to write our expectation values as a product over scattering

matrices

〈O〉 = tr
N∏
m=1

EOm . (3.27)

Specifically, E1 is our first example of a transfer matrix, a concept that will

become important for the continuum extension.



Chapter 4

Continuous Matrix Product

States

4.1 Generic state

We begin by postulating the cMPS state. The physical system, we wish to

describe is a quantum field and we provide and efficient, discrete “coordinate

system”that naturally inherits many properties, most notably area laws, from

its discrete cousin MPS. We consider a one-dimensional system of length L

with periodic boundary conditions. The bosonic field is associated to field

operators Ψ(x) obeying a canonical commutation relation [Ψ(x),Ψ†(y)] =

δ(x − y). The vacuum state |Ω〉 associated to these operators is defined

by Ψ(x) |Ω〉 = 0. Let Q and R be D × D matrices, which in general are

position-dependent and called auxiliary variables. The cMPS state then is

defined as

16
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|χ(Q,R)〉 = traux

{
B P exp

∫ L

0

ds Q(s)⊗ 1 +R(s)⊗Ψ†(s)
}
|Ω〉 . (4.1)

In the above expression, B encodes the boundary condition, which will not

affect local physics and can be chosen as B = 1. We now proceed to explore

the features of this class of states and provide physical justification for the

particular structure.

4.2 Expansion in the field operators

Let us expand |χ〉 in terms of field operators. Under the path-ordering the

expansion yields

|χ〉 =
∞∑
n=0

∫
ds1 . . . dsn tr{(Pe

∫ x1
0 dsQ(s))R(x1)(Pe

∫ x2
x1

dsQ(s)
) . . .

. . . (Pe
∫ xn
xn−1

dsQ(s)
)R(xn)(Pe

∫ L
xn

dsQ)}Ψ†(x1) . . .Ψ†(xn) |Ω〉 .

(4.2)

We thus can interpret Pe
∫ b
a dsQ(s) as a free propagation between points a and

b. Furthermore the role of the R(x) matrix is analogous to a scattering matrix

at position x, that creates a field excitation (particle).
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4.3 Derivation of cMPS as continuum limit

of MPS

Continuous Matrix Product states were originally found as a continuum limit

of MPS. In order to do that, we introduce a lattice with lattice spacing

ε. Hence the continuum [0, L] is approximated by a lattice of N = L/ε

sites. Requiring that the resulting state has finite average particle number,

Verstraete and Cirac [2010] found the limit

A0 = 1 + εQ Ak =
1

k!
εkRk (4.3)

with D ×D matrices Q and R.

We now derive an expression for the norm of the cMPS state in this scheme

by going into eqn. (3.25):

〈χ|χ〉 = tr

 N∏
m=1

D∑
km,k′m=1

Akm
∗ ⊗ Ak′m 〈ki|k′m〉

 (4.4)

= tr

(
N∏
m=1

D∑
km

Akm
∗ ⊗ Akm

)
(4.5)

= tr
N∏
m=1

(
1⊗ 1 + ε(Q⊗ 1 + 1⊗Q∗ +R⊗R∗) +O(ε2)

)
(4.6)

We let N → ∞ while keeping ε = L/N fixed. In this limit, the above
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expression goes to

〈χ|χ〉 = tr exp [L(Q⊗ 1 + 1⊗Q∗ +R⊗R∗)] (4.7)

In analogy to the transfer matrix for matrix product states we can identify

the transfer matrix for continuous matrix product states as

T := Q⊗ 1 + 1⊗Q∗ +R⊗R∗ (4.8)

which lets us write the norm of the cMPS state compactly as 〈χ|χ〉 =

tr exp(LT )

4.4 cMPS from continuous measurement

A second and more physical motivation for the form of |χ(Q,R)〉 comes from

the theory of continuous quantum measurement [Caves and Milburn, 1987].

We follow the original approach by Osborne et al. [2010] and introduce a

physical system, which will function as our meter system and records the

dynamics of a discrete quantum system. It is initialized in the ground state

|Ω〉 and we couple it to the discrete auxiliary system by evolving with the

Hamiltonian

H(t) = K(t)⊗ 1 +
√
ε

N∑
k=1

δ(t− kε)
(
iR(kε)⊗ a†kε − iR

†(kε)⊗ akε
)
, (4.9)
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where Nε = L and K(t) is the free Hamiltonian. We then go the standard

way of integrating the Schrödinger equation, using the time-ordered expo-

nential

U(0, L) = T exp

(
−i
∫ L

0

ds H(s)

)
. (4.10)

We sometimes abbreviate U(0, L) = U(L). In the ε → 0 limit we can write

the sum as an integral, integrate over the Dirac delta and taking Ψ(kε) :=

akε/
√
ε arrive at

Hint(t) = iR(t)⊗Ψ†(t)− iR†(t)⊗Ψ(t). (4.11)

Thus, in the continuum limit the evolution operator reads

U(L) = T exp

(∫ L

0

ds (−iK(s))⊗ 1 +R(s)⊗Ψ†(s)−R†(s)⊗Ψ(s)

)
.

(4.12)

If we initialize the meter system in the vacuum state |Ω〉, we can reexpress

U(L) with the Zassenhaus formula and use that we act on the vacuum, i.e.

a |Ω〉 = 0. We then have that

exp

(∫ L

0

ds − iK ⊗ 1 +R⊗Ψ†
)

exp

(∫ L

0

ds
(
−R† ⊗Ψ

))
×

exp

(
−1

2

∫ L

0

ds1

∫ L

0

ds2

[
−iK ⊗ 1 +R⊗Ψ†, R† ⊗Ψ

])
exp(higher orders) |Ω〉 .

(4.13)
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Let us analyze the argument of the last term:

[
−iK ⊗ 1 +R⊗Ψ†,−R† ⊗Ψ

]
=

i[K,R†]⊗Ψ +R†R⊗ΨΨ† −RR† ⊗Ψ†Ψ =

i[K,R†]⊗Ψ +R†R⊗ [Ψ,Ψ†] + [R,R†]⊗Ψ†Ψ

(4.14)

Upon Ψ |Ω〉 = 0, [Ψ(s1),Ψ†(s2)] = δ(s1 − s2) and the Baker-Campbell-

Hausdorff relation, we can recombine this to get

exp

(∫ L

0

ds − iK ⊗ 1− 1

2
R†R⊗ 1 +R⊗Ψ†

)
|Ω〉 . (4.15)

Now defining Q := −1
2
R†R − iK and tracing out the auxiliary system, we

again arrive at the standard form of a cMPS state

|χ〉 = traux T exp

(∫ L

0

ds Q(s)⊗ 1 +R(s)⊗Ψ†(s)

)
|Ω〉 . (4.16)

4.5 Expectation values in cMPS

It is possible to express expectation values entirely in terms of the auxiliary

system, thus eliminating any dependence on the field system and converting

to a discrete calculation. In general, expectation values of some observable

O localized in some spatial region are given by

〈O〉 = 〈χ| O |χ〉 . (4.17)

O will usually consist of Ψ and its adjoint and its derivatives respectively, so



CHAPTER 4. CONTINUOUS MATRIX PRODUCT STATES 22

in order to evaluate eqn. (4.17) we want to commute these operators past

U(L), where they then annihilate the vacuum state via Ψ |Ω〉 = 0. To follow

this idea, let us analyse the expression Ψ |χ〉 = Ψ traux U(L) |Ω〉 and expand

the commutator [Ψ(s), U(L)]. To find an expression for this, let us start

simple and recall the commutator product rule:

[A,BC] = B[A,C] + [A,B]C (4.18)

To clear up notation, we define the n-th power commutator Cn := [A,Bn]

By iteratively using eqn. (4.18), we can generalize to an n-th power product

rule:

Cn = [A,Bn] = BCn−1 + C1B
n−1 =

B2Cn−2 +BC1B
n−2 + C1B

n−1 =

Bn−1C1 +Bn−2C1B + · · ·+BC1B
n−2 + C1B

n−1

=
n−1∑
k=0

Bn−k−1C1B
k

(4.19)

In the continuum limit we obtain the following:

[Ψ(x), U(L)] =
∞∑
n=0

∫
0<y1<···<yn<L

dy1 . . . dyn [Ψ(x), F (y1) . . . F (yn)]

=
∞∑
n=0

n−1∑
k=0

∫
dy1 . . . dynF (y1) . . . F (yn−k−1) [Ψ(x), F (yn−k)]F (yn−k+1) . . . F (yn)

=

∫ L

0

ds U(L− s) [Ψ(x), F (s)]U(s)

With F (s) = Q(s)⊗ 1 +R(s)⊗Ψ†(s) we find
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[Ψ(x), F (s)] =
[
1⊗Ψ(x), Q(s)⊗ 1 +R(s)⊗Ψ†(s)

]
= R(s)⊗ 1δ(x− s),

(4.20)

and therefore the commutator is

[Ψ(x), U(L)] = U(L− x)R(x)U(x) (4.21)

where we omit trivial action on the respective spaces, since it is clear from

the context that R really means R⊗ 1 and Ψ(x) really means 1⊗Ψ(x).

We can hence eliminate the field operator and write

Ψ(x) |χ〉 = tr Ψ(x)U(L) |Ω〉 = tr
{

[Ψ(x), U(L)] |Ω〉+ U(L)Ψ(x)
}
|Ω〉

= trU(L− x)R(x)U(x) |Ω〉
(4.22)

In order to evaluate derivatives of field operators, we can quite simply ex-

change the order of derivative and state, so we firstly do the cMPS substitu-

tion and only then apply the respective derivative, i.e.

[
d

dx
Ψ(x), U(L)

]
=

d

dx
[Ψ(x), U(L)]

= U(L− x)
[
R,F

]
U(x) + U(L− x)R′(x)U(x)

(4.23)

where the last term vanishes for the translation invariant case, where we have

dR/dx = 0. The commutator can be further simplified, since R commutes
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with itself:

[R⊗ 1, Q⊗ 1 +R⊗Ψ†] = [R,Q] (4.24)

4.6 Gauge freedom for cMPS

In the treatment of discrete matrix product states we established earlier that

the transformation A[n] → X[n − 1]A[n]X[n]−1 leaves the physical state

unaffected. Let us analyse this freedom for the continuous case, where with

lattice spacing ε we now define g(x) = g(kε) := X[k] such that

A[k]→ g(k(ε− 1))A[k] (g(kε))−1 (4.25)

is a gauge transformation. With the continuum limit A0(x) = 1 + εQ(x)

and A1(x) = εR(x) this leads to a gauge transformation on Q and R of the

following form:

A0 → g(x− ε)A0g(x)−1 (4.26)

Taylor-expanding g(x− ε) = g(x)− ε dg
dx

+O(ε2) and evaluating everything at

the same point x, this is equal to

(
g − εdg

dx

)
(1 + εQ)g−1 = 1 + ε

(
gQg−1 − dg

dx
g−1
)

+O(ε2) (4.27)

The gauge transformation on the auxiliary matrices thus reads
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Q(x)→ g(x)Q(x)(g(x))−1 − dg(x)

dx
(g(x))−1 (4.28)

R(x)→ g(x)R(x)(g(x))−1 (4.29)

4.7 Translation invariance

Throughout this thesis we will be concerned with translation invariant sys-

tems, such that the variational parameters (Q,R) become position-independent

and their derivatives vanish. We may sometimes restore position dependence

for illustration purposes.

4.8 The cMPS dictionary for expectation val-

ues

Collecting our rules for transforming field expressions to a description entirely

written in terms of the discrete auxiliary system, we have:

Ψ(x) |χ〉 = trU(L− x) R(x) U(x) |Ω〉 (4.30)

Ψ′(x) |χ〉 = trU(L− x)
[
R(x), Q(x)

]
U(x) |Ω〉 (4.31)

T = 1⊗Q∗ +Q⊗ 1 +R⊗R† (4.32)

〈χ|χ〉 = exp(TL) (4.33)

〈Ψ†(x)Ψ(x)〉 = tr
{
eTL(R⊗R∗)

}
(4.34)

〈∂xΨ†(x) ∂xΨ(x)〉 = tr
{
eTL[R,Q]⊗ [R,Q]∗

}
(4.35)



CHAPTER 4. CONTINUOUS MATRIX PRODUCT STATES 26

4.9 Useful isomorphisms

We can map our problem to a standard problem of dissipative dynamics by

using the following isomorphism.1 The isomorphism in its simplest form is

just this:

|a〉 〈b| ⇔ |a〉 ⊗ |b〉 (4.36)

A corollary of this is that there is an isomorphism between linear operators

on H⊗H and superoperators (operators acting on operators) on B(H):

A |a〉 〈b|B† =

(∑
ij

Aij |i〉 〈j|

)
|a〉 〈b|

(∑
mn

B∗mn |n〉 〈m|

)

=
∑

AijB
∗
mn |i〉 〈j|a〉 〈b|n〉 〈m| →

∑
AijB

∗
mn |i〉 〈j|a〉 |m〉 〈n|b〉

= A⊗B∗
(
|a〉 ⊗ |b〉

)
(4.37)

Hence the standard isomorphism reads

A |a〉 〈b|B† ⇔ A⊗B∗ |a〉 |b〉 (4.38)

We can extend it by linearity in the operators as well as in the states.

• Linearity in operators:

∑
i

Ai ⊗ B̄i |a〉 |b〉 ↔
∑
i

Ai |a〉 〈b|B†i (4.39)

1We have noticed some confusion in the literature regarding the name of this iso-
morphism. It should be distinguished from the Choi-Jamio lkowski Isomorphism relating
channels to states.
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• Linearity in states:

A⊗ B̄
∑
a,b

Γab |a〉 |b〉 ↔ A
∑
a,b

Γab |a〉 〈b|B† (4.40)

The right hand side of latter equation is already strongly reminiscent of a

superoperator acting on a density matrix, if the matrix Γab is chosen accord-

ingly (i.e. positive and with unit trace) as

∑
a,b

Γab |a〉 〈b| =
∑
ab

ρab |a〉 〈b| = ρ. (4.41)

This density matrix ρ hence corresponds to a vector in H ⊗ H under the

isomorphism:

|ρ〉 :=
∑
ab

ρab |a〉 |b〉 (4.42)

4.10 Lindblad equation

Using the isomorphism gives a deep insight into the transfer matrix. Let us

therefore analyse the action of the transfer matrix on |ρ〉, which is

T |ρ〉 =
(
Q⊗ 1 + 1⊗Q∗ +R⊗R∗

)
|ρ〉

⇔ Qρ+ ρQ† +RρR†.

(4.43)

Under the relation for Q, we found for the continuous measurement process

Q = −iK − 1

2
R†R (4.44)
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this superoperator is equal to

− i
[
K, ρ(x)

]
+Rρ(x)R† − 1

2

{
R†R, ρ(x)

}
=: L[ρ(x)]. (4.45)

This is a master equation in the Lindblad form which describes dissipative

dynamics of open quantum systems. If R was not present in the above

equation, we would just have the Liouville-von Neumann equation describing

the unitary evolution of the density matrix under the free Hamiltonian K.

The coupling via the R-matrices introduces dissipation into the auxiliary

system. The superoperator L[ρ] = dρ
dx

is called the Liouvillian and we thus

have

dρ

dx
= −i

[
K, ρ

]
+RρR† − 1

2

{
R†R, ρ

}
. (4.46)

This Liouvillian has a unique steady state, for which L[ρss] = 0 holds, which

will become important when we look at the thermodynamic limit.

For a bra acting on the transfer matrix from the left we get a similar relation,

only that (Q,R) and (Q†, R†) change roles, such that

〈φ|T ⇔ Q†φ+ φQ+R†φR, (4.47)

which leads to an analogous master equation in the Lindblad form.
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4.11 Thermodynamic limit

In the thermodynamic limit L → ∞ we can further simplify our equations.

The matrix exponential of the transfer matrix exp (TL) will in this limit be

dominated by its eigenvalue with the largest real part. If the latter is positive,

we have a divergence for the thermodynamic limit. To avoid this, we must

shift the transfer matrix exactly in such a way that its largest eigenvalue gets

its real part shifted to zero. This comes down to a shift of Q. Let us call

the largest eigenvalue λ = κ+ iβ. We then redefine Q→ Q− 1
2
κ1. Suppose

λ corresponded to an eigenvector |r〉 ∈ H ⊗ H . If we look at the Lindblad

equation (4.45) of the virtual density matrix r (corresponding to |r〉 under the

isomorphism), we also see that the imaginary part β must be zero. Therefore

we have one eigenvalue zero and all other eigenvalues have negative real part

and decay in the thermodynamic limit. Let us call the left eigenvector 〈l|

and normalize such that 〈l|r〉 = 1. We then see that P0 := |l〉 〈r| forms the

projector into the zero-eigenspace, since

(P0)2 = |r〉 〈l|r〉 〈l| = |r〉 〈l| . (4.48)

Hence for the thermodynamic limit we get

lim
N→ ∞

exp(TL) = |r〉 〈l| . (4.49)

A useful corollary of this is, that our cMPS state is now automatically nor-

malized, as 〈χ|χ〉 = tr exp(TL) = 〈l|r〉 = 1.
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4.12 Steady state for expectation values

Under the isomorphism, |r〉 and 〈l| are associated to virtual density operators

for the auxiliary system, which we simply denote r and l, and in general are

subject to the dissipative evolution governed by the above Liouvillian. We

can exploit the description in terms of disspiative dynamics to determine |r〉

and 〈l|, since they correspond to steady states (and hence eigenvalue zero)

under the isomorphism. Under a gauge transformation we can find out how

they transform by looking at the transformation behaviour of T , which is

〈l|T |r〉 → 〈l′|1⊗ g∗Q∗(g−1)∗ + gQg−1 ⊗ 1 + gRg−1 ⊗ g∗R∗(g−1)∗ |r′〉

= 〈l′|
(
g ⊗ g∗

)
T
(
g−1 ⊗ (g−1)∗

)
|r′〉 .

(4.50)

We therefore require that under a gauge transformation |r′〉 = g⊗ g∗ |r〉 and

〈l′| = 〈l| g−1 ⊗ (g−1)
∗
, which under the isomorphism translates to

r → g r g† l→ (g−1)† l g−1. (4.51)

We can now shift the whole evolution into only one of the density matri-

ces by exploiting the above gauge freedom in the following manner. We

do the gauge transformation g(x) =
√
l(x), which leads to a new l via

l̃(x) =
(√

l(x)†
)−1

l(x)
(√

l(x)
)−1

= 1D, which under the above described

evolution

d

dx
l(x) = Q†l + lQ+R†lR (4.52)
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now remains constant, because for l = 1 this evolution is

Q† +Q+R†R = 0, (4.53)

which is zero due to Q = −iK − 1
2
R†R. We have thus “shifted” the entire

evolution into r, which evolves according to the Lindblad equation. It has a

unique steady state solution ρss. We can therefore make the substitution

tr
(
A⊗B∗ |r〉 〈l|

)
⇔︸︷︷︸

isomorphism

tr
(
Ar · lB†

)
→︸︷︷︸

gauge freedom

tr
(
B†Aρss

)
. (4.54)

So using the isomorphism and the steady state ρss to simplify the expectation

values given in section (4.8) in the thermodynamic limit, we get the following

collection:

〈Ψ†(x)Ψ(x)〉 = tr(R†Rρss) (4.55)〈
dΨ†

dx

dΨ

dx

〉
= tr([Q,R]†[Q,R]ρss) (4.56)

〈Ψ†Ψ†ΨΨ〉 = tr((R†)2R2ρss). (4.57)

Finding the steady-state of a Lindbladian is a standard problem in quantum

optics and hence there are tools readily available to find them for a given

problem. We use the quantum optics toolbox [Tan, 2002] in MATLAB, which

allows us to define superoperators and find the steady state by an inverse

power method with random initial conditions.



Chapter 5

The Lieb-Liniger model

The model of a one-dimensional gas satisfying Bose-Einstein statistics is

named after Lieb and Liniger, who were the first to solve it [Lieb and Liniger,

1963]. Using the Bethe ansatz they were able to come up with an exact solu-

tion of the model, which was in accordance with previous approximations like

Bogolioubov’s theory. In recent years the Lieb-Liniger model has attracted

renewed attention after it has become experimentally conceivable to realize

gases with effectively one-dimensional Lieb-Liniger-like behaviour [Seiringer

and Yin, 2007]. From our perspective, the model will serve as a play-ground

for understanding the cMPS procedure and comparing it to the solution by

Lieb and Liniger, as was done by Verstraete and Cirac [2010]

32
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5.1 Lieb-Liniger Hamiltonian

Let us define the Lieb-Liniger Hamiltonian via the non-relativistic boson gas

with ultra-local interactions governed by the interaction parameter c

H = −
N∑
j=1

∂2

∂x2
j

+ 2c
∑

1≤i≤j≤N

δ(xi − xj). (5.1)

After second quantization we arrive at the full Lieb-Liniger field Hamiltonian:

H =
(∫ ∞
−∞

dx
dψ†(x)

dx

dψ(x)

dx
+ cψ†(x)ψ†(x)ψ(x)ψ(x)

)
. (5.2)

5.2 Ground state

Our pricipal goal will be to find the ground state energy as a function of

the interaction parameter c. We will use the variational method by express-

ing the energy expectation value in the cMPS formalism. We then seed

a random configuration of auxiliary fields and feed it into a minimization

algorithm, which searches for the configuration of auxiliary fields with the

minimal energy expectation value. We will find that the final configuration

will be independent on the initial seed, which indicates a strong convergence

of the used method.
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5.3 Tonks-Girardeau limit

In the limit of infinite repulsion c→∞ it has been shown [Lieb and Liniger,

1963] that the ground state energy goes to

lim
c→∞

E(c) =
π2

3
. (5.3)

An interesting aside to this particular limit is that this limit can be identified

with a fermionic model due to the fact that infinite repulsion is analogous to

the Paul exclusion principle.

5.4 Number operator

The number operator is given by

N̂ =

∫
dx Ψ†(x)Ψ(x) (5.4)



CHAPTER 5. THE LIEB-LINIGER MODEL 35

and can be seen to commute with the full Hamiltonian, as

[
N,H

]
=

∫
dxdy

[
Ψ†(x)Ψ(x) , ∂yΨ

†(y)∂yΨ(y) + Ψ†(y)Ψ†(y)Ψ(y)Ψ(y)
]

=

∫
dxdy Ψ†(x)

[
Ψ(x) , ∂yΨ

†(y)∂yΨ(y)
]

+
[
Ψ†(x) , ∂yΨ

†(y)∂yΨ(y)
]
Ψ(x)

+Ψ†(x)
[
Ψ(x) , Ψ†(y)Ψ†(y)

]
Ψ(y)Ψ(y) + Ψ†(y)Ψ†(y)

[
Ψ†(x) , Ψ(y)Ψ(y)

]
Ψ(x)

=

∫
dxdy − ∂yΨ†(y)δ(x− y)∂yΨ(y) + ∂yΨ

†(y)δ(x− y)∂yΨ(y)

+Ψ†(x)2δ(x− y)Ψ†(y)Ψ(y)Ψ(y) + Ψ†(y)Ψ†(y)
(
− 2δ(x− y)Ψ(y)

)
Ψ(x)

= 0.

(5.5)

It is therefore a conserved quantity. We incorporate this requirement by

fixing the particle number. In the cMPS formalism this constraint amounts

to fixing

〈Ψ†Ψ〉 = tr
[
R†Rρss

]
= const., (5.6)

which we will set equal to one in our numerical implementation.

5.5 Minimization

We use the constrained minimzation routine fmincon in MATLAB, which we

initialize with random matrices. The code can be found in the appendix to

this thesis. We then sweep through an interval of interaction parameters c.

We get the following results (see figure (5.1)):
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Figure 5.1: Energydensity E against interaction parameter c for the Lieb-
Liniger model, from top to bottom: D = 2, 4, 6, 8. Black horizontal line:
π2/3, the Tonks-Girardeau limit for c→∞

Analyzing the plot in figure (5.1) we note that while there is a significant

difference between the result for D = 2 and D = 4, the results for higher

bond dimensions are very close to one another, which is a good indication

that we are converging towards the correct solution. This is corroborated

by approaching the correct large c asymptotic behaviour and it has been

shown that the solution for moderate bond dimension is virtually indistin-

guishable from the exact solution obtained by the Bethe ansatz. We thus

have shown that the cMPS formalism is capable of capturing the relevant

physics with very moderate bond dimensions, which is further supported in

the next chapter by studying the Dirac model.



Chapter 6

Free Dirac model

The Dirac equation was formulated in 1928 by Paul Dirac and can cer-

tainly be viewed as one of the great triumphs of theoretical physics, most

notably predicting the existence of anti-particles, which were experimentally

confirmed in 1932 by Anderson. The modern perspective on the quanized

Dirac equation provides a positive definite Hamiltonian in terms of its par-

ticle and antiparticle content, which is related to the technique of normal

ordering. However, we would like to illustrate certain features of the cMPS

formalism for which we will follow a direct analysis in terms of positive and

negative energy modes. In this setting, we expect a näıve variational calcu-

lation of the ground state to fail due to unbounded high-momentum physics

dominating over the low energy behaviour. To remedy this, we introduce a

high-momentum cutoff and analyse the benefit of the cMPS parametrization,

which gurantees a p−4 limiting behaviour at large momenta. This allows a

meaningful extraction of physics, in which we describe Dirac’s historical res-

olution of the Dirac sea and illustrate the natural effectiveness of cMPS with

37
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regulators.

6.1 Dirac equation

The most compact way to write down the free Dirac equation is

(iγµ∂µ −m)Ψ = 0, (6.1)

where Ψ is a two-component spinor, as we are in 1 + 1 dimensions. We thus

need the two gamma-matrices γ0 and γ1, which obey the Clifford-algebra

{γµ, γν} = 2ηµν1 (6.2)

and where we make the choice γ0 = σz and γ1 = iσx.

6.2 Lagrangian and Hamiltonian

The Lagrangian that has the Dirac equation as its equation of motion is

L = Ψ(iγµ∂µ −m)Ψ, (6.3)

where the Dirac conjugate of Ψ is defined as Ψ := Ψ†γ0. The Hamiltonian

can be found as the Legendre transform of L and is therefore
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H =
(
∂0Ψ

) ∂L
∂
(
∂0Ψ

) +
∂L

∂ (∂0Ψ)
(∂0Ψ)− L (6.4)

= Ψ̄iγ0∂0Ψ− L = Ψ̄iγ1 d

dx
Ψ +mΨ̄Ψ. (6.5)

We thus arrive at the following Dirac Hamiltonian

H = Ψ†2
∂Ψ1

∂x
−Ψ†1

∂Ψ2

∂x
+m(Ψ†1Ψ1 −Ψ†2Ψ2). (6.6)

6.3 cMPS for multiple particle species

In our cMPS treatment up to now we were only concerned with one particle

species (bosons). Since we now want to study the Dirac model, which has two

fermions involved, let us show how the generalisation is made. The end result

here will be that the variables for the auxiliary system must obey the same

statistics as their physical field counterparts. This follows in particular from

requiring regularity of the cMPS state kinetic energy. The fields now carry

an index Ψα and so do their auxiliary interaction terms Rα. The generalized

cMPS thus reads

|χ(Q,Rα)〉 = trB P exp

∫ L

0

ds Q(s)⊗ 1 +
∑
α

Rα ⊗Ψ†α(x) |Ω〉 (6.7)

and the transfer matrix is generalized in a straightforward manner to

T = Q⊗ 1 + 1⊗Q∗ +
∑
α

Rα ⊗R∗α. (6.8)
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We now allow the fields to be either fermionic or bosonic, i.e. they obey

commutation or anticommutation relations:

[
Ψα(x),Ψ†α(y)

]
= δ(x− y) bosonic, (6.9)

{
Ψα(x),Ψ†α(y)

}
= δ(x− y) fermionic. (6.10)

In the following we will however only be concerned with fermions.

6.4 Picking up a minus sign

To compute expectation values of field operators, we want to arrive at the

analogue of eqn. (4.21), where we computed the commutator of the field

operator with the evolution operator U(L). The difference is that we now

pick up an additional sign, when we commute fermionic fields past another.

We therefore define the notation for this sign-property via

sα = 0 (α bosonic),

sα = 1 (α fermionic),

(6.11)

and define generalized evolution operators {Usα(x, y)} as

Usα(x, y) := P exp

∫ y

x

dz Q(z)⊗ 1 +
∑
β

(−1)sαsβRβ(z)⊗ ψ†β(z). (6.12)
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We emphasize that (−1)sαsβ is −1 if and only if α and β are both fermionic

and +1 otherwise. Furthermore we define the transfer matrix Tsα as

Tsα := Q⊗ 1 + 1⊗Q∗ +
∑
α

(−1)sαRα ⊗R∗α. (6.13)

We find that

[
Ψα(x), U(L)

]
= Usα(0, x)Rα(x)U(x, L). (6.14)

We also want to look at the derivative, whose analysis follows the same

manner as before but becomes a bit more involved due keeping track of the

sα:

d

dx
Ψα(x) |χ〉 =

d

dx
trBUsα(0, x)Rα(x)U(x, L) |Ω〉

= trB
{dUsα(0, x)

dx
Rα(x)U(x, L) + Usα(0, x)

dRα(x)

dx
U(x, L)

+ Usα(0, x)Rα(x)
dU(x, L)

dx

}
|Ω〉 .

(6.15)

From the definition of the evolution operator, its derivative just brings down

its argument and we get

d

dx
Usα(0, x) = Usα(0, x)

(
Q(x)⊗ 1 +

∑
β

(−1)sαsβRβ(x)⊗Ψ†β(x)
)

d

dx
U(x, L) = −

(
Q(x)⊗ 1 +

∑
β

Rβ(x)⊗Ψ†β(x)
)
U(x, L),

(6.16)

such that we find that
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d

dx
Ψα(x) |χ〉 = trUsα(0, x)

{
[Q(x), Rα(x)]⊗ 1 +

dRα(x)

dx

+
∑
β

[(−1)sαsβRβ(x)Rα(x)−Rα(x)Rβ(x)]⊗Ψ†β(x)
}
U(x, L) |χ〉 .

(6.17)

The first two terms inside the curly brackets are familiar from the single

boson case but we have picked up a new term which now encodes the particle

statistics. Looking at the norm of the state, it should make us worry that

acting with Ψα on the cMPS state now gave us a contribution including Ψ†α.

This renders the state non-normalizable, unless we fix the corresponding

auxiliary matrices such that this term vanishes. We thus require

(−1)sαsβRβ(x)Rα(x)−Rα(x)Rβ(x) = 0. (6.18)

which is to say, the auxiliary interaction terms must obey the same statistics

as their physical counterparts. Let us note that this is consistent with the sin-

gle boson case since matrices trivially commute with themselves. In contrast

to that, we now need discrete anticommuting matrices to accomodate the

Dirac fermions. Following Haegeman [2011], we now use a construction by

Jordan and Wigner, where we dedicate a C2⊗C2 subspace to the construction

of anticommuting matrices.

6.5 Jordan-Wigner transformation

In order to construct anticommuting matrices {Rα, Rβ} = 0 we enforce an-

ticommutativity on the C2 ⊗ C2 subspace. This construction is due to Jor-
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dan and Wigner [1928], who originally introduced it to map spin systems to

fermionic systems. We parametrize the Rα matrices (no summation) as:

Rα = cα ⊗ R̃α (6.19)

and then use the Jordan-Wigner transformation in the construction of the cα

as

cn =

(⊗
k<n

σzk

)
⊗ σ−n (6.20)

with the lowering operator σ− = |0〉 〈1| and the trivial action on other sites

suppressed. Hence for our model we have

c1 = σ−1 = σ− ⊗ 1 =

0 1

0 0

⊗
1 0

0 1

 =



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


(6.21)

c2 = σz1 ⊗ σ−2 =

1 0

0 −1

⊗
0 1

0 0

 =



0 1 0 0

0 0 0 0

0 0 0 −1

0 0 0 0


. (6.22)

For the anticommutativity to carry through to the Rα matrices on the full

space, we must require
[
R̃α, R̃β

]
= 0. We provide this by choosing R̃α

diagonal.

R̃α = diag(r1, . . . rD̃), (6.23)
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where we defined D̃ as the dimension of the remaining subspace, such that

D = 4D̃. The complete parametrisation (eqn. 6.19) then reads

R1 =



0 0 R̃1 0

0 0 0 R̃1

0 0 0 0

0 0 0 0


R2 =



0 R̃2 0 0

0 0 0 0

0 0 0 −R̃2

0 0 0 0


, (6.24)

which indeed manifestly ensures nilpotency and anticommutativity.

6.6 Expectation values

With the regularity properties now established, the cMPS substitution rules

are analogous to the rules given in section (4.8). Thus, evaluating the expec-

tation value of the Dirac Hamiltonian in this manner leads us to the following

expression

〈χ|H |χ〉 = 〈χ|Ψ†2
∂Ψ1

∂x
−Ψ†1

∂Ψ2

∂x
+m(Ψ†1Ψ1 −Ψ†2Ψ2) |χ〉 =

tr
{(

[Q,R1]⊗R∗2 − [Q,R2]⊗R∗1 +mR1 ⊗R∗1 −mR2 ⊗R∗2
)
eTL
} (6.25)

over the variational manifold parametrized by (Q,R1, R2).

6.7 Solution of the quantized Dirac equation

We briefly recall the standard theory for solving the Dirac equation [Peskin

and Schroeder, 1995]. We introduce two fermionic ladder operators obey-
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ing anti-commutation relations {ak1 , a
†
k2
} = 2πδ(k1 − k2) and {b†k1 , bk2} =

2πδ(k1 − k2). With the two-component basis spinors u and v we recall the

solution to the quantized Dirac equation

ψ(x) =

∫
dk

2π

1√
2Ek

(
u(k)ake

−ikx + v(k)b†ke
ikx
)
. (6.26)

In momentum space with Ek =
√
k2 +m2 and kµ = (Ek, k) we have

(γµkµ −m)u = 0 (6.27)

(Ekσ
z − ikσx −m1)u = 0 (6.28)Ek −m −ik

−ik −Ek −m


u1

u2

 = 0 (6.29)

(Ek −m)u1 = iku2 (6.30)

(Ek +m)u2 = iku1 (6.31)

Hence we get u and v withs parameters λ and λ̃:

u = λ

i(Ek +m)

k

 v = λ̃

 ik

Ek +m

 (6.32)

We follow the convention for the normalization of u and v [Peskin and

Schroeder, 1995]

u†u = 2Ek v†v = 2Ek (6.33)
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which fixes λ and λ̃, such that we have

u =
1√

Ek +m

Ek +m

−ik

 (6.34)

v =
1√

Ek +m

 ik

Ek +m

 . (6.35)

We thus have found the solution to equation (6.26). We now “invert” it to

get expressions for the creation and annihilation operators:

ak =
Ek +m√

2Ek(Ek +m)
Ψ1(k) +

ik√
2Ek(Ek +m)

Ψ2(k) (6.36)

b†−k =
ik√

2Ek(Ek +m)
Ψ1(k) +

m+ Ek
2Ek(Ek +m)

Ψ2(k). (6.37)
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6.8 Momentum space occupation-number

To study the behaviour of the cMPS formalism in the relativistic case of the

free Dirac field we look at the occupation number in momentum space. The

goal is to try to reproduce the filling of the Dirac sea for negative energy solu-

tions and no filling for positive energy solutions, which was found by Haege-

man et al. [2010]. The two-point function cα,β(x, y) = 〈χ|ψ†α(x)ψβ(y) |χ〉 in

real space is readily expressed in the cMPS formalism as

cα,β(x, y) = 〈χ|ψ†α(x)ψβ(y) |χ〉

= Θ(x− y) 〈l| (Rβ ⊗ 1) eTsα (x−y) (1⊗R∗α) |r〉

+Θ(y − x) 〈l| (1⊗R∗α) eTsα (y−x) (Rβ ⊗ 1) |r〉 .

(6.38)

Note that, as expected, this only depends on the relative distance y− x. We

therefore can define z = x− y and hence

cα,β(z) = Θ(z) 〈l| (Rβ ⊗ 1) eTsαz (1⊗R∗α) |r〉

+Θ(−z) 〈l| (1⊗R∗α) e−Tsαz (Rβ ⊗ 1) |r〉 .
(6.39)

We now define momentum occupation as

nαβ(p, q) = 〈χ|ψ†α(p)ψβ(q) |χ〉 (6.40)

with the Fourier transformed operators

ψ̃α(p) =

∫ ∞
∞

dx√
2π
e−ipxψα(x). (6.41)
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Since we have that

nαβ(p, q) =

∫
dxdy

2π
eipx−iqycαβ(x, y)

=

∫
dxdy

2π
eipx−iqy

{
Θ(x− y) 〈l| (Rβ ⊗ 1) eTsα (x−y) (1⊗R∗α) |r〉

+ Θ(y − x) 〈l| (1⊗R∗α) eTsα (y−x) (Rβ ⊗ 1) |r〉
}
,

(6.42)

we change coordinates to u = x − y and w = x + y. The Jacobian is

det J = 1
2
, such that the measure changes as dxdy = du dw/2. Expressing

the old in the new coordinates gives x = (u + w)/2 and y = (w − u)/2 and

the argument of the exponential is i(px− qy) = i(p(u+ w)− q(w − u))/2 =

iu(p + q)/2 + iw(p − q)/2. Since the integrand depends only on u, we can

integrate out w, which gives

∫
dw

2
√

2π
ei(p−q)w/2 = δ(p− q). (6.43)

This enforces p = q and hence

nαβ(p, q) = δ(p− q)
∫

du√
2π
eiupΘ(u) 〈l| (Rβ ⊗ 1) eTsαu (1⊗R∗α) |r〉

+Θ(−u) 〈l| (1⊗R∗α) e−Tsαu (Rβ ⊗ 1) |r〉 .
(6.44)

We integrate (the Heaviside step-functions change the ranges of integration),

using the same argument as in discussion for the thermodynamic limit (sec-
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tion 4.11), which gurantees that the integrand falls off at infinity.

∫ ∞
0

du exp (u(ip1 + Tsα)) = −(ip1 + Tsα)−1∫ 0

−∞
du exp (u(ip1− Tsα)) = (ip1− Tsα)−1

(6.45)

Summing up, we now have the following relation for the number density

nαβ(p, q) = δ(p− q)
(
− 〈l| (Rβ ⊗ 1) (ip1 + Tsα)−1 (1⊗R∗α) |r〉

+ 〈l| (1⊗R∗α) (ip1− Tsα)−1 (Rβ ⊗ 1) |r〉
)

=: δ(p− q)nαβ(p).

(6.46)

6.9 Large momentum behaviour

We can deduce the large-momentum behaviour of nαβ by noting that the

second derivative of its counterpart in real space cαβ is equivalent to the

kinetic energy, for which we derived the regularity properties in section (6.4)

and which has led us to require {Rα, Rβ} = 0 (equation 6.18). We therefore

know that the second derivative d2

dx2
cαβ(x) of the number density must be

continuous, specifically at x = 0. Let us relate this to the momentum space

picture

cαβ(x) =

∫
dp√
2π
e−ipxnαβ(p)

⇒ d2

dx2
cαβ(x) =

d2

dx2

∫
dp√
2π
e−ipxnαβ(p)

⇒
∫ ∞
−∞

dp√
2π
e−ipxp2nαβ(p).

(6.47)
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This tells us that due to the continuity at x = 0 and the requirement that

this integral exists, the large momentum behaviour of n(p) has to fall off at

least like

nαβ(p) ∼ p−4. (6.48)

6.10 Scale transformations

We have shown how large momenta are suppressed in our construction of

the cMPS matrices. There does however remain a problem related to the

negative energy solutions of the Dirac equation. If we have a configuration of

Q and Rα related to this negative energy, the variational method will push

this solution to become arbitrarily negatively large by the rescaling freedom

Q → cQ and R →
√
cR, which rescales the transfer matrix T → c T and

therefore leaves eigenvalue zero of T and thus also |r〉 and 〈l| unchanged. In

the same manner it also rescales the sign-flipped transfer matrix Tsα → c Tsα .

The momentum occupation under the rescaling behaves like this:

nαβ(p) =
(
− 〈l| (Rβ ⊗ 1) (ip1 + Tsα)−1 (1⊗R∗α) |r〉+ conjugate term

=⇒︸︷︷︸
Rα→

√
cRα

Tsα→cTsα

(
− 〈l| (Rβ ⊗ 1)

√
c(ip1 + cTsα)−1

√
c (1⊗R∗α) |r〉+ conj.

)
(6.49)

and with

c(ip1± cTsα)−1 = (i
p

c
1± Tsα)−1 (6.50)
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this tells us that

nαβ(p) =⇒︸︷︷︸
Rα→

√
cRα

Tsα→cTsα

nαβ (p/c) . (6.51)

Let us analyse what this means for our momentum occupation. Suppose the

p−4 fall-off for some configuration of (Q,Rα) happened at momentum p = Λ,

which implies that nαβ(p/Λ) drops to zero at Λ. The variational method

then pushes for a rescaling as described above, which leads to nαβ(p/(cΛ))

and hence the drop to zero in the number density is pushed away to arbitrarily

large momenta.

6.11 Regularisation

In order to fix this pushing behaviour we introduce the cutoff term proposed

by Haegeman et al. [2010] 1
Λ
dΨ†

dx
dΨ
dx

. This term constrains the negative energy

solutions to a finite region. In momentum space, the upper limit to this

region is given by

√
p2 +m2 = p2/Λ⇔ pcutoff = Λ

√
1

2
+

1

2

√
1 +

4m2

Λ2

pcutoff = Λ +O
(
m2

Λ2

)
.

(6.52)

We therefore expect the cutoff to happen at Λ, where the occupation num-

ber of the negative energy modes should drop to zero. We implement this

additional term by treating it as a Lagrange-multiplier method and hence

we enforce the constraint dΨ†

dx
dΨ
dx

= κ for some constant κ. According to the

rules of cMPS, this translates to the condition
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∑
α

tr
(
[Q,Rα]†[Q,Rα]ρss

)
= κ. (6.53)

Depending on our choice of κ we see the cutoff at different momenta but

we know from the above discussion that this was to be expected since dif-

ferent choices of κ correspond to different rescaling parameters c, which are

intrinsic to the regularisation problem. We know that the drop to zero of the

momentum occupation corresponds to p = Λ independent of c and κ.

6.12 Description of our algorithm

We proceed algorithmically by first finding the steady state of the Lindbla-

dian, which is analogous to the Lieb-Liniger case, only that we now have

a sum over the species α and the new parametrization of the interaction

matrices Rα for the fermionic case discussed above.

L[ρ] = −i[K, ρ] +
∑
α

(
Rα ρR

†
α −

1

2
{R†αRα, ρ}

)
(6.54)

We then take this and optimize the Dirac Hamiltonian expectation value

under the constraint from the previous section (equation 6.53), again using

the constrained optimization routine fmincon. This gives us the optimized

matrices (Q,Rα). We then use our discussion from section (4.12), which tells

us that |r〉 = |ρss〉 and 〈l| = 〈1| =
∑

k 〈kk|. Having found the optimal

(Q,Rα) also enables us to compute Tsα simply from its definition (equation

6.13)
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Tsα = 1⊗Q∗ +Q⊗ 1−
∑
α

Rα ⊗R∗α, (6.55)

which we can efficiently invert numerically to evaluate the expression gained

for the number densities nαβ(p) [equation (6.46)], which are the central in-

gredient to the occupation numbers we describe in the following section.

6.13 Dirac sea

Dirac’s original interpretation of the negative energy solutions to his equa-

tion was that the vacuum state should contain an infinity of particles with

all negative energy states occupied. Together with the Pauli exclusion prin-

ciple this gurantees that there is no instabilty because a particle cannot gain

arbitrarily high energy by ”falling” deeper into the negative part of the en-

ergy spectrum since they are already occupied. In this picture, an excitation

corresponds to a hole in this Dirac sea. The modern, canonical way to fix

this instability is to normal order the fields and reinterpret the non-occupied

negative energy states as antiparticles, changing the role of annihilator and

creator. This amounts to a shift in the energy of the vacuum, which is not an

observable quantity (cosmology aside). However if we stick to the Dirac sea

picture and force the cMPS method through, we should be able to observe

the filling of states corresponding to b̂(p).

In order to do that we use the expressions for b̂ obtained in equation (6.37),

recalling that 〈Ψ†iΨj〉 = nij(p):
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n−−(p) := 〈b†(p)b(p)〉 = (6.56)

p2

2Ep(Ep +m)
n11(p) +

m+ Ep
2Ep

n22(p)− ip

2Ep

(
n21(p)− n12(p)

)
(6.57)

Ideally, we would get a step-function behaviour n−− = Θ(1− p/Λ), meaning

that all states up to the cutoff momentum are filled and states with higher

momentum are empty. For the number of particles, corresponding to the

positive energy solution we expect all states to be empty in the vacuum state.

As shown in figure (6.1), we approximate this behaviour quite well already

for D̃ = 2. We remind the reader that D = 4D̃ due to the Jordan-Wigner

construction (see section (6.5)). The number densitiy for particles n++ and

the mixing term n+− are expected to be empty in the vaccum state, which is

also correctly described in figure (6.2). When increasing the bond dimension

to D̃ = 4, we see (figure 6.3) that the results further improve, as the filling

of states with p < Λ is smoothed out. The filling of particles and the mixing

term, which were already close to zero for D̃ = 2, are also closer to zero as

one would have expected (see figure (6.4)). This again supports our claim

that cMPS is capable of correctly describing the filling of the Dirac sea. The

MATLAB code corresponding to the formentioned work can be studied in the

appendix to this thesis.
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Figure 6.1: Filling the Dirac sea: n−−(p/Λ) parameters: D̃ = 2, m = 0.1
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Figure 6.2: n++(p/Λ) and n+−(p/Λ) vanish, as expected. D̃ = 2,m = 0.1
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Figure 6.3: Smoothing out the filling n−−(p/Λ) by higher bond dimension.
Parameters: D̃ = 4, m = 0.1
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Figure 6.4: n++(p/Λ) and n+−(p/Λ) for higher bond dimension. Note that
we zoom in on the y−axis. D̃ = 4,m = 0.1



Chapter 7

Conclusion and Outlook

7.1 Conclusion

In this thesis we have presented the continuous matrix product state for-

malism. We gave a brief introduction to tensor network methods and then

extended the theory to continuum field states by applying the cMPS formal-

ism to the Lieb-Liniger and the Dirac model. For these models, we were able

to implement the techniques derived from the cMPS formalism and we have

convinced ourselves of the potential of these methods. A central part of this

thesis was the implementation of algorithms that make use of the variational

method in the cMPS formalism. We first did so for the Lieb-Liniger model

where we were able to derive the correct behaviour of the ground state en-

ergy and demonstrated the convergence of the cMPS method by increasing

the bond dimension. We then went on to a relativistic setting, where we anal-

ysed the free Dirac equation. We extended the cMPS formalism to fermionic

systems and multiple species of particles. Furthermore the extension to a
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relativistic setting was accomplished by introducing a regularisation in the

form of a Lagrangian multiplier to the minimization process. This enabled us

to look at the phenomenon of the filling of the Dirac sea which arises when

one looks at Diracs original interpretation of negative energy solutions to his

equation. We succeeded in verifying that the cMPS method is capable of

reproducing this filling of the Dirac sea already with moderate bond dimen-

sion, thereby extracting sensible physics from the field system. We found a

new method to find this filling by solving the dissipative dynamics on the

auxilary system and translating this to the momentum filling of states. The

results of this method were found to be in accordance with the findings of

Haegeman et al. [2010], who used imaginary time evolution.

7.2 Outlook

The cMPS formalism is a very young field of research but has already at-

tracted interest from various perspectives. The generalisazion away from 1+1

to higher dimensional theories, most notably by the PEPS and (c)MERA for-

malism, is an active area of research, especially the incorporation of desirable

symmetries is non-trivial and under investigation [Jennings and Osborne] et

al. We expect these theories to have success comparable to the one that

was enjoyed by MPS for discrete systems in the recent past. We believe,

that they will be able to shed new light on the study of area laws and the

classification of quantum phases. The simulation of fermonic systems, where

current techniques, most notably Monte Carlo methods, break down due to

the sign problem is also expected to be straightforward in these tensor net-
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work methods. Due to its connection to field theory and the holographic

property of cMPS and cMERA, researchers have conjectured a connection

to the AdS/CFT correspondence [Nozaki et al., 2012], a major conjecture in

high energy physics which is related to the holographic principle. In a general

sense, variational techniques are very desirable in any quantum system since

they allow us to study otherwise intractable systems to high precision.



Chapter 8

Appendix

8.1 Lieb-Liniger code

For the Lieb-Liniger model we used the following code. Line-breaks may be

artifical due to limited space in this format.

% this is a script to find the minimal energy in the Lieb-Lininger model

% as a function of the interaction parameter c

%call the fmincon with the function energydensity and the constraint

%particlenumber

options = optimset(’Display’,’Iter’,’Algorithm’,’interior-point’,

’MaxFunEvals’, 3000);

D = 2;

x0 = rand(1,2*D*D);

c_max = 20;

energyarray2 = zeros(1,c_max);
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for c=1:c_max

[x,fval] = fmincon(@(x)energydensity(x,c),x0,

[],[],[],[],[],[],@particlenumber,options);

energyarray2(c)=fval;

end

plot(energyarray2)

function [H0,R0] = extract(x)

%this defines a function to extract the matrices K (sometimes called H)

%and R from the vector x fmincon and other functions handle

%the correct parametrizations are built in here, K^\dag = K

dim = sqrt(0.5*size(x,2));

A = zeros(dim,dim);

B=zeros(dim,dim);

%fill diagonal (real

for k=1:dim

A(k,k)=x(k);

end

%counter a

a=dim+1;
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for m=1:dim

for n=(m+1):dim

A(m,n)=x(a)+1i*x(a+1);

A(n,m)=x(a)-1i*x(a+1);

a=a+2;

end

end

B = reshape(B,1,dim*dim);

for m=1:(dim*dim)

B(m)=x(m+dim*dim);

end

B = reshape(B,dim,dim);

H0 = A;

R0 = B’;

function [ energy ] = energydensity(x,c)

%this is the function we minimize with fmincon

[H,R] = extract(x);

rho_ss = steadystatefinder(H,R);

Q = -0.5*R’*R -1i*H;
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C = Q*R-R*Q;

C = qo(C);

R = qo(R);

energy = real(trace(rho_ss*(C’*C)+ c*rho_ss*(R*R)’*R*R));

end

function [c,ceq] = particlenumber(x)

%PARTICLENUMBER, this will be the constraint function for fmincon

c= [];

[H,R] = extract(x);

R = qo(R);

rho_ss = steadystatefinder(H,R);

ceq = real(trace(R’*R*rho_ss))-1;

end

function [ state ] = steadystatefinder(H,R)

%use Quantum optics toolbox to find steady state

% qotoolbox deals with "quantum objects" qo

H = qo(H);

R=qo(R);

L = -1i*(spre(H)-spost(H)) + spre(R)*spost(R’)

-0.5*spre(R’*R) - 0.5*spost(R’*R);

state = steady(L);

end
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8.2 Dirac code

function [ energy ] = energydensity(x,m)

%this will be the function we minimize

[H,R1,R2] = extract(x);

rho_ss = steadystatefinder(H,R1,R2);

Q= -1i*H-0.5*(R1)’*R1-0.5*(R2)’*R2;

%rho_ss = full(rho_ss(:,:));

com1 = Q*R1-R1*Q;

com2 = Q*R2-R2*Q;

com1=qo(com1);

com2=qo(com2);

R1=qo(R1);

R2=qo(R2);

energy = real(trace((-com2’*R1 + com1’*R2 + m*(R1’*R1-R2’*R2))*rho_ss));

end

function [c,ceq] = constraint(x,Kappa)

%this will be our constraint function

ceq=[];

[K,R1,R2] = extract(x);

K=qo(K);

R1=qo(R1);

R2=qo(R2);

Q= -1i*K-0.5*(R1)’*R1-0.5*(R2)’*R2;

com1 = Q*R1-R1*Q;
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com2 = Q*R2-R2*Q;

rho_ss = steadystatefinder(K,R1,R2);

c = real(trace(com1’*com1*rho_ss + com2’*com2*rho_ss))-Kappa;

end

function [state] = steadystatefinder(H,R1,R2)

K=qo(H);

R_1 = qo(R1);

R_2=qo(R2);

L = -1i*(spre(K)-spost(K)) + spre(R_1)*spost((R_1)’)

+ spre(R_2)*spost(R_2’) - 0.5*(spre(R_1’*R_1+R_2’*R_2)

+ spost(R_1’*R_1+R_2’*R_2));

state =steady(L);

end

function [H0,R0_1,R0_2] = extract(x)

%this is the extract function for the Dirac case,

%where we have built in the Jordan-Wigner construction

dim = 1/8*(sqrt(size(x,2)*4+1)-1);

A = zeros(4*dim,4*dim);

%fill diagonal (real
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for k=1:4*dim

A(k,k)=x(k);

end

%counter a

a=4*dim+1;

for m=1:4*dim

for n=(m+1):4*dim

A(m,n)=x(a)+1i*x(a+1);

A(n,m)=x(a)-1i*x(a+1);

a=a+2;

end

end

P1 = zeros(dim,dim);

P2 = zeros(dim,dim);

for k=1:dim

P1(k,k) = x(16*dim*dim+k)+1i*x(16*dim*dim+dim+k);

P2(k,k) = x(16*dim*dim+2*dim+k) + 1i*x(16*dim*dim+3*dim+k);

end

%Pauli matrices

sigma_minus = [0,1;0,0];
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sigma_z = [1,0;0,-1];

%Jordan-Wigner:

R_1=kron(kron(sigma_minus,eye(2)),P1);

R_2=kron(kron(sigma_z, sigma_minus), P2);

H0 = A;

R0_1 = R_1;

R0_2 = R_2;

end

%this is the script for the minimization:

D = 2;

x0 = rand(1,16*D*D+4*D);

m=0.1;

Kappa = 0.1;

options = optimset(’Display’,’Iter’,’Algorithm’,’interior-point’,

’UseParallel’, ’always’,’MaxIter’,2000,’MaxFunEvals’, 100000);

[x,fval] = fmincon(@(x)energydensity(x,m),x0,

[],[],[],[],[],[],@(x)constraint(x,Kappa),options);

[K,R1,R2] = extract(x);

dim = size(K,2);

Q= -1i*K-0.5*(R1)’*R1-0.5*(R2)’*R2;
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T = kron(Q,eye(dim))+kron(eye(dim),conj(Q))

-kron(R1,conj(R1))-kron(R2,conj(R2));

R{1}=R1;

R{2}=R2;

rho_ss = steadystatefinder(K,R1,R2);

n_vs_p;

%this calculates the n_\alpha\beta(p) for given optimized cMPS matrices

function f = n_ab(T,R,a,b,p,rho_ss)

RIGHTMATRIX=full(rho_ss(:,:));

RIGHT = reshape(transpose(RIGHTMATRIX),size(RIGHTMATRIX,2)^2,1);

id=eye(sqrt(size(RIGHT,1)));

LEFT=id(:);

%RIGHT=full(rho_ss(:));

dim=sqrt(size(T,2));

f = LEFT’*kron(eye(dim),conj(R{a}))*((-T+1i*p*eye(dim*dim))

\kron(R{b},eye(dim)))*RIGHT

+ LEFT’*kron(R{b},eye(dim))*((-T-1i*p*eye(dim*dim))
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\kron(eye(dim),conj(R{a})))*RIGHT;

end

%this returns the momentum space occupation for n++, n-- and n+-

function f = numberdensity(p,m,T,R,rho_ss)

E_p=sqrt(p*p+m*m);

n_11=n_ab(T,R,1,1,p,rho_ss);

n_12=n_ab(T,R,1,2,p,rho_ss);

n_21=n_ab(T,R,2,1,p,rho_ss);

n_22=n_ab(T,R,2,2,p,rho_ss);

%antiparticles n--

f = p*p/(2*E_p*(m+E_p))*n_11 + (m+E_p)/(2*E_p)*n_22

-1i*p/(2*E_p)*(n_21-n_12);

% particles n++

%f = p*p/(2*E_p*(m+E_p))*n_22 + (m+E_p)/(2*E_p)*n_11

% +1i*p/(2*E_p)*(n_21-n_12);

%n+-

%f = p*p/(2*E_p*(m+E_p))*n_21 + (m+E_p)/(2*E_p)*n_12

%-1i*p/(2*E_p)*(n_11-n_22);

end
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numberdensityarray = zeros(1,200);

for h=1:200

numberdensityarray(h) = numberdensity(h/100.,m,T,R,rho_ss);

end

momentum = (1:200)/100.;

plot(momentum,numberdensityarray);

title(’Numberdensity Free Dirac in cMPS D=2 formalism’)

xlabel(’momentum’)

ylabel(’n--’)
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