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Abstract

Quantum mechanical phenomena have a�ected our lives in numerous ways. Their impact on modern

technology ranges from everyday applications such as transistors, lasers and solar cells to ground

breaking equipment such as Scanning-Tunneling electron microscopes. However, in spite all results

in fundamental quantum theory research, various aspects of the theory are still not fully understood.

This report investigates one of these challenges, namely the quantum correlations between particles in

an entangled state. Early research into entangled states by Einstein, Podolsky and Rosen concluded

that quantum mechanics theory is incomplete, and subsequently Bell showed that is must exhibit

nonlocal correlations. This report reviews and compares two recent nonlocal hidden variable models

that exhibit correlations that are more nonlocal than quantum mechanics. The �rst model by Barnett,

Dowker and Rideout is based on quantum measure theory, while the model by Ghirardi and Romano

is a crypto-nonlocal model. Our comparison addresses the question why PR boxes, a theoretical device

that allows superquantum correlations, have not been observed in nature. We argue that the type of

correlations that a hidden variable models allows, are highly dependent on the type of framework used

to express the model as well as on the parameters of the variables.
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1 Introduction

Quantum mechanical phenomena have a�ected our lives in numerous ways. Their impact on modern

technology ranges from everyday applications such as transistors, lasers and solar cells to ground breaking

equipment such as Scanning-Tunneling electron microscopes [1]. Moreover, recent research in the �eld has

produced signi�cant advances in quantum information theory, which has the potential to create a whole

new range of technical solutions for high-performance computing, data exchange and cryptography [2].

However, in spite all results in fundamental quantum theory research, various aspects of the theory

are still not fully understood [3]. As an example, researchers continue to look for ways to unify classical

theory and quantum mechanics. This report on the other hand investigates another peculiarity, namely the

quantum correlations between particles in an entangled state. Entanglement is a fundamental, quantum

mechanical concept associated with correlations between systems [1, 2]. An entangled state describes

a system which consists of more than one object where it is impossible to treat each of these objects

independently.

Early research into entangled systems resulted in the discovery of the famous EPR (Einstein, Podolsky

and Rosen) paradox [4]. The authors examined a system made out of two particles that are in an entangled

state [1]. Furthermore they assumed no superluminal signalling possible. The resulting mathematical

model showed that by performing measurements on one particle it is possible to make predictions regarding

the state of the other particle, which contradicts the Copenhagen interpretation of quantum mechanics.

Since Einstein et al. believed in the validity of the principle of locality, they argued that quantum mechanics

is an incomplete theory and that there must exist additional parameters that are introduced to particles

during the preparation at the source. In the literature these parameters are referred to as hidden variables

[1]. A few years later, Bohm [5, 6] presented a simpler example illustrating the entangled state described in

the EPR paper which is now commonly referred to as the EPRB setup. The EPRB setup will be discussed

in greater detail in section 2.1.

By considering a system in the EPRB setup, J.S. Bell derived his celebrated inequalities [7] using the

same setup for the state as in [5, 6]. However, Bell showed that predictions of quantum mechanics violate

these inequalities. He concluded that local hidden variable theories cannot hold. Later experimental

results validated Bell's statement [1]. Until today these ground breaking inequalities set a limit to any

fundamental hidden variable theory. The most familiar form of Bell inequalities, the CHSH (Clauser-

Horne-Shimony-Holt) [8] inequalities, will be introduced in section 2.2. In addition to that, Tsirelson

[9] derived a set of inequalities, which saturate the quantum mechanical bound. These inequalities are

explained in sections 2.3 and 3.1.1. More recent research introduced a type of device called a PR box
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[10], which can maximally violate Bell's inequalities. To date it is believed that a PR box does not exist

in nature [11]. This report introduces two di�erent nonlocal hidden variable models and examines their

correlation function with respect to the above-mentioned inequalities.

1.1 Project aims and contributions

In the following an overview of the aims and contributions will be given and put into context with the

structure of the report. The aim of this report is to enhance our understanding of the principles governing

quantum mechanics. The overall focus lies on the investigation of the nonlocal nature of quantum theory.

One of the key challenges that is addressed is the questions as to why models, which exhibit correlations

that are more nonlocal than quantum correlations, are not believed to exist in nature [10, 12, 13].

In order to do so, two hidden variable models are introduced and compared. The �rst model was

developed by Barnett et al. [11], the second one is an even more recent model introduced by Ghirardi

et al. [14]. While the former model is expressed in the framework of quantum measure theory [15], the

latter approaches the problem by looking at crypto-nonlocal theories [16]. Both models exhibit correlations

which violate the Tsirelson bound, however, the �rst model [11] only examines correlations that maximally

violate the Bell inequalities. In contrast to that Ghirardi et al. propose a model that allows a wide range

of superquantum correlations that asymptotically approach a PR box.

The report aims to achieve two main goals. Firstly, it provides the reader with the foundations that

are required to understand the two models. Secondly, it compares and contrasts the two theories. The

following enumeration gives an account of the work presented.

1. Uni�ed notation is introduced to simplify the understanding and comparison of various theories and

models

2. A detailed summary of related background theory from text books and historical articles

3. Recent research results related to the two main models are reviewed

4. Where appropriate numerical and conceptual examples were added to illustrate theories better

5. Steps in the derivation of equations and proofs, which were omitted in the literature due to space

constraints were added

6. Some additional proofs for conjectures are given that are commonly used in the literature without

being shown explicitly

7. A discussion and analysis of the two main models is done and potential future research opportunities

are highlighted

4



The uni�cation of the notation is necessary since the di�erent ideas presented in this report were originally

derived in a number of di�erent formalisms, making it harder to identify similarities and di�erences.

Furthermore, the summary of the relevant background theory is introduced in order to remind the reader

of the main concepts behind the theories and models discussed in this report. However, it is assumed that

the reader is already familiar with most topics covered in this background review. Additionally, recent

research results related to the two main models are reviewed. Any frameworks or formalisms required

to understand the models are explained. Numerical and conceptual examples are provided to illustrate

theories better and to validate some of the results quoted in the references. These examples are found in

section 3.1.2 equations 30 and 31 and in the four appendices. Furthermore, additional steps were added

to some of the derivations presented in this report. These steps were omitted in the literature, but added

in here to help the reader to follow the derivations more easily. Examples of such additional steps can

be found in equations 19, 20, 26, 28, 68 and Appendix D. Moreover, proofs for conjectures are given to

explicitly show the origin of some commonly used concepts, cf. equation 32 and the proof found in section

3.2. Finally, a detailed comparison of the two main models is given. It is concluded that the range of values

for the correlation function in any valid model is strongly dependent on the formalism in which it is derived.

Furthermore, Ghirardi et al. [13, 14] argue that superquantum correlations exist in the intermediate level

of the integration of the hidden variables. This report argues that this could be a possible reason as to

why PR boxes cannot be found in nature. If hidden variable models were to re�ect reality then it would

be impossible to solely consider partial averages over hidden variables since it is important to consider the

entire range of pairwise hidden variable values that might a�ect the outcome of experiments.

The report is organised as follows. In chapter 2 some essential concepts and theory related to the

foundations of quantum mechanics are reviewed. This is done in historical order, starting with the intro-

duction of EPR paradox [4] and the EPRB [5, 6] setup in section 2.1. This section is important in order

to understand the concept behind Bell's theorem and inequalities [7] which are introduced in section 2.2.

The inequalities are presented in their more familiar form known as the CHSH inequalities [8]. Moreover

the Tsirelson inequalities [9], a weaker set of inequalities which are satis�ed by quantum mechanics, are

de�ned in section 2.3. Finally, the main concept behind a PR box [10] are explained in section 2.4. The

PR box concept is portrayed as the two hidden variable models that are investigated in this report exhibit

such a device.

The next chapter begins with an introduction to quantum measure theory [15] (cf. section 3.1). This

formalism is needed to understand the �rst hidden variable model developed by Barnett et al. [11] in

section 3.2. In addition to this in section 3.1.1 the Tsirelson's inequalities are derived using results from

quantum measure theory [11, 12]. Furthermore, the relation between Tsirelson's inequalities and ordinary
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quantum mechanics [9] is illustrated in section 3.1.2, to allow a comparison between the Barnett's hidden

variable model and the laws of ordinary quantum mechanics.

Chapter 4 examines Ghirardi's model of nonlocal hidden variable theory [14] in class of theories known

as crypto-nonlocal theories [16]. Research into this class of theories is relatively new and therefore in

section 4.1 the main principles behind these theories are explained for both 2- and N-dimensional systems

[13]. The hidden variable model is described in section 4.2.

A detailed analysis of the two models is given in chapter 5. In chapter 6 the main ideas and concepts

from this report are summarised and suggestions for future research are made.
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2 Background Theory

In this chapter basic concepts and theory related to the foundations of quantum mechanics are reviewed

in historical order. While it is generally assumed that the reader has come across these concepts before,

some of the notation that is used in later chapters will be explained. Section 2.1, introduces the EPRB

setup which later inspired the formulation of Bell's inequalities (cf. section 2.2). Subsequently Tsirelson's

inequalities are stated in section 2.3 and �nally PR-boxes, which violate both Bell's and Tsirelson's in-

equalities, and superquantum correlations are de�ned in section 2.4.

2.1 The EPRB setup

As mentioned in the introduction the concept of the EPRB setup resulted from research conducted by

Einstein, Podolsky and Rosen in [4], which was then revisited by Bohm [5, 6]. They assumed the underlying

quantum mechanical formalism. The general EPRB setup consists of a particle emitting source which

generates a pair of spin-half particles in the singlet spin state [17, 18]. The particles are sent to two distant

parties, commonly known as Alice and Bob, which reside in two spacelike separated regions, A and B .

Each party then uses a Stern-Gerlach analyzer to measure the spin of the particle in a particular direction.

As this entangled state has zero total spin it can be written as

|ψ〉 =
1√
2

(|n ↑〉A |n ↓〉B − |n ↓〉A |n ↑〉B) (1)

where n is a unit vector in three dimensional space and |n ↑〉A represents particle A's spin-up in the n

direction. Therefore, if Alice or Bob were to measure their particles in the n direction they would obtain

±~
2 with probability 1

2 each [17, 18, 19]. Moreover, it was shown that by applying the laws of quantum

mechanics that there exists a perfect anti-correlation between particles A and B. In other words, when

Alice and Bob measure the state of their particle in same direction and Alice obtains +~
2 she immediately

knows that Bob's result is −~
2 and vice versa. Hence one person can precisely determine the measurement

result of the other instantaneously and without any information exchange [1]. Einstein et al. [4] believed

that the physical world adheres to the principle of locality. Locality implies that particles can only be

instantaneously a�ected by their immediate surroundings[1]. This observation led to the suggestion [4]

that any outcomes of these experiments are predetermined by supplementary parameters also called hidden

variables. In this view there must exist an unknown, more fundamental deterministic theory to which

quantum mechanics is a probabilistic approximation [3]. Interestingly, in the year following the initial

�ndings related to the EPRB setup, relatively few advances were made in the �eld of hidden variable

7



theories [13]. It was only when J.S. Bell [7] published his �ndings that are discussed in the next section

that novel hidden variable models became popular once more and nonlocal hidden variables theories such

as Nelson stochastic mechanics [20] were developed.

2.2 Bell's theorem and CHSH inequalities

Working the same setup described in section 2.1 J.S Bell found that local deterministic hidden variable

theories cannot successfully reproduce certain predictions made by quantum mechanics [7]. To show this he

derived a set of inequalities from �rst principles, which any local hidden variable theory needs to respect. He

then compared these bounds to similar bounds derived using quantum mechanical theory. The comparison

showed that the bounds required by local hidden variable theories can be violated by quantum mechanics[1].

Later Bell's theorem was con�rmed by experiments that showed that the theoretical inequalities for local

hidden variable theories were indeed breached [21, 22]. However, while the research community generally

accepts Bell's theorem, it is important to note that up to date there are still some concerns about the

accuracy of the experiment, since certain problems such as the detection loophole [23], might have a�ected

the results more than originally assumed.

In the following the derivation of these inequality is show in the Clauser, Horne, Shimony and Holt

(CHSH) form [8]. The notation for the measurements, outcomes and probability distribution is adapted

from [11]. Assume Alice's apparatus can be set to measure in either a or a′ direction with outcomes i or

i′ respectively. Equivalently Bob's analyser can measure in the b or b′ direction with outcomes j and j′

respectively. Since Alice and Bob do not necessarily measure in the same direction, outcomes might not

be anti-correlated. However, Bell concluded from locality that both outcomes are determined during the

preparation at the source that is to say there must exist a hidden variable[7, 19]. In contrast to the EPRB

setup, the factor of ~
2 is dropped and instead outcomes can be either +1 or -1. Therefore a source can

produce 16 possible outcomes represented by the strings (ii′jj′). Where the probability for each one of

this string of outcomes is P(ii′jj′), s.t.

0 ≤ P(ii′jj′) ≤ 1,
∑
ii′jj′

P(ii′jj′) = 1 (2)

However, since it is impossible for Alice and Bob to measure their particles simultaneously in both
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directions only the following marginal probabilities can be obtained experimentally:

Pab(ij) =
∑
i′j′

P(ii′jj′), Pa′b(i′j) =
∑
ij′

P(ii′jj′)

Pab′(ij′) =
∑
i′j

P(ii′jj′), Pa′b′(i′j′) =
∑
ij

P(ii′jj′)

(3)

Assume that experimental probabilities of the EPRB setup admit a joint probability distribution. Then

the average value of the product of the two outcome is given by the the correlator Xαβ where α ∈ {a, a′}

and β ∈ {b, b′}. Hence:

Xab =
∑

i
ij

jPab(ij), Xab′ =
∑

i
ij′

j′Pab′(ij′)

Xa′b =
∑

i′

i′j

jPab(i′j), Xa′b′ =
∑

i′

i′j′

j′Pa′b′(i′j′)
(4)

and de�ne Qn as

Q1 = Xab +Xa′b +Xab′ −Xa′b′ , Q2 = Xab +Xa′b −Xab′ +Xa′b′

Q3 = Xab −Xa′b +Xab′ +Xa′b′ , Q4 = −Xab +Xa′b +Xab′ +Xa′b′

(5)

By substituting equations 3 into the equations 4 and 5 and by considering the allowed values for the

outcomes it can be shown that

−2 ≤ Qn ≤ 2 (6)

The family of inequalities shown in equation 6 are known as the CHSH inequalities, which are similar to the

Bell's inequalities. The before-mentioned experimental violation of these boundaries occurred when some

choices of measurement directions a, a′, b and b′ showed that a looser bound of is required[21, 22]. This

bound turned out to be the Tsirelson bound [9] |Qn| ≤ 2
√

2 . Moreover, it was shown the all experimentally

derived bounds respect predictions made by quantum mechanical theory[1]. As a result, Bell concluded

that the assumption of locality was wrong[7]. Therefore only nonlocal hidden variable theories are possible.

2.3 Tsirelson's inequalities

The Tsirelson's inequalities [9] are analogous to Bell's inequalities shown in the section above. Their main

di�erence is that unlike Bell's inequalities, there is no contradiction between Tsirelson's inequalities and

the known experimental results discussed in section 2.2[11, 21]. Tsirelson's bounds agree with the empirical

bounds of |Qn| ≤ 2
√

2. Any kind of theory that allow a looser bound than the Tsirelson bound give rise
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to superquantum correlations. The full derivation of the Tsirelson's inequalities in a quantum mechanics

formalism is shown in [9] However, in 3.1.1 an alternate derivation using the quantum measure theory is

shown in detail.

2.4 PR box

Popescu and Rohrlich [10] showed that, in theory, it is possible to have correlations that maximally violate

the quantum mechanical bound given by Tsirelson's inequalities while adhering to no-signalling. To do so,

one needs to consider a device that is known as a PR box [10, 24]. In general a box is a device that which

given some input, for example a state of a particle, can give 2 possible outcomes. If the correlators take

their maximum value of 1 or −1 the inequalities for the correlation function yield

−4 ≤ Qn ≤ 4 (7)

By using a PR box the correlation values one would expect are −4, 4. However, it is currently argued

[10, 11, 13] that to date theories that allow the existence of a PR box do not faithfully describe the physical

world. Therefore, there is still a vast amount of ongoing research that tries to explain as to why these

correlations disagree with quantum mechanics and why PR boxes do not exist in nature. This is especially

interesting because research in quantum information has shown [24] that if such a box were to exist, then

the amount of classical information needed to be exchanged when two parties communicate would be

signi�cantly reduced.
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3 A hidden variable model with Superquantum correlations in

quantum measure theory

This chapter builds on the background chapter, which discussed general concepts related to quantum

mechanics. In the following quantum measure theory [15], a more recently develop framework for quantum

mechanics is introduced, as it is required to enable the reader to understand the hidden variable model

[11] presented in section 3.2. The main body of work produced in this chapter is uni�cation of di�erent

notations into a single format, which will simplify the comparison of the PR box model shown in this

chapter with the one in chapter 4. Moreover, to help the reader follow the theory, proofs taken from the

literature were augmented with additional steps. In addition to that the proofs shown in 3.1.2 were not

taken from the literature and solved as part of this project. Quantum measure theory will be introduced

in section 3.1 and Tsirelson's equations are derived using this framework [11, 12]. Furthermore, a nonlocal

hidden variable model that allows the existence of a PR box is reviewed in section 3.2.

3.1 Quantum measure theory

Quantum measure theory (QMT) is another formalism which also describes quantum mechanics [15].

It was suggested by R. Sorkin and it is based on the sum-over-histories / spacetime approach. The

motivation behind the theory is that it uni�es classical mechanics and quantum dynamics, where the

former is contained in the latter [25]. In Sorkin's hierarchy of measure theories states that the reality

comprised of a set of histories [26]. A history is denoted by γ. For example, in QMT an electron in the

double slit experiment follows only one path, but this path is not predetermined and therefore expressed

in a probabilistic manner [15, 25, 27].

In measure theory one considers a sample space Ω which contains all the possible histories for a given

system. The dynamics of the system is obtained from a measure µ on Ω[15]. This measure is a non-

negative real set function, which from a classical point of view can be interpreted as a probability function.
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In [11, 15] the authors consider the following series of symmetric set-functions for a given µ

I1(X1) ≡ µ(X1)

I2(X1, X2) ≡ µ(X1 tX2)− µ(X1)− µ(X2)

I3(X1, X2, X3) ≡ µ(X1 tX2 tX3)− µ(X1 tX2)− µ(X2 tX3)− µ(X3 tX2)

+ µ(X1) + µ(X2) + µ(X3)

...

In(X1, X2, . . . , Xn) ≡ µ(X1 tX2 t ...Xn)−
∑
n

µ(n− 1 sets) +
∑

n(n−1)

µ(n− 2 sets)

· · · ±
∑
n

µ(Xn)

(8)

where the t symbolizes a disjoint union and Xn are disjoint subsets of Ω. It can be shown that the

above functions express the following recursive relationship [15]:

In+1(X0, X1, X2, . . . , Xn) = In(X0 tX1, X2, ···, Xn)=In(X0, X2, ···, Xn)=In(X1, X2, ···, Xn) (9)

This implies that each level of the hierarchy contains all lower levels. Furthermore, a theory that satis�es

the sum rule Ik+1 = 0 automatically satis�es all higher sum rules, Ik+n = 0 for all n ≥ 1 [15]. Such theory

is classi�ed as a measure theory of level k [11, 25]. The lowest level of an additive set function hierarchy

contains classical stochastic theories that satisfy the Kolmogorov sum rule (cf. equation10 below). It is

referred to as a level 1 measure theory.

µ(X1 tX2) = µ(X1) + µ(X2) (10)

However, in quantum mechanics there is an amplitude in form of a complex number, associated with

each history. I2 is closely related to the interference. The sum rule is given by

µ(X1 tX2) = µ(X1) + µ(X2) + interference (11)

This sum rule implies quantum mechanics can be described by a level 2 measure theory which is referred

to as quantum measure theory [12, 15, 25]. The main dynamical quantity in this theory is called a quantum

measure given by equation 12. The interference is represented by the decoherence functional D(X1;X2).

The quantal measure cannot always be interpreted as an experimental probabilities. For very speci�c cases

were the interference term is zero the quantal measure is the the experimental probabilities. Otherwise,
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The quantal measure is the amplitude square of pairs of alternative spacetime histories[15, 11].

µ(Xn) = D(Xn;Xn) (12)

The decoherence functional for pairs of subsets of Ω satis�es the following[12]:

(i) Hermiticity: D(Xi;Xj) = D(Xj ;Xi)
∗, ∀Xi, Xj

(ii) Additivity: D(Xi tXj ;Xk) = D(Xi;Xk) +D(Xj ;Xk), ∀Xi, Xj ,Xkwhere Xi and Xj are disjoint

(iii) Positivity: D(Xi : Xj) ≥ 0 ∀Xi, Xj ; where i = j

(iv) Normalization: D(·; ·) = 1

For any ordinary unitary quantum mechanical theory the decoherence functional is strongly positive

[10, 12]. This means that the n× n Hermitian matrix M , with elementsMij ≡ D(Xi;Xj) has no negative

expectation values i.e. it is positive semi-de�nite for any �nite collection of subsets X1, X2, ...Xn of Ω. It

would be shown in section 3.1.1, that the Tsirelson's inequalities are derived in the QMT framework using

the condition of strong positivity, as this condition allows to associate a Hilbert space with the quantum

measure [12]. Therefore decoherence functional is strongly positive in quantum mechanics.

In the following the EPRB setup [4, 5, 6] is revised in the context of sample space and Quantum Measure

Theory. Consider the EPRB setup, where a source emitting a pair of spin-half particles and sends them

to two distant parties Alice and Bob as described in 2.1, where each party has a type of Stern-Gerlach

analyzers in order to measure the spin in some direction with outcomes being either +1 or −1. As there

are two analyzers in each experimental setting one obtains a set of 2 × 2 = 4 experimental probabilities.

Therefore, each set of experimental probabilities admits a probability distributions, Pρε de�ned on a sample

space Ωρε = Ωρ × Ωε where ρ and ε are the settings of Alice's and Bob's analyzers respectively and Ωρ

and Ωε are sample spaces associated with the experimental outcomes [12]. Note that additional sets of

experimental probabilities can be obtained by varying the direction of the spin measurements. The sample

space of the entire system Ω̂ consists of the collection of all such possible experimental probabilities and

is called the system of experimental probabilities.

When looking at the outcome of joint measurements like in section 2.2, where the experimental setting

consists of spin measurements with two possible settings for each apparatus:a or a′ and b or b′ for Alice's

and Bob's experiments respectively, then there are a total of 24 = 16 elements in the �nite sample space Ω̂.

This corresponds to the following possible probability distributions Pαβ with α ∈ {a, a′} and β ∈ {b, b′}.

The impossibility of superluminal signalling is assumed [2, 11] and therefore Alice's marginal probability

distribution must remain una�ected by Bob's choice of measurement and vice versa. This results in the
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following four no-signalling conditions

∑
j

Pab(ij) =
∑
j′

Pab′(ij′),
∑
i

Pab(ij) =
∑
i′

Pa′b(i′j)

∑
j

Pa′b(i′j) =
∑
j′

Pa′b′(i′j′),
∑
i

Pab′(ij′) =
∑
i′

Pa′b′(i′j′)
(13)

wherei and i′ are the outcomes of the a and a′ measurements respectively, whereas j and j′ represent the

results of Bob's measurements. Therefor it is said that the joint probability distribution in this setting

admits no-signalling conditions [12]. This means that the four experimental probabilities can be mapped

onto a single sample space Ω̂ = Ωa×Ωa′×Ωb×Ωb′ . The elements of Ω̂ are labeled by the sixteen 4-element

bit strings (ii´jj´) : i, i´, j, j´ ∈ {−1, 1}. In this setup there are only 8 independent probabilities, given

explicitly in Appendix A, due to the no-signalling conditions and normalisation.

If there exists a strongly positive decoherence functional D on Ω̂ which satisfy the conditions given in

equation 14 it is said that the experimental probabilities admit a strongly positive joint quantal measure

(SPJQM). [12] ∑
i′j′k′l′

D(ii′jj′; kk′ll′) = Pab(ij)δikδjl

∑
i′jk′l

D(ii′jj′; kk′ll′) = Pab′(ij′)δikδj′l′

∑
ij′kl′

D(ii′jj′; kk′ll′) = Pa′b(i′j)δi′k′δjl

∑
ijkl

D(ii′jj′; kk′ll′) = Pa′b′(i′j′)δi′k′δj′l′

(14)

These conditions guarantee that the 24 o� diagonal elements in the mentioned matrix M will vanish.

These are for example the elements in which i and j are di�erent than k and l respectively [12].

3.1.1 Tsirelson's inequalities in QMT

In this section Tsirelson's inequalities [9] will be derived using the QMT formalism. As mentioned in

section 2.2 these bounds are essential to understand the limitations of hidden variable theories in quantum

mechanics. As the discussion in 3.2 looks at a hidden variable theory [11] from QMT point of view it is

important to show that Tsirelson's bounds also hold in this formalism.

It can be shown that Tsirelson's inequalities,|Qn| =≤ 2
√

2 , holds if a joint quantal measure exists for

n = 1, ..., 4. This bound agrees with the experimental result [12].

Proof - adapted from [12]:

De�ne |ii′jj′〉 as the set of vectors that span the Hilbert space H. It is important to note that states
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denoted by|ii′jj′〉 do not span the entire vector space containing vectors [ii′jj′] as zero norm vectors are

excluded. More formally, let H1 be the space spanned by [ii′jj′], the Hilbert space H is

H =
H1

H0
(15)

where H0 is the subspace of zero norm states. Since D(ii´jj´; kk´ll´) is strongly positive the Hermitian

inner product on H is given by

〈ii´jj´, kk´ll´〉 = D(ii´jj´; kk´ll´) (16)

where it is assumed that the experimental probabilities admits an SPJQM as speci�ed by the set of

equations given in 14. Furthermore de�ne

|a〉 =
∑
ii′jj′

i |ii′jj′〉 , |a′〉 =
∑
ii′jj′

i′ |ii′jj′〉

|b〉 =
∑
ii′jj′

j |ii′jj′〉 , |b′〉 =
∑
ii′jj′

j′ |ii′jj′〉
(17)

and

|a±〉 =
∑
i′jj′

|±1i′jj′〉 , |b±〉 =
∑
ii′j′

|ii′ ± 1j′〉 (18)

where|a′±〉 and |b′±〉 are de�ned in a similar manner. For the remainder of this report +1 and -1 will be

denoted �+� and �−� respectively. This yields

〈a+ |a−〉 =
∑

i′jj′k′ll′

〈+i′jj′ |−k′ll′〉 =
∑

i′jj′k′ll′

D(+i´jj´;−k´ll´)

=
∑
jl

∑
i′j′k′l′

D(+i´jj´;−k´ll´) = 0

(19)

from equation 14 . Furthermore

〈a|a〉 = 〈a+ |a+〉+ 〈a− |a−〉 − 〈a+ |a−〉 − 〈a− |a+〉 = 〈a+ |a+〉+ 〈a− |a−〉

=
∑
jl

∑
i′j′k′l′

D(+i´jj´; +k´ll´) +
∑
jl

∑
i′j′k′l′

D(−i´jj´;−k´ll´)

=
∑
jl

Pab(+j)δjl +
∑
jl

Pab(−j)δjl =
∑
j

Pab(+j) + Pab(−j)

= Pab(++) + Pab(−+) + Pab(+−) + Pab(−−) = 1

(20)
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The same applies to 〈a′|a′〉 = 〈b|b〉 = 〈b′|b′〉 = 1. Additionally the correlator Xab can be written as

Xab =
∑

i
ij

j Pab(ij) =
∑

i
ijkl

l Pab(ij)δikδjl

and substitute equation 14 into the above to obtain

Xab =
∑

i
ijkl

l
∑
i′j′k′l′

D(ii′jj′; kk′ll′) =
∑

il
ii′jj′kk′ll′

D(ii′jj′; kk′ll′)

=
∑

il
ii′jj′kk′ll′

〈ii´jj´; kk´ll´〉 = 〈a|b〉
(21)

similarly

Xab′ = 〈a|b′〉 , Xa′b = 〈a′|b〉 , Xa′b′ = 〈a′|b′〉 (22)

Now consider the case of the Q1 correlations. By combining equations 4, 5, 21 and 22 one obtains

Q1 = 〈a|a〉+ 〈a′|b〉+ 〈a|b′〉 − 〈a′|b′〉 = (〈a| + 〈a′| ) |b〉+ (〈a| − 〈a′| ) |b′〉

≤ ‖|a〉+ |a′〉‖+ ‖ |a〉 − |a′〉‖

since it was argued above that the vectors |α〉and |β〉 are unit vectors and therefore Q1 will be maximised

when |a〉+ |a′〉 ‖ |b〉 and |a〉 − |a′〉 ‖ |b′〉

‖ |a〉 ± |a′〉‖2 = 〈a± a′|a± a′〉 = 2± 2Re 〈a|a′〉

also let O be

O = ‖ |a〉+ |a′〉‖+ ‖ |a〉 − |a′〉‖

O2 = ‖ |a〉+ |a′〉‖+ ‖ |a〉 − |a′〉‖2 + 2 ‖ |a〉+ |a′〉‖ ‖ |a〉 − |a′〉‖

= 2 + 2Re 〈a|a′〉+ 2− 2Re 〈a|a′〉+ 2
√

(2 + 2Re 〈a|a′〉)(2− 2Re 〈a|a′〉)

= 4 + 2
√

[4− 4(Re 〈a|a′〉)2]

≤ 4 + 2
√

4

therefore

O = Q1 ≤ 2
√

2

QED
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Similarly it is possible to prove that

|Qn| ≤ 2
√

2 (23)

where n = 1...4. Equation 23 is known as Tsirelson I. Another set of inequalities known as the Tsirelson

II inequalities state that [9, 11] if a system of probabilities such as portrayed in the EPRB setup admits

a SPJQM then

|QIIn | ≤ π (24)

for n = 1...4. Where

QII1 = |arcsinXab + arcsinXa′b + arcsinXab′ − arcsinXa′b′ |

QII2 = |arcsinXab + arcsinXa′b − arcsinXab′ + arcsinXa′b′ |

QII3 = |arcsinXab − arcsinXa′b + arcsinXab′ + arcsinXa′b′ |

QII4 = |−arcsinXab + arcsinXa′b + arcsinXab′ + arcsinXa′b′ |

(25)

where −π2 ≤arcsinXαβ ≤ −π2 . The inequalities in equation 24 can be proven using the QMT framework.

The proof below is adapted from [11]. The proof illustrated here only considers the case for QII1 . However,

similar steps can be applied to prove that the inequalities hold for any QIIn . De�ne

θ1 =
π

2
− arcsinXab, θ2 =

π

2
− arcsinXab′

θ3 =
π

2
− arcsinXa′b, θ4 =

π

2
− arcsinXa′b′

hence

Xab = sin(
π

2
− θ1) = cosθ1 (26)

then from equations 17, 20, 21 , 22 and 26 it follows

〈a|b〉 = cosθ1, 〈a|b′〉 = cosθ2

〈a′|b〉 = cosθ3. 〈a′|b′〉 = cosθ4

(27)

The �gure below portrays four coplanar unit vectors with angles θn
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Figure 1: Coplanar unit vectors a,a′, b and b′. From ref. [11]

If the vectors are coplanar and if θ1 + θ2 + θ3 ≤ π then θ1 + θ2 + θ3 = θ4. Also if the vectors are not

coplanar and θ1 + θ2 + θ3 ≤ π then θ1 + θ2 + θ3 ≥ θ4 since θ4 ≤ π. However, when θ1 + θ2 + θ3 > π then

in any case θ1 + θ2 + θ3 − θ4≥0. Thus in general one obtains −θ1 − θ2 − θ3 + θ4≤0 which gives

0 ≥ − π

2
+ arcsinXab −

π

2
+ arcsinXab′ −

π

2
+ arcsinXa′b +

π

2
− arcsinXa′b

0 ≥ arcsinXab + arcsinXab′ + arcsinXa′b − arcsinXa′b − π

π ≥ arcsinXab + arcsinXab′ + arcsinXa′b − arcsinXa′b

(28)

Moreover by reversing the signs of Bob's outcomes one can show in a similar manner that

arcsinXab + arcsinXab′ + arcsinXa′b − arcsinXa′b ≥ −π

QED

Any quantum correlations generally satisfy these inequalities which are weaker than Bell's inequalities.

3.1.2 Quantum mechanics and Tsirelson's inequalities

In the following the concepts behind ordinary quantum model for the probabilities (OQMP) and ordinary

quantum model for the correlators (OQMC) are explained. Moreover, the relationships between OQMP,

OQMC and the Tsirelson's inequalities are stated. This is necessary for discussion of PR boxes in section

2.4.

By de�nition [11, 28, 29], an ordinary quantum model for the probabilities (OQMP) consist of a vector

|ψ〉 in a Hilbert spaceH and a pair of projective decompositions of unity {P+
a , P

−
a },

{
P+
a′ , P

−
a′

}
,
{
P+
b , P

−
b

}
and

{
P+
b′ , P

−
b′

}
such that

[
P iα, P

j
β

]
= 0. Where as before α ∈ {a, a′} and β ∈ {b, b′}with i, j ∈ {−1,+1}
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and P+
α + P−α = P+

β + P−β = I . Additionally the following statement must be true for all α and β, and

all i and j.

Pαβ(ij ) =
〈
ψ|P iαP

j
β |ψ
〉

(29)

Example for measurements in OQMP:

P iα and P jβ are projectors. A P iαmeasurement on |ψ〉 followed by a P jβ measurement on the new state has

the probability

Pαβ(ij ) =
〈
ψ|P iαP

j
βP

j
βP

i
α|ψ
〉

(30)

this can be simpli�ed since projectors P iα and P jβ satisfy P jβP
j
β=P

j
β and P iαP

i
α=P

i
α. Furthermore the

commutator relation implies P jβP
i
α = P iαP

j
β . Hence

Pαβ(ij ) =
〈
ψ|P iαP

j
βP

i
α|ψ
〉

=
〈
ψ|P iαP iαP

j
β |ψ
〉

=
〈
ψ|P iαP

j
β |ψ
〉

(31)

An ordinary quantum model for the correlators (OQMC) [11, 28, 29], on the other hand, contains two

pairs of self-adjoint operators Sa, Sa´ and Sb, Sb´ and Hilbert space H with a vector |ψ〉. [Sα, Sβ ]= 0. In

an OQMC the predicted value of the correlator must be

Xαβ = 〈ψ|SαSβ |ψ〉 (32)

In the following it is formally shown that an OQMC can exists if there is a OQMP.

Proof:

Given an OQMP one can de�ne Sα, Sβ

Sa = P+
a − P−a Sa′ = P+

a′ − P
−
a′

Sb = P+
b − P

−
b Sb′ = P+

b′ − P
−
b′

(33)

Since P iα and P jβ are projectors they are Hermitian, thus Sa, Sa´ and Sb, Sb´ are self-adjoint operators.

Therefore from equation 32

〈ψ|SαSβ |ψ〉 = =
〈
ψ|
(
P+
α − P−α

) (
P+
β − P

−
β

)
|ψ
〉

=
〈
ψ|
(
P+
α P

+
β − P

+
α P
−
β − P

−
α P

+
β + P−α P

−
β

)
|ψ
〉

=
〈
ψ|
(
P+
α P

+
β

)
|ψ
〉
−
〈
ψ|
(
P+
α P
−
β

)
|ψ
〉
−
〈
ψ|
(
P−α P

+
β

)
|ψ
〉

+
〈
ψ|
(
P−α P

−
β

)
|ψ
〉
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Hence using 29

〈ψ|SαSβ |ψ〉 = Pαβ(++)−Pαβ(+−)−Pαβ(−+) +Pαβ(++)

= Xαβ

as by the de�nition of Xαβ given by equation 4

Xαβ =
∑

i
ij

j Pαβ(ij)

Thus if OQMP exists then an OQMC also exists. Note the converse does not hold.

QED

Finally it is important to understand that while the TsirelsonIIinequalities are necessary for both

OQMP and OQMC to exist, they are a su�cient condition for the existence of an OQMC, but not for an

OQMP [9, 11]. Moreover, it can be shown that a strongly positive joint decoherence function (SPJDF) (cf.

section 3.1) exists if an OQMP exists.

3.2 PR box in QMT

Consider the above setup of the EPRB in the framework of QMT. If a PR box (cf. section [10]) exists it

violates the TsirelsonII inequalities and therefore neither OQMP nor OQMC can exist. Given the following

set of experimental probabilities, the above setup can maximally violate Tsirelson's inequalities and reach

the upper bound of 4 [11]. The set of probabilities are

Pab(++) = Pab(−−) =
1

2

Pab′(++) = Pab′(−−) =
1

2

Pa′b(++) = Pa′b(−−) =
1

2

Pa′b′(+−) = Pa′b′(−+) =
1

2

(34)

where all other marginal probabilities are zero. It can now be shown that for maximum nonlocal correlations

the only possible values for the marginal probabilities are 1
2 and 0.

Proof:

Given Q1 = Xab + Xa′b + Xab′ − Xa′b′ where any Xαβ is de�ned by the set of equations 4. In order to

maximise the correlations and obtain Q1 = 4, the values of Xαβ should be Xab = Xa′b = Xab′ = 1 and

Xa′b′ = −1. To have Xab = 1 the values of Pab(ij) for choices of i, j s.t. ij = −1 have to be minimal,

i.e Pab(+−) = Pab(−+) = 0, since the correlator was de�ned as Xab =
∑
i

ij

jPab(ij). The same applies for
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Xa′b and Xab′ . For Xa′b′ = −1, however, the marginal probabilities which yield Pa′b′(i′j′) 6= 0 are only

needed for the anti-correlated outcomes. Combining these conditioning with the no-signalling conditions

as written explicitly in Appendix A implies

Pab(++) = Pab(−−) = Pab′(++) = Pab′(−−) = Pa′b(++)

= Pa′b(−−) = Pa′b′(+−) = Pa′b′(−+)

(35)

Additionally Xαβ can be written explicitly as

Xab = Pab(++) + Pab(−−) = 1

Xa′b = Pa′b(++) + Pa′b(−−) = 1

Xab′ = Pab′(++) + Pab′(−−) = 1

Xa′b′ = − Pa′b′(+−)− Pa′b′(−+) = − 1

(36)

From 35 and 36 one obtains

Pab(++) = Pab(−−) = Pab′(++) = Pab′(−−) = Pa′b(++)

= Pa′b(−−) = Pa′b′(+−) = Pa′b′(−+) =
1

2

(37)

with all other marginal probabilities being zero. Similarly for Q1 = −4 it is required that Xab = Xa′b =

Xab′ = −1 and Xa′b′ = 1. Therefore this time Pa′b′(i′j′) = 0 whenever the outcomes i′ and j′ are anti-

correlated. Also it is required that the marginal probabilities Pab(ij) = Pab(ij) = Pab(ij) = 0 for outcomes

with the same sign. Following the same procedure as for the Q1 = 4 case it can be shown that for Q1 = −4

Pab(+−) = Pab(−+) = Pab′(+−) = Pab′(−+) = Pa′b(+−)

= Pa′b(−+) = Pa′b′(++) = Pa′b′(−−) =
1

2

(38)

The following proof is for the case of Q1 and can be done in similar manner for all Qn.

QED

In the EPRB setup considered above there exist 8 PR boxes corresponding to Qn = ±4 where n =

1 . . . 4. The probability distribution in equation 34 corresponds to the PR box for which the sum of

correlators Q1 = 4. The other 7 boxes are obtained by permuting the inputs and outputs of the two

parties. For instance the probability distribution for Q1 = −4 is given by equation 38.

In section 3.1.2 it was stated that a SPJDF exists if an OQMP exists. Furthermore, in [11, 12] it was

shown that a PR box admits a joint quantal measure. The following decoherence functional described in
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equation 39 admits a joint quantal measure. Equation 39 corresponds to the PR box in equation 34 as

shown in Appendix B.

DPR(−+−−;−+−−) = DPR(+ + +−; + + +−) = DPR(+ +−+; + +−+)

= DPR(−−−+;−−−+) =
1

2

DPR(−−−+;−−−−) = DPR(−+−+; +−−−) = DPR(+ +−+; + + +−)

= DPR(−−−+; + +−+) =
1

4

DPR(−+−+;−+−−) = DPR(−+−+;−+−−) = DPR(+ + +−; + +−−)

= DPR(+ +−+; +−−−) = DPR(−−−+; +−−−)

= DPR(+ +−+;−+−+) = DPR(−−−+;−+−+) = −1

4

(39)

The decoherence functional is Hermitian. All remaining elements that are not speci�ed above are equal

to their Hermitian counterparts or zero. Furthermore it can be checked that this decoherence functional

for the PR box in equation 34 satis�es

∑
γeγf

DPR(γe; γf ) ≥ 0 (40)

where γe and γf are speci�c histories represented by the 4 bit string (ii′jj′). This has been done by

converting 39 into the matrix given below (equation 41). The labels γe and γf for the columns and rows

were added to the matrix to portray which element refers to which history. In equation 41 the string

representation of the histories was converted to binary strings, such that �+� becomes 0 and �-� becomes

1. Table 1 allocates a binary number to each history. Note that permutation of this matrix represent the
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7 other possible PR boxes.

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12 γ13 γ14 γ15 γ16

γ1

γ2
1
2

1
4 − 1

4

γ3
1
4

1
2 − 1

4 − 1
4

1
4

γ4 − 1
4

γ5

γ6

γ7

γ8 − 1
4

1
4 − 1

4

γ9

γ10

γ11 − 1
4

1
4 − 1

4 − 1
4

γ12 − 1
4

1
2

γ13

γ14

γ15
1
4 − 1

4 − 1
4

1
2

1
4

γ16
1
4

(41)

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12 γ13 γ14 γ15 γ16

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Table 1: Allocation of binary strings to histories, where �+� was converted to 0 and �-� to 1

Technically 216 subsets need to be considered to prove equation 40. However, it is important to note

that only 8 rows and columns out of the 16 in the matrix contain non-zero elements. Hence, to show that

the decoherence functional adheres to equation 40 one only has to consider the 8 × 8 matrix shown in
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equation 42.

γ2 γ3 γ4 γ8 γ11 γ12 γ15 γ16

γ2
1
2

1
4 − 1

4

γ3
1
4

1
2 − 1

4 − 1
4

1
4

γ4 − 1
4

γ8 − 1
4

1
4 − 1

4

γ11 − 1
4

1
4 − 1

4 − 1
4

γ12 − 1
4

1
2

γ15
1
4 − 1

4 − 1
4

1
2

1
4

γ16
1
4

(42)

This reduction in the dimensions of the matrix might originate from the fact that there are only 8 individual

probabilities in the system. The matrix elements were then used as an input for a python script 1, which

checks that no n-subset violates equation 40. The script and a brief explanation of the program is provided

in Appendix C.

Since Tsirelson II is violated the measure is not strongly positive. However, according to the QMT

framework introduced in section 3.1the experimental probability admits a joint quantal measure [11, 15]. In

fact, it was proven in [11] that for the EPRB setup, a (2, 2, 2) setup with 2 parties, 2 direction measurements

and 2 output, any system of experimental probability admits a joint quantal measure. It is interesting to

note that this model of hidden variables fails for larger systems where more than one PR box exists [26].

In case of two PR boxes the sample space is Ω̂2PR = ΩPR1 × ΩPR2 where ΩPR1 and ΩPR2 are the

sample spaces corresponding to the two individual boxes. Hence Ω̂2PR consists of 28 = 256 histories with

2256 possible subsets. In this case the decoherence function takes the form

D2PR((γe; γf ); (γe; γf )) = DPR1(γe; γf )DPR2(γē; γf̄ ) (43)

where γe and γf are speci�c histories in the sample space of the �rst PR box and γē, γf̄ are histories in

the sample space of the second PR box. DPR1(γe; γf ) and DPR2(γē; γf̄ ) are the decoherence functions in

the sample spaces ΩPR1 and ΩPR2 respectively. In this case the positivity condition is given by

∑
γe,γf ,γe,γf

D2PR((γe; γf ); (γe; γf )) ≥ 0 (44)

This condition is violated and therefore the hidden variable model discussed in this section cannot allow

for a PR box to exist [26].
1The program was jointly written with Marcel Christoph Guenther
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4 Hidden variable model with superquantum correlations in crypto-

nonlocal theories

A crypto-nonlocal hidden variable model is introduced in this chapter [14]. In chapter 5 this model will

then be compared to the hidden variable model from the previous chapter. In order to understand the idea

behind crypto-nonlocal theories section 4.1 gives a detailed account of the main concepts behind crypto-

nonlocal theories [37, 16]. After that a recently proposed hidden variable model is reviewed in section

4.2. This model is of particular interest as it allows superquantum correlations to occur, which violate

predictions made by quantum mechanics. Generally the results of this model might enable a better insight

into superquantum correlations, which naturally motivates the discussion in chapter 5. Similar to chapter

3, the main contribution in this chapter is the representation of the ideas shown in [13, 14, 16] using similar

notation to one used in previous chapters, which creates a sold basis for the later comparison. Moreover,

some numerical examples are provided to explain results better.

4.1 Crypto-nonlocal theories

Crypto-nonlocal theories are a broad class of non-local realistic theories, proposed by Leggett [16], that

are incompatible with predictions of quantum mechanics. In [16] Leggett derived a new type of Bell's

inequalities, which bound this particular class of nonlocal hidden variable theories. He further showed

that those inequalities contradict predictions made by quantum mechanics. To illustrate this he described

a type of experiment that is shown in �gure 2

Figure 2: Experimental setup for measuring an elliptical or a linear polarization of two photons by using
appropriate combinations of quarter-wave-plates and linear polarizers. From ref.[30]
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4.1.1 Crypto-nonlocal theories for two 2-dimentional systems

In the following nonlocal realistic models, which belong to the class of Leggett's crypto-nonlocal theories,

are described in [13]. However, some changes to the notation were made in order to ease the comparison

between these models and the once described in previous sections.

Ghirardi et al. assume that a pair of maximally entangled photons are emitted from the source and

photons have well-de�ned polarizations. Their state is given by equation 45

|ψ+〉 =
1√
2

( |V1V2〉+ |H1H2〉 (45)

where |V1〉 and |H1〉 are the vertical and horizontal states of photon 1 and |V2〉 and |H2〉 are polarization

planes for photon 2. Alice receives a photon with polarization vector of unit length u and measures it

in the α direction, while Bob receives a photon with polarization vector of unit length v and measures

it in the β direction. α and β can be any directions. In section 3 those correspond to directions a, a′

for α and b, b′ for β. However, in this context α and β can have arbitrary directions. The resulting

measurement outcomes are either +1 or =1 due to the speci�c assignment of hidden variables. If locality

is assumed, A(α) represents Alice's measurements in the α direction whereas B(β) is Bob's outcome in the

β direction. In other words i = A(a), i′ = A(a′), j = B(b) and j′ = B(b′). Yet, Leggett's models are

nonlocal and the input of the �rst party in�uences the output of the second. To re�ect this outputs will

be noted as A(α, β, µ) and B(α, β, µ) where µ is a set of hidden variables corresponding to the distribution

function ρu,v(µ). Thus measurement outcomes are determined by two types of hidden variables µ and the

polarization vectors (u,v), which is distributed according to F (u,v) .

As in quantum mechanics correlators are given by equation 32. In this model, Alice's and Bob's

operators are therefore represented by Â(α) and B̂(β) [13, 16]. Hence

X
ψ+

αβ ≡
〈
ψ+|Â(α)B̂(β)|ψ+

〉
(46)

The averages are of single photon measurements are

Xψ+
α ≡

〈
ψ+|Â(α)|ψ+

〉
, X

ψ+

β ≡
〈
ψ+|B̂(β)|ψ+

〉
(47)
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and the following conditions must hold

Xψ+
α =

ˆ
dudvF (u,v)

ˆ
dµρu,v(µ)A(α, β, µ)

X
ψ+

β =

ˆ
dudvF (u,v)

ˆ
dµρu,v(µ)B(α, β, µ)

X
ψ+

αβ =

ˆ
dudvF (u,v)

ˆ
dµρu,v(µ)A(α, β, µ)B(α, β, µ)

(48)

the Leggett inequalities yield [16, 32]

1=|Xψ+
α −Xψ+

β | ≥ X
ψ+

αβ ≥ −1 + |Xψ+

β +X
ψ+

β |

Leggett uses experiments to motivate crypto-nonlocal theory. These experiments assume that two photons

with inde�nite polarization are emitted from a source. In this case conditionXψ+

αβ from equation 48 does not

apply, though the other two conditions still do. As Leggett assumed nonlocality arises from the condition

that probability of the outcome for the �rst party is not a�ected by the measured outcome of the other party

[13]. This assumption is known as outcome Independence [31]. However, he claimed [13, 16] that parameter

independence does not necessary hold. Parameter independence [31] is the assumption probability of the

outcome of one party is not a�ected by the of the measurement on the other side. For crypto-nonlocal

theories, the following conditions, which represent no-signalling and washed out nonlocality [13] must hold

ˆ
dµρu,v(µ)A(α, β, µ) =f(α,u)

ˆ
dµρu,v(µ)B(α, β, µ) =g(β,v)

(49)

where f(α,u) and g(β,v) are given in Leggett's proposal as follows

f(α,u) = 2(u · α)2 − 1, g(β,v) = 2(v · β)2 − 1 (50)

Since nonlocality was introduced, the prediction of such this theory violated Bell's inequalities, for both

linearly and elliptically polarized photons. Leggett further showed that these predictions also violate

quantum mechanics. Hence, he claimed that it is insu�cient solely assume nonlocality. This observation

has also been validated experimentally by [33], who showed that correlations between two entangled

photons violated Leggett's inequality for nonlocal realistic theories.

Furthermore it was shown that in the two qubit system case, crypto-nonlocal theories compatible with

quantum mechanics must satisfy

f(α,u) = g(β,v) = 0 (51)
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because local observables average over ψin quantum mechanics

Xψ+
α = X

ψ+

β = 0 (52)

4.1.2 Crypto-nonlocal theories of a two N-dimensional systems

In [13, 14] Ghirardi et al. considered a more general case of the model introduced in section 4.1.1, in which

the state ψ is a maximally entangled state of a two N -level systems and N ≥ 2. A maximally entangled

state is given by the Schmidt decomposition [2]:

|ψ〉 =
1√
N

N∑
j

|Wj〉 |Vj〉 (53)

where {|Vj〉 ; j}and {|Wj〉 ; j} are orthonormal bases

Under these circumstances [13] λ is the set of hidden variables λ = (µ, τ) with distribution function

ρ(λ) ≡ ρ(µ, τ). Note, µ is also referred to as deep level hidden variable. Moreover, the distribution

functionρ(λ) can be written as

ρ(λ) = ρ(µ, τ) = ρ(µ|τ)ρ(τ) (54)

This requires the following more general set conditions (analogous to equation 48)

Xψ
α =

ˆ
dλρ(λ)Aψ(α, β, λ) =

ˆ
dτρ(τ)fψ(α, τ)

Xψ
β =

ˆ
dλρ(λ)Bψ(α, β, λ) =

ˆ
dτρ(τ)gψ(β, τ)

Xψ
αβ =

ˆ
dλρ(λ)Aψ(α, β, λ)Bψ(α, β, λ) =

ˆ
dτρ(τ)Xψ,τ

αβ

(55)

where fψ(α, τ) and gψ(β, τ) are intermediate averages over µ (equation 57), Aψ(α, β, λ) and Bψ(α, β, λ)

are the outcomes (similarly to section 4.1.1) and

Xψ,τ
αβ =

ˆ
dµρ(µ|τ)Aψ(α, β, µ, τ)Bψ(α, β, µ, τ) (56)

the intermediate averages over µ. These averages

fψ(α, τ) =

ˆ
dµρ(µ|τ)Aψ(α, β, µ, τ)

gψ(β, τ) =

ˆ
dµρ(µ|τ)Bψ(α, β, µ, τ)

(57)

are equivalent to the no-signaling conditions and result in washed out nonlocality. In addition to this
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Ghirardi et al. proved in [13] that for systems with an arbitrarily large number of dimensions, a crypto-

nonlocal theory is equivalent to quantum mechanics if it satis�es

fψ(α, τ) = gψ(β, τ) = 0 (58)

Equation 58 is a generalization of equation 51. Moreover they showed that when equation 58 applies one

has to have

fψ(α, τ) = Xψ
α , gψ(β, τ) = Xψ

β (59)

Previous research on crypto-nonlocal theories [33, 34, 35] argued that due to these conditions crypto-

nonlocal theories cannot assign local values which quantum mechanics cannot. Hence, the authors in

[33, 34, 35] considered that as a proof that these theories are simply a local version of quantum mechanics

and thus not of particular interest.

4.2 PR box in crypto-nonlocal theories

In the following a crypto-nonlocal hidden variables model is introduced that can give rise to both quantum

and superquantum correlation. In this model the framework is the same as the one introduced in section

4.1.2[13]. Alice can measure in direction α and her outcome is denoted by Aψ(α, β, λ), where λ is the

hidden variable in the model. Similarly, Bob can measures in the β direction with outcome Bψ(α, β, λ).

Aψ(α, β, λ) and Bψ(α, β, λ) can take values ±1. The correlators are given by equation 55. As in section

4.1.2 λ is speci�ed by two variables µ and τ corresponding to lower and upper level hidden variables

respectively. In Ghirardi's model [14] λ is a unit vector in R3 with orthogonal reference frame (x,y,z). λ

is uniformly distributed over a unit sphere and µ and τ are the polar angles specifying this sphere. µ and

τ are de�ned such that µ ∈ [0, 2π) and τ ∈ [0, π). The relation between µ,τ and the conventional polar

angles θand φ is portrayed in equation 60:

µ = θ τ = φ for y ≥ 0

µ = 2π − θ τ = φ− π for y < 0

(60)

The unit vectors of the direction α and β are α and β respectively and ω is the angle between α and

β, where 0 ≤ ω ≤ 0. Vectors α̂ and β̂ lie in the (α,β)-plane and form an angle ω̂. By de�nition α̂ and

β̂ must be each others image when mirrored with respect to ω's bisector. Much like in Bell's model the
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relationship betweenω and ω̂ in the case of this model is given by

ω̂ = πsin2(
ω

2
) (61)

where

ω̂ ≤ ω for ω ≤π
2

ω̂ > ω for ω >π

The measurement operators are Â(α) = α · σ and B̂(β) = β · σ, where σ represents the three Pauli

matrices. The outcomes of the measurements are uniquely determined by the values assigned to hidden

variable λ = (µ, τ) where

Aψ(α, β, µ, τ) =sgn(α̂ · λ)

Bψ(α, β, µ, τ) =− sgn(β̂ · λ)

(62)

Hence the values ±1 of the observables are related to opposite hemispheres of the unit sphere of λ.

Moreover, integration over a maximal circle is equivalent to integration over the deeper level hidden variable

µ resulting in equation 58. Hence from equations 55 and 58 Ghirardi and Ra�aele [14] showed that this

crypto-nonlocal model gives similar predictions as quantum mechanics when integrating over all hidden

variables.

In order to show that this model exhibits superquantum correlations, integration over only the deeper

level hidden variable, equation 63 needs to be evaluated. This equation represents the averages over µ of

the correlators and it is analogous to equation 56

Xψ,τ
αβ =

1

4

2π̂

0

dµ |sin(µ)|Aψ(α, β, µ, τ)Bψ(α, β, µ, τ) (63)

The evaluation of the above integration is done for a model [14] with four measurement in the (x,z)-plane

α ∈ {a,a′} and β ∈ {b,b′} corresponding to

a = (sin(η), 0, cos(η)) , a′ = (-sin(η), 0, cos(3η))

b = (-sin(η), 0, cos(η)) , b′ = (sin(3η), 0, cos(3η))

(64)

where η ∈ [0, π4 ). Ghirardi and Ra�aele de�ned the following parameters χn for n = 1, ..., 4

χn = χn(η, τ) =
cos(τ)√

cos2(τ) + cot2(κn(η)
2 )

(65)
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where κn(η) are simply

κ1(η) = πsin2(η), κ2(η) = πsin2(3η)

κ3(η) = 4η + πsin2(η), κ4(η) = 4η − πsin2(η)

(66)

The joint correlation Xψ,τ
ab can be computed in the following way. Using the relation given in equation 67

(cf. Appendix D for derivation).

sgn(â · λ)sgn(b̂ · λ) = sgn(â · λ)(b̂ · λ) = sgn
(
χ2

1 − cos2(µ)
)

(67)

and hence

Xψ,τ
ab =

1

2

π̂

0

dµsin(µ)sgn
(
χ2

1 − cos2(µ)
)

=
1

2

−1ˆ

1

− dysgn
(
χ2

1 − y2
)

=
1

2

1̂

−1

dysgn
(
|χ1|2 − y2

)
=2 |χ1| − 1

(68)

The derivation of the other correlations are rather di�cult but they are given in [14] as

Xψ,τ
ab = 2|χ1| − 1, Xψ,τ

a′b′ = 2 |χ2| − 1

Xψ,τ
a′b = |χ3 − χ4| − 1, Xψ,τ

ab′ = |χ3 − χ4| − 1

(69)

when 0 ≤ η ≤ η̃.
Xψ,τ

ab = 2|χ1| − 1, Xψ,τ
a′b′ = 2 |χ2| − 1

Xψ,τ
a′b = 1− |χ3 + χ4| , Xψ,τ

ab′ = 1− |χ3 − χ4|
(70)

when η̃ ≤ η ≤ π
4 . Where η̃ is the solution of 4η + πsin2η = π. Analogously to equation 5 the following

correlations can be obtained

Qψ,τ1 = Xψ,τ
ab +Xψ,τ

a′b +Xψ,τ
ab′ −X

ψ,τ
a′b′

= 2 |χ1|+ 1 + |χ3 − χ4| − 1 + |χ3 − χ4| − 1− 2 |χ2|

= 2 (|χ1| − |χ2|+ |χ3 − χ4| − 1)

(71)
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for 0 ≤ η ≤ η̃
Qψ,τ1 = Xψ,τ

ab +Xψ,τ
a′b +Xψ,τ

ab′ −X
ψ,τ
a′b′

= 2 |χ1|+ 1 + 1− |χ3 + χ4|+ 1− |χ3 − χ4| − 1− 2 |χ2|

= 2 (|χ1| − |χ2| − |χ3 + χ4|+ 1)

(72)

for η̃ ≤ η ≤ π
4 . The values for τ and η that allow a PR box are in the neighbourhood of τ = π

2 and η = π
6

for the lower bound and τ = (π2 ) and η = η̃ for the upper bound. Hence −4 ≤ Q1ψ,τ ≤ 4. It is important

to note that Qψ,τ1 reaches this bound asymptotically. This is because cos(π2 ) = 0 and therefore χn = 0.

Hence Qψ,τ1 = ±2. But in the neighbourhood of the above angles the bound is reached asymptotically. An

explicit example for this is given in Appendix D.

The values that of Qψ,τ1 for di�erent combinations of η and τ is given in �gure 3

Figure 3: Contour plot of the function
∣∣∣Qψ,τ1

∣∣∣ in the space of η and τ . Three regions can be observed.

The dark grey region corresponds to
∣∣∣Qψ,τ1

∣∣∣ ≥ 2
√

2 where Tsirelson's bound is violated and superquantum
correlation are observed. The area in light grey represents quantum nonlocality which respect the Tsirelson
bound but violate Bell's inequalities 2 ≤

∣∣∣Qψ,τ1

∣∣∣ ≤ 2
√

2. Finally the white area is the one for which local

hidden variables theories hold. From ref.[14]

Finally, by averaging
∣∣∣Qψ,τ1

∣∣∣over the higher level hidden variable τ, correlations corresponding to quan-

tum mechanics are reproduced. This model therefore encapsulates all possible forms of hidden variables

theories for the (2,2,2) setup. In addition it reaches asymptotically correlations that exhibits a PR box.

Hence, the model allows a comparison between crypto-nonlocal theories, which were possibly prematurely

discarded, and quantum mechanics[14].
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5 Discussion

In this chapter the two hidden variable models introduces in sections 3.2, 4.2 are analysed and compared.

The �rst model by Barnett et al. [11] was derived in the mathematical QMT framework, whereas the

second model by Ghirardi et al. [14] is derived using crypto-nonlocal theory.

The correlations that are described in Barnett's model maximally violate Tsirelson's inequalities. On

the other hand, in Ghirardi's model the maximum bound is only reached asymptotically and produces

correlations for all known bounds, i.e. local, quantum mechanical and superquantum bounds. The exact

type of correlations depends on the intervals over which the hidden variables are integrated. According to

Ghirardi et al. [14], local correlations arise since nonlocality is washed out when imposing the conditions

in equation 57.

In section 3.2it was mentioned that the Barnett's model does not faithfully describe larger sample

spaces that contain more than one PR box[26]. This is because the positivity condition given by equation

44 does not hold. However, Ghirardi's model does not cover the case where more than one box is assumed.

Therefore, future research into this model should investigate this scenario and see if the revised model is

still consistent with original one and still produces the same type of correlations.

Barnett's model features a joint probability which allows the existence of a PR box distribution which

admits a joint quantal measure [12]. This joint quantal measure is not strongly positive as was stated in

[11], cf. section 3.2. Hence the correlation function in their model violates the Tsirelson inequalities and

also contradicts OQMP. Hence they concluded that the question of whether a PR Box can exist in nature

is related to the mathematical condition of strong positivity [11]. In contrast to Barnett's model which was

formulated in the QMT framework, the crypto-nonlocal theories used by Ghirardi et al. to describe their

model, belong to the class of nonlocal hidden variable theories which describe physical experiments [16]. As

crypto-nonlocal theories are equivalent to quantum mechanics only when the condition given by equation

58 holds [13], Ghirardi et al. [14] argue that their model gives some sort of physical interpretation to the

relationship between superquantum correlations and quantum mechanics. However, we argue that the last

statement does not necessarily imply that the superquantum correlations exist. Ghirardi's model allows

superquantum correlations only at intermediate level of crypto-nonlocal theories[14, 13], i.e. only when

integrating over the deeper level hidden variables. Yet, in order to reproduce the quantum mechanical

bound one has to integrate over both hidden variables. Therefore, we conclude that in this model the

question whether a PR Box exists or not, is related to the integration over the di�erent levels of hidden

variables. Hence as far as we can see, it is vital to average over the entire joint hidden variable space as

one should not ignore possible e�ects on the �nal outcome.
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6 Conclusion & Further work

In the introduction section it was mentioned that one of the main challenges in quantum mechanics research

is its lack of uni�cation with classical theories. An elegant formalism that partially solves this problem

is QMT [15]. As it has been highlighted in chapter 3, the signi�cance of this framework is that classical

deterministic theories are contained within the path integral formulation of quantum mechanics. This is

because the classical deterministic interpretation of our world can be expressed by level 1 sum rules in

the hierarchy of measure theory, whereas the dynamics of quantum mechanics are contained in level 2

hierarchies. Moreover, it was shown that lower levels of the hierarchy are contained within higher levels.

The derivation of the Tsirelson inequalities in this framework was shown in [11, 12], cf. section 3.1.1.

The authors derived two bounds, the Tsirelson I inequality (cf. equation 23) and the stronger Tsirelson

II bound (cf. equation 24). Moreover, for an OQMP to exist Tsirelson II must hold. Since Tsirelson's

inequalities were derived assuming the existence of SPJQM, this implies that the existence of SPJQM is

also a necessary condition for the existence of OQMP [12]. Whether the converse holds remains an open

question and is subject to future research.

The concepts behind OQMP and SPJQM were introduced in order to investigate Barnett's nonlocal

hidden variable model [11] in the QMT framework (c.f section 3.2). The authors concluded that the

question of whether a PR Box can exist in nature is related to the condition of strong positivity shown

in equation 40. The joint probability distribution given in the model allows the existence of a PR box

which admits a joint quantal measure. However, the joint quantal measure is not strongly positive since

the probability distribution of a PR box maximally violate Tsirelson bound. Hence, in [11] the authors

argue that the reason why OQMP does not allow superquantum correlations could be due to the positive

nature of the decoherence function. Furthermore it was stated that the positivity condition does not hold

when two PR boxes are combined.

One of the interesting �ndings of this report with regard to Barnett's model is that the reduction of

the matrix representation for the decoherence function in equation 41 can be reduced to the 8× 8 matrix

shown in equation 42. This reduction makes it much easier to determine if the matrix is strongly positive,

as it makes the calculations, usually done computationally, quicker and less expensive. The 8 × 8 matrix

might naturally relate to the fact that there are only 8 independent marginal probabilities (cf. Appendix

A).

In general, research into quantum mechanics using the QMT framework might help to answer open

questions about the true nature of quantum mechanics. In particular it is an important research goal to

develop theories that can satisfy level 3 sum rules in the QMT hierarchy. If those were to exist it would be
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of further interest to see whether they allow the existence of a PR box. Even if it was possible to show the

existence of a level 3 hierarchy in some hidden variable model, such systems may still not exist in nature.

On the other hand, if level 3 QMT were shown not to exist, one would need to investigate as to why the

description of nature stops at level 2 in QMT hierarchy[11].

In this report the ideas of Barnett et al. were compared to those by Ghirardi et al. [14]. In their model,

Ghirardi et al. aim to show the existence of correlations that are stronger than quantum correlations.

Rather than using QMT, their work is conducted using a class of theories known as crypto-nonlocal

theories, cf. section 4.1. These theories consist of two levels of hidden variables and quantum correlations

are obtained by averaging over both. However, a special condition was imposed, cf. equation 57. As

a consequence when averaging locally over the deeper level hidden variable nonlocality is washed out.

However, Leggett [16] previously showed that this type of models con�ict with quantum mechanics, which

was later shown experimentally. Therefore in order for Ghirardi's model to agree with quantum mechanics,

equations 57 and 58 must be satis�ed. They further show that averaging the correlations over the deeper

hidden variable results in superquantum correlations, while averaging over all hidden variables results in

the quantum mechanical correlations. Hence, superquantum correlations exist at the intermediate level of

crypto-nonlocal theories.

Previous research on crypto-nonlocal theories argued [33, 34, 35] that due to these conditions given

in equations 57 and 58, crypto-nonlocal theories cannot assign local values which quantum mechanics

cannot. Hence, the authors in [33, 34, 35] argued that these theories are simply a local version of quantum

mechanics and thus not of particular interest, whereas Ghirardi et al. challenge this statement with

their model. Despite the fact that Ghirardi's hidden variable model violates quantum mechanics, when

integrating over all hidden variables, one obtains correlations that reproduce the Tsirelson bound. Hence,

Ghirardi et al. claim that their model is a useful means for comparing superquantum correlations with

the Tsirelson bound and Leggett's model [14, 13].

Our comparison between Barnett's and Ghirardi's models highlight that the type of correlations that a

hidden variable models allows, are highly dependent on the type of framework used to express the model

as well as on the parameters of the variables. Finally, we believe that if nature is accurately described by

hidden variable models, Ghirardi's model provides a strong indication as to why superquantum correlations

cannot exist in nature, since all levels of hidden variables must be considered when calculating the outcomes

of experiments.
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Appendix A

The no-signalling conditions are given in equation 13 and revised here

∑
j

Pab(ij) =
∑
j′

Pab′(ij′),
∑
i

Pab(ij) =
∑
i′

Pa′b(i′j)

∑
j

Pa′b(i′j) =
∑
j′

Pa′b′(i′j′),
∑
i

Pab′(ij′) =
∑
i′

Pa′b′(i′j′)

These can be explicitly written as

Pab(++) + Pab(+−) = Pab′(++) + Pab′(+−)

Pab(−+) + Pab(−−) = Pab′(−+) + Pab′(−−)

Pab(++) + Pab(−+) = Pa′b(++) + Pa′b(−+)

Pab(+−) + Pab(−−) = Pa′b(+−) + Pa′b(−−)

Pa′b(++) + Pa′b(+−) = Pa′b′(++) + Pa′b′(+−)

Pa′b(−+) + Pa′b(−−) = Pa′b′(−+) + Pa′b′(−−)

Pab′(++) + Pab′(−+) = Pa′b′(++) + Pa′b′(−+)

Pab′(+−) + Pab′(−−) = Pa′b′(+−) + Pa′b′(−−)

(73)

It was stated in section 3.1 that only eight independent probabilities exist for the (2,2,2) setup. An

explicit example for a set of eight independent probabilities is given below. This set is not unique. The

probabilities were found using the above no-signalling conditions combined with the normalisation condi-

tions portrayed in equation 74 ∑
ij

Pab(ij) = 1

∑
i′j

Pa′b(i′j) = 1

∑
ij′

Pab′(ij′) = 1

∑
i′j′

Pa′b′(ij) = 1

(74)
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which can be written as

Pab(−−) = 1− Pab(++)− Pab(+−)− Pab(−+)

Pa′b(−−) = 1− Pa′b(++)− Pa′b(+−)− Pa′b(−+)

Pab′(−−) = 1− Pab′(++)− Pab′(+−)− Pab′(−+)

Pa′b′(−−) = 1− Pa′b′(++)− Pa′b′(+−)− Pa′b′(−+)

(75)

By combining equation 13 with equation 75 one arrives to the following set of probabilities

Pab(−−) = 1− Pab′(++)− Pab′(+−)− Pab(−+)

Pa′b(−−) = 1 + Pab(+−)− Pab′(++)− Pab′(+−)

− Pab(−+)− Pa′b(+−)

Pab′(−−) = 1− Pab′(++)− Pab′(+−)− Pab′(−+)

Pa′b′(−−) = 1− Pa′b′(+−)− Pab′(++)− Pab′(−+)

Pa′b(++) = − Pa′b(+−) + Pa′b′(++) + Pa′b′(+−)

Pab(++) = − Pab(+−) + Pab′(++) + Pab′(+−)

Pa′b′(−+) = − Pa′b′(++) + Pab′(++) + Pab′(−+)

Pa′b(−+) = − Pab(+−) + Pab′(++) + Pab′(+−)

+ Pab(−+) + Pa′b(+−)− Pa′b′(++)

− Pa′b′(+−)

(76)
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Appendix B

In this appendix it will be shown that the decoherence functional described by 39 corresponds to the

PR box in equation 34. When verifying this statement it is su�cient to calculate the values of only

four experimental probabilities. These probabilities corresponds to the four di�erent combinations of the

measurements directions. The values of the other 12 experimental probabilities can then be inferred as

shown in section 3.2.

The decoherence functional admits a joint quantal measure[12] and equation 14 holds.

∑
ijkl

D(ii′jj′; kk′ll′) = Pa′b′(i′j′)δi′k′δj′l′

Hence

Pa′b′(+−) =
∑
ijkl

D(i+ j−; k + l−) =
∑
jkl

D(+ + j−; k + l−) +
∑
jkl

D(−+ j−; k + l−)

=
∑
kl

D(+ + +−; k + l−) +
∑
kl

D(−+ +−; k + l−) +
∑
kl

D(+ +−−; k + l−)

+
∑
kl

D(−+−−; k + l−)

=
∑
l

D(+ + +−; + + l−) +
∑
l

D(−+ +−; + + l−) +
∑
l

D(+ +−−; + + l−)

+
∑
l

D(−+−−; + + l−) +
∑
l

D(+ + +−;−+ l−) +
∑
l

D(−+ +−;−+ l−)

+
∑
l

D(+ +−−;−+ l−) +
∑
l

D(−+−−;−+ l−)

= D(+ + +−; + + +−) +D(−+ +−; + + +−) +D(+ +−−; + + +−)

+D(−+−−; + + +−) +D(+ + +−;−+ +−) +D(−+ +−;−+ +−)

+D(+ +−−;−+ +−) +D(−+−−;−+ +−) +D(−+−−;−+−−)

+D(+ + +−; + +−−) +D(−+ +−; + +−−) +D(+ +−−; + +−−)

+D(−+−−; + +−−) +D(+ + +−;−+−−) +D(−+ +−;−+−−)

+D(+ +−−;−+−−)

(77)

Using the values given in equation 39
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Pa′b′(+−) =
1

2
+ 0− 1

4
+ 0 + 0 + 0 + 0 + 0 +

1

2

=− 1

4
+ 0 + 0 + 0 + 0 + 0 + 0

=
1

2

(78)

Similarly it can be shown that

Pab(++) =
1

2

Pab′(++) =
1

2

Pa′b(++) =
1

2

(79)

Therefore the equation 39 corresponds to the PR box given by equation 34.
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Appendix C

In this appendix a python script, which checks that no n-subset violates equation 40, is listed. The

program was jointly written with Marcel Christoph Guenther. The program requires the user to specify

the dimensions of the relevant matrix and all the non zero tuples, where P2 contains all tuples with values

equal to 1
2 , P4 with 1

4 and N4 with − 1
4 . The matrix γef is Hermitian, hence it is su�cient to only input

one tuple from each Hermitian conjugate pair, i.e. only tuples in the form (e, f) are needed and all (f, e)

are automatically added. An example input for the matrix used in equation 41 is shown at the top of

the script. Once the input arguments have been processed, the program adds all the Hermitian conjugate

counterparts (cf. splitTuples). The program then determines all indices e, f appearing in non-zero tuples

(cf. �ndIndicies). This is done in order to speed up the process as only N = 8 rows and columns out of

the 16 in the matrix contain non-zero elements. Subsequently all possible subspaces of size n ∈ 3 . . . N

are explored. For each possible n-tuple the sum of all matrix values for all possible 2-tuples inside the

n-tuple is checked against equation 40(cf. trySubSetSize). If it is violated the program halts with an error

message, otherwise is continues until all possibilities have been checked.

The script:

# −*− coding : utf−8 −*−

#!/usr /bin /python

# e . g usage : python so l v e . py −d 16 −−p2 "(2 ,2 ) (3 , 3 ) (12 ,12) (15 ,15)"

# −−p4 "(2 ,3 ) (3 , 15 ) (8 , 11 ) (15 ,16)" −−n4 "(2 ,4 ) (3 , 8 ) (3 , 11 ) (8 , 15 )

# (11 ,15) (11 ,12)"

# −v 1 from optparse import OptionParser import sys

#*********************************************************************

# Option par s ing

par s e r = OptionParser ( )

par s e r . add_option("−v" , "−−verbose " , d e f au l t =0, type="in t " ,

des t="verbose " , he lp="Print a l l subset t e s t

messages to stdout " ) ;

pa r s e r . add_option("−d" , "−−dimension " , des t="dim" , d e f au l t =0,

type="in t " , metavar="DIM" , he lp="Dimension=DIM

of square matrix ( index s t a r t i n g at 1 ) " ) ;

pa r s e r . add_option("−p" , "−−p2" , des t="p2 " , type="s t r i n g " ,
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metavar="TUPLE" , he lp="Set \"(TUPLE)+\"

a l l t up l e s (X,Y)=1/2 , (Y,X) w i l l be added

automat i ca l l y i f omitted " ) ;

pa r s e r . add_option("−q" , "−−p4" , des t="p4 " , type="s t r i n g " ,

metavar="TUPLE" , he lp="Set \"(TUPLE)+\"

a l l t up l e s (X,Y)=1/4 , (Y,X) w i l l be added

automat i ca l l y i f omitted " ) ;

pa r s e r . add_option("−n" , "−−n4" , des t="n4 " , type="s t r i n g " ,

metavar="TUPLE" , he lp="Set \"(TUPLE)+\"

a l l t up l e s (X,Y)=−1/4, (Y,X) w i l l be added

automat i ca l l y i f omitted " ) ;

( opt ions , args ) = par s e r . parse_args ( ) ;

dim = opt ions . dim ;

p r i n t ("Matrix Dimension : " + s t r (dim ) ) ;

# Create the tup l e s

de f s p l i tTup l e s ( s ) :

t up l e s = s t r ( s ) . s p l i t ( ' ' )

out = [ ]

f o r x in tup l e s :

a , b = x . s t r i p ( ' ( ) ' ) . s p l i t ( ' , ' )

i f ( i n t ( a ) > dim or i n t (b) > dim or

i n t ( a ) < 1 or i n t (b) < 1 ) :

p r i n t (" Error : Elements must be between

1−" + s t r (dim) + " : ("+a+","+b+")") ;

sys . e x i t (0 )

i f ( not ( i n t ( a ) , i n t (b ) ) in out ) :

out . append ( ( i n t ( a ) , i n t (b ) ) )

i f ( not ( i n t (b ) , i n t ( a ) ) in out ) :

out . append ( ( i n t (b ) , i n t ( a ) ) )

re turn out

p2 = sp l i tTup l e s ( opt ions . p2 ) ;
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p4 = sp l i tTup l e s ( opt ions . p4 ) ;

n4 = sp l i tTup l e s ( opt ions . n4 ) ;

p r i n t (" Po s i t i v e 1/2 tup l e s : " + s t r ( p2 ) ) ;

p r i n t (" Po s i t i v e 1/4 tup l e s : " + s t r ( p4 ) ) ;

p r i n t (" Negative 1/4 tup l e s : " + s t r ( n4 ) ) ;

# Find i n d i c e s

i n d i c e s = [ ]

de f f i n d I n d i c i e s ( tup le s , i n d i c e s ) :

f o r t in tup l e s :

i f ( not t [ 0 ] in i n d i c e s ) :

i n d i c e s . append ( t [ 0 ] ) ;

i f ( not t [ 1 ] in i n d i c e s ) :

i n d i c e s . append ( t [ 1 ] ) ;

f i n d I n d i c i e s (p2 , i n d i c e s ) ;

f i n d I n d i c i e s (p4 , i n d i c e s ) ;

f i n d I n d i c i e s (n4 , i n d i c e s ) i n d i c e s = sor t ed ( i n d i c e s ) ;

p r i n t (" Al l i n d i c e s appear ing in non−zero

tup l e s : " + s t r ( i n d i c e s ) ) ;

# Calc sum of a s i n g l e n−s e t

de f sumUp(theComb , tup le s , va l ) :

tempSum2 = 0 . 0 ;

f o r t in tup l e s :

i f ( t [ 0 ] in theComb and t [ 1 ] in theComb ) :

tempSum2 += val ;

r e turn tempSum2 ;

# Check a l l p o s s i b l e subse t s combinat ions o f i n d i c e s

de f t rySubSetS ize ( s s s , comb , i n d i c e s ) :

i f ( s s s == 0 ) :

# Trans late to combination

theComb = [ ]

45



f o r i in range (0 , l en (comb ) ) :

theComb . append ( i n d i c e s [ comb [ i ] ] ) ;

theSum = sumUp(theComb , p2 , 0 . 5 )

theSum += sumUp(theComb , p4 , 0 . 2 5 )

theSum += sumUp(theComb , n4 ,−0.25)

i f ( opt ions . verbose==1):

p r i n t (" Verbose : The subset " + s t r ( theComb)

+ " c r e a t e s a sum of " + s t r ( theSum ) ) ;

i f ( theSum < 0 ) :

p r i n t (" Error : The subset " + s t r ( theComb)

+ " c r e a t e s a sum of " + s t r ( theSum) + " < 0" ) ;

sys . e x i t ( 0 ) ;

r e turn

l a s t I nd = −1;

i f ( l en (comb) > 0 ) :

l a s t I nd = comb [ l en (comb)−1] ;

f o r i in range ( l a s t Ind , l en ( i n d i c e s )−1):

comb . append ( i +1);

t rySubSetS ize ( s s s −1,comb , i n d i c e s ) ;

comb . pop ( l en (comb)−1);

# Try a l l n−subse t s

f o r s s s in range (2 , l en ( i n d i c e s )+1):

t rySubSetS ize ( s s s , [ ] , i n d i c e s ) ;

p r i n t (" Al l " + s t r ( s s s ) + "− s e t s have sum >= 0" ) ;
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Appendix D

In the following appendix a derivation for equation 67 in section 4.2 is given. In addition, In order to check

that the model gives the results claimed in section 4.2 several numerical examples checking the values for

the correlation function
∣∣∣Qψ,τ1

∣∣∣ are given.
Derivation of equation 67

Equation 67 states that

sgn(â · λ)sgn(b̂ · λ) = sgn
(
χ2

1 − cos2(µ)
)

where

χn = χn(η, τ) =
cos(τ)√

cos2(τ) + cot2(κn(η)
2 )

and

κ1(η) = πsin2(η), κ2(η) = πsin2(3η)

κ3(η) = 4η + πsin2(η), κ4(η) = 4η − πsin2(η)

Derivation:

a = (sin(η), 0, cos(η)) , b = (-sin(η), 0, cos(η))

and the angle between a and b is ω such that

ω = 2η (80)

Since â and b̂ must be each others image when mirrored with respect to ω's bisector they can be de�ned

as

â = (sin(η̂), 0, cos(η̂)) , b = (-sin(η̂), 0, cos(η̂)) (81)

The angle between â and b̂ is ω̂ = 2η̂. The relationship between ω̂ and ω is give by equation
(
ω̂ = πsin2(ω2 )

)
Hence

η̂ =
πsin2(η)

2
(82)

47



Therefore

sgn(â · λ)sgn(b̂ · λ) = sgn(â · λ)(b̂ · λ)

= sgn(âx · λx + âz · λz)(b̂x · λx + b̂z · λz)

= sgn
(
âx · b̂x · λ2

x + âz · b̂z · λ2
z + λx · λz(âx · b̂z + âz b̂x)

) (83)

But from equation 81

âx · b̂z = −âz b̂x (84)

λ is uniformly distributed over a unit sphere and µ and τ are the polar angles specifying this sphere. Hence

λx = sin(µ)cos(τ), λy = sin(µ)sin(τ) λx = cos(µ) (85)

Equations 83, 84 and 85 yield

sgn(â · λ)sgn(b̂ · λ) = sgn(âx · b̂x · λ2
x + âz · b̂z · λ2

z)

= sgn
(
−sin2(η̂)sin2(µ)cos2(τ) + cos2(η̂)cos2(µ)

)
= sgn

(
−sin2(µ)cos2(τ) + cot2(η̂)cos2(µ)

)
= sgn

(
cot2(η̂)

(
−sin2(µ)cos2(τ)

cot2(η̂)
+ cos2(µ)

))
= sgn

(
cot2(η̂)

)
sgn

(
−sin2(µ)cos2(τ)

cot2(η̂)
+ cos2(µ)

)
= sgn

(
−sin2(µ)cos2(τ)

cot2(η̂)
+ cos2(µ)

)
= sgn

(
−sin2(µ)cos2(τ)− cos2(µ)cos2(τ) + cos2(µ)cos2(τ)

cot2(η̂)
+ cos2(µ)

)
= sgn

(
−cos2(τ)

(
sin2(µ) + cos2(µ)

)
+ cos2(µ)cos2(τ)

cot2(η̂)
+ cos2(µ)

)

= sgn
(
−cos2(τ) + cos2(µ)cos2(τ)

cot2(η̂)
+ cos2(µ)

)
= sgn

(
−cos2(τ)

cot2(η̂)
+
cos2(µ)cos2(τ) + cos2(µ)cot2(η̂)

cot2(η̂)

)
= sgn

(
−cos2(τ)

cot2(η̂)
+ cos2(µ)

(
cos2(τ) + cot2(η̂)

cot2(η̂)

))
= sgn

((
cos2(τ) + cot2(η̂)

cot2(η̂)

)(
cos2(τ)

cot2(η̂)

(
cot2(η̂)

cot2(η̂) + cos2(τ)

)
+ cos2(µ)

))
= sgn

(
cos2(τ) + cot2(η̂)

cot2(η̂)

)
sgn

(
cos2(τ)

cot2(η̂) + cos2(τ)
+ cos2(µ)

)
= sgn

(
cos2(τ)

cot2(η̂) + cos2(τ)
+ cos2(µ)

)
Since cot2(η̂) and cot2(η̂)

cos2(τ)+cot2(η̂) are always positive.
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Finally from equations 65 and 66

χ1 =
cos(τ)√

cos2(τ) + cot2(κ1(η)
2 )

=
cos(τ)√

cos2(τ) + cot2(πsin
2(η)
2 )

=
cos(τ)√

cos2(τ) + cot2(η̂)

(86)

Hence

sgn(â · λ)sgn(b̂ · λ) = sgn
(
χ2

1 − cos2(µ)
)

QED

Numerical example for
∣∣∣Qψ,τ1

∣∣∣
From equations 65 and 66 χn takes the following form

χ1 =
cos(τ)√

cos2(τ) + cot2(πsin
2(η)
2 )

, χ2 =
cos(τ)√

cos2(τ) + cot2(πsin
2(3η)
2 )

χ3 =
cos(τ)√

cos2(τ) + cot2( 4η+πsin2(η)
2 )

, χ4 =
cos(τ)√

cos2(τ) + cot2( 4η−πsin2(η)
2 )

Equations 71 and 72can be written in the following concise form

Qψ,τ1 =


2 (|χ1| − |χ2|+ |χ3 − χ4| − 1) for 0 ≤ η ≤ η̃

2 (|χ1| − |χ2| − |χ3 + χ4|+ 1) for η̃ ≤ η ≤ π
4

(87)

It was mentioned in section 4.2 that Qψ,τ1 ∼ 4 and Qψ,τ1 ∼ −4 in neighbourhood of (η, τ) = (η̃, π2 ) and

(η, τ) = (π6 ,
π
2 ) respectively where where η̂ w 0.562 [14]. Qψ,τ1 reaches those values asymptotically because

when τ = π
2 , cos(π2 ) = 0 resulting in χn = 0 and Qψ,τ1 = ±2.

Example for Qψ,τ1 ∼ −4 case:

Choose (η, τ) = (0.521, 1.57)

χ1 =
cos(τ)√

cos2(τ) + cot2(πsin
2(η)
2 )

∼ cos(1.57)√
cos2(1.57) + cot2(πsin

2(0.521)
2 )

∼ 0

χ2 =
cos(τ)√

cos2(τ) + cot2(πsin
2(3η)
2 )

∼ cos(1.57)√
cos2(1.57) + cot2(πsin

2(1.563)
2 )

∼ 0.998
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χ3 =
cos(τ)√

cos2(τ) + cot2( 4η+πsin2(η)
2 )

∼ cos(1.57)√
cos2(1.57) + cot2( 4×0.521+πsin2(0.521)

2 )

∼ 0

χ4 =
cos(τ)√

cos2(τ) + cot2( 4η−πsin2(η)
2 )

∼ cos(1.57)√
cos2(1.57) + cot2( 4×0.521−πsin2(0.521)

2 )

∼ 0

Qψ,τ1 ∼ 2 (|χ1| − |χ2| − |χ3 + χ4|+ 1) ∼ 2(0− 0.998 + 0− 1) ∼ −4
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