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“The miracle of the appropriateness of the language of

mathematics for the formulation of the laws of physics is a

wonderful gift which we neither understand nor deserve.”
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TOWARD UNIFICATION

The principle of unification is not driven by any a priori reasoning, but by the pursuit

of an aesthetic quality, that the universe should in some sense be simple and elegant.

However unfounded one may find this supposition, it has proven incredibly useful as a

driving principle of theoretical physics. The first unification is widely cited as Maxwell

electromagnetism, though it could be argued to have occurred before this when thermo-

dynamics met statistical physics, or even when Newton unified physics and astronomy. In

the context of particle physics the principle is a continuation of Maxwell, but concerning

a unified field theory treatment of the known fundamental interactions.

To incorporate gravity with the other forces of the Standard Model one first needs to

formulate gravity as a quantum theory, an extremely problematic reconciliation in terms

of renormalizability. But it has been shown that the quantum theory of interacting spin-2

bosons inevitably leads to the emergence of a structure indistinguishable from general

relativity [9, 16]. Such mediating particles are the hypothetical gravitons. While quantum

field theory can be performed on curved spacetimes, leading to such ideas as Hawking

radiation, it is still only a semi-classical theory of quantum gravity. That there is such a

disconnect between the two pillars of modern theoretical physics seems a boding of a new

scientific revolution, where either general relativity or quantum mechanics (or both) will

have to be significantly modified or altogether replaced by a more encompassing theory.

There are various and varied lines of inquiry from which the appropriate step might be

identified upon historical reflection, but one promising venture is that of supergravity. It

involves conjecturing a new but unseen particle symmetry.
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1.1 Wherefore ‘superstuff’?

Supersymmetry (SuSy) is an ambitiously proposed symmetry relating the two “types” of

fundamental particle, bosons (force particles) and fermions (matter particles), and re-

quires that the existence of any particle species implies the existence of one of the op-

posite type, its superpartner. An aesthetically promising extension of Poincaré space-

time symmetry, it unifies the description of these two basic particles (which were pre-

viously separate entities with separate spin statistics theorems) under a single mathe-

matical framework, side-stepping the Coleman-Mandula theorem, cancelling loop diver-

gences that plague particle theories, allowing gauge coupling unification and even pro-

viding a speculative candidate for so-called “dark matter”. The SuSy generators, being a

generalization of those of Poincaré symmetry, already invoke the structure of spacetime

in the transformations and update special relativity to make it quantum mechanical. A

remarkable feature is that when one promotes SuSy to a local gauge symmetry, gravity

is automatically incorporated when a spin-2 second-rank tensor boson emerges with its

spin-3/2 superpartner, the gravitino, such that one has a supersymmetric extension of

general relativity: supergravity. SuSy is, in addition to all of this, at the time of writing and

probably to the chagrin of many, an unobserved symmetry even in its broken form. But al-

though hypothetical to physicists, interest in SuSy is alive in pure mathematics. For there

exists an emerging picture of connectedness between various mathematical branches,

bridged by the study of supersymmetric concepts that are interesting in their own right.

Its study has grown, encroaching into other disciplines and prepending “super” to foreign

terminology.

SuSy is a necessary stepping stone to the best current candidate “theory of everything”,

the overarching theoria incognita, M-theory [35]. If this somewhat contentious [11] pro-

posal is true then 11-dimensional supergravity must be its low-energy limit. Though su-

pergravity itself does not necessitate string or M-theory, it seems these are needed be-

cause of a fatal flaw: since it is most simple in 11 dimensions, and its ultraviolet comple-

tion, the various superstring theories, which live in 10 dimensions (and are various limits

2



of M-theory), there must be reconciliation with observation in that various means of di-

mensional compactification must be invoked (the different ways this can be done causing

differing lower-dimensional physical outcomes)—but conventional (manifold) compact-

ification cannot derive “handedness” from the theory, which is a key property of Nature.

(It is, however, possible to derive handedness when the space of compactification is sin-

gular.) Historically, string theories displaced supergravity for this and other reasons until

in 1995 Edward Witten proposed that they are all facets of M-theory.

1.2 Algebras in particle physics

Developments in theoretical and mathematical physics have pushed for a greater alege-

brization and geometrization of particle physics [17]. This is the case not just for the well-

established particle theories of the last century but also for modern research. These de-

velopments are spurred by the demonstrable power of symmetries, with supersymmetry

itself responsible for the development and introduction into physics of, respectively, the

super-Poincaré and Grassmann algebras. SuSy then lends itself to supergravity and su-

perstrings, with their own symmetries and dualities. The octonions come into play here

since their existence is tied up with the exceptional Lie and exceptional Jordan algebras.

There seems to be many secrets hidden in such mathematically murky structures. The

octonions should then have something to say about physical theories whose symmetries

incorporate them.

The Standard Model contains chiral fermions with handedness that transform differ-

ently under the electroweak gauge symmetry, meaning that the irreducible representa-

tions are Weyl and not Dirac spinors. These can only be projected out by projection oper-

ators built with the imaginary unit i , showing that Nature has a preference for the complex

numbers. Indeed, quantum mechanics is built on complex Hilbert spaces, with the unit

quaternions (being isomorphic to the SU(2) group) providing a simpler environment in

which to study spin. But octonionic quantum mechanics has met with little success.

However, in addition to their appearance in the work documented here, the octo-
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nions along with supergravity have recently found a place for making predictions in areas

such as quantum information theory [10, 23]. Some authors have even suggested that

their non-associativity may be the underlying cause of colour confinement [17]. How-

ever, for now it is pertinent to describe their ultimate relevance in physics, and hence

the ‘real’ world, as remaining cloaked in mystery. The octonions are 8-dimensional, non-

associative numbers, meaning x(y x) 6= (x y)z. After having been kept off the radar for

most of the period since their inception due to this latter characteristic, there has been a

renewed interest in their application for theories such as string theory. It seems natural

that such objects could have a role in describing higher-dimensional spacetimes. Super-

strings and branes are extended objects and require at least 10 dimensions in which to

propagate. Supergravity requires a minimum of 11 in order to embed the gauge groups of

the Standard Model [34]. Could formulating such theories over the octonions provide a

way to bring them back to the familiar 4-dimensional world?

1.3 A notational note

Throughout this dissertation the following notational rules will apply. Lowercase indices

from the middle of the Greek alphabet such as µ,νwill denote the components of any full

division algebra, while lowercase Latin indices of the range i , j ,k will be used to denote the

algebra’s imaginary subspace. Thus one has xµeµ ∈O and q i ei ∈ ImH. Lorentz spacetime

indices will be written using lowercase letters from the middle of the Latin alphabet, such

as in gmn . Less importantly, lowercase Greek indices from the beginning of the alphabet

will mean spinor components. For instance, a gravitino which has both spinor and 1-

form components will be denoted ξαm , though for general spinors this index will be mostly

suppressed. Generic non-division algebras are written in Gothic lettering, with subscripts

marking rank. So, unlike some sources, the algebra of 3×3 antihermitian matrices over

field F will here be expressed as a(3,F), and not a3, which is the Lie algebra of the group

SU(4). A representation of a rank-r algebra will be written in Dynkin notation as r weights

between square brackets. As an example, the adjoint of so(8) is written [0100].
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PRELIMINARY IDEAS

A foundational acquaintance with group and representation theory, supersymmetry (SuSy),

supergravity (SuGra) and super Yang-Mills (sYM) theory will be assumed throughout.

2.1 Normed division algebras

Define an algebra A as a (real) vector space that is also equipped with a bilinear map

m : A× A → A under which the vector space is closed. This map may be called ‘multi-

plication’: m(x, y) = x y . The algebra is a division algebra if for any x, y ∈ A and x y = 0

then either x = 0 or y = 0. That is, left or right multiplication by any nonzero element has

an inverse operation, giving the name ‘division’. If the vector space is a normed vector

space, and ‖x‖‖y‖ = ‖x y‖, then A is a normed division algebra (NDA), which here will be

promoted notationally toA.

There are precisely four [18] NDAs: the reals, complexes, quaternions and octonions;

orR,C,H andO, respectively. The reals are the only algebra of the four to be ordered. Mov-

ing from the real line to the complex plane, this property is lost. Likewise, the quaternions

lose the property of commutativity that both R and C have, yet they remain associative.

The octionions, however, further lose this property and are non-associative. For this rea-

son a further trilinear map, a :A×A×A→A, whereby

[x, y, z] → (x y)z −x(y z) (2.1)

called the associator can be defined. Since it measures the failure of associativity, it is zero

for all the NDAs save the octonions. Because the NDAs are also alternating algebras [39],
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the sign of the associator and commutator flips when any two elements are switched.

The basis of R is {1}. If i =p−1 is used in addition to define the basis {1, i }, C can be

built using a pair of elements a,b from R such that a generic element of C is z = a + i b.

Two elements of the one-dimensional algebra R are thus needed to specify any element

of C, making the latter a two-dimensional algebra. Now taking two additional bases j ,k

such that i 2 = j 2 = k2 = i j k =−1 then a pair of elements from C can be used to construct

a generic element of the four-dimensional quaternion algebraH:

q = (a + i b)+k(c + i d)

= a + i b + j d +kc ∈ H

where a,b,c,d ∈ R. It is clear from this construction that the quaternions are in general

non-commutative. The next step is to take two elements of H and use them to build an

octonion. The basis of O thus has one real element, e0 = 1, and seven imaginary ones,

ei , which together as eµ (µ = 0, . . . ,7) span an 8-dimensional vector space. Any x ∈ O
can then be written x = xµeµ = x0+xi ei (i = 1, . . . ,7). Elements ofO andH are conjugated

analogously to the complex numbers: by reversing the sign of the imaginary components:

x∗ = x0 − xi ei . Hence the ordered property of R translates to self-conjugacy. Conjugation

can then be used to define the norm and inner product (which is just the Euclidean inner

product inherited from Rn , n = dimA) onA.

Constructing NDAs in this fashion, each successively doubling in dimension, is known

as the Cayley-Dixon procedure. Clearly this process could be repeated ad infinitum to

produce an endless supply of algebras. But other than R,C,H and O none of these will be

division algebras.

The octonionic multiplication rule is given by:

eµeν = (δµ0δνρ+δ0νδµρ−δµνδ0ρ+Lµνρ)eρ

= Γµνρeρ
(2.2)

where δµν is the 8-dimensional Euclidean metric. Lµνρ is a totally antisymmetric object

which is nonzero only forµνρ = i j k. Hence L0µν = 0. The Fano plane (Figure 2.1) provides
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Figure 2.1: The Fano plane provides the multiplication rule for

imaginary elements of the octonionic basis ei ∈Z7.

a visualization of Li j k in terms of a structure with seven points and seven ‘lines’, each

point representing a label of the imaginary bases. Clearly any three points on a line give

the multiplication rule of the quaternion subalgebra (where Li j k in (2.2) becomes εi j k ). In

general, if three octonion bases generate a quaternion subalgebra then they will associate.

Otherwise, they will not. As an explicit example,

e1(e2e3) = e1e5 = e6 =−(−e6) =−(e4e3) =−(e1e2)e3

In addition, any quadrangle of the Fano plane (arrived at by removing a line) represents

another totally antisymmetric and purely vectorial structure tensor Qµνρσ that determines

the associator of the octonions:

[eµ,eν,eρ] = 2Qµνρσeσ (2.3)

where again only Qi j kl is nonzero. For i , j ,k, l taking the values of an allowed quadrangle,

Qi j kl = −1. The tensors Li j k and Qi j kl are dual to each other in R7—the vector space

spanned by the imaginary octonions [12].
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2.2 The octonions and SO(n)

The vector space spanned by the octonionic basis is 8-dimensional. There actually exists

an intimate connection with the representations of the 28- and 21-dimensional special

orthogonal groups SO(8) and SO(7) via the octonion structure tensors. The object Γµνρ

was defined in (2.2). Define also

Γ̄
µ
νρ = Γµρν (2.4)

such that

eµeν = Γ
µ
νρeρ (2.5)

e∗
µeν = Γ̄

µ
νρeρ. (2.6)

The symbol Γ has been chosen to anticipate the fact that these objects in fact satisfy

ΓµΓ̄ν+ΓνΓ̄µ = Γ̄µΓν+ Γ̄νΓµ = 2δµν1 (2.7)

which is the Spin(8) Clifford algebra. Thus one can build the antisymmetric objects

Σ[µν] = 1

2
Γ[µΓ̄ν] Σ̄[µν] = 1

2
Γ̄[µΓν] (2.8)

which respectively generate the spinor and conjugate spinor representations, 8s and 8c ,

of SO(8) from octonion products.

In the same way that the quaternions can generate 3-dimensional geometry through

their imaginary parts, the product of an octonion and imaginary octonion provides for

SO(7) geometry.

ei eµ = δ0µδiν−δiµδ0ν+Liµν (2.9)

= Γi
µνeν (2.10)

with Γi
µν satisfying the Spin(7) Clifford algebra. It is known that for SO(n = odd) there is

just one spinor representation. This is realized here by the fact that Γi
µν = −Γi

νµ, so the

spinor representations generated by ei eµ and e∗
i eµ =−ei eµ are actually the same. Then,

Σ[i j ] = 1

2
Γ[iΓ j ] (2.11)
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generates the 8 of SO(7). The vector representations are generated simply by the metric

inherited from Rn .

J[µν]ρσ = δρµδνσ−δρνδµσ (2.12)

generates the 8v of SO(8), while

J[i j ]kl = δkiδ j l −δk jδi l (2.13)

generates the 7 of SO(7). From a geometric perspective the octonions do not seem to be

able to generate a large enough group of rotations to get the full SO(7). The full group is

however generated due to the nonassociativity of the algebra: two conjugations are ill-

defined without brackets, so there is an increase in the number of rotations available.

2.3 NDAs and Minkowski spacetime

There is a known isomorphism between the Lie algebras of the groups SO(1,3)—the proper

Lorentz group—and SL(2,C). In fact, this is one case of a more general Lie algebra isomor-

phism [30]:

so(1,n +1) ∼= sl(2,A) (2.14)

with n the dimension of A. Because of this, Lorentz spacetimes of dimensions 3,4,6 and

10 can be formulated in terms of 2×2 matrices with entries in the corresponding NDA.

In the massless case the Little group is considered: SO(1,n +1) is reduced to SO(n). In all

cases there is a simple generalization to SO(1,n +2).

In the case of 4-dimensional Minkowski spacetime, the spinor and conjugate spinor

representations are irreducible Weyl spinors that transform according to the infinitesimal

relation:

δΨC = 1

4
λmnσmnΨC,

δXC = 1

4
λmnσ̄mn XC.

(2.15)

The notation FA means the field F valued in A and the Latin letters denote spacetime

indices that run over m = 0, . . . ,n+1. In the 4-dimensional case then, the 2×1 Weyl spinors
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transform by left-action of a 2×2 matrix with entries inC. The Pauli matrices act as a basis,

with σmn = σmσ̄n and σ̄mn = σ̄mσn . There are four Pauli matrices for the 4-dimensional

case. If the one non-real Pauli matrix, σ2, is removed then the remaining three real 2×2

matrices that act as a basis for the 3-dimensional A = R case. In the full generalization,

one has:

σ0 = −
 1 0

0 1

 , σµ+1 =
 0 e∗

µ

eµ 0

 , σn+1 =
 1 0

0 −1

 (2.16)

The spinor transformations in (2.15) are not general enough to handle octonionic multi-

plication since they are ambiguous with regards to non-associative objects. The consis-

tent choice is to define the order of operation from right to left. Thus

δΨO = 1

4
λmnσm(σ̄nΨO),

δXO = 1

4
λmnσ̄m(σn XO).

(2.17)

The algebra of 2×2 Hermitian matrices h(2,A) forms an n +2 vector space pertaining

to the vector representation, again using the relevant Pauli basis.

VA =V mσ̄m =
 V 0 +V n+1 V µ+1e∗

µ

V µ+1eµ V 0 −V n+1

 ∈ h(2,A) (2.18)

For VA to be Hermitian the diagonal elements are real. It is readily seen that the determi-

nant

−det(V ) =−(V 0)2 + (V µ+1)2 + (V n+1)2 =V m vm = η(VA,VA) (2.19)

gives the Minkowski norm, which is persevered under sl(2,A). The inner product of two

vectors V ,W ∈ h(2,A) can be written as V m
A

Wm = Re tr
(
VAW̃A

)
/2 with

ṼA =−V mσm =VA− tr(VA)1 (2.20)

as the trace reversal. This is equivalent to time reversal, since ˜ : V 0 →−V 0. The general-

ized vector transformation is

δVA = 1

4
λmn

(
σm(σ̄nVA)−VA(σ̄mσn)

)
. (2.21)
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A remarkable consequence of the standard reduction of SO(1,n + 1) to its Little group

SO(n) in the massless case is that the above fields are parameterized by single elements

ofA. To construct the Little group, dependence on the Pauli bases that do not correspond

to eµ is killed. This is achieved by setting

λ0m =λn+1,m = 0 (2.22)

and identifying

λµ+1,ν+1 ≡ θµν (2.23)

with basis

σµν =
 e∗

µeν 0

0 eµe∗
ν

 . (2.24)

Writing the Little fields in lower case letters, the transformations of the three fields in n

dimensions become

δψA = 1

4
θµνe∗

µ(eνψA)

δχA = 1

4
θµνeµ(e∗

νχA)

δvA = 1

4
θµν

(
eµ(e∗

νvA)− vA(e∗
µeν)

)
.

(2.25)

It can be seen that in the Little group the dimensions of the spinors and vector are equal

and valued at n. Hence these fields are parameterized by single numbers inA. In the case

A=R the Little group SO(1) = 1 is trivial and the field parameters vanish.

2.4 Jordan, triality and other algebras

Jordan algebras arose from the study of the algebra of Hermitian matrices. A Jordan alge-

bra is a real vector space with commutative bilinear product that obeys the Jordan iden-

tity,

(x2 · y) · x = x2 · (y · x) (2.26)

where

x · y ≡ 1

2
(x y + y x)
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is the Jordan product. This makes the algebra power associative. A non-associative alge-

bra J(n,A) of n ×n Hermitian matrices over a field A= R,C,H is a simple Jordan algebra.

The only exceptional Jordan algebra is the case A=O, n = 3, and is thus 27-dimensional.

This exceptional algebra is related not just to the octonions but to the exceptional Lie al-

gebras. G2 is the automorphism group of the octonions, while F4 is the automorphism

group of the exceptional Jordan algebra (their respective derivations on the algebra level).

The remaining exceptional Lie algebras appear in Tits’ construction of the magic square,

which uses the Jordan algebras. The development of Jordan algebras brought along with it

spin factors, which are not Hermitian matrices but nevertheless meet the Jordan axioms.

The Spin(8) group has three 8-dimensional irreducible representations (irreps): 8v ,8s

and 8c . The Dynkin diagram for the algebra d4
∼= spin(8) ∼= so(8) (Figure 2.2) possesses

an S3 (permutation) symmetry, the highest symmetry of any Dynkin diagram. This is

Figure 2.2: The Dynkin diagram for the D4 Lie algebra with the vector, spinor,

conjugate spinor and adjoint nodes labelled.

an example of a triality, a relationship between three vector spaces. A triality is a non-

degenerate trilinear map,

t : V1 ×V2 ×V3 → F

so that if one argument of the trilinear map is nonzero then it induces a duality between

the other two. By choosing nonzero elements of the spaces such that they are isomorphic,

the map can be recast as a bilinear multiplication:

m : V ×V →V

12



which implies [4] V is a division algebra, and a normed division algebra when the field

F = R. Conversely, the existence of any division algebra implies a triality, and NDAs im-

ply normed trialities: ‖t (v1, v2, v3)‖ = ‖v1‖‖v2‖‖v3‖, vn ∈ Vn . Normed trialities therefore

occur in dimensions 1, 2, 4 and 8. It is known that an n-dimensional NDA provides a

representation of the Clifford group C l (n −1). There is in turn an isomorphism between

Cl (n −1) and Cl0(n), the subgroup of Cl (n) constructed from all linear combinations of

products of an even number of vectors in Rn . Representations of the Pin(n) subgroup of

Cl (n) are pinors, while those restricted in Cl0(n) to Spin(n) are spinors. The NDAs then

provide representations of Spin(n), as shown above. For n = 8, O provides a representa-

tion of Spin(8), the double cover of SO(8), whose Lie algebra d4 is given by the D4 Dynkin

diagram.

The automorphism group of the triality is the subgroup of SO(n)× SO(n)× SO(n) which

preserves the trilinear map, and the triality algebra is its Lie algebra:

triA≡ {
(A,B ,C )|A(x y) = (B x)y +x(C y)

}
A,B ,C ∈ so(A), x, y ∈A

(2.27)

where so(A) is the norm-preserving algebra and is isomorphic to so(n) (where n = dimA).

It results [6] in the following.

triR∼=;
triC∼= so(2)⊕so(2) ∼= u(1)2

triH∼= so(3)⊕so(3)⊕so(3) ∼= sp(1)3

triO∼= so(8).

(2.28)

The derivation algebra der(A) is a Lie algebra, a subspace of the associative algebra of all

linear operators onA. It provides another way of building the triality algebra:

triA∼= derA⊕ ImA. (2.29)

The nonzero derA are sp(1) and g2 forH andO.

The automorphism groups of the NDAs themselves are for R,C,H and O respectively:

1, Z2, SO(3) and G2. These are subgroups of the automorphism groups of the trialities.

13



A1/A2 R C H O

R su(2) su(3) sp(3) f4

C su(3) su(3)⊕su(3) su(6) e6

H sp(3) su(6) so(12) e7

O f4 e6 e7 e8

Table 2.1: The magic square of Lie algebras.

The existence of G2 can then be accounted for as the automorphism group of the octo-

nions from the theory of trialities and, by extension, the theory of spinors. Aligning the

imaginary octonionic bases on the 7-sphere give 6+5+3 = 14 = dimG2 choices.

2.5 Freudenthal-Tits magic square

The original magic squares [13, 14, 27] are constructions that utilize division algebras in

the building of Lie algebras. All the exceptional Lie algebras barring g2 appear due to the

presence of the octonions in the square. G2 is, however, the automorphism group of the

octonions, so it could be argued that all five exceptional Lie algebras exist because of the

largest NDA. The “magic” of the square resides in its symmetry in both input algebras.

Tits’ construction of the square uses the degree 3 simple Jordan algebras J(3,A) of the

NDAs along with derivations. The square is constructed by taking the Jordan algebra of

the column algebras (A2), giving the square’s entries by

M= derA1 ⊕
(
A′

1 ⊗J′(3,A2)
)
⊕der J(3,A2) (2.30)

along with defined commutation relations [32]. Here the dash denotes the trace-free part

of the algebra. As far as dimensional arguments are concerned, one has as an example

dim E8 = 248 = 14+ (7×26)+52 for the caseA1 =A2 =O.

Vinberg [33] constructed the square in a manifestly symmetric way by considering

instead of Jordan algebras an algebra of traceless antihermitian matrices sa(3,A) where
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A = A1 ⊗A2 is a composite algebra of NDAs. By taking the sum of this space and the

derivation algebras der A1,2 and defining commutation relations between them, a semi-

simple Lie algebra arises:

M= sa(3,A)⊕derA1 ⊕derA2 (2.31)

which reduces to the Lie bracket on sa(3,A) for the caseA1,2 =R,C.

Another approach, pursued by Barton and Sudbery [6], uses trialities. Using the triality

algebra of the input algebras and taking three copies of the tensor product between them,

a Lie algebra is defined by

M= triA1 ⊕ triA2 ⊕3(A1 ⊗A2). (2.32)

For the octonionic case, the automorphism group of the triality (see Section 2.4) is Spin(8).

The three copies ofA1⊗A2 are then vector-vector, spinor-spinor and conjugate-conjugate

representation tensor products. The NDAs can also be cast into a split form, Ã, which are

no longer division algebras. This is the result of defining certain bases of the algebra to

have the property e2
i = 1, allowing the equation to be ‘split’. Building a magic square using

the split form of one of the input algebras results in the split real form of the Lie algebras

and introduces non-compactness. Thus the algebras that appear are those of groups such

as E7(−5).

2.6 Kaluza-Klein reduction of SuGra

It is now generally accepted that the various string theories are manifestations of a larger

and more unknown entity designated M-theory, itself 11-dimensional and its lower-energy

limit being 11-dimensional supergravity (SuGra). This class of research is currently the

best candidate for a unified description of all known fundamental forces, yet if any varia-

tions thereof are to describe reality there needs to be a way of reconciling them with the

4-dimensional universe that is observed. The most historically studied method of doing

this generalizes ideas developed by Kaluza and Klein [21, 22], where the spatial dimen-

sions are compactified on a d-torus. Compactifications can be done on other manifolds
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(such as Calabi-Yau manifolds) but they will not be discussed here. Toroidal compactifi-

cation preserves a maximal amount of super-Poincaré symmetry, N .

2.6.1 Gravity in 5 dimensions

Kaluza-Klein theory was originally proposed to unify the then-known two natural forces

of gravity and electromagnetism. In this framework both forces are unified as pure gravity

in five dimensions, which results in an Einstein-Maxwell-scalar theory in four dimensions

after compactifying one of the original five dimensions on the compact manifold S1. The

5-dimensional Einstein-Hilbert action is

IE H =
∫

d5x R̂
√
−ĝ

where ĝ = det|ĝM N | and R̂ is the Ricci scalar (the caret signifying 5 dimensions). All the

information in general relativity is encapsulated in the metric. To compactify on the circle

of radius L, arbitrarily choose one of the four spatial dimensions, z, and expand the metric

as a Fourier series:

ĝM N (xm, z) =∑
n

g (n)
M N e i nz

L .

Uppercase Latin indices will run over five dimensions. This expansion yields an infinite

number of fields in the series, each labelled by Fourier node n. Fields with n 6= 0 can be

truncated because they correspond to massive fields.

n = 0 massless fields

n 6= 0 massive fields.

As an illustration consider dimensionally reducing a scalar field from five dimensions to

four in this manner.

φ̂(xm, z) =∑
n
φn(xm)e i nz

L .

The higher-dimensional field obeys the Klein-Gordon equation, �̂ φ̂ = 0, but the lower-

dimensional right-hand side obeys �φn −(n2/L2)φn , the equivalent equation for a scalar

of mass |n/L|. But taken to the limit L → lp , i.e., taking S1 to radius of order Planck length,
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the mass of the particle becomes so large that expectations of observing it are obliterated.

Nonzero Fourier modes are then just truncated to leave the massless sector of the theory.

An alternative justification is that reduction on a circle gives e i nz
L which is a group rep

of U(1). The rep with n = 0 is a singlet and that with n 6= 0 is a doublet, implying that n

and −n are conjugate representations. If n is then like a U(1) charge there consequently

exists a charge conservation law which provides consistency to the truncation of nonzero

modes. The ansatz is in effect to ignore z-dependence in the metric:

ĝM N → gmn + gmz + gzz

→ gmn + Am +φ,

equivalent to partitioning the metric,

ĝM N =
 gmn Am

Am φ

 .

A more natural parameterization which respects symmetries and one which leads to tidy

equations of motions is [26]

ĝmn = e2αφgmn +e2βφAm An

ĝnz = e2βφAn

ĝzz = e2βφ

with α,β tunable parameters. Dimensional reduction of the metric from S1 compactifi-

cation yields the metric in the lower dimension, plus a Kaluza-Klein gauge potential and

dilaton scalar field, or ‘graviphoton’ and ‘graviscalar’, respectively. (Kaluza interpreted

this latter field as a ‘negative gravitational potential’, but did not further ponder its mean-

ing [3]). In compactifying from five to four dimensions this procedure can be identified as

reformulating 4-dimensional gravity, Maxwell electromagnetism and dilaton field as pure

5-dimensional Einstein gravity.
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2.6.2 M-theory on the torus

String and M-theory naturally incorporate Kaluza-Klein theory, and the same machinery

is utilized in compactifying dimensions on successive circles, or tori. The supergravity

multiplet contains not just the metric tensor gmn (the graviton in particle theory) but also

its superpartner, the gravitino ψα
m , and an additional bosonic 3-form field, Cmnr . These

will require different considerations for dimensional reduction. Successive compactifi-

cations cause a proliferation of fields in the lower-dimensional perspective. A p-form

reduced from N + 1 to N dimensions will effectively result in a p-form and a (p − 1)-

form. In short, forms of all ranks k ≤ p appear through successive compactifications.

The 128 degrees of freedom of the 11-dimensional spin- 3
2 gravitino (which has both a

vector and a spinor index) decompose into right- and left-handed gravitini and right- and

left-handed spinors in 10 dimensions. These continue to decompose into gravitini and

spinors in lower dimensions, the details dependent on whether the dimension is odd or

even. Scalars simply decompose to scalars, and their production is an important focal

point: they contribute to the global symmetry of the theory. (The gravitino will be ne-

glected in this discussion since scalars are bosonic and thus cannot be produced from the

dimensional reduction of fermionic fields.)

Compactification of the graviton field on S1 will give the graviton, vector, and dilaton

as discussed above but living in 10 dimensions. The 3-form splits into a 3-form and 2-

form in 10 dimensions. Compactifying again on S1 is the same as compactifying the 11-

dimensional theory on the torus, since T 2 = S1 ×S1. Now there will be 3-, 2- and 1-forms,

a graviton, 2 dilatons, 2 vectors, and an axion—a scalar field χ from the decomposition

Am → Am +χ.

The names ‘dilaton’ and ‘axion’ are now used differentiate between the scalars arising

from the graviton and those arising from the Kaluza-Klein potential or a 1-form field

(which will decompose into a 1-form and 0-form, i.e., scalar).
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2.6.3 Global symmetries and U-dualities

Gravity on S1 has the following general covariance (which it inherits from the higher-

dimensional gravity) and gauge symmetries:

ξ̂M (x, z) = ξm(x)

ξ̂z(x, z) = cz +λ(x)
(2.33)

with ξM the infinitesimal transformation parameter of the higher-dimensional general

covariance and c a constant. Continuing the process of dimensionally reducing the gravi-

ton down from D = 10+ 1 to D = 7+ 1, each i th reduction on S1 gives Ai
m Kaluza-Klein

vector potentials. Equation (2.33) is then generalized to

ξ̂m(x, z) = ξm(x)

ξ̂i (x, z) =Λi
j z j +λi (x).

(2.34)

Since Λi
j is now an object with d 2 components it is simply the group of linear d ×d ma-

trices GL(d ,R). Thus reducing a theory with an Einstein-Hilbert action on T d gives a

theory with what seems to be an additional GL(d ,R) symmetry as well as the usual lo-

cal co-ordinate and gauge symmetries generated respectively by ξm(x) and λi (x). Such

an additional symmetry is a general feature of torus-reduced gravity-coupled-to-matter

fields. The actual symmetry is SL(d ,R) unless there is an extra scaling symmetry present

in the higher-dimensional equations of motion: GL(d ,R) ∼= SL(d ,R)×R. In actual fact the

additional symmetry is typically larger than this due to the influence on the global sym-

metry of the 3-form field decomposition once it is reduced to 8 dimensions.

In the T 2 case there are 2 dilatons, φi and 1 axion, χ. Combine the dilaton fields into a

single field ~φ ∈C and rotate it such that

φ= aφ1 +bφ2

ϕ= aφ2 −bφ1

where a,b are functions of the dimension. In this way, φ parameterizes the shape change

of the torus (it scales the length of the two circles) whileϕparameterizes the torus volume.
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Together, φ and χ completely characterize the moduli of the torus. Altogether there are 3

scalars with the scalar Lagrangian

L =−1

2
(∂ϕ)2 − 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2. (2.35)

Now ϕ is decoupled from the other two fields: it has a global shift ϕ+k translation sym-

metry, generating an R factor in the overall symmetry group. Additionally by defining

τ=χ+ i e−φ it can be shown that the scalar Lagrangian for φ and χ is invariant under

τ→ aτ+b

cτ+d
ad −bc = 1

which is equivalent to Lagrangian invariance under the special linear group SL(2,R). Both

Kaluza-Klein potentials transform at once as a doublet under the symmetry group. (In

general, the extension of the symmetry group to the rest of the Lagrangian is “guaran-

teed” once the symmetry of the scalars has been demonstrated. The scalars will always

transform non-linearly, and the higher forms as linear representations of the symmetry

group.)

The group SL(2,R) is the non-compact version of SU(2); they share the same Lie al-

gebra: sl(2,R) ∼= su(2). Exponentiating its Cartan subalgebra and the rest of the positive

roots reveals a way of writing the Lagrangian using the trace of upper-triangular matrices.

In order to keep the upper-triangular form, however, a compensating local orthogonal

transformation must be made [29]. The global symmetry group remains the same but the

scalar manifold is given by the coset

SL(2,R)

O(2)
×R

for the T 2 case. The dimension of this coset is (3−1)+1 = 3 i.e., the number of scalars in

the theory.

Proceeding to the T 3 case, the decomposition of the graviton and 3-form is given in

compact form by employing Dynkin notation:

gmn [2000]9 → [200]6 +3[100]6 +3φ+3χ

Bmnr [0010]9 → [001]6 +3[010]6 +2[100]6 +χ.
(2.36)
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Since d = 3 one could expect a naive global symmetry of GL(3,R) for the scalar Lagrangian,

and therefore a naive coset manifold of GL(3,R)/O(3) just from the graviton alone. The

dimension of the coset is 9−3 = 6, the number of scalars from the graviton and Kaluza-

Klein potentials. However, the actual symmetry group must be larger. (One suspects it is

7-dimensional, since seven scalars have been produced.) Actually one of the dilatons, as

before, is decoupled from the rest of the graviton scalars and couples with the axion of the

3-form field. Thus one actually has a coset from each coupling:

SL(3,R)

O(3)
× SL(2,R)

O(2)

with dimension (8−3)+(3−1) = 7. The pattern emerging is that of a scalar coset manifold

Gd /Hd where Gd is the Lie algebra of the global symmetry group and Hd is its maximal

compact subgroup.

For compactifications as far as D = 6 the dilatons are just arranged as vectors corre-

sponding to the positive roots of the algebra. To continue to lower dimensions one needs

to know which roots are simple, i.e., which subset of dilaton vectors can express all others.

Dimensional reduction on T d only continues to D = 3 where the graviton and gravitini

D T d Gd /Hd no. scalars

10 T 1 SL(2,R)
O(2) 3−1 = 2

9 T 2 SL(2,R)
O(2) ×R (3−1)+1 = 3

8 T 3 SL(3,R)
O(3) × SL(2,R)

O(2) (8−3)+ (3−1) = 7

7 T 4 SL(5,R)
O(5) 24−10 = 14

6 T 5 SO(5,5)
O(5)×O(5) 45− (10+10) = 25

5 T 6 E6(6)
USp(8) 78−36 = 42

4 T 7 E7(7)
SU(8) 133−63 = 70

3 T 8 E8(8)
O(16) 248−120 = 128

Table 2.2: The coset manifolds of SuGra on T d .

have zero degrees of freedom. In lower dimensions gravity becomes a constraint.
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It can be seen that dimensionally-reduced SuGra displays non-compact global sym-

metry of Ed(d) type. For instance, G4 = SL(5,R) which has Lie algebra a4
∼= e4. This has been

known for some time [7, 8, 20]. The group Gd is actually the U-duality group: the non-

perturbative symmetry combining the transformations of S-duality and T-duality [25].
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OCTONIONIC SUPER YANG-MILLS

It is known that super Yang-Mills (SYM) fields can only exist in dimensions 3,4,6 and 10.

The reason for this is actually dependent on the existence of a normed division algebra of

dimension n = D −2. In fact they are mutually implicative. The properties of the NDAs

cause the vanishing of a certain trilinear spinor term that makes the SYM Lagrangian of

a nonabelian Yang-Mills field minimally coupled to a massless spinor supersymmetric

in the aforementioned spacetime dimensions [5]. They are also responsible for the su-

persymmetry of the Green-Schwarz superstring [15]. The purpose of this chapter is to

demonstrate the dimensional reduction of SYM merely using the NDA over which the

theory is constructed.

Once formulated in the octonions, D = 10 SYM theory can be reduced to obtain the

D = 6,4,3 SYM in the other NDAs. The 10-dimensional SYM has N = 1, consisting of

vector (1-form) and spinor superpartners. Since the spacetime dimension is D = 10 the

fields can be formulated as in the Little group as single octonions (see Section 2.3),

ψO =ψµeµ

vO = vµeµ,

with components transforming with the 8s and 8v of SO(8) of Section 2.2:

δψµ = 1

2
θρσΣ

[ρσ]
µν ψν (3.1)

δvµ = 1

2
θρσ J[ρσ]µνvν. (3.2)
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This can be seen since application of (2.25) gives:

δψA = 1

4
θµνe∗

µ(eνψA)

= 1

4
θµνe∗

µ(eνeρ)ψρ

= 1

4
θµνe∗

µeσΓ
ν
ρσψ

ρ

= 1

4
θµνΓ̄

µ
στΓ

ν
ρσψ

ρeτ

= 1

2
θµνΣ

[µν]
τρ ψρeτ

with a relabeling of indices to give (3.1) and

δvA = 1

4
θµν

(
eµ(e∗

νvA)− vA(e∗
µeν)

)
= 1

4
θµν

(
eµ(e∗

νeρ)−eρ(e∗
µeν)

)
vρ

= 1

4
θµν

(
eµeσΓ̄

ν
ρσ−eρeσΓ̄

µ
νρ

)
vρ

= 1

4
θµν

(
Γ
µ
στΓ̄

ν
ρσ−ΓρστΓ̄µνρ

)
vρeτ

= 1

2
θµν

(
δτµδνρ−δτνδµρ

)
vρeτ

= 1

2
θµν J[µν]τρvρeτ

with the Clifford condition and relabeling to give (3.2). Once D = 10,N = 1 SYM has

be given in terms of octonions, dimensional reduction on T 4 (the 4-torus) gives the oc-

tonionic D = 6,N = 2 theory. Obtaining the N = 1 theory is then merely a matter of

truncation. One is then left with D = 6,N = 1 SYM over the quaternions.

3.1 SYM on T 4

From Kaluza-Klein reduction (see Section 2.6) the SO(8) Little vector vO representation

in D = 10 will reduce to a single SO(4) ∼= SU(2)×SU(2) vector plus 4 scalar fields trans-

forming in the internal symmetry group (which in the T 4 case is SO(4) also). (It should be

noted that the internal symmetry is not the same as the R-symmetry; in particular cases

the former is larger than the latter.) The spinor representation reduces to the spinor and
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conjugate spinor representations of SU(2)×SU(2). The overall decomposition leads to a

spacetime part and an internal part:

SO(8) ⊃ SO(4)ST ×SO(4)I

with SO(4) ∼= SU(2)×SU(2).
(3.3)

The vector and spinors are quaternionic while only the scalars are real. The octonion cor-

responding to the spinor decomposes in the opposite way it was constructed by two ele-

ments ofH and an arbitrary imaginary element, i , in the Cayley-Dixon procedure—‘Dixon

undoubling’: ψO→ψH+ iχH. The real part plus a line from the Fano plane comprise the

spinor subfield, leaving the remaining quadrangle representing the compactified direc-

tions. The imaginary element factorizes these bases into a quaternionic conjugate spinor

subfield, with the same basis a the D = 6 spinor. The vector is deconstructed by removing

an arbitrary line of the Fano plane to form a quaternionic vector with the remaining four

imaginary bases parameterizing four real scalars: vO→ vH+−→φR. The internal co-ordinates

are denoted by special indices:
−→
φR = φµ̇eµ̇, where in this case both dotted and undotted

indices can take four values. Internal co-ordinates correspond to the parameterization

of the torus on which the theory is compactified. Correspondingly, θµν decomposes into

spacetime and internal parts, θµν and θµ̇ν̇, while θµµ̇ = 0.

One has the vector, spinors and scalar representations of SU(2)×SU(2) written over the

octonions. This is the N = 2 SYM theory in D = 6. Anastasiou et al. [1] demonstrate an

explicit decomposition of the octonionic fields in addition to their internal and spacetime

transformations. They are as follows:

δ(ST )ψH = θST
H ψH (3.4)

δ(ST )χH = θ̃ST
H χH (3.5)

δ(ST )vH = θ̃ST
H vH− vHθ

ST
H (3.6)

δ(ST )φH = 0 (3.7)
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for spacetime transformations, and

δ(I )ψH =ψHθI
H (3.8)

δ(I )χH =χHθ̃I
H (3.9)

δ(I )vH = 0 (3.10)

δ(I )φH = θ̃I
HφH−φHθI

H (3.11)

for internal transformations. Since the bases are quaternionic the following definitions

have been made:

θST
H ≡ 1

4
θµν(e∗

µeν) , θ̃ST
H ≡ 1

4
θµν(eµe∗

ν)

with θI
H

and θ̃I
H

defined similarly.

3.2 SYM on T 6

Compactifying SYM in D = 10 now to SYM in D = 4. The Little group decomposes accord-

ing to

SO(8) ⊃ SO(2)ST ×SU(4)I

SO(2) ∼= U(1) , SO(6) ∼= SU(4)
(3.12)

so the vector rep of SO(8) splits into a reducible vector rep of SO(6) and 6 scalar fields,

while, since the D3 Dynkin diagram is symmetric, the spinors fall into copies of the spinor

and conjugate spinor reps of SU(4) distinguished by their charge under U(1). The octo-

nionic fields are deconstructed in a similar manner as in the previous section. The spinor

fields are now complex, and can be found by choosing an arbitrary line of the Fano plane

and using it to arrange the octonionic field as 4 complex fields: ψO→ψR+i ψ̄R+ jχR+kχ̄R

with the bar denoting conjugacy. One of the remaining imaginary bases along with the

real basis is chosen from the Fano plane to construct a complex vector and 6 real scalars

from an octonion: vO → vR+−→
φR where the dotted indices of

−→
φR = φµ̇eµ̇ now run over 6

points of the Fano plane. A consequence is that the spacetime transformation parame-

ter θµν is just a single parameter θ. The factor appearing with it in the transformations is
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the U(1) charge, which is ±1
2 for spinors, ±1 for vectors and 0 for scalars. The spacetime

transformations are

δ(ST )ψC = 1

2
θψH (3.13)

δ(ST )ψ̄C = 1

2
θψ̄H (3.14)

δ(ST )χC =−1

2
θχH (3.15)

δ(ST )χ̄C =−1

2
θχ̄H (3.16)

δ(ST )vC =−θi vC (3.17)

δ(ST )φR = 0 (3.18)

where i is an arbitrary imaginary octonionic base. The spinors can also be arranged to

form a quadruplet. This then can be shown [1] to transform under the fundamental rep

of SU(4), such that

δ(I )ψµ = T [µ̇ν̇]
µν ψν (3.19)

with T [µ̇ν̇] the generator of SU(4). The vector again transforms trivially (i.e., as a sin-

glet), this time under SU(4). The arrangement of the 6 scalars transform under the 6-

dimensional vector representation.

δ(I )vC = 0 (3.20)

δ(I )φρ̇ = 1

2
θµ̇ν̇ J[µ̇ν̇]ρ̇σ̇φ

σ̇ (3.21)

All the generators have been built with the multiplication rule of the octonions. One

therefore has the N = 4 SYM formulated over O. As before it is a matter of truncation

to arrive at N = 2: by discarding 4 points of the Fano plane one is left with a line cor-

responding to the N = 2 theory over H, translating to the throwing away of the spinor

conjugates ψ̄C, χ̄C and 4 of the scalars. Further, the N = 1 theory can be reached by re-

moving two more imaginary bases, leaving SYM over C. This translates to discarding the

conjugate spinor χC and the two remaining scalar fields. In all cases, truncation leaves an

equal number of bosonic and fermionic degrees of freedom to preserve SuSy.
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3.3 SYM on T 7

Preceding to D = 3, a consequence of the reduction is that there is no spacetime symme-

try. The decomposition follows

SO(8) ⊃ SO(7)I (3.22)

The D = 10 spinor field decomposes into 8 spinor fields in the D = 3 theory: ψO→ψ
µ
R

eµ.

The vector reduces to a trivial real vector with 7 scalar fields: vO→ vR+−→
φR, where the no-

tation is now reverted to that of Section 2.1 since the imaginary subspace of an octonion

now corresponds to the internal symmetry:
−→
φR =φµ̇eµ̇ =φi ei . The vector is now just the

real component of the original D = 10 vector octonion: vR = v01. All fields are now real.

The spinors transform as the 8 of SO(7) because the transformation parameters θi j

build the spin generators of Section 2.2:

δ(I )ψO = 1

4
θi j e∗

i (e j eµ)ψµ =−1

2
eνΣ

[i j ]
νµ ψ

µ

δ(I )ψµ =−1

2
Σ

[i j ]
µν ψ

ν.
(3.23)

The scalars transform as the 7 of SO(7):

δ(I )φk = 1

2
θi j J[i j ]kl φ

l . (3.24)

Dimensional reduction to D = 3 yields the maximal N = 8 SYM theory, and here one has

it formulated over O. The same truncation procedure as in the previous sections leads to

the N = 1, D = 3 theory over R. In that theory one is left with a superpartner pair made

up of a real vector and real spinor.

In D = 3 the vector is dual to a scalar field. Thus the SO(7) internal symmetry in en-

larged to SO(8), the R-symmetry group of the theory. (Note that for N = 2,3 the internal

symmetry is larger than the R-symmetry.) The D = 3,N = 8 SYM Lagrangian is given by

L = 1

4
F A

mnF Amn − 1

2
Dmφ

A
i DmφA

i + i λ̄A
µγ

mDmλ
A
µ

− 1

4
g 2 f A

BC f A
DEφ

B
i φ

D
i φ

C
j φ

E
j − g f µBCφ

B
i λ̄

AµΓi
µνλ

Cν
(3.25)

where one should recognize that Γi
µν (i = 1, . . . ,7; µ= 0, . . . ,7) belongs to the Clifford alge-

bra of Spin(7) and is an octonionic structure constant. Thus the Lagrangian can be written

overO. IfO is replaced by the division algebrasH,C,R then the result is L with N = 4,2,1.
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3.4 Division-algebraic classification

In order to build up a unifying picture of SYM and SuGra provided by the NDAs, the the-

ories of the former are tabulated in Table 3.1. Each entry gives the algebra over which

the theory is written for the corresponding D and N . It has already been shown that an

NDA of dimension n is isomorphic to a spacetime symmetry group of D = n +2, but an-

other emergent correspondence is that of the NDAs with the amount of supersymmetry

N . Both have been displayed in parentheses with their respective D and N . One sees

D \ N 1 (R) 2 (C) 4 (H) 8 (O)

10 (O) O

6 (H) H O

4 (C) C H O

3 (R) R C H O

Table 3.1: The division algebraic classification of Super Yang-Mills theories.

that when for example D = 4,N = 4 one has C×H=O. Table 3.2 displays the full on-shell

symmetry group (that is, without distinguishing between spacetime and R-symmetries)

of each theory. A point on which to remark is that although \-shaped diagonal lines of the

table have theories formulated over the same algebra, not all have the same symmetry

groups. Only when D = 3 or N = 1 (i.e., when one of the algebras is R) do the symmetry

groups match. The symmetry groups are then clearly not fully determined by the algebra

over which the theory is written, but by which of the “input” algebras are spacetime or in-

ternally generated. Also of interest is that for D = 3 the symmetry groups are those of the

triality automorphism groups from Section 2.4 for each NDA. (Why this correspondence

only appears for D = 3 is a subtler point involving limitations of the triality definition. This

will be discussed in the following chapter.) The D = 3 symmetry groups are the same as

those with N = 1. This then is only natural considering N = 1 SuSy transformations are
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D \ N 1 2 4 8

10 SO(8)

6 sp(2)3 Sp(2)4

4 U(1)2 Sp(2)×U(1)3 SU(4)×U(1)

3 1 U(1)2 Sp(2)3 SO(8)

Table 3.2: The full symmetry groups of Super Yang-Mills theories.

of the form

v =χψ∗ , ψ= v∗χ , χ= aψ.

But this is just the triality relationship between between the three reps of SO(A) when

written over A (e.g., ψ = aµχρΓµνρ) and since the group that preserves this relationship is

the triality group it is unsurprising that the full on-shell symmetries of the D = 3 theories

are exactly the triality algebras of each, inherited from the N = 1 theories [1, 2].
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GRAVITY AS A SQUARE OF PARTICLE

THEORIES

This chapter introduces the crux of this dissertation, demonstrating how the octonions

play a part in the construction of theories of gravity, an updated description of which is

a major aspect of certain efforts toward unification, as elaborated in Chapter 1. One sees

the development of what seems to be a recurring theme in recent literature. It has been

found [31,36–38] that taking double copies—“squaring”—of two-algebra SYM amplitudes

yields three-dimensional SuGra amplitudes, adding to the examples [19,28] of gravity ap-

pearing as a square of particle physics. Here it is shown that this theme is intimately tied

in to the magic square of Lie algebras.

4.1 Tensoring SYM

Two SYM multiplets can be tensored to give the content of a SuGra theory. For instance,

in D = 10, the tensor product in Dynkin notation could be(
[1000]8 + [0010]8

)⊗ (
[1000]8 + [0001]8

)
= [2000]35 + [0011]56 + [0100]28 + [0000]1 + [1001]56

+ [1010]56 + [1000]8 + [0001]8 + [0010]8

= gmn +Cmnp +Bmn +φ+ξαm + ξ̄α̇m + Am +χα+ χ̄α̇

which is the massless field content of D = 11 SuGra reduced on S1 (i.e., type II). Note

that now the subscripts of the Dynkin notation denote the dimension of the irreducible
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representations, as opposed to that of the Little group. Both sides add to 265—thus the

bosonic and fermionic degrees of freedom are separately conserved as they should be.

In such a tensoring the number of supersymmetries add, so tensoring two N = 16 SYM

multiplets gives an N = 32 SuGra.

The D = 3 Lagrangian in (3.25) can be rewritten over NDAs, allowing for SYM with

different amounts of supersymmetries. The SYM multiplet then contains a vector and

spinor(s) in A and an ImA-valued scalar field,
−→
φ . By tensoring these D = 3, N = 1,2,3,4

multiplets 16 D = 3, N =N1+N2 SuGra theories are constructed. (The reason only D = 3

tensoring is being considered for now is due to the triality algebra restriction alluded to in

the previous chapter.) The content of these theories are valued as follows:

gmn ∈R , ξαm ∈
 A1

A2

 , φ,ψ ∈
 A1 ⊗A2

A1 ⊗A2

 . (4.1)

In D = 3 the graviton gmn and gravitino ξαm have zero degrees of freedom, while the scalar

and spinor fields both have 2(n1 ×n2) degrees of freedom (128 each in the maximal A1 =
A2 = O case, as when 11-dimensional SuGra is reduced on the 8-torus). The obtained

SuGra theories with N > 8 are unique and all content lives in the SuGra multiplet, whereas

those with N ≤ 8 can be coupled to additional matter multiplets. Each theory has its own

U-duality and scalar coset G/H .

4.2 Magic square of D = 3 SuGras

Borsten et al. [24] have shown that one can arrive at the D = 3 SuGra theories, introduced

above as tensored SYM multiplets, from a magic square construction (Section 2.5). The

Barton and Sudbery magic square construction uses triality algebras and introduces non-

compactness in the group algebras it produces.

M= triA1 ⊕ triA2 ⊕3(A1 ⊗A2). (4.2)

By adapting the commutators of the Barton-Sudbery construction Borsten et al. [24] have

used (4.2) to construct the magic square of non-compact Lie algebras in Table 4.1, provid-

32



ing a more manifestly A1 ↔A2 symmetric square. What is remarkable about this magic

A1 \ A2 R C H O

R so(3) su(2,1) sp(4,2) f4(−20)

C su(2,1) su(2,1)2 su(4,2) e6(−14)

H sp(4,2) su(4,2) so(8,4) e7(−5)

O f4(−20) e6(−14) e7(−5) e8(8)

Table 4.1: Magic square of Lie algebras corresponding to the U-dualities of D = 3 Supergravities.

A1 \ A2 R C H O

R so(2) su(2)⊕u(1) sp(2)⊕sp(1) so(9)

C su(2)⊕u(1) su(2)2 ⊕u(1)2 su(4)⊕su(2)⊕u(1) so(10)⊕so(2)

H sp(2)⊕sp(1) su(4)⊕su(2)⊕u(1) so(8)⊕so(4) so(12)⊕so(3)

O so(9) so(10)⊕so(2) so(12)⊕so(3) so(16)

Table 4.2: Magic square of maximal compact subalgebras.

square is that the entries are the U-duality groups of the D = 3 supergravities introduced

in the previous section. Furthermore, Table 4.2 is the magic square of maximal compact

subalgebras obtained by the reduced triality construction,

M′ = triA1 ⊕ triA2 ⊕ (A1 ⊗A2). (4.3)

One can see that for the case A1 = A2 = O the U-duality group and maximal compact

subgroup give the coset
G8

H8
= E8(8)

SO(8)

which is that of 11-dimensional supergravity reduced to D = 3 on the 8-torus (Subsec-

tion 2.6.3). In fact it is readily seen that, since in the cases D = 3 their symmetries are actu-

ally the trialities, tensoring SYM multiplets will yield supergravities with symmetries that
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are the sum of trialities in the fashion of (4.2). That these deliver the precise U-dualities

for SuGra multiplets and SuGra multiplets coupled to extra matter fields is another exam-

ple of gravity appearing as a square of particle physics—in this instance as a magic square.

Hence a connection between the magic square of algebras in mathematics and the SuGra

square of SYM in physics has been identified.

4.3 A pyramid of gravitation

The definition of triA used in (2.27) in not inclusive enough to give the full on-shell sym-

metry groups of all the SYM theories except for those with D = 3 or N = 1. It has already

been shown that a given SYM theory is not just dependent on the algebra over which it

is written but on the two algebras corresponding to D and N . Thus it seems fitting to

extend the triality algebra to depend on both of these, which will be defined as An and

AN . If such a triality algebra ˜tri(An ,AN ) can be constructed then the magic square can

be generalized to supergravities in dimensions n +2, adding a new axis to the square.

It transpires that the part of the triality algebra of (2.27) that is restricted during dimen-

sional reduction is the subalgebra corresponding to the spacetime symmetry [1]. Since

the vector rep always transforms in this symmetry and is an element of theAn subalgebra

of (An ,AN ), an additional condition that An is preserved by any element of the triality

triple A,B ,C can be included to define

˜triA≡ {
(A,B ,C )|A(x y) = (B x)y +x(C y) and A(An ⊆ (An ,AN )) =An

}
with A,B ,C ∈ so(A), x, y ∈ (An ,AN ).

(4.4)

This updated triality algebra now gives the full on-shell symmetry group for any SYM in

D = n +2. Recalling from Chapter 3 that reducing octonion SYM theories on the d-torus

induces extended supersymmetry which itself can be truncated, the obvious constraint

placed on the theories of symmetries that can be built from (4.4) is dimAn +dimAN ≤ 9.

The result of squaring these is then a stepped magic pyramid of supergravities [2, 24] in

n+2 dimensions, with the magic square as its base. One should note that theAn =AN =O

34



Figure 4.1: The magic pyramid of supergravity U-duality groups labelled by NDAs.

corner of the pyramid displays the symmetry groups of toroidal compactifications of 11-

supergravity to D =10, 6, 4 and 3.

The capstone of the pyramid is type II supergravity, the low-energy limit of type II

string theory (11-dimensional SuGra on S1). The magic pyramid is still in the early days of

research, its importance and implications either yet to be unearthed or (at time of writing)

published. But a possible assignment is that it represents a description of the structure of

SuGra symmetries via the the normed division algebras, labelling each theory using three

of them, and placing the octonions in a prominent position as corresponding to the 10-

dimensional type II symmetry.
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CLOSING REMARKS

The octonions have found little accommodation in mainstream physics, in part due to

their non-associativity. The work presented above demonstrates that their appearance

as the last and largest normed division algebra is not only to be expected, but possibly

to have significance of its own. But though the existence of the exceptional Lie algebras

can be ascribed to the presence of octonions, their ultimate relevance to physics remains

inconclusive.

The octonionic aspect of SYM theories is already known, with the existence of the

NDAs providing their supersymmetry. Their link with higher-dimensional spacetimes

heavily relies on exploiting the Lie algebra isomorphism between SO(1,n + 1) Lorentz

symmetries of dimension D = n + 2 and the 2×2 special linear matrices with entries in

A, which allows the generalization of the Pauli and gamma matrices. Starting from these

relationships and tensoring SYM multiplets, a connection between the division algebras

and supergravity in n + 2 dimensions has been uncovered through the magic pyramid,

itself a contribution to pure mathematics through a refinement of the triality algebra def-

inition. This in turn has been built from the hitherto purely mathematical magic square

of Lie algebras after considering a degeneracy in the SYM theories. These remarkable

structures, now of nascent relevance to physical ideas, provide the U-duality (symmetry)

groups for known higher-dimensional supersymmetric theories of gravity. Concomitant

with the magic structures’ involvement herein are the triality and Jordan algebras with

which they can be constructed. The latter of these is related to the question of whether or

not octonionic quantum mechanics exists.

Formulating SYM over the octonions allows a unique dimensional reduction in the
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fashion of Dixon undoubling, corresponding to reduction on the d-torus. In the (O,O)

corner of the magic pyramid one sees the U-duality groups of Kaluza-Klein-type toroidal

compactification of SuGra. A logical step is to formulate the SuGra fields themselves oc-

tonionically using the SO(1,n + 2) extension of the above isomorphism, and then to de-

compose the fields directly. A further line of research will be to clarify how dimensional

reduction of SuGra on other manifolds relates to the decomposition of octonionic fields in

the context of the pyramid. It may be interesting to look at G2-invariant compactifications

or at manifolds of G2 type, for this group is the automorphism group ofO.

The division algebraic formulation of SYM at the level of the Lagrangian has been

mostly omitted from the present discussion, though it has been studied [1]. Further re-

search to illuminate the “SuGra = SYM2” relation at the Lagrangian level remains to be

carried out. In order to do this the relationships between the fields of each theory will

need to be shown, as well as clearly demonstrating how the SuGra transformation rules

emerge as a consequence of those of SYM.

In short, the unifying picture provided by the normed division algebras is striking and

gives ample motivation to continue their study in the context of SuSy and SuGra. It is

hoped this picture will present the octonions with their first physical manifestation: as an

algebraic aspect of supersymmetric gravity for studying a contender theory of all known

interactions.
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