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Abstract

In this work we review some important topics in canonical theories of General Relativity.
In particular we discuss the theory of constrained systems, the Hamiltonian formulation of
GR, the difficulty in constructing gauge invariant objects for GR and recent methods involv-
ing relational observables to address this problem and finally we consider modern connection
formulations of gravity.
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1 Introduction
In this dissertation we review a number of important topics in classical canonical gravity. The
aim has been to provide a pedagogical introduction to these subjects, assuming a background
in GR and QFT only. The choice of topics has been motivated by an interest in the area of
quantum gravity and a desire to cover the classical background to the canonical quantization of
GR, so that understanding the material here might make the jump to the quantum theory more
manageable. We stress that none of the material is original, it is a review, but we have tried to
present it in a logical way and where possible to include explicit computations to illustrate new
ideas and to cover missing steps in the literature. We have also cited many references so that a
reader can quickly identify some key papers and gain an appreciation of some of the controversies
that have and do still exist in the subject.

The subject of quantum gravity has a long history and finding such a theory is one of the
outstanding problems in theoretical physics today. There are many research programs working
on this problem including string/ M-theory, canonical quantum gravity, causal set theory, causal
dynamical triangulations (CDT) and several others, a recent review of several approaches can be
found in [1].

We will be covering only the classical background to the canonical quantum gravity approach,
which has received new impetus over the last two decades following a reformulation of GR into
a theory of connections due to Ashtekar, which we shall discuss in section 5. However, we also
discuss the earlier metric formulation of canonical gravity both because it is more familiar and
because several problems, e.g. the problem of time, the difficulty in constructing gauge invariant
observables and the nature of the constraints, are present in both these approaches.

One of the first attempts to quantise GR was to employ the standard methods used for classical
electrodynamics, i.e. covariant perturbative field theory. This involves separating the metric into
a fixed background part ηµν and a fluctuating field to be quantised, see the review [2]. The
resulting QFT suffers from the same infinities that occur in QED but unfortunately the methods
of renormalization so successful for QED cannot be applied to GR, the theory is perturbatively
non-renormalizable, and this fact was one of the original motivations for the development of
supergravity and then the superstring theories.

Although GR is perturbatively non-renormalizable, there are arguments that can be made
to suggest it is still worthwhile to consider a quantization of GR: i.) the divergent terms in
the perturbative expansion occur at arbitrarily high energies (short distances) and assume that
the background spacetime is Minkowski- this is a questionable assumption we do not even know
whether we will have a smooth manifold structure at the Planck scale, and ii.) GR could be non-
pertubatively renormalizable, i.e. there may exist viable approaches where one does not separate
the metric into a fixed background part before quantizing - the canonical quantization methods
we discuss come under this approach as does CDT, which involves a (covariant) discretization of
the Einstein Hilbert action.

We should now like to discuss the topics we cover in more detail. In section 2 we provide an
introduction to the theory of constrained Hamiltonian systems, this theory developed by Dirac
and Bergmann provides the framework for the canonical analysis of singular Lagrangian systems,
which includes GR and Yang Mills theories. This framework enables one to perform a Legendre
transform and to compute the Hamilton-Dirac equations of motion, which will be subject to
constraints. These constraints can be classified into first and second class, and enable one to
identify where the gauge freedom, present in the Lagrangian, appears at the canonical level.

We further show why first class constraints φi are interpreted as the generators of point
gauge transformations on phase space. This interpretation due to Dirac is not the only one, an
alternative due to Bergmann is to view gauge transformations as maps that act on phase space
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trajectories, rather than points, and in this way maintain the idea of gauge transformations as a
symmetry, i.e. a map from solutions of the equations of motions to other solutions. In this latter
interpretation gauge transformations are generated by a function G(t), which is a particular sum
of first class constraints φi, [10].

We then discuss some basic geometric results concerning constrained systems, one finds first
class constraints generate surfaces in phase space, which represent the gauge equivalence classes
of the system- and these surfaces foliate together to fill the entire constraint surface. First
class constraints act twice i.) to reduce the effective phase space dimension and ii.) to reduce
the effective dimension of the constraint surface by dividing it into equivalence classes. Second
class constraints have no interpretation as gauge generators and they simply reduce the effective
dimension of the phase space by restricting the dynamics to a surface in phase space.

In gauge theories an important issue is the identification of observable quantities, if one wants a
consistent physics then such objects need to be gauge invariant, therefore in the current formalism
they need to be invariant under the action of the first class constraints φi, (i.e. they Poisson
commute with these constraints). In the case of GR constructing such observables has proven
very difficult and only relatively recently have approximation methods been developed, which we
shall discuss in section 4.

We conclude section 2 by applying this formalism to Yang Mills theory on a Minkowski
background, we perform the Legendre transform, identify the constraints, prove that the Poisson
algebra of constraints is isomorphic to the Lie algebra of the gauge group and show how to recover
the correct number of physical degrees of freedom.

In section 3 this formalism is applied to GR, in particular the canonical analysis of the Einstein
Hilbert action is described. This is more involved than for Yang Mills, on a fixed background,
because to express the Lagrangian in terms of spatial objects, evolving in time, one must assume
spacetime is of the form Σ × R, where Σ is a 3 dimensional spatial surface of arbitrary but
fixed topology. One can then use a couple of geometric identities to reduce the Lagrangian into
an appropriate 3 + 1 form. The result, after performing the canonical analysis and reducing
the phase space, is the ADM (Arnowitt Deser Misner) phase space, [13] consisting of canonical
coordinates: a spatial Riemannian metric qab and momentum P ab, which is closely related to
the extrinsic curvature of the embedding of Σ in spacetime. These canonical coordinates are
subject to the Hamiltonian and diffeomorphism constraints, which can be shown to be first class
and therefore must be interpreted as generators of gauge transformations. The constraints are a
crucial part of the story because they also form the Hamiltonian and therefore one concludes that
the Hamiltonian is zero on shell and being a sum of first class constraints must generate gauge
transformations.

This result seems to imply that one should interpret the dynamics of GR as the unfolding
of a gauge transformation, which contradicts our observation of the dynamics of gravity, e.g.
the expansion of the universe. This is the essence of the ‘problem of time’ in canonical gravity,
[35, 36, 38]. If one assumes the Dirac interpretation of gauge transformations then this conclu-
sion is forced upon us; a possible resolution, discussed in section 4, is to consider the construction
of relational quantities, which can be shown to be gauge invariant, and then one can consider
evolution with respect to additional clock fields rather than coordinate time. In certain special
cases, de-parametrisable gravity matter coupling, it is possible to construct a physical Hamilto-
nian, which generates evolution of these relational observables. If one assumes the Bergmann
interpretation then the same paradox does not apply because the gauge generator G(t), although
related to the Hamiltonian, has a different interpretation it does not map phase space points to
points but rather trajectories to trajectories, [27].

We then discuss the Poisson algebra of the Hamiltonian and diffeomorphism constraints, the
Dirac algebra, and try to relate it to the algebra of the full spacetime diffeomorphism group.
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By analogy with the Yang Mills case one might expect some sort of isomorphism between them,
unfortunately this is not the case. We show in detail why this is and conclude that the Poisson
algebra is isomorphic to the diffeomorphism algebra only when the equations of motion hold,
otherwise they are inequivalent. This lack of a representation of the diffeomorphism algebra in
canonical gravity is quite puzzling and it can be understood in several ways.

Firstly, one can show that there exists a larger symmetry group of the Einstein Hilbert action,
which has been called the ‘induced diffeomorphism’ group, [24, 26] and this consists of metric
dependent coordinate transformations. It is the case that only a restriction of these coordinate
transformations may be projected to the phase space from the Lagrangian velocity space and it
is this projection that corresponds to the group generated by the Dirac algebra. This projected
group is generally called the Bergmann-Komar group. Secondly, the difference between Yang Mills
and GR regarding the relation between the gauge algebra and Poisson algebra can be understood
by considering the way local symmetries of the action may (or may not) be projected to the phase
space in each case, [28]. Thirdly we consider a method due to Isham and Kuchař, [29, 30] which
shows that, by extending the ADM phase space to include the embedding variables with their
canonical momenta, one can find a representation of the full diffeomorphism algebra in canonical
gravity.

The remainder of section 3 considers the coupling of matter fields to gravity in the canonical
formalism, we discuss the canonical analysis of a minimally coupled scalar field and compute
the scalar field’s contributions to the Hamiltonian and diffeomorphism constraints. Finally, we
consider asymptotically flat spacetimes, and we show that to make the Hamiltonian finite and
functionally differentiable one has to modify the Hamiltonian and diffeomorphism constraints by
adding surface terms. One can compute the algebra of these modified constraints and conclude
that they also satisfy the Dirac algebra (but now extended to the asymptotically flat case). By
going to the constraint surface at spatial infinity, this algebra reduces to the Poincarè algebra
and therefore we find a representation of the Poincarè group in the constraint algebra, [32]. The
generators of this Poincarè group are in fact Dirac observables and therefore we have found ten
observables for GR, i.e. that Poisson commute with the first class constraints of the theory.

In section 4 we discuss the problem of observables for GR. In particular we review recent work
by Dittrich, [41, 42] which builds on earlier ideas of Rovelli [43] concerning the construction of
relational observables. These observables consist of combinations of gauge variant phase space
functions: partial observables and ‘clock fields’ which are combined into a gauge invariant object- a
generalisation of the notion of the ‘value of a quantity at a particular time’. These constructions
are discussed firstly for the finite dimensional case and then for the field theoretic case. The
general expressions for these objects can be approximated by rather complicated sums of nested
Poisson brackets and we follow Dittrich by showing how in certain cases one can simplify these
expressions.

Then, we consider an application of these ideas to de-parametrisable systems, [44, 48]. For
such systems one can define a physical, non-zero Hamiltonian, which generates evolution of the
relational observables and therefore could serve as a means to resolve the problem of time in the
Dirac interpretation. In fact in this light we discuss work by Thiemann, [49] which couples a
special scalar field to gravity that results in a de-parametrisable system and provides a gauge
invariant way of re-formulating (modified) Friedmann Roberston Walker cosmological equations.
This idea built on seminal work by Brown and Kuchař, [50] who showed that cosmological dust
coupled to gravity could lead to a deparametrisable system.

Finally, in section 5 we discuss the reformulation of GR as a theory of connections originally
due to Ashtekar, [51]. We describe the tetrad formalism for gravity and relate it to the familiar
coordinate description. We introduce the Hilbert Palatini action, which has a Lorentz connection
and tetrad as independent fields, and show that its equations of motion are equivalent to Einstein’s
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equations. We perform a rather complicated Legendre transform on the Palatini action to analyze
its Hamiltonian theory. This transform is complicated by the presence of second class constraints,
which are generally solved by introducing a partial gauge fixing, and this has the effect of reducing
the local symmetry from the Lorentz group to SO(3). The end result is that one recovers a
version of the ADM theory expressed in triad variables, and nothing is really gained because the
constraints are still rather complicated expressions of the canonical variables.

We then discuss the reformulation of GR due to Ashtekar, this uses a self dual Lorentz
connection and tetrad as independent fields in the action. This requires us to formulate the
theory as complex GR because for Lorentzian metrics the self dual operator satisfies ? · ? = −1
and hence self dual connections are necessarily complex. The result is that one has a complex
tetrad and self dual connection, which when varied in the Ashtekar action lead to Einstein’s
equations for complex gravity. One then has to impose reality conditions to recover the real
theory.

We perform the Legendre transform, which is easier than for the Palatini action because of
the absence of second class constraints. Physically, this is because the self dual connection has
three complex dimensions fewer independent degrees of freedom than the Lorentz connnection
and so the second class constraints do not arise. After completing the canonical analysis one has a
phase space with coordinates

(
AIJa , ẼaI

)
, a self dual connection and densitised triad respectively

but subject to three constraints: the familiar Hamiltonian and diffeomorphism constraints from
metric gravity together with an additional constraint. In fact using an isomorphism between the
self dual Lorentz algebra and either SO(3)C or SL(2,C) it is possible to translate these phase
space coordinates into an SO(3)C or SL(2,C) connection and triad and the additional constraint
is interpreted as a Gauss constraint generating an SO(3)C or SL(2,C) transformation of the triad.

The Ashtekar formalism has some attractive features including polynomial expressions for all
the constraints in a connection theory of gravity, which makes contact with other gauge theories.
Unfortunately, to date the reality conditions together with the non-compact gauge group have
proven intractable in formulating the quantum theory.

So to conclude we consider the more recent real approach to connection gravity. This approach
dates back to work by Barbero, [52, 53] and Immirzi, [64] who defined a 1 parameter family
(labelled by β), of canonical transformations of the ADM triad variables. The resulting new phase
space coordinates are a SO(3) connection (the Ashtekar Barbero connection) and a densitised
triad. The variable β is known as the Immirzi parameter and β = ±i corresponds to the Ashtekar
complex theory. If one takes β real then one avoids the problem of reality conditions, and
in addition has a compact gauge group but with a more complicated Hamiltonian constraint.
However, these new variables do not have a direct four dimensional interpretation, in particular
the real SO(3) connection is not the pullback to a spatial slice of a four dimensional Lorentz
connection, [65] as is the self dual connection.

These real variables can be derived from the Holst action, [54] but only by using a partial gauge
fixing (known as the time gauge, this physically corresponds to choosing the zeroth component
of the tetrad basis to be orthogonal to the embedded spacelike hypersurface) to avoid the second
class constraints. The partial gauge fixing is a somewhat controversial part of the theory and there
has been recent work investigating the consequences of either keeping the second class constraints
and using the Dirac bracket or solving them but without using the gauge fixing. Both approaches
usually come under the term covariant loop quantum gravity, [66].

We would have liked to have covered some aspects of the quantum theory, the canonical
quantization of the real Ashtekar Barbero variables, but unfortunately this has not been possible
due to time constraints. We therefore conclude with a discussion summarising the main results
we have learnt and conclusions.
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2 Constrained Hamiltonian Systems
In this section we consider the theory of constrained Hamiltonian systems, our aim is to describe
the main ideas of this theory, introduce standard terminology and then, as an illustrative example,
apply it to Yang Mills theory. The reason for doing this is that i.) GR is an example of a
constrained Hamiltonian system and so we need to introduce this theory prior to describing the
Hamiltonian formulation of GR, which we shall do in the next section and ii.) more generally all
gauge theories can be viewed as examples of constrained Hamiltonian systems and so it provides
a framework for understanding the dynamics of a wide class of physical theories.

The theory of constrained Hamiltonian systems was developed more than fifty years ago
independently by Dirac, Bergmann and collaborators and also in earlier work by Rosenfeld. Our
main references for this section have been [6, 7, 9, 12, 8] and particularly [10], which provides
a very careful discussion of the meaning of gauge symmetry in the constrained Hamiltonian
formalism.

2.1 Constrained Systems
We shall consider a system with a finite number of degrees of freedom and assume that results
discussed for this case can be applied to the field theoretic case, for which we are ultimately
interested. Let qi, i = 1, . . . , n be coordinates on a configuration manifold Q and L(q, q̇) be a first
order Lagrangian function with no explicit time dependence, then the Euler Lagrange equations
are:

Li :=
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (2.1)

and using the chain rule one has:

q̈j
∂2L

∂q̇j∂q̇i
=
∂L

∂qi
+ q̇j

∂2L

∂qj∂q̇i
. (2.2)

The matrix Wij := ∂2L
∂q̇i∂q̇j is the Hessian and if it is not invertible we say that the Lagrangian is

singular, (usual Hamiltonian dynamics without constraints involves only non-singular or regular
Lagrangians).

We observe that ifWij is singular then the accelerations cannot be isolated in normal form, i.e.
q̈j = g(q, q̇) and hence results concerning the existence and uniqueness of differential equations
cannot be applied and it is possible for solutions qi(t) to contain arbitrary functions of time.

In the field theoretic case the same conclusions will follow, consider an action

S[φ, ∂µφ] =

∫
dtd3xL(φ, ∂µφ) (2.3)

then the Euler Lagrange equations are

La = −∂µ
(

∂L
∂(∂µφa)

)
+

∂L
∂φa

= 0

⇒ La = − ∂2L
∂(∂µφa)∂(∂νφb)

∂µ∂νφ
b − ∂2L

∂(∂µφa)(∂φb)
∂µφ

b +
∂L
∂φa

≡ −W 00
ab φ̈

b + Va = 0 (2.4)

and again if the matrixW 00
ab is singular we will not be able to express the ‘accelerations’ in normal

form and solutions may contain arbitrary functions of time.
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At this point we should mention Noether’s second theorem this states that a Lagrangian
admits an infinite dimensional Lie group as a local symmetry, i.e. a gauge symmetry, if and only
if there exist dependencies in the Euler Lagrange equations, involving linear combinations of La
and its derivatives. These dependencies are known as generalised Bianchi identities and further
one can show that the presence of these identities implies that the matrix W 00

ab is singular, [9].
Hence one concludes that all gauge theories are singular but the converse is not true.

A singular Lagrangian also affects the canonical formalism by way of the Legendre trans-
form from the Lagrangian velocity phase space to phase space with coordinates (q, q̇) and (q, π)
respectively. We recall the Legendre map FL is defined as:

FL : TQ → T ?Q

(q, q̇) 7→ (q, π̂i(q, q̇) :=
∂L

∂q̇i
) (2.5)

where we use the standard notation for the tangent bundle TQ and the co-tangent bundle T ?Q.
Using the definition of the canonical momentum πi one has Wij =

∂π̂j
∂q̇i and for singular Hessians

one concludes, by the inverse function theorem, that not all the velocities can be expressed as
q̇i = f i(q, π), it then follows that the Legendre map is not invertible. We assume that the rank of
the Hessian is constant throughout the velocity space and hence the same holds for the Legendre
map. We assume that the rank of FL is equal to 2n− k, so that the image FL(TQ) is a 2n− k
dimensional space in the 2n dimensional phase space T ?Q. This 2n − k dimensional space is
called the primary constraint surface Γp and can be locally characterized by the vanishing of k
independent phase space functions, denoted φµ(q, π), µ = 1, . . . , k, where the functions φµ are
known as the primary constraints.

One can use the primary constraints to find a basis for the null eigenspace of the Hessian
matrix. First consider the pullback of the primary constraints under the Legendre map one has:

(FL?φµ) (q, q̇) := φµ(q, π̂(q, q̇)) = 0 ∀(q, q̇) (2.6)

which implies

0 =
∂

∂q̇i
φµ(q, π̂(q, q̇))

=
∂π̂j
∂q̇i

∂φµ
∂π̂j

= Wij
∂φµ
∂πj
|π=π̂ (2.7)

and hence the k independent vectors ∂φµ
∂π̂j

must constitute a basis for the k dimensional kernel of
the Hessian Wij .

In the singular case the Legendre map will be many to one and the inverse image of a point
in the primary constraint surface is a k dimensional space in TQ. In fact the inverse images of
points in Γp form a foliation of k dimensional surfaces in TQ. One can show that the following
vector fields Γµ on Q define a basis for the set of vector fields tangent to these k dimensional
surfaces in TQ. Let

Γµ :=

(
∂φµ
∂πj
|π=π̂

)
∂

∂q̇j
(2.8)

and consider two points on a particular ‘leaf’ of the foliation with coordinates1 (q, q̇) and (q, q̇+δq̇),
by definition they map to the same point on the primary constraint surface, hence π̂i(q, q̇) =

1It is sufficient to modify only the velocity variable as the configuration coordinate qi is fixed under the Legendre
map.
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π̂i(q, q̇ + δq̇) and this implies δq̇i ∂π̂j∂q̇i = 0. By this latter result δq̇i are null eigenvectors of the

Hessian and by (2.7) must be expressible as a linear combination of the vectors ∂φµ
∂πj
|π=π̂ hence

the vector fields Γµ form a basis for the vector fields tangent to the leaves of the foliation in TQ.
Using the Legendre map it may be possible to project tensor fields from TQ to T ?Q, for

example consider the simplest case of a function fL defined on TQ and ask under what conditions
one will be able to define a function fH on T ?Q such that

fL =
(
FL?fH

)
(2.9)

the answer is that the function fL must be constant on the leaves of the foliation induced by the
Legendre map otherwise the projection will lead to a multi-valued function fH . The projection
by FL only uniquely defines fH on the primary constraint surface and so we can arbitrarily (but
smoothly) extend the function fH off the constraint surface to define it on the full phase space.
In fact this arbitrariness can be quantified by using using the following theorem2.

Theorem 2.1. If a smooth phase space function g vanishes on the constraint surface defined by
φµ = 0 then g = gµφµ for some functions gµ.

Hence the function fH is only unique up to linear combinations of the primary constraints,
which vanish under the pullback to TQ. The condition that fL be constant on the leaves of the
foliation is

Γµf
L = 0, µ = 1, . . . , k (2.10)

i.e. fL does not change in any of the directions tangent to the leaf of the foliation and hence
must be constant.

This condition can be used to show that the Lagrangian energy function E := q̇i ∂L∂q̇i −L(q, q̇)
is a projectable function, one has:

ΓµE =

(
∂φµ
∂πj
|π=π̂

)
∂

∂q̇j

(
q̇i
∂L

∂q̇i
− L(q, q̇)

)
=

(
∂φµ
∂πj
|π=π̂

)(
∂L

∂q̇j
+ q̇i

∂2L

∂q̇j∂q̇i
− ∂L

∂q̇j

)
= q̇i

∂2L

∂q̇i∂q̇j

(
∂φµ
∂πj
|π=π̂

)
= q̇iWij

∂φµ
∂πj
|π=π̂

= 0 (2.11)

where we have used the fact that ∂φµ
∂πj

are null eigenvectors of the Hessian, (2.7). Hence one
can conclude there exists a function on T ?Q, the canonical Hamiltonian Hc(q, π), which satisfies
E = FL?Hc but which in the singular case is not unique, i.e. Hc +λµφµ is also a possible choice,
where λµ(q, q̇, t). The fact that the canonical Hamiltonian is not unique in the singular case and
depends upon arbitrary functions is the important difference between the regular and singular
cases and it is the fundamental reason for gauge freedom to appear in the constrained formalism,
[10].

2For proof see Theorem 1.1 in [7].
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Hence in the singular case one can make an ansatz for the Hamilton-Dirac (H-D) equations3:

q̇i =
{
qi, Hc + λµφµ

}
=
({
qi, Hc

}
+ λµ

{
qi, φµ

})
|Γp (2.12)

π̇i = {πi, Hc + λµφµ} = ({πi, Hc}+ λµ {πi, φµ}) |Γp (2.13)
0 = φµ(q, π), µ = 1, . . . , k (2.14)

and in fact this turns out to be correct, in that one can show solutions of the H-D equations
are equivalent to solutions of the Euler Lagrange equations. Note the second equality holds
because the constraints are implemented by (2.14). The evolution for any phase space function
F immediately follows as:

Ḟ = ({F,Hc}+ λµ {F, φµ}) |Γp (2.15)

The H-D equations split into differential (2.12), (2.13) and algebraic (2.14) parts but which
are coupled in the sense that the constraints may be satisfied for particular initial conditions
qi(0), πj(0) but not satisfied at a later time for solutions to the differential equations (2.12) and
(2.13) and in this way the constraints can place severe restrictions on the existence of solutions
to the H-D equations.

2.2 Dirac-Bergmann algorithm & Classification of Constraints
We stress that the H-D equations above completely define the dynamics of our singular system.
However, Dirac developed a way to modify these equations into a more convenient form, de-
coupling the algebraic component, and in the process discovering an important classification of
constraints in the theory.

First note to satisfy the H-D equations the constraints must be preserved for all points(
qi(t), πi(t)

)
on a solution trajectory and this implies the constraints must be preserved under

time evolution, i.e.

φ̇µ = ({φµ, Hc}+ λν {φµ, φν}) |Γp = 0 . (2.16)

Let Cµν := {φµ, φν} we can consider two cases here: i.) detC |Γp 6= 0 and ii.) detC |Γp = 0.
In the first case we may fix the arbitrary functions λµ since we have

λν = −Cνµ {φµ, Hc} (2.17)

where Cνµ is the inverse of Cµν . The dynamics is now deterministic since we have identified all
the previously arbitrary functions by requiring the preservation of constraints. For case i.) the
H-D equations for an arbitrary phase space function become

ḟ = ({f,Hc} − {f, φν}Cνµ {φµ, Hc}) |Γp (2.18)

Unfortunately, case (ii.) is not so straightforward when detC |Γp = 0 the function λµ cannot
be fixed and one can only solve (2.16) by requiring certain relations hold between the phase space
variables. Either these relations will be automatically fulfilled, e.g. they may be equivalent to
existing primary constraints or one will be led to new constraints called secondary constraints
φA, A = k+ 1, . . . , k+M1 ≡ J1. The primary and secondary constraints φA, A = 1, . . . , J1 define
a sub-manifold Γ1 ⊂ Γp.

3Strictly speaking the Poisson bracket in {·, λµ}φµ is not defined as λµ(q, q̇, t) and we cannot invert for all
the velocities in terms of the momenta to be able to view it as a proper phase space function. However, Poisson
brackets of this kind will always have a coefficient equal to a constraint and because we are only interested in the
the case where the constraints are implemented we can simply ignore this term as it will have a coefficient of zero.
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One now has to repeat the process and check for preservation of the secondary constraints on
Γ1, and again this will either result in further secondary4 constraints or restrictions on the λµ.
This process has to repeated every time new constraints are generated. The process stops after
either an inconsistency is met or one has a discrete set of points remaining in phase space or, the
case of interest, all constraints are preserved under evolution and one is left with a submanifold
ΓC ⊂ Γp the final constraint surface defined by the constraints

φA = 0, A = 1, . . . , k +M ≡ J . (2.19)

One is guaranteed that this algorithm will terminate after a finite number of steps because at
each step a minimum of one new constraint is found and so after 2n − k steps one will have at
least 2n − k secondary constraints which combined with the initial k primary constraints define
a finite number of points in the 2n dimensional phase space.

In the case of interest there exist functions λµ such that

φ̇A =

(
{φA, Hc}+

k∑
ν=1

λν {φA, φν}

)
|ΓC = 0, A = 1, . . . , J (2.20)

the general solution for the functions λν can be expressed as

λν = Uν + V ν (2.21)

where Uν is a particular solution to the inhomogeneous equation (2.20) and V ν is a general
solution to the homogenous equation

V ν {φA, φν} |ΓC = 0 (2.22)

this general solution may be expressed as a linear combination of independent solutions, i.e.
V ν = vaV νa where the number of independent solutions is equal to the dimension of the kernel of
the rectangular J × k matrix C̃Aν := {φA, φν} and dimKerC̃ = k −RankC̃. Hence,

0 = V νa {φA, φν} |ΓC = {φA, γa} |ΓC (2.23)

where γa := V νa φν . We have thus shown that the combinations of primary constraints γa Poisson
commute on the final constraint surface ΓC with all of the constraints of the theory and because
V νa form a basis of the kernel of C̃Aν the γa form a complete set of primary constraints with this
property.

This property motivates the definition of a first class function as a phase space function, which
Poisson commutes with all the constraints on the constraint surface ΓC . So we can now state that
the combinations of primary constraints γa form a complete set of primary first class constraints.
One can show that the set of first class functions is closed under the Poisson bracket. A function
that is not first class will be called second class. So the constraints have now been divided into
two sets first and second class, let the total number of first class constraints be P and the total
number of second class constraints be N .

These definitions may be used to transform the H-D equations into a form where the dynamics
is decoupled from the constraints and where the number of arbitrary functions is made explicit.
First we shall extend the primary first class basis γa to γI , I = 1, . . . , P to form a basis set for
all first class constraints and define χα as a basis set for all second class constraints. One can
immediately deduce that the Poisson bracket matrix of second class constraints ∆αβ := {χα, χβ}

4Sometimes these constraints are called tertiary but we shall stick to the convention that all non-primary
constraints are secondary.
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is non-singular. If this were not the case then i.) there would exist a null eigenvector pα∆αβ = 0,
which would imply {pαχα, χβ} |ΓC = 0 and hence the second class constraint pαχα Poisson
commutes with all the second class constraints on ΓC and ii.) since pαχα commutes with the
first class constraints (by their definition) it must be a first class constraint itself and we have a
contradiction.

Now consider the preservation of the constraints defined by (2.20), using the general form of
the solution for λν , (2.21) and (2.23), we can express it as

φ̇A =

(
{φA, Hc}+

k∑
ν=1

λ̃a {φA, γa}+ λ̃αp
{
φA, χαp

}
+ va {φA, γa}

)
|ΓC = 0, A = 1, . . . , J

(2.24)
where we have used our basis to write Uνφν = λ̃aγa + λ̃αpχαp and where the indices αp and a
are summed over all independent primary second class constraints and all independent primary
first class constraints respectively. These equations imply for the first class constraints γI

0 = {γI , Hc} |ΓC , ∀I = 1, . . . P (2.25)

and for the second class constraints

0 =
(
{χα, Hc}+ λ̃αp

{
χα, χαp

})
|ΓC ,∀α = 1, . . . , N . (2.26)

One can use the result that ∆αβ is invertible to write(
∆αβ {χβ , Hc}

)
|ΓC = −δααpλ

αp
2 (2.27)

and hence one can determine the multipliers for all the primary second class constraints, i.e.

λ̃αp = ∆αpβ {χβ , Hc} , ∀αp . (2.28)

We can now use (2.27) to deduce that(
∆αsβ {χβ , Hc}

)
|ΓC = 0 (2.29)

where the index αs runs over all secondary second class constraints only.
Finally we can express the H-D equations, using (2.29), and re-defining the arbitrary va →

va + λ̃a to get

q̇i =
{
qi, Hc

}
−
{
qi, χα

}
∆αβ {χβ , Hc}+ va

{
qi, γa

}
(2.30)

π̇i = {πi, Hc} − {πi, χα}∆αβ {χβ , Hc}+ va {πi, γa} (2.31)
0 = χα (2.32)
0 = γa (2.33)

where the summation over α, β is over all second class constraints and the summation over a is
over the primary first class constraints and va(q, q̇, t) are arbitrary functions left unspecified by
the analysis. One can simplify the form of these equations by defining:

{·, Hc}? := {·, Hc} − {·, χα}∆αβ {χβ , Hc} (2.34)

and
H ′c := Hc − χα∆αβ {χβ , Hc} (2.35)
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where {·, ·}? is known as the Dirac bracket5. The object H ′c is a first class function, one can see
this because i.) by definition it Poisson commutes with the second class constraints on ΓC , and
ii.) the preservation of the first class constraints, in (2.25), implies {H ′c, γa} |ΓC = 0 and hence
H ′ indeed Poisson commutes with all constraints. Furthermore because of (2.27) H ′c is equal to
Hc up to a combination of primary constraints on ΓC and by our earlier reasoning is a canonical
Hamiltonian, i.e. it pulls back to the Lagrangian energy function.

In order to simplify the equations Dirac also introduced the following notation for phase space
functions, which are equal on the constraint surface we write

f ≈ g ⇔ (f − g) |ΓC = 0⇔ f − g = λAφA (2.36)

and call this a weak equality. The second relation follows from Theorem 2.1 and where the index
A is summed over all constraints defining ΓC and λA are arbitrary. There is also a notion of
strong equality, between phase space functions which is defined as

f ∼= g ⇔ f ≈ g and df ≈ dg (2.37)

i.e. both the functions and derivatives are equal on the constraint surface.
Hence the H-D equations can be equivalently expressed as

q̇i ≈
{
qi, Hc

}?
+ va

{
qi, γa

}
(2.38)

π̇i ≈ {πi, Hc}? + va {πi, γa} (2.39)

or

q̇i ≈
{
qi, H ′c

}
+ va

{
qi, γa

}
(2.40)

π̇i ≈
{
qi, H ′c

}
+ va {πi, γa} (2.41)

where in the latter pair we can impose χα
{
·,∆αβ {χβ , Hc}

}
≈ 0.

The final set of equations have a number of arbitrary functions va equal to the number
of independent primary first class constraints. This represents the ‘core’ indeterminacy that is
present in our constrained system. Note that not all constrained systems have this indeterminacy,
if there are no primary first class constraints then the evolution is completely deterministic and
governed by (2.18). If one has a mixed first and second class system then by using the Dirac
bracket one can use (2.38) and (2.39) to describe the system as if it were just a first class system
but with a modified Poisson bracket. In fact the Dirac bracket can be interpreted as the Poisson
bracket induced from {·, ·} on the constraint surface ΓC . In more geometric terms it is the pullback
to ΓC of the symplectic 2-form6 ω defined on phase space T ?Q, see [7, 9]. Alternatively in the
mixed case one can avoid the use of the Dirac bracket and instead use a modified Hamiltonian
H ′c which is first class and canonical. Fortunately, most of the theories we shall deal with only
have first class constraints, e.g. GR in the ADM formulation we shall study in the next section
is of this type as are Yang Mills theories.

We may conclude that the Poisson bracket {γa, H ′c} is a combination of first class constraints
because i.) H ′c is first class and hence its Poisson bracket with a first class constraint must be a
first class function and ii.) the consistency of first class constraints, (2.25) implies that H ′c weakly
Poisson commutes with first class constraints and hence {γa, H ′c} must be a linear combination
of first class constraints only. The Dirac bracket {γa, Hc}? also gives a combination of first class
constraints for the same reason.

5The Dirac bracket satisfies all of the defining properties of a Poisson bracket.
6A symplectic 2 form ω is a closed and non-degenerate 2-form defined on phase space.
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The main advantage of this system of equations over (2.12) to (2.14) other than the precise
identification of where the arbitrariness in the dynamics is located is that there is now a decou-
pling between the differential and algebraic parts of the system. One is guaranteed that if the
constraints are satisfied for the initial conditions

(
qi(0), πi(0)

)
then they will be guaranteed to be

satisfied for the later times t > 0 for all solutions to the differential equations (2.30) and (2.31)
for arbitrary va.

2.3 Definitions of gauge symmetry
2.3.1 Dirac’s point gauge transformations

The most important point about the final set of equations is that they contain a number of
arbitrary functions, va. This means that the evolution of q(t), π(t) is no longer (as compared to
a regular system or one with only second class constraints) deterministic. In particular starting
from fixed initial conditions it is clear that different choices of the function va will trace out
different solution trajectories in phase space. It was this observation that led Dirac to argue that
in order to maintain a deterministic classical physics it must be that a physical state is no longer
associated to a single point in phase space but is rather represented by an equivalence class of
such points, points in this equivalence class will be by definition gauge equivalent, sometimes this
equivalence class is called a gauge orbit. In this way one can associate a physical state to a single
point in phase space but not vice versa.

We now identify specifically the relationship between these gauge equivalent points and the
method by which all the points in a gauge orbit can be reached. There are essentially three
processes that will allow us to identify gauge transformations on phase space, i.e. canonical
transformations within gauge orbits.

Firstly consider a system with first and second class constraints at time t0 with initial con-
ditions qi(t0) and πi(t0) then the system will have evolved at time t0 + δt into the following
state:

qi(t0 + δt) = qi(t0) + δt q̇i(t0)

= qi(t0) + δt
({
qi, Hc

}?
+ va

{
qi, γa

})
|t=t0 (2.42)

and similarly for the momentum

πi(t0 + δt) = πi(t0) + δt
(
{πi, Hc}? + va {πi, γa}

)
|t=t0 (2.43)

if one chooses a different multiplier v′a then the new solution trajectories q′i(t), π′i(t) at time
t0 + δt will differ by the amount

δqi := qi(t0 + δt)− q′i(t0 + δt) = δt (va − v′a)
{
qi, γa

}
|t=t0 (2.44)

δπi := πi(t0 + δt)− π′i(t0 + δt) = δt (va − v′a) {πi, γa} |t=t0 . (2.45)

Dirac then argued that in order to maintain a deterministic physics from the common initial
conditions the points in phase space

(
qi(t0 + δt), πi(t0 + δt)

)
and

(
q′i(t0 + δt), π′i(t0 + δt)

)
must

represent the same physical state and hence the point transformations generated by
{
qi, γa

}
and

{πi, γa} do not change the physical state at time t0 + δt, and for this reason they are identified
as infinitesimal gauge transformations. Of course one can make the same argument when dealing
with the evolution of any dynamical variable and one identifies the primary first class constraints
γa as the generators of gauge transformations at a particular time.
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Secondly consider the case where i.) two successive gauge transformations are performed with
infinitesimal parameters εa, ηa respectively and ii.) repeated in the opposite order on the same
initial state. The result of i.) on a dynamical variable F will be

Fεa,ηa : = Fεa +
{
Fεa , η

bγb
}

+O(η2)

= F + {F, εaγa}+
{
F + {F, εaγa} , ηbγb

}
+O(ε2, η2)

Hence the difference in a dynamical variable F at the end of these two sets of transformations
will be

δF =
{
{F, εaγa} , ηbγb

}
−
{{
F, ηbγb

}
, εaγa

}
+O(ε2, η2)

= εaηb {{γa, γb} , F}+O(ε2, η2) (2.46)

where in the second line we have used the Jacobi identity.
Given that physically we expect the difference between two gauge transformations to leave

the physical state unchanged we conclude that the Poisson bracket of the primary first class
constraints {γa, γb} also generates gauge transformations. Given that this Poisson bracket is i.)
by definition weakly zero (and hence a linear combination of all constraints) and ii.) a first class
function one can conclude that it must be a linear combination of first class constraints.

Finally we can consider the sequence of transformations: i.) gauge transform with a multiplier
εa and ii.) evolve for time δt with a multiplier ηa. For this case we shall use the H-D equations
in the form (2.40) and (2.41), i.e. with the modified Hamiltonian rather than the Dirac bracket,
the result of this transformation on a dynamical variable F will be

Fεa;δt,ηa := Fεa + δt ({Fεa , H ′c}+ ηa {Fεa , γa})
= F + εa {F, γa}+ δt

(
{F + εa {F, γa} , H ′c}+ ηb {F + εa {F, γa} , γb}

)
= F + εa {F, γa}+ δt

(
{F,H ′c}+ ηb {F, γb}

)
+δt

(
{εa {F, γa} , H ′c}+ ηb {εa {F, γa} , γb}

)
. (2.47)

If we now reverse the order of these transformations one has

Fδt,ηa;εa : = Fδt,ηa + εa {Fδt,ηa , γa}
= F + δt ({F,H ′c}+ ηa {F, γa}) + εb {F + δt ({F,H ′c}+ ηa {F, γa}) , γb}
= F + εb {F, γb}+ δt ({F,H ′c}+ ηa {F, γa})

+δtεb ({{F,H ′c} , γb}+ {ηa {F, γa} , γb}) (2.48)

and hence the difference between these two sets of transformations is given by

δF = {εa {F, γa} , H ′c}+ ηb {εa {F, γa} , γb}
−εa {{F,H ′c} , γa} − εb {ηa {F, γa} , γb}

= {εa {F, γa} , H ′c} − εa {{F,H ′c} , γa}
+ηb {εa {F, γa} , γb} − εb {ηa {F, γa} , γb}

≈ {{F, εaγa} , H ′c} − {{F,H ′c} , εaγa}
+
{
{F, εaγa} , ηbγb

}
−
{
{F, ηaγa} , εbγb

}
= −{{εaγa, H ′c} , F} −

{{
εbγb, η

aγa
}
, F
}

(2.49)

where in the third line we used the fact that H ′c, and γa are first class, and in the final line we used
the Jacobi identity. Hence, arguing that the difference between a gauge transformation and time
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evolution and the reverse cannot change the physical state one concludes that the Poisson bracket
{εaγa, H ′c} also generates gauge transformations. Recall we have already argued at the end of the
last sub-section that the Poisson bracket {γa, H ′c} is a combination of first class constraints.

We can conclude that gauge transformations are generated by i.) primary first class constraints
γa, ii.) Poisson brackets of primary first class constraints {γa, γb} and iii.) Poisson brackets
between primary first class constraints and the Hamiltonian H ′. The transformations generated
by ii.) and iii.) are equivalent to linear combinations of first class constraints however they are
not necessarily primary first class constraints and some (though not necessarily all) secondary
first class constraints may also be generated. Motivated by this Dirac conjectured that all first
class constraints generated gauge transformations. This conjecture has held true for all physically
realistic theories7 studied to date and may be proven under certain simplifying assumptions. We
shall assume it throughout this work.

2.3.2 Gauge transformations as a map from solutions to solutions

There is another notion of gauge transformation, [10], in the canonical formalism, which is related
to the idea of symmetry as a transformation of solutions to the equations of motion into other
solutions. In the canonical formalism this involves thinking of a gauge transformation as a map
from one solution trajectory in phase space to another. More precisely consider two solution
trajectories q(t) and q′(t), they are to be considered gauge equivalent if at each time t there is a
gauge transformation, in the sense of Dirac, between the points of q(t) and q′(t).

Consider two such trajectories with the same initial conditions, which satisfy the equations of
motion:

q̇(t) ≈ {q,H ′c}+ va {q, γa}
q̇′(t) ≈ {q′, H ′c}+ v′a {q′, γa}

then we can define the equal time variation ∆q(t) := q′(t) − q(t). The variation ∆q(t) can be
generated as a canonical transformation, it is the canonical transformation obtained by starting
from q′(t) and evolving backward in time to q′(t0) = q(to) and then evolving forward in time to
q(t) and therefore may be written as:

∆q(t) = {q,G(t)} (2.50)

where G(t) = G(q, π; t) is the gauge generator and is an explicitly time dependent phase space
function. We can deduce that since G(t) is a vector field that maps one solution trajectory to
another it must preserve the constraints of the theory and therefore be a first class function.

In [10] using the fact that ∆q(t) is an equal time variation a number of properties are derived
for the gauge generator G(t)

∂G

∂t
+ {G,H ′c} ∼= pfcc (2.51)

{G, γa} ∼= pfcc (2.52)

where the notation pfcc means any linear combination of primary first class constraints and we
have a strong equality. These two equations mean that the gauge generator is a constant of
motion Ġ ∼= pfcc which is also the case for the Dirac gauge transformations where of course all
first class constraints satisfy γ̇a ≈ 0. However, in this approach the gauge generator G(t) satisfies
a strong equality which distinguishes it from the first class constraints.

7A counterexample to Dirac’s conjecture is given in [7] involving the Lagrangian L = 1
2
eyẋ2.
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The conditions on the first class function G(t) can be viewed as defining a canonical generator
of symmetries, that maps solutions to solutions, whether it be a global or local symmetry. G(t)
becomes a gauge generator when it depends upon arbitrary functions.

The following ansatz for the general form of G(t) has been proposed and it can be shown that
there exist solutions to the gauge generator conditions derived from it:

G(t) = G0ξ(t) +G1ξ̇(t) +G2ξ̈(t) + · · ·+GNξ
(N)(t) (2.53)

where ξ(t) are arbitrary and Gi are phase space functions to be determined.
Substituting this ansatz into i.) the condition (2.52) implies

{Gi, γa} ∼= pfcc (2.54)

and ii.) the condition (2.51) implies, by considering the coefficients of ξ(i)(t), and noting that the
relations must hold separately for all time t, that first

GNξ
(N+1)(t) ∼= pfcc

⇒ GN ∼= pfcc (2.55)

and subsequently that

(GN−1 + {GN , H ′c}) ξ(N+1)(t) ∼= pfcc

⇒ GN−1 + {GN , H ′c} ∼= pfcc (2.56)

and for i = 1, . . . , N
⇒ Gi−1 + {Gi, H ′c} ∼= pfcc (2.57)

and finally one has

{G0, H
′
c} ξ(t) ∼= pfcc

⇒ {G0, H
′
c} ∼= pfcc . (2.58)

Hence GN is strongly equal to a primary first class constraint (i.e. up to terms quadratic in
the constraints), and the Gi i < N will correspond to secondary (if there are any) first class
constraints (up to pfcc terms) because i.) {GN , H ′c} generates the time evolution of the primary
first class constraint GN which must be weakly zero, i.e. a combination of constraints and ii.)
these constraints can only be first class because H ′c is a first class function and the Poisson bracket
of first class functions is first class. So using this approach one concludes that the gauge generator
G(t) is a particular combination of first class constraints.

Using the ansatz for G(t) one can make contact with Dirac’s notion of point gauge trans-
formations quite easily. Consider a point gauge transformation relating two points at the time
t0 + δt, as considered earlier, generated by a first class constraint. In the current framework this
can be derived from

δq(t) = {q,G(t)} =

N∑
i=0

{q,Gi} ξ(i)(t) (2.59)

by using the fact that the Dirac gauge transformation does not change the state at time t0, we
must have δq(t0) = 0, this implies ξ(i)(t0) = 0. At the infinitesimally later time t0 + δt one has
to first order

ξ(i)(t0 + δt) = ξ(i)(t0) + δtξ(i+1)(t0) (2.60)
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hence one may conclude ξ(i)(t0 + δt) = 0, i = 0, . . . , N − 1 and ξ(N)(t0 + δt) = δtξ(N+1)(t0) and
where ξ(N+1)(t0) is arbitrary. So we have G(t0 + δt) = δtξ(N+1)(t0)GN and hence

δq(t0 + δt) = δtξ(N+1)(t0) {q,GN} (2.61)

since GN is a primary first class constraint we have recovered the earlier result that primary first
class constraints generate point gauge transformations.

2.3.3 Geometry of gauge orbits

Before applying the formalism we have discussed to Yang Mills theory, we would like to describe
some of the above results in geometric terms, which help further understand the picture of the
dynamics and also enable one to determine the number of physical degrees of freedom.

We recall that by symplectic structure we mean a closed and non-degenerate two form ωµν , µν =
1, . . . , 2n defined on the 2n dimensional phase space, T ?Q. This structure defines i.) the (Hamil-
tonian) vector field Xµ

f associated with a phase space function f as

ω(Xµ
f , ·) := df (2.62)

⇒ Xµ
f ωµν = ∂νf (2.63)

⇒ Xµ
f = −ωµν∂νf (2.64)

and ii.) the Poisson bracket between two phase pace functions as

{f, g} := ω(Xf , Xg)

= Xµ
f ωµνX

ν
g

= −∂νf ωνγ∂γg
= Xν

g ∂νf (2.65)

this implies that the Poisson bracket {f, g} can be interpreted as the change in f in the direction
defined by the Hamiltonian vector field associated to g.

In order to understand the symplectic geometry of constrained Hamiltonian systems one has to
understand the nature of the induced 2-form ω̃ on the constraint surface Γc, this can be formally
defined as

ω̃ := i?ω (2.66)

where i is the inclusion map i : Γc → T ?Q. This induced form inherits the closure property from
ω but it is not necessarily non-degenerate.

In the case of first class systems the Hamiltonian vector fields associated to the constraints
γa are tangent to the constraint surface Γc, one can see this as

Xµ
γb
∂νγa = {γa, γb} ≈ 0 (2.67)

and this implies that all constraints are weakly constant in the direction of the Hamiltonian vector
fields Xµ

γb
and hence these vectors must be tangent to the constraint surface. The following two

theorems allow us to complete the picture of first class constraints as the generators of gauge
transformations.

Theorem 2.2. For a first class system the induced form is maximally degenerate, i.e. it has
rank equal to 2n−2m, where 2n is the dimension of the phase space and m is the total number of
(first class) constraints. Furthermore the null directions are spanned by the Hamiltonian vector
fields associated to the first class constraints8.

8For a proof see Theorem 2.1 in [7].
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Theorem 2.3. The vector fields Xµ
γa associated to the first class system are ‘surface forming’,

i.e. integrate to form m dimensional surfaces in the constraint surface Γc.

Proof. The proof uses Frobenius’ theorem, which states that a set of vector fields are ‘surface
forming’ if and only if the set of vectors are closed under the Lie bracket. We use the following
relation between the Lie bracket and the Poisson bracket9

[Xf , Xg] = −X{f,g} (2.68)

and let {γa, γb} = f cabγa then immediately one has

[Xγa , Xγb ] = −Xfcabγc
(2.69)

and then by definition

−Xµ
fcabγc

= ωµν∂ν(f cabγc)

= −f cabXµ
γc + γcω

µν∂ν(f cab)

≈ −f cabXµ
γc (2.70)

and hence one has that the vector fields are closed, on the constraint surface, and so are surface
forming.

The surface forming property of the Hamiltonian vector fields Xγa only applies off the con-
straint surface if the functions f cab are constant, i.e. only when the Poisson algebra closes with
structure constants as opposed to structure functions10.

So the final picture of first class systems is that i.) motion in phase space is restricted to the
constraint surface Γc, ii.) that this 2n−m dimensional constraint surface is made up of (foliated
by) m dimensional surfaces, formed by the integral curves of the m Hamiltonian vector fields Xµ

γa
and iii.) because these vector fields generate gauge transformations we have a picture of each m
dimensional surface as representing a gauge orbit of physically equivalent states and by Theorem
2.2 we see that these gauge directions correspond to null directions in the induced form ω̃.

As the induced form is degenerate it does not define a symplectic form and hence there is no
Poisson bracket definable on this surface. In order to do so one must construct the reduced phase
space by forming the quotient space of Γc with the gauge orbits and thereby identifying all points
on each orbit.

The picture with regard to pure second class systems, with constraints χα, is different. One
can deduce that the vector fields associated to second class constraints are not tangent to the
constraint surface, one has

∀α ∃β s.t. 0 6= {χα, χβ} = Xµ
χα∂νχβ (2.71)

(otherwise χα would not be second class) and hence there exists at least one one constraint which
changes in the direction of each vector field χα and therefore the vectors are not tangent to Γc.

Theorem 2.4. For second class systems the induced two form has maximal rank and is non-
degenerate. This means it defines a symplectic form, which is realised by the Dirac bracket.11

9See for example section 2.7 in [11].
10We shall see in the next section that GR is a theory where the Poisson algebra only closes with structure

functions.
11See Chapter 2 in [7].
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Hence there are no null directions on the induced form mathematically co-inciding with the
fact that physically we have a deterministic physics for second class systems, computed by the
Dirac bracket.

In the case of a mixed first, second class system, [7], one finds that the induced form has a
rank 2n −m − k, where m is the total number of constraints and k is the number of first class
constraints. This means that there exist k null directions tangent to the constraint surface, which
again define the gauge orbits.

The above results enable one to compute the number of physical degrees of freedom associated
with a constrained Hamiltonian system

2× (No. of physical dofs) = 2n−m− k (2.72)

so one has to subtract the total number of constraints to find the dimension of the constraint
surface and then subtract only the number of first class constraints in order to find the dimension
of the reduced phase space. This reduced phase space will have dimension equal to twice the
number of physical degrees of freedom.

We must also mention ‘observables’, these are defined to be gauge invariant phase space func-
tions, which are therefore candidates for representing real physical measurements. In the notion
of Dirac these phase space functions must Poisson commute with all the first class constraints.
Given the geometric analysis of this sub-section we can also see that these observables will have
to constant on the gauge orbits generated by the first class constraints. Similarly, gauge invariant
observables in the notion of Bergmann will have to Poisson commute with the gauge generator
G(t), which itself is a particular sum of first class constraints. In section 4 we shall discuss
relational Dirac observables for GR and first class systems in general.

2.4 Yang Mills as a constrained Hamiltonian system
We apply the constrained Hamiltonian formalism to a Yang Mills field with action

SYM = −1

4

∫
d3xdt tr [FµνF

µν ] (2.73)

where (xi, t) are coordinates on Minkowski spacetime, and the (Lie Algebra valued) Yang Mills
field strength Fµν is defined by

Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] (2.74)
= ∂µAν − ∂νAµ +AaµA

b
νf

c
abTc (2.75)

and the gauge (potential) field Aµ = AaµTa where T a are basis elements in the Lie algebra of the
gauge group G, denoted g chosen orthogonal with respect to the Killing metric, and the trace
tr(T aT b) = δab. The commutator [Ta, Tb] = if cabTc and the structure constants f cab are totally
anti-symmetric.

The configuration space Q of this theory is given by the space of gauge potential configurations
Aµ(x, t) at a fixed time t, and hence the Lagrangian field velocity space is TQ, coordinatised by(
Aµ, Ȧµ

)
.

This action has a local gauge symmetry given by the standard gauge transformations of the
gauge potential

δAaµ = −
(
∂µθ

a + fabcA
b
µθ
c
)

(2.76)
= − (∂µθ

a − i[Aµ, θ]a) (2.77)
=: − (Dµθ)

a (2.78)
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Claim 2.5. The Euler Lagrange equations derived from (2.73) are

DµF
µν = 0 (2.79)

Proof. We have

F aµν =
(
∂µA

a
ν − ∂νAaµ +AbµA

c
νf

a
bc

)
⇒ δF aµν = ∂µδA

a
ν − ∂νδAaµ + δAbµA

c
νf

a
bc +AbµδA

c
νf

a
bc

= ∂µδA
a
ν +AbµδA

c
νf

a
bc −

(
∂νδA

a
µ +AcνδA

b
µf

a
cb

)
= DµδA

a
ν −DνδA

a
µ . (2.80)

Hence, after taking the trace in (2.73) and varying the resulting action one has

δSYM = −1

4
δ

∫
d3xdt F aµνF

µν a

= −1

2

∫
d3xdt δF aµνF

µν a

= −1

2

∫
d3xdt Fµν a

(
DµδA

a
ν −DνδA

a
µ

)
= −

∫
d3xdt Fµν aDµδA

a
ν

= −
∫
d3xdt Fµν a

(
∂µδA

a
ν +AbµδA

c
νf

a
bc

)
=

∫
d3xdt ∂µ (Fµν a) δAaν +

∫
d3xdt Fµν aAbµf

c
baδA

c
ν

=

∫
d3xdtDµF

µν aδAaν (2.81)

where we have used (2.80) for the variation in the field strength, the definition of the adjoint
covariant derivative and in the sixth line done an integration by parts, dropped the boundary
term and also used the total anti-symmetry of the structure constants. Given arbitrary variations
in the gauge potential, the field equations are indeed given by (2.79).

Given these field equations one can observe that only DµF
µi = 0, i = 1, 2, 3 will contain

second time derivatives of the gauge potential and therefore represent evolution equations. The
remainder DµF

µ0 = DµiF
i0 contain only (Aµ, Ȧµ) and therefore are Lagrangian constraints in

TQ.

Claim 2.6. As already mentioned the invariance of the action under local gauge symmetries
implies, by Noether’s second theorem, a generalised Bianchi identity, which we recall is an off-
shell, first order linear partial differential equation involving the Euler Lagrange equations. These
identities further imply a singular Hessian matrix and so we have a singular Lagrangian system.
The generalised Bianchi identities for the Yang Mills field are given by:

DµDνF
µν = 0 (2.82)

Proof. (2.82) can be proved by first observing the anti-symmetry in Fµν implies DµDνF
µν =

1
2 [Dµ, Dν ]Fµν . Then by considering an arbitrary field θ, which transforms in the adjoint repre-
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sentation one has

2DµDνθ = [Dµ, Dν ] θ

= Dµ [∂νθ − i [Aν , θ]]−Dν [∂µθ − i [Aµ, θ]]

= ∂µ∂νθ − i∂µ [Aν , θ]− i [Aµ, ∂νθ − i [Aν , θ]]− ∂ν∂µθ
+i∂ν [Aµ, θ] + i [Aν , ∂µθ − i [Aµ, θ]]

= −i [(∂µAν − ∂νAµ − i [Aµ, Aν ]) θ − θ (∂µAν − ∂νAµ − i [Aµ, Aν ])]

= −i (Fµνθ − θFµν)

= −i [Fµν , θ]

= F aµνθ
bf cabTc

where in the second and third lines we have used the definition of the adjoint covariant derivative,
and subsequently just cancelled terms. Hence, DµDνF

µν = 1
2F

a
µνF

µνbf cabTc ≡ 0, by symmetry,
anti-symmetry in the a, b indices.

We now proceed with the Hamiltonian analysis the first step is to compute the canonical
momenta, this can be done by using the variation in the action from above

δSYM = −
∫
d3xdt Fµν aDµδA

a
ν

= −
∫
d3xdt

(
F 0ν a∂0δA

a
ν + F iν a∂iδA

a
ν − iFµν a [Aµ, δAν ]

a) (2.83)

hence
πµb ≡

δSYM

δȦbµ
= −F 0µ b . (2.84)

Immediately, by anti-symmetry in the spacetime indices of the field strength, (2.84) implies the
primary constraints

φb(x) ≡ π0
b (x) = 0, b = 1, . . . , dimg . (2.85)

We can also state the canonical Poisson brackets as{
Aaµ(x), πνb (y)

}
= δνµδ

a
b δ

3(x, y) (2.86){
Aaµ(x), Abν(y)

}
= 0 (2.87)

{πµa (x), πνb (y)} = 0 . (2.88)

The next step is to write down the primary Hamiltonian, which we recall is the usual canonical
Hamiltonian up to an arbitrary combination of the primary constraints. Before doing this we need
to express the action in terms of the phase space variables Aaµ, πµa and so we first observe that
the invertible momenta may be expressed

πia = −F 0i
a

= −
(
∂0Ai a − ∂iA0 a +A0 bAi cfabc

)
= Ȧai − ∂iAa0 −AbiAc0fabc
= Ȧai −DiA

a
0 . (2.89)
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Hence the canonical Hamiltonian Hc may be expressed, after a Legendre transform, as

Hc : =

∫
d3xπiaȦ

a
i −

∫
d3xL(A, π)

=

∫
d3xπiaȦ

a
i +

1

4

∫
d3xF aµνF

µν a

=

∫
d3xπiaȦ

a
i +

1

4

∫
d3xF aijF

ij a +
1

2

∫
d3xF a0iF

0i a

=

∫
d3x

(
πia
(
πia +DiA

a
0

)
+

1

4
F aijF

ij a − 1

2
πiaπ

i
a

)
=

∫
d3x

(
1

2
πiaπ

i
a +

1

4
F aijF

ij a + πiaDiA
a
0

)
=

∫
d3x

(
1

2
πiaπ

i
a +

1

4
F aijF

ij a −Di(π
i
a)Aa0

)
(2.90)

where we have used (2.89), the definition of the momenta and in the final line performed an
integration by parts12 and dropped the boundary term.

Hence, we can write down the evolution equations for any phase space function as

Ḟ [A, π] ≈ {F,Hp} (2.91)

where the weak equality is defined on the primary constraint surface and the primary Hamiltonian
Hp is

Hp = Hc +

∫
d3x vaφa (2.92)

and the va are arbitrary functions.
Now we can impose the preservation of the primary constraints in order to determine whether

Yang Mills theory is a first, second class or mixed dynamical system. The preservation of primary
constraints requires

0 ≈ φ̇a ≈ {φa(y), Hp}

=

∫
d3x−Di(π

i
b)(x)

{
π0
a(y), Ab0(x)

}
=

∫
d3xDi(π

i
b)(x)

{
Ab0(x), π0

a(y)
}

= Di(π
i
a)(y) ≡ φ̃a(y) (2.93)

where in the second line we have immediately dropped all terms from Hp that manifestly give
zero in a Poisson bracket with the primary constraints. It is clear that these relations are not
automatically fulfilled and therefore constitute secondary constraints called the generalised Gauss
constraints, because of their similarity to the Gauss constraint in electrodynamics ∇. ~E = 0.
We now have a new constraint surface Γ1 in phase space, where both the primary and Gauss
constraints are satisfied.

Following the Dirac-Bergmann algorithm we now have to impose preservation of the Gauss
constraints on Γ1, i.e. we require

0 ≈
{
Di(π

i
a)(y), Hp

}
=

∫
d3x

{
Di(π

i
a)(y),

(
1

2
πjbπ

j
b +

1

4
F bjkF

jk b −Dj(π
j
b)A

b
0 + vaφa

)}
. (2.94)

12We have already established in the variation of the action above that the covariant derivative behaves as if we
can perform an integration by parts directly.
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Computing the Poisson bracket above is more involved than for the primary constraints because
of the implicit presence of the gauge field in the covariant derivative. We first observe that{

Di(π
i
a)(y), vaφa

}
≈ 0 (2.95)

this is because the Gauss constraint only depends upon πi and Ai, the latter through the covariant
derivative, which all Poisson commute with the primary constraints φa = π0

a. So we are left with
three remaining terms in Hp, which we compute in turn. The first is

1

2

∫
d3x

{
Di(π

i
a)(y), πjbπ

j
b(x)

}
=

∫
d3xπjb(x)

{
Di(π

i
a)(y), πjb(x)

}
=

∫
d3xπjb(x)

{
(Adi π

i
c)(y)fadc, π

j
b(x)

}
=

∫
d3xπjb(x)πic)(y)fadc

{
Adi (y), πjb(x)

}
= πib(y)πic(y)fabc

≡ 0 (2.96)

where in the second line we have just kept the Ai term from the covariant derivative, as only this
term contributes to the Poisson bracket, and in the final line used the symmetry, anti-symmetry
in the b, c indices. The second term is

1

4

∫
d3x

{
Di(π

i
a)(y), F bjkF

jk b(x)
}

=
1

2

∫
d3xF jk b(x)

{
Di(π

i
a)(y), F bjk(x)

}
=

1

2

∫
d3xF jk b(x)Dy

i

{
πia(y), F bjk(x)

}
= −1

2

∫
d3xF jk b(x)Dy

i

[
δF bjk(x)

δAai (y)

]

= −1

2

∫
d3xF jk b(x)Dy

i

[
Dj

δAbk(x)

δAai (y)
−Dk

δAbj(x)

δAai (y)

]

= −
∫
d3x

(
F ij a(x)Dy

iDjδ
3(x, y)

)
= Dy

i

∫
d3xDjF

ij a(x)δ3(x, y)

= DiDjF
ij a(y)

=
1

2
F bijF

ij cfabc

≡ 0 (2.97)

where in the fourth line we have used the result (2.80) for the variation in F bjk, in the sixth line
done an integration by parts and in the final two lines used the generalised Bianchi identity. The
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third term is∫
d3x

{
φ̃a(y),−Dj(π

j
b)A

b
0(x)

}
= −

∫
d3xAb0(x)

{
Di(π

i
a)(y), Dj(π

j
b)(x)

}
= −

∫
d3xAb0(x)

[
πj f (x)f bef∂

y
i

{
πia(y), Aej(x)

}
+

πi dfacd∂
x
j

{
Aci (y), πjb(x)

}
+ facdf

b
ef

{
Aciπ

i d(y), Aejπ
j f (x)

}]
= ∂i

(
Ab0π

i f
)
f baf + πi d∂i(A

b
0)fabd

−
∫
d3xAb0(x)facdf

b
ef

{
Aciπ

i d(y), Aejπ
j f (x)

}
= Ab0∂iπ

i ff baf −
∫
d3xAb0(x)facdf

b
ef

{
Aciπ

i d(y), Aejπ
j f (x)

}
= −Ab0∂iπi fcf cab −Ab0f cabAdi πi ef cde
= −f cabAb0Di(π

i
c)

≈ 0 (2.98)

where in the second line we have expanded out all the covariant derivatives, and kept the non-
zero Poisson brackets, in the fourth line we have used the total anti-symmetry of the structure
constants and in the fifth line we have stated the result of facdf

b
ef

{
Aciπ

i d(y), Aejπ
j f (x)

}
, which

requires using the Jacobi identity for the structure constants.
So we have shown that the Gauss constraints are weakly preserved in time and therefore there

are no further constraints and the Dirac-Bergmann algorithm has been completed. We can now
determine whether the constraints are first or second class or of mixed type, immediately we have

{φa, φb} = 0 (2.99){
φa, φ̃b

}
= 0 (2.100)

where the first follows from the canonical Poisson brackets and the second from (2.95), that just
leaves the Poisson bracket {

φ̃a, φ̃b

}
= f cabDi(π

i
c) = f cabφ̃c (2.101)

this follows from the computation in (2.98). Hence all constraints weakly commute with each
other and we have a first class Hamiltonian system. Observe that the Poisson algebra of the
Gauss constraints is isomorphic to the Lie algebra, g, of the Yang Mills gauge group.

So we have a phase space T ∗Q with coordinates Aaµ, πµa , a 8dimg×∞3 space and a final con-
straint surface Γc defined by φa(x) = φ̃a(x) = 0 and a set of infinitesimal gauge transformations
generated by all these first class constraints, which defines a set of 2dimg×∞3 dimensional sur-
faces, the gauge orbits, which foliate the constraint surface, a (8dimg−2dimg)×∞3 =6dimg×∞3

dimensional surface. Following Dirac each point on one of the gauge orbits represents the same
physical state and should be identified.

A general point gauge transformation, by Dirac’s conjecture, can be generated by an arbitrary
combination of the first class constraints we have

δAaµ =

∫
d3x

{
Aaµ(y), λb1φb(x) + λb2φ̃b(x)

}
=

∫
d3xλb1

{
Aaµ(y), π0

b (x)
}

+ λb2D
x
i

{
Aaµ(y), πib(x)

}
= λa1δ

0
µ −Di(λ

a
2)δiµ (2.102)
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and hence to recover the Noether gauge symmetry, (2.76), one must choose

λa1 = D0θ
a (2.103)

λa2 = −θa . (2.104)

The final point we wish to make concerns a reduction in the dimension of phase space, which
can be achieved by effectively ignoring the conjugate coordinates Aao and π0

a ≡ φa. First consider
the evolution of these variables

Ȧao(x) = {Aao(x), Hp}

=

∫
d3x vb

{
Aao(x), π0

b

}
= va(x) (2.105)

and since π0
a is a constraint we have π̇0

a ≈ 0. This means that i.) the evolution of Aao is an
arbitrary function and that ii.) π0

a is (weakly) constant. Furthermore, these variables do not
affect the evolution of any other phase space variables, i.e. Aai and πia Poisson commute with the
only term in Hp that depends upon them,

∫
d3xvaπ0

a. In other words one can ignore the variables
Aao (gauge fix by re-scaling it to be zero) and π0

a ≡ φa and just consider a reduced phase space
with coordinates Aai and πia now subject only to the Gauss constraints, φ̃a. This ‘reduced theory’
can be described by the following canonical action

S[Aai , π
i
a, N

a] =

∫
d3xdt

(
Ȧai π

i
a −

(
1

2
πiaπ

i
a +

1

4
F aijF

ij a

)
−Naφ̃a

)
=

∫
d3xdt

(
Ȧai π

i
a −

1

2

(
πiaπ

i
a +Bai B

i a
)
−Naφ̃a

)
(2.106)

where Na are Lagrange multipliers, whose variation results in the implementation of the Gauss
constraints, and Bi a := − 1

2ε
ijkF ajk are known as the generalised magnetic fields. This form of the

canonical Yang Mills action is the one that is often presented in the literature, but one should be
aware that the full phase space as constructed using constrained systems theory is the one which
also contains Aao and π0

a ≡ φa as coordinates. We shall see in the next section, when we discuss
GR, that a similar reduction is performed in order to obtain the ADM theory.
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3 Hamiltonian Formulation of GR
In this section we discuss the Hamiltonian formulation of GR, this is crucial preparation for the
canonical quantization, which is the subject of our final section. As indicated in the previous
section the Hamiltonian formulation of GR was initially developed by Dirac and Bergmann and
completed in the seminal work [13] by Arnowitt, Deser and Misner (ADM). There have been
several reviews and discussions of this work since and the following have been useful in the
preparation of this section [18, 16, 17, 3, 14, 15, 19] and particularly [5], which has a very
comprehensive discussion.

Our goal is to perform a Legendre transform on the Einstein Hilbert action and analyse
the resulting Hamiltonian constrained system. We shall discuss the phase space structure, the
interpretation of the constraint algebra and its relation to the diffeomorphism group, possible
matter coupling and finally consider the case of asymptotically flat spacetimes.

Any canonical analysis requires a notion of time from which the canonical momenta can be
defined, in GR this forces one to assume that spacetime is topologically of the form Σ × R,
where Σ is a 3 dimensional manifold of arbitrary but fixed topology and R is ‘time’. In fact any
spacetime M with a well defined initial value problem will be of this form, this is a result due to
Geroch, which states that any globally hyperbolic spacetime13 will necessarily be homeomorphic
to Σ × R. Not all solutions to Einstein’s equations are globally hyperbolic, e.g. the maximally
extended Reissner-Nordstrom solution, representing the spacetime for a spherically symmetric
charged particle, has a Cauchy horizon meaning there is a region from which there exist past
directed causal curves that do not pass through any candidate Cauchy surface14. Generally such
solutions are not regarded as physically realistic and from the classical theory the restriction
to globally hyperbolic spacetime required for the Hamiltonian formulation is not considered a
strong limitation. However, in the quantum theory the situation is more controversial as it seems
that a canonical quantization of GR will prevent topology change at the quantum level, which is
considered to be a feasible option.15.

3.1 3+1 analysis of Einstein Hilbert action
Initially we shall perform the Hamiltonian analysis for a spatially compact M without boundary,
this has the advantage that all boundary terms can be dropped when performing an integration
by parts. We shall also assume a vacuum and only briefly mention the inclusion of matter for
reasons of simplicity.

Our notation will be as follows: spacetime M is a four dimensional Lorentzian manifold of
metric signature(−+ ++), points of M will be denoted by X with local coordinates using Greek
indices Xµ, µ = 0, 1, 2, 3. By above we can assume that M is diffeomorphic to Σ × R, and we
shall label points on Σ by σ, with local coordinates using Latin indices σa, a = 1, 2, 3 and denote
points t ∈ R. The diffeomorphism, denoted Y , means that one can define a 1-parameter family

13A globally hyperbolic spacetime is one which has a Cauchy surface S, i.e. a 3-surface for which all past or
future directed causal curves from all points in spacetime have to pass through. It means that “data” on S must
determine all future events and retrodict all past events, see [14].

14See pages 158-159 in [20].
15We shall assume this limitation in the sequel. However, in the modern form of canonical GR there is a

possibility for the metric to become degenerate in the first order formalism and therefore there may be scope for
topology change at the quantum level.
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of embeddings of Σ in M as follows:

Y : Σ× R → M

Yt : Σ → Σt ⊂M
Yt : σ 7→ X = Yt(σ) := Y (σ, t) (3.1)

having these relations means that one can pullback covariant tensor fields on M to Σ via these
embeddings. This is important because in performing the 3+1 split of the Einstein Hilbert action
we shall re-write it as an integral over the manifold Σ× R.

We shall only consider a restriction of embeddings such that all Σt are spacelike hypersurfaces
in M , this means we can define a unit normal timelike vector to Σt, which we denote by nµ.
Further, we need to define a direction of time Tµ in spacetime, a natural choice will be the
pushforward of the vector ∂

∂t , the components of which will be:

Tµ(X) :=

(
Y?(

∂

∂t
)

)µ
|X=Y (σ,t)

=
∂

∂t
(Xµ ◦ Y (σ, t))|X=Y (σ,t) . (3.2)

This vector Tµ can be decomposed into components tangential and orthogonal to the hypersur-
faces Σt, as follows:

Tµ(X) =: N(X)nµ(X) +Nµ(X) (3.3)

where the function N is the lapse and the tangential vector Nµ the shift. The pushforward of the
vectors ∂

∂σa will be ∂
∂σa (Xµ ◦ Y (σ, t))|X=Y (σ,t) =: Xµ

,a tangent to Σt by construction and hence
normal to nµ.

In order for a proper foliation ofM by the spacelike Σt one requires that the shift is everywhere
positive so that i.) increasing t corresponds to the future direction and ii.) to prevent differentΣt
from intersecting.

Our starting point is the Einstein Hilbert action without boundary terms, given by16:

SEH =
1

16πG

∫
M

d4X
√
|g| 4R(X) (3.4)

where 4R is the spacetime Ricci scalar and g is the determinant of the spacetime metric gµν .
This action is invariant under general coordinate transformations (or passive spacetime diffeo-
morphisms, PDiff(M)) and immediately, as the passive diffeomorphisms are a subset of the local
Noether symmetries one can conclude, by Noether’s second theorem, that GR is a singular system
and the equations of motion will have this symmetry. We therefore expect to find a constrained
Hamiltonian system once we have completed the canonical analysis.

In order to perform the Legendre transform one must write this action as an integral over
Σ × R of ‘time’ varying three dimensional objects built from our canonical fields. This can be
done by introducing the following two objects, the spatial metric qµν and extrinsic curvature Kµν

defined as:

qµν := gµν + nµnν (3.5)
Kµν := qαµq

β
ν∇αnβ (3.6)

where indices are raised and lowered by gµν . These tensors are spatial in that they give zero when
contracted on any index by nµ, for example qµνnν = nµ + nµ(nνn

ν) = 0 by timelike normality
16In units where c=1.
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of nµ. Using this it is easy to show that qαµ projects spacetime vectors onto their components
tangent to Σt since for orthogonal vectors qαµnµ = 0 and for tangent vectors it is the identity:

qαµN
µ = gαλ(gλµ + nλnµ)Nµ

= (δαµ + nαnµ)Nµ

= Nα

where in the second line we used Nµnµ = 0. It follows that any spacetime tensor can be projected
to its spatial version by contraction with qαµ on all its free indices, i.e.

T
α1···αp
Spatial β1···βq = qα1

µ1
· · · qαpµpq

ν1
β1
· · · q νq

βq
Tµ1···µp

ν1···νq (3.7)

The interpretation of qµν is that it is the spatial metric on the hypersurface Σt, it is equiva-
lent to gµν on all vectors tangent to the hypersurface but degenerate on perpendicular vectors,
proportional to nµ. As Σt is spacelike this means that qµν is a Riemannian metric for all vectors
in the hypersurface. The extrinisic curvature17 can be interpreted as the curvature of Σt in M , it
is the projection onto Σt of the gradient of the unit normal vector nµ. We stress that the notion
of extrinsic curvature should not be confused with the intrinsic curvature of a Riemannian or
Lorentzian manifold- the latter is measured by the Riemann tensor and is not dependent upon
the embedding of a hypersurface into an ambient space. Some simple examples in [17] illustrate
this point, e.g. a cylinder S1 × R embedded in R3 has zero intrinsic curvature, a cylinder is flat,
but non-zero extrinsic curvature by contrast a sphere S2 in R3 has both non-zero intrinsic and
extrinsic curvature.

The extrinsic curvature is closely related to the time derivative of the spatial metric as we can
now show.

Claim 3.1. The extrinsic curvature satisfies:

Kµν =
1

2N
(LT q − LNq)µν (3.8)

where (LT q)µν and (LNq)µν are the Lie derivatives of the spatial metric with respect to the
direction of time Tµand shift vector Nµ respectively.

Proof. First we show that Kµν is symmetric. It is always possible to define the hypersurface Σt
by an equation g(X) = t and hence the normal co-vector nµ must satisfy nµ = h∇µg for some
function h, as ∇µg is orthogonal to the spacelike hypersurface. If we substitute this into the
definition (3.6) one has:

Kµν = qαµq
β
ν (∇αh∇βg + h∇α∇βg)

= qαµq
β
ν

(
h−1 (∇αh) nβ + h∇α∇βg

)
= qαµq

β
ν h∇α∇βg

where in the final step we used qβνnβ = 0. Now anti-symmetrizing one has:

2K[µν] = qαµq
β
ν h∇[α∇β]g

= 0 (3.9)

where the final step follows because the Levi-Civita connection ∇ is torsion free.
17Another interpretation of the extrinsic curvature is that it provides a measure of the extent to which geodesics

in Σt are geodesics in M . Only if the extrinsic curvature is zero will the two geodesics coincide, [17].
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Using the symmetry of Kµν allows us to express (3.6) as:

2Kµν = qαµq
β
ν 2∇(αnβ)

= qαµq
β
ν (Lng)αβ

= qαµq
β
ν (Lnq − Ln (n⊗ n))αβ

= qαµq
β
ν (Lnq − n⊗ Lnn− Lnn⊗ n)αβ

= qαµq
β
ν (Lnq)αβ

= (δαµ + nαnµ)(δβν + nβnν) (Lnq)αβ
= (Lnq)µν . (3.10)

The second line follows immediately from the definition of the Lie derivative of the spacetime
metric and metric compatibility of ∇, and the fifth line follows because Lnn = 0. The final
line follows by taking the Lie derivative of 0 = nαqαβ , then using both that the Lie derivative
commutes with contractions and Leibniz to see that 0 = nα (Lnq)αβ + qαβ (Lnn)

α
= nα (Lnq)αβ .

The claim follows by replacing the unit normal in (3.10) by (3.3) and simplifying as:

Kµν =
1

2

(
LN−1(T−N)q

)
µν

=
1

2N

(
L(T−N)q

)
µν

+
1

2

(
qµλ∇ν(N−1) + qλν∇µ(N−1)

)
(T −N)

λ

=
1

2N
(LT q − LNq)µν

the second line follows from the definitions of the Lie derivatives and the final line follows from
the fact that (T −N)

λ is orthogonal to the spacelike hypersurface Σt and so contracts with the
spatial metric to give zero. Hence the extrinsic curvature is closely related to the ‘time derivative’
of the spatial metric, where the ‘time derivative’ is the Lie derivative with respect to Tµ.

The final step we need in order to perform the Legendre transform is to express the spacetime
Ricci scalar and metric determinant in terms of quantities defined on the spatial slice Σt, they
will be expressions involving both the spatial metric and the extrinsic curvature. This can be
done by using geometric identities, which we now discuss.

Claim 3.2. The hypersurface Σt can be viewed as a manifold with a Riemannian metric qµν ,
hence there exists a unique torsion free, (spatial) metric compatible connection, which we denote
D. It can be defined through its relation with the Levi-Civita connection as:

D%T
α1···αp

β1···βq := qα1
µ1
· · · qαpµpq

ν1
β1
· · · q νq

βq
q σ
% ∇σTµ1···µp

ν1···νq . (3.11)

Proof. This follows since D is linear, torsion free and satisfies Leibniz by the definition. Further-
more, it is compatible with the spatial metric since:

D%qαβ : = q ν
α q σ

β q µ
% ∇µqνσ

= q ν
α q σ

β q µ
% ∇µ (gνσ + nνnσ)

= 0

where the last line follows since ∇ is metric compatible and by Leibniz we shall have a contraction
of the form qσβnσ = 0 in the second term.
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The spatial connection D allows us to define the intrinsic curvature of Σt using three dimen-
sional Riemann and Ricci tensors, which we denote as 3Rµνσ

% and 3Rµν respectively. We can use
(3.11) to express 3Rµνσ% in terms of 4Rµνσ% and the extrinsic curvature by the Gauss equation.
Then further contractions and manipulation can be used to derive the Codacci equation.

Claim 3.3. Using the relation between the spatial and spacetime curvatures and extrinsic curva-
ture one can prove i.) the Gauss equation:

3Rµνσ% = q ν
α q σ

β q µ
% q ν

α
3Rµνσ% − 2K%[µKν]σ (3.12)

and ii.) the Codacci equation:

4R =3 R+
(
KµνK

µν −K2
)
− 2∇µ (nν∇νnµ − nµ∇νnν) (3.13)

where K := gµνKµν .

Using the Codacci equation we can now substitute for 4R in the Einstein-Hilbert action,
replacing it with spatial quantities only. Notice the third term in (3.13) is a total derivative and
therefore we shall drop it due to the assumption of no boundary. The remaining term to consider
is the covariant volume element d4X

√
|g|.

Before we consider this we shall use the embeddings Yt to pull back the above spatial equations
to the abstract manifold Σ, this will enable us to write SEH as an integral over Σ× R. The key
definitions which allow us to do this are:

qab(σ, t) := Xµ
,aX

ν
,bqµν(X)|X=Yt(σ) = Xµ

,aX
ν
,bgµν (3.14)

Kab(σ, t) := Xµ
,aX

ν
,bKµν(X)|X=Yt(σ) = Xµ

,aX
ν
,b∇µnν (3.15)

where in both lines we used that nµXµ
,a = 0 and the definitions (3.5) and (3.6). All covariant

tensors can be pulled back in this way. In general one cannot pullback contravariant tensors
but we can use the induced metric to raise indices in Σ so that we can define shift vectors
Na(σ, t) := qab

(
Xµ
,bgµνN

ν
)
on Σ and similarly for other vectors. Finally one can show that the

curvature scalar 3R(σ, t) computed through qab equals the one on Σt as used in the Gauss and
Codacci equations. Given this we can now express both (3.8) and the right hand side of (3.13)
(dropping boundary term) as

Kab (σ, t) =
1

2N

(
q̇ab −

(
L ~Nq

)
ab

)
(σ, t) (3.16)

4R =
(

3R+
(
KabK

ab −K2
))

(σ, t) (3.17)

where K := qabKab and the Lie derivative is with respect to Na(t, σ) and we have used the
definition of the time derivative Xµ

,aX
ν
,b (LT q)µν = LT

(
qµνX

µ
,aX

ν
,b

)
=: q̇ab.

The remaining obstacle to writing SEH in 3+1 form is expressing the volume element in the
adapted frame- we can do this by using the diffeomorphism Y to pullback the (scalar) line element
ds2 to Σ×R and thereby both read off the metric components and compute the determinant that
we need. So by definition on Σ× R one has:

ds2 = (Y ?g)tt dtdt+ (Y ?g)ta dtdσ
a + (Y ?g)at dσ

adt+ (Y ?g)ab dσ
adσb
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and then by re-expressing ds2 = gµνdX
µdXν we get:

ds2 = gµνdX
µdXν

= gµν
(
Xµ
,tdt+Xµ

,adσ
a
) (
Xν
,tdt+Xν

,bdσ
b
)

= gµν
(
(Nnµ +Nµ) dt+Xµ

,adσ
a
) (

(Nnν +Nν) dt+Xν
,bdσ

b
)

= gµν
(
Nnµdt+Xµ

,a (dσa +Nadt)
) (
Nnνdt+Xν

,b

(
dσb +N bdt

))
= gµν

[(
N2nµnν +NnµXν

,bN
b +Xµ

,aN
aNnν +Xµ

,aN
aXν

,bN
b
)
dtdt

+
(
NnµXν

,b +Xµ
,aX

ν
,bN

a
)
dtdσb +

(
NnνXµ

,a +Xµ
,aX

ν
,bN

b
)
dσadt+Xµ

,aX
ν
,bdσ

adσb
]

=
(
−N2 + qabN

aN b
)
dtdt+ qabN

adtdσb + qabN
bdσadt+ qabdσ

adσb (3.18)

where in the third line we use Xµ
,t = Tµ and (3.3), in the fourth line Nµ = Xµ

,aN
a. and in

the last two lines the fact that Xν
,b is orthogonal to nν . We can now immediately read off the

components of Y ?g: (Y ?g)tt = −N2 + qabN
aN b, (Y ?g)ta = qabN

a and (Y ?g)ab = qab, one can
then compute det (Y ?g) = −N2det(qab) =: −N2q.

We can now write SEH in the 3+1 form, by noting that integration is invariant under diffeo-
morphisms using the new volume form

√
|det(Y ?g)|dtd3σ = N

√
q. Hence we can write:

S3+1 =
1

16πG

∫
R
dt

∫
Σ

d3σN
√
q
(

3R+KabK
ab −K2

)
(3.19)

3.2 Hamiltonian Analysis
We can now define the conjugate momenta and then perform the Legendre transform to obtain
the Hamiltonian. The action S3+1 is a functional of three configuration variables: the induced
metric, the lapse and the shift vector, where the in the above action Kab is to be expressed as
(3.16). Immediately we can write down the conjugate momenta to these variables:

P ab(t, σ) :=
δS

δq̇ab(t, σ)
=

√
q

16πG

(
Kab − qabK

)
(t, σ) (3.20)

Π(t, σ) :=
δS

δṄ(t, σ)
= 0 (3.21)

Πa(t, σ) :=
δS

δṄa(t, σ)
= 0 (3.22)

We can see that the momenta Π(t, σ) and Πa(t, σ) are both zero and this means we have con-
straints because we cannot express Ṅ(t, σ) and Ṅa(t, σ) as functions of their momenta. By
contrast q̇ab(t, σ) can be so inverted since contracting P ab with the induced metric one has:

P =

√
q

16πG
(K − 3K) = −√q K

8πG
(3.23)

and then first substituting back into (3.20) and then (3.16) we have:

P ab =

√
q

16πG

(
Kab +

8πG
√
q
qabP

)
⇒ Kab =

16πG
√
q
P ab − 8πG

√
q
qabP =

8πG
√
q

(
2P ab − qabP

)
(3.24)

⇒ q̇ab =
16NπG
√
q

(2Pab − qabP ) + (LNq)ab . (3.25)
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So we just have the primary constraints (3.21) and (3.22).
Following the Dirac algorithm for expressing the primary Hamiltonian one has:

HPrim : =

∫
Σ

d3σ
(
q̇abP

ab − L3+1 + λΠ + λaΠa

)
=

∫
Σ

d3σ
[(16NπG

√
q

(2Pab − qabP ) + (LNq)ab

)
P ab

−
N
√
q

16πG

(
3R+ 128πG2

(
2PabP

ab − P 2
))

+ λΠ + λaΠa

]
=

∫
Σ

d3σ
[16NπG
√
q

(
PabP

ab − 1

2
P 2

)
+ (LNq)ab P

ab −
N
√
q

16πG
3R+ λΠ + λaΠa

]
=

∫
Σ

d3σ
[16NπG
√
q

(
PabP

ab − 1

2
P 2

)
+ 2 (DaNb)P

ab −
N
√
q

16πG
3R+ λΠ + λaΠa

]
=

∫
Σ

d3σ
[
N

(
16πG
√
q

(
PabP

ab − 1

2
P 2

)
−
√
q

16πG
3R

)
− 2NbDaP

ab + λΠ + λaΠa

]
+

∫
Σ

d3σ2Da

(
NbP

ab
)

=

∫
Σ

d3σ
[
N

(
16πG
√
q

(
PabP

ab − 1

2
P 2

)
−
√
q

16πG
3R

)
−Na2qacDbP

bc + λΠ + λaΠa

]
=

∫
Σ

d3σ
[
N

(
16πG
√
q

(
qacqbd −

1

2
qabqcd

)
P abP cd −

√
q

16πG
3R

)
−Na2qacDbP

bc

+λΠ + λaΠa

]
(3.26)

where λ (t, σ) and λa (t, σ) are arbitrary functions. The second line follows from using the 3+1
action but with extrinsic curvature replaced by momenta using (3.24) and replacing q̇ab with
(3.25). The fourth line follows from the definition of the Lie derivative and metric compatibility
of the spatial connection D. We have then done an integration by parts and subsequently dropped
the term

∫
Σ
d3σ2Da

(
NbP

ab
)
because the covariant divergence of a vector density of weight +1

is equal to its ordinary divergence, i.e.
∫

Σ
d3σ2Da

(
NbP

ab
)

=
∫

Σ
d3σ2∂a

(
NbP

ab
)
and hence it is

a total derivative, and can be dropped by our boundary assumptions. Note we have chosen to
re-arrange the coefficient of lapse in the final step so that the presence of canonical variables is
made explicit.

We now have to ensure the consistency of the constraints, i.e. that they are preserved by
evolution generated by HPrim. This is easy to do, since using the canonical Poisson brackets:{

qab(σ), P cd(σ′)
}

= δc(aδ
d
b) δ

3(σ, σ′) (3.27)

{N(σ),Π(σ′)} = δ(σ, σ′) (3.28)
{Na(σ),Πb(σ

′)} = δabδ
3(σ, σ′) (3.29)

(and with all other Poisson brackets zero), we have:

Π̇ = {Π, HPrim} =
16πG
√
q

(
qacqbd −

1

2
qabqcd

)
P abP cd −

√
q

16πG
3R =: H(σ; q, P ] (3.30)

Π̇a = {Πa, HPrim} = −2qacDbP
bc =: Ha(σ; q, P ] . (3.31)

As the primary constraints are not conserved by above, we have to impose the secondary con-
straints H(σ; q, P ] = 0 and Ha(σ; q, P ] = 0, for all spatial points σ. The constraints should be
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viewed as separate phase space functionals, defined for each point σ. (It happens that they are lo-
cal functionals of the canonical fields, i.e. functionals that return a function of the canonical fields
at the chosen point σ). The notation H(σ; q, P ] and Ha(σ; q, P ] indicates that the constraints are
functions of the spatial points σ and functionals of the canonical fields

(
qab, P

ab
)
, see [35]. H is

known as the Hamiltonian constraint and Ha the spatial diffeomorphism constraint. One should
now check that these secondary constraints are preserved, i.e. compute both {H,HPrim} and
{Ha, HPrim}, a non-trivial calculation shows that these Poisson brackets generate combinations
of the secondary constraints and so we do not have tertiary constraints.

We can express the Hamiltonian constraint as:

H(σ; q, P ] = 16πGGabcdP
abP cd −

√
q

16πG
3R (3.32)

where we have18:
Gabcd(σ, q] =

1

2
√
q

(qacqbd + qadqbc − qabqcd) . (3.33)

Gabcd[q] is known as the (inverse) De Witt metric, it can be interpreted as a metric on the space
of contravariant Riemannian metrics. The De Witt metric Gabcd defines an interval, [19], between
two infinitesimally separated Riemannian metrics: qab and qab + δqab as:

(δqab, δqab) :=

∫
Σ

d3σGabcd[qef ]δqab(σ)δqcd(σ) . (3.34)

Presently our phase space consists of the following canonical coordinates:(
qab, N,N

a;P ab,Π,Πa

)
subject to the constraints defined above. However, it is possible to reduce this by considering i.)
that:

Ṅ = {N,HPrim} = λ

Ṅa = {N,HPrim} = λa

i.e. the evolution of the lapse and shift are completely arbitrary, ii.) that Π,Πado not evolve- they
are constraints and iii.) the evolution of qab and P ab is equivalently described by the Hamiltonian:

HADM :=

∫
Σ

d3σ [NH +NaHa] (3.35)

in this sense the N,Na are non-dynamical variables. This is not surprising since N,Na serve to
parameterise the spacelike embeddings Yt and foliation of M but subject to defining a proper
foliation they can be arbitrary. One can also implement this from an action SADM by using
Lagrange multipliers to implement the Hamiltonian and diffeomorphism constraints, i.e.

SADM [qab, P
ab, N,Na] =

∫
R
dt

∫
Σ

d3σ
(
P abq̇ab −NH −NaHa

)
. (3.36)

Hence we define a new constrained Hamiltonian system, with phase space ΓADM , canonical
coordinates

(
qab(σ);P ab(σ)

)
, and an evolution generated by HADM , which is a linear combination

18Just symmetrise on the (cd) indices from (3.30) to show this.
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of the constraints H and Ha. In this theory the lapse and shift are viewed as fixed phase space
independent functions on the spatial manifold. The Hamilton equations:

q̇ab = {qab, HADM} (3.37)
Ṗ ab =

{
P ab, HADM

}
(3.38)

subject to the Hamiltonian and diffeomorphism constraints are equivalent to the Einstein field
equations Gµν = 0. (Since one is considering the GR as an evolution of a spatial metric the term
geometrodynamics is often used to describe this framework). In particular, if gµν satisfies the
Einstein equation and Yt is a 1-parameter family of spacelike embeddings of Σ with associated
lapse and shift then the 1 parameter family of induced metrics qab(t, σ) and momenta P ab(t, σ)
(defined through (3.20) and (3.16)) will satisfy (3.37), (3.38) and the Hamiltonian and diffeomor-
phism constraints. Conversely, if there is a spacelike foliation Yt of a Lorentzian manifoldM such
that the qaband P ab satisfy the above Hamilton equations and constraints then the reconstructed
metric gµν is a solution to the Einstein field equation, [35]. To be clear the solutions to Hamilton’s
equations subject to the constraints allows us to reconstruct the spacetime metric gµν because we
can define its components in the adapted coordinates defined by (3.18). In fact one can further
show that if the constraints (3.30) and (3.31) are satisfied on every spacelike hypersurface in the
spacetime M then the metric gµν satisfies the Einstein equations, [35].

One can also show19 that i.) the Hamilton equations above are equivalent to the full spatial
projection of the four dimensional Einstein equations, i.e. qαµqβν 4Rαβ = 0 and ii.) the Hamilto-
nian and diffeomorphism constraints are respectively equivalent to the full and partial projection
of the Einstein equations orthogonal to the hypersurface Σt, i.e.

H = 0⇔ nαnβ 4Rαβ = 0 (3.39)
Ha = 0⇔ nα 4Rαβ = 0 . (3.40)

As these constraints form a closed algebra, we have a first class Hamiltonian system. In the
Dirac picture of gauge transformations, section 2.3.1, one has to view the GR Hamiltonian as
a gauge generator since it is simply a sum of first class constraints. This has the consequence
that one should interpret ‘time’ evolution in GR as a gauge transformation and also means that
Dirac observables, defined to Poisson commute with all the constraints, will therefore be constant
in coordinate time. This latter issue is known as the ‘frozen formalism’ and the general issues
surrounding how to interpret evolution in GR, reconcile it with our observations and extract
gauge invariant information form the important problem of time in canonical gravity. We shall
discuss these issues in section 4 in the context of relational Dirac observables for GR and first
class constrained systems in general.

In the Bergmann picture of gauge transformations, section 2.3.2, one can construct a gauge
generator G(t), (3.80) and [26], which is a particular sum of the above constraints on the full
phase space with coordinates (qab, N,N

a;P ab, P, Pa). This generator by definition maps between
the gauge equivalent phase space trajectories. However, although it is numerically related to
the Hamiltonian, it has a different interpretation- the Hamiltonian by contrast acts upon phase
space points and maps one point to another point representing the dynamical system at a later
time. Hence, in this view, one does not think of the dynamics generated by the Hamiltonian as
a gauge transformation. This proposal due to [27] is rather recent but seems to provide a viable
way to avoid some of the issues of the problem of time. However, one still has the problem of
determining gauge invariant observables and therefore the discussion in section 4 is of interest to
both interpretations of gauge transformations.

19See for example chapter 5 in [17].

36



Finally, we can count the number of physical degrees of freedom in the gravitational field. We
have a phase space ΓADM , which has a dimension of 12×∞3 since the coordinates are symmetric
and defined on a 3 dimensional manifold, we have 4 ×∞3 first class constraints, this means the
physical phase space20 is (12 − 2 × 4) ×∞3 = 4 ×∞3dimensional and hence there are 2 ×∞3

degrees of freedom in GR. This result agrees with the linear field analysis, which shows that the
gravitational wave propagating on a fixed background spacetime has two degrees of freedom (or
polarizations). We remark that such a counting argument always holds up to a finite number of
degrees of freedom.

3.3 Constraint Algebra analysis
We now state and discuss the Poisson algebra formed by H and Ha. It is convenient to consider
the Poisson brackets between smeared constraints21, defined as:

H (N) :=

∫
Σ

d3σN(σ)H(σ) (3.41)

~H( ~N) :=

∫
Σ

d3σNa(σ)Ha(σ) (3.42)

where N and ~N are arbitrary scalar and vector fields on Σ. The first class constraint algebra for
GR, often called the Dirac, [6] or hypersurface deformation algebra [21] is given by:{

~H( ~N1), ~H( ~N2)
}

= ~H(L ~N1

~N2) (3.43){
~H( ~N1), H(N)

}
= H(L ~N1

N) (3.44)

{H(N1), H(N2)} = ~H( ~N) (3.45)

where Na := qab (N1N2 ,b −N2N1 ,b).
The first observation is that elements ~H

[
~N
]
for arbitrary ~N form a sub-algebra, but they do

not form an ideal because there is not closure under the Poisson bracket with elementsH
[
N
]
. This

sub-algebra has a straightforward interpretation, recall that diffeomorphisms on Σ are generated
by spatial vector fields, ~N , which form a Lie algebra with the commutator as Lie bracket22, then
given L ~N1

~N2 =
[
~N1, ~N2

]
we can see that the map ~N1 → ~H

[
~N1

]
is a homomorphism from the Lie

algebra of Diff(Σ)to this sub-algebra.
We can confirm that ~H

[
~N
]
is the generator of infinitesimal (spatial) diffeomorphisms on phase

space functionals by first computing its action on the canonical fields. First observe that:

~H( ~N) = −2

∫
Σ

d3σNa(σ)qacDbP
bc

= 2

∫
Σ

d3σqac (DbN
a)P bc

=

∫
Σ

d3σP ab
(
L ~Nq

)
ab

(3.46)

20Recall for first class constraints one subtracts twice- first to get to the constraint surface and second to factor
out the gauge symmetry.

21H (N) and ~H( ~N) are functionals of N,Na and so more properly should be expressed as H[N ] and ~H[ ~N ]
however the usual notation in the literature is as above and so we shall follow it here.

22Strictly speaking the Lie Bracket for the Diffeomorphism group is in fact the negative of the commutator, [35],
so the map ~N1 → ~H

[
~N1

]
is an anti-homomorphism.
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where we have done an integration by parts and used the symmetry of P ab. Then we have for
the action on the metric:{

qab(σ), ~H( ~N)
}

=

∫
Σ

d3σ′
(
L ~Nq

)
cd

(σ′)
{
qab(σ), P cd(σ′)

}
=

(
L ~Nq

)
ab

(σ) . (3.47)

Hence ~H( ~N) generates infinitesimal (spatial) diffeomorphism of the metric. Similarly, for the
momentum we can use the Leibniz property of the Lie derivative to express (3.46) as:

~H( ~N) = −
∫

Σ

d3σqab
(
L ~NP

)ab
+

∫
Σ

d3σL ~N (P ) (3.48)

where P := qabP
ab is a scalar density of weight +1 and one can show the second term is a total

derivative by using the definition of the Lie derivative of P 23:

L ~N (P ) =
√
qL ~N

(
P
√
q

)
+ PDaN

a

=
√
qNaDa

(
P
√
q

)
+ PDaN

a

= Da (NaP ) = ∂a (NaP ) (3.49)

where we used the result that Daq = 0. Hence we can drop the second term in (3.48) and compute
the action of ~H( ~N) on the momentum as:{

P ab(σ), ~H( ~N)
}

= −
∫

Σ

d3σ′
(
L ~NP

)cd {
P ab(σ), qcd(σ

′)
}

=
(
L ~NP

)ab
(σ) . (3.50)

Hence ~H
[
~N
]
generates spatial diffeomorphisms of the canonical momentum. Finally, we show

~H
[
~N
]
generates spatial diffeomorphisms on arbitrary functionals of the canonical variables, let

f = f [q, p] then we can compute:

{
f, ~H( ~N)

}
=

∫
d3σ′

δf

δqab(σ′)

δ ~H
[
~N
]

δP ab(σ′)
− δf

δP ab(σ′)

δ ~H
[
~N
]

δqab(σ′)

=

∫
d3σ′

δf

δqab(σ′)

{
qab(σ

′), ~H
[
~N
]}

+
δf

δP ab(σ′)

{
P ab(σ′), ~H

[
~N
]}

=

∫
d3σ′

δf

δqab(σ′)

(
L ~Nq

)
ab

(σ′) +
δf

δP ab(σ′)

(
L ~NP

)ab
(σ′)

= L ~Nf (3.51)

and ~H( ~N) is the generator of spatial diffeomorphisms.
These results allows us to derive, [22], (3.43) and (3.44), let

f [M ] :=

∫
Σ

d3σMa···b
c···d(σ)f c···d a···b(q, p)

23See for example [16] for Lie derivatives of tensor densities.
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whereMa···b
c···d is an arbitrary tensor on Σ, independent of the canonical fields and f c···d a···b(q, p)

is a tensor density of weight +1, which is a function of the canonical fields. Then we can compute
the Poisson bracket with ~H

[
~N
]
as follows:

{
~H( ~N), f [M ]

}
=

∫
d3σ′

δ ~H
[
~N
]

δqab(σ′)

δf [M ]

δP ab(σ′)
−

δ ~H
[
~N
]

δP ab(σ′)

δf [M ]

δqab(σ′)

=

∫
d3σ′

(
−
(
L ~NP

)ab) δf [M ]

δP ab(σ′)
−
(
L ~Nq

)
ab

δf [M ]

δqab(σ′)

= −
∫
d3σ′

[(
L ~NP

)ab ∫
d3σMe···f

c···d(σ)
δf c···d e···f (q, p)

δP ab(σ′)

+
(
L ~Nq

)
ab

∫
d3σMe···f

c···d(σ)
δf c···d e···f (q, p)

δqab(σ′)

]
= −

∫
d3σ′Me···f

c···d

[(
L ~NP

)ab ∂f c···d e···f (q, p)

∂P ab
+
(
L ~Nq

)
ab

∂f c···d e···f (q, p)

∂qab

]
= −

∫
d3σ′Me···f

c···dL ~Nf
c···d

e···f

=

∫
d3σ′

(
L ~NM

e···f
c···d
)
f c···d e···f (3.52)

where on the fourth line we have used the functional derivative chain rule to remove the
∫
d3σ

integration and on the final line used an integration by parts and dropped the boundary term.
Immediately by i.) replacing Ma···b

c···d by Ma and f c···d a···b(q, p) by Ha (3.52) is equivalent
to (3.43) and ii.) using a scalar M and scalar density H (3.52) is equivalent to (3.44).

Having shown that the Lie algebra of spatial diffeomorphisms is represented in the Dirac
algebra it is natural to ask whether the full spacetime diffeomorphism Lie algebra can also be
mapped to the Dirac algebra in this way. This is not the case because the Dirac algebra is not a
Lie algebra, we can see this in (3.45) as {H(N1), H(N2)} closes with a ‘phase space’ dependent
coefficient (the vector Nainvolves the inverse 3-metric qab) of Ha. (Usually it is stated that the
Dirac algebra involves structure functions rather than structure constants). Hence, although the
original symmetry of the theory was the spacetime diffeomorphism group24, in the canonical
analysis we have found a genuinely different algebra.

We now compute the action of the Hamiltonian constraint on the phase space variables in
order to determine precisely where this ‘failure’ to represent the diffeomorphism comes from.

24See section 3.5 for further discussion of this point.
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Consider first the Poisson bracket of the smeared Hamiltonian constraint with the 3-metric:

{qab(σ), H(N)} = 16πG

∫
d3σ′

N
√
q

(
qceqdf −

1

2
qcdqef

){
qab(σ), P cdP ef

}
= 16πG

∫
d3σ′

N
√
q

(
qceqdf −

1

2
qcdqef

)[
P cd

{
qab(σ), P ef

}
+ (c↔ d, e↔ f)

]
= 16πG

∫
d3σ′

N
√
q

(
qceqdf −

1

2
qcdqef

)[
P cdδe(aδ

f
b) + P efδc(aδ

d
b)

]
δ3(σ, σ′)

= 16πG

∫
d3σ′

2N
√
q

(
qc(aqb)d −

1

2
qcdqab

)
P cdδ3(σ, σ′)

= 32πG
N
√
q

(
Pab −

qabP

2

)
= 2NKab

= q̇ab −
(
L ~Nq

)
ab

= LN~nq . (3.53)

In the first line we dropped the 3R from the Hamiltonian constraint, as it is independent of the
momentum and also Poisson commuted the factor involving the 3-metrics. In the sixth line we
used (3.20) and (3.23) to substitute for the momentum. In the penultimate line we used (3.16)
and then one can compute the components of the spacetime vector Nnµ in the adapted embedded
coordinates to reach the final line, also see (3.3).

The end result is that we have shown the Hamiltonian constraint generates diffeomorphisms
of the 3-metric in the direction orthogonal to the hypersurface. Given that we have shown above
that the Dirac algebra is not isomorphic to the spacetime diffeomorphism algebra and yet have
shown just such an action on the canonical variables ( ~H( ~N) on both canonical variables and
H(N) on the 3-metric) it must mean that there is a problem with the one remaining Poisson
bracket

{
P ab, H(N)

}
.

A non-trivial calculation gives the following result:

{
P ab, H(N)

}
= −2

N
√
q

[
P acP bc −

P abP

2

]
+
qabNH

2
+N
√
q
(
qab 3R− 3Rab

)
+
√
q
[
−qabDcD

cN +DaDbN
]
. (3.54)

The reason this calculation is more involved is that i.) we need to perform a variation of √q and
its inverse, this can be done using the standard result:

δq = qqabδqab (3.55)

and ii.) we cannot drop the 3R term and therefore need to compute the functional derivative
δ3R

δqab(σ) , this can be done by using two identities:

qabδ3Rab = qab [−DaδΓ
c
cb +DcδΓ

c
ab] (3.56)

δΓabc = qad [Dcδqbd +Dbδqcd +Ddδqbc] . (3.57)

The former is the ‘Palatini identity’ whose 4-dimensional equivalent is used in the standard
variation of the Einstein Hilbert action. The second identity can be derived by using the definition
of Γabc in terms of the 3-metric and then performing a variation, if one then uses normal coordinates
the coefficient of δqad will be zero because Γabc = 0 in these coordinates and similarly in the second
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term partial derivatives can be replaced by covariant ones. This leaves a tensor equation, which
must hold in all frames and hence the result follows.

The challenge is now to interpret (3.54) in terms of an infinitesimal diffeomorphism orthogonal
to the spacelike hypersurface just as for the metric variable. In other words what is the relationship
between the right hand side of (3.54) and the Lie derivative LN~nPµν this will allow us to see
precisely how the spacetime diffeomorphism group is not represented in the action H [N ] on the
momentum. A non-trivial calculation25 shows that:

{Pµν , H(N)} =
qµνNH

2
−N√q [qµ%qνσ − qµνq%σ]

4
Rρσ + LN~nPµν . (3.58)

This means that H(N) can be interpreted as generating infinitesimal diffeomorphisms on the
momentum but only when H = 0 and 4Rµν = 0, i.e the Einstein vacuum equations hold (however
the latter is sufficient since 4Rµν = 0 ⇒ H = 0) . Hence we come to the important conclusion
that the gauge transformations generated by the constraints can be interpreted as infinitesimal
spacetime diffeomorphisms but only when the equations of motion hold (‘on-shell’). We shall
return to this topic in section 3.5, where we consider from a broader perspective the invariance
groups of general relativity and their relationships. However, first we consider the addition of
matter degrees of freedom in the canonical formalism.

3.4 Matter coupling in the canonical formalism
So far we have only considered vacuum general relativity, it is possible to consider matter de-
grees of freedom in the canonical formalism. We shall then have matter contributions to the
Hamiltonian and diffeomorphism constraints, i.e.

HTot = H +HMatter (3.59)
HTot
a = Ha +HMatter

a (3.60)

The situation simplifies greatly when non-derivative coupling is considered, i.e. when the matter
Lagrangian couples only to functions of the spacetime metric and not derivatives of it. In this
case HM and HM

a will depend upon the matter canonical variables and the spatial metric only.
Unfortunately, if one considers derivative coupling then it is possible for the HM constraint to
depend upon the gravitational momentum P aband the matter momentum π, [19]. We shall only
consider non-derivative coupling in what follows.

Under these conditions the algebra of the total Hamiltonian constraints separates into matter
25See section 1.3 [5] or equivalently [22].
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and gravity contributions as we can see:{
HTot(N), HTot(M)

}
= {H(N), H(M)}+

{
H(N), HM (M)

}
+
{
HM (N), H(M)

}
+
{
HM (N), HM (M)

}
= {H(N), H(M)}+

{
HM (N), HM (M)

}
+

+

∫
Σ

∫
Σ

d3σd3σ′N(σ)M(σ′)
{
H (σ) , HM (σ′)

}
+

∫
Σ

∫
Σ

d3σd3σ′N(σ)M(σ′)
{
HM (σ) , H(σ′)

}
= {H(N), H(M)}+

{
HM (N), HM (M)

}
+∫

Σ

∫
Σ

d3σd3σ′ (N(σ)M(σ′)−N(σ)M(σ′)) δ3(σ, σ′)g(q, p)

= {H(N), H(M)}+
{
HM (N), HM (M)

}
= ~H( ~N2) +

{
HM (N), HM (M)

}
(3.61)

where in the third line we have used the fact that i.) H does not depend upon derivatives of
the canonical variables and ii.) by the assumption of non-derivative coupling HM will also not
depend upon such derivatives and hence cross term Poisson brackets are ultra-local because no
integration by parts need to be performed. In the final line we have used the Dirac algebra for
the Hamiltonian constraints.

All forms of bosonic degrees of freedom can be described using the canonical formalism de-
veloped for (qab, P

ab) including scalar, Maxwell and Yang Mills fields. Unfortunately, fermionic
degrees of freedom cannot be described using these variables, one has to use the triad basis for
this26. The reason that fermionic degrees of freedom cannot be described by (qab, P

ab) is the im-
possibility of defining spinors for the general linear group. By impossibility we mean that there do
not exist (finite dimensional) double valued representations of the general linear group27, which
would be required to define a spinor.

We shall briefly discuss a minimally coupled scalar field with potential and derive the cor-
responding Hamiltonian and diffeomorphism constraints. The spacetime action for this theory
is:

S[Φ] = −1

2

∫
M

d4X
√
g (gµν(X)∂µΦ(X)∂νΦ(X) + V (Φ)) (3.62)

where V (Φ) is a self-interaction term.
As for vacuum gravity we can perform a 3+1 analysis of this action - this involves i.) pulling

back the scalar field to Σ × R under our family of embeddings Yt, where we define φ(σ, t) :=
Φ(Yt(σ)), ii.) using the pullback of the volume form d4X

√
g = N

√
qdtd3σ and iii.) computing

the components of the inverse spacetime metric in the adapted frame. We computed the metric
in the adapted frame, see above (3.19), and this implies that the inverse metric components are:

gtt = −N−2, gat =
Na

N2
, gab = qab − NaN b

N2
(3.63)

26We shall consider triad (and tetrad) bases in section 5 when we cover the Ashtekar variables.
27See [23] for a proof that there are no finite dimensional representations of the universal cover of the special

linear group.
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and we can then compute on Σ× R the pullback of the scalar Lagrangian as:

gµν∂µφ(σ, t)∂µφ(σ, t) = −N−2φ̇2 + 2
Na

N2
φ̇φ,a +

(
qab − NaN b

N2

)
φ,aφ,b

= −N−2
(
φ̇−Naφ,a

)2

+ qabφ,aφ,b . (3.64)

Combining these results one can write the action in 3+1 form as:

S[φ] =
1

2

∫
R
dt

∫
Σ

d3σN
√
q

(
N−2

(
φ̇−Naφ,a

)2

− qabφ,aφ,b − V (φ)

)
(3.65)

and hence compute the canonical momentum π as:

π(σ, t) :=
δS[φ]

δφ̇(σ, t)
=

√
q

N

(
φ̇−Naφ,a

)
. (3.66)

Clearly, this is not a constraint as one can invert the momentum in terms of the velocity using
(3.66).

Hence, one can perform the Legendre transform to compute the Hamiltonian Hφas:

Hφ : =

∫
Σ

d3σ
(
πφ̇− L(φ, π)

)
=

∫
Σ

d3σ

(
πφ̇− 1

2

N
√
q
π2 +

1

2
N
√
qqabφ,aφ,b +

N

2

√
qV (φ)

)
=

∫
Σ

d3σ

(
1

2
π
N
√
q
π + πNaφ,a +

1

2
N
√
qqabφ,aφ,b +

N

2

√
qV (φ)

)
=

∫
Σ

d3σ

[
N

2

(
π2

√
q

+
√
q
(
qabφ,aφ,b + V (φ)

))
+Naπφ,a

]
(3.67)

this Hamiltonian combines with (3.35) to form the total Hamiltonian of the gravity scalar system.
Since in the gravity sector we still have the same primary constraints(3.21) and (3.22) one must
conclude that the coefficients of lapse and shift are secondary constraints as before and this implies
we can read off the scalar field contributions to these constraints as:

Hφ(σ) =
1

2

[
π2

√
q

+
√
q
(
qabφ,aφ,b + V (φ)

)]
(σ) (3.68)

Hφ
a (σ) = πφ,a(σ) (3.69)

where Hφ(σ), Hφ
a (σ) are the scalar field contributions to the Hamiltonian and diffeomorphism

constraints respectively. Note that Hφ
a does not depend upon the metric, this results holds for

arbitrary matter fields, [21].
As Hφ

a (σ) does not depend upon the canonical gravitational variables all cross terms drop out
when computing:

{
~HTot( ~N), ~HTot( ~M)

}
and one has:{

~HTot( ~N), ~HTot( ~M)
}

=
{
~H( ~N), ~H( ~M)

}
+
{
~Hφ( ~N), ~Hφ( ~M)

}
= ~H(L ~N ~M) +

{
~Hφ( ~N), ~Hφ( ~M)

}
(3.70)

where in the final line we have used the Dirac algebra.
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Since we have a first class system this means that the final line above must be a combination
of the total constraints, using this one can conclude that:{

~Hφ( ~N), ~Hφ( ~M)
}

= ~Hφ(L ~N ~M) . (3.71)

The same conclusion can be made for the
{
Hφ, Hφ

}
Poisson bracket of the scalar field from (3.61),

i.e. {
Hφ(N), Hφ(M)

}
=

∫
Σ

d3σqab (NM,b −MN,b)H
φ
a (σ) . (3.72)

Finally, one can consider the
{
HTot, HTot

a

}
Poisson bracket:{

HTot(N), ~HTot( ~M)
}

=
{
H(N), ~H( ~M)

}
+
{
Hφ(N), ~H( ~M)

}
+
{
Hφ(N), ~Hφ( ~M)

}
= −H(L ~MN) +

∫
Σ

d3σN(σ)Ma(σ′)
{
Hφ(σ),−2qacDbP

bc(σ′)
}

+
{
Hφ(N), ~Hφ( ~M)

}
= −H(L ~MN) +

{
Hφ(N), ~Hφ( ~M)

}
+∫

Σ

d3σ

∫
Σ

d3σ′N(σ)Ma(σ′)− 2qacDb

{
Hφ(σ), P bc(σ′)

}
= −H(L ~MN) +

{
Hφ(N), ~Hφ( ~M)

}
−2

∫
Σ

d3σ

∫
Σ

d3σ′N(σ)Ma(σ′)qacDb

[
δHφ(σ)

δqbc(σ′)

]
(3.73)

where in the first line we used the fact that
{
H(N), ~Hφ( ~M)

}
= 0 as Hφ

a is independent of the
gravitational variables, in the second line we used the Dirac algebra, and in the third line used the
fact that Hφ does not depend upon P ab, which allows the metric and spatial covariant derivative
to be taken outside the Poisson bracket. Again in order to have a first class system the right
hand side of (3.73) must be a total constraint and hence we conclude that:{

Hφ(N), ~Hφ( ~M)
}

= −Hφ(L ~MN) + 2

∫
Σ

d3σ

∫
Σ

d3σ′N(σ)Ma(σ′)qacDb

[
δHφ(σ)

δqbc(σ′)

]
(3.74)

we can view (3.71), (3.72), and (3.74) as constraints on the types of matter coupling that will
lead to a consistent system in the constrained Hamiltonian formalism.

We shall use the scalar field canonical analysis again when we consider i.) the parametrised
scalar field in section 3.5 and ii.) the deparametrisation of GR, when coupled to a scalar field
without potential, in section 4.4.1.

3.5 Symmetries, diffeomorphisms & the Dirac algebra
The fact that the constraint algebra in GR is not isomorphic to the Lie algebra of diffeomorphisms
leads to several important questions: i.) what precisely are the symmetries of GR in the covariant
and canonical formalisms and what are their relationships, ii.) why is there a difference between
GR and Yang Mills in the way the Lie algebra is represented by the constraints (recall we showed
the (gauge) Lie algebra and the constraint algebra for Yang Mills theory were isomorphic in
(2.101)) and finally iii.) can one, by some means, obtain a representation of the spacetime
diffeomorphism group or algebra in the GR phase space. We shall try to explore these questions
in this section.
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3.5.1 Symmetries in GR

We should now like to take a broader perspective and consider the various symmetry groups
that characterise GR. This will enable us to understand more fully the relationship between the
symmetry groups associated with the covariant and canonical formalisms. The seminal paper on
this topic is [24], but we have found recent discussions in [25, 26, 27] to be helpful also.

The Einstein Hilbert action (3.4), is invariant under general coordinate transformations or pas-
sive spacetime diffeomorphisms, PDiff(M) and as previously stated this will imply a singular
Lagrangian and constrained Hamiltonian system, which we have now analysed. Any symmetry
of the action will automatically be reflected in the equations of motion, i.e. in the dynamics.
However, PDiff(M) is not the largest dynamical symmetry group of the Einstein equations or
Einstein Hilbert action, in fact there exists a larger group, called Q, [24, 25] or the ‘induced
diffeomorphism group’ in [26]. This group is characterised by allowing general coordinate trans-
formations to depend not only on coordinates but the metric field as well. In particular, one can
describe an element g of this induced diffeomorphism gauge group of gravity as a map

g : Lor(M) → Lor(M)

g : gαβ → g[gαβ ] ≡ d[gαβ ](gαβ) (3.75)

where Lor(M) is the space of Lorentzian metrics on spacetime and the map d is defined as

d : Lor(M) → Diff(M)

d : gαβ 7→ d[gαβ ] . (3.76)

In other words the action of the element g is to push forward the spacetime metric by the
particular diffeomorphism d[gαβ ]. Clearly, this group contains the action of the standard passive
diffeomorphisms as a sub-group but what is more interesting is that this group can be directly
related to the symmetry group we have obtained in the Hamiltonian analysis.

We briefly discuss the results of [26], which provide a relation between this larger group and
the symmetries we have found in canonical gravity. The starting point is the analysis discussed in
section 2.3.2 concerning the generators of gauge transformations in the sense of Bergmann, i.e. as
maps from trajectories to trajectories in phase space. In order to translate the Lagrangian sym-
metries to canonical ones a restriction on the form of the general coordinate transformations has
to be made, this ensures that the symmetry may be projected from the Lagrangian configuration
velocity space to phase space. This restriction is of the form

Xµ → Xµ − εµ(X, gαβ) (3.77)

where
εµ = δµa ξ

a + nµξ0 (3.78)

and where ξ0 and ξa are arbitrary functions of the spacetime coordinates Xµ and spatial metric.
The form of the gauge generator is postulated to be

G(t) =

∫
Σ

d3σ
(
ξµ(t)G0

µ + ξ̇µ(t)G1
µ

)
(3.79)

and then using the results of section 2.3.2 on the form of the Gi it is possible to express them in
terms of the known constraints of canonical gravity. The result is that

G(t) =

∫
Σ

d3σ
(
ξµ
(
Hµ +NρPνC

ν
µρ

)
+ ξ̇µPµ

)
(3.80)
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where Hµ → (H,Ha), Nρ → (N,Na), Pµ are the canonical momenta to Nµ, (which get dropped
in the ADM phase space), and {Hµ, Hρ} = CνµρHν .

This generator G(t) is the canonical generator of gauge transformations in the full GR phase
space, (i.e. not the ADM space) but the original phase space and it maps solution trajectories to
other solution trajectories. In this picture the canonical symmetry group, generated by G(t), can
be viewed as the group obtained from the projectable sub-group of the induced diffeomorphism
group. This is the relation between the Lagrangian and Hamiltonian symmetries of GR. This
projectable group is often called the Bergmann-Komar group, see also the helpful dialogue in the
appendix of [27].

3.5.2 Projectability of Noether symmetries to phase space

The difference between Yang Mills theories and GR in the way the gauge Lie algebra is represented
by the Poisson algebra of the constraints has been investigated in [28]. In their approach a
projection map π : F → Γ is used to construct a phase space Γ from the space of (spacetime)
field configurations F for an arbitrary Lagrangian field theory and it is shown that Γ coincides
with the usual canonical phase space for both Yang Mills and GR. A notion of local symmetry
in F is then defined as a pair (δφa, αµ), (where δφa|φa is a tangent vector on F , at the field
configuration point φa, and where αµ is a spacetime vector density), such that the variation of
the Lagrangian density δL with respect to this infinitesimal change in the field δφa is the total
derivative ∇µαµ. One is then able to use the map π to pushforward local symmetries from F to
Γ, however because the projection map is in general many to one the projected symmetry may
not be well defined. It is a result of [28] that the differences in the way the gauge symmetry is
represented by the constraint algebra in Yang Mills and GR can be precisely captured by the
projectability of the local symmetries to the phase space in each case.

3.5.3 Finding a representation of LDiff(M) in canonical gravity

Having said this it is possible to find a representation of LDiff(M) in canonical gravity, however
in order to do so one must extend the phase space of the theory, [29, 30]. First, [29], describes
a method to extend the phase space (φ(σ), π(σ)) of a scalar field theory on a fixed spacetime
background by adding the “embedding variables” and their conjugate momenta and then defines
a homomorphism from LDiff(M) into the Poisson algebra of this extended phase space. In [30]
this method is applied, modulo certain technicalities, to canonical gravity. The main motivations
for this work were i.) to see whether the spacetime covariance, manifestly broken in the canonical
picture, could be recovered (rather as in canonical QFT where the Poincarè group can be recovered
despite the breaking of Lorentz covariance in choosing a time) and ii.) the quantum theory
of gravity- there exist group theoretic methods to find operators on a Hilbert space but these
generally require the observables to be generators of a Lie algebra. We discuss the method by
which this representation can be found.

By “embedding variables” we mean embedding maps Z : Σ→M , the space of all such embed-
dings will be denoted Emb(Σ,M), and this space inherits a differential structure from C∞(Σ,M).
We shall also use the set of spacelike embeddings Embg(Σ,M) (with respect to a metric g) and it
also inherits a differential structure and is an infinite dimensional manifold. One can define vec-
tors, co-vectors in this space where for example a vector vZ ∈ TZ(Embg(Σ,M)) is defined to be
a smooth map vZ from Σ into the tangent vectors on M where vZ(σ) ∈ TZ(σ)M . Co-vectors can
be defined as appropriate duals of these objects. The tangent space of Embg(Σ,M) at the “point”
Z ∈ Embg(Σ,M) will be denoted TZEmbg(Σ,M) and the co-tangent space T ?ZEmbg(Σ,M).

One can define a coordinate basis δ/δXα in TYt(Embg(Σ,M)) and coordinate co-vector basis
δXα in T ?Yt(Embg(Σ,M)) by their action on σ ∈ Σ and relation to their corresponding basis
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vectors, co-vectors in TpM and T ?pM as:

δ

δXα
(σ) :=

∂

∂Xα
|X=Yt(σ) (3.81)

δXα(σ) := dXα|X=Yt(σ) (3.82)

The constructions we have used in the canonical analysis above can be defined as tangent vectors,
co-vectors in TZEmbg(Σ,M) or T ?ZEmbg(Σ,M) respectively, e.g. the time Tµ can be thought of
as an element vYtdefined such that vYt(σ) = Tµ(Yt(σ)) and the unit normal nµ can be defined
as n ∈ T ?YtEmbg(Σ,M) such that n(σ) = nµ(Yt(µ)). Indeed one can decompose any vector vYt
in TYtEmbg(Σ,M) into a sum such that their action on σ ∈ Σ is to map to vectors normal and
tangential to the hypersurface Yt(Σ). We have:

vαYt(σ) = N(σ)gαβ(Yt(σ))nβ(σ) +Na(σ)
∂

∂σa
(Xα ◦ Yt(σ)) (3.83)

where N is the pullback of the lapse function, nβ ∈ T ?YtEmbg(Σ,M) maps to the unit normal,
and the second term can be interpreted as vYt [Na] ∈ TYt(Embg(Σ,M)) , i.e. vYt [Na](σ) is the
pushforward of the spatial vector Na at the spacetime point Yt(σ). One can repeat the entire
ADM analysis using this formalism and reproduce the Dirac algebra as above.

In this analysis the reason the Dirac algebra acquires structure functions is as follows. First
there is an action of Diff(M) on the space of all embeddings Emb(Σ,M) as follows:

Emb(Σ,M)×Diff(M) → Emb(Σ,M)

(Z, φ) 7→ φ◦Z (3.84)

where φ ∈ Diff(M) and one can see that this is a representation of Diff(M). If one only focuses on
φ sufficiently close to the identity then a spacelike hypersurface Z(Σ) will be mapped to another
spacelike hypersurface. Secondly, if one considers a vector field V onM generating a 1-parameter
family of spacetime diffeomorphisms φVt then the vector vZ ∈ TZEmb(Σ,M) associated to the
spacetime vector V , i.e. vZ(σ) = V (Z(σ)), will be an element of TZEmbg(Σ,M). Hence, the
vector fields on Embg(Σ,M) do form a representation space for LDiff(M). The problem in the
canonical analysis is that one has to decompose spacetime vectors into their normal and tangential
components and it is this that introduces a reference to the background spacetime metric, i.e. one
has to use the metric to define the notion of an orthogonal vector to Σt. In effect one replaces the
coordinate basis δ/δXα and uses instead the decomposition (a non-coordinate basis) nαδ/δXα,
and ∂

∂σa (Xα ◦ Yt(σ))δ/δXα the fact these basis vectors do not commute is the reason for qab in
(3.45), [29].

Parametrised Scalar Field Theory

The resolution to this problem is, as mentioned above, to extend the phase space of the theory.
The method developed by Isham and Kuchař is first applied to the parametrisation of a minimally
coupled scalar field with fixed spacetime metric gµν .

The action we consider is:

S[Φ] =

∫
M

d4X − 1

2

√
g (U(Φ)gµνΦ,µΦ,ν + V (Φ)) (3.85)

where U > 0 and V are functions (self interactions) of the scalar field. As before one can perform
a 3+1 analysis on this action and pull back all quantities to Σ×R, where we define φ(σ, t) as the
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pullback of Φ under our fixed family of embeddings Yt. One finds:

S[φ] =

∫
R
dt

∫
Σ

d3σ
1

2
N
√
q

(
U

N2

(
−φ̇+Naφ,a

)2

− Uqabφ,aφ,b − V
)

(3.86)

and hence the conjugate momentum π is:

π(σ, t) :=
δS[φ]

δφ(σ, t)
= −√q U

N

(
−φ̇+Naφ,a

)
. (3.87)

After performing a Legendre transform the resulting Hamiltonian is:

H[N,Na] =

∫
Σ

d3σ
(
NHφ +NaHφ

a

)
(3.88)

where Hφand Hφ
a are given by:

Hφ =
1

2

(
U−1 π

2

√
q

+ U
√
qqabφ,aφ,b +

√
qV

)
(3.89)

Hφ
a = πφ,a . (3.90)

We stress these functions are not constraints in the current theory, because the spacetime metric
is fixed we do not generate Hamiltonian and diffeomorphism constraints. In fact Hφ can be
interpreted as the energy density of the scalar field and Hφ

a as the momentum density.
There is an implicit dependence on the embedding in all of the above quantities, e.g.

qab(σ) = gαβ(Yt(σ))
∂

∂σa
(Xα ◦ Yt(σ))

∂

∂σb
(Xα ◦ Yt(σ))

φ(σ, t) = Φ ◦ Yt(σ)

and so on, hence more properly one should write φ[Yt, σ), qab[Yt, σ), N [Yt, σ) and Na[Yt, σ). Of
course in the current situation this is academic as our family of embeddings are fixed. However
we now wish to parametrise the system, i.e. promote the fixed embeddings Yt to be additional
dynamical variables. This is the field theoretic generalization of the parametrization28 of the
Newtonian particle. (Given that the original spacetime action (3.85) is manifestly independent of
the foliation and embedding, when one does perform a variation of the extended action with
respect to the embeddings the field equations derived must be valid because of the original
Hamiltonian equations).

Extending the phase space to include the embedding variables

By adding the embeddings as additional configuration variables one is enlarging the configu-
ration space of the theory from C∞ (Σ,R), the space of infinitely differentiable scalar fields,
to include Embg(Σ,M) the space of all spacelike embeddings. The phase space will similarly
be enlarged from the co-tangent bundle of C∞ (Σ,R) (T ?C∞ (Σ,R) the space coordinatised
by (φ, π)φ ∈ C∞ (Σ,R) , π ∈ T ?φC

∞ (Σ,R)) to include T ?Embg(Σ,M). This new phase space
will have coordinates (φ, π,Xα, Pα) where Xα(σ) := Xα ◦ Y (σ) and Pα(σ)dXα := P (σ) for
P ∈ T ?YtEmbg(Σ,M). Now φ, π are to be regarded as functions on Σ × R independent of the
embedding variables and the explicit dependence on the embedding is to be found in qab[Y, σ, t),
N [Y, σ, t) and Na[Y, σ, t).

28See [3, 36] for discussions of parametrised field theories.
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We define a new action equivalent to the canonical action

SCan =

∫
R
dt

∫
Σ

d3σ
(
πφ̇−NHφ −NaHφ

a

)
but which is also a functional of the embedding variables29 Y (σ, t) as well as the scalar field, it
is:

S[Y, φ, π] =

∫
R
dt

∫
Σ

d3σ
(
πφ̇−Hφ

αẊ
α
)

(3.91)

where Ẋα := ∂
∂t (Xα ◦ Y (σ, t)) = Nnα[Y, σ) +Na (Xα ◦ Y (σ, t)),a and Hφ

α is defined by:

Hφ
α := −nα[Y, σ)Hφ[Y, φ, π;σ) +Hφ

a [φ, π;σ)Xa
α[Y, σ) . (3.92)

The object Xa
α[Y, σ) is defined as:

Xa
α[Y, σ) := gαβ(Y (t, σ))qab(σ)

∂

∂σb
(Xβ ◦ Y (σ, t)) (3.93)

and we have explicitly included all dependence on the embedding variables.
This action does the job because

Hφ
αẊ

α =
(
−nα[Y, σ)Hφ[Y, φ, π;σ) +Hφ

a [φ, π;σ)Xa
α[Y, σ)

) (
Nnα[Y, σ) +N b (Xα ◦ Y (σ, t)),b

)
= NHφ[Y, φ, π;σ) +NaHφ

a [φ, π;σ) (3.94)

using nαnα = −1, nα (Xα ◦ Y (σ, t)),b = 0 and the chain rule Xa
α[Y, σ) (Xα ◦ Y (σ, t)),b = δba and

also note that the momentum density Hφ
a [φ, π;σ) is not a functional of the embedding.

Now one can compute the momentum conjugate Pα to the embedding30 as:

Pα :=
δS[Y, φ, π]

δẊα
= −Hφ

α (3.95)

but observe that Hφ
α is independent of Ẋα by (3.92) and hence (3.95) cannot be inverted for the

velocity Ẋα and hence is a constraint so we have:

Hα := Pα +Hφ
α = 0 (3.96)

as a constraint of the parametrised theory. We can implement this constraint in the action (3.91)
by means of a Lagrange multiplier λα(σ, t) as follows:

S[Y, P, φ, π;λα] =

∫
R
dt

∫
Σ

d3σ
(
PαẊ

α + πφ̇− λαHα

)
. (3.97)

The equations of motion for this action are:

0 =
δS[Y, P, φ, π;λα]

δPα
⇒ Ẋα − λα = 0 (3.98)

0 =
δS[Y, P, φ, π;λα]

δλα
⇒ Hα = 0 (3.99)

29Following [29] we are using Y (σ, t), which is strictly the diffeomorphism to M rather than the embedding
Yt(σ).

30We mean δẊα := Xα ◦ δẎ here and similarly δXα := Xα ◦ δY .
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the variation with respect to the embedding Xα ensures that the constraint (3.96) is preserved
in time. Finally variation with respect to φ, π just reproduces the original Hamilton equations of
motion, i.e. with respect to the Hamiltonian in (3.88).

The next step is to decompose the constraint Hα, a co-tangent vector on Embg(Σ,M), into
its tangential and normal components (because the spacetime metric is not dynamic here these
components are fixed functionals of the embedding), we have:

Hα(σ) = −H(σ)nα +Ha(σ)Xa
α(σ) (3.100)

where H(σ) := nαHα and Ha := Xα
aHα using this decomposition the action can be written as:

S =

∫
R
dt

∫
Σ

d3σ
(
PαẊ

α + πφ̇− λH − λaHa

)
. (3.101)

Note variation with respect to Pα ensures that λ, λa can be interpreted as lapse and shift, see
(3.98). The quantities H and Ha are the Hamiltonian and diffeomorphism constraints of the
parametrised theory.

There are two non-trivial results, [29], concerning the Poisson brackets of this theory: i.)
{Hα(σ), Hβ(σ′)} = 0 and ii.) H(σ) and Ha(σ) satisfy the Dirac algebra. We stress that although
the 3-metric is not a canonical variable itself here- the spacetime metric is not dynamic- it is a
functional of the embedding and therefore in the parametrised theory is a phase space dependent
object. This means the appearance of qab[X,σ) in the Dirac algebra has to be interpreted as
a structure function, as before for canonical gravity, and hence we do not have a Lie algebra
and that seems to imply a loss of the diffeomorphism group. However, the difference is that
now the embeddings are dynamical variables and these results do allow the construction of a
homomorphism from LDiff(M) to the Poisson algebra of the parametrised theory.

Homomorphism from LDiff(M) to the Poisson algebra of the parametrised scalar
theory

Our goal is to find a homomorphism from LDiff(M) to the Poisson algebra of the parametrised
theory. The phase space of this theory can be defined as T ?Embg(Σ,M)× T ?C∞(Σ,M) subject
to the constraints defined in (3.96). In [29] this homomorphism is defined in stages, which we
now describe.

Firstly, in order to deal with the sign difference between the Lie bracket of elements of
LDiff(M) and the commutator an anti-homomorphism is defined between LDiff(M) and the
algebra of vector fields with the commutator as product.

Secondly, we recall the group representation of Diff(M) on the space of embeddings in (3.84).
This implies there is an induced representation on the algebra, so a vector field V generating
a diffeomorphism φ can be mapped to a vector field v[V ] on Emb(Σ,M) such that it is a Lie
algebra homomorphism. The image v[V ] can be defined as:

v[V ] : Emb(Σ,M)× Σ → TM

v[V ] : (Y, σ) 7→ v[V ](Y, σ) = V α(Y (σ))
∂

∂Xα
|X=Y (σ) (3.102)

and one has the homomorphism [v [U ] , v [V ]] = v [[U, V ]]. The problem is that in the canonical
theory one is not interested in Emb(Σ,M) but spacelike embeddings Embg(Σ,M). This lat-
ter space is not invariant under the action of the diffeomorphism group because as mentioned
previously there always exists a diffeomorphism which can map a spacelike surface to a non-
spacelike one. However, if one restricts to diffeomorphisms sufficiently close to the identity then
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the spacelike surface can be preserved, this is because Embg(Σ,M) is an open sub-manifold of
Emb(Σ,M). The result is that the representation of LDiff(M) by vector fields on Emb(Σ,M)
can be restricted to Embg(Σ,M). The price to be paid is that these vector fields are not complete
in TEmbg(Σ,M) in other words they define integral curves that will not remain in Embg(Σ,M).

Thirdly, we use a general result that there exists an anti-homomorphism from the space of
vector fields on a configuration manifold Q with coordinates qa to the Poisson algebra of phase
space functions on T ?Q . The map in question can be defined on a vector field v = va ∂

∂qa on Q
by mapping it to the phase space function p(v) as follows:

v 7→ p(v) = va(q)pa (3.103)

where pa is the momentum conjugate to qa. Further, the rate of change of a function g along the
integral curves generated by the vector v can now be represented as a Poisson bracket,

ġ(q) = (vg) (q)

= {g, p(v)} . (3.104)

This map is an anti-homomorphism, i.e. one can show:

p ([u, v]) = −{p(u), p(v)} (3.105)

and we can apply this result to the parametrised field theory where Q → Embg(Σ,M). This
means the map31:

v[U ] 7→ 〈P, v[U ]〉 [Xα, Pα] :=

∫
Σ

d3σv[U ](Y, σ)P (σ)

=

∫
Σ

d3σUα(Y (σ))Pα(σ)

=: P (U)[Xα, Pα] (3.106)

where v[U ] is a vector field on Embg(Σ,M) and P is co-vector field on Embg(Σ,M) is an anti-
homomorphism, i.e. {P (U), P (V )} = −P ([U, V ]). So combining these three steps one has
a homomorphism from LDiff(M) to the Poisson algebra of functions on T ?Embg(Σ,M), i.e.
C∞ (T ?Embg(Σ,M),R).

As in (3.104) we can generate the evolution of functions g[X] on Embg(Σ,M) by computing
the Poisson bracket with respect to P (U), i.e.

ġ[X] = {g, P (U)} (3.107)

by “evolution” here we mean the change in g[X] along the flow of the vector field v[U ].
The final step is to extend this homomorphism to the Poisson algebra of functions on the full

phase space T ?Embg(Σ,M) × T ?C∞(Σ,M). One can do this using the map P (U) in (3.106)
by noting that it has a trivial action on the scalar field variables. However, one can modify the
homomorphism so that it actually generates the evolution of all the dynamical variables, the map
then becomes the Hamiltonian H(U) defined as:

H(U)[Xα, Pα, φ, π] : =

∫
Σ

d3σUα(Y (σ))Hα(σ)

= P (U) +

∫
Σ

d3σUα(Y (σ))Hφ
α(σ)

=: P (U)[X,P ] +Hφ(U)[X,φ, π] (3.108)
31The first line below defines the appropriate notion of dual hinted at earlier in the discussion of vectors and

co-vectors on Embg(Σ,M).
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when H(U) acts on g[X] it reproduces the result in (3.107) because Hφ(U) Poisson commutes
with g[X] as it is independent of the momentum. However, when the Hamiltonian acts upon the
scalar field variables φ, π the P (U) term Poisson commutes so that one is left with Hφ(U) and
hence reproduces the Hamiltonian in (3.92).

One can confirm that H(U) is a homomorphism by using the fact that i.) the Hα(σ) Poisson
commute, see below (3.101) and ii.) Hφ

α Poisson commutes with the embeddings Xα. We have:

{H(U), H(V )} =

∫
Σ

d3σ

∫
Σ

d3σ′
{
Uα(Y (σ))Hα(σ), V β(Y (σ′))Hβ(σ′)

}
=

∫
Σ

d3σ

∫
Σ

d3σ′
[
{Uα(Y (σ)), Pβ(σ′)}Hα(σ)V β(Y (σ′))

+
{
Pα(σ), V β(Y (σ′)

}
Uα(Y (σ))Hβ(σ′)

]
=

∫
Σ

d3σ

∫
Σ

d3σ′
[
Uα,βHα(σ)V β(Y (σ′))− V β,αUα(Y (σ))Hβ(σ′)

]
δ3(σ, σ′)

= −
∫

Σ

d3σHβ(σ)
[
V β,αU

α − V αUβ,α
]

= −
∫

Σ

d3σHβ(σ) [U, V ]
β

= −H([U, V ]) (3.109)

where we used the simple result:

{Uα(Y (σ)), Pβ(σ′)} =
∂Uα

∂Xγ
{Xγ(σ), Pβ(σ′)}

=
∂Uα

∂Xγ
δγβδ

3(σ, σ′)

= Uα,βδ
3(σ, σ′) .

Hence we have found a homomorphism from LDiff(M) to the Poisson algebra of phase space
functions of the parametrised scalar field theory.

Applying the method to canonical gravity

In [30] the Isham Kuchař method is used to obtain a representation of LDiff(M) in the Poisson
algebra of an extended canonical gravity phase space. There is one key subtlety, which we briefly
discuss before stating the main result.

First in GR, by contrast to the parametrised field theory, the lapse and shift are not definite
functionals of the embedding this is because the spacetime metric is dynamic and the notion
of orthogonal and tangential vectors cannot be defined until the metric is also known- it is not
enough to have the embedding only. In the GR case we wish to make the lapse and shift definite
functionals of the embedding and gravitational variables

(
qab, P

ab
)
. However in order to do so one

must implement a spacetime gauge fixing on the metric gµν (which removes the diffeomorphism
redundancy) this is done by imposing an additional structure to which one fixes four projections of
the spacetime metric. This has the effect of preventing arbitrary variations in the lapse and shift
and suspends the Hamiltonian and diffeomorphism constraints, which will need to be recovered
at the end of the process.

The additional conditions imposed are defined with respect a reference foliation Y Ref : Σ ×
R→M , its inverse enables space and time to be defined by Y −1

Ref (X) = σ(X)× τ(X) ∈ Σ×R. In
[30] the following class of metrics and embeddings are used i.) all globally hyperbolic spacetime
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metrics g ∈ GHPRiem(M) and ii.) all embeddings32 X ∈ Emb(Σ,M); the latter because in GR
we cannot specify an external metric, with which to define the notion of spacelike as we could with
the scalar field theory. Finally we denote by EmbY Ref (Σ,M) the space of embeddings which may
be continuously deformed into one of the embeddings Y Reft . The extended configuration space
for GR will then be taken as EmbY Ref (Σ,M)×RiemΣ, where RiemΣ, the space of Riemannian
metrics on Σ, is the original configuration space for canonical GR. We remark that for any pair
(X, qab) there exists a spacetime metric g such that q = X?g, in fact there exist infinitely many.

The four conditions imposed on g are as follows:

g−1(dτ, dτ) = −1 (3.110)
g−1(dτ, σ?(·)) = 0 (3.111)

the sub-set of globally hyperbolic metrics which satisfy these conditions will be called Gaussian
with respect to the diffeomorphism Y Ref , gGauss ∈ GaussPRiemY RefM . One could regard the
above conditions as fixing the spacetime gauge if every globally hyperbolic metric g could be
mapped to a Gaussian metric gGauss by a diffeomorphism φ, i.e. gGauss = φ?g.33 Unfortunately,
this only holds in some finite time of a particular slice Yt.

These conditions enable one to express, [30], the spacetime metric gαβ(X(σ)) as a linear
function of qab(σ) and functional of the embedding X, i.e. g = g[X, qab(σ)). It follows that
because the covectors nµand Xa

µ are dependent on the spacetime metric (see (3.93) for the latter)
they may also be expressed as functionals of the embedding and functions of the induced metric
qab. So the original ADM action SADM [qab, P

ab, N,Na], (3.36), can now be written as:

S′ADM [qab, P
ab;X] =

∫
R
dt

∫
Σ

d3σ
(
P abq̇ab −HGR

α Ẋα
)

(3.112)

which is the analogue of (3.91) for the parametrised scalar field and where we have:

Ẋα = N [X, q)nα[X, qab(σ)) +Na[X, q)(Xα
,a) (3.113)

and
HGR
α := −Hnα +HaX

a
α . (3.114)

Now the lapse and shift can no longer be be varied whilst keeping our additional structure
(the reference embedding and gauge conditions) fixed hence, in contrast to SADM , S′ADM is no
longer a functional of lapse and shift. As mentioned above this means one does not recover the
Hamiltonian and diffeomorphism constraints and they have been lifted in this formalism. Again
as with the scalar field we can compute the momentum conjugate to the embedding to obtain:

Pα :=
δS[X, qab, P

ab]

δẊα
= −HGR

α . (3.115)

As with the scalar field case, this momentum cannot be inverted in terms of the velocity and
hence is a constraint. We have:

Πα := Pα −Hnα +HaX
a
α = 0 (3.116)

and can implement this constraint by using Lagrange multipliers N,Na to obtain:

S[qab, P
ab;X,P,N,Na] =

∫
R
dt

∫
Σ

d3σ
(
PαẊα + P abq̇ab −NΠ−NaΠa

)
(3.117)

32We shall use X for an embedding in this sub-section to avoid confusion with the reference foliation Y .
33Strictly one should require a unique such diffeomorphism in order to provide a perfect gauge fixing.
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where Π := nαΠα = nα[X, q)Pα +H and Πa := Xα
,aΠα = Xα

,aPα +Ha.
Variation with respect to N,Na recovers the constraints Πα = 0, variation with respect to Pα

ensures that the multipliers can be interpreted as lapse and shift34. Finally, we can compute the
evolution of the gravitational variables

(
qab, P

ab
)
using Hamilton’s equations:

q̇ab(σ) =

{
qab(σ),

∫
Σ

d3σ′NΠ +NaΠa

}
=

{
qab(σ),

∫
Σ

d3σ′N (nα[X, q)Pα +H) +Na
(
Xα
,aPα +Ha

)}
=

{
qab(σ),

∫
Σ

d3σ′NH +NaH

}
(3.118)

where the final line follows because only the expressions H,Ha contain the gravitational momen-
tum P ab and hence can give non-zero Poisson brackets with the 3-metric. Of course (3.118) just
reproduces the standard ADM Hamilton equation for the 3-metric. We now do the same for the
momentum:

Ṗ ab(σ) =

{
P ab(σ),

∫
Σ

d3σ′NΠ +NaΠa

}
=

{
P ab(σ),

∫
Σ

d3σ′N (nα[X, q)Pα +H) +Na
(
Xα
,aPα +Ha

)}
=

{
P ab(σ),

∫
Σ

d3σ′NH +NaHa

}
+

∫
Σ

d3σ′NPα
{
P ab(σ), nα[X, q)

}
(3.119)

the final line follows because the terms Xα
,aPα are both independent of the 3-metric (notice

Xa
α[X, q) depends on the metric because we have to lower a spacetime index). In this case the

first term above reproduces the ADM Hamilton equation for the momentum but we also have a
second term. This is a result of the fact that nα depends on the 3-metric and hence it does not
Poisson commute with P ab. Observe that this second term can be (weakly) dropped when the
original Hamiltonian and diffeomorphism constraints are recovered since the coefficient Pα ' 0
in that case. Hence we can conclude that the action (3.117) is equivalent to the original ADM
action when we impose the Hamiltonian and diffeomorphism constraints. As in the parametrised
scalar a key result, [30], now follows:

{Πα(σ),Πβ(σ′)} = 0 . (3.120)

This enables us to use the same steps as above to obtain a representation of LDiff(M) in the
Poisson algebra of the extended phase space. The following map is the homomorphism:

V 7→ Π(V )[Xα, Pα, qab, P
ab] :=

∫
Σ

d3σV α(X(σ))Πα(σ) (3.121)

where V is a vector in LDiff(M).
The final step is to re-introduce the original constraints in order to ensure that this canonical

system reconstructs a spacetime metric, which satisfies Einstein’s equations. This is achieved by
varying the gauge conditions τ(X) and σ(X). An arbitrary variation in these conditions together
with variations in the embedding and the 3-metric is equivalent to an arbitrary variation in the
spacetime metric [30] and hence an arbitrary variation in lapse and shift. This ensures that the

34As pre-empted in the notation N,Na.
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original Hamiltonian and diffeomorphism constraints can be recovered but without affecting the
homomorphism defined above because we always maintain the Gaussian conditions, we just vary
the functions used to define it. Hence a representation of LDiff(M) has been found in an extended
canonical gravity phase space.

We have shown that there exists a representation of LDiff(M) in canonical gravity. However,
we would like to mention several points regarding this work. Firstly the representation involves
vector fields on a manifold Embg(Σ,M), which are not complete as the representation does not
extend to Diff(M). Secondly, the gauge fixing used cannot be defined globally on the phase space
so the results derived here have to be considered as having local validity in phase space only.
Finally, Gaussian conditions were used to gauge fix the metric but this is not mandatory other
choices are possible, see [31].

3.6 Asymptotically flat case
In this section we conclude by considering what happens when we extend the analysis to asymp-
totically flat spacetimes, which are non-compact with boundary and which have appropriate fall
off conditions on the spacetime metric motivated by the spacetime surrounding a compact object,
e.g. a star or black hole alone in the universe. We have used [5, 32] as the principal references
for this section.

From the covariant perspective the case of spacetime boundaries (for spatially compact or
non-compact spacetime) requires one to add boundary terms to the Einstein Hilbert action in
order that the resulting action be functionally differentiable. One should then go through the 3+1
decomposition again and carefully consider all the surface terms that were previously dropped. An
important point is that after the 3+1 analysis is performed the additional boundary terms do not
contain time derivatives of the 3- metric and therefore the conjugate momentum is unchanged.
The difference is that the Hamiltonian ends up with additional surface terms, which are non-
zero on the constraint surface, defined by the usual Hamiltonian and diffeomorphism constraints.
Rather than do this we shall simply consider whether the functionals H(N) and ~H( ~N) need to
be modified in asymptotically flat spacetimes. A review of boundary terms in GR can be found
in [15] and a careful discussion in light of potentially different asymptotic spacetimes from the
covariant view and which demonstrates equivalence to the method we are adopting here is given
in [33].

We shall define asymptotic flatness by the following fall off conditions on the ADM variables:

qab(σ) = δab +
fab(t,

σ
r )

r
+ hab(σ) (3.122)

P ab(σ) =
F ab(t, σr )

r2
+ gab(σ) (3.123)

where r =
√
σaσbδab and hab and gab are remainders that fall off as r−1−ε and r−2−ε for ε > 0

and we also assume that the derivatives satisfy qab,c ∼ O(r−2) and P ab,c ∼ O(r−3). We impose
opposite parity conditions on fab and F ab, even and odd respectively.

We have shown that when the equations of motion hold H(N) and ~H( ~N) generate spacetime
diffeomorphisms. However, in the spatially non-compact case this interpretation only holds if N
and Na fall off sufficiently fast as otherwise the spatial integrals defining H(N) and ~H( ~N) may
diverge. In the context of asymptotically flat spacetime we wish to consider decay behaviour for
the smearing functions, which would correspond to asymptotic Poincarè transformations (trans-
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lations, rotations and boosts), and this motivates the following:

N(t, σ) = b0 + βaσ
a + S(t, σ) (3.124)

Na(t, σ) = ba + ωabσ
b + Sa(t, σ) (3.125)

where b0, ba are translations, βa boosts and the antisymmetric ωab rotations. The functions S
and Sa are known as supertranslations and can be interpreted as angle dependent translations,
they are defined to be odd O(1) functions on the asymptotic sphere (and also include the higher
powers of r−1). In fact these group of transformations (viewed as coordinate transformations on
{σa}) preserve the asymptotic flatness as defined above, [17].

The problem is that for these non-trivial fall off conditions the quantities H(N) and ~H( ~N)

either diverge or are not functionally differentiable. For ~H( ~N) with Na ∼ O(1) one has the
integrand NaqacDbP

bc ∼ O(r−3) and given the volume element is ∼ O(r2) one has a logarithmic
divergence. Similarly, for H(N) one has a problem with the √q 3RN term in the integrand since
3R ∼ 3Rabcd ∼ ∂Γ ∼ O(r−3) where we use that qab ∼ O(1) and √q ∼ O(1) and this implies√
q 3RN ∼ O(r−3) and hence again we have a logarithmic divergence for N ∼ O(1).
The point is that by adding an appropriate boundary term one can render both the resulting

functional and its variation well defined. One has for ~H( ~N)

~H( ~N) = −2

∫
Σ

d3σNaqacDbP
bc

= 2

∫
Σ

d3σDb(N
aqac)P

bc − 2

∫
Σ

d3σDb(N
aqacP

bc)

=

∫
Σ

d3σ
(
L ~Nq

)
bc
P bc − 2

∫
Σ

d3σDb(N
aqacP

bc)

=

∫
Σ

d3σ
(
L ~Nq

)
bc
P bc − 2

∫
∂Σ

d2Sb(N
aqacP

bc) (3.126)

where in the second line we have done an integration by parts, in the third line we have used the
definition of L ~Nq and in the final line converted the volume integral of the divergence to one over
the boundary of Σ, and d2Sb is the volume element on the asymptotic sphere S2. The variation
can now be computed as:

~δH( ~N) = δ

∫
Σ

d3σ
(
L ~Nq

)
bc
P bc − 2δ

∫
Σ

d3σDb(N
aqacP

bc)

=

∫
Σ

d3σ
(
L ~Nq

)
bc
δP bc +

∫
Σ

d3σ
δ

δqcd(σ)

[∫
Σ

d3σ′
(
L ~Nq

)
ab
P ab

]
δqcd(σ)

−2δ

∫
∂Σ

d2Sb(N
aqacP

bc)

=

∫
Σ

d3σ
(
δP abL ~Nqab − δqabL ~NP

ab
)
− 2δ

∫
∂Σ

d2Sb(N
aqacP

bc) (3.127)

where in the first line we have used (3.126), and in the third line we have used the result that
the functional derivative in the second term is L ~NP

ab. This latter result is easy to see if one is
permitted to drop a boundary term after an integration by parts however we cannot do this here
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as Σ has a boundary. However, one can compute:

δ

δqab(σ)

[∫
Σ

d3σ′
(
L ~Nq

)
cd
P cd

]
=

δ

δqab(σ)

[∫
Σ

d3σ′P ed2qdcDeN
c

]
= 2P c(aDcN

b) −Dc(P
abN c)

= 2P c(aDcN
b) −N cDc(P

ab)− P abDcN
c

= −
(
√
q

(
N cDc(

P ab
√
q

)− 2
√
q
P c(aDcN

b)

)
+ P abDcN

c

)
=: −L ~NP

ab

where the non-trivial step is the second line which involves using the identity (3.57), see [16], in
the penultimate line we have used Daq = 0 and in the final line we have just used the definition
of the Lie derivative of a rank 2 contravariant tensor of density weight +1.

One can show that i.) all the integrals over Σ in (3.126) and (3.127) are finite for the decay
behaviour on Na above for both ~H( ~N) and ~δH( ~N) and ii.) both boundary integral terms diverge
for the decay behaviour above. This motivates the definition of a new generator ~J( ~N)

~J( ~N) := ~H( ~N) + ~P ( ~N) (3.128)

where ~P ( ~N) := 2
∫
∂Σ
d2SbN

aqacP
bc = 2

∫
Σ
d3σDb(N

aqacP
bc) and whose variation δ ~J( ~N) is the

first two terms in (3.127). Using (3.126) we can see that

~J( ~N) =

∫
Σ

d3σ
(
L ~Nq

)
ab
P ab (3.129)

which is finite for the fall-off conditions on Na. Finally if we let Na = ba, i.e. an asymptotic
spatial translation, one has:

~P ( ~N) = ba2

∫
∂Σ

d2SbN
aqacP

bc =: baPADMa (3.130)

where PADMa is known as the ADM momentum.
One can repeat the above argument for H(N), i.e. consider it for the above fall off conditions

on N , also its variation and again add an appropriate boundary term to H(N) to define a new
functional, which is both finite and functionally differentiable. The result is that one defines a
new generator J(N) as:

J(N) = H(N) + E(N) (3.131)

and where the appropriate boundary term E(N) is given by

E(N) : =

∫
∂Σ

√
qqcdqef [dSd (qef − δef )DcN − dSc (qdf − δdf )DeN ]

+

∫
∂Σ

√
qqcdN (−dScΓeed + dSeΓ

e
cd) . (3.132)

This expression greatly simplifies if N consists of just a translation, i.e. N = b0 in this case one
has:

E(N) =

∫
∂Σ

√
qqcdb0 (−dScΓeed + dSeΓ

e
cd)

=

∫
∂Σ

δcdδefb0dSc (qed,f − qef,d)

=: 16πGboEADM (3.133)

57



where in the second line we used the asymptotic properties of the spatial metric, i.e. qcd → δcd,√
q → 1 and the definition of the connection components in terms of the metric. The quantity

EADM is known as the ADM mass or energy, when computed on for example the Schwarzschild
metric EADM = m, where m is the mass term in the Schwarzschild line element. It has been
proven that EADM ≥ 0 and that EADM = 0 if and only if the spacetime is Minkowski. Note that
although E(N) is well defined for translations it diverges for both boosts and rotations, one can
see this from the first two terms in (3.132), in the integrand DcN ∼ O(1), (qef − δef ) ∼ O(r−1),
dSd ∼ O(r2) and one can ignore the prefactor √qqcdqef as it is O(1) even and hence one has an
O(r) integrand to be computed on the asymptotic sphere in the limit r →∞, which diverges.

The result is that one now has two new generators J(N) and ~J( ~N) which are well defined
for the above asymptotic behaviour on N,Na leading to asymptotic (generalised, including su-
pertranslations) Poincarè transformations. The question then is how one should interpret the
transformations generated by J(N) and ~J( ~N), i.e. do they generate gauge transformations in
the same sense as H(N) and ~H( ~N) for the spatially compact case. In the case of supertrans-
lations one can see that J(N) = H(N) and ~J( ~N) = ~H( ~N) this is because for E(S) and ~P (~S)
the integrand is even with respect to the odd measure dSa and hence the boundary terms vanish
identically. Hence for supertranslations J(S) and ~J(~S) should be viewed as generating gauge
transformations. However, for proper asymptotic Poincarè transformations J(N) and ~J( ~N) need
to considered as independent functionals and the interpretation of their action is not clear.

This question can be addressed after computing the algebra of J(N) and ~J( ~N). This algebra
is calculated in [5] and it is the Dirac algebra, which we state in compact form as:{

J(N1, ~N1), J(N2, ~N2)
}

= J
(
L ~N2

N1 − L ~N1
N2,L ~N2

~N1 − ~N12(q)
)

=: J(N3, ~N3) (3.134)

where J(N1, ~N1) := J(N1) + ~J( ~N1) and ~N12(q) = qab (N1∂bN2 −N2∂bN1). The difference now is
that we have realised the Dirac algebra for non-trivial asymptotic behaviour of lapse and shift,
which using H(N, ~N) would have led to ill-defined functionals.

First we consider the case where both N1, ~N1 and N2, ~N2 are supertranslations in this case one
finds that N3, ~N3 are also supertranslations. This means that the algebra closes for supertransla-
tions. Secondly, if one of N1, ~N1 and N2, ~N2 is a supertranslation and the other non-trivial then
one has that N3, ~N3 are supertranslations. In other words the action of a supertranslation on a
non-trivial Poincarè generator is to turn it into a supertranslation generator. Since the supertrans-
lation generators equal H(N, ~N), which vanish on the constraint surface, one has the important
result that the non-trivial generators weakly Poisson commute with the gravitational constraints.
This means that J(N1, ~N1) for Poincarè transformations are by definition Dirac observables for
gravity. Finally, if both N1, ~N1 and N2, ~N2 are non-trivial then N3, ~N3 are non-trivial.

On the constraint surface all dependence upon the supertranslations drops out and hence one
can define J(N1, ~N1) by using the ten parameters bo, ba, ωab, and further asymptotically we can
replace qab in ~N12 by δabwhich removes the presence of structure functions when we consider only
the non-trivial asymptotic behaviour. Then we can define:

J(N1, ~N1) =: boP
0 + βaBa + baPa + φaJa (3.135)

where ωab = εabcφ
c. By then using the notation: −Ma0 = M0a := Ba, M

ab := εacbJc one has:

J(N1, ~N1) = bαP
α +

1

2
ωαβM

αβ (3.136)
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and finally using the algebra above one can conclude that Pα,Mαβ satisfy the Poincarè algebra,{
Pα, P β

}
= 0{

Mαβ , Pµ
}

= ηµαP β − ηµβPα{
Mαβ ,Mµν

}
= −

(
ηµαMβν − ηµβMαν − ηναMβµ + ηνβMαµ

)
(3.137)

hence we have managed to recover the Poincarè group on the constraint surface in the algebra of
the J(N1, ~N1).

The conclusion is that because i.) J(N1, ~N1) for Poincarè transformations are non-zero on
the constraint surface, and ii.) they are Dirac observables, they represent physical observations
of an asymptotic observer, (e.g. P 0 = EADM is the ADM mass of the space) and we should
therefore not consider them as generators of gauge transformations but rather as generating real
observable transformations, e.g. under a boost at infinity the ADM mass transforms non-trivially
as the zeroth component of a four vector. The fact that P 0, P a, Ja define Dirac observables to
be interpreted as energy, momentum and angular momentum is an important result, in fact they
are the only non-trivial globally defined Dirac observables on the canonical phase space and exist
only in the asymptotically flat case.

In the case of compact Σ without boundary it is a result, [34], that there are no local Dirac
observables, by local we mean that there are no observables which can be expressed as spatial
integrals of densities over Σ involving only a finite number of derivatives of the canonical variables
qab, P

ab. Certainly the ten Poincarè charges do not capture the dynamics of the gravitational
field and it is an important problem as to how one can define further observables for GR. In the
next section we shall consider one approach to this problem by discussing relational observables
for both first class systems and then GR in particular.
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4 Dirac Observables in GR
We have seen that the Hamiltonian is totally constrained in GR and therefore that time evolution
in the Dirac picture appears to be the unfolding of a gauge transformation. This is in stark
contrast with our perception of the dynamics of gravity, for example the expansion of the universe.
Furthermore observables, defined by Dirac to be invariant under the first class constraints of the
theory, will be frozen as this invariance implies that dO

dt = {O,H(N,Na)} = 0 for any such
observable O. Hence it appears that nothing changes in canonical gravity! This is the ‘frozen
formalism’ and is in essence the famous problem of time in canonical gravity. Notice that this
occurs already at the classical level. Important reviews of this topic can be found in [35] and [36]
and more recently in [37]. This problem has also been considered from a philosophical viewpoint
in [38] and [39].

In this section we shall describe one particular approach to addressing this conceptual problem.
This involves describing observables not with respect to co-ordinates but rather with respect to
other dynamical fields, for example matter fields. More precisely consider a first class Hamiltonian
system with one constraint and two gauge variant functions f and g the goal is to compute the
value of f when g takes a particular value say g0. One can show that this construction is
indeed gauge invariant35 and assuming that g takes values in the continuum of R one will have
constructed a 1-parameter family of gauge invariant functions and it is this family that will
represent our perception of evolution. Since each element of the family is gauge invariant it will
by definition be constant in co-ordinate time and for this reason this construction is called the
‘Evolving Constants’ approach. The phase space function g is acting as a “physical clock” and it is
with respect to this generalised notion of clock that evolution is understood. Unfortunately, this
approach is not directly applicable to GR as for gravity we have an infinite number of constraints
and in this section we shall describe how it may be generalised to accommodate gravity. (The
short answer is that there will be a physical clock for every one of the constraints of GR).

The construction of gauge invariant observables in GR is important because they will be
required in canonical quantization. In quantization these observables will become operators and
their Poisson algebra will need to be represented on the physical Hilbert space. This representation
will be required36 regardless of whether one performs a reduced phase space quantization or a
Dirac quantization .37

As mentioned in the previous section, below (3.40), the Bergmann interpretation of gauge
transformation avoids one identifying time evolution with a gauge transformation, as in this
picture gauge transformations act on phase space trajectories and not points. However, of course
there is still a notion of Bergmann gauge invariant observable and this will have to Poisson
commute with the gauge generator, which is still a combination of first class constraints, (3.80).

We have chosen to focus on this particular approach as i.) there has been a significant amount
of research conducted over the last two decades since [35] and [36], and ii.) the idea of co-incidental
observables removes dependence on co-ordinates, which in any generally covariant theory cannot
be considered as invariant.

35We shall do so in this section.
36See introduction in [40].
37In a ‘reduced phase space’ quantization one solves the constraints at a classical level, by constructing the

quotient of the phase space with the gauge orbits, and then quantizes the resulting coset space to obtain the
physical Hilbert space. In ‘Dirac quantization’ one quantizes the entire classical phase space and then reduces to
the physical Hilbert space by selecting only those state vectors which are elements of the kernel of the operator
versions of the constraints. (Strictly speaking this procedure is implemented in a generalised sense for canonical
gravity using tools from functional analysis, [5]). In general these procedures do not yield equivalent quantum
theories.
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4.1 Relational Observables for finite dimensional constrained systems
In order to introduce the idea of relational observables we first consider finite dimensional first
class constrained systems and then subsequently generalise to field theories. Our discussion is
primarily based upon [41] and [42].

We assume a Hamiltonian system with a finite number of constraints Cj , j = 1, . . . , n , a 2p
dimensional phase space Γ ( with points x ∈ Γ), and canonical co-ordinates (qa, pa, a = 1, . . . , p)
such that {qa, pb} = δab. We can define the flow αtC(x) (generated by a phase space function C)
of x ∈ Γ as the curve c : R 3 t → αtC (x) ∈ Γ, that has tangent vector equal to the Hamiltonian
vector field χC38. Based on this flow one can define an action or flow on phase space functions
by

αtC(f)(x) := f(αtC(x)) . (4.1)

This action can be calculated by the series

αtC(f)(x) =

∞∑
m=0

tm

m!
{C, f}m (x) (4.2)

where the iterated Poisson bracket is defined by {C, f}0 := f and {C, f}m+1 = {C, {C, f}m}.
In this formalism a gauge transformation is a map from Γ to itself, which can be expressed as

a composition of the above flows, where the generating function is a constraint. As discussed in
section 1 the set of all gauge transformations of a point x ∈ Γ forms the gauge orbit of x, denoted
Gx and this, in a first class system (at least on the constraint surface), is guaranteed to form an
n-dimensional surface.

Given the above definitions we can now introduce the concept of partial and complete observ-
ables first used by Rovelli, see [43] for further discussion and examples. A partial observable is a
physical quantity that can be measured by an observer but that cannot be uniquely predicted by
theory. A complete observable by contrast is a physical quantity whose value can be predicted by
the classical theory. A partial observable is therefore any phase space function, whereas a com-
plete observable is gauge invariant and therefore must Poisson commute with the Hamiltonian
constraints.

Systems with a single constraint

In a system with one constraint C(x) it is possible to use two partial observables: f(x) and a
“physical clock” T (x) to construct a 1 parameter family, labelled by τ , of complete observables
denoted F[f,T ](τ, x). This complete observable is defined to be:

F[f,T ](τ, x) := αtC(f)(x)|αtC(T )(x)=τ (4.3)

that is F[f,T ](τ, x) is the value of f(αtC(x)) when αtC(T )(x) = T (αtC(x)) = τ . Intuitively
F[f,T ](τ, x) is the value of the partial observable f at a specified point on the gauge orbit Gx,
determined by the value of the “clock” T . To actually compute this complete observable one must
solve αtC(T )(x) = T (αtC(x)) = τ for t (let the solution be t = t0(τ, x)) and then substitute it into
the expression for the flow of f to get αto(τ,x)

C (f)(x). In order for this to be well defined the clock
must provide a good parametrization of the gauge orbit.

Claim 4.1. The complete observable F[f,T ](τ, x) is gauge invariant with respect to the single
constraint C(x).

38Recall for any phase space function f χC is defined by χC(f) := {C, f}.
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Proof. Since any gauge transformation can be generated by the flow αtC(x) we need to show that
αβC(F[f,T ](τ, x)) = F[f,T ](τ, x) , for any parameter β. We have

αβC(F[f,T ](τ, x)) : = F[f,T ](τ, α
β
C(x)) = αtC(f)(αβC(x))|αtC(T )(αβC(x))=τ

= αβC ◦ α
t
C(f)(x)|αβC◦αtC(T )(x)=τ

= αβ+t
C (f)(x)|αβ+tC (T )(x)=τ

= F[f,T ](τ, x) (4.4)

where in the penultimate line we used the fact that composition of flows are additive in the
evolution parameter.

Systems with several constraints

The extension to n constraints Cj , j = 1, . . . , n essentially relies on finding a good parametrization
of the gauge orbit. Such a good parametrization can be viewed as a gauge fixing, where Tj(x) = τj
defines a surface that cuts every gauge orbit precisely once39.

In such a system the orbit will be n-dimensional and therefore n “clocks” Tj , j = 1, . . . , n will
be required. We can then define a complete observable associated to a partial observable f(x)
and the n clocks in an obvious extension of the single constraint case (4.3):

F[f,T1,...,Tn] (τ1, . . . , τn, x) := αβjCj (f)(x)|αβjCj (Ti)(x)=τi (4.5)

note that αβjCj (f)(x) := αt=1
βjCj

(f)(x). Again to compute the complete observable one has to
solve the system of equations αβjCj (Ti)(x) = τi for the evolution parametersβi = βi(τj , x) and
substitute the solution for βi into αβjCj (f)(x).40

Claim 4.2. The complete observable F[f,T1,...,Tn] (τ1, . . . , τn, x) is gauge invariant, i.e. it is invari-
ant under the flow generated by the constraints Cj .

Proof. Under an arbitrary flow of the complete observable one has:

αβjCj
(
F[f,Tk] (τm, x)

)
= F[f,Tk]

(
τm, αεjCj (x)

)
= αβjCj (f) (αεlCl(x))|αβjCj (Ti)(αεlCl (x))=τi

= αεjCj ◦ αβjCj (f) (x)|αεjCj ◦αβjCj (Ti)(x)=τi

= F[f,Tk] (τm, x) (4.6)

where the last line follows because a composition of flows stays on the gauge orbit Gx and
any gauge transformation may always be written as a single flow, i.e. αεjCj ◦ αβjCj (f) (x) =
αγjCj (f) (x) for some γk.

39Such a gauge fixing will in general not exist. In non-Abelian gauge theories there is a topological obstruction
(Gribov ambiguity) that prevents such a gauge fixing. For this reason the approximation schemes discussed in
(4.2.1) represent possible ways forward because they only rely upon the local properties of the physical clocks Ti.
This is a similar problem to that encountered in the Fadeev-Popov method of dealing with gauge theories in the
path integral formalism. Again a gauge fixing is required that will not exist in general but can be employed in a
perturbative analysis.

40An important point here is that the solution parameters βi = βi(τj , x) become phase space dependent.
However, one should not treat them as such inside Poisson brackets when evaluating αβjCj (f)(x), i.e. first take
the βi outside the iterated Poisson brackets and then substitute the solutions βi = βi(τj , x). This is illustrated in
a number of examples in [41].
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4.2 Important results concerning complete observables
A number of useful results are derived in [41] regarding complete observables, which we now
discuss.

4.2.1 Approximation scheme for complete observables

In general computing complete observables is difficult because finding analytic expressions for the
βi = βi(τj , x) will not be possible. A formal power series expression for the complete observables
has been derived in [41] and it is this we now discuss.

First one can write a Taylor series in n variables about the point τi = Ti(y) for F[f,Ti] (τi, , x):

F[f,Ti](τi, x) =

∞∑
k1,...,kn

1

k1! . . . kn!

∂k1...kn

∂k1τ1 . . . ∂knτn
F[f,Ti] (Ti(y), x) (τ1 − T1(y))

k1 . . . (τn − Tn(y))
kn

(4.7)
where y ∈ Gx. Second the partial derivative of any complete observable is also a complete
observable - this is intuitive because F[f,Ti](τi, x) is a complete observable for any values of the
τi. More precisely one has:

∂k1...kn

∂k1τ1 . . . ∂knτn
F[f,Ti] (Ti(y), x) = F[gk1...kn ,Ti]

(Ti(y), x) = gk1...kn(y) (4.8)

where gk1...kn(y) is the operator given by

gk1...kn(y) = (S1)k1 ◦ . . . ◦ (Sn)kn . (4.9)

The Si are operators, which act on an arbitrary phase space function space h as:

Si(h) = A−1
il {Cl, h} (4.10)

and A−1
il is the inverse matrix element of Aij := {Ci, Tj}.

Substituting (4.8) into (4.7) one has:

F[f,Ti](τi, x) =

∞∑
k1,...,kn

1

k1! . . . kn!
gk1...kn(y) (τ1 − T1(y))

k1 . . . (τn − Tn(y))
kn (4.11)

as a formal solution for the complete observable.
A (weakly) related expression for F[f,Ti](τi, x) can also be derived, which makes use of an

equivalent set of constraints C̃i,i = 1, . . . , n. (By equivalent we mean that the C̃idefine the same
geometric constraint surface as the original Ci constraints). The C̃iare defined by:

C̃i := A−1
ij Cj . (4.12)

The constraints C̃iare said to be Weakly Abelian because they generate flows which commute
on the constraint surface, i.e. {

C̃i,
{
C̃j , f

}}
'
{
C̃j ,
{
C̃i, f

}}
(4.13)

for arbitrary h and by the Jacobi identity this is equivalent to
{
C̃i, C̃j

}
∼ O(C2).
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The reason the C̃i are used is that the flow of the “physical clocks” Ti with respect to these
constraints is (weakly) linear in the evolution parameters βi, i.e.

αβjCj (Tk) (x) ' Tk(x) + δkjβj (4.14)

and hence one can easily solve the system of equations αβjCj (Tk) (x) ' τk(x) by setting βi =
τi − Ti(x). One can show that in terms of these weakly abelian constraints the formal solution
(4.11) for F[f,Ti](τi, x) can be weakly written as:

F[f,Ti](τi, x) '
∞∑

k1,...,kn

1

k1! . . . kn!
S̃k11 ◦ . . . ◦ S̃knn (f)(x) (τ1 − T1(x))

k1 . . . (τn − Tn(x))
kn , (4.15)

where S̃i(h) :=
{
C̃i, h

}
for arbitrary h.

The advantage of the approximation schemes outlined here (4.15) is that they define a complete
observable in a local way, i.e. possibly only for certain points in phase space, depending upon the
convergence properties of the series and the (local) parametrization of the gauge orbit Gx by the
clock variables Ti. Recall that the original definition of the complete observable (4.5) required a
good parametrization or gauge fixing, which in general may not exist.

4.2.2 Poisson Algebra of Complete Observables

An important goal is to understand the Poisson algebra of the set of complete observables -
as indicated at the beginning of this section knowledge of this algebra will be required in the
quantum theory, when the Poisson algebra of gauge invariant functions should be promoted to
the commutator algebra of the associated operators on the physical Hilbert space.

Assuming that one has a good gauge fixing, then the complete observable F[f,Ti](τi, x) satisfies:

F[f,Ti](τi, x)|Ti(x)=τi ' f(x)|Ti(x)=τi (4.16)

restricted to the ‘gauge fixed surface’ (intersection of the constraint hypersurface and the gauge
fixing surface Ti(x) = τi). From this perspective the complete observable F[f,Ti](τi, y) is the
(weakly) unique gauge invariant extension of the gauge restricted phase space function f|Tj=τj .

As stated in section (2) the Poisson bracket induced on the gauge fixed surface is the Dirac
Bracket. It is stated in [7]41 and proven in [41] that the Poisson bracket between two gauge in-
variant functions or complete observables F[f ] and F[g] is given weakly by the complete observable
associated to the Dirac bracket {f, g}?of the partial observables f and g, i.e.:{

F[f,Ti](τi, ·), F[g,Ti](τi, ·)
}

(x) ' F[{f,g}?,Ti](τi, x) . (4.17)

This result (4.17) and the following one regarding addition and multiplication:

F[fg+h,Ti](τi, x) = F[f,Ti](τi, x) · F[g,Ti](τi, x) + F[h,Ti](τi, x) (4.18)

derived in [41]enable one to conclude that the map F, which returns the complete observable
associated to a gauge restricted partial observable is a Poisson algebra homomorphism. We have:

F[Ti](τi) : (C∞(Γ)/I(Γ), {·, ·}? → (D(Γ)/I(Γ), {·, ·}) (4.19)
f 7→ F[f,Ti](τi, ·) (4.20)

41See section 1.5.4.
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where C∞(Γ) is the space of infinitely differentiable phase space functions, D(Γ) is the space of
gauge invariant phase space functions and I(Γ) is the space of smooth functions vanishing on the
constraint surface. The reason the quotient is taken is that physically (in the classical theory) one
cannot distinguish between phase space functions, which are equal on the constraint surface. We
also know that any element of I(Γ) can be expressed as uiCi where the ui are a set of arbitrary
phase space functions. This means any two functions g and h which share this property must be
related as g = h + uiCi, and should be identified. Since the product of an arbitrary function g
with an element of I(Γ) vanishes on the constraint surface, I(Γ) forms an ideal in the algebra of
phase space functions.

4.2.3 Partially complete observables

The final result from [41] we wish to discuss, before moving to GR, is one concerning the simpli-
fication of the construction of complete observables. The question asked is whether it is possible
to construct a complete observable in stages, i.e. suppose one has found a partial observable f
which is invariant with respect to a sub-algebra C1of the constraints C1 ⊂ C can one then com-
pute the complete observable associated to f but only with respect to the remaining constraints
C2 = C− C1and be sure that this observable is still complete with respect to C1? The question
is not trivial because there are two possible problems which need to be considered.

Firstly, if the sub-algebra C1 is not an ideal, then it is possible that αCk(f) is not invariant
under C1 for every Ck ∈ C2. We can see this just by considering {Ci, αCk(f)} to first order for Ci ∈
C1 this is {Ci, {Ck, f}}and by the Jacobi identify only if {f, {Ci, Ck}} = 0 will {Ci, {Ck, f}} = 0,
assuming f is C1 invariant ({Ci, f} = 0). So we need that {Ci, Ck} ∈ C1, i.e. C1is an ideal.

Secondly, the set C2 may not form a sub-algebra and so Poisson brackets between constraints
in C2 may involve constraints in C1 . This has the effect that the Hamiltonian vector fields
associated to constraints in C2 may not integrate to form a dimC2 hypersurface, i.e the gauge
orbits of C2.

It is a result of [41] that the there is a positive answer to the above question provided certain
clock variables can be found.

Claim 4.3. For a first class constraint system with n constraints C = {Cj}, j = 1, . . . , n , a
sub-algebra C1 = {Cm+1, . . . , Cn}, an observable f invariant under C1 and clock variables Tj , j =
1, . . . , n for which the first m clocks are also C1 invariant then the complete observable associated
to f and computed with respect to the remaining constraints C2 = {C1, . . . , Cm} is invariant
under all the constraints C.

4.3 Field theories & GR
We now wish to generalise the above arguments to field theories, which have an infinite number
of degrees of freedom. The phase space Γ will be an infinite dimensional manifold42 and the
canonical fields will be defined on the 3-dim spatial manifold Σ, with points denoted by σ. Let
us assume that canonical coordinates are given by the field configurations (φa(σ), πa(σ)). We
shall have an infinite number of constraints labelled by the points σ ofΣ and by some finite index
(α = 1, . . . , n), i.e. Cα(σ) = 0. There will be an infinite number of clock variables Tα(σ) required
in order to paramaterise the gauge orbits and hence define our complete observables.

In the field theoretic case phase space functions are really functionals43 and so strictly our
partial observables f(σ) and clock variables Tα(σ) should be viewed as maps which act upon a

42We shall not discuss the functional analytic properties required to properly defined such infinite dimensional
manifolds.

43We shall use these terms interchangeably for the infinite dimensional case.
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phase space point or Σ field configuration (φa(σ), πa(σ)) as:

Tα(σ) : Γ → R
Tα(σ) : [φa(σ′), πa(σ′)] 7→ Tα(σ) [φa(σ′), πa(σ′)] (4.21)

we shall generally only deal with local functionals that return the values of canonical fields or
simple functions thereof at the particular point σ, e.g. Tα(σ) [φa(σ′), πa(σ′)] = φa(σ).

Other field specific notation follows in the usual way, e.g. the gauge flow of a phase space
function ψ(σ) can be written as:

αC[Λ] (ψ(σ)) :=

∞∑
n=0

1

n!
{ψ(σ), C [Λ]}n (4.22)

where C [Λ] =
∫

Σ
ΛJ(σ)CJ(σ)d3σ and ΛJ(σ) is a phase space independent smearing function for

the constraints CJ(σ). The complete observable will be denoted F[f,T ](τ, x) and defined to be the
value of the phase space functional f(σ) at the point y in the gauge orbit Gx, where the clock
variables satisfy T J(σ)(y) = τJ(σ). In order to find the point y one must solve the flow of the
clock variables, i.e. find the functions βJ(σ) which weakly satisfy:

αC[Λ](T
J(σ))Λ→β(x)(x) ' τJ(σ) (4.23)

for all J and σ. The important point here, as with the finite dimensional case, is that the β
will become phase space dependent and the same caveat regarding footnote (43) applies. Finally,
given (4.23) one can weakly express the complete observable as:

F[f,T ](τ, x) '
[
αC[Λ](f(σ))Λ→β(x)

]
(x) (4.24)

As in the finite dimensional case the solution of the β can be greatly simplified by the use of
the weakly abelian constraints. In the infinite dimensional case they become:

C̃I(σ) :=

∫
Σ

d3σ′CJ(σ′)(A−1)JI(σ, σ
′) (4.25)

where (A−1)JI(σ, σ
′) is the inverse (integral kernel) of the infinite dimensional matrixAIJ(σ, σ′) :={

T I(σ), CJ(σ′)
}
. These constraints have the important property that their Poisson brackets are

ultra-local44 with the clock variables and hence the flow generated is easy to solve c.f. (4.14), i.e.:{
T I(σ), C̃J(σ′)

}
' δIJδ(σ, σ′) (4.26)

and
αC̃[Λ](T

J(σ)) ' T J(σ) + ΛJ(σ), (4.27)

with solution ΛJ(σ) = τJ(σ)− T J(σ).
One can substitute this solution for ΛJ(σ) back into the flow for f and hence find the following

expression for the complete observable:

F[f,T ](τ, x) '
∞∑
s=0

1

s!

∫
Σ

d3σ1 · · · d3σs

{
· · ·
{
f, C̃J1(σ1)

}
, · · · , C̃Js(σs)

}
(x)×(

τJ1(σ1)− T J1(σ1)
)
· · ·
(
τJs(σs)− T Js(σs)

)
(x) (4.28)

where there is an implicit summation on all pairs of upper and lower indices labelled Jr from 1
to n.

44Ultra-local just means that the Poisson brackets are proportional to the delta function.
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4.3.1 Reducing the number of constraints (I)

The main results of [42] are that i.) under certain conditions the infinite number of constraints
present in field theories including GR may be replaced by a finite number and under still further
conditions by a single constraint and ii.) that the canonical complete observables for GR can be
precisely related to spacetime GR observables. We shall now discuss these in turn.

General Arguments

We shall now see that the expression for the complete observable in (4.28) can be simplified
provided that both the clock variables TI(σ) and the partial observable f : Γ 3 x 7→ f(x) =:
χ(σ?) ∈ R, have weakly ultra-local Poisson brackets with the constraints CI(σ). This implies
weakly ultra-local Poisson brackets with the weakly abelian constraints as well. Hence we may
write the first order term in the power series (4.28) as:∫

d3σ
{
χ(σ?), C̃J(σ)

}(
τJ(σ)− T J(σ)

)
'

∫
d3σ

{
χ(σ?), C̃J [1]

}
δ(σ?, σ)

(
τJ(σ)− T J(σ)

)
'

{
χ(σ?), C̃J [1]

}(
τJ(σ?)− T J(σ?)

)
(4.29)

where C̃J [1] :=
∫
d3σΛJ C̃J(σ) and ΛJ(σ?) = 1. The first (weak) equality can be shown by

expanding both sides and using the weak ultra-locality of the Poisson brackets together with the
definition of C̃J [1]. The important point is that now the first order term in (4.28) depends upon
τJ(σ?) and not the fields τJ(σ). This result holds see [42] for the higher order terms and means
that all integrals in (4.28) disappear - as they are integrated against a delta function and we are
left with:

F[χ(σ?),T ](τ, x) '
∞∑
s=0

1

s!

{
· · ·
{
χ(σ?), C̃J1 [1]

}
, · · · , C̃Js [1]

}
×(

τJ1(σ?)− T J1(σ?)
)
· · ·
(
τJs(σ?)− T Js(σ?)

)
(x) (4.30)

This expression means that the complete observable F[χ(σ?),T ](τ, x) can be computed with
respect to a finite number of constraints C̃J [1] and specified only with respect to a finite number
of parameters τJ(σ?) for the clock variables to take.

Application to GR

We now aim to apply these ideas to GR with the aim of reducing the difficulty of computing
complete observables by reducing the number of constraints. First however we make some remarks
concerning spacetime observables45 in GR.

GR is a generally covariant theory46 and a consequence of this is that determinism is only
maintained provided that field equation solutions related by active diffeomorphisms are identified.
In other words GR can be viewed as a gauge theory with the four dimensional diffeomorphism
gauge group. This is essentially the conclusion of the famous hole argument also discussed in [45]
and [4]. In this context any four dimensional tensor, which depends upon co-ordinates cannot
be viewed as gauge invariant because for example the Ricci scalar R(X) at a spacetime point X
would need to be constant throughout spacetime to be invariant under spacetime diffeomorphisms,

45Up until this point we have only considered canonical observables for both finite and infinite constrained
Hamiltonian systems.

46An excellent discussion of general covariance can be found in the historical review [45].
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[38]. Therefore one needs to be more careful with the definition of spacetime observables. This
problem has been solved see [4], [46] and [47] using, as in the canonical case, a notion of relational
or co-incidental observables.
Claim 4.4. A spacetime diffeomorphism invariant observable can be defined by using four space-
time scalar fields φI(X) where I = 0, . . . 3 a further scalar field ψ(X), and the set of parameters
τ I . In particular, the value of ψ at the spacetime point where φI = τ I is indeed spacetime
diffeomorphism invariant.

There is a similarity between the spacetime observable defined above and the complete canon-
ical observables we have been discussing - both are specified by using other fields (clock variables)
to specify “when” a partial observable should be evaluated. However, in the canonical case these
observables are defined on phase space and in the spacetime case the clock conditions on φI define
a spacetime point. Furthermore, in the spacetime case only four parameters τ I are required to
specify the “when” in contrast with the (general) canonical case where the fields τ I(σ) are needed.
One of the results of [42] is that using the ideas above of reducing the number of constraints to the
C̃J [1] one can then relate the canonical complete observable to the spacetime observable defined
in claim 4.4.

In order to apply the result (4.30) to GR we need to ensure that both the clock variables and
the partial observable f have ultra-local Poisson brackets with the constraints, i.e. the spatial
diffeomorphism and Hamiltonian constraints Ha(σ) and H(σ) discussed in section 3. In fact
this requirement of ultra-locality is precisely satisfied by those fields defined on R×Σ , which
may be mapped to spacetime scalars on M . Recall that in the canonical analysis of GR one
has a 1-parameter family of embeddings of Σ onto M , denoted Xt, this family of embeddings
enables any field φ(t, σ) (built from the canonical fields) to be mapped to a spacetime field
φ̃(X) := φ(t, σ)|X=Xt(σ). The necessary and sufficient conditions under which φ̃(X) is a spacetime
scalar are provided by the reconstruction theorems of Kuchař. The conditions are simply that
φ(σ) satisfy the following: {

φ(σ),

∫
Σ

d3σ′N(σ′)H(σ′)

}
' 0 (4.31){

φ(σ),

∫
Σ

d3σ′Na(σ′)Ha(σ′)

}
= Na(σ)

∂φ

∂σa
(4.32)

The first condition is to hold for all lapse functions N with N(σ) = 0. This means that the Poisson
brackets with the Hamiltonian constraint are ultra-local. The second condition is equivalent to
the statement that φ(σ) is a scalar field on Σ. It also means that the Poisson brackets of φ(σ)
are ultra-local with the diffeomorphism constraint. So indeed those canonical fields φ(σ) that can
be reconstructed as spacetime scalars may be used as clock variables and partial observables to
simplify the expression for a complete observable as in (4.30).

Let us use clock variables T I(σ) where I = 0, . . . , 3 , a partial observable f : Γ 3 x 7→ f(x) =:
χ(σ?) ∈ R, where both the clocks T I(σ) and χ(σ?) are reconstructable as spacetime scalars and
the clock parameters τ I(σ). Given these objects one can immediately re-write (4.30) for GR
specifically as:

F[χ(σ?),T ](τ, x) '
∞∑
s=0

1

s!

{
· · ·
{
χ(σ?), C̃J1 [1]

}
, · · · , C̃Js [1]

}
×(

τJ1(σ?)− T J1(σ?)
)
· · ·
(
τJs(σ?)− T Js(σ?)

)
(x) (4.33)

where now we use C̃J [1] :=
∫
d3σC̃J(σ). The C̃J(σ) are the weakly abelian constraints for GR

and determined from the original constraints: C0(σ) := H(σ) and Ca(σ) := Ha(σ).
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Using the definition of the matrix ALK(σ, σ′) and ultra-locality of the Poisson brackets one
has:

ALK(σ, σ′) : =
{
TL(σ), CK(σ′)

}
= BLK(σ)δ(σ, σ′) (4.34)

One can substitute this expression for ALK(σ, σ′) into the defining relation for its integral kernel
and solve for the inverse to get:

∫
d3σ′BLK(σ)δ(σ, σ′)

(
A−1

)K
M

(σ′, σ′′) = δLMδ(σ, σ
′′)

⇒
(
A−1

)K
M

(σ, σ′′) =
(
B−1

)K
M

(σ)δ(σ, σ′′) (4.35)

Now substituting this solution into the defining relation for the weakly abelian constraints, (4.25),
one has:

C̃I(σ) =

∫
Σ

d3σ′CJ(σ′)(B−1)JI(σ)δ(σ, σ′)

= CJ(σ)(B−1)JI(σ) . (4.36)

Hence the weakly abelian constraints are just linear combinations of the original ones.
The expression (4.33) depends upon the four constraints C̃J [1], rather than the infinite number

of original Hamiltonian and diffeomorphism constraints. Furthermore, (4.33) only depends upon
the clock parameters τJ(σ?), i.e. four parameters. This makes the connection with the spacetime
observable defined in claim 4.4 which also only depended upon four parameters.

4.3.2 Reducing the number of constraints (II)

In this section we extend the theory developed above in order to reduce the number of constraints
from four to one. The approach relies on combining the ideas of the previous section together
with the fact that complete observables can be computed in stages, as discussed in 4.2.3. In
the context of GR one can compute complete observables by i.) choosing clock variables and
a partial observable f to be invariant under the sub-algebra of diffeomorphism constraints and
ii.) computing the complete observable associated to f but only with respect to the Hamiltonian
constraint. One is then guaranteed (by the result of section 4.2.3) that this complete observable
will be invariant under all the constraints of GR. In the construction of the (final) complete
observable one will need as many clock variables as there are Hamiltonian constraints, i.e. one
per point σ of Σ.

In order to simplify this task the following strategy in [42] is employed instead of using the
Hamiltonian constraints an equivalent set of constraints are used, which are also invariant under
the diffeomorphism constraints. This means that when computing the final complete observable
one is working only with diffeomorphism invariant objects both clocks, partial observable and
constraints.
Claim 4.5. 47The complete observableD[H(σ),TA](τ

A, x), associated to the Hamiltonian constraint
and computed with respect to the sub-algebra of diffeomorphism constraints48 Ha(σ) form a new

47Note we have written this claim in the context of GR. In fact it can be proved for first class systems in general,
[42].

48Following [42] we use the notation D[H(σ),T ](τ, x) for the complete observable computed only with respect
to the sub-algebra of constraints rather than F which is reserved for complete observables with respect to all
constraints.
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set of constraints, which are equivalent to the original Hamiltonian constraints. Implicit in the
definition are clock fields T I(σ), I = 1, . . . , 3 and parameter fields τ I(σ). Hence the constraint
surface defined by both sets of constraints (Ha(σ) and D[H(σ),TA](τ

A, x)) is equivalent to the
original GR constraint surface.

In order to use the results of 4.3.1 we need to work with spatial tensors on Σ that have
ultra-local Poisson brackets with the constraints. We therefore assume that our clock variables
TA(σ), A = 1, . . . , 3 satisfy the conditions (4.31) and (4.32). If we choose a partial observable
f : Γ 3 x 7→ f(x) =: χ(σ?) ∈ R where χ(σ) is a spatial scalar field then the complete observable
D[χ(σ?),T ](τ, x) will be invariant under the diffeomorphism constraints by definition, and only
depend upon three constraints and three parameters through the arguments in (4.3.1)49.

The argument made for χ(σ) will apply to any spatial scalar and it is possible to make any
spatial tensor on Σ into a spatial scalar by expressing that tensor in the “clock frame”, e.g. the
inverse canonical 3-metric on Σ, qab(σ) can be expressed in the clock variable coordinates as:

qAB(σ) =
∂TA

∂σa
∂TB

∂σb
qab(σ) (4.37)

The components qAB(σ) are spatial scalars because under a (passive) spatial diffeomorphism the
contravariant nature of qab(σ) cancels with the covariant nature of the Jacobian TA,a- the A,B
indices are by definition spatial scalars and so do not transform. Similarly we may use the inverse
Jacobian SaA(σ) to express the canonical 3-metric qab(σ) as:

qAB(σ) = SaAS
b
Bqab(σ) (4.38)

where each component of qAB(σ) is a spatial scalar. Finally, one can also convert spatial tensor
densities to spatial scalars by multiplication with the appropriate power of the determinant of the
Jacobian as well as factors of the Jacobian matrix or inverse. The canonical conjugate momentum
pab(σ) is a tensor density of weight 1 and can therefore be de-densitised by multiplication with a
factor of the Jacobian of the inverse s := det(SaA) and therefore one has:

pAB(σ) = sTA,a T
B ,b p

ab(σ) (4.39)

where the components of PAB are all spatial scalars.
We can now easily convert the original Hamiltonian constraint, H(σ), into a spatial scalar

by multiplication with the inverse Jacobian s. Hence we may compute the partially complete
observable D[sH(σ),T ](τ, x), which satisfies D[sH(σ),TA](τ

A, x) = D[s,TA](τ
A, x)×D[H(σ),TA](τ

A, x)
by the Poisson algebra homomorphism result (4.19). Hence the condition D[sH(σ),T ](τ, x) = 0 is
equivalent to D[H(σ),T ](τ, x) = 0 provided

0 6= D[sH(σ),T ](τ, x)

⇔ 0 6= s (4.40)

We assume this condition on s and note it amounts to assuming that the fields TA form a
good local coordinate system on Σ. This means by claim 4.5 and (4.40) that we may use the
partially invariant Hamiltonian constraints D[sH(σ),TA](τ

A, x) instead of H(σ) in computing the
final complete observable. The advantage of using D[sH(σ),TA](τ

A, x) is that because sH(σ) is a
spatial scalar by applying the results of section 4.3.1 the formal series for D[sH(σ),TA](τ

A, x) will
only depend upon a finite number of constraints and parameters.

49We only require that χ(σ) is a spatial scalar, i.e. satisfies (4.32) because we are only computing the complete
observable with respect to the diffeomorphism constraints and not the full set of GR constraints. If the latter we
would indeed require that χ(σ) be reconstructable as a spacetime scalar and also satisfy (4.31).
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Hence the goal is to now compute the complete observable F[
D[χ,TA](τ

A,·),T 0
](τ0, ·) with respect

to the constraints D[sH(σ),TA](τ
A, x) and where we have introduced T 0 as the clock variable for

the new Hamiltonian constraint with the gauge fixing T 0 = τ0. This observable will be a complete
observable for GR. The formal series for F[

D[χ,TA](τ
A,·),T 0

](τ0, ·) can be greatly simplified if both

D[χ,TA](τ
A, ·) and T 0 have ultra-local Poisson brackets with the Hamiltonian constraints because

only one constraint and one parameter will then be required. This condition on D[χ,TA](τ
A, ·)

can be shown to follow from the assumption that χ(σ) is reconstructable as a spacetime scalar.

Claim 4.6. If the spatial field χ(σ) is reconstructable as a spacetime scalar then the partially
complete observable D[χ(σ),TA](τ

A, ·) will have ultra-local Poisson brackets with respect to the
partially invariant Hamiltonian constraints D[sH(σ),TA](τ

A, ·), that is:{
D[χ(σ?),TA](τ

A, ·), D[sH(σ??),TA](τ
A, ·)

}
∼ δ

(
τA(σ?), τA(σ??)

)
(4.41)

where we stress that because both sH(σ) and χ(σ) are spatial scalars the partially complete ob-
servables inside the above Poisson bracket only depend upon the parameters τA(σ?) and τA(σ??)
respectively.

Proof. By the result (4.17) we know that the Poisson bracket in (4.41) is given by the complete
observable associated to the Dirac bracket of the corresponding partial observables. This means
we need to compute:

D[{χ(σ?),sH(σ??)}D,TA](τ
A, ·)

where {·, ·}Dis the Dirac bracket.
We can (weakly) write the Dirac bracket as {χ(σ?), sH(σ??)}D ' s (σ??) {χ(σ?), H(σ??)}D

where the Dirac bracket is defined by:

{χ(σ?), H(σ??)}D = {χ(σ?), H(σ??)} −
∫

Σ

d3σ
{
χ(σ?), SbAHb(σ)

}{
TA(σ), H(σ??)

}
+

∫
Σ

d3σ
{
χ(σ?), TA(σ)

}{
SbAHb(σ), H(σ??)

}
(4.42)

Now the final term on the right hand side is weakly zero by the first class nature of GR. The first
term on the right hand side is proportional to a delta function by the assumption that χ(σ) is
reconstructable as a spacetime scalar and hence:

{χ(σ?), H(σ??)} = {χ(σ?), H[1]} δ(σ?, σ??) .

The second term can be simplified as follows:∫
Σ

d3σ
{
χ(σ?), SbAHb(σ)

}{
TA(σ), H(σ??

}
'

∫
Σ

d3σSbA(σ) {χ(σ?), Hb(σ)}
{
TA(σ), H(σ??)

}
=

∫
Σ

d3σSbA(σ)χ,bδ(σ
?, σ)

{
TA(σ), H(σ??)

}
= SbAχ,b(σ

?)
{
TA(σ?), H(σ??)

}
' SbAχ,b(σ

?)
{
TA(σ?), H[1]

}
δ(σ?, σ??)

where in the second line we used the fact that χ(σ) is a spatial scalar and in the final step used
the fact that TAalso have ultra-local Poisson brackets with the Hamiltonian constraint, as they
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are reconstructable as spacetime scalars. Putting the previous results together we can (weakly)
write for the Dirac bracket:

{χ(σ?), sH(σ??)}D ' s (σ??) δ(σ?, σ??)
(
{χ(σ?), H[1]} − SbAχ,b(σ?)

{
TA(σ?), H[1]

})
. (4.43)

Now both terms on the right hand side are spatial scalars, which means that the partially
invariant observables associated to them, i.e. the D[·] complete observable will simplify and only
depend upon the three parameters τA(σ?) and the three constraints Ha[1]. Hence the Poisson
bracket in (4.41) can be expressed as:

{χ(Y ?), sH(Y ??)} ' D[s(σ??)δ(σ?,σ??)({χ(σ?),H[1]}−SbAχ,b(σ?){TA(σ?),H[1]}),TA](τ
A, ·)

=
(
D[{χ(σ?),H[1]}−SbAχ,b(σ?){TA(σ?),H[1]},TA](τ

A, ·)
)
×[

detτC,c (σ??)
]−1

δ(σ?, σ??)

=
(
D[{χ(σ?),H[1]}−SbAχ,b(σ?){TA(σ?),H[1]},TA](τ

A, ·)
)
×

δ
(
τA(σ?), τA(σ??)

)
∼ δ (Y ?, Y ??) (4.44)

where we used the abbreviations χ(Y ?) for D[χ(σ?),TA](τ
A, ·) and sH(Y ??) for D[sH(σ??),TA](τ

A, ·)
and where Y represents the gauge fixing conditions τA at the point σ. The first line follows from
the result50 that if phase space functions f and g are weakly equal then their corresponding
complete observables will also be weakly equal, i.e. F[f,T ](τ, x) ' F[g,T ](τ, x). The second line
follows from (4.19) and since D[TB(σ),TA](τ

A, ·) = τB(σ) and since the determinant is an alge-

braic function involving additions and multiplications we will have det
(
D[TB,c (σ),TA](τ

A, ·)
)

=

D[det(TB,c (σ)),TA](τ
A, ·). Further as det

(
TB,c (σ)

)
is invertible by assumption we will have

[
det
(
τB,c (σ)

)]−1
= D[s(σ),TA](τ

A, ·) .

The final line follows for the expression for the change in variables of the delta function. Hence
we have proved the claim that the Poisson bracket of the partially invariant observables is pro-
portional to the delta function as in (4.41).

This means that by using partially invariant observables χ(Y ), T 0(Y ) (computed from T 0(σ) a
spacetime reconstructable scalar), and an adapted gauge fixing τ0(Y ) one can define the following
GR gauge invariant observable:

F[χ(Y ?),T 0(Y )](τ
0(Y ), ·) =

∞∑
m=0

1

m!

{
χ(Y ?), H̃[1]

}
m

(
τ0(Y ?)− T 0(Y ?)

)m (4.45)

where we have used the weakly abelian constraints H̃(Y ) derived from the partially invari-
ant Hamiltonian constraints sH(Y ) and defined in the usual way H̃(Y ) := B−1(Y )H(Y ) for{
T 0(Y ), H(Y ?)

}
= B(Y )δ(Y, Y ?) and H̃[1] :=

∫
τA(Σ)

H(Y )d3τ .
The advantage of this series is that compared to the general expression for a complete observ-

able, (4.15), it only depends upon 1 constraint H̃[1] and 1 parameter τ0(Y ?).
50See section 8 [41].
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4.4 Deparametrisation of constrained systems
The final topic we wish to discuss are deparametrisable systems, essentially a sub-set of sys-
tems for which the construction of complete observables greatly simplifies together with other
nice properties. However, we stress deparametrisation relies upon mathematical assumptions,
not satisfied by pure GR or GR coupled with standard model matter. Thus one can take the
(positive) view regarding GR that it is a study of ‘toy models’ that might lead to some insight
regarding true phenomenological gravity or (more speculatively) that it leads to the hypothesis
of new matter fields. From our perspective we shall first describe the simplifications that occur
in deparametrisable systems and then discuss an example from the literature.

Recall in section 2 we discussed the example of the (parametrised) non-relativistic particle
where ‘parametrisation’ involved adding, to the usual canonical variables

(
qi, pi

)
, the pair (t, pt).

The subsequent analysis revealed that there was a Hamiltonian constraint Hs = pt + H, where
H = H(q, p), i.e. independent of the additional configuration variable t. In fact these properties
for the parametrised particle capture the main points of a general deparametrisable system, which
we now discuss.51

We consider a constraint system subject to finite first class constraints CI . Such a system
deparametrises if we can split the phase space into two sets of canonical pairs (qa, pa) and

(
T I ,ΠI

)
where the constraints can be solved for the momenta ΠI , such that

CI = 0⇔ cI = ΠI + hI (4.46)

and the phase space function hI = hI(q
a, pa) is independent of the T I . It follows that i.) the

constraints cI Poisson commute and ii.) the functions hI are gauge invariant.
These properties mean that one can apply the framework of relational observables (using the

T I as clock variables) to express the gauge invariant extension of f with the constraints cI - note
their Poisson commutativity makes redundant the need to compute weakly abelian constraints.
Therefore using the definition of the complete observable (4.5) and the fact that

{
cI , T

J
}

= δJI
one has for the complete observable:

F[f,TJ ](τ
J , ·) =

( ∞∑
m=0

1

m!

{
βIcI , f

}
m

)
|βJ=(τJ−TJ )

(4.47)

where the substitution βJ =
(
τJ − T J

)
occurs after all the iterated Poisson brackets have been

computed, see footnote 43.
The important result is that one can use a linear combination of the hI to define a physical

Hamiltonian, which is non-vanishing and which generates evolution of the complete observables.
Claim 4.7. Physical evolution of the complete observables can be generated by the functions hI ,
i.e.

∂F[f,TJ ](τ
J , ·)

∂τK
=
{
hK , F[f,TJ ](τ

J , ·)
}

(4.48)

provided f only depends upon (qa, pa).

Proof. First expanding the complete observable one has:

F[f,TJ ](τ
J , ·) = f +

(
τ I − T I

)
{cI , f}+

1

2!

(
τ I − T I

) (
τJ − T J

)
{cI , {cJ , f}}

+
1

3!

(
τ I − T I

) (
τJ − T J

) (
τK − TK

)
{cI , {cJ , {cK , f}}}

+ · · ·+ 1

n!

(
τ I1 − T I1

)
× · · · ×

(
τ In − T In

)
{cI1 , · · · , {cIn , f} · · · }+ · · ·

51A good discussion of parametrised systems can be found in [3].
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Taking the derivative with respect to τL implies:

∂F[f,TJ ]

∂τL
= {cL, f}+

1

2!

[(
τ
J − TJ

)
{cL, {cJ , f}}+

(
τ
J − TJ

)
{cI , {cL, f}}

]
+

1

3!

[(
τ
J − TJ

)(
τ
K − TK

)
{cL, {cJ , {cK , f}}}+

(
τ
I − T I

)(
τ
K − TK

)
{cI , {cL, {cK , f}}}

+
(
τ
I − T I

)(
τ
J − TJ

)
{cI , {cJ , {cL, f}}}

]
+ · · ·+

1

n!

[(
τ
I2 − T I2

)
× · · · ×

(
τ
In − T In

){
cL,
{
cI2 , · · · , {cIn , f} · · ·

}}
+
(
τ
I1 − T I1

)
×
(
τ
I3 − T I3

)
× · · · ×

(
τ
In − T In

){
cI1 ,

{
cL,
{
cI3 · · · , {cIn , f} · · ·

}}}
+ · · ·+

(
τ
I1 − T I1

)
× · · · ×

(
τ
In−1 − T In−1

){
cI1 , · · · ,

{
cIn−1

, {cL, f}
}
· · ·
}]

+ · · ·

Now one can re-order the iterated Poisson brackets so that the action of cL is last because the cI
form an abelian algebra, hence the n terms contributing at each order are equal and will cancel
with the 1

n! to give 1
(n−1)! . Secondly one can observe that the action of cL can be replaced by

hL because the iterated Poisson brackets {cI1 , {cI2 , · · · , {cIn , f} · · · }} cannot be functions of T I
as both f and cI are independent of T I and hence {ΠL, {cI1 , {cI2 , · · · , {cIn , f} · · · }}} = 0. This
gives:

∂F

∂τL
= {hL, f}+

(
τI − T I

)
{hL, {cI , f}}+

1

2!

(
τI − T I

)(
τJ − TJ

)
{hL, {cI , {cJ , f}}}

+ · · ·+
1

(n− 1)!

(
τI1 − T I1

)
× · · · ×

(
τIn−1 − T In−1

){
hL,

{
cI1 , · · · ,

{
cIn−1

, f
}
· · ·
}}

+ · · ·

=
{
hL, f +

(
τI − T I

)
{cI , f}+

1

2!

(
τI − T I

)(
τJ − TJ

)
{cI , {cJ , f}}+ · · ·

+
1

(n− 1)!

(
τI1 − T I1

)
× · · · ×

(
τIn−1 − T In−1

){
cI1 , · · · ,

{
cIn−1

, f
}
· · ·
}

+ · · ·
}

=
{
hL, F[f,T I ](τ

I , ·)
}

where the penultimate line follows because
{
T I , hJ

}
= 0.

So we have shown that in the deparametrisable case there is a physical Hamiltonian, which is
gauge invariant, non-zero and which generates time evolution of observables F[f(q,p),T ]. As this
Hamiltonian is gauge invariant it can be viewed as constant in the evolution parameters τ I and
therefore we have a conservative system.

As we shall concentrate only upon partial observables f = f(qa, pa) for which the associated
complete observable has a time evolution generated by a physical Hamiltonian, we note that in
this case the expression, (4.47), for the complete observable simplifies to the following:

F[f,TJ ](τ
J , ·) =

( ∞∑
m=0

1

m!

{
βIhI , f

}
m

)
|βJ=(τJ−TJ )

(4.49)

the reason is that, as above, {ΠI , f(q, p)} = 0 and all iterated Poisson brackets of βIhI and f are
independent of T I because both hJ and f are independent of T I .

We now discuss gravity matter coupling, which results in a deparametrisation of GR. An
important historical work in this subject is [50] in which a pressure less dust is shown to de-
parametrise GR. This work did not use the terminology of partial and complete observables but
is essentially equivalent. Later work in [48] and [49] applied and extended this deparametrisation
for both dust and a minimally coupled scalar field without potential. As stressed earlier both
these matter types are to be viewed as special in the sense that they are non-standard model
matter. For reasons of simplicity we shall concentrate only upon the scalar model.
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4.4.1 Deparametrisation of GR using matter fields

We follow [49] to the extent that the overall scalar field deparametrisation of GR can be seen as
a special case of the relational framework and summarise the results that have been obtained.
The purpose of [49] was to describe a gauge invariant cosmological model, which could avoid the
general interpretational problem already mentioned regarding the problem of time. The FRW
equations, which describe the evolution of the observed universe to a good accuracy, do not
involve gauge invariant objects and their evolution is described with respect to the Hamiltonian
constraint, which is the generator of a gauge transformation. In [49] an alternative set of equations
are derived, which involve only gauge invariant objects and evolution with respect to a physical
Hamiltonian. The model relies on the presence of a special scalar or phantom field, which serves as
the clock variable, and further requires that this field has negative energy density to avoid singular
behaviour52. It is argued that this is still acceptable because the field is not observable53 (pure
gauge) and the sufficient presence of ordinary matter with a positive energy density will stabilise
the theory. The results of this analysis do not yield simply a gauge invariant version of the FRW
equations but rather an evolution that differs significantly from FRW in the late universe, or for
large values of the scale factor. In general it seems one should expect deparametrisation models
to describe different physics from their gauge variant counterparts. In this way one could have
falsifiable predictions to rule out particular deparametrisable models.

It is a non-trivial fact that scalar fields involving only first order derivatives can lead to a
deparametrisation of GR. Consider the following gravity matter system including a class of scalar
(phantom) fields, described by the action:

STot = SEH + SM + SPh (4.50)

SPh =

∫
M

d4X
√
gL

(
−1

2
gµνΦ,µΦ,ν

)
(4.51)

where L is an arbitrary function and SM refers to the action of all matter fields other than the
phantom scalar.

By performing a canonical analysis and assuming that Σ × R is diffeomorphic to M as in
section 3 one can pullback all spacetime fields to Σ using the one parameter family of embeddings
Yt(σ) = X . The result is that the argument of L can be expressed as I := −gµνΦ,µΦ,ν =

(∇nφ)
2 − qabφ,aφ,b where φ(σ, t) = (Y ?t Φ)(σ) and n is the unit normal n = N−1 (T −NaYt,a) to

the spacelike hypersurface Σt := Yt(Σ) and N and Na are the lapse and shift respectively - this
means that ∇nφ = N−1

(
φ̇−Naφ,a

)
. It follows that the phantom action can be written:

SPh =

∫
R
dt

∫
Σ

d3σN
√
qL

(
1

2

(
N−2

(
φ̇−Naφ,a

)2

− qabφ,aφ,b
))

(4.52)

and hence the (phantom) canonical momentum π(σ, t) =
√
q (∇nφ)L′(I/2) . Squaring this ex-

pression for π implies K :=
(
π√
q

)2

= (L′(I/2))
2

(I + V ) where V := qabφ,aφ,b. If we assume this
latter expression can be solved for I as I = J(K,V ) then the defining equation for the momentum
can be written:

π
√
q

(L′(J/2))
−1

= ∇nφ (4.53)

52The universe reaches infinite size in a finite amount of time.
53All we mean here is that the scalar field Φ is used to provide a clock to define complete observables with

respect to all other partial observables, which do not depend on Φ or its conjugate momentum.
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this enables the Legendre transform to be completed and we have:

HPh =

∫
Σ

d3σ
(
φ̇π −N√qL (J/2)

)
=

∫
Σ

d3σ ((N∇nφ+Naφ,a)π −N√qL(J/2))

=

∫
Σ

d3σ

(
N

(
π2

√
q

(L′(J/2))
−1
)

+Naφ,aπ −N
√
qL(J/2)

)
=

∫
Σ

d3σ
(
N
√
q
(
p2 (L′(J/2))

−1 − L(J/2)
)

+Naφ,aπ
)

(4.54)

where p := π√
q . Now we have a constrained system because the total action of the gravity

matter system does not depend upon the velocities Ṅ and Ṅaand this implies primary constraints
pN = pNa = 0. By requiring consistency of these primary constraints one will be led to secondary
constraints, which define the total Hamiltonian and diffeomorphism constraints as in the pure
GR case discussed in section 3. We can read off the phantom field contributions to this totally
constrained Hamiltonian from (4.54) as follows:

HPh
a = πφ,a (4.55)

HPh =
√
q
(
p2 (L′(J/2))

−1 − L(J/2)
)

(4.56)

where HPh
a is the scalar field contribution to the diffeomorphism constraint and HPh is the scalar

field contribution to the Hamiltonian constraint.
Deparametrisation follows from the initial observation that the diffeomorphism constraint

HTot
a = 0 can be used to remove dependence on the phantom field from the Hamiltonian constraint

HTot = 0 as follows:

V = qabφ,aφ,b

= qab
HPh
a HPh

b

π2

= qab
(
HEH
a +HM

a

) (
HEH
b +HM

b

)
π2

= K−1 q
ab
(
HEH
a +HM

a

) (
HEH
b +HM

b

)
q2

=: K−1h (4.57)

where in the third line we have imposed the diffeomorphism constraint. The phantom field only
appears in the Hamiltonian constraint (4.56) through V in the function J = J(K,V ), but by (4.57)
we can express V = K−1d as a function independent of the phantom field φ. This mechanism
works because the initial action only depended upon the derivative of the phantom field, this is
why no non-trivial potentials are allowed in the class of scalar models we are considering.

One can substitute this expression for V back into (4.56) and therefore obtain an equivalent
total Hamiltonian constraint:

H̄Tot = HEH +HM +
√
q
(
K
(
L′(J̄/2)

)−1 − L(J̄/2)
)

(4.58)

where J̄ := J(K,V = K−1h). Finally, if one solves H̄Tot = 0 for K one will have K =

G(HEH , HM , h) and using the definition K := π2

q one is led to a second equivalent Hamilto-
nian constraint:

H̃Tot
i,j := (−1)iπ + (−1)j

√
q
√
G (4.59)
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where i, j = 0, 1 enumerate the positive and negative square roots. In order to define the entire
Hamiltonian constraint surface one should take all sign combinations for the square roots as
indicated above. However, in [49] a choice was made to focus only upon the positive roots
i = j = 0 because this led to a physical Hamiltonian with the desired weak gravitational limit.

We have now found a Hamiltonian constraint which is in the deparametrised form54, (4.46)
since √q

√
G is independent of the phantom field. It follows from the general theory that these

Hamiltonian constraints will Poisson commute with each other- recall this is not the case for
the original Dirac algebra- and hence also √q

√
G will commute. A formal proof of this Poisson

commutativity is given in [49]. The family of functions which Poisson commute in this way has
been classified and can be shown to be solutions of a PDE. The solution space of this PDE is in
fact greater than the set of √q

√
G that may be derived from a covariant Lagrangian of the form

(4.51).
We can now construct complete observables (with respect to all the constraints of GR) of the

form (4.49) for our deparametrised GR. Let H̃ :=
√
q
√
G then:

O[f,φ](τ, ·) :=

( ∞∑
m=0

1

m!

{
H̃(β), f

}
m

)
|β=(τ−φ)

(4.60)

where H̃(β) :=
∫

Σ
d3σβ(σ)H̃(σ) and f is both independent of (φ, π) and spatially diffeomorphism

invariant, is invariant under the diffeomorphism and Hamiltonian constraints HTot
a and H̃Tot

i,j

respectively. Note we have used a different notation here as opposed to F[f,TJ ](τ
J , ·) because of

one important difference we must have τ a constant rather than a spatial field τ(σ). This latter
condition ensures that O[f,TJ ](τ, ·) is spatially diffeomorphism invariant. This condition was not
needed in the earlier discussion of complete observables for GR because when we reduced the
complete observable to one parameter in (4.45), the clock variables were spatially diffeomorphism
invariant. In the case here the clock variables φ are spatial scalar fields and therefore are not
invariant under the spatial diffeomorphism constraints but rather transform as in (4.32). The
proofs of both the diffeomorphism and Hamiltonian invariance of (4.60) can be found in [49].

The next property is that the deparametrisation of GR provides a physical Hamiltonian, see
claim 4.7. In fact H defined as:

H :=

∫
Σ

d3σH̃(σ) (4.61)

is a physical Hamiltonian that is gauge invariant and that generates evolution of the complete
observables O[f,TJ ](τ, ·) as follows:

d

dτ
O[f,φ](τ, ·) =

{
H, O[f,φ](τ, ·)

}
. (4.62)

The proof involves the same manipulations as used in claim 4.7, see [49].
We shall not discuss the detailed selection criteria and subsequent derivation of the Lagrangian

function for this model. We simply note that this selection involved using: i.) existence of
algebraic solutions for I = J(K,V ), ii.) spatial homogeneity for the phantom field φ, motivated
by having a synchronised clock on Σ and iii.) a weak gravitational limit close to the standard
model, which is equivalent to H̃ ≈

∣∣HGR +HM
∣∣ in the small α limit. These criteria lead to the

following expression for L:
L = −β + α

√
g
√

(1 + gµνΦ,µΦ,ν) (4.63)

54This construction has only deparametrised the Hamiltonian constraints while the diffeomorphism constraints
have been left in their original form. If one wanted to deparametrise the diffeomorphism constraints as well a
further three scalar fields would be required. In fact the dust gravity coupling does indeed fully deparametrise
GR, [48].
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where α, β are constants of dimensions cm−2 and α > 0. One can then run through the de-
parametrisation mechanism as described above for this particular Lagrangian and in turn define
complete observables and a physical Hamiltonian.

The usual FRW equation for our gravity, standard matter and phantom field system would be
derived by computing ȧ =

{
HTot, a

}
where a is the scale factor and HTot = HGR +HM +HPh

the original total Hamiltonian constraint. By contrast the physical gauge invariant evolution
equations obtained through this deparametrisation process would be computed by

d

dτ
O[a,φ](τ, ·) =

{
H, O[a,φ](τ, ·)

}
(4.64)

where H is the physical Hamiltonian derived from the specific Lagrangian model in (4.63). Note
the FRW equations without the phantom matter, ȧ =

{
HGR +HM , a

}
are approximated by

evolution with respect to the physical Hamiltonian precisely because H̃ ≈
∣∣HGR +HM

∣∣ in the
small α limit. However, this relationship is never exact and so there will always be a discrepancy
between the two models and in [49] this is significant for large scale factors.

The final point to mention is that the negative energy density requirement for the phantom
field has to be compensated by the remaining matter so that the total energy density is positive
and this requires either positive dust and cosmological constant contributions or a k-essence field,
[49].

4.5 Discussion
In this section we have discussed a number of topics concerning relational Dirac observables for
GR. The key issue that one is trying to understand is that the canonical analysis of GR implies
evolution with respect to coordinate time is a gauge transformation and yet i.) gauge variant
equations evolving with respect to coordinate time provide excellent agreement with experiment,
e.g. the FRW equations for the expansion of the universe and ii.) we do not view such time
evolution as a gauge transformation we appear to observe real physical change and iii.) in the
gauge invariant view one is forced to conclude complete observables do not change in coordinate
time- the frozen formalism. All these issues come broadly under the problem of time in quantum
gravity.

The relational framework attempts to address these issues by defining complete observables
with respect to non-gravitational dynamic fields and recovering a notion of evolution with respect
to the values these fields or ‘clock variables’ can take. Such observables have been shown to be
gauge invariant for first class constrained systems. These complete observables are in general quite
complicated, the perturbative definitions involve multiple iterated Poisson brackets, the possible
inversion of (in the field theoretic case) infinite dimensional matrices and multiple-fold integrals,
see (4.28). For this reason we have discussed several methods to reduce the complexity of these
expressions: i.) reducing the effective number of constraints and parameters by using partial
observables and clock variables which have ultra-local Poisson brackets with the constraints, ii.)
taking advantage of the result that one can compute complete observables in stages and iii.) using
deparametrisation to find a physical Hamiltonian from which evolution equations for complete
observables can be computed. Further it is not clear what the convergence properties of these
expressions are in general and presumably they would depend upon the choice of clock variables
and should need to be examined on a case by case basis.

Observables in the reduced constraint form for GR, (4.45) and the phantom deparametrisation
case (4.60) have a similar level of complexity involving just one type of iterated Poisson bracket.
In the deparametrised case one has the advantage of a physical conservative Hamiltonian and
no requirement to abelianise the constraints as this is automatic after deparametrisation. In the
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reduced constraint case one needs to work with diffeomorphism invariant partial observables and
clocks, which will be quite complicated expressions of the canonical fields.

It is an important result that deparametrisation can provide a method to obtain physical
evolution in GR that can also approximate the gauge evolution with respect to the Hamiltonian
constraint, e.g. the FRW equations, [49]. It is an interesting speculation55 that something
similar might happen with GR coupled to any matter, i.e. gauge variant equations are always
reduced gauge invariant expressions, i.e the coordinates which one measures are really ‘physical
coordinates’ depending upon matter degrees of freedom but that the observer does not describe
this relation with respect to other fields and so is left with gauge variant expressions. However,
to the author’s knowledge for GR coupled with standard model matter it is not known if or how
one could show this, as GR is not deparametrisable in this case.

The discussion in this section has been classical in nature, it is an open research problem how
to construct gauge invariant operators on the physical Hilbert space in canonical gravity. The
main problems are that the physical Hilbert space is not well understood due to the difficulty
in solving the Hamiltonian constraint and that there will be operator ordering ambiguities. In
LQG geometrical (area and volume) operators have been constructed and their spectra have been
found to be discrete. Unfortunately, these operators are not gauge invariant in that they do not
commute with the Hamiltonian constraint and so it is unclear whether these kinematical results
will hold at the physical level.

55See section 2.2 in [44].
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5 Connection Formalism
In this final section we discuss a reformulation of GR, originally due to Ashtekar, [51], in the mid
1980s, which has formed the basis of modern attempts to canonically quantize general relativity,
resulting in the theory known as Loop Quantum Gravity (LQG). The essence of the approach is
to consider GR as a theory of connections (just like in Yang Mills theory) rather than metrics.
In particular a SU(2) connection and metric (tetrad) are chosen as conjugate dynamical variables
(configuration and momentum respectively), whose combined equations of motion are equivalent56
to those derived from the Einstein Hilbert action. By describing GR in this way it can be viewed
as a Yang Mills theory subject to additional constraints57.

The idea to describe GR in terms of a dynamic connection is not new and dates back to the
Palatini action, where a Lorentz connection and tetrad are treated as independent dynamical
variables. However the Palatini approach ultimately does not affect the Hamiltonian theory and
one recovers the ADM phase space after performing the 3+1 analysis, and solving additional
second class constraints.

The modification due to Ashtekar rests on the important result that i.) one can express a
complex version of the Palatini action as a sum of two terms involving only Lorentz self dual
and anti-self dual connections and ii.) that either one of these terms contains the theory of
complex GR within it. Thus one can recover complex GR by using only half of the information
in the original complex Palatini action. After performing a canonical analysis one finds that the
configuration variable is a SO(3) connection one form and the conjugate momentum is a complex
densitised triad of weight +1.

This self dual approach has some important consequences i.) it describes complex GR so that
reality conditions must be imposed to recover real GR at the end, ii.) the Hamiltonian theory
involves an additional first class constraint, an SO(3) version of the Gauss constraint found in
Yang Mills theory and iii.) all the constraints involve only polynomial expressions in the canonical
variables. This latter point was considered the main advantage of the Ashtekar self dual formalism
because it offered potential benefits in the quantum theory, (regarding operator ordering and
regularization issues), e.g. we recall by contrast that the expressions for the Hamiltonian and
diffeomorphism constraints in the ADM formalism involve the inverse determinant 1√

q and the
inverse metric58 respectively. Unfortunately, this early promise has not materialised because
although the constraints are easier to handle the imposition of reality conditions in the quantum
theory has proven intractable.

For this reason a generalised Ashtekar formalism has been developed in the mid 1990s, involv-
ing a modified connection, [52, 53], (the Ashtekar Barbero Immirzi connection) and tetrad, which
is chosen to describe a real GR from the outset. One can show that the new phase space variables,
(a SU(2) connection59 and densitised triad as configuration and momentum respectively) are the

56Strictly speaking this formalism extends metric GR because there is no requirement for the tetrad to be
invertible. Hence, although every solution of Einstein GR is a solution in the connection formalism, the converse
is not true.

57We stress that this difference is, from the point of view of the dynamics, huge. The fact that the phase spaces
for GR and a SU(2) Yang Mills fields are the same is a kinematical relation only the dynamics is of course quite
different. Indeed an extreme example of this is the relation between a certain topological field theory called ‘BF
theory’ which has the same phase space as GR. In fact GR can be viewed as BF theory with additional constraints.
The fact that the additional constraints can turn a theory with a finite number of degrees of freedom into one with
an infinite number of degrees of freedom (GR) is a result of the new constraints not commuting with the original BF
constraints and therefore in effect turning what were gauge equivalent phase space points into physically distinct
states.

58The inverse metric appears in the covariant derivative.
59The connection could be interpreted as SO(3) because of the Lie algebra isomorphism between SU(2) and

SO(3). However, in order to describe fermionic degrees of freedom one is required to interpret it as an SU(2)
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result of i.) a canonical transformation of the ADM variables subject to the imposition of a Gauss
constraint and ii.) a 3+1 analysis of the Holst action, [54], for which, however, a partial gauge
fixing is required in order to complete the canonical analysis. The result is a first class system,
like the self dual formalism, but which is chosen real and for which the constraints are no longer
of polynomial form.

One could, at this point, question what has been achieved over the ADM variables. However
work has shown that progress (at the kinematical level) in the quantum theory can be made by
using techniques imported from Yang Mills theories (relating to Wilson loops), and which may
be applied regardless of the fact that the Hamiltonian constraint still contains a factor of 1√

q .
Our main references for this section have been for the Palatini and self dual formalisms the

introduction in [55] and detailed reviews in [22, 56, 57, 58]. The modern approach using the
generalised Ashtekar Barbero connection is described in detail in [5], [16] and in recent LQG
reviews including [59, 60].

5.1 Tetrad formalism
Before we write down the Palatini action we need to introduce the notion of a tetrad (or vielbein
or frame field) and some related connection and curvature structures. The tetrad most basically
can be viewed as a set of orthonormal, with respect to the metric gµν , basis vectors at each point
in spacetime M . They can be physically understood as describing the frame of reference of an
inertial observer, who in a sufficiently small region recovers, by the equivalence principle, special
relativity.

More formally one can define, [55], a tetrad as a vector bundle isomorphism e between a local
trivialization and the tangent bundle of spacetime, i.e.

e : M × R4 → TM (5.1)
e : (X, v) 7→ e(X, v)µ∂µ (5.2)

where R4 represents Minkowski spacetime, and ∂µ is a coordinate basis in TM . One has then
trivialised the tangent bundle into a vector bundle, which has a copy of Minkowski space at each
point ofM . This approach makes contact with the mathematical formalism of classical gauge and
matter fields, which are described by principal and associated vector fibre bundles respectively,
see [61] for an introduction. In this way one views the copy of Minkowski spacetime as an “internal
space” in the same way that one views either the gauge group G or its representation space as an
internal space in Yang Mills / matter theory.

If one chooses a set of orthonormal vectors, ξI , I = 0, 1, 2, 3 in R4 then one defines

e(X, ξI) = e(X)µI ∂µ (5.3)

as usual we shall use Greek letters to denote spacetime indices and capital Latin letters I, J,K
to denote the internal Minkowski space indices. All spacetime indices can be raised or lowered
only with the spacetime metric gµν . As R4 is Minkowski spacetime it comes with the standard
metric ηIJ = diag(−1,+1,+1,+1), and similarly one can raise or lower Minkowski (internal
space) indices only with ηIJ .

We shall assume that the tetrad map is such that the two tetrads eI , eJ are orthonormal with
respect to the spacetime metric and then it follows

ηIJ = g(eI , eJ)

= eµI e
ν
Jgµν (5.4)

connection.

81



and because the map e can be inverted, one obtains

gµν = eIµe
J
ν ηIJ (5.5)

where the object eIµ is known as a co-tetrad field.
It is clear from (5.5) that knowledge of the tetrad field implies one can determine the spacetime

metric. However, the converse is not true there are an infinity of frame fields satisfying (5.5), all
related to each other by local Lorentz transformations, i.e.

eIµ(X)eJν (X)ηIJ = eIµ(X)eJν (X)ΛI
′

I (X)ΛJ
′

J (X)ηI′J′

= eI
′

µ (X)eJ
′

ν (X)ηI′J′ (5.6)

using the invariance of the Minkowski metric under Lorentz transformations. Thus the local
Lorentz transformations are to be interpreted as gauge in this formalism. Of course this can
be seen from the number of independent components in (5.5), the spacetime metric has 10 such
components whereas the tetrad has 16 components, the difference 6 corresponds to the dimension
of the Lorentz group SO(1,3).

The other structure we need is the connection on the local trivialization, M ×R4, as with any
vector bundle one cannot define differentiation without this additional structure, and in general
the connection will be a spacetime 1-form Aµ, with values in the general linear group GL(4,R).
We may define the action of this connection on Minkowski indices by

Dµv
I = ∂µv

I +A I
µ Jv

J (5.7)

and extend it to Minkowski tensors by linearity, the Leibniz rule and commutation with contrac-
tions, as is done with the spacetime connection ∇µ.

We also require that this connection be compatible with the Minkowski metric ηIJ , this implies

0 = DµηIJ

= ∂µηIJ −AK
µ IηKJ −AK

µ JηIK

= −2Aµ(IJ) (5.8)

and hence the connection AµIJ is anti-symmetric, in its internal indices, and for this reason is
known as a Lorentz connection and takes values in the Lie algebra so(1, 3).

The isomorphism e allows one to define a spacetime connection ∇̃, induced from the Lorentz
connection, by

∇̃UV := e(DU (e−1(V )) (5.9)

where U, V are arbitrary spacetime vectors and in components this implies

Γ̃αµν∂α := ∇̃µ∂ν
= e

(
(∂µe

I
ν +A I

µ Je
J
ν )ξI

)
= (∂µe

I
ν +A I

µ Je
J
ν )eαI ∂α (5.10)

and hence
Γ̃αµν = (∂µe

I
ν +A I

µ Je
J
ν )eαI (5.11)

we have placed a tilde on the spacetime connection induced in this way to distinguish it from the
Levi Civita connection.
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We should like to consider two properties of this induced spacetime connection i.) its action
on the spacetime metric and ii.) its torsion. First consider its action on the spacetime metric gµν

∇̃µgνσ = ∂µgνσ − Γ̃γµνgγσ − Γ̃γµσgνγ

= ∂µgνσ − gγσeγI (∂µe
I
ν +A I

µ Je
J
ν )− gνγeγI (∂µe

I
σ +A I

µ Je
J
σ)

= ∂µ(eIνe
J
σηIJ)− gγσeγI∂µe

I
ν − gνγe

γ
I∂µe

I
σ

−gγσeγIA
I
µ Je

J
ν − gνγe

γ
IA

I
µ Je

J
σ

= −eIσeJνAµIJ − eJσeIνAµIJ
= 0 (5.12)

where in the second line we have used (5.11), in the third line we have substituted for the spacetime
metric using (5.5), in the fourth line cancelled the terms involving derivatives using Leibniz and
in the final line used the anti-symmetry of the Lorentz connection. Hence we have shown that
the induced spacetime connection is compatible with the spacetime metric.

Second the torsion of the induced connection, we have

Γ̃αµν − Γ̃ανµ = 2(∂[µe
I
ν] +A I

[µ |J|e
J
ν])e

α
I

= Tαµν (5.13)

where Tαµν is the torsion tensor60, and one can then express this using differential forms as

T I := eIρT
ρ
µνdx

µ ∧ dxν

= 2eIρe
ρ
J

(
∂[µe

J
ν] +A J

[µ |K|e
K
ν]

)
dxµ ∧ dxν

= 2(∂[µe
I
ν] +A I

[µ |K|e
K
ν])dx

µ ∧ dxν

=: dDe
I (5.14)

where T I is the torsion two form, dD is the exterior covariant derivative, and (5.14) is the first
Cartan structure equation. Note that the induced connection is not necessarily torsion free, in
fact we shall see that in the Palatini action the torsion free condition T I = 0 is one of the Euler
Lagrange equations derived from it.

The final result we need before discussing the Palatini action is the relation between the
curvature on the Minkowski vector bundle and the spacetime curvature it defines via the induced
connection. First the internal curvature two form F IJµν is defined by

2D[µDν]vI := FµνI
JvJ (5.15)

where vI is an arbitrary Lorentz co-vector and F IJµν can be expressed, in terms of the Lorentz
connection coefficients, as

F IJµν = ∂µA
IJ
ν − ∂νAIJµ + [Aµ, Aν ]IJ

= ∂µA
IJ
ν − ∂νAIJµ +AIµKA

KJ
ν −AIν KAKJµ . (5.16)

Again we may express this relation using differential forms as

F IJ = dAIJ +AIK ∧AKJ . (5.17)
60We are using a coordinate spacetime basis, labelled by the Greek indices, so we do not need the additional

term in the definition of the torsion tensor involving the commutator of the basis vectors, which is automatically
zero in this case.
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Second recall that the induced spacetime Riemann curvature is defined by

2∇̃[µ∇̃ν]vσ := R̃ρµνσ vρ (5.18)

for an arbitrary spacetime co-vector vσ.
By using the abstract definition for the induced connection in (5.9) one can deduce

∇̃U ∇̃VW = ∇̃U
(
e(DV (e−1(W ))

)
= e

(
DU

(
e−1 ◦ e

(
DV

(
e−1(W )

))))
= e

(
DUDV

(
e−1(W )

))
(5.19)

where U, V, W are arbitrary spacetime vectors and then anti-symmetrising we get

R̃(U, V )W = e
(
F (U, V )(e−1(W ))

)
(5.20)

and hence one can read off the components of this equation when acting on basis vectors to get

R̃ρµνσ∂ρ = e
(
FµνI

JξJe
I
σ

)
= FµνI

JeIσe
ρ
J∂ρ (5.21)

where we have used F (∂µ, ∂ν)(e−1∂σ) = Fµν(eIσξI) = eIσFµνI
JξJ , and hence

R̃ρµνσ = FµνI
JeIσe

ρ
J . (5.22)

In short one can transfer between the internal and spacetime curvature by appropriate con-
tractions of indices with the tetrad and co-tetrad. Using (5.22) one can express the spacetime
curvature Ricci tensor and scalar in terms of contractions of the internal curvature and tetrad as

R̃ρµνσ = eIσe
ρ
JFµνI

J

⇒ R̃µσ = eIσe
ρ
JFµρI

J (5.23)

⇒ R̃ = gσµeIσe
ρ
JFµρI

J

= eµI e
ν
JF

IJ
µν . (5.24)

5.2 Hilbert Palatini Action
We can now write down the Hilbert-Palatini action, which is just the Einstein Hilbert action,
(3.4), but with the Lorentz connection, defining the curvature, and the tetrad defining the metric
now considered as independent variables. Recall by the previous section we know that the induced
connection, though metric compatible, is not the Levi Civita connection because it is not torsion
free.

One has from (5.5) that √
|g| = |e| (5.25)

where e := det(eIµ). The Palatini action is defined as

SP [e,A] =
1

16πG

∫
M

d4X |e| R̃(e,A)

1

16πG

∫
M

d4X |e| eµI e
ν
JF

IJ
µν (A) (5.26)

where the action is a functional of both the tetrad and the Lorentz connection AIJµ .
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We now compute the equations of motion for this action. First consider the variation with
respect to the tetrad, one has the standard result for the variation of the determinant

δ|e| = |e|eµI δe
I
µ

= −|e|eIµδe
µ
I (5.27)

and hence

δSP =
1

16πG

∫
M

d4X
(
δ|e|eµI e

ν
JF

IJ
µν + δeµI |e|e

ν
JF

IJ
µν + δeνJ |e|e

µ
IF

IJ
µν

)
=

1

8πG

∫
M

d4X |e|δeµI
(
−1

2
eIµe

σ
Ke

ν
JF

KJ
σν + δIKe

KσR̃µσ

)
(5.28)

=
1

8πG

∫
M

d4X |e|δeµI
(
−1

2
eνJη

IJgµνR̃+ ηIJηJKe
KσR̃µσ

)
=

1

8πG

∫
M

d4X |e|δeµI
(
−1

2
eνJη

IJgµνR̃+ R̃µν

)
=

1

8πG

∫
M

d4X |e|δeµI η
IJeνJ

(
R̃µν −

1

2
gµνR̃

)
(5.29)

this implies the equation of motion

|e|ηIJeνJ
(
R̃µν −

1

2
gµνR̃

)
= 0 (5.30)

which of course would be Einstein’s equations (assuming the tetrad is non-degenerate, which we
require in the variation) if our induced connection were torsion free.

The other equation of motion comes from varying the connection A. In order to compute this
variation we need the result of the variation of the curvature F IJ

µν , we have from (5.16)

δF IJ
µν = ∂µδA

IJ
ν − ∂νδAIJµ + δAIµKA

KJ
ν +AIµKδA

KJ
ν − δAIν KAKJµ −AIν KδAKJµ

= ∂µδA
IJ
ν +AIµKδA

KJ
ν +AJµKδA

IK
ν − ∂νδAIJµ −AIν KδAKJµ −AJν KδAIKµ

= DµδA
IJ
ν −DνδA

IJ
µ

= 2D[µδA
IJ
ν] (5.31)

= (dDδA)
IJ (5.32)

where in the second line we just used the anti-symmetry of the Lorentz connection and then in
the penultimate line the definition of the covariant derivative.

Hence the initial variation in the Palatini action with respect to the connection is given by

δSP =
1

16πG

∫
M

d4X |e| eµI e
ν
JδF

IJ
µν

=
1

16πG

∫
M

d4X 2|e| eµI e
ν
JD[µδA

IJ
ν]

=
1

16πG

∫
M

d4X 2|e| e[µ
I e

ν]
J DµδA

IJ
ν . (5.33)

At this point, prior to performing an integration by parts, it is convenient to use the following
identity, [58],

2|e| e[µ
I e

ν]
J = εµνρσεIJKLe

K
ρ e

L
σ (5.34)
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where to be clear εIJKL is the SO(1, 3) ε symbol which is totally anti-symmetric and for which
we define ε0123 = 1, its indices can be raised by the Minkowski metric only and we observe that
this implies ε0123 = −1. The objects εµνρσ and εµνρσ are both totally anti-symmetric and satisfy
ε0123 = ε0123 = 1 in every coordinate system, and are tensor densities of weight +1 and −1
respectively.

and this implies

δSP =
1

16πG

∫
M

d4X εµνρσεIJKLe
K
ρ e

L
σDµδA

IJ
ν

= − 1

16πG

∫
M

d4XDµ

(
εµνρσεIJKLe

K
ρ e

L
σ

)
δAIJν

+
1

8πG

∫
M

d4X ∂µ

(
|e| e[µ

I e
ν]
J δA

IJ
ν

)
= − 1

16πG

∫
M

d4XDµ

(
εµνρσεIJKLe

K
ρ e

L
σ

)
δAIJν (5.35)

where we have dropped the boundary term. Hence the equation of motion derived from the
variation with respect to the connection is

0 = Dµ

(
εµνρσεIJKLe

K
ρ e

L
σ

)
0 = εµνρσεIJKLDµ

(
eKρ e

L
σ

)
⇒ 0 = εIJKLe

K
ρ ε

µνρσDµe
L
σ

⇒ 0 = D[µe
L
σ]

⇔ 0 = TLµσ (5.36)

where in the second line we used the anti-symmetry of the Lorentz connection, which ensures the
covariant constancy of εIJKL and in the final line used the definition of the torsion two form,
given in (5.14). The torsion free condition now implies the induced spacetime connection is the
unique Levi Civita connection and hence that (5.30) is now equivalent to Einstein’s equations in
vacuum. The Palatini formalism is often called first order because the equations of motion only
involve first order derivatives of the dynamical variables in contrast to the Einstein Hilbert action
where e.g. the Ricci tensor involves second order derivatives of the metric.

Before we discuss the self dual formalism we should like to make some remarks concerning the
Hilbert Palatini formalism, described here.

First, note that the identity (5.34) allows us to re-write the Palatini action as an integral of
a four form

SP [e,A] =
1

32πG

∫
M

d4X εµνρσεIJKLe
K
ρ e

L
σF

IJ
µν (A)

=
1

32πG

∫
M

εIJKL
(
εµνρσeKρ e

L
σF

IJ
µν d

4X
)

=
1

32πG

∫
M

εIJKLe
K ∧ eL ∧ F IJ (5.37)

where we have suppressed the spacetime indices and used the fact that the co-tetrads, and cur-
vature are one and two forms respectively.

This differential form version of the Palatini action, is the one usually cited in modern treat-
ments, [4] and in this formalism one only ever has to work with the co-tetrad eKµ and it is this
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field that is identified as the gravitational field. The Euler Lagrange equations of this action can
be immediately computed, the variation with respect to the co-tetrad is

δSP =
1

32πG

∫
M

εIJKL
(
δeK ∧ eL ∧ F IJ + eK ∧ δeL ∧ F IJ

)
=

1

32πG

∫
M

εIJKL
(
δeK ∧ eL ∧ F IJ − δeL ∧ eK ∧ F IJ

)
=

1

32πG

∫
M

εIJKLδe
K ∧ eL ∧ F IJ + εIJKLδe

K ∧ eL ∧ F IJ

=
1

16πG

∫
M

δeK ∧
(
εIJKLe

L ∧ F IJ
)

(5.38)

and the variation with respect to the connection is unchanged and hence one derives the equations
of motion

εLIJKe
L ∧ F IJ = 0 (5.39)

T I = 0 . (5.40)

Of course the first equation, assuming the co-tetrad is non-degenerate, is equivalent to Einstein’s
equations subject to the torsion free condition. However, the difference with these equations is
that because the tetrad is never explicitly used we may also consider eL = 0, as a solution to these
equations of motion. But note that this solution corresponds to a degenerate spacetime metric by
(5.5) and hence the solution space to (5.39) and (5.40) is strictly greater than the solution space
to the metric version of Einstein’s equations, as derived from the Einstein Hilbert action. (Of
course degenerate spacetime metrics leave the Einstein Hilbert action and equations of motion
undefined, as one cannot even define the Levi Civita connection components without the inverse
of the metric. The fact that degenerate metrics are allowed in this formalism has been used to
suggest that topology change is feasible in the (pure gravity sector of the) Palatini formalism.

The second point we wish to make regards matter coupling in the Palatini formalism, all
matter types may be coupled to this action including fermionic matter. Indeed as we mentioned
earlier in section 3.4 only the tetrad formalism may be used to describe fermionic degrees of
freedom. However, one can simply re-write the Einstein Hilbert action directly in terms of a
tetrad basis but where the connection is fixed and non-dynamical such that it induces the Levi
Civita connection and in this case one can describe all matter degrees of freedom, i.e one has

SEH [e] =
1

16πG

∫
M

d4X |e| eµI e
ν
JF

IJ
µν (A(e)) (5.41)

where A(e) is such that Γ̃αµν is the Levi Civita connection.
However, in the Palatini formalism the connection is dynamical and this leads to a non-

equivalence in the dynamics for fermions coupled to gravity. This non-equivalence appears because
in order to write down a covariant derivative for fermions one must use the Lorentz connection
and then one has, in this formalism, a fermionic ‘standard model’ action term of the form, [4, 5]

SFermions[e,A
IJ
µ , φ,AAµ , ψ] =

∫
M

d4X |e|
(
ψ̄γIeµI

(
∂µψ +AJµKL

K
Jψ +AAµLAψ

)
+ Y (φ, ψ, ψ̄

)
+ c.c

(5.42)
where φ is a scalar field, AAµ is a Yang Mills field with gauge group Lie algebra index A, ψ is
a Dirac spinor, γI are the Gamma matrices, LKJ , LA are representation matrices of the Lorentz
and Yang Mills gauge group G, which act upon the representation space that ψ is an element
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of and finally Y is a polynomial interaction term, which will include the mass term for the
fermion field after symmetry breaking. Note we have suppressed all spinor indices. The term
∂µψ + AJµKL

K
Jψ + AAµLAψ can be viewed as a generalised covariant derivative acting upon the

group SO(1, 3)×G.
Now when one performs a variation with respect to the Lorentz connection in this term there

will be a non-zero contribution δSF
δAIJ

which contributes to the torsion T I and hence one finds
that the spacetime connection ‘on shell’ is no longer Levi Civita but will have a non-zero torsion.
Hence in the presence of fermions the second order and first order theories are inequivalent.

Finally we consider the Legendre transform of these tetrad formulations of gravity. The
Hamiltonian formulation of the tetrad version of the Einstein Hilbert action, (5.41), is derived in
detail in [58] and the result is a first class Hamiltonian system. The configuration variable is a
triad eai(σ) where a is the spatial index on Σ and i = 1, 2, 3 is an SO(3) index, where, in analogy
with the tetrad, the triad is an orthonormal frame which satisfies

qab = eiae
j
bδij (5.43)

where δij is the Euclidean metric on R3. The conjugate momentum is denoted πai(σ) and is
related to the extrinsic curvature of the spatial hypersurface. The constraints consist of three
types the Hamiltonian and diffeomorphism constraints, as for the metric ADM case, (just now
expressed in terms of the new variables), and an additional constraint, Gi(σ) which is an SO(3)
Gauss constraint, which reflects the freedom to rotate the triads arbitrarily in R3 without changing
the induced spatial metric. Note that in order to reduce the gauge symmetry from SO(1,3) to
SO(3) a gauge fixing has been employed. This involves fixing an internal timelike vector, nI ,
which is used in the 3 + 1 decomposition of the tetrad. One can show the equivalence of this
constrained Hamiltonian system to the ADM phase space by constructing the quotient space with
respect to the Gauss constraint. This follows because the equivalence class of triads is equivalent
to the spatial metric qab(σ) and the momentum can be directly related to the ADM momentum
P ab(σ), after taking into account the Gauss constraint, [22].

The Legendre transform for the Hilbert Palatini action, [22, 56, 58], is more involved because
the Hamiltonian system contains additional second class constraints, not present in the analysis
of (5.41). One has to solve these constraints61 and, in the process use a partial gauge fixing, in
order to recover a first class system and one then finds that the Hamiltonian theory is equivalent
to the tetrad formulation of Einstein Hilbert just discussed. We shall briefly discuss this Legendre
transform so that one can see where the second class constraints appear and the form of the final
phase space.

We begin by performing a 3+1 analysis of the Palatini action, (5.26), using the usual decom-
position of the unit normal vector nµ into the lapse and shift, nµ = N−1 (Tµ −Nµ) one can
define a spatial projection of the tetrad by

EµI := eνI (gµν + nµnν) (5.44)
= eµI + nµnI (5.45)

where nI := eµI nµ is by construction a timelike internal co-vector of unit length. Immediately one
can deduce that

EµI nµ = eµI nµ + nµnµnI

= nI − nI
= 0 (5.46)

61In principle one does not need to do this, one could keep the second class constraints and define the dynamical
system by using the Dirac bracket.
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and

EµI n
I = (eµI + nµnI)n

I

= eµI e
I
νn

ν + nµnIe
νInν

= nµ + nµnνnν

= nµ − nµ

= 0 (5.47)

and hence we view EµI as a triad.
Using this one can express the Palatini action, (5.26) as

S =
1

16πG

∫
M

d4X N
√
q (EµI − n

µnI) (EνJ − nνnJ)F IJ
µν (A)

=
1

16πG

∫
M

d4X N
√
q
[
EµI E

ν
JF

IJ
µν − E

µ
I nJN

−1 (T ν −Nν)F IJ
µν

−nIEνJN−1 (Tµ −Nµ)F IJ
µν

]
=

1

16πG

∫
M

d4X N
√
q
[
EµI E

ν
JF

IJ
µν −

(
EµI nJN

−1T ν − nIEνJN−1Tµ
)
F IJ
µν

+
(
EµI nJN

−1Nν + nIE
ν
JN
−1Nµ

)
F IJ
µν

]
=

1

16πG

∫
M

d4X N
√
q
[
EµI E

ν
JF

IJ
µν − 2N−1nIT

µEνJF
IJ
µν +

2N−1nIN
µEνJF

IJ
µν

]
(5.48)

where in the second line we used the anti-symmetry of the curvature in either Lorentz or spacetime
indices to show nµnIn

νnJF
IJ
µν ≡ 0.

By comparison with the ADM formulation we expect that the coefficient of N will form the
Hamiltonian constraint, and the coefficient of Nµ the diffeomorphism constraint. The second
term with the time vector contracting an index of the curvature will contribute the

∫
pq̇ term of

the 3+1 action and hence will allow us to identify the conjugate momentum variable. In particular
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the second term will be62

=
1

8πG

∫
M

d4X
√
q nIE

ν
JT

µ
(
∂µA

IJ
ν − ∂νAIJµ +AIKµ AνK

J −AIKν AµK
J
)

=
1

8πG

∫
M

d4X
√
q nIE

ν
J

(
Tµ∂µA

IJ
ν −AJν KTµAIKµ −AIν KTµAKµ J

)
+

1

8πG

∫
M

d4X
[
∂ν (
√
q nIE

ν
JT

µ)AIJµ − ∂ν
(√
q nIE

ν
JT

µAIJµ
)]

=
1

8πG

∫
M

d4X
√
q nIE

ν
J

(
Tµ∂µA

IJ
ν −AJν KTµAIKµ −AIν KTµAKµ J

)
+

1

8πG

∫
M

d4X
[√
q nIE

ν
J∂ν (Tµ)AIJµ − ∂ν

(
AIJµ Tµ

)√
q nIE

ν
J

]
=

1

8πG

∫
M

d4X
√
q nIE

ν
J

[
Tµ∂µA

IJ
ν +AIJµ ∂ν (Tµ)

]
− 1

8πG

∫
M

d4X
√
q nIE

ν
J

[
∂ν
(
AIJµ Tµ

)
+AJν KT

µAIKµ +AIν KT
µAKµ

J
]

=
1

16πG

∫
M

d4X
√
q 2nIE

ν
J

[
L~TA

IJ
ν −Dν(AµT

µ)IJ
]

(5.49)

where we have used the anti-symmetry of the Lorentz connection, Leibniz rule on partial deriva-
tives and the definitions of i.) the Lie derivative of Aν with respect to the time vector (the internal
indices act as scalars here) and ii.) the (Lorentz) covariant derivative of AµTµ.

Now first observe that for the first and final terms in (5.48) the curvature F IJ
µν is always

contracted with a spatial object (either EµI or Nµ) on every index, this means we can replace
F IJ
µν with its spatial projection. Secondly, in (5.49) the Lie derivative term is also contracted

by a spatial object and one can hence show that AIJµ may be replaced by its spatial projection,
[56]. Finally, the covariant derivative in (5.49) is contracted with EνJ and hence that may also
be viewed as the action of the spatial covariant derivative. To make this manifest we label the
only remaining spacetime connection term (in the covariant derivative) with the superscript 4 all
other connection, curvature and derivative terms are to be now interpreted as spatial objects.

Hence substituting (5.49) back into (5.48) and pulling the integral back to Σ× R one has

S =
1

16πG

∫
dtd3σ E

[
NEaIE

b
JF

IJ
ab − 2n[IE

a
J]

(
ȦIJa −Da(4AνT

ν)IJ
)

+ 2NanIE
b
JF

IJ
ab

]
. (5.50)

where the a, b indices are spatial indices on Σ, E ≡ √q and ȦIJa is the pullback of the Lie
derivative to Σ.

Following [56] this action can be simplified to

S[Aa, E
a, N,Na, 4AT ] =

∫
dtd3σ

[
α̃aIJ Ȧ

IJ
a −

(
−Da (α̃aIJ) 4AIJT − 2N

∼
α̃aKI α̃bKJF

IJ
ab +Naα̃bIJF

IJ
ab

)]
(5.51)

where N
∼
≡ E−1N , ẼaI ≡ EEaI is a densitised triad, 4AIJT ≡ 4AIJν T νand α̃aIJ ≡ 8πGẼa[InJ]

63 and
we have performed an integration by parts and dropped the boundary term. The third term in

62We follow the method in [56] but include all the missing steps.
63Using an over tilde to indicate an object of density weight +1 and an under tilde for a density of weight −1

is quite common in the literature.
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(5.51) follows because working backwards one has

N
∼
α̃aKI α̃bKJF

IJ
ab = N

∼
α̃aIKη

KLα̃bLJF
IJ
ab

= N
∼
Ẽa[InK]η

KLẼb[LnJ]F
IJ
ab

=
N
∼
4

(
ẼaI nK − ẼaKnI

)
ηKL

(
ẼbLnJ − ẼbJnL

)
F IJ
ab

=
N
∼
4

(
ẼaI n

LẼbLnJ − ẼaI nKηKLẼbJnL − nInJ ẼaKẼbK + nKẼaKnIẼ
b
J

)
F IJ
ab

= −
N
∼
4

(
nKn

KẼaI Ẽ
b
J

)
F IJ
ab

= −
N
∼
4
eµKnµe

νKnνẼ
a
I Ẽ

b
JF

IJ
ab

= −
N
∼
4
nµn

µẼaI Ẽ
b
JF

IJ
ab

=
N
∼
4
ẼaI Ẽ

b
JF

IJ
ab

=
EN

4
EaIE

b
JF

IJ
ab (5.52)

where in the fifth line we use (5.47) and nInJF IJ
ab ≡ 0 (by symmetry, anti-symmetry in the internal

indices), in the sixth line the definition of nI and in the seventh line the timelike normality of nµ.
We observe that the action in (5.51) is in standard canonical form S =

∫
(pq̇−H) and therefore

we can read off the conjugate momenta to the configuration variables Aa, N,Na, 4AT as

α̃aIJ ≡ 8πGẼa[InJ] (5.53)
PN = 0 (5.54)
Pa = 0 (5.55)
PIJ = 0 (5.56)

respectively. Clearly the last three momenta being identically zero correspond to primary con-
straints. However, in addition (5.53) is a constraint because α̃aIJ has 18 independent components
whereas Ẽa[InJ] has 12 such components, (there are 3 independent components in the timelike
vector nI and (5.47) removes 3 degrees of freedom from the the densitised triad leaving 9 inde-
pendent components). Hence one expects (5.53) to be equivalent to six constraints, in fact see
[56] one has equivalence with the following two constraints

φab ≡ εIJKLα̃aIJ α̃bKL ≈ 0 (5.57)
α̃aIJ α̃

bJ
I > 0 . (5.58)

The former constraint consists of (the expected) six independent relations and the latter constraint
is an inequality, which does not reduce the dimension of the phase space, it is non-holonomic and
for this reason does not get treated together with the other constraints in the usual way.

Hence we can now write down the primary Hamiltonian, which generates the time evolution
for this Hamiltonian system, it is given by

Hp = Hc +

∫
Σ

d3σ
(
λPN + λaPNa + λIJPIJ + λabφ

ab
)

(5.59)
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where λ, λa, λIJ , λab are arbitrary and Hc is the canonical Hamiltonian

Hc =

∫
Σ

d3σ
(
Naα̃bIJF

IJ
ab − 2N

∼
α̃aKI α̃bKJF

IJ
ab −Da (α̃aIJ) 4AIJT

)
. (5.60)

Following the Dirac-Bergmann algorithm one should now impose preservation of the above
constraints under evolution generated by Hp to check for secondary constraints. Immediately we
see that preservation of PN , Pa, PIJ implies the coefficients of the corresponding configuration
variables in the Hamiltonian will be secondary constraints (just as we saw for the metric variables
in section 3.2), i.e.

α̃bIJF
IJ
ab ≈ 0 (5.61)

α̃aKI α̃bKJF
IJ
ab ≈ 0 (5.62)

GIJ ≡ Da (α̃a)IJ ≈ 0 . (5.63)

Finally, one should check the evolution of φab a non-trivial result, [56], is that this leads to six
independent secondary constraints64

χab ≡ εIJKLα̃cMI α̃
(a
MJDc

(
α̃b)
)
KL
≈ 0 . (5.64)

One should now check for the consistency of these secondary constraints but fortunately there are
no further secondary (tertiary) constraints, [56]. Hence we have completed the Dirac-Bergmann
algorithm all that remains is to classify the constraints we have found into first and second class.
The result, [56], is that all constraints are first class except for φab and χab. We observe i.) that
all the constraints are polynomial in the dynamical variables and ii.) that (5.63) has the form
of a Gauss constraint and given that out internal symmetry is SO(1, 3) we expect the GIJ to be
generators of Lorentz transformations. Indeed this can be confirmed, if one computes the Poisson
algebra of the smeared GIJ then one finds it is isomorphic to the Lorentz algebra.

As argued in section 3.2 we can now reduce the phase space to one only coordinatised by(
AIJa , α̃aIJ

)
because i.) the evolution of N,Na, 4AT will be arbitrary, ii.) the evolution of their

conjugate momenta will be fixed as they are constraints and iii.) the evolution of
(
AIJa , α̃aIJ

)
will not depend upon the primary constraint terms present in the primary Hamiltonian involving
these conjugate momenta.

Hence we have a phase space
(
AIJa , α̃aIJ

)
of 36×∞3 dimensions with the symplectic structure{

AIJa (σ), α̃bKL(σ′)
}

= δbaδ
I
[Kδ

J
L]δ

3(σ, σ′) (5.65)

and now subject to ten first class constraints (5.61), (5.62) and (5.63) and twelve second class
constraints (5.57) and (5.64). A simple counting confirms we have the correct number of physical
degrees of freedom for general relativity, using (2.72) one has 1

2 × (36− 22− 10)×∞3 = 2×∞3

degrees of freedom as required.
At this point one could either live with the second class constraints and use Dirac brackets or,

as is the usual method, solve them in order to recover a first class system. The original motivation
of finding polynomial constraints for GR has been realised in the Palatini formalism but the at
the price of second class constraints, which force one to use the Dirac bracket and therefore lead
to further operator ordering ambiguities in the quantum theory. We shall not discuss the method
of solution of these second class constraints it is described in detail in [22, 56, 58] but the result
is that one both solves the constraints and in the process partially solves the first class constraint

64This constraint comes from the Poisson bracket
{
φcd, α̃aKI α̃bKJF

IJ
ab

}
.
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(5.63)65. The point is that solving the constraint χab is most easily done by gauge fixing the
timelike internal vector nI however in order to ensure this fixing is preserved one must ensure
that nIGIJ ≈ 0, it is this requirement that reduces the internal gauge symmetry from the Lorentz
group to SO(3).

The result is that after fixing nI there will be 9 remaining degrees of freedom in the momentum
α̃aIJ , in other words it is completely determined by knowledge of the triad. Secondly one finds
that the Lorentz connection AIJa can be split into a component dependent upon the triad (the
part that induces the spacetime Levi Civita connection) and ultimately an additional field KI

a ,
which satisfies KI

anI = 0. Hence we may use now use the coordinates
(
ẼaI ,K

I
a

)
for our phase

space66 . The fact that both the triad and KI
a annihilate the gauge fixed internal vector means

that we can replace the Lorentz internal index I with an index i = 1, 2, 3 representing an SO(3)
index.

So we have a phase space with coordinates
(
Ẽai ,K

i
a

)
of dimension 18 ×∞3 with symplectic

structure {
Ẽai (σ),Kj

b (σ′)
}

= δab δ
j
i δ

3(σ, σ′) (5.66)

now subject to seven first class constraints, which gives us 2 physical degrees of freedom per spatial
point. The first class constraints (5.61) and (5.62) and the remaining freedom (after gauge fixing
nI) in (5.63), expressed in these new coordinates, are

1
√
q

(
Ẽbi Ẽ

a
j − Ẽai Ẽbj

)
Ki
aK

j
b −
√
q 3R ≈ 0 (5.67)

D[b

(
Ki
a]Ẽ

a
i

)
≈ 0 (5.68)

G′i ≡ εijkKi
aẼ

a
i ≈ 0 (5.69)

where Db is now the unique Lorentz connection, which induces the Levi Civita connection on
the spatial manifold Σ, and 3R is the spatial Ricci scalar derived from this connection. The first
two constraints are the Hamiltonian and diffeomorphism constraints of metric gravity in the new
coordinates and the final constraint is an SO(3) Gauss constraint. Again the interpretation of
G′i as an SO(3) generator can be confirmed by computing the Poisson algebra of these smeared
constraints using the fundamental Poisson bracket (5.66).

This final system is precisely the Hamiltonian system of ADM gravity in tetrad formalism
discussed earlier and so we have seen that the Hamiltonian analysis of the Palatini action ulti-
mately just recovers the ADM phase space. We also note that i.) the constraints above have lost
their polynomial form present in (5.61), (5.62) and (5.63) and ii.) after solving the second class
constraints the interpretation of gravity as a theory of connections has been lost.

5.3 Ashtekar self-dual Action
In this section we describe the self dual complex formalism due to Ashtekar, [51] and also earlier
work of Sen. This action finally realised the aim of simplifying the constraints of GR, whilst also
maintaining their first class character. We shall discuss this action and the Hamiltonian theory
obtained from its Legendre transform. This theory is a complex theory of GR and so at the end
one has to impose reality conditions and it is these conditions that to date have proven intractable

65The partial gauge fixing is convenient but not compulsory see [58] for a solution to the second class constraints
without breaking the Lorentz symmetry.

66We observe that the triad variable is now a configuration coordinate rather than a momentum one, as was the
case before the second class constraints were solved. According to [22] this switch is required because the triad
must remain invertible and we presume that this is not guaranteed were it to remain a momentum variable.
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in the quantum theory. It is important to note that a complex form of the Palatini action does
not itself offer any advantages one proceeds through the canonical analysis as for the real case
and after solving the second class constraints recovers a complex version of ADM tetrad gravity,
[56].

As we are dealing with a complex version of GR we shall generalise the tetrad to a map, [55]
between the complexified Minkowski space and the complexified tangent bundle CTM , i.e.

e : M × C4 → CTM (5.70)

where CTM is the vector bundle whose “internal space” at each point p ∈M consists of complex
combinations of tangent vectors and C4 is the complexified Minkowski spacetime but where the
Minkowski metric is kept real. This means that the tetrad components will be complex in this
formalism and hence so will the spacetime metric.

The crucial difference in the Ashtekar formalism is the use of a self dual Lorentz connection as
the configuration variable of the theory rather than the Lorentz connection used in the Palatini
action. In order to introduce these variables we first define the the dual operator on the internal
Lorentz indices, this is an internal version of the Hodge dual operator which maps p forms to n−p
forms given a metric. In particular because we deal with anti-symmetric Lorentz connections in
Minkowski space one can define an internal dual from the space of Lorentz connections to itself,
in the same way that the Hodge dual maps 2 forms to 2 forms in four dimensions. The internal
dual map ? on two index objects is defined by

(?A)
IJ
µ =

1

2
εIJKLA

KL
µ (5.71)

where the Minkowski metric is used to raise the internal indices and εIJKL is the totally anti-
symmetric symbol.

On Lorentzian manifolds the square of this dual operator is given by ? · ? = −1, since

(? · ?A)
IJ
µ =

1

2
εIJKL(?A)KLµ

=
1

4
εIJKLε

KL
MNA

MN
µ

=
1

4
εIJKLεKLMNA

MN
µ

=
1

4

(
−4δ

[I
Mδ

J]
N

)
AMN
µ

= −AIJµ (5.72)

where we have used the ε− δ identity see appendix in [58] the − sign ultimately follows from the
fact that η is a Lorentzian metric.

For this reason we are forced to use complex connections as our self dual variables and we say
a Lorentz connection is self dual if and only if

(?A)
IJ
µ = iAIJµ (5.73)

and anti-self dual if and only if
(?A)

IJ
µ = −iAIJµ . (5.74)

This then allows us to decompose any connection into its self and anti-self dual components
as

AIJµ = +AIJµ +− AIJµ (5.75)
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where
+AIJµ :=

1

2

(
AIJµ − i(?A)IJµ

)
(5.76)

and
−AIJµ :=

1

2

(
AIJµ + i(?A)IJµ

)
. (5.77)

It follows that +AIJµ and −AIJµ are self and anti-self dual respectively, since immediately one has

?
(

+AIJµ
)

=
1

2

(
?AIJµ − ?i(?A)IJµ

)
=

1

2

(
?AIJµ + iAIJµ

)
= i+AIJµ (5.78)

and similarly for −AIJµ .
The following are important results that we shall use in the analysis of the self dual action,

[58]

+AIJ −BIJ = 0 (5.79)
⇒ +AIJ BIJ = +AIJ +BIJ (5.80)

[A,B]
IJ

=
[
+A,+B

]IJ
+
[−A,−B]IJ (5.81)

where A and B are arbitrary Lorentz connections, which may be proven by using the definitions
above and ε− δ identities. The former is an orthogonality relation between self dual and anti-self
dual connections and the latter together with the fact that the Lie bracket of self dual connections
is self dual (and similarly for the anti-self dual case) implies that the complexified Lorentz algebra,
within which our complex connections take values, decomposes into a direct sum of self dual and
anti-self dual Lie sub-algebras [55], [57] and [62] i.e.

SO(1, 3)C '+ SO(1, 3)C ⊕− SO(1, 3)C . (5.82)

In fact one can show, [55], that the self dual and anti-self dual sub-algebra are isomorphic to the
Lie algebras SL(2,C) which as we recall has 3 complex dimensions.

We can now state the self dual action it is given by

SSD[e,+A] =
1

16πG

∫
M

d4X |e| eµI e
ν
JF

IJ
µν (+A) (5.83)

which is the complex Palatini action but with the Lorentz connection replaced by the self dual
connection +A. One can show that the curvature of the self dual connection is self dual and
similarly for the anti-self dual case and hence one can write the complex Palatini action as the
sum of its self dual and anti-self dual components

SPal[e,A] = SSD[e,+A] + SASD[e,−A] (5.84)

the remarkable result is that one need only consider the self dual (or equivalently anti-self dual)
action separately in order to recover the equations of motion of complex GR.

The equations of motion of (5.83) can be computed as follows, first variation with respect to
the self dual connection reproduces the analogue of the Palatini variation in (5.33)

δS =
1

16πG

∫
M

d4X 2|e| e[µ
I e

ν]
J Dµδ

+AIJν (5.85)

95



where Dµ is the covariant derivative on internal indices defined with respect to the self dual
connection. Now because of the orthogonality relation above, the variation δ +AIJν requires us to
keep only the self dual part of e[µ

I e
ν]
J and so after an integration by parts one has

Dµ
(
|e|+

(
e

[µ
I e

ν]
J

))
= 0 . (5.86)

It is shown in [22] that this equation implies +AIJν is the self dual part of the unique Lorentz
connection that induces the Levi Civita connection on spacetime, c.f. (5.11).

The variation with respect to the tetrad yields, see (5.28)

δSSD =
1

8πG

∫
M

d4X |e|δeµI
(
δIKe

KσR̃µσ(+A)− 1

2
eIµe

σ
Ke

ν
JF

KJ
σν (+A)

)
=

1

8πG

∫
M

d4X |e|δeµI
(
δIKδ

K
Me

ρ
NF

MN
µρ − 1

2
eIµe

σ
Ke

ν
JF

KJ
σν

)
=

1

8πG

∫
M

d4X |e|δeµI
(
eρJF

IJ
µρ −

1

2
eIµe

σ
Ke

ν
JF

KJ
σν

)
(5.87)

where curvatures are computed with respect to the self dual connection. Hence the second
equation of motion is

eνJF
IJ
µν −

1

2
eIµe

σ
Ke

ν
JF

KJ
σν = 0 (5.88)

but now we may use the fact, determined from the first equation of motion, that F KJ
σν is the

self dual component of the internal curvature that induces the Riemann tensor on spacetime, we
denote this latter curvature RIJµν , which, by (5.22) satisfies

Rρµνσ = RµνI
JeIσe

ρ
J (5.89)

and hence one has

F IJµν =
1

2

(
RIJµν − i(?R)IJµν

)
=

1

2

(
RIJµν −

i

2
εIJ KLR

KL
µν

)
. (5.90)

We can now substitute this expression for F IJµν into (5.88) to obtain

eνJ

(
RIJµν −

i

2
εIJ KLR

KL
µν

)
=

1

2
eIµe

σ
Ke

ν
J

(
RKJσν −

i

2
εKJ MNR

MN
σν

)
⇒ eγIe

ν
J

(
RIJµν −

i

2
εIJ KLR

KL
µν

)
=

1

2
eγIe

I
µe
σ
Ke

ν
J

(
RKJσν −

i

2
εKJ MNR

MN
σν

)
⇒ eγIe

ν
JR

IJ
µν −

1

2
gγµe

σ
Ke

ν
JR

KJ
σν =

i

2
eγIe

ν
Jε
IJ

KLR
KL
µν −

i

4
gγµe

σ
Ke

ν
Jε
KJ

MNR
MN
σν (5.91)

and we claim i.) the left hand side of (5.91) is equal to the Einstein tensor Gγµ and ii.) each
term on the right hand side is identically zero and hence we have recovered Einstein’s equations
in the self dual formalism. We now prove these claims, firstly one has

eγIe
ν
JR

IJ
µν −

1

2
gγµe

σ
Ke

ν
JR

KJ
σν = eIγe

ν
JR

β
µναe

α
I e
J
β −

1

2
gγµe

σKeνJR
β
σναe

α
Ke

J
β

= gαγ g
ν
βR

β
µνα −

1

2
gγµg

σαgνβR
β
σνα

= Rγµ −
1

2
gγµR (5.92)
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and secondly for the first term on the right hand side of (5.91) one has

i

2
eγIe

ν
Jε
IJ

KLR
KL
µν =

i

2
gγλe

λ
I e
ν
Je
α
Ke

β
Lε
IJKLRβµνα

= − i
2
gγλε

λβανRµ[βαν]

≡ 0 (5.93)

where in the second line we have used the relation between the (inverse) volume elements of ηIJ
and gµν and in the final line the algebraic Bianchi identity of the Riemann tensor. The second
term on the right hand side of (5.91) is zero for the same reason and hence we have confirmed
that the self dual action leads to Einstein’s equations.

We now perform the Legendre transform to determine the Hamiltonian and the constraints of
the self dual action. As with the Palatini action one must first project the tetrad onto the spatial
surface Σt to define EµI and then, following similar manipulations to those used for the Palatini
action, one has, [56]

SSD[e,+A] =
1

16πG

∫
M

d4X NE (EµI − n
µnI) (EνJ − nνnJ)F IJ

µν (+A)

=
1

16πG

∫
M

d4X
(
N
∼
ẼµI Ẽ

ν
JF

IJ
µν − 2NnµnIẼ

ν
JF

IJ
µν

)
=

1

16πG

∫
M

d4X
(
N
∼
ẼµI Ẽ

ν
JF

IJ
µν + iNnµẼνJnIε

IJ
KLF

KL
µν

)
=

1

16πG

∫
M

d4X
(
N
∼
ẼµI Ẽ

ν
JF

IJ
µν − iTµẼνJεJKLFKLµν + iNµẼνJε

J
KLF

KL
µν

)
=

1

16πG

∫
M

d4X

(
−iẼνJεJKL

(
L~T
(

+AKLν
)
−Dν(+AµT

µ)KL
)

+

+iNµẼνJε
J
KLF

KL
µν +N

∼
ẼµI Ẽ

ν
JF

IJ
µν

)
(5.94)

where in the second line we dropped the term quadratic in nInJ as it is identically zero due to
symmetry and anti-symmetry in I, J , in the third line we used the fact that F IJµν is self dual, in the
fourth line we used the decomposition of the unit normal nµ into lapse and shift, and the definition
εJKL = nIε

IJKL and in the final line we used the identity TµFKLµν = L~TA
KL
ν − Dν(AµT

µ)KL,
which was derived in the context of the Palatini Legendre transform in (5.49). As argued below
(5.49) we can see again that all spacetime indices in (5.94) are contracted with spatial triads or
the shift vector and hence may be interpreted as spatial tensors.

Hence one can express the self dual action in 3 + 1 form as

SSD[E,+Aa,
4AT , N

a, N ] =
1

16πG

∫
dtd3σ

(
−iẼaJεJKL+ȦKLa − iDa

(
ẼaJε

J
KL

)
(+AµT

µ)KL

+iNaẼbJε
J
KLF

KL
ab +N

∼
ẼaI Ẽ

b
JF

IJ
ab

)
(5.95)

where we have done an integration by parts and dropped the boundary term. Immediately we
can compute the conjugate momenta to the configuration variables +AIJa , 4AT , N

a and N as

16πGP aIJ = +
(
−iẼaKεKIJ

)
(5.96)

PIJ = 0 (5.97)
Pa = 0 (5.98)
PN = 0 (5.99)
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and we observe that, as for the Palatini action, there are primary constraints associated with
the momenta conjugate to 4AT , N

a and N . The fact that P aIJ is the self dual part of −iẼaKεKIJ
follows because its coefficient ȦKLa is self dual and so it projects onto the self dual space of
whatever it multiplies. We can explicitly compute the form of the momentum as follows

16πGP aIJ = +
(
−iẼaKεKIJ

)
= − i

2
ẼaKε

K
IJ −

1

4
ẼaLε

LMN εIJMN

= −1

4
ẼaLε

PLMN εMNIJnP −
i

2
ẼaKε

K
IJ

= −1

4
ẼaL

(
−4δ

[P
I δ

L]
J

)
nP −

i

2
ẼaKε

K
IJ

= ẼaI nJ −
i

2
ẼaKε

K
IJ . (5.100)

Since the self dual algebra has three complex dimensions P aIJ has 3 × 3 = 9 complex inde-
pendent components but recall that ẼaK has 9 independent complex components also, due to the
condition ẼaKn

K = 0, and hence there are no constraints in (5.96) both sides have the same
number of degrees of freedom. This is an important difference to the Palatini action where we
uncovered a further six primary constraints in (5.53).

One can now perform the Legendre transform, we express (5.95) in terms of the momentum
variable to get, [56]

SSD =

∫
dtd3σ

(
P aKL

+ȦKLa +Da (P aKL) (+AµT
µ)KL −NaP bKLF

KL
ab +N

∼
P aIKP

bK
J F

IJ
ab

)
(5.101)

this action is now in canonical form and we can read off the canonical Hamiltonian Hc as

Hc =

∫
d3σ

(
NaP bKLF

KL
ab −Da (P aKL) (AµT

µ)KL −N
∼
P aIKP

bK
J F

IJ
ab

)
(5.102)

and the primary Hamiltonian for our system will be given by

Hp = Hc +

∫
d3σ

(
λIJPIJ + λaPa + λPN

)
. (5.103)

We shall have secondary constraints, given by the coefficients of the non-dynamical configura-
tion variables, required by the preservation of the primary constraints under evolution generated
by Hp, i.e.

Da (P aKL) ≈ 0 (5.104)
P bKLF

KL
ab ≈ 0 (5.105)

P aIKP
bK
J F

IJ
ab ≈ 0 (5.106)

we observe these constraints are polynomial in the self dual connection and its conjugate momen-
tum. Fortunately, the above primary and secondary constraints do not require tertiary constraints
and furthermore they form a first class system, [56].

At this point we can reduce the phase space to only the dynamical variables +AIJa and its
momentum P aKL subject to only the constraints (5.104), (5.105) and (5.106). We can count the
degrees of freedom of this system to ensure it is consistent with complex GR, the phase space
is 2 × 3 × 3 = 18 complex dimensions per spatial point, and subject to 3 + 3 + 1 = 7 complex
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first class constraints per spatial point. Hence the number of physical degrees of freedom of this
theory are 1

2 (18− 2× 7) = 2 complex dimensions per spatial point, just as we would expect for
complex GR.

The final point we wish to make is that there exists an isomorphism between the self dual
Lie algebra and the complexified SO(3)C algebra and that this fact may be used to express all
of our dynamical variables, and constraints in terms of SO(3)C valued objects. The explicit
isomorphism depends upon a choice of unit timelike internal vector nI see [22]. The final picture
is that the phase space coordinates will be configuration variable Aia, a SO(3)C valued connection,
and momentum variable Ẽai , a complex densitised triad, with non-trivial Poisson bracket{

Aia(σ), Ẽbj (σ
′)
}

= δbaδ
i
jδ

3(σ, σ′) . (5.107)

The above first class constraints can be equivalently expressed using these new coordinates as,
[22]

DaẼ
a
i ≈ 0 (5.108)

ẼbiF
i
ab ≈ 0 (5.109)

εijkẼai Ẽ
b
jFabk ≈ 0 (5.110)

where (5.108) is to be interpreted as an SO(3) Gauss constraint, (5.105) as the spatial diffeo-
morphism constraint and (5.110) the Hamiltonian constraint. We observe that the Hamiltonian
constraint has naturally come out as a scalar of density weight two. These constraints are poly-
nomial in the new variables and unlike the Palatini action there were no second class constraints
found in the analysis. This simiplification was the original motivation of the Ashtekar variables,
but unfortunately the reality conditions, which we still have to impose in order to regain real GR,
have proven intractable to date in the quantum theory, [5]. An additional / related problem is
that the gauge group for the Ashtekar formalism is non-compact (SO(3)C and SL(2,C)) are non-
compact and this has caused difficulties in the quantum theory because most mathematical tools
available from Yang Mills theory apply only to compact gauge groups, e.g. the Haar measure is
only available for compact gauge groups.

5.4 Epilogue
In this final section we should like to make some brief remarks concerning the modern formulation
of connection gravity. In particular, [53] introduced a real SO(3) connection (now known as the
Ashtekar Barbero connection), as a configuration variable for GR that therefore avoided the
problem of reality conditions present in the self dual formalism and see also [64]. The key issue is
that the Hamiltonian constraint is now a more complicated expression of the canonical variables.

The real variables were obtained by a canonical transformation of the original ADM triad
formulation of gravity, which we recall has canonical variables

(
Ẽai ,K

i
a

)
where Ẽai is a densitised

triad and Ki
a can be related to the extrinsic curvature Kab, which satisfy canonical Poisson

brackets. One can define a canonical transformation on these variables given by

Ẽai = Ẽai (5.111)
Aia = Γia + βKi

a (5.112)

where Γia is the SO(3) connection that induces the Levi Civita connection on the spatial man-
ifold Σ and β is an arbitrary complex parameter, now known as the Immirzi parameter. Since
Γia = Γia(E) the only non-trivial Poisson bracket to confirm the pair Aia, Ẽai are canonical is to
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check that
{
Aia(σ), Ajb(σ

′)
}

= 0, and one finds the two non-zero brackets
{

Γia(σ), βKj
b (σ′)

}
and{

βKi
a(σ),Γjb(σ

′),
}
cancel out. In terms of these new variables the constraints of the ADM triad

theory may be expressed as

Gi ≡ DaẼ
a
i ≈ 0 (5.113)

Ha ≡ F iabẼ
b
i ≈ 0 (5.114)

√
qH ≡ εijkẼai Ẽ

b
jFabk −

2

β2

(
1 + β2

)
Ẽa[iẼ

b
j]

(
Aia − Γia

) (
Ajb − Γjb

)
≈ 0 (5.115)

where F iab is the curvature of the connection Aia and q=
∣∣∣det(Ẽai )

∣∣∣. These constraints are almost
identical to the final Ashtekar constraints (5.108), (5.109) and (5.110) except for the final Hamil-
tonian constraint, which is considerably more complicated and which is a density weight one
scalar. One sees immediately that the choice β = ±i simplifies the Hamiltonian constraint and
recovers the Ashtekar phase space variables discussed above, (in the SO(3) rather than self dual
version and up to a re-scaling of the Hamiltonian constraint by √q.

So from this viewpoint we have a 1 parameter family of canonical transformations of the ADM
triad variables and for which the choice β = ±i recovers the complex Ashtekar formalism. How-
ever, we could choose real β and be left with a phase space description of gravity, which has the
advantage of i.) being real and compact (avoiding the reality conditions in the quantum theory),
ii.) maintaining a connection formulation of GR which has enabled mathematical methods devel-
oped for Yang Mills theories to be imported into the quantization of gravity, e.g. the use of loop
variables but at the price of complicating the Hamiltonian constraint. This choice of real β is
the current preferred option for the canonical quantization of gravity. However, it is not without
several issues, which we shall discuss shortly.

The real formulation of GR just discussed has been obtained through a canonical transforma-
tion of the triad ADM phase space. It would interesting to know whether this phase space may
be obtained directly from an action principle and the answer to this question is yes. In [54] it was
shown by Holst that the phase space variables Aia, Ẽai may be derived from the following action

SHolst[e,A] =
1

2

∫
eeµI e

ν
J

(
F IJµν (A)− 1

β
(?F )

IJ
µν (A)

)
(5.116)

=
1

2

∫
eeµI e

ν
J

(
F IJµν (A)− 1

2β
εIJKLF

KL
µν

)
(5.117)

where the action is a functional of the tetrad eµI and the real Lorentz connection AIJµ , and
now we also require the Immirzi parameter β 6= 0. The dual operator ? is the internal Hodge
operator defined in (5.71). First one can see that the first term in this action is just the original
Palatini action, which we have already shown, under variation in the connection and tetrad, leads
to Einstein’s equations. The second term does not provide any further dynamical information
because it leads to a term that vanishes by a symmetry of the Riemann tensor. We can see this
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by first considering a variation of (5.116) with respect to the connection we have

δS =

∫
eeµI e

ν
J

(
D[µδA

IJ
ν] −

1

2β
εIJKLD[µδA

KL
ν]

)
=

∫
eeµI e

ν
J

(
δI[Kδ

J
L] −

1

2β
εIJKL

)
D[µδA

KL
ν]

=

∫
ee

[µ
I e

ν]
J

(
δI[Kδ

J
L] −

1

2β
εIJKL

)
DµδA

KL
ν

= −
∫
Dµ

(
ee

[µ
I e

ν]
J

)(
δI[Kδ

J
L] −

1

2β
εIJKL

)
δAKLν (5.118)

after an integration by parts and where we have used the covariant constancy of the εIJKL with
respect to the Lorentz connection. This implies the equation of motion

Dµ

(
ee

[µ
I e

ν]
J

)
= 0 (5.119)

which is equivalent to the vanishing of the torsion of the induced connection from AIJµ , see (5.33)
and the discussion below. Hence we can deduce that the curvature

F IJµν = RIJµν (5.120)

but this implies that the second term in the Holst action is identically zero since

− 1

2β
eeµI e

ν
Jε
IJ
KLF

KL
µν = − 1

2β
eeµI e

ν
Jε
IJ
KLR

KL
µν

= − 1

2β
eeµI e

ν
Je
α
Ke

β
Lε
IJKLRβµνα

= − 1

2β
eεβµναRβµνα

≡ 0 (5.121)

by the algebraic Bianchi identity for the Riemann tensor. The remaining non-zero term is just
the Palatini action and hence we recover Einstein’s equations of motion from the Holst action.

One can then perform a canonical analysis on this action and, as for the Palatini action,
it is complicated by the presence of second class constraints. In [54] a partial gauge fixing
is chosen prior to the computation of the constraints, and this has the effect of removing the
second class constraints. The gauge fixing involves setting the tetrad component eµ0 = nµ, and
physically it corresponds to performing local Lorentz transformations so that every time t, the
zeroth component of the local frame is orthogonal to the spacelike hypersurface Σt, sometimes this
is called a temporal gauge fixing or time gauge. It has the effect of reducing the local symmetry
from the Lorentz group to SO(3). By choosing this gauge it is then possible to show that the
phase space deduced from the Holst action is coordinatised by the Ashtekar Barbero connection
and the densitised triad with the above constraints.

There are several issues however with the formalism as explained. First the introduction of the
Immirzi parameter, which is used to describe a 1 parameter family of canonical transformations
at the classical level appears to lead to inequivalent quantum theories. More precisely one can
show in the quantum theory, LQG, that the spectra of geometrical operators for area and volume
depend upon the Immirzi parameter, and also a computation for black hole entropy using LQG
requires a particular value of the Immirzi parameter to agree with the semi-classical arguments of
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Hawking. As argued at the end of section 4 these quantum operators are not Dirac observables,
i.e. not gauge invariant, and so one must be careful to conclude that inequivalent spectra at
the kinematical level are necessarily physically inequivalent. But it does appear to provide some
evidence that arbitrary canonical transformations can lead to inequivalent quantum theories.

A second issue raised in [65] is that the Ashtekar Barbero connection is not a spacetime gauge
theory of gravity, by this we mean the Ashtekar Barbero connection is not the pullback of a
spacetime connection to a spatial slice as is the case for the complex Ashtekar connection. This
can be proved by showing that the holonomy of the Ashtekar Barbero connection on a spatial loop
is not independent of the embedding of the spatial surface in the spacetime except for β = ±i
and this implies it cannot be the pullback of a spacetime connection. Recall also that we do
not reduce the symmetry group in the complex Ashtekar formalism the spatial connection Aia
still takes values in SO(3)C, or equivalently SL(2,C), by contrast the real connection is not a
Lorentz connection it is an SU(2) or SO(3) connection. The concern expressed in [65] is how
could one arrive at a gauge theory of gravity with compact gauge group, when the spacetime
view is that the group appears to be non-compact (e.g. the Lorentz or Poincarè groups). The
answer is that the Legendre transform of the Holst action, in particular the partial gauge fixing,
breaks the Lorentz symmetry of the theory and we lose the spacetime gauge interpretation. Of
course there is a spacetime interpretation of sorts in that one can view the Ashtekar Barbero
variables as canonical transformations of the ADM variables, which do have a four dimensional
interpretation. However, one has lost a direct geometric interpretation of the real connection that
one did have with the original complex Ashtekar connection.

Concerns with regard to some of these issues: the lack of a spacetime interpretation of the
connection, the Immirzi parameter ambiguity, and the fact that the compact gauge group is
the reason for the discrete geometric operator spectra found in LQG have led to approaches
which avoid using the time gauge. One such approach keeps the second class constraints derived
from the Holst action, and uses the Dirac bracket and therefore no loss of Lorentz symmetry
is encountered, and one then tries to perform a Dirac quantisation. The main results of the
analysis, [66] are that the canonical variables are a Lorentz connection and conjugate triad, and
that the Immirzi parameter disappears because the area spectra then become continuous at the
kinematical level. The difficulties are a non-compact gauge group67, and a non-commutative
connection (with respect to the Dirac bracket) which have to be dealt with in the quantum
theory. Another approach involves solving the second class constraints, without the time gauge,
and this analysis is completed in [67]. One can then show that the resulting phase space has two
pairs of canonical variables (A,E) the Ashtekar-Barbero variables and an additional pair of R3

valued canonical fields (χ, ζ). It is stated in [69] that one can reconstruct a Lorentz connection
from the fields A, χ and that this resulting connection is commutative. Introductions to all these
approaches, which are often labelled ‘covariant LQG’ can be found in [66, 68, 69].

67We agree that this is a mathematical difficulty but if the gauge group of gravity is non-compact then this is a
problem that has to be dealt with if the theory is to be viable.
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6 Discussion
We have covered quite a broad range of topics and so we wish to conclude with a summary and
conclusions, describing the main points we have discovered.

Firstly the mathematical formalism of constrained Hamiltonian system has been discussed,
this is the framework required for any canonical analysis of a singular Lagrangian and it is the tool
that enables us to understand the Hamiltonian formulation of GR. An important concept is the
classification of constraints, into first and second class, which provides the key to understanding
gauge theory in canonical form. In particular we have found two possible interpretations of
gauge transformations in the Hamiltonian theory. The first, due to Dirac, identifies first class
constraints as the generators of gauge transformations that map points in phase space to other
points in phase space. The second, due to Bergmann, identifies, a gauge generator G(t), which is
a combination of first class constraints, as a map from one phase space trajectory, (or solution to
the equations of motion) to another, where at each time t the map from a point in one trajectory
to the corresponding point is a gauge transformation in the sense of Dirac.

We then proved a number of properties relating to the geometric picture of the transformations
generated by first class constraints. In particular they are ‘surface forming’, i.e. first class
constraints generate surfaces that fill the constraint surface, where each surface is to be identified
as a gauge equivalence class or gauge orbit.

The constrained Hamiltonian formalism has been applied to Yang Mills theory (on a Minkowski
background) and we proved the following: i.) Yang Mills theory is a first class system, ii.) the
Poisson algebra of the constraints is isomorphic to the Lie algebra of the gauge group and iii.) one
can compute the physical number of degrees of freedom by subtracting the ‘redundancy’ present
in the constraints.

This analysis has been extended to GR, where we showed that the Einstein Hilbert action
can be expressed in 3 + 1 form and, after following the Dirac-Bergmann algorithm, found the
phase space of GR together with its first class constraints, (the Hamiltonian and diffeomorphism
constraints). This phase space consists of a spatial Riemannian metric qab and its conjugate
momentum P ab, (related to the extrinsic curvature of the spatial surface embedded in the space-
time).

These constraints are of crucial importance they encode the canonical symmetry of GR within
their Poisson algebra (Dirac algebra) and also have to be implemented as constraints in the Dirac
quantization. We have stated this algebra and tried to understand it from the point of view of
reflecting the four dimensional spacetime diffeomorpism group in the canonical formalism. In
fact this conclusion is only possible when the equations of motion hold. In other words it is
an important result that the Dirac algebra of GR is not directly related to the diffeomorphism
algebra.

This result seemed quite surprising and therefore we have tried to understand it from a
couple of different perspectives. The first is that in fact there exists a larger symmetry group
of the Einstein Hilbert action (than the passive diffeomorphism group, which is a sub-group)
which consists of metric dependent coordinate transformations, this has been called the ‘induced
diffeomorphism’ group. It has been shown that the Dirac algebra is the projectable part of this
induced diffeomorphism group, and this projectable component is called the Bergmann-Komar
group. So in fact although the diffeomorphism group and the Dirac algebra are not themselves
related they are both related to this larger symmetry group. Our second perspective was to show
that by extending the phase space of GR, by adding the embedding variables and their conjugate
momenta, it is possible to find a representation of the diffeomorphism algebra in canonical gravity.

We also covered asymptotically flat spacetimes where it was found necessary to modify the
Hamiltonian and diffeomorphism constraints with additional boundary terms. These terms en-
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sured that the Hamiltonian remained finite and functionally differentiable and enabled us to
consider non-trivial gauge transformations at infinity. By doing so and then computing the Pois-
son algebra of these modified constraints one can find a representation of the Poincare group at
spatial infinity. This means that we have the proper notion of an asymptotically flat spacetime
because we have recovered its symmetry group from the first class constraints of the theory. We
also observed that the ten Poincare charges are Dirac observables.

The next topic considered was gauge invariant observables for GR, in the sense of Dirac,
though the analysis also applies to Bergmann observables. The construction of gauge invariant
observables is important because in the quantum theory their Poisson algebra will have to be
represented in the physical Hilbert space and also from a purely classical view it is interesting
to understand what an observable actually is in GR. We have reviewed recent work in this area,
which has shown that there exist gauge invariant relational observables for any first class system
including GR. These observables require additional non-gravitational ‘clock fields’ to be used in
the following way one computes the value of a particular gauge variant observable f when the clock
fields have certain values. It is in this sense these observables are relational. The approximation
schemes used to construct these observables result in rather complicated expressions of nested
Poisson brackets and therefore methods to reduce the complexity have been considered. Firstly
reducing the effective number of constraints and parameters by using partial observables and
clock variables, which have ultra-local Poisson brackets with the constraints, secondly taking
advantage of the result that one can compute complete observables in stages and finally using
deparametrisation to find a physical Hamiltonian from which evolution equations for the relational
observables can be computed. The deparametrisation method offers several advantages in that
in addition to simplifying the observables it offers a physical Hamiltonian with which evolution
can be generated.

Finally, we considered several connection formulations of gravity, these have been initially
motivated by a desire to reduce the complexity of the Hamiltonian constraint in the hope that
this would make the quantum theory easier to construct. We first showed that the Hilbert Palatini
action led to the Einstein equations of motion but that after a complicated Legendre transform,
and the solving of second class constraints, one essentially recovers the ADM theory in triad
form. We then considered the complex self dual action, which has been the start of the modern
formulation of canonical gravity. After performing the Legendre transform we showed that the
resulting theory is a first class, connection theory of gravity, which has polynomial constraints
in the dynamical variables. Unfortunately, the theory also presents reality conditions and a
non-compact gauge group SL(2,C) which have both proven intractable in the quantum theory.

These difficulties motivated the real Ashtekar Barbero (AB) connection, which can be defined
through i.) a 1-parameter family of canonical transformations of the ADM triad variables leading
to a SO(3) or SU(2) AB connection and densitised triad as canonical variables and ii.) the phase
space coordinates derived from the Holst action. This theory has the advantage of involving real
variables and a compact gauge group, but where the Hamiltonian constraint is considerably more
complicated. However, we found that in the real case we do not get a spacetime gauge theory of
gravity because the AB connection is not the pullback of a spacetime Lorentz connection, whereas
the self dual connection is. Furthermore we seem to have introduced a 1-parameter family of
inequivalent quantum theories (at least at the kinematical level) by performing this canonical
transformation. This so called Immirzi parameter ambiguity is an open area of research.

These final issues have motivated further work on covariant loop quantum gravity, where one
either tries to work with the Dirac bracket to avoid the time gauge or solves the second class
constraints but without gauge fixing.

Unfortunately, due to time constraints we were not able to explore the properties of the covari-
ant LQG approaches, and this together with a discussion of the construction of the kinematical
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Hilbert space of LQG and definition of geometric operators, alluded to in the text, would be very
interesting topics for future work.
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