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Abstract

In this thesis we review Seiberg-Witten theory in N = 2 supersymmetric Yang-Mills theory.
In their seminal work, Seiberg and Witten derived the Wilsonian low-energy effective action
of theN = 2 SU(2) gauge theory by encoding the problem in a two-dimensional holomorphic
curve. The proposal was that the family of algebraic curves determine the prepotential, a
holomorphic function which contains information about both perturbative and nonpertur-
bative corrections to the action, and thus defining the theory. The proposal has since been
generalized to other gauge groups and various matter contents. The original work found the
curves by carefully studying the singularity structure and monodromies of the moduli space
and then guessing the family of curves. Since the proposal, many other methods have been
employed to derive the curves. In this thesis we will review the original approach taken by
Seiberg and Witten in solving the low energy effective theory, which will merit extensive
discussion of N = 2 gauge theories and the structure of the moduli space. Then we will
discuss a similar approach where by looking at solutions to a differential equation with the
correct monodromy considerations, we find the curves using integral representations of hy-
pergeometric functions. Finally, we will discuss how Seiberg-Witten curves may be found
through the uplifting of Type IIA brane constructions to M-theory and studying the minimal
surface of the resulting M5-brane.
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1. Introduction

For the most part, much of our understanding of modern physics from quantum field the-

ory is rooted in perturbative expansions around free fields. These expansions give reliable

and accurate answers when the deviations from the free fields are small, that is, when the

coupling constants are reasonably small. The predictive power of QED is a good example

of this. But our knowledge of strongly coupled theories, like QCD at low energies, is fairly

poor. This is why even with the many successes of the Standard Model we still have a fairly

poor understanding of low energy QCD phenomena like confinement and chiral symmetry

breaking. In theories with supersymmetry our understanding of the strongly coupled regime

improves as nonremormalization theorems and holomorphicity put limits on the perturba-

tive corrections to components of the theory. Thus, it follows that studying some of these

properties in supersymmetric gauge theories is a worthwhile endeavor.

Experimental evidence to date has not shown any indication that supersymmetry is

indeed a symmetry of nature, although many physicists, myself included, would like to

believe it is for the same reason we pursue many ideas in theoretical physics, the belief that

nature is governed by laws that are fundamentally elegant. But keeping in mind the many

problems in particle physics that supersymmetry resolves quite nicely, it is still presently

not clear what lessons can ultimately be drawn for the non-supersymmetric gauge theories

by which we know nature to be governed. Yet there are many properties of supersymmetric

theories that make them incredibly important playgrounds for studying the structure of

gauge theories and displaying physically relevant features, for which the phenomenological

and mathematical applications have already been substantial. In the work reviewed in this

thesis we will see how studying properties of supersymmetric theories can help us understand

some poorly understood properties of gauge theories, like the aspects of strongly coupled
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theories mentioned before. We also hope to illustrate how the connection to certain aspects

in string theory indicates the importance of string theory as an incredibly powerful tool

in studying the structure of these gauge theories. Let’s hope that this motivates, to some

extent, the reason this line of research is being pursued in this thesis.

Now we will briefly discuss some nice properties of supersymmetric theories in four di-

mensions. Nonrenormalization theorems provide limitations on how the field theory may be

renormalized both perturbatively and nonperturbatively, i.e. by loop corrections and instan-

ton corrections. These nonrenormalization properties of supersymmetric theories are often

the result of the fact that some quantities or operators must have a holomorphic dependance

on the fields and couplings of the theory. This holomorphic structure leads to vacuum degen-

eracies and allows one to use the important techniques in complex analysis. Dualities are also

a common feature in supersymmetric theories. Duality between strong and weak coupling,

electric and magnetic components, or short and long distances, are manifestly important

properties of supersymmetric theories. Theories with a higher degree of supersymmetry are

further restricted by these properties.

There are three unique types of globally supersymmetric theories in four dimensions,

N = 1 supersymmetric Yang-Mills theory (SYM), N = 2 SYM, and N = 4 SYM. N = 4

gauge theories have some extremely interesting properties and dualities. The beta function of

N = 4 SYM is zero and thus it is an example of a scale invariant (conformal) field theory. It

is hard to mention N = 4 SYM without mentioning it’s role in the most successful, or rather

most studied, example of the AdS/CFT correspondence between N = 4 SYM and Type

IIB string theory on AdS5 × S5. Part of the excitement of the AdS/CFT correspondence is

that it relates a strongly coupled Yang-Mills theory in four dimensions to a weakly coupled

theory with gravity in five dimensions. Regardless, this theory is too simple to play a role

in our discussion as we are trying to study nontrivial quantum corrections and the theory

has none, and is exactly solvable. N = 1 SYM has the opposite problem, the theory is

not immune from perturbative corrections as only certain objects are holomorphic functions.

Another way of stating this is that there are fewer nonrenormalization theorems governing the

theory. The N = 1 chiral superpotential is a holomorphic object and is therefore protected

from perturbative corrections. So one may obtain some interesting results for exact effective
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superpotentials. But in general, due to uncontrollable loop corrections, N = 1 gauge theories

are not fully solvable. On the other hand, N = 2 theories have some intriguing properties

which make them particularly interesting to study. It is not trivially solvable but nor does

it suffer from higher order perturbative corrections. The low-energy limit of the theory is

exactly solvable. The low energy effective action is completely determined by a holomorphic

function called the prepotential F , for which the perturbative corrections only occur at one-

loop order. This is why we are particularly interested in studying N = 2 super Yang-Mills

theory. For a more technical discussion of some of the details mentioned above regarding

supersymmetric theories, nonrenormalization theorems etc., see [23], [24], [25].

In 1994, Seiberg and Witten proposed an exact solution for certain properties of N = 2

supersymmetric gauge theories with the gauge group SU(2). The properties determined by

the solution are exact at all perturbative and nonpertubative orders, and at strong coupling.

In their subsequent paper, Seiberg and Witten ?? generalized their results to N = 2 the-

ories with fundamental matter hypermuliplets. There are also generalizations to from the

gauge group SU(2) to SU(N) and to all classical and exceptional groups, most of which are

addressed in [4] and [6].

We will first review extended supersymmetry and derive the BPS bound on supermulti-

plets, and review some important properties of N = 2 gauge theories, including the holo-

morphic prepotential, global symmetries of the theory, and the low energy effective theory

that we are ultimately interested in. We will be considering supersymmetric gauge theories

with the gauge group SU(2) without matter hypermultiplets. Then following the approach

of Seiberg and Witten, we will discuss the structure of the moduli space and the existence

of singularities on the moduli space of the effective theory. We will discuss the possibility of

dyonic states on the moduli space and a dual description of the theory. Then in constructing

the relevant monodromies we will be able to determine the exact solution from a family of

elliptic curves. We will then present a similar approach of finding the exact solution using

hypergeometric functions. Then we will consider a third approach of looking at N = 2 on

the world volume of a brane construction and then lift to M-theory and study the curves

on the resulting surface. In presenting the Seiberg-Witten solution we will encounter some

fascinating phenomena that occur at strong coupling. We will also see evidence of an electric-
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magnetic duality in N = 2 that occurs between regions of strong and weak coupling. Our

discussion relies heavily on the review by Alvarez-Gaumé and Hassan [3] as well as on the

original paper by Seiberg and Witten [1].
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2. N = 2 Supersymmetric Gauge

Theories

In this chapter we will review some aspects of supersymmetric gauge theories in four di-

mensions which will be relevant in our discussion of Seiberg-Witten theory. Appendix A on

conventions and notations describes the supersymmetry conventions we use in this thesis.

We will start by discussing representations of the supersymmetry algebra with and without

central charges and then find the lower bound on the mass of supermultiplets. Then we will

discuss the relevant properties of N = 2 supersymmetric theories, including the holomorphic

prepotential, global symmetries of the theory, and the structure of the moduli space of vacua.

2.1 Supersymmetric Algebras

In 1971, it was shown that the possible symmetries of a quantum field theory in four dimen-

sions need not only consist of the Poincaré group and internal symmetries, but by allowing

both commuting and anticommunting generators, can admit supersymmetry as a nontrivial

extension. The supersymmetric algebra without admitting any central charges is written as

{QI
α, Q̄α̇J} = 2σµαα̇Pµδ

I
J

{QI
α, Q

J
β} = {Q̄α̇I , Q̄α̇J} = 0, (2.1)

where the indices I, J run over the supersymmetries 1, 2, . . . ,N

In 1975, it was shown that the supersymmetric algebra Eq. 2.1 admits a central extension
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[7] which can be generalized to

{QI
α, Q̄α̇J} = 2σµαα̇Pµδ

I
J

{QI
α, Q

J
β} = 2

√
2 εαβZ

IJ

{Q̄α̇I , Q̄β̇J} = 2
√

2 εα̇β̇Z
∗
IJ , (2.2)

where the Z’s are the central charges, which are antisymmetric in their indices. When N

is even we may skew-diagonalize the central charges so that they take the form Z = ε⊗D,

where D is an N /2 dimensional diagonal matrix. Then the index I will run over the ε indices

a = 1, 2 and the D indices. Since we are only considering extended supersymmetric theories

of N = 2 the discussion of the D indices is not really relevant, but it can be shown that

a chiral rotation allows one to consider just the N = 2 supersymmtric extension anyway.

Thus we find that the N = 2 supersymmetric algebra takes the form

{QI
α, Q̄α̇J} = 2σµαα̇Pµδ

I
J

{Qa
α, Q

b
β} = 2

√
2 εαβε

abZ

{Q̄α̇a, Q̄α̇b} = 2
√

2 εα̇β̇εabZ
∗. (2.3)

2.1.1 BPS Bound on the SUSY Multiplets

We now define a general linear combination of of the supersymmetric generators Q1 and Q2

denoted by Q̃:

Q̃α =
1

2

(
Q1
α + w εαβ(Q2

β)†
)
, (2.4)
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where w is a complex number with unit modulus. Assuming we are sitting in a rest frame,

we calculate the algebra with the only nonvanishing anticommutators as

{Q̃α, Q̃
†
γ} =

1

4
{Q1

α + w εαβ(Q2
β)†, (Q1)†γ + w∗ εγδQ

2
δ}

=
1

2

(
σ0
αγM + w

√
2δαγε21Z

∗ + w∗
√

2δαγε
12Z + ww∗εαβεγδσ

0
βδM

)
= δαγM +

√
2

2
δαγ (wZ∗ + w∗Z)

= δαγ

(
M +

√
2 Re (w∗Z)

)
, (2.5)

where we have used the standard contraction of ε matrices. Since w has unit absolute value,

the quantity w∗Z is simply a rotation of Z on the complex plane, and thus |Z| ≥ Re (w∗Z) ≤

−|Z|. If α equals γ then the left-hand side of Eq. 2.5 must be a positive quantity as all

physical states must have positive definite norm. Therefore we see that

M ≥
√

2|Z|. (2.6)

This is known as the Bogomol’nyi-Prasad-Sommerfield bound, or BPS bound, and is an in-

credibly important result in supersymmetric quantum field theories, stating that the mass of

a supersymmetric multiplet in any representation of the supersymmetric algebra, is bounded

from below by the central charge of the algebra. The bound is trivially realized for massless

states where the central charge is zero. For an N = 2 multiplet where the bound Eq. 2.6 is

strict has 24 = 16 states. This is because there are eight supercharges which can be refor-

mulated as four creation and four annihilation operators, where the four creation operators

generate 16 states from a vacuum state which is annihilated by the annihilation operators.

But when the bound Eq. 2.6 is saturated the algebra is again trivially realized and the di-

mension of the representation is reduced, as two of the creation operators are zero and thus

the multiplet contains 22 = 4 states, just as with the massless multiplets. Massive represen-

tations of the N = 2 supersymmetric algebra where the bound is saturated are called short

multiplets or BPS states, and massive representations where the bound is strict are called

long mulitplets. This distinction is important because for BPS states the mass and charge is

determined by supersymmetry and are thus immune from perturbative and nonperturbative
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corrections when considering a full quantum theory. Consequentially, BPS states at weak

coupling are also valid in the strong coupling regime.

2.2 N = 2 Super Yang-Mills Theory

In rigid theories with 8 supercharges there are two allowed massless supermultiplets, vector

multiplets and hypermultiplets. The vector multiplets belong to the adjoint representation

of some gauge group G, and the hypermultiplets may belong to any complete representation.

All supersymmetric theories with 8 supercharges are dimensional reductions of the consistent

theory in the highest number of dimensions which allows for 8 supercharges, which in this

case is d = 6. In d = 6 we have the chiral N = (1, 0) theory where vector multiplets consist

of a gauge field and a chiral Weyl spinor and the hypermultiplet consists of Weyl spinor

two complex scalars. Dimensional reduction to four dimensions gives us a nonchiral N = 2

theory in d = 4. Thus, in N = 2 supersymmetric theories in four dimensions the vector

multiplet is made up by a gauge field, two left-handed Weyl spinors, and one complex scalar,

(Aµ, ψ, λ, φ). While the hypermultiplet is made up by two left-handed Weyl spinors and two

complex scalars, (χ, ϕ, ϕ̃, χ̃). Each massless mulitplet has eight on-shell degrees of freedom.

The R-symmetry of the theory is SU(2) × U(1). For future reference, we note that these

N = 2 multiplets may be decomposed into N = 1 multiplets. The two relevant types of

massless multiplets in N = 1 are the vector multiplet with a vector and a left-handed Weyl

spinor, V = (Aµ, λ) and the chiral multiplet with a left-handed Weyl spinor and a complex

scalar Φ = (χ, φ). The hypermultiplet is comprised of two N = 1 chiral multiplets Φ and Φ̃,

while the vector multiplet is comprised of an N = 1 vector multiplet V and chiral multiplet

A.

Assuming familiarity with N = 1 supersymmetric theories and local representations of

N = 1 supersymmetry, we start with the full N = 1 supersymmetric Lagrangian in N = 1

superspace coordinates

L = Im Tr

(
τ

8π

∫
d2θ WαWα

)
+

∫
d4θ Φ†e−2V Φ +

∫
d2θ W +

∫
d2θ̄ W̄ , (2.7)

14



where τ = θ/2π + 4πi/g2 is a complex coupling constant, a packaging together of the gauge

coupling and theta angle into one coupling constant. We now want to find the full N = 2

Lagrangian for a pure gauge theory. The full N = 1 Lagrangian contains the N = 1 vector

multiplet and chiral multiplet and thus has the same on-shell field content as the desired

N = 2 vector multiplet, but the Lagrangian does not have N = 2 supersymmetry. The

fermionic field content, λ and χ, must be symmetric and thus the superpotentialW must be

zero as it only couples to χ in the chiral multiplet, with the same line of logic we also fix the

normalization between the gauge the fermionic kinetic terms, which amounts to rescaling

the chiral multiplet by the coupling. The full Lagrangian for N = 2 supersymmetric gauge

theory is given in N = 1 superspace coordinates and component expansion as

L = Im Tr

(
τ

8π

∫
d2θ WαWα + 2

∫
d2θd2θ̄ Φ†e−2V Φ

)
=

1

g2
Tr

(
− 1

4
FµνF

µν + g2 θ

32π2
FµνF̃

µν + (Dµφ)†(Dµφ)− 1

2
[φ, φ†]2

− iλσµDµλ̄− iψ̄σ̄µDµψ − i
√

2[λ, ψ]φ† − i
√

2[λ̄, ψ̄]φ

)
, (2.8)

where we have dropped the auxillary fields in the component expansion.

2.3 The Holomorphic Prepotential

Given the full N = 2 supersymmetric Lagrangian 2.8 an incredibly important result is that

it can be written in terms of a single holomorphic function F , called the prepotential. We

will sketch the derivation of this following Section 2.6 in [3]. Local representations of N = 2

supersymmetry are written in terms of two additional coordinates (ϑ, ϑ̄), on top of the N = 1

superspace coordinates, and thus we may write a general N = 2 superfield as F (x, θ, θ̄, ϑ, ϑ̄).

The on-shell field content of the N = 2 vector multiplet is (φ, ψ, λ, Aµ) and thus we seek

to find a superfield with this field content. In the same manner we define an N = 1 chiral

superfield, it is straightforward to define an N = 2 chiral superfield Ψ as having to satisfy the

constraints D̄(θ)
α̇ Ψ = 0 and D̄(ϑ)

α̇ Ψ = 0, where D̄(θ)
α̇ is the standard supercovariant derivative

in N = 1 superspace and D̄(ϑ)
α̇ is the supercovariant derivative over our additional fermionic
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coordinates

D̄(θ)
α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ D̄(ϑ)

α̇ = − ∂

∂ϑ̄α̇
− iϑασµαα̇∂µ. (2.9)

Recall that the general form of an N = 1 chiral superfield Φ is given as a function of (y, θ),

where yµ = xµ + iθσµθ̄, which we expand in powers of θ as

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y) (2.10)

giving us the expected field content (φ, ψ) and an auxiliary field F required for off-shell

closure. Now for our N = 2 chiral superfield we consider the general form as a function of

(ỹ, θ, ϑ), where ỹµ = xµ + iθσµθ̄ + iϑσµϑ̄, and expand in powers of ϑ and find that

Ψ(ỹ, θ, ϑ) = Φ(ỹ, θ) +
√

2ϑαWα(ỹ, θ) + ϑϑG(ỹ, θ), (2.11)

where the zeroth-order term in ϑ is just be the N = 1 chiral superfield Eq. 2.10 as a function

of ỹ and θ. The first-order term is the nonabelian gauge field strength for the N = 1 vector

superfield, which when written in superspace notation

Wα =
1

8g
D̄2
(
e2gVDαe−2gV

)
, (2.12)

where the D’s are the standard supercovariant derivatives and V is the N = 1 vector super-

field. The subtlety arises with the third term which we will simply quote as being

G(ỹ, θ) = −1

2

∫
d2θ̄ [Φ(υ, θ, θ̄)]† exp[−2gV (υ, θ, θ̄)], (2.13)

where υ = ỹ−iθσθ̄. This constraint in the N = 2 superfield is necessary in order to eliminate

certain unphysical degrees of freedom and is obtained from reality conditions and chirality

considerations on the general N = 2 superfield [8].

Thus we have found from the expansion of Ψ that the field content is exactly what we

would expect for a N = 2 vector multiplet, an N = 1 chiral field and an N = 1 vector super

field, along with a component to eliminate unwanted degrees of freedom required for off-shell

closure. We have been referring to Ψ as an N = 2 chiral superfield given the constraints
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we first imposed on it, but as we see it represents want we have been referring to as the

N = 2 vector multiplet (which is sometimes referred to as the chiral multiplet). Thus the

full general Lagrangian 2.8 for N = 2 supersymmetry can be written in terms of Ψ as

L = Im Tr

(
τ

4π

∫
d2θd2ϑ

1

2
Ψ2

)
. (2.14)

It is important to note that this Lagrangian only depends on Ψ and not Ψ†. So now we can

construct the most general Lagrangian for N = 2 supersymmetric Yang-Mills theory with

some function F(Ψ) of the N = 2 vector superfield,

L = Im Tr

(
1

4π

∫
d2θd2ϑF(Ψ)

)
, (2.15)

which we can expand as

L =
1

4π
Im

(∫
d4θ (Φ†e2gV )i

∂F(Φ)

∂Φi
+

1

2

∫
d2θ

∂2F(Φ)

∂Φi∂Φj
Wα iW j

α

)
. (2.16)

Thus N = 2 gauge theory can be completely expressed in terms of this holomorphic function

F which we will call the prepotential. The exact determination of this function, and thus

the solution to the low energy effective theory, is the purpose of Seiberg-Witten theory.

2.4 Global Symmetries in N = 2 Theories

In four dimensions, supersymmetric gauge theories with N -extended supersymmetric alge-

bras have a global symmetry corresponding to unitary transformations of the supercharges

among themselves. This global symmetry is called the R-symmetry. For N = 1, a U(1)

R-symmetry acts on the supercharges as Q→ e−iαQ, which when considered as a transfor-

mation on the superspace coordinates, acts as θ → eiαθ and θ̄ → e−iαθ̄. For N = 2 this

R-symmetry becomes SU(2)×U(1)R, as we have a U(1) symmetry which acts on the N = 2

superspace coordinates θi, θ̄i, just as for N = 1, which, to avoid confusion, we label as U(1)R.

Additionally, we have an SU(2) R-symmetry which rotates the index of the supercharges

Qi, in other words it acts on the two supercharges of a given chirality.
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It is useful to note how fields in supermultiplets transform under these R-symmetries.

The SU(2) component of the R-symmetry will act on the different helicities in the multiplets,

in other words the different helicity fields will fit into separate representations of SU(2). In

the N = 2 vector multiplet, the gauginos λ and ψ form a doublet while φ and Aµ are singlets

under SU(2). Similarly, for a hypermultiplet the scalars transform as a doublet while the

spinors transform as singlets under SU(2).

Under U(1)R the fields in the multiplets will pick up a phase determined by their charge

under U(1)R. Explicitly, if a field has a charge q under U(1)R then when rotated by an angle

α the field will pick up phase eiqα. We list the U(1)R transformations of the component

fields in the N = 2 vector and hyper multiplets,

Aµ → Aµ χ→ e−iαχ

(ψ, λ)→ eiα(ψ, λ) (ϕ, ϕ̃)→ (ϕ, ϕ̃) (2.17)

φ→ e2iαφ χ̃→ e−iαχ̃.

As we have stated, classically our theory has a global SU(2)×U(1)R symmetry. But once

we go to the quantum theory, the U(1)R symmetry is broken to a discrete subgroup by the

standard chiral anomaly, which makes sense given that this global symmetry effects phase

rotations of chiral fermions. A better way of seeing this is by combining the two-component

Weyl spinors ψ and λ̄ into the usual four-component Dirac spinor ψD and noting that under

U(1)R the spinor ψD transforms as ψD → eiαγ5ψD. Thus it should be clear that U(1)R is

a chiral symmetry and as we will see is broken by the triangle anomaly. For SU(N) gauge

theories we have

∂µJ
µ
5 = − N

8π2
FµνF̃

µν , (2.18)

which implies that under a U(1)R rotation by an angle α, the change in the effective action

is given by

δLeff = −4αN

32π2
FµνF̃

µν . (2.19)

Since the integral (1/32π2)
∫
F ∧F must give integer values, we can determine that in order

for this chiral phase rotation to be a symmetry of the theory the angle α must take on values
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α = πn/2N where n ∈ Z. So the U(1)R phase becomes eiα = e2πi(n/4N) where n = 1, . . . , 4N .

Thus we see that the chiral anomaly breaks U(1)R to Z4N .

Note that if we are considering a theory coupled to matter, Nf fermions in the fun-

damental representation, as is the case when we consider N = 2 gauge theory coupled to

hypermultiplets, then the prefactor in the shift of the effective Lagrangian under U(1)R be-

comes α(2N −Nf )/16π2. So in the presence of matter the chiral anomaly breaks U(1)R to

Z4N−2Nf .

We found that the anomaly breaks U(1)R → Z4N , so naively we can conclude that the

global symmetry group is SU(2) × Z4N . But noting that the center of SU(2), acting on

the gauginos as (ψ, λ) → eiπ(ψ, λ), is also contained in Z4N , when n = 2N , we mod out

a Z2 to cure the double counting. This leaves us with an unbroken R-symmetry group of

(SU(2)× Z4N)/Z2.

The moduli space of vacua is parametrized by nonzero values of φ, or some function

thereof, and as φ carries as R-charge under U(1)R this further breaks the full R-symmetry.

However, the functions of φ which parametrize the vacuum depend on the gauge group

SU(N) and thus change how Z4N is further broken. For G = SU(2), the vacuum is specified

by nonzero values of Trφ2; we simply state this for now but will discuss these potential terms

more extensively in the next section. Recalling from Eq. 2.17 how φ transforms under U(1)R,

we see that φ2 has an R-charge of 4, picking up a phase of e4iα = e2πi(n/2) upon rotation. This

spontaneously breaks Z8 → Z4 as the symmetry is now generated by values of n = 2, 4, 6, 8.

All the leftover elements of Z8 which did not give rise to a vacuum symmetry we be of some

relevance later when discussing the singularity structure of the moduli space. These elements

act on φ2 → −φ2, acting as Z2. Thus we have determined the global symmetry group of

pure N = 2 SU(2) gauge theory to be (SU(2)× Z4)/Z2.

As we mentioned, the breaking of R-symmetry by the vacuum depends on the gauge

group. For SU(3) the moduli space is parametrized by Trφ2 and Trφ3, which pick up

phases of e2πi(n/3) and e2πi(n/2), respectively. The R-symmetry is now generated by the values

n = 6, 12, spontaneously breaking Z12 → Z2, making the overall global symmetry structure

for N = 2 SU(3) gauge theory (SU(2) × Z2)/Z2. For G = SU(N > 3) no subgroup of the

Z4N remains invariant under the R-symmetry breaking by the moduli space.
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2.5 Low Energy Effective Action

If we are interested in the behavior of a field theory at energies lower than some cutoff Λ

which is lower than the characteristic energy scale of the theory, the mass of the lightest

massive field for instance, we want to find an effective low-energy theory. We do this using

the Wilsonian approach of finding an effective action with the lower cutoff Λ with exactly

the same low energy physics. We do this by course graining the theory, integrating out

higher-momentum modes, k > Λ, to obtain the effective field theory and using it as if it

were the fundamental theory. At energies below the cutoff, we will not encounter any on-

shell massive states, thus we obtain the effective theory by integrating out all massive fields

and all massless excitations about the cutoff. As straightforward as this might sound, it is

an incredibly complicated procedure and cannot be done explicitly. The situation is made

simpler as the supersymmetric actions are constrained by holomorphicity requirements in

N = 2 supersymmetry.

As we already found earlier, the low energy effective action is completely determined by

a holomorphic prepotential F . In N = 1 superspace coordinates the low energy effective

Lagrangian is

Leff =
1

4π
Im

(∫
d4θ

∂F(A)

∂Ai
Āi +

∫
d2θ

1

2

∂2F(A)

∂AiAj
W i
αW

jα

)
. (2.20)

As we will be considering the case where the SU(2) gauge group is broken to U(1) it should

be clear that the low energy effective Lagrangian for the broken U(1) theory is

LU(1)
eff =

1

4π
Im

(∫
d4θ

∂F
∂A
Ā+

∫
d2θ

1

2

∂2F
∂A2

WαW
α

)
. (2.21)

A quick note on notation, before we labeled N = 1 chiral multiplets as Φ. But here and in

the rest of this thesis, when discussing the chiral multiplet in the N = 2 gauge theory, we

will denote it as A; labeling the Coulomb moduli as a should help make this intuitive. We

will also try and avoid confusion by always labeling the gauge fields Aµ as indexed objects.

The kinetic term for the scalar fields is called the Kähler potential, which we see in the

N = 2 action Eq. 2.20 is the first term. Thus the Kähler potential can be written in terms
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of the holomorphic prepotential F as

K
(
A, Ā

)
= Im

(
Āi

∂F
∂Ai

)
(2.22)

Classically, the prepotential is given by F = 1
2
τclA2, which we saw when we derived

it from the action. The full form of the perturbative part of prepotential to one-loop was

first derived in [10]. We can determine the prepotential to one-loop order by requiring

that the action Eq. 2.21 transforms under a U(1)R rotation by an angle α as Eq. 2.19.

In doing so one finds how the second-derivative of the prepotential transforms, taking an

infinitesimally small rotation and integrating we arrive at the one-loop expression for the

prepotential. Alternatively, we can find the same expression by integrating the one-loop

expression for the β-function. Given the holomorphicity restrictions on N = 2 theories, the

one-loop expression is perturbatively exact. The prepotential also receives nonperturbative

corrections from instanton effects. The form of the k-instanton factors was determined by

Seiberg in [10] and the proportionality of the k-instanton correction to the chiral multiplet

A was determined by Seiberg in [11]. We will simply quote the results; the full prepotential,

including one-loop and instanton corrections, is written as

F =
i

2π
A2 log

A2

Λ2
+
∞∑
k=1

FkA2

(
Λ

A

)4k

. (2.23)

The determination of the exact form of F by an alternative approach is the focus of the

work by Seiberg and Witten [1] and of this chapter. The k = 1 instanton contribution

was calculated by Seiberg in [10] and was found to be nonzero. Since the appearance of

Seiberg-Witten theory there have been a number of successful methods of calculating higher

k-instanton contributions. The works by Nekrasov [12] and Nekrasov and Shadchin [13] did so

by determining the Seiberg-Witten prepotential by finding the instanton partition functions

of the N = 2 theories by introducing a special deformation called the Ω-background.

We are now in a position where we can outline the goal for the rest of this dissertation.

We have established that determination of the prepotential amounts to knowing the low

energy effective theory. We want to determine the prepotential following the work of Seiberg
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and Witten [1], where instead of a brute force approach we find the solution by exploiting

certain insights into the theory. This is done by understanding the structure of the moduli

space and calculating the Coulomb moduli a and a dual variable aD in the dual description of

the theory, as functions of u, our complex coordinate on the moduli space. The prepotential

can then be found from the definition of aD = ∂F/∂a. This approach will require significant

discussion of properties of the moduli space, which is our next task.
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3. Structure of the Moduli Space of

Vacua

In the last chapter we found that the low energy effective action could be completely ex-

pressed at a single holomorphic function called the prepotential. Thus, if we are interested

in finding exact solutions in N = 2 gauge theory this amounts to exactly determining the

prepotential. As we will see in this chapter, the moduli space of vacua has a highly nontriv-

ial structure and that the intricacies of this structure can give us valuable insights into the

theory and determining the prepotential.

3.1 Coordinates on the Moduli Space

As we discussed in the previous chapter, the nonzero φ values of the moduli space sponta-

neously break the R-symmetry of the supersymmetric theory. Furthermore, these vacuum

expectation values also break the gauge symmetry of the N = 2 super Yang-Mills theory.

The full component expansion of the pure N = 2 SYM Lagrangian was given in Eq. 2.8,

where we see that the classical potential of the theory is

V (φ) =
1

2g2
Tr [φ, φ†]2, (3.1)

and thus the vacuum solutions of need not require that φ vanish, but just that φ and φ†

commute. The classical theory therefore has a space of vacuum configurations. For SU(2),

we have the generators T 1, T 2, and T 3, where T i = 1
2
σi, and we can choose the vacuum

to lie in the direction of the third generator T 3 as one can always make an SU(2) gauge

transformation to give the vacuum expectation value (vev) to the third component. For
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a nonzero vev, T 3 remains the unbroken generator while the other two are broken. The

stability subgroup of the spontaneously broken SU(2) is U(1) as one of the gauge bosons

remains massless while the other two become massive.

Thus moving along the flat direction V (φ) = 0, up to a gauge transformation the scalar

field φ picks up the vev φ = 1
2
aσ3, where a is a complex parameter spanning the moduli

space. More specifically, a is the vacuum expectation value of the vector multiplet A. Trans-

formations from the Weyl group, rotations around the unbroken directions of SU(2), can still

transform a→ −a. Thus the gauge invariant quantity that parametrizes inequivalent vacua

is 1
2
a2 or Trφ2, which are the same as up to this point our treatment of φ has been classi-

cal. When we consider the full quantum theory, we want to parametrize the moduli space

with the vacuum expectation value of Weyl invariants. We now define the gauge invariant

quantity

u = 〈Trφ2〉 , (3.2)

which in the classical limit reduces to u = 1
2
a2. The complex quantity u labels inequivalent

vacua and thus should be thought of as a complex coordinate on the moduli space of the

N = 2 gauge theory. Conversely, the moduli space can be thought of as a complex u-plane.

We will see later that the moduli space has highly nontrivial structure; we already mentioned

the global symmetries that manifest on the moduli space, but as we will see the moduli space

has singularities, the behavior of which we help us solve the theory.

3.1.1 Metric on the Moduli Space

We gave the Kähler potential in the N = 2 low energy effective action Eq. 2.20 in terms

of F as K = Im (Āi ∂F/∂Ai). It should not be too surprising that the Kähler potential

is referred to as such because the moduli space of vacua for supersymmetric theories is a

Kähler manifold. See Appendix B for a brief discussion of the geometry of Kähler manifolds.

It is a fact that for Kähler manifolds the metric spanning the moduli space is the second

derivative of the Kähler potential. As ai span the Coulomb branch, the moduli space of
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vector multiplets, as ai are the VEV’s of Ai, then the metric on the moduli space is

ds2 =
∂2K

∂ai∂āj
daidāj =

∂2

∂ai∂āj

(
Im

(
∂F
∂ak

āk

))
daidāj = Im

∂2F
∂ai∂aj

daidāj. (3.3)

When we discuss the monodromies on the moduli space we will generally be interested

in the broken U(1) theory with the low energy effective action Eq. 2.21, it should follow that

the metric on the moduli space of the broken theory is

ds2 = Im
∂2F
∂a2

da dā. (3.4)

On the basis of N = 2 supersymmetry we can see that the metric here is the same as the

full gauge coupling in the N = 2 theory. Recall that the Lagrangian for the N = 1 vector

multiplet is

L = Im Tr

(
τ

8π

∫
d2θWαWα

)
. (3.5)

Comparing this Lagrangian to the second term in the low energy effective Lagrangian 2.21

we see that

τ(a) =
∂2F
∂a2

, (3.6)

and thus that the metric 3.4 can be written as ds2 = Im (τ) da dā.

3.2 Existence of Singularities

Before diving fully into the discussion of monodromies and how we can use the structure of the

moduli space to fully determine the holomorphic prepotential, we will first try and illustrate

that the moduli space has some nontrivial geometry and the existence of singularities.

We consider a large a limit corresponding to a� Λ, which we will call the semiclassical

or weak coupling limit. We will discuss later in this section why the weakly coupled regime

corresponds to taking a to be large. At large a the holomorphic prepotential F , given exactly

by one-loop perturbative and nonpertubative corrections in Eq. 2.23, becomes dominated by
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perturbative effects. Thus at large a we may take

F(a) =
i

2π
a2 log

a2

Λ2
, (3.7)

which is perturbatively exact. In the semiclassical limit the metric on the moduli space is

easily calculated. Keeping in mind the prepotential in our limit is given by Eq. 3.7, we find

the metric Eq. 3.4 to be

ds2 = Im
i

π

(
2 log

∣∣∣ a
Λ

∣∣∣+ 3
)
da dā =

(
2

π
log
∣∣∣ a
Λ

∣∣∣+
3

π

)
da dā. (3.8)

It is a fact that the metric must be positive definite and we see that the metric given above

is positive in the region of large |a|, where. But at smaller values of |a|, at approximately

1
5
Λ, the expression becomes negative. This tells us that in the weakly coupled region the

expression for the metric Eq. 3.8 cannot be the correct description of the entirety of the

moduli space. The fact that we mentioned considering small values of |a| in a large a limit

makes this argument seem less convincing. So let’s consider a more general argument. Since

F is a holomorphic function then Im ∂2F/∂a2 is a harmonic function, and harmonic functions

cannot have a global minimum. So if indeed the metric is globally defined then it can not

be positive definite. Since we know that the metric is positive definite and analogously the

kinetic energy must be positive, means that the metric is only defined locally. This line

of reasoning would imply that the moduli space has some highly nontrivial structure and

contains singularities. There is not much more we can say at this point before diving into the

necessary technical discussion, but we can note that if there are singularities on the moduli

space that they must come in pairs. Recall in our discussion of global symmetries that since

the moduli carries an R-charge, the Z8 is broken to Z4. The extraneous elements of Z8 which

did not preserve the global symmetry of the vacuum act by flipping the sign φ→ −φ, which

acts as an extra Z2. This additional global symmetry implies that if there are singularities,

that they come in mirror pairs on the moduli space.
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3.2.1 Physical Interpretation of the Singularities

We have seen that the moduli space contains singularities and that understanding their

structure might help us solve the theory. But first let’s switch the discussion to understanding

what is happening physically, as in how these singularities are arising. In general, moduli

spaces may become singular at points where extraneous fields become massless. The massive

multiplets correspond to nontrivial regions of the moduli space where the masses of the

multiplets depend on the coordinate of the moduli space u. Thus it may be the case that

for certain points on the moduli space these multiplets can become massless. In finding our

low energy effective theory we integrated out all higher-momentum modes which included

all on-shell massive states. At the points where the multiplets become massless, we will have

integrated out the states giving rise to singularities on the moduli space. The structure of

the singularity, or more relevantly the monodromy associated with the singularity, depends

on the properties of the multiplet which becomes massless.

One could imagine that there may be points where the broken gauge symmetry is en-

hanced to the full unbroken nonabelian symmetry at some u = 〈Trφ2〉 6= 0 where there

are additional gauge fields becoming massless, and thus the scalar vev’s in the vector mul-

tiplet would be contributing to the singularity. Such a phenomenon is known to occur in

N = 1 supersymmetric theories [11]. In N = 2 theories this happens in the classical picture

where at u = 0 the full SU(N) gauge symmetry is restored. So one could image that in

the quantum theory perturbative or nonperturbative corrections could shift the point where

the gauge symmetry is enhanced to a nonzero u. But Seiberg and Witten [1] argued that

the singularities could not arise in this way following from the behavior of the theory in the

infrared.

We mentioned before that the Z2 symmetry of the moduli space implied that the singu-

larities would come in pairs around u = 0. Now assuming that the singularities arise from an

unbroken nonabelian gauge symmetry, we would expect that in the infrared the theory would

be conformal. Since conformal theories do not have any dimensionful parameters, 〈Trφ2〉

would have to be a dimension zero operator, and in a unitary theory the only operator that

has a scaling dimension of zero is the identity operator. But as the identity is even under
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Z2 and 〈Trφ2〉 is odd, the two operators cannot mix.

Furthermore, Seiberg and Witten argued that a conformally invariant point would be

fairly unlikely as such a point would have to be invariant under the full superconformal

algebra, which would mean the standard chiral anomaly in the U(1) R-symmetry would

somehow have to disappear, along with other problems superconformal invariance would

imply in the global symmetry structure of the theory.

Thus, we must conclude that the singularities are caused by multiplets with spin less

than one-half, more specifically they must be massive multiplets that become massless at

particular points on the moduli space. Due to N = 2 supersymmetry, our options are fairly

limited; the only particles that can exist in the theory with spin ≤ 1/2 are hypermultiplets.

This raises a few questions as not only did we start out with a theory with only vector

multiplets but elementary hypermultiplets do not fit the description of what we are looking

for. As no elementary particles exist, we must assume that they are composite objects, and

such composite particles do exist. The only such hypermultiplets in N = 2 theories are

heavy solitonic objects which can carry both electric and magnetic charge, called dyons.

These composite particles are very heavy in the weak coupling limit and thus do not play a

role in the low energy effective theory. But as Seiberg and Witten [1] showed, the singularities

that appear in N = 2 theories arise from these dyonic objects becoming massless at points

on the moduli space.

3.3 Monopoles and Dyons

We mentioned that the singularities on the moduli space are caused by composite objects

called dyons which carry both electric and magnetic charge. The dyonic states are hyper-

multiplets in the N = 2 theory and thus short multiplets, meaning they saturate the BPS

bound on the masses of multiplets M ≥
√

2|Z|, where Z is the central charge of the N = 2

supersymmetric algebra.

We will simply quote some of the results regarding solitonic objects such as monopoles

and dyons in the classical theory. Keep in mind that an in depth treatment of the topic

requires discussion of ’t Hooft-Polyakov monopoles. A good review with Seiberg-Witten
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theory in mind is given in [3]. We start with a discussion of the mass bound on monopoles.

A monopole is an example of a soliton, a time-independent, finite energy solution to the

classical field equations of some theory. The lower bound on the mass for a monopole is

M ≥
√

2nm
4π

g2
a, (3.9)

where nm is an integer call the winding number of magnetic charge. The Dirac quantiza-

tion says that magentic and electric charges must be quantized as integer multiples of the

respective charge. More specifically, as a monopole is a soliton we can think of nm as the

degree of the map from the sphere at spatial infinity S2
∞ to the vacuum manifold, and from

homotopy considerations nm can be thought of as a winding number of the vacuum configu-

ration. The above bound, which is called the Bogomol’nyi bound, and the ’t Hooft-Polyakov

monopole saturates the bound, M =
√

2nm
4π
g2
a. We note that the mass of the monopole is

inversely proportional to the coupling g2. When we are considering the low energy physics in

the semiclassical limit, where the coupling is weak, the monopole becomes very massive and

thus becomes irrelevant. Conversely, even though this is the bound on the classical monopole

it still seems to suggest when considering the strong coupling regime the monopole becomes

light and plays an important role.

The equivalent bound on the mass of a particle that carries both electric and magnetic

charge is M ≥
√

2|Z|, where

Z = nea+ nmτcla, (3.10)

where the classical complex coupling is τcl = θ/2π + 4πi/g2 and ne, nm ∈ Z. It is not

a coincidence that this bound resembles the BPS bound on supersymmetric multiplets we

found earlier. It turns out that in supersymmetric theories, solitons generate a central

extension in the algebra, in calculating the anticomutation relations for the supercharges

there are surface terms that are usually neglected, but in the presence of solitonic solutions

these surface terms are nontrivial and give us a central charge. The end result of this

discussion is that the classical solitonic solution that saturates the bound above appears in

the quantum N = 2 theory as a composite object which saturates the BPS bound.

We now turn the discussion to the full N = 2 theory, where the bound on dyon mass is
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altered slightly. Suppose we start with an N = 2 theory with matter hypermultiplets, these

multiplets acquire mass when the Higgs vev a 6= 0. The coupling between the N = 1 chiral

multiplets in the N = 2 hypermultiplet, Φ and Φ̃, and the N = 1 chiral multiplet A in the

vector multiplet is fixed by N = 2 supersymmetry, so if the matter multiplet is carrying

an electric charge ne, then the coupling is fixed as
√

2neAΦΦ̃ as determined in [9]. From

this we see that the central charge should be Z = ane. Equivalently, if we considering the

coupling of a magentic monopole with charge nm to the vector multiplet we would find that

Z = nmaD. Thus we determine that the exact mass spectrum for dyons is the saturation of

the bound

M =
√

2|Z| where Z = ane + aDnm, (3.11)

and since the bound is saturated we claim that it should protected from corrections and

is exact at strong coupling. We also note that there is an electric-magnetic duality as the

exchange of a and aD along with ne and nm leaves the spectrum invariant.

3.4 Monodromies on the Moduli Space of Vacua

We have just discussed the structure of the moduli space of the N = 2 theory. In our discus-

sion we noted that understanding the transformations of a and aD around the singularities

on the moduli space, or monodromies, could help us determine the exact form of F and thus

solve the theory. First we will work through a few relevant issues which will elucidate the

eventual discussion.

It is claimed in the work of Seiberg and Witten [1] that the semiclassical limit where the

theory becomes weakly coupled corresponds to taking the limit as a becomes large. Let’s

briefly discuss why this is the case. Recall we defined the energy scale a to be the Higgs scale

at which the gauge symmetry in the theory breaks down to U(1). Additionally, consider an

energy scale Λ where the coupling becomes strong so at energies < Λ the theory is strongly

coupled, and suppose the large a limit is simply defined as the Higgs scale being greater than

the strong coupling regime a � Λ. At energies higher than a the theory has an unbroken

nonabelian gauge symmetry and as there are no matter couplings the beta function must

be negative, and thus the theory is asymptotically free. At energies lower than a the theory
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has a broken U(1) gauge symmetry, which means the beta function must either be zero or

positive, or rather the coupling either does not run or the theory is free in the infrared. This

means that above the Higgs scale the coupling only becomes weaker, and that below the

Higgs scale only either doesn’t run or becomes weaker. Thus if Λ is the scale at which the

coupling becomes strong, then a� Λ is the limit as the theory becomes weakly coupled.

As we did not consider a theory with matter hypermultiplets, we can assume that in the

weak coupling limit there is no matter, but we cannot assume that at strong coupling the

same holds true as composite particles appear, in which case the theory is that of an abelian

gauge theory coupled matter.

3.4.1 The Monodromy at Infinity

In the weak coupling limit where we take a � Λ the holomorphic prepotential is approxi-

mated as in Eq. 3.7, from which we find the dual Coulomb moduli to be

aD =
∂F
∂a

=
2ia

π
log

a

Λ
+
ia

π
. (3.12)

In calculating the monodromy we want to make a closed loop on the complex plane at large

u around the origin u = 0, represented by the counterclockwise contour on the complex

u-plane u → e2πiu, which is equivalent to encircling the point at infinity on the Riemann

sphere. We can rewrite this as log u → log u + 2πi, and recalling that in the semiclassical

limit u = 1
2
a2. Thus for a we have that a → eiπa or a → −a, and equivalently log a gets

incremented as log a→ log a+ iπ. The dual variable aD transforms as

aD → −
2ia

π
log

a

Λ
− ia

π
+ 2a = −aD + 2a (3.13)

and thus combining the transformations of both a and aD into a single matrix equation we

find  aD

a

→
 −1 2

0 −1

 aD

a

 . (3.14)
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Thus the transformation around the singularity is implemented by the monodromy matrix

which we will call M∞

M∞ = −T−2 =

 −1 2

0 −1

 , (3.15)

where T is the SL(2,Z) translation matrix. What follows in the next subsection is a brief

introduction to some relevant aspects of the group SL(2,Z) which will play a role in our

discussion of monodromies.

3.4.2 An Aside on SL(2,Z)

The group SL(2,Z) is the special linear group of degree 2 over the integers; it is the group

of 2× 2 matrices with integer entries, where the matrices have unit determinant.

SL(2,Z) =

g :

 a b

c d

∣∣∣∣∣∣ a, b, c, d ∈ Z , det g = 1

 . (3.16)

There are two matrices in SL(2,Z) which are worth noting, the S and T matrices, which

are important because one can construct any matrix in SL(2,Z) with a finite sequence of S

and T matrices and can be thought of as generators of SL(2,Z). These matrices are

S =

 0 1

−1 0

 T =

 1 1

0 1

 . (3.17)

The elements of SL(2,Z) act on the complex plane by Möbius transformations:

z → az + b

cz + d
. (3.18)

Now returning to our discussion of duality we can see the action of SL(2,Z) on our

theory. The full classical gauge coupling for N = 2 SYM is τ = θ/2π + 4πi/g2. We see that

the action of the T matrix on τ is an effective phase shift of the theta angle θ by 2π, or

rather τ → τ + 1. The action of the S matrix is a duality transformation τ → −1/τ . We

will see the importance of this S duality in the N = 2 theory. It is worth mentioning why
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the duality group we are considering is in fact SL(2,Z) and not SL(2,R), for instance. The

group SL(2,R) is generated by the same S matrix but additionally by Tb, where the top

right entry of T is a real number b. Such a transformation would shift the θ angle of the

theory by 2πb, which would only leave the theory invariant if b were integral. We will now

further explore the S duality in the N = 2 theory.

3.5 An S-Duality

Considering for a moment just the gauge field terms in the full N = 2 supersymmetric action

2.8, including the theta term we have the Lagrangian

LAµ = Im
τ

32π
(F + i ∗F )2, (3.19)

expanding and recalling that the coupling constant τ combines the gauge coupling and theta

angle as τ = 4πi/g2 + θ/2π and that (∗F )2 = −F 2, where ∗F is the Hodge dual of F , we

can expand the Lagrangian as

−Im
τ

32π
(F + i ∗F )2 = − 1

16π
Im τ (F 2 + iF ∗F ) = − 1

4g2
FµνF

µν +
θ

32π2
FµνF̃

µν , (3.20)

and recover the usual form of the gauge field kinetic term and theta term. Thus we start

with the action

− 1

32π
Im

∫
τ(F + i ∗F )2. (3.21)

Usually we consider the gauge field Aµ to be our free variable, but instead we now want to

regard the field strength F to be an independent variable. When we do this we must impose

the usual Bianchi identity dF = 0 as a constraint in the action, which we accomplish by

introducing a Lagrange multiplier in the action. Since there are four Bianchi identities, the

Lagrange multiplier field we introduce is an abelian vector field Bµ with the field strength

Gµν = ∂µBν−∂νBµ. The Lagrange multiplier term is now constructed by coupling the vector

field to a magnetic monopole, which satisfies the constraint equation ε0ρµν∂ρFµν = 8πδ(3);
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the Lagrange multiplier term is written as

1

8π

∫
Bµ ε

µνρσ∂νFρσ = − 1

8π

∫
εµνρσ∂νBµ Fρσ + total derivative

=
1

16π

∫
εµνρσ(∂µBν − ∂νBµ)Fρσ

=
1

16π

∫
εµνρσGµνFρσ =

1

8π

∫
∗GF, (3.22)

where we get from the first to second lines by noting the antisymmetry in the µ and ν indices.

Noting the form of the action in Eq. 3.21 we rewrite the Lagrange multiplier term as

1

8π

∫
∗GF =

1

16π
Im

∫
(G+ i ∗G)(F + i ∗F ), (3.23)

and adding the Lagrange multiplier term to the action Eq. 3.21 and then completing the

square we find

1

32π
Im

∫ (
−τ(F + i ∗F )2 + 2(G+ i ∗G)(F + i ∗F )

)
= − 1

32π
Im

∫ ((√
τ(F + i ∗F )− 1√

τ
(G+ i ∗G)

)2

− 1

τ
(G+ i ∗G)

)
=

1

32π
Im

1

τ

∫
(G+ i ∗G) (3.24)

where in going from the second to third lines we perform the Gaussian path integral over

F which results in canceling the larger square term. Thus we have found a dual theory

completely in terms of the Lagrange multiplier vector field with the exact same functional

form as the original action 3.21 except the complex coupling is now −1/τ .

We can repeat the same steps as above in N = 1 superspace and find the dual form of

the gauge terms in the supersymmetric action. We are interested in the transformation of

the of the kinetic term for the N = 1 vector superfield in terms of the field strength Wα,

which we now will treat as an independent chiral field

1

8π
Im τ

∫
d2θ W 2, (3.25)
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where here τ = τ(A) is a function of chiral multiplets A. The superfield Bianchi identity

is ImDαWα = 0 where Dα is the supercovariant derivative defined earlier. We introduce a

Lagrange multiplier vector superfield Y with field strength Zα. Recalling how integration

by parts can be performed in superspace coordinates using the supercovariant derivative, we

find the Lagrange multiplier term

1

16π
Im

∫
d4θ Y DαWα = − 1

16π
Im

∫
d4θ DαY Wα =

1

16π
Im

∫
d2θ D̄2(DαY Wα)

=
1

16π
Im

∫
d2θ (D̄2DαY )Wα = − 1

4π
Im

∫
d2θ ZαW

α, (3.26)

where at the beginning of the second line we used the fact that the field strength Wα is a chiral

superfield D̄α̇Wα = 0 and the definition of the abelian field strength for Zα = −1
4
D̄2DαY .

Adding the term to the above action and just as before we complete the square and perform

the Gaussian integral over W to find

1

8π
Im

∫
d2θ
(
τW 2 − 2ZW

)
= − 1

8π
Im

1

τ

∫
d2θ Z2, (3.27)

which is a dual action in terms of the vector superfield Y with the complex coupling −1/τ .

We observed a duality in the supersymmetric action both in the Yang-Mills and super-

space formalisms, which mapped a gauge field theory that couples to charges electrically to

a dual gauge field theory which couples magnetically. Let us define a dual complex coupling

τD = −1/τ . The duality is then implemented by the transformation of the coupling

τ → τD = −1

τ
. (3.28)

This is exactly the action of the S matrix in SL(2,Z). We mentioned in our discussion of

SL(2,Z) that the theory is invariant under the shift τ → τ + 1 as such a shift corresponds

to shifting the θ angle by 2π, which is implemented by the T matrix. This symmetry

transformation, along with the duality transformation we found, generates the SL(2,Z)

group, which is therefore the duality group of our theory.

It is important to keep in mind that the T action is a symmetry, leaving the theory
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invariant, and the S action is not a symmetry but a duality transformation, giving us an-

other description of the same theory. This duality is also the electric-magnetic duality

we mentioned in our discussion of the central charge of a dyon which can be written as

Z = (nm, ne) (aD, a)T . We note then that multiplying a state (aD, a)T by the SL(2,Z) S

matrix we see that it simply exchanges the electric and magentic components.

3.5.1 Implication of the Duality

We have stated that if we are trying the find the prepotential we can do so from the relation

aD = ∂F/∂a but we have yet to properly justify or make precise such a statement. Let us

make the definition h(A) = ∂F/∂A for some function h of chiral multiplets A, the coupling

is then defined as τ = ∂h(A)/∂A. In the dual theory we have the dual variables AD, FD,

and τD. Similarly introducing hD(AD) = ∂FD/∂AD, we see that from the S-duality above

τD = ∂hD/∂AD = −∂A/∂h = −1/τ , implies the relations

AD =
∂F
∂A

A = −∂FD
∂AD

. (3.29)

We also note that the duality transformation on the chiral Lagrangian leaves it invariant

Im

∫
d4θ

∂F
∂A
Ā = Im

∫
d4θ

∂FD
∂AD

ĀD, (3.30)

by the relationship between dual vairables given in 3.29. We know that the Coulomb moduli

of A are a and we will denote the moduli in the dual theory from AD as aD, we arrive the

desired relationship

aD =
∂F
∂a

. (3.31)

Therefore it stands that exactly determining the functions a(u) and aD(u) we allow us to

solve the theory.

Before continuing let us just note the physical implication of the duality in terms of the

field content of the theory and it’s dual. In finding the duality above we have elucidated a

useful physical description of monopoles in our theory. We see that the magnetic monopoles

and dyonic states in our theory, which are hypermultiplets in the N = 2 gauge theory, do

36



not couple to the N = 1 chiral A or vector W multiplets in the N = 2 theory, but instead

couple to dual fields AD and WD. This makes sense in terms of an electric-magnetic duality

as electrically charged objects in N = 2 theories with matter are hypermultiplets which

couple to A and W .

3.5.2 U(1) One-loop Beta Function

To construct monodromies we will need to use the β-function for the broken U(1) theory

coupled to a hypermultiplet. We will use the result in calculating the monodromy around the

singularities, where the monopoles become massless. This calculation follows that done in

Section 3.7 of [3]. The β function for the gauge coupling at one-loop is given in [23] Eq. 3.16

as

β(g) = µ
dg

dµ
= − g3

16π2

(
11

3
T (Ad)− 2

3
T (F )− 1

3
T (S)

)
, (3.32)

where T (r) indicates the sum of the indices of the representation r over the fermions T (F )

and complex scalars T (S). Now considering a theory with Weyl fermions with charge Qf

and complex scalars with charge Qs, the β-function for an abelian theory is given by

β(g) = µ
dg

dµ
=

g3

48π2

(
2
∑
f

Q2
f +

∑
s

Q2
s

)
. (3.33)

We note that the β-function is positive and thus the theory is free in the infrared and the

coupling increases at higher energy scales. In the case we are studying the matter content of

the N = 2 hypermultiplet includes two Weyl fermions and two complex scalars all with the

same charge Q. Keeping in mind that by using the anomaly that we have set the theta-angle

to zero by a chiral rotation of the fermions, we have τ = 4πi/g2. Thus we calculate the

β-function to be

β(τ) = µ
dτ

dµ
= −8πi

g3

(
g3

48π2
Q2 (2 · 2 + 2 · 1)

)
= − i

π
Q2. (3.34)
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We can identify the scale µ with the natural scale of the theory a. Setting Q = 1, we

integrate to find that

τ = − i
π

log
( a

Λ

)
. (3.35)

We will use this in the calculation of the monodromies at finite u. If we are instead interested

in the contribution from monopoles we simply consider the same calculation above in terms

of the dual moduli aD, which will give us

τD = − i
π

log
(aD

Λ

)
. (3.36)

3.6 Monodromies at Finite u

We already found that there was a singularity at ∞, where the monodromy is described

by the monodromy matrix M∞ = −T−2. We found that aD can be expressed as aD =

− i
π

√
2u
(
log 2u

Λ2 + 1
)

where the singularity at u = ∞ is a branch point of aD, which is why

refer to it as a singularity. The existence of a monodromy at u = ∞ implies that there are

other monodromies on the moduli space. As we discussed before, the existence of a Z2 global

symmetry on the moduli space means that they come in pairs around u = 0; a singularity at

finite u0 means that there is also a singularity at −u0. We will now show that there must be

at least three singularities to satisfy what we know already about the structure of our moduli

space. The Z2 action of u → −u only has two fixed points, u = 0 and u = ∞. We already

know there is a monodromy at u =∞, so if there were only two singularities then the other

would have to be u = 0. As monodromies are related to the contours around branch cuts,

we can clearly deform the contour around u = 0 and observe that the monodromy at u = 0

is the same as the monodromy at u = ∞. If the singularities only exist at 0 and ∞ then

the metric moduli space in the semiclassical limit is globally defined, and a is a good global

coordinate. But recall from our discussion in Section 3.2 that such a coordinate cannot be

globally defined as the metric would no longer be positive definite.

Opting for minimal assumptions, the next simplest choice is that of three singularities at

u0, −u0, and ∞, for some finite nonzero u0. By a contour deformation, a counterclockwise

loop surrounding both finite monodromies should be equivalent to the monodromy at infinity,
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and thus the monodromy matrices should be related as M∞ = Mu0M−u0 .

We briefly digress from our discussion of monodromies to address a subtlety in considering

the quantum moduli space. In the classical theory, the gauge symmetry is enhanced at u = 0

and the additional gauge bosons become massless, where classically we have u = 1
2
a2, and

in the effective theory the point becomes a singularity on the moduli space. Now when

considering the full quantum theory, as a becomes smaller the theory becomes strongly

coupled and the same reasoning no longer applies and a = 0 no longer corresponds to u = 0.

Dyons saturate the BPS bound on mass, meaning M =
√

2|Z|, where Z = nmaD + nea. So

we easily see that a = 0 can correspond to a massless state. As the BPS bound is protected

from perturbative corrections, naively a point where a = 0 gives rise to massless states could

still exist at strong coupling. As it turns out this point does not exist in the moduli space

of the quantum theory.

We already know that the singularities on the moduli space seem to arise from dyonic

states becoming massless, and now our task is to calculate the associated monodromies. As

we did not begin with hypermultiplets in our theory, the effective description cannot contain

couplings to dyonic fields in a consistent manner. But our theory is dual to a theory with

monopoles coupled to a dual vector multiplet, so we may perform the calculation theory

where the equivalent low energy description is an abelian N = 2 gauge theory coupled to

matter (the monopole hypermultipet).

Considering now a point u0 on the moduli space where a monopole becomes massless.

From the BPS bound on a monopole M =
√

2|aD|, we see this happens at aD = 0. In the

previous section we calculated the U(1) β-function and integrated to find an expression for

τ(a) and from duality we found that

τD = − i
π

log
aD
Λ
. (3.37)

Since τD = −da/daD, we can integrate to find that

a = a0 +
i

π
aD log

aD
Λ
− i

π
aD, (3.38)

where a0 is a constant. It is worth noting that a0 cannot have been zero, as then all
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electric objects would become massless at u0 and our calculation considering only coupling

to monopoles would have been incorrect. As we are interested in the region of the moduli

space in the vicinity of u0, aD should be a good coordinate to first order, aD ≈ c0(u − u0)

near u0, where c0 is some complex number. Thus we find that in this region

a ≈ a0 +
i

π
c0(u− u0) log(u− u0) + . . . , (3.39)

where we are ignoring the terms that become small when u ≈ 0. In calculating the mon-

odromy we consider the counterclockwise circle around u0: (u − u0) → e2πi(u − u0). The

monodromy at u0 and monodromy matrix are then calculated as

aD → aD

a→ a− 2aD
Mu0 =

 1 0

−2 1

 . (3.40)

From the condition M∞ = Mu0M−u0 we find the monodromy matrix for the monodromy

around the singularity at u = −u0:

M−u0 = M−1
u0
M∞ =

 −1 2

−2 3

 . (3.41)

As Mu0 and M−u0 do not commute, it might seem like there is some ambiguity in specifying

an order but as we are considering the representation of the fundamental group on the moduli

space for a nonabelian monodromy group, the definition of the monodromies requires a choice

of a base point P . Thus under Z2 we could start with the base point −P , which would give

us M∞ = M−u0Mu0 .

We will simply quote the most general monodromy matrix for a (nm, ne) dyon as

 aD

a

→
 1 + 2nenm 2n2

e

−2n2
m 1− 2nenm

 aD

a

 . (3.42)

The derivation of this equation can be found in Section 3.6 of [3]. We check that the Mu0

monodromy corresponds to a monopole or (1, 0) dyon becoming massless. We also see that
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the M−u0 monodromy corresponds to a (1,−1) dyon becoming massless. As the singularity

at infinity does not correspond to a massless hypermultiplet, M∞ will not be of the same

form.

Considering the choice of base point at −P , we find the monodromy matrix for the singu-

larity at −u0 to be M−u0 = M∞M
−1
u0

, which corresponds to a (1, 1) dyon. Thus the global Z2

symmetry on the moduli space exchanges the (1,−1) dyon with the (1, 1) dyon. In fact upon

further manipulation we find that the electric winding number is less fundamental. Consider-

ing the contour where we take the clockwise loop around infinity, around the u0 monodromy,

then counterclockwise around infinity, we find the monodromy M∞Mu0M
−1
∞ corresponding

to a (1, 2) dyon becoming massless, and the reverse action gives us a monodromy where a

(1,−2) dyon becomes massless.

The more elegant way of seeing what is happening is by noting that all monodromy

matrices as given by the general form Eq. 3.42 belong to a subgroup Γ(2) of SL(2,Z),

comprised of matrices congruent to the identity mod 2. Thus at points on the moduli space

where dyons become massless, the electric winding number is defined modulo 2, taking even

values at the u0 singularity and odd values at the −u0 singularity. This is equivalent a

conjugation of the fundamental group by Mn
∞.

Before moving on to the solution of the model there is one more subtlety we would like to

address. We eliminated the possibility of there being two singularities and then moved ahead

under the minimal assumption that there were three singularities. Let us comment briefly

on why the assumption is likely correct the correct one. Assume that in addition to the

singularity at infinity there are k singularities on the moduli space at points u1, u2, . . . , uk,

ignoring the fact that they come in pairs under Z2. The contour deformation around all the

finite singularities reproduces the expected monodromy relationship: M∞ = Mu1Mu2 . . .Muk .

Each monodromy corresponds to a (nm, ne) dyon becoming massless, with the condition that

both winding numbers are integral. There is confidence that there do not exist solutions for

values k > 2 that satisfy this condition.
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4. Seiberg-Witten Solutions in N = 2

Gauge Theories

We have extensively discussed properties of N = 2 supersymmetric gauge theories and

the structure of the associated moduli space of vacua. We have come to understand the

singularity structure and the relevant monodromies on the moduli space and in doing so

are now in a position to solve the low energy effective theory. Following [1] [3], we will

first present the original solution by Seiberg and Witten [1] of finding a family of elliptic

curves with the right monodromy considerations and using them to determine a(u) and

aD(u) as functions of the moduli space. Then we will discuss a similar approach following

[5] [6], where by justifying a(u) and aD(u) as solutions to a differential equation with the

correct monodromy considerations, we find the explicit expressions of the quantities using

hypergeometric functions. We will then try to plot the metric on the moduli space of vacua in

the interest of a visual representation of the singularity structure. Finally, by considering the

theory on the world-volume of a brane construction, we will again find the Seiberg-Witten

curves by uplifting the brane configuration to M-theory and looking at the nontrivial cycles.

4.1 Exact Solution from Elliptic Curves

We are now in a position to determine the holomorphic prepotential by using the mon-

odromies we have calculated to determine a(u) and aD(u), and thus solve the model. As we

are now confident that there are only three singularities on the moduli space we will define

the points u0 and −u0 as u = 1 and u = −1. So we have found in the last section that the

42



moduli space has singularities at u =∞, 1,−1, where the monodromies we calculated are

M1 =

 1 0

−2 1

 M−1 =

 −1 2

−2 3

 M∞ =

 −1 2

0 −1

 . (4.1)

In their paper [1] Seiberg and Witten found a family of elliptic curves

We know that the metric must be positive definite and that the monodromy matrices

belong to the subgroup Γ(2) of SL(2,Z) of matrices congruent to the identity. We consider

then the quotient space H/Γ(2) where H is the upper half plane. Keeping in mind the

singularities at u = −1, 1,∞, we start by defining an elliptic curve Eu at each point u on

the moduli space

y2 = (x− 1)(x+ 1)(x− u) (4.2)

where (x, y) ∈ C. The elliptic curve Eu is a Riemann surface of genus one, or more visually,

a torus with two nontrivial cycles. In Appendix B.3 we review some basic facts about

the geometry of elliptic curves relevant to our discussion. The space H/Γ(2) naturally

parametrizes this family of curves where the singularities appear as cusped curves, generated

by the quotient Γ(2). Just as in our discussion in the appendix, we have four branch points,

three at the poles x = −1, 1, u and one at ∞, joined by two cuts. These cuts allow the

function y to become single-valued on the complex plane. With a stereographic projection

we take two sheets as two Riemann spheres, each with two cuts. Joining the spheres the

two curves C1 and C2 become the nontrivial cycles c1 and c2 on the resulting torus. These

curves are the same we found in Appendix B.3 with r1 = −1, r2 = 1 and r3 = u.

We now want to define the functions aD and a as integrals of a one-form λ, which we will

soon define, integrated over the two nontrivial one-cycles

a =

∮
γ1

λ aD =

∮
γ2

λ. (4.3)

λ can be thought of as a meromorphic one-form on the family of elliptic curves. For the
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one-forms on Eu we make the choice of basis

λ1 =
dx

y
λ2 =

xdx

y
. (4.4)

As argued by Seiberg and Witten there are considerations to make the choice of λ less arbi-

trary, including the positive definitness of the metric Im τ > 0. Considering the derivatives

daD
du

=

∮
γ1

dλ

du

daD
du

=

∮
γ2

dλ

du
. (4.5)

for the moment we take that
dλ

du
= f(u)

dx

y
. (4.6)

The basis element λ1 we chose on the torus is normalized over the one-cycles of the torus as

bi =

∮
γi

λ1 (4.7)

as it is the unique holomorphic differential on the family of elliptic curves. It is an algebraic

result that the torus has a parameter τu = b1/b2 which obeys Im (τu) > 0. Returning to the

choice of 4.6, this implies that

τ =
daD/du

da/du
=

∮
γ1
f(u)λ1∮

γ2
f(u)λ1

=
b1

b2

= τu (4.8)

Thus as Im τu > 0 is a condition on the torus it also holds that Im τ > 0, which we need for

the metric to be positive definite. Thus the choice 4.6 is valid, integrating this and fixing

the integration with the asymptotic behavior of f(u) as argued in [1], we find the explicit

expression for the one-form

λ =

√
2

2π

(
xdx

y
− udx

y

)
=

√
2

2π
dx

(x− u)√
(x2 − 1)(x− u)

=

√
2

2π
dx

√
x− u
x2 − 1

(4.9)

Recall how we defined a(u) and aD(u) as integrals over the two one-cycles 4.3. We can

contract the first one-cycle c1, which looped the cut from −1 to 1, to lie along the cut. This
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means we just need to integrate λ along the cut, doing so we find the expression for a(u)

a(u) =

√
2

π

∫ 1

−1

dx

√
x− u
x2 − 1

. (4.10)

For aD(u) we contract c2 to lie along the cut from 1 to u. Integrating λ along the cut, we

find the expression for aD(u) to be

aD(u) =

√
2

π

∫ u

1

dx

√
x− u
x2 − 1

. (4.11)

We have found expressions for a(u) and aD(u), now let’s check that the asymptotic behavior

at the monodromies is correct.

4.1.1 Monodromy at u =∞

First we consider the monodromy at infinity where we are in the large u limit, calculating

a(u) we recover the expected semiclassical relation

a(u) =

√
2

π

∫ 1

−1

dx

√
x− u
x2 − 1

≈
√

2u

π

∫ 1

−1

dx

√
1

x2 − 1
=
√

2u (4.12)

which tells us u = 1
2
a2 as expected. Now let’s calculate aD(u) at large u

aD(u) =

√
2

π

∫ u

1

dx

√
x− u
x2 − 1

=

√
2u

π

∫ 1

1/u

dy

√
y − 1

y2 − 1/u2
(4.13)

where we have made the substitution x = uy. The integral develops a logarithmic divergence

in the limit as u → ∞ near the origin, the at lower limit of the integral approaches zero,

the numerator contributes an i, while the denominator becomes z, giving us the logarithmic

divergence

aD(u) ≈ i
√

2u

π
log u. (4.14)

We see that our expressions for a and aD transform under the monodromy transformation

u → e2πiu, enclosing the singularity at infinity, as: a → −a and aD → −aD + 2a which

reproduces the expected monodromy transformation 3.14.
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4.1.2 Monodromy at u = 1

Now we calculate a(u) at u = 1 to be

a(u = 1) =

√
2

π

∫ 1

−1

dx

√
x− 1

x2 − 1
=

√
2

π

∫ 1

−1

dx√
x+ 1

=
4

π
(4.15)

but since we wanted to find the behavior in the region around the singularity we find the

first order term for a(u → 1) by taking the derivative with respect to u and take the limit

as u→ 1
da

du
=

√
2

π

∫ 1

−1

dx

√
x− u
x2 − 1

= −
√

2

2π

∫ 1

−1

dx
1√

(x2 − 1)(x− u)
(4.16)

We see that the integral becomes logarithmically divergent near in the upper bound of the

integral as in the limit u→ 1 the denominator has a (x− 1) factor, pulling out a
√

2 factor

we have

da

du
= − 1

2π

∫
dx

1√
(x− 1)(x− u)

∣∣∣∣∣
x=1

= − 1

2π
log
(
2x− 1− u+ 2

√
x− 1

√
x− u

)∣∣
x=1

= − 1

2π
log(1− u) = − 1

2π
log(1− u) (4.17)

Integrating using the zeroth order term we found before as the constant of integration, we

find

a =
4

π
− 1

2π
(u− 1) log(u− 1) + . . . (4.18)

Now we calculate aD near u = 1, in the limit as u → 1 we have a divergence in the

denominator at the lower bound of the integral

aD =

√
2u

π

∫ 1

1/u

dy

√
y − 1√

y2 − 1/u2
≈
√
u

π

∫ 1

1/u

dy

√
y − 1

y − 1/u
≈ 1

π

∫ 1

1/u

dy

√
y − 1

y − 1/u
(4.19)

where we have made valid approximations in the limit u→ 1. Evaluating we find

aD =
i

2

(
1− 1

u

)
≈ i

2
(u− 1). (4.20)
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Considering the loop u→ e2πiu around the singularity at u = 1 we find the transformations

aD → aD and a → a − 2aD, which reproduces the expected monodromy transformations

3.40.

It suffices to just check the monodromies at u = 1 and u = ∞ as the singularity at

u = −1 is related to the singularity at u = 1 by the global Z2 symmetry.

4.2 Solutions via Hypergeometric Functions

In their original work Seiberg and Witten [1] solve the model by finding a set of elliptic

curves with the correct monodromy structure which correctly determines the two desired

functions a(u) and aD(u). Here we briefly present an alternative approach which allows us

to find explicit forms for a(u) and aD(u) using the integral representation of hypergeometric

functions.

If we already know the explicit form of a(u) and aD(u) then we can just take a top

down approach and match the solutions to hypergeometric functions. But for the sake

of completeness we will take the bottom up approach find a(u) and aD(u) as solutions to a

second-order differential equation, which turn out to be hypergeometric functions. We follow

the procedure outlined in [3], [5], and [6].

Monodromies typically arise in solutions to differential equations with periodic solutions

or boundary conditions. For example a time independent Schrödinger equation with a peri-

odic potential: V (x) = V (x+2π). The set of solutions at x must be the same as the solutions

at x + 2π. If there are two independent solutions, ψ1(x) and ψ2(x) then the solution when

the system is shifted to x+ 2π is some linear combination of ψ1(x) and ψ2(x). Thus we can

construct the monodromy transformation: (ψ1(x + 2π), ψ2(x + 2π))T = M (ψ1(x), ψ2(x))T ,

where M is a monodromy matrix.

The equivalent situation for differential equations on the complex plane is having mero-

morphic solutions as here the equivalent of periodicity is single-valuedness. So now we

consider an equation with the same functional form to the Schrödinger equation

(
− d2

dz2
+ V (z)

)
ψ(z) = 0 (4.21)
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where now V (z) is some meromorphic function with finite poles zi and one at ∞. Here

the equivalent to a periodic shift is an analytic continuation around the pole zi, giving us

the monodromy transformation Mi. More explicitly, we see that for the two independent

solutions ψ1(z) and ψ2(z), we have

 ψ1(z + e2πi(z − zi))

ψ2(z + e2πi(z − zi))

→Mi

 ψ1(z)

ψ2(z)

 . (4.22)

Now we turn to the moduli space of our N = 2 gauge theory. In our theory there are

three singularities at u = −1, 1 and ∞ on the moduli space with two functions a(u) and

aD(u). This exactly fits the system we discussed above. Thus we take the two functions

a(u) and aD(u) to be the solutions to the second-order differential equation on the complex

u-plane. With the singularities in mind, we find the general form of the potential knowing

that the singularities correspond to (up to) second-order poles

V (u) = −1

4

(
1− λ2

1

(u+ 1)2
+

1− λ2
2

(u− 1)2
− 1− λ2

1 − λ2
2 + λ2

3

(u+ 1)(u− 1)

)
(4.23)

where we have used the fact that M1M−1 = M∞. Naively, one would assume that first order

poles at u = 1 or u = −1 could appear but these correspond to third order poles at ∞.

Taking the limit u→∞, we find that

V (u) ∼ −1− λ2
3

4u2
(4.24)

We know from our discussion above that asymptotically the solutions behave like ∼
√
u and

∼
√
u log u, plugging these into the differential equation and working backwards, i.e. taking

the second derivative then dividing by the solution we see that for both solutions we want

V ∼ − 1
4u2

, and since a nonzero λ3 would change the asymptotics we take λ3 = 0. Taking

the limit u→ 1 we find that

V (u) ∼ −1

4

(
1− λ2

2

(u− 1)2
− 1− λ2

1 − λ2
2

2(u− 1)

)
(4.25)

Recalling our discussion before we know the solutions near u = 1 behave as ∼ (u− 1) and ∼
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const +(u−1) log(u−1), thus it follows that we’d only want the second term in the potential

to contribute and we take λ2 = 1. The same result applies for the singularity at u = −1

where we take λ1 = 1. We are left with the potential

V (u) =
1

(u+ 1)(u− 1)
. (4.26)

The solution of the differential equation we started with has known solutions [28], given that

λ1 = λ2 = 1 and λ3 = 0 we have the two linearly independent solutions

ψ1,2(u) = f1,2

(
u+ 1

2

)
(4.27)

The function f satisfies Euler’s hypergeometric differential equation:

u(1− u)
d2f

du2
+ (c− (a+ b+ 1)u)

df

du
− abf = 0 (4.28)

where a = 1
2
(1 − λ1 − λ1 + λ3), b = 1

2
(1 − λ1 − λ1 − λ3), and c = 1 − λ1. Therefore we

find that a = −1/2, b = −1/2, and c = 0. Given that we are interested in two linearly

independent solutions in the neighborhood of 1 and ∞, we choose two of Kummer’s 24

solutions to the hypergeometric equation that fit the criteria. From [28] we choose the basis

for the hypergeometric equation as

ψ1(u) = f1(∞)(u) = u−aF (a, a− c+ 1; a− b+ 1;u−1)

ψ2(u) = f2(1)(u) = (1− u)c−a−bF (c− b, c− a; c− a− b+ 1; 1− u)

where F (α, β; γ; z) are the hypergeometric functions. We now propose that

a(u) = 2ψ1(u) =
√

2(u+ 1) F (−1/2, 1/2; 1; 2/(u+ 1))

aD(u) = iψ2(u) =
i

2
(1− u) F (1/2, 1/2; 2; (1− u)/2)
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The hypergeometric functions can be expressed in an integral representation as

F (α, β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

dx xβ−1(1− x)γ−β−1(1− zx)−α (4.29)

where we have defined F (α, β; γ; z) normalized with the Beta-function B(β, γ− β). We find

the integral expressions for a(u) and aD(u)

a(u) =
√

2(u+ 1)
Γ(1)

Γ(1
2
)Γ(1

2
)

∫ 1

0

dx
1√

x(1− x)

(
1− x 2

u+ 1

) 1
2

aD(u) =
i

2
(1− u)

Γ(2)

Γ(1
2
)Γ(3

2
)

∫ 1

0

dx

√
1− x
x

(
1− x1− u

2

)− 1
2

simplifying and changing variables to avoid confusion we have

a(u) =

√
2

π

√
u+ 1

∫ 1

0

dt
1√

t(1− t)

(
1− 2

u+ 1
t

) 1
2

(4.30)

aD(u) =
i

π
(1− u)

∫ 1

0

dt

√
1− t
t

(
1− 1− u

2
t

)− 1
2

. (4.31)

We now want to recover the expressions for a(u) and aD(u) we found in our derivation using

elliptic curves 4.10 and 4.11. In the above expression for a(u) 4.30, we make the substitution

t = 1
2
(x+ 1) and find

a(u) =

√
2

π

√
u+ 1

∫ 1

−1

dx

2

2√
1− x2

√
u− x
u+ 1

=

√
2

π

∫ 1

−1

dx

√
u− x
1− x2

. (4.32)

In the expression above for aD(u) 4.31, we make the substitution t = (x− 1)/(u− 1)

aD(u) =
i

π
(1− u)

∫ u

1

dx

u− 1

√
u− x
x− 1

√
2

x+ 1
=

√
2

π

∫ u

1

dx

√
x− u
x2 − 1

. (4.33)

Using the integral representation of the hypergeometric function we have found the explicit

form of a(u) and aD(u)

a(u) =

√
2

π

∫ 1

−1

dx

√
x− u
x2 − 1

aD(u) =

√
2

π

∫ u

1

dx

√
x− u
x2 − 1

(4.34)
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which is in exact agreement with 4.10 and 4.11.

4.2.1 An Explicit Form of the Metric

What we would like to do now is find an explicit form of the metric and plot moduli space,

which we are able to do in terms of hypergeometric functions. To make things less messy,

we make some definitions in terms of hypergeometric functions, it is common to express the

complete elliptic integrals as

K(ω) =
π

2
F (1/2, 1/2; 1;ω2) E(ω) =

π

2
F (−1/2, 1/2; 1;ω2) (4.35)

Recalling that

a(u) =
√

2(u+ 1) F (−1/2, 1/2; 1; 2/(u+ 1))

aD(u) =
i

2
(1− u) F (1/2, 1/2; 2; (1− u)/2)

it should be clear that we can express a(u) = 4
πk
E(ω) when ω2 = 2/(1 + u). We know we

can find the metric from the coupling τ , which can be expressed as

τ =
∂aD
∂a

=
daD
du

/
da

du
(4.36)

using Mathematica to compute the derivatives of the hypergeometric functions in terms

of the complete elliptic integrals we find that

da

du
=

√
2

π
√

1 + u
K

(√
2

1 + u

)
(4.37)

daD
du

=
i

π
K

(√
1− u

2

)
(4.38)
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Figure 4-1: Plot of the metric on the moduli space, defined as Im τ and given in terms of
complete elliptic functions in 4.40, we observe the expected singularity structure.

Noting that K(iυ/ω) = ωK(υ), letting ω2 = 2/(1 + u) and υ2 = 1 − ω2, meaning that

−υ2/ω2 = (1− u)/2, we can rewrite

daD
du

=
i

π
K

(
iυ

ω

)
=
iω

π
K (υ) =

i

π

√
2

1 + u
K (υ) (4.39)

we find that

τ =
iK(υ)

K(ω)
(4.40)

Recalling that the metric on the moduli space is Im τ we plot our results in Figure 4-1. We

can see that in addition to seeing singularities at u = 1 and u = −1, we can see evidence of

the singularity at u =∞ because such a singularity is a branch point of aD(u).

We have found the functions a(u) and aD(u) in agreement with the results using the

original approach of determining a family of elliptic curves. It may seem as though in this

approach the use of the monodromies was more subtle, at least compared to the previous ap-

proach. But recall it was the consideration of the monodromies that implied the two functions

were solutions to the second-order differential equation we used. The singularity structure

was used in determining the functional form of the potential. Furthermore consideration of

the behavior around u = 1 and u → ∞ allowed us to correctly determine which Kummer
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solutions to the hypergeometric differential equation, and thus find the correct hypergeo-

metric functions which correctly gave us the functions a(u) and aD(u). As a(u) and aD(u)

completely determine the holomorphic prepotential, which in turn completely determines

the low energy effective theory, we have successfully solved our model using hypergeometric

functions.

4.3 Seiberg-Witten Curves from M-theory Lifts of Brane

Constructions

4.3.1 Branes in Type II and M-theory

First we will quickly review some basic facts about branes in Type II string theories and

in M-theory. The fields that make up the N = 1 supergravity multiplet in 11-dimensional

M-theory are the graviton, the gravitino, and the 3-form gauge field (g, ψαµ , C
(3)). Just as

in electromagnetism, in string theory and M-theory there are electric and magnetic objects

which are charged under gauge fields. The conserved electric and magnetic charges of the

3-form field are dF (4) = δ(5)QM and d ∗ F (4) = δ(8)QE, which gives us a codimension 8

electric object in 11d, called the M2-brane, and a codimension 5 magnetic object, called the

M5-brane. The fields in the N = (1, 1) supergravity multiplet in 10-dimensional Type IIA

string theory an be found from dimensional reduction of M-theory. The bosonic fields are

the graviton, the dilaton, a 1-form, a 2-form, and a 3-form field; (g, φ, C(1), B(2), C(3)). For

completeness the fermionic fields in Type IIA are two gravitini, a left-handed Majorana-

Weyl (MW) gravitino and a right-handed MW gravitino, and two spinors, a left MW spinor

and right MW spinor. As this is a N = (1, 1) theory, and is nonchiral, the left and right

MW gravitini transform as one Majorana gravitino, and the left and right spinors transform

as one Majorana spinor. As in M-theory, the gauge fields will source electric and magnetic

objects. In the same manner as above, the branes sourced by the 1-form C(1) and 3-form C(3)

are the D0, D2, D4, and D6 branes. The Kalb-Ramond 2-form B(2) magnetically sources the

NS5-brane and electrically sources the fundamental string F1. The dilaton φ is noncompact

and is not gauge invariant and does not source charges. From T-duality we can also include
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the D8-brane in the brane content of Type IIA. In the N = (2, 0) supergravity multiplet

of Type IIB, the gauge fields B(2), C(0), C(2), C(4)+ give us the brane content of the theory

to be: F1, NS5, D(-1), D1, D3, D5, D7. Here the scalar C(0), usually called the axion, is

compact and does source any branes.

This was a rather terse review of branes in Type II string theories and M-theory. For

a more in depth discussion and better rooted derivations of the facts above please see the

textbook [26] or the course notes from Prof. Hanany’s String Theory course [27].

4.3.2 Field Theories on the Worldvolume of Branes

It is possible to find and study many interesting aspects of both gauge theories and string

theories by investigating the quantum field theories that appear on the world-volume of

branes.

Consider a D4-brane ending on an NS5-brane. Now suppose we have n + 1 NS5-branes

labeled by 0, 1, . . . , n, and there are kα D4-branes, where the index α indicates that the

D4-brane is stretched between the (α − 1)-th and α-th NS5-brane. Then the resulting low

energy effective theory on the D4-brane world volume is an N = 2 SYM theory with gauge

group G =
∏
SU(kα) and hypermultiplets in the bifundamental representation (k1, k̄2) ⊕

. . .⊕ (kn−1, k̄n).

An important distinction to make is that the gauge group of the brane construction is

in fact SU(kα) and not U(kα) as there is an overall U(1) factor. This is due to the center of

mass motion of the D4-branes on the NS5-branes is logarithmically divergent.

We can also add a D4-branes and b D4-branes on to each end of the brane construction

which give rise to a hypermultiplets in the fundamental of SU(k1) and b hypermultiplets in

the fundamental of SU(kn). We can also add c D6-branes between two of the NS5-branes,

say α − 1 and α, giving us d hypermultiplets in the fundamental of SU(kα). Let’s see how

certain theories arise in these brane constructions. If we have an NS5-brane with k D4-branes

ending on it, where the direction along which the D4-branes run tangent to the NS5-brane,

is compactified on a circle, the resulting theory on the world volume is an N = 4 U(k)

theory. Supposedly, if we fix one of these D4 branes giving it a vev, then the theory becomes

a SU(k) theory. Adding mass to the adjoint hypermultiplet gives us an N = 2 theory (don’t
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really understand how this happens, breaks half the SUSY supposedly). N = 2 QCD can

be obtained by adding infinite D4-branes on either side of the NS5-branes, or by adding

D6-branes between them. This is the flavor brane setup referred to in the literature.

We will now just focus on the N = 2 SU(N) setup of D4-branes between NS5-branes and

the N = 2 QCD setup obtained by adding D6-branes. Considering M-theory on R9+1 × S1,

i.e. compactifying x10 on a circle, we get Type IIA. As we would expect, the brane content

of Type IIA is just the dimensional reduction of the branes or transverse modes in M-theory.

The D4-brane is the M5-brane wrapped over the compactified dimension x10, and the NS5-

brane is the unwrapped M5-brane, transverse to x10. D6-branes and D0-branes are sourced

by the 1-form field in Type IIA, which comes from the dimensional reduction of the metric in

M-theory. Thus the D6-brane and D0-brane are lifted to the KK-monopole and momentum

mode, respectively, in 11 dimensions.

We see now that lifting the D4/NS5 brane construction to M-theory will give us a single

M5-brane with highly nontrivial geometry. To preserve the N = 2 supersymmetry the world

volume of the M5-brane is of the form R4 × Σ, where Σ is a holomorphic curve. This curve

should be embedded in R3 × S1. To see which directions the holomorphic curve is let’s look

at the spatial configuration of the D4/NS5 brane setup:

NS5: 1 2 3 4 5 - - - -

D4: 1 2 3 - - 6 - - -

In this configuration, in the world volume of the M5-brane the holomorphic curve should be

embedded in R3×S1, comprised of directions x4, x5, x6 and x10. As a side note, in the N = 4

brane construction, where the x6 direction is compactified, then the holomorphic curve is

embedded in R2 × T 2.

Our goal is to understand the low energy effective theory living on the world volume

R4 ×Σ of the M5-brane by determining the gauge couplings from the holomorphic curve Σ.

4.3.3 The Holomorphic Curve as a Seiberg-Witten Curve

What we need to do in order to study the low energy effective theory on the world volume

of the M5-brane, R4 × Σ, and just as in Seiberg-Witten theory we want to find the gauge
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couplings from the curve on Σ. The coupling of the scalars can then be determined from

the gauge couplings from supersymmetry. The gauge fields come from the reduction of the

self-dual 2-form potential along Σ on the world volume. The self-dual field strength can be

decomposed as such G = (1 + ∗)F ∧ ω where F is the usual gauge field strength and ω is a

harmonic 1-form on Σ. If Σ has a genus of g then there are g U(1) gauge fields. The gauge

couplings are then found from the reduction of the kinetic term

∫
R4×Σ

|T |2 (4.41)

What we see is that the gauge couplings are the period matrix of Σ, or rather the intersection

form of ω. An intersection form is defined on an oriented compact 4-manifold M, and is a

symmetric bilinear form α ∈ Ω2(M). When the manifold is smooth, which for us is true,

then the intersection form may be expressed as the integral

Q(a, b) =

∫
M
α ∧ β (4.42)

where α and β are 2-forms. So since the gauge couplings are the period matrix of Σ, then

Σ is our Seiberg-Witten curve. There should probably be some explanation of why we may

write this down as an algebraic curve, related to the fact that although Σ is generically

noncompact, we may compactify the space by adding a point at infinity.

4.3.4 Finding Solutions of the Theory

Solutions for a large class of N = 2 theories, where by solutions we mean that we write down

the Seiberg-Witten curve that depends on the moduli of the theory, so that we may compute

the gauge couplings of the theory from the periods of the curve. We start with the brane

construction for N = 2 SU(n) pure gauge theory, which is n D4-branes suspended between

two NS5-branes. We will write the relevant coordinates x4, x5, x6, and x10, as the complex

coordinates v = x4 + ix5 and t = e−s = exp(−(x6 + ix10)/R), since the M-theory circle x10

has a periodicity of 2πR. In a general brane construction the degree of the equation defining

the Seiberg-Witten curve in t is the number of NS5-branes and the degree in v is the number
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of D4-branes. Thus, it should be clear that f(t, v) should be quadratic in t, and so should

have the form

f(t, v) = A(v)t2 +B(v)t+ C(v) = 0. (4.43)

The limit of t → 0 corresponds to one NS5-brane, which we will call the left one, and the

limit of t → ∞ corresponds to the other NS5-brane, the right one. As the D4-branes end

on the NS5-branes and the N = 2 theory lives on the world volume of the D4-branes, then

f(t, v) = 0 should have no solution for finite v at t = 0 and t = ∞. So we must set A(v)

and C(v) to be constants and without loss of generality we may set A = C = 1. Solving the

above equation and shifting the variables we find that

t2 = (u1v
n + u2v

n−1 + . . .+ un)2 − 1 (4.44)

this is precisely the SU(n) Seiberg-Witten curve with the scale Λ = 1.

4.4 Physical Phenomena at Strong Coupling

There are a number of interesting physical phenomena that have appeared in our treat-

ment of N = 2 gauge theories which we would like to address more directly. We saw that

monopoles and dyonic states appeared in the strong coupling region of the moduli space.

For singularities to occur on the moduli space of the low energy effective theory there need

to be multiplets becoming massless, and we saw that on the moduli space we studied the

two finite singularities occurred when a (1, 0) monopole and a (1,−1) dyon became mass-

less. We want to continue this discussion and address the condensation of monopoles and

confinement, phenomena which we can observe in the theory.

In the semiclassical limit of our effective theory, the massless spectrum in N = 2 gauge

theories only consists of the N = 2 vector multiplet, which has a broken U(1) gauge sym-

metry. In the classical supersymmetric theory, the N = 2 supersymmetry can be broken

to N = 1 supersymmetry with the addition of a superpotential W = mTr Φ2. Recall our

construction of the N = 2 Lagrangian for gauge fields, where we looked at the full N = 1

Lagrangian and enhanced to N = 2 supersymmetry by requiring the W superpotential be
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zero. The addition of this term gives a mass to the chiral multiplet Φ. Integrating out

massive states, the low energy effective theory becomes an N = 1 theory of Abelian gauge

fields only.

In our low energy effective theory, we add a mass term to the chiral multiplet A, mTrA2.

The operator is itself a chiral superfield which we will call U . Clearly, the moduli of the

operator is Trφ2, which we have defined as u = 〈Trφ2〉. For small enough m is should be

justifiable to add a mass term mU to the effective Lagrangian, which gives us massive chiral

multiplets. If we also want massive vector multiplets, we either need points on the moduli

space where the gauge symmetry is enhanced to the non Abelian symmetry, which can occur

with additional gauge fields, or some coupling to a charged field that allows for an additional

Higgs mechanism. As we already discussed the problems with gauge enhancements on the

moduli space, we choose to consider that there might be a Higgs mechanism through a

coupling to dyonic states. If this were to be the case the dyonic states would need to be

incredibly light. We know from our discussion of duality that the monopole is an N = 2

hypermultiplet, which can be broken into two N = 1 chiral multiplets Φ and Φ̄. Just as

electrically coupled chiral multiplets couple to vectors, the monopole couples to the dual

vector multiplet AD. The superpotential then becomes

W =
√

2ADΦΦ̄ +mU (4.45)

where in this dual description U = mTrA2
D. We now minimize the superpotential to find

vacuum solutions. Clearly Φ = Φ̄ = m = 0 is a solution corresponding to the moduli space

of the N = 2 theory. But as presented in [1], if m 6= 0 then

√
2ΦΦ̄ +m

du

daD
= 0 aDΦ = aDΦ̄ = 0 (4.46)

is a solution Φ and Φ̄ 6= 0. As the monopoles are charged and couple to the gauge field we

find a magnetic equivalent of the Higgs mechanism. The nonzero vacuum solution for the

massless magnetic monopoles implies that they will condense, and monopole condensation

gives rise to confinement of electrically charged fields.
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5. Conclusion

Our original goal was to find the prepotential that fully determined the N = 2 supersymmet-

ric theory, even at strong coupling, and in doing we hoped to shed light on some interesting

phenomena that occur. We know that strong coupling phenomena occur in the real world,

and within the realm of Yang-Mills theories most of them occur in QCD at low energies.

This is because unlike QED, QCD is a strongly coupled theory, where the low energy behav-

ior exhibits strong coupling. As a result phenomena occur, for example the confinement of

quarks or chiral symmetry breaking, which are not well understood. Lattice QCD strives to

obtain results by calculating QCD at points on a lattice and extrapolate information. But

if our goal is to understand something fundamental about gauge theories, specifically the

structure of Yang-Mills theories, then we look to studying theories like N = 2 in the hopes

of understanding strong coupling.

We sought to fully solve the low energy effective theory by determining the holomorphic

prepotential, which in turn we did by solving for the quantities a(u) and aD(u) as functions

of the moduli space coordinate u. We succeeded in doing so following the original approach

of Seiberg and Witten by determining a family of elliptic curves, and by a similar approach

using hypergeometric functions, which allowed us to find the exact forms a(u) and aD(u).

We also discussed Seiberg-Witten curves on lifted brane constructions. We caught a glimpse

of some incredible phenomena that occur at strong coupling. We were only able to determine

the prepotential at strong coupling by the existence of weakly coupled monopoles and dyonic

states. We also observed the condensation of magnetic monopoles and the confinement of

electric charge.
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A. Notation and Conventions

A.1 Notation

Greek indices in the middle of the alphabet, i.e. µ, ν, . . ., will run over the 4-dimensional

spacetime coordinates 0, 1, 2, 3. Greek indices at the beginning of the alphabet, i.e. α, β, . . .,

will run over spinor indices, and as we are working with supersymmetric theories these indices

will often appear in both dotted and undotted form. Lowercase latin indices i, j, . . . will run

over spatial coordinates 1, 2, 3. Capital latin indices I, J, . . ., will denote supersymmetric

indices 1, 2, . . . ,N , but as we will almost exclusively be working with N = 2 theories,

I, J, . . . = 1, 2.

A.2 Spinor Conventions

We use the ‘particle physicist’ metric

ηµν = diag(+1,−1,−1,−1), (A.1)

defined so the contracted momenta gives a positive square mass pµpµ = m2.

The invariant SL(2,C) tensors εαβ and εα̇β̇, and their inverses εαβ and εα̇β̇, are defined as

εαβ = εα̇β̇ =

 0 −1

1 0

 εαβ = εα̇β̇ =

 0 1

−1 0

 , (A.2)

and can be used to raise and lower spinor indices. The generalized sigma matrices are defined
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as the four vectors

σµαα̇ = (I, σi) σµαα̇ = (I,−σi), (A.3)

where the spatial components σi are the usual Pauli matrices

σ1 =

 0 1

1 0

 σ2 =

 0 −i

i 0

 σ3 =

 1 0

0 −1

 . (A.4)

We have the tensors σµν and σ̄µν as antisymmetrized products of σµ matrices

(σµν) β
α =

i

4
(σµσ̄ν − σν σ̄µ) β

α (A.5)

(σ̄µν)α̇
β̇

=
i

4
(σµσ̄ν − σν σ̄µ)α̇

β̇
(A.6)

We typically write spinors with indices contracted as

χψ = χαψα = −χαψα χ̄ψ̄ = χ̄αψ̄α = −χ̄αψ̄α. (A.7)
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B. Geometry and Topology

There were a number of parts of this thesis where concepts in geometry and topology were

used which might merit further discussion. For the benefit of the reader, and even more so,

for the benefit of the author, what follows is a discussion of a few of these topics.

B.1 Kähler Manifolds

In this section we will briefly review some aspects of cohomology on complex manifolds and

then define Kähler manifolds. Given the relevance of Kähler spaces in Seiberg-Witten theory,

it should be helpful to provide some brief definitions, but by no means is this discussion meant

to embody sufficient mathematical depth. For further reference see [20], [21], or [22].

On an m-dimensional manifoldM, the exterior derivative acts on forms as d : Ωp(M)→

Ωp+1(M) and is nilpotent d2 = 0. Due to this property it is possible for us to define

cohomology as p-forms will define a chain complex, where the image of one Ωp(M)→ Ωp+1

is in the kernal of the next Ωp+1(M)→ Ωp+2. Recalling that a p-form ω ∈ Ωp(M) is closed if

dω = 0 and is exact if ω = dα where α ∈ Ωp−1(M), we define the p-th de Rham cohomology

as the quotient space

Hp(M) ≡ space of closed p−forms on M
space of exact p−forms on M

, (B.1)

where the p-th betti number is bp = dimHp(M).

A manifold M of even dimension d = 2n, is complex is we cam parametrize it with

n complex coordinates zi, where the transition between patches is smooth and defined by

holomorphic transition functions. Formally, the manifold is a Hausdorff topological space

with open sets J , and there exist an atlas of charts {(Ui, ψi)} where Ui ∈ J , such that
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∪iUi = M and the maps ψi are homeomorphisms from Ui into open subsets of Cn. If

Ui ∩ Uj 6= 0 then the transition functions φij = ψj ◦ ψ−1
i from Cn → Cn are holomorphic

functions.

On such a space it is natural to define (p, q)-forms: ωi1...ipj̄1...j̄q ∈ Ω(p,q)(M) and define an

external derivative d = ∂ + ∂̄ where ∂ = dzi ∂
∂zi

and ∂̄ = dz̄i ∂
∂z̄i

. These derivatives act on

(p, q)-forms as ∂ : Ωp,q → Ωp+1,q and ∂̄ : Ωp,q → Ωp,q+1, and are both nilpotent ∂2 = ∂̄2 = 0.

It is then natural to define Dolbeault cohomology on the complex manifold M to be the

quotient space

Hp,q(M) ≡ space of ∂̄ closed (p, q)−forms on M
space of ∂̄ exact (p, q)−forms on M

, (B.2)

and we define the hodge numbers of M to be hp,q(M) ≡ dimHp,q(M).

Kähler manifolds are complex manifolds equipped with a hermitean metric gij = gīj̄ = 0.

Thus we may define a two-form called the Kähler form K = igij̄dz
idz̄ j̄ which is closed under

dK = 0. For Kähler manifolds the two dolbeault cohomologies are equivalent Hp,q
∂ = Hp,q

∂̄
,

the insight being that the two exterior derivatives commute both with each other and with

the Laplacian. The hodge numbers are related as: hp,q = hq,p from complex conjugation,

hp,q = hn−p,n−q from the hodge dual. Since the Kähler form is a closed two form we can

define a Kähler class for H1,1 and expand the form as K =
∑

i x
iωi for a basis ωi where

i = 1, . . . , h1,1. This means that the coordinates xi are good coordinates on the moduli space

of the Kähler manifold.

B.2 Homotopy

While homology groups assigns structure to cycles that are not boundaries and cohomology

groups assigns structure to closed forms mod exact forms, in dealing with homotopy groups

we are concerned with the continuous deformation of maps. Let X and Y be standard

topological spaces and let F be a set of continuous maps from the space X to Y . We may

define the equivalence relation in F as such; consider two maps f and g, ∀ f, g ∈ F , if the

image f(X) can be continuously deformed to g(X) in the space Y , then f ∼ g and we say

these maps are homotopic. As homotopy is an equivalence relation, the equivalence class it

defines is called the homotopy class.
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What follows is a more intuitive explanation of homotopy. Consider two spaces, one is a

disc and the other is a disc with a hole in the center. Note that a 1-cycle can be deformed

differently in each of these spaces. A loop in the disc can be continuously shrunk to a point,

while on the second space the loop cannot due to the presence of the hole. Thus any loop

on the disc is homotopic to a point. While there is only one homotopy class defined on the

disc, on the punctured disc the homotopy classes are defined by an integer number of times

the loop is wound round the hole, n ∈ Z, where if n < 0 the loop winds clockwise and if

n > 0 the loop winds anticlockwise, and n = 0 if the loop does not wind round the hole. We

now consider the group structure of Z, as Z is an additive group with the group operation

+, the element m + n can easily be interpreted as a loop encircling the hole first m times

then n times. The group structure of homotopy classes is called the fundamental group,

where the group structure of the first homotopy class is the fundamental group and deals

with the deformation of loops. Higher homotopy classes are concerned with the deformation

of an n-dimensional analog of a loop, where the group structure of higher homotopy groups

are an n-dimensional extension of the fundamental group. For a more in depth discussion of

homotopy and the fundamental group please see [20] [21] [22].

B.3 The Geometry of Elliptic Curves

We will present a brief discussion of the geometry of elliptic curves relevant to our discussion

of Seiberg-Witten theory. The discussion here is largely taken from the first part of the first

chapter on Algebraic Functions and Riemann surfaces in [29]. Consider a function y(z) on

the complex z-plane, where y(z) is defined as

y2 = a(z − r1)(z − r2)(z − r3), (B.3)

where a, r1, r2, r3 ∈ C and r1 6= r2 6= r3. We can see now that the function y is a double

valued function. This is made clear by considering y =
√
a(z − r1)(z − r2)(z − r3). If we

take the function y and deform around an odd number of poles on the complex plane the

function will undergo a sign change. To make the function y(z) single-valued on the complex
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z-plane we make cuts on the plane. If we make a cut from r1 to r2 and another cut from

r3 to ∞ the function y becomes single-valued as there is now no way of deforming around

an odd number of poles. Therefore no deformation around the complex plane will cause y

to change sign. Let us elaborate on this point; with these two cuts in mind it should be

clear that there is no way of circling any one pole without intersecting a cut. We can circle

both r1 and r2, including the cut between them, but this does not result in a change of sign.

Additionally, because of the cut from r3 to ∞ we cannot circle all three poles.

The goal of this discussion is to better understand the nontrivial cycles that appear on

the elliptic curves we deal with in our Seiberg-Witten analysis. Elliptic curves are genus one

Riemann surfaces, or, in other words, a torus. Now we want to consider two copies of this

complex plane with two cuts, which are referred to as sheets. One the first sheet we define

C1, a curve that goes around the r1-r2 cut, and on the second sheet we define C2 to circle

to poles at r2 and r3. C2 is the a forbidden curve on the sheet in that it intersects both

cuts. The next step is to map the sheets to Riemann spheres by the standard stereographic

projection, and in doing so we map the point at ∞ to either the north or south pole on the

Riemann sphere, depending on the projection. The point is that the infinite cut becomes

finite on the sphere. Now we have two Riemann spheres each with two cuts in them.

Now we want to open up the cuts and extend the cuts outwards. Imagine now we have

two spheres each with what looks like two short hoses extending outwards, where the open

ends of the hoses correspond to the cuts we made. We now want to glue the hoses extending

from each sphere together. This amounts to identifying each of the poles on the Riemann

sphere to it’s counterpart on the other Riemann sphere. Deforming the two spheres again

we now end up with a torus. The illegal curve C2 we made on the second sheet now extends

round on the surface of the torus. The curves we started with C1 and C2 now correspond to

the two nontrivial cycles on the torus c1 and c2.
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