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“It always bothers me that, according to the laws as we understand
them today, it takes a computing machine an infinite number of logical
operations to figure out what goes on in no matter how tiny a region
of space, and no matter how tiny a region of time. . . So I have often
made the hypothesis that ultimately physics will not require a
mathematical statement, that in the end the machinery will be
revealed, and the laws will turn out to be simple, like the chequerboard
with all its apparent complexities”.

— Richard Feynman, The Character of Physical Law (1964)
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Preface

In the last decades of the 20th century, the development of Black Hole Thermodynamics and the
affirmation of the Standard Model of Particle Physics marked the triumph of General Relativity
and Quantum Field Theory as our most complete, full-blown models of the physical universe.
As often in the history of Science, the rationale of these theories is largely a tale of unification,
that is, the coming together of diverse and apparently disconnected aspects of reality under a
common denominator: the unification of space and time in Special Relativity, the unification of
gravity and geometry in General Relativity, the unification of the Electromagnetic, Strong and
Weak interactions, both with one another and with Special Relativity, in Quantum Field Theory.

Notwithstanding their respective success, General Relativity and Quantum Field Theory are the
product of two very different mathematical frameworks. The first is a deterministic theory that
relies on the formalism and techniques of Classical Mechanics, particularly on Differential Geometry
and Mathematical Analysis, and where observable quantities, such as energy and momentum, are
nothing but the values taken by functions on the so-called phase space. On the contrary, the
second is a non-deterministic theory rooted in Linear Algebra and Functional Analysis, in which
observables are “eigenvalues” of linear operators in a Hilbert space, each of which has a certain
probability of being measured.

The net result of this split is that a quantum-mechanical description of gravitation, or Quantum
Gravity (QG), cannot be attained within these two frameworks. Despite gravity is negligible in
many areas of modern physics, the missing unification between General Relativity and Quantum
Theory is an important matter in Cosmology, where the curvature of spacetime is not a minor
aspect. In particular, our models for the early Universe and black hole singularities are sprinkled
with indications that, below a certain physical scale known as the Planck scale, General Relativity
breaks down and an underlying discretness is revealed. If accepted as a physical reality, this dis-
cretum immediately allows for the solution of some long-standing conceptual issues in Theoretical
Physics, in primis the birth of infinities [1].

The causal set hypothesis is an attempt to combine this notion of discreteness with that of causal
order, a tenet of General Relativity, so as to produce a geometric structure on which a theory
of quantum gravity can be based: the namesake causal set. Despite causal set kinematics has
been an active field of research for mathematicians and physicists alike since the late 1980s, the
development of a causal set dynamics received an impulse only in later years, particularly due to
the paper A Classic Sequential Growth Dynamics for Causal Sets ([4], 2000) by David Rideout and
Rafael Sorkin. One particularly attractive aspect of their work is the claim that a probabilistic
model for causal sets implies a form “induced gravity”. As a matter of fact, one of the greatest
challenges for a model of quantum gravity is describing matter and gravity as emergent, that is,
as arising dynamically from an underlying theory of spacetime without any further construct.
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The purpose of this essay is to pick up where Rideout and Sorkin left off and develop a mathematical
framework in which Classical Sequential Growth can be shown to be just one of many possible
probabilistic models that arise by suitably constranining the associated sample space. After briefly
reviewing the kinematics of causal sets (Chapter 1), we will provide a self-contained introduction to
graph theory and probabilistic graphical models (Chapter 2). These two apparently disconnected
disciplines communicate with each other through the notion of partial order, which allows for the
application to causal sets of powerful stochastical methods well-known in the context of network
science, machine learning and image processing. In particular, we will show that a dynamical
theory of causal sets can be realised as a type of Bayesian network, which is a structured, graphical
representation of probabilistic relationships between several random variables. A short introduction
on classical causal set dynamics (Chapter 3) and a closer look at Rideout’s probability formula
(Chapter 4) will follow. We will learn that the latter can be reformulated in terms of “states”, or
“spins” due to historical reasons, defined on the elements of a causal set. In the final chapter, we
will derive two examples of interacting and non-interacting “spin systems” through the sole use of
partial orders and combinatorics: the first will define the labelling of a causal set, the second will
lead us back to Classical Sequential Growth.

Note: In this essay, we assume that the reader is familiar with the foundations of General Rela-
tivity and Quantum Mechanics. All pictures appearing in the following pages are to be considered
author’s work unless otherwise stated.
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Chapter 1

The causal set approach to
quantum gravity

The causal set hypothesis is an approach to quantum gravity based on the following axioms:

First axiom
Spacetime is a locally finite partially ordered set1 whose elements are called “events”.

Second axiom
Spacetime is stochastically Lorentz-invariant2.

The underlying assumption is that manifold-like spacetime ceases to exist near the Planck scale,
and is replaced by an ordered, discrete structure to which the continuum is only a coarse-grained,
macroscopic approximation [2]. In the continuum approximation, the number of discrete elements
in a region is experienced as the spacetime volume of that region, whereas their order gives rise
to the causal order of spacetime (i.e. the notion of “before” and “after”, “cause” and “effect”).
With both volume and causal structure, one can reconstruct the full geometry, as proved by the
Malament-Hawking-King-McCarthy-Levichev (MHKML) theorem [49]. In this way, the topology,
the differential structure and the metric of the continuum become unified with the causal order. The
Lorentzian signature is then “singled out as the only one compatible with a consistent distinction
between past and future” [2].

On a different note, the question of Lorentz-invariance violation (an issue that plagues many
popular approaches to QG such as Loop Quantum Gravity and String Theory) does not even arise
if one chooses to “sprinkle” spacetime events according to a suitably-chosen stochastic process, such
as a Poisson distribution. The resulting, randomly distributed “web” of events will be such that
its local properties are preserved whenever a Lorentz transformation is applied to it (see Section
1.2). Conversely, any equally uniformly distributed lattice is not preserved under Lorentz boosts.

It is noted that, at the time of writing of this essay, there is no evidence that Lorentz invariance
is violated, and at a high degree of confidence [17].

1see Definitions 1.1-1.2 on next page.
2Lorentz invariance (or, more properly, covariance) is the requirement that the fundamental laws of physics be

invariant under the Lorentz transformations, such as rotations or boosts.
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1 – The causal set approach to quantum gravity

1.1 Kinematics

Before we can give the definition of causal set, we must get acquainted with the notion of order :

Definition 1.1. (Partial order) A partially ordered set (or poset) is a set P together with a
relation ≤ (called partial order or simply order) which satisfies the following properties:

(a) Reflexivity: ∀p ∈ P , p ≤ p

(b) Antisymmetry: ∀p, q ∈ P , p ≤ q ≤ p⇒ p = q

(c) Transitivity: ∀p, q, r ∈ P , p ≤ r ≤ q ⇒ p ≤ q
More properly, the above should be called a non-strict partial order, as opposed to the strict partial
order, which is irreflexive:

Definition 1.2. (Strict partial order) A strictly partially ordered set is a set P together with a
relation < (called strict partial order) obeying the following properties:

(i) Irreflexivity: ∀p ∈ P , p /< p

(ii) Transitivity: ∀p, q, r ∈ P , p < r < q ⇒ p < q

Properties (i) and (ii) imply acyclicty, i.e. the absence of loops such as x0 < x1 < x2 < · · · < xn =
x0 ∀x0, . . . , xn ∈ P , and antisymmetry, i.e. ∀p, q ∈ P , p < q ⇒ q /< p. Unless otherwise stated, in
this essay we will use the word “poset” to denote a strictly partially ordered set.

Strict partial orders are in a 1-to-1 correspondence with non-strict partial orders. To see this,
consider a non-strict partial order ≤: the corresponding strict partial order < is the irreflexive
reduction of ≤, i.e. “p < q if p ≤ q and p /= q”. Conversely, given a strict partial order <, the
corresponding non-strict partial order ≤ is the reflexive closure of <, i.e. “p ≤ q if p < q and
p = q”.

The transitive closure of a (strict or non-strict) partial orderR on P , instead, is given by the relation
R′ on P such that ∀p, q ∈ P, pR′q if ∃c0, c1, . . . , cn : c0 = p, cn = q, ci < ci+1 ∀i : 0 ≤ i < n.

Definition 1.3. (Causal set) A causal set (or causet) is a locally finite, strictly partially ordered
set, i.e. a pair (C, ≺) with a set C and a binary relation ≺ (“precedes”) obeying the following
properties:

(i) Irreflexivity: ∀x ∈ C, x ⊀ x

(ii) Transitivity: ∀x, y, z ∈ C, x ≺ y ≺ z ⇒ x ≺ z

(iii) Local finiteness: ∀x, z ∈ C, #{y ∈ C | x ≺ y ≺ z} <∞ (#: cardinality of a set)

The elements of a causal set, or events, can be related to one another in other ways than a single
relation:

Definition 1.4. (Link) A link is an irreducible relation of order, that is, one not implied by other
relations via transitivity.

Definition 1.5. (Chain) An n-chain is a partial order of n elements, any two of which are related
by a link.

Definition 1.6. (Antichain) An antichain is a trivial order in which no element is related to any
other.

Definition 1.7. (Path) A path is a continuous sequence of links between partially-ordered ele-
ments.

2



1 – The causal set approach to quantum gravity

Representations Causal sets can be visualised in a multitude of ways, due to the rich imagery
associated with partial orders. The most intuitive representation is probably given by a family
tree, where relations of ’descent’ indicate which of the elements of C are ’ancestors’ of which others
(see Figure 1.1). However, family trees quickly become impractical for a visual interpretation
since the number of links grows exponentially with the number of elements. A more schematic
representation of a causet is given by its Hasse diagram, that is, an acyclic relation containing
only links. This amounts to the “transitive reduction”) of a family tree. This is the unique graph
structure satisfying the properties of a causet, with elements of C as vertices and the links between
them appearing as edges (see Figure 1.2 For computational purposes, a causet can be handled as
a causal matrix C, whose rows and columns are labelled by the elements of C, with

Cij =

{
1 if xi ≺ xj
0 otherwise

xi, xj ∈ C.

Sprinkling and coarse-graning A key point in reconstructing geometry from causets is estab-
lishing a correspondence principle between the discretum and the continuum. In principle, this can
be done in two ways, either following a top-down procedure (extracting a causet from a manifold)
or a bottom-up procedure (embedding a causet in a manifold). The two most promising notions
for these processes are those of sprinkling and coarse-graining respectively.

Definition 1.8. (Sprinkling) A sprinkling is a random selection of points from a Lorentzian
manifold M according to a Poisson process. The probability of spinkling n of its elements in a
region of volume V is

(1.1) P (n) =
(ρV )ne−ρV

n!

where ρ is a fundamental physical density of Planckian order, ρV is the average number of elements
sprinkled in V and

√
ρV is the coefficient of dispersion around the mean value (i.e. the fluctuation

in the number of elements).

Sprinklings carry no intrinsic physical meaning: their only purpose is to assign continuum approxi-
mations, the causal set being the fundamental structure. Through sprinklings, we can test whether
a sample causet can be embedded in a certain manifold of interest:

Definition 1.9. (Embeddability) A causet C is said to be faithfully embeddable in a Lorentzian
manifold (M, g) if C could have originated from sprinkling M with “high probability” [12]. In such
case, M is said to be a good approximation to C, and we write M ≈ C.

We also do not want fluctuations in the structure of causal set to be physically significant, that is,
leading to causets that are no longer embeddable in the original manifold.

Therefore, a sprinkling is a top-down process representing a purely geometrical/kinematical
correspondence between the discretum and the continuum. A bottom-up process (dynamical cor-
respondence) could be envisioned as the recovery of a manifold via some kind of “zooming out” or
“averaging” of the geometrical properties of the causet. “Coarse-graning” a causet makes one of
such processes:

Definition 1.10. (Coarse-graining) A coarse-graining is the removal of some points from a causet
C to form a new causet C ′ such that C ′ can be tested for faithful embeddability at the lower density
of sprinkling ρ′.

Coarse-graining can be regarded as an analogue of sprinkling applied to C itself [2]. The removal
may be done at random with probability p, such that ρ′ = ρ(1− p) [14].

3



1 – The causal set approach to quantum gravity

Figure 1.1. A family tree for a randomly-generated 50-element causet in a 2-dimensional
Minkowski space. Here, the labels “space” and “time” are auxiliary tools whose sole purpose
is to give a “setting” to the causet. In fact, we will see that “time” should be more precisely
regarded as a stage in the process of creation (and subsequent addition) of new events in the
causet. This is a separated notion from that of the usual, physical “instant of time”, which here
corresponds to a node along any partial order within the causet. The “passage of time” can
then be regarded as the “experiencing” of a sequence of partially ordered nodes. These ideas
will be fixed formally in Chapter 4.

Figure 1.2. The Hasse diagram for the same causet.

4



1 – The causal set approach to quantum gravity

The causal set Haupvermutung We do not want two very different manifolds to be approxi-
mations of the same causet C, or conversely, we do not want two very different causets to give rise
to the same continuum approximation. We thus require that, if a causal set is faithfully embedded
into two Lorentzian manifolds (M, g) and (M ′, g′), then M and M ′ must be similar on large scales.
This conjecture is central to the causal set approach, but so far has been proven by Bombelli and
Meyer only in the limiting case where ρ → ∞. The main obstacle towards a general proof is the
lack of a distance measure (“similarity”) on the space of Lorentzian manifolds [15]. We choose
“similar on large scales” over “identical” since a faithful embedding is independent of the structure
of the manifold below the discreteness scale.

Volume In the continuum, we measure the “quantity” of spacetime in a given region M by
calculating its volume V ,

(1.2) V =

∫
M

√
−gdnx

where
√
−g is the canonical volume density given by the determinant of the spacetime metric gµν .

Since the volume element
√
−gdnx is a Lorentz covariant quantity, the volume itself will be a

covariant quantity. Despite this cannot be recovered from the sole causal order of a Lorentzian
manifold, in the case of a discrete order it can be obtained by equating the number of causet
elements to the volume of the corresponding region of spacetime continuum, or

(1.3) V = v0N

where N is the number of causet elements in V and v0 is a conversion constant. Dimensionally, we
expect v0 ∼ l4P ∼ (G~/c3)2. There are several, independent pieces of evidence in support of this
claim:

� The entropy of a black hole horizon is given by SBH = AkB/4l
2
P , suggesting that one “unit”

of entropy is associated to each horizon plaquette of 2D surface l2P . This is commonly
believed to be an indication of the underlying spacetime discreteness [6].

� The entropy of a black hole is also finite. Without a short distance cutoff, the “entanglement
entropy”3 of a quantum field is infinite. Since this entropy should reasonably be included in
SBH , a short distance cutoff of order the Plack scale is necessary to match the semiclassical
results of Hawking radiation.[7].

� Renormalization techniques from Quantum Field Theory teach us that the order of magnitude
of the “gravitational coupling constant” in the Einstein-Hilbert action,

(1.4) SEH =
1

2κ

∫
R
√
−gdnx,

is set by a fundamental discreteness scale. Since the rationalized gravitational constant κ =
8πGc−4 has the dimensionality of an inverse force, we can juxtapose fundamental constants
to obtain a scale4

√
κ~c−1 ≡ lP [2].

3The entanglement entropy is the entropy obtained by tracing out the field values inside the horizon.
4The formula for lP already implements the classical limit of causet kinematics as a continuum limit: lP → 0

for ~→ 0
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1 – The causal set approach to quantum gravity

If we choose units such that v0 = 1 (e.g. Planck units G = ~ = c = 1), then N = V , embodying the
statement “Volume is number”. The causal set given by our visible universe would then contain
approximately 10240 elements, with a correspondingly complex web of relations [13].

As a consequence of the MHKML theorem, the metric is determined in full by providing the volume
element, whereas the causal order alone is insufficient in providing such a measure. This is reflected
in a commonly used expression among the workers in the field: the causal order is said to give
“9/10” (i.e. 9 parameters out of 10) of the information one needs to build a Lorentzian metric, the
other tenth being represented by the physical density ρ that fixes the scale of discreteness.

1.2 Local Lorentz invariance

For most discrete structures, local Lorentz invariance (LLI) is impossible to attain [12]. One great
advantage of the causal set approach is that such issue is resolved right from the start by postulating
Lorentz invariance.

The standard concept only makes sense at the level of the continuum, so it is in that arena that
we must think of LLI. Consider a discrete structure having a D + 1 Minkowski spacetime as an
approximation: if the underlying distribution of spacetime points can be used to choose a preferred
direction, then Lorentz invariance has been violated. This is the situation for lattice structures.
Consider an (n,m) lattice in a 1 + 1 Minkowski spacetime described by null coordinates (u, v),
where u = t − x and v = t + x. This structure looks uniform but for a boost (u, v) → (λu, 1/λv)
we immediately see that the lattice turns into a distribution entirely different, with high density
of elements along the u = constant lines [14].

Causets circumvent this obstacle thanks to the random nature of the discretum/continuum cor-
respondence principle. To establish the Lorentz invariance of a sprinkling from a Minkowski
spacetime we only need the theorems proving the existence and uniqueness of the process with
distribution given by Eq. 1.1 for all measurable subsets of Rd, and its invariance under all volume
preserving linear maps (among which Lorentz transformations). Bombelli, Sorkin and Henson
proved that if LLI is postulated axiomatically, the only approach to quantum gravity consistent
with the use of sprinklings is the causal set hypothesis [16]. Any particular sprinkling will give rise
to a preferred direction in small volumes, but this will have no impact on the continuum scale.

We will now momentarily put causal sets to one side and venture into an apparently discon-
nected subject, that of network theory. Doing so will require a brief introduction to graph theory
and the rules of conditional probability. As we proceed through the chapter, it will become clear
that the notion of partial order allows for the development of mathematical objects far more com-
plex than the “bare” causal sets we have seen so far. In Chapters 4 and 5, we will learn that these
new objects tie in elegantly with causal sets to produce their dynamics.
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Chapter 2

Elements of network theory

2.1 A refresher on graph theory

2.1.1 Undirected graphs

Definition 2.1. (Undirected graph) An undirected graph (UG) G is a pair (V,E) with V the set
of vertices and E the set of edges. The number of elements |V | in V is the size (or cardinality) of
the graph. The elements of E are the unordered pairs (i, j) ∈ V × V , i.e. (i, j) ≡ (j, i). An edge
(i, j) is incident to the two vertices i and j. Two vertices are adjacent when (i, j) ∈ E.

For A ⊆ V , let GA denote the subgraph of G on A, i.e. GA = (A,EA), EA = E ∩ (A×A).

Definition 2.2. (Adjacency matrix ) An adjacency matrix is a traceless, |V | × |V |-dimensional
matrix A whose non-diagonal entry aij is the number of edges from vertex i to vertex j.

Definition 2.3. (Simple graph) A simple graph (or simple undirected graph) is an undirected graph
defined by a binary-valued adjacency matrix, that is, a matrix A such that aij = 1 if (i, j) ∈ E
and aij = 0 otherwise.

In other words, a simple graph is an undirected graph that has no loops and no more than one
edge between any two different vertices. A simple graph is said to be complete if every pair of
distinct vertices is connected by a unique edge.

From now on, the word “graph” will be used as a synonym for “simple graph”, unless otherwise
stated.

A graph can be visualised as a set of |V | labelled points. These are connected by a segment if and
only if aij = 1. A vertex labelling is a function of G to a set of labels, and a graph with such a
function defined is called a vertex-labeled graph. Similarly, an edge labelling is a function mapping
edges of G to a set of labels, and G is called an edge-labelled graph. If all vertices are treated as
indistinguishable1 , then the graph may be called unlabelled. When the edge labels are members
of an ordered set (e.g. integer numbers, real numbers, etc.), it may be called a weighted graph. A

sequence of distinct vertices v1, . . . , vN is called a path2 in ~G if (vi−1, vi) ∈ E ∀i = 2, · · · ,N . A

1Indistinguishable as elements of a set, since as sites on a graph they can still distinguishable by the properties
of the graph itself

2Note that this definition for path is different that the one given for causets. From the context, it will be clear
which of the two we are using.

7



2 – Elements of network theory

graph G is said to be disconnected if there exist two nodes in G such that no path in G has those
nodes as endpoints.

An automorphism of a graph G = (V,E) is a permutation π(V ) of the vertex set V such that the
pair of vertices (u, v) form an edge if and only if the pair (π(u), π(v)) also form an edge. The graph
G′ = (π(V ), E) is said to be automorphic to G.

The neighbourhood of vertex i, ∂i, is the set of all vertices adjacent to i. The degree of a vertex (or
valency) is defined as ki = |∂i|. Thus, the closed neighbourhood of a vertex is the set ∂̄i = ∂i∪{i}.

Definition 2.4. (Clique) A clique in an undirected graph G = (V,E) is a subset c ⊆ V of
the vertex set, such that for every two vertices in c there exists an edge connecting the two. By
convention, the empty set is also a clique.

This is equivalent to saying that the subgraph induced by C is complete. The set of all cliques on
a graph G is denoted by C = cl(G).

2.1.2 Directed graphs

Definition 2.5. (Directed graph) A directed graph (or digraph) D is a pair (V,E) with V the set
of vertices and E the set of directed edges, i.e. ordered pairs (i, j) ∈ V × V , i.e. (i, j) /= (j, i).

A vertex j that is the end-point of an edge is called a neighbour of the vertex i that is its starting
point. Two vertices are adjacent when (i, j) ∈ E or (j, i) ∈ E.

We will always treat the set of vertices V of a DAG as a collection of elementary objects (unlabelled
points), unless a topological order of V is specified:

Definition 2.6. (Topological order) A topological order, or labelling, of a digraph D = (V,E) of
size N is an ordering of its set of vertices V by a set of labels L = (0, 1, . . . , N − 1) such that, if
∀ u, v ∈ V, ∃ i, j ∈ L : vi = u, vj = v with vi, vj ∈ V × L, then

vi ≺ vj ⇔ i < j

In general, this ordering is not unique: a DAG admits a unique topological order if and only if
there exists a directed path through all its vertices.

Definition 2.7. (Reachability) The reachability relation →+ of a digraph D = (V,E) is the
transitive closure of its edge set E, i.e. the set of all ordered pairs (u, v), u, v ∈ V , for which there
exist vertices v0 = u, v1, . . . ,vd = v such that (vi − 1, vi) ∈ E, ∀i : 1 ≤ i ≤ d.

Definition 2.8. (Simple directed graph) A simple directed graph is a directed graph defined by a
binary-valued adjacency matrix such that:

� if aij = 1 and aji = 0, there is a directed edge from i to j;

� if aij = 1 = aji, there is an undirected edge between i and j;

� if aij = 0 = aji, there is a no edge between i to j.

Directed graphs are represented by a set of |V | labelled points in which undirected edges appear
as line segments while directed edges appear as arrows. A trail in a digraph is a collection of
edges which is like a path, but each of whose edges may have any direction. The definitions of
vertex-/edge- labelling, labelled/unlabelled graph, path and disconnected graph which we gave for
UGs also apply to digraphs.
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2 – Elements of network theory

Definition 2.9. A directed acyclic graph (DAG) ~G is a simple directed graph such that its adja-
cency matrix is also triangular and traceless.

In other words, a DAG is a digraph with no (directed) loops.

Remark 2.1. Every strict partial order on a finite3 set P is a DAG, and the transitive closure
of a DAG (often called transitive DAG) is both a strict partial order and a DAG. This is due to
the fact that the reachability relation →+ of a DAG is transitive and irreflexive, and thus forms a
strict partial order. Conversely, every partial order is realised as an instance of→+ for a DAG. We
will make extensive use of this correspondence throughout the essay. In fact, because we defined
a causal set as a (locally finite) strict partial order, this amounts to saying that a causal set is a
(finite) DAG4:

family tree ⇔ causet ⇔ strict partial order ⇔ DAG

t.c.

⇓
t.c.

⇓
t.c.

⇓
t.c.

⇓

Hasse diagram ⇔
transitively closed

causet ⇔
transitively closed

strict partial order ⇔ transitive DAG

where “t.c.” stands for “transitive closure”. In the literature, “causet” and “transitively closed
causet” are often treated as synonyms. This may generate some confusion, since different causets
can correspond to the same transitively closed causet. In what follows, the word “causet” will be
used as a synonym for such transitively closed causet, unless otherwise stated (or unless obvious
from the context).

Genealogy A parent of a vertex v ∈ V is any vertex u ∈ V that originates an ingoing edge with
respect to v. We define pa(v) to be the set of all parents of v. Conversely, v is said to be a child

of u. Suppose we number the vertices of ~G with so that (u, v) ∈ E ⇒ number(u) < number(v);
we call any such ordering a well-ordering (or natural labelling). Then, we denote by pr(v) the set
of predecessors of v, i.e.

pr(v) = {u | number(u) < number(v)}.

Given two vertices u, v ∈ V , we say that u is an ancestor of v and that v is a descendant of u if
there exists a path in ~G that joins u and v. We denote by an(v) the set of ancestors of v and by
de(v) the set of descendants of v.

A is called an ancestral set if pa(v) ⊆ A, ∀v ∈ A, while An(v) will be the minimal ancestral set
containing A.

Let us also define nd(v) as the set of non-descendants of v in ~G, i.e.

nd(v) = V \ (de(v) ∪ {v}).

3In principle, the same applies when P is countable or uncountable, but this would require the introduction of
infinite graphs, a concept we are not interested in in this essay.

4The DAG may well be disconnected, that is, made of lower-sized disconnected DAGs and disconnected elements.

9



2 – Elements of network theory

2.2 A refresher on probability theory

Definition 2.10. (Measure) Let X be a set and Σ a σ-algebra over X. A measure is a function
µ : Σ→ [−∞, +∞] that satisfies the following properties:

Non-negativity: µ(E) ≥ 0, ∀E ∈ Σ.

Null empty set: µ(∅) = 0.

Countable additivity: For all countable collections {Ei}i∈I of pairwise disjoint sets in Σ:

µ
(⋃
i∈I

Ei

)
=
∑
i∈I

µ(Ei) .

A triple (X,Σ, µ) is called a measure space.

Definition 2.11. (Probability space) A probability space is a measure space (X,Σ, µ) in which
µ(X) = 1. It defines the parameters determining the outcome of an experiment E . Then,

� X ≡ Ω is called the sample space of E and represents the (non-empty) set of all possible
outcomes;

� Σ is called the event space of E and consists of subsets of Ω (the “events”) containing zero
or more outcomes;

� µ ≡ Pr is called the probability measure on E and is a mapping Pr : Σ→ R which fulfils the
Kolmogorov axioms (listed below).

1st Kolmogorov axiom: The probability of an event E is a non-negative real number:

Pr(E) ∈ R, Pr(E) ≥ 0 ∀E ∈ Σ.

2nd Kolmogorov axiom: There are no elementary events outside the sample space: Pr(Ω) = 1.

3rd Kolmogorov axiom: Any countable sequence of disjoint events E1, E2, . . . obeys

Pr(E1 ∪ E2 ∪ · · · ) =

∞∑
i=1

Pr(Ei).

In the present work, we will deal with the problem of assigning probabilities to the edges of
DAGs. Since the edges of a graph form a finite, discrete set of elements, we shall consider only
discrete probability distributions, that is, probability distributions characterized by a probability
mass function:

Definition 2.12. (Probability mass function) The probability mass function for a discrete random
variable5 X : Ω→ A ⊆ R is a function fX : A→ [0, 1] such that

fX(x) = Pr(X = x) = Pr({σ ∈ Ω : X(σ) = x}).
5From now on, we will use the word/symbols “random variable”/X and “event”/E interchangeably.
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2 – Elements of network theory

The use of the term “mass” is due to the fact that a discrete probability measure satisfies the
conservation law ∑

x

Pr(X = x) = 1,

which metaforically reminds of the mass conservation law in some physical processes.

Definition 2.13. (Stochastic process) Given a probability space (Ω,Σ, Pr) and a measurable space
(S,Σ′), an S-valued stochastic process is a collection of S-valued random variables on Ω, indexed
by a totally ordered set T (”time”). That is, a stochastic process X is a collection

{Xt : t ∈ T}

where each Xt is an S-valued random variable on Ω. S is called the state space of the process [48].

Definition 2.14. (Finite-dimensional distribution) Let X be an S-valued stochastic process. For
every finite sequence T ′ = (t1, . . . , tk) ∈ T k, the k-tuple XT ′ = (Xt1 , Xt2 , . . . , Xtk) is a random
variable taking values in Sk. The probability distribution PrT ′(·) = Pr(X−1

T ′ (·)) of this random
variable is a probability measure on Sk, and is called a finite-dimensional distribution of X [48].

Depending on the context, there are several different ways of calculating the probability of a set
of random variables:

Definition 2.15. (Joint probability) Given two random variables X and Y , their joint probability
Pr(X ∩ Y ) (or Pr(X,Y )) is the probability that they will appear concurrently in the outcome.

Definition 2.16. (Conditional probability) Given two random variables X and Y , with Pr(Y ) > 0,
the conditional probability of A given B is the quotient of the joint probability of X and Y , and
the probability of Y , i.e.

Pr(X | Y ) =
Pr(X ∩ Y )

Pr(Y )
.

The joint probability of a set of random variables X1, . . . , XN is determined by applying the
definition of conditional probability, which returns:

Pr(XN , . . . , X1) = Pr(XN | XN−1, . . . , X1) · Pr(XN−1, . . . , X1).

Repeating this process with each final term creates the product:

(2.1) Pr(∩Nk=1Xk) =

N∏
k=1

Pr(Xk | ∩k−1
j=1Xj)

which goes under the name of chain rule of probability.

Definition 2.17. (Marginal probability) Let the sample space Ω be partitioned into r× s disjoint
sets Xi and Yj , 1 ≤ i ≤ r, 1 ≤ j ≤ s, where the general subset is denoted Xi ∪ Yj . Then the
marginal probability of Xi is

Pr(Xi) =

s∑
j=1

Pr(Xi ∩ Yj).

Therefore, the previous three definitions introduce three different ways of computing probabilities:

11



2 – Elements of network theory

� The joint probability of events X and Y is the probability that the two events will occur
simultaneously.

� The marginal probability of event X is the probability of the occurrence of the single event
X irrespective of the other events.

� The probability of X conditional to Y is the probability that event X will occur given that
event Y has already occurred.

Definition 2.18. (Conditional independence) Two random variables X and Y are conditionally
independent given a third random variable Z if and only if they are independent in their conditional
probability distribution given Z; that is to say that

Pr(X ∩ Y | Z) = Pr(X | Z) Pr(Y | Z),

and we write X ⊥⊥ Y | Z: “X is independent of Y , given Z”. Otherwise, they are said to be
conditionally dependent.

Theorem 2.1. (Bayes) Given a set of random variables X1, . . . , Xn which partition the sample
space Ω (that is, Xi ∩Xj = ∅ ∀i /= j and ∪ni=1Xi = Ω), the conditional probability of the generic
Xi given a random variable E ∈ Ω is the quotient of the product of the conditional probability of
E given Xi by the “prior probability” of Xi, and the “prior probability” of E, i.e.

Pr(Xi | E) =
Pr(E | Xi) Pr(Xi)

Pr(E)
.

This concludes our introductory digression.

2.3 Intermezzo: What lies ahead

We now intend to merge the contents of Sections 2.1 and 2.2, and develop the notion of graphical
model, that is, a stochastic model where a graph is used to map the conditional dependence between
random variables. The first step in this direction is the simple idea of weighted graph:

Definition 2.19. (Weighted graph) A graph is said to be a weighted graph, or network, if a number
(called weight) is assigned to each edge.

If these weights represent probabilities, the network is said to be a probabilistic newtork. Intuitively,
we can already see how this relates to causets: the partial order of spacetime events corresponds
to a directed acyclic graph6; thus, by assigning suitably-chosen weights to each edge, one could
build a probabilistic network on causal sets. Such a graphical model may be called a causal
network (a formal definition will be given at the end of this Chapter). Depending on the context,
these edge probabilities may well be interpreted as the likelihood for a set of random variables
X = {X1, X2, . . . } to take specific values in a set x = {x1, x2, . . . }, an idea of which we will make
extensive use.

Thus, the key questions in building a causal network are (a) determining the nature of the
stochastic process (“what are the random variables? what is their state space?”) (b) determining
the probability distribution that produces the edge weights (e.g. “given the random variables,
what is their probability distribution?”).

6This DAG may well be disconnected, that is, made of lower-sized disconnected DAGs and disconnected elements.
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As opposed to edge weights, these random variables are usually associated to vertices. As such,
they express the “information content” of the vertex, which can then be propagated to other ver-
tices according to the network structure7. The prototypical example is the tree-graph illustration
of Bayes’ theorem, where vertices represent events and weighted edges represent the conditional
structure, the weights being the conditional probabilities between events. When we say, for in-
stance, that “the probability of Xv conditional to Xu is...”, what we are implying network-wise is
that information from vertex u has propagated to vertex v and altered the value (or “state”) of
the random variable there.

Since networks are generally characterised by a finite size and a finite state space, the appropriate
mathematical framework for modelling such “information dynamics” is that of dynamical systems
rather than differential geometry:

Definition 2.20. A graph dynamical system is constructed from the following components [41]:

� A finite graph G with vertex set V , |V | = N .

� A state xv for each vertex v ∈ V taken from a finite set Ω. The system state x is the N -tuple
of all xv’s, and x[v] is the tuple consisting of the states associated to the vertices in the
neighbourhood of v. The components of both x and x[v] are listed in some fixed order.

� A vertex function fv for each vertex v, mapping the state of vertex v at time (or step) t to
the vertex state at time t+ 1 based on the states associated to the neighbourhood of v.

� An update scheme specifying the mechanism by which the mapping of individual vertex states
is carried out so as to induce a discrete dynamical system with map F : KN → KN .

Associated to this dynamical system is a phase space given by the finite directed graph with vertex
set KN and directed edges (x, F (x)).

Now, because the causets of Chapter 1 are essentially nothing but blueprints for information
propagation, our key assumption will be that the informational-dynamical quantities, such as
energy (see Definition 2.30), entropy (see Definition 2.28), etc., associated to system states whose
conditional structure reproduces the partial order of the causet, are actually the energy, the entropy,
etc. of the physical spacetime embodied by the causet. This link between informational and physical
quantities is not new to modern physics, and is best seen by examining the concept of Shannon
entropy in information theory. The Shannon entropy of a random variable X with N possible
outcomes {x1, . . . , xn} is defined as

H(X) = −
N∑
i=1

Pr(xi) logb Pr(xi)

where Pr(xi) is the probability mass function of outcome xi and b is the base of the logarithm
used. The interpretation of H(X) is the measure of the uncertainty in the random variable X [37].
Compare the Shannon entropy to the Gibbs entropy in classical mechanics,

S(Pr) = −kB
∑
i

Pri log Pri

7In this essay, the word “information” denotes a specific realisation of a random variable. We will not digress here
on the definition of physical information. For a classical introduction, see [35]. For a more modern, quantum-logical
perspective, see [36].
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where kB is the Boltzmann constant and Pri is the probability of microstate i in a thermodynamical
system, and to the von Neumann entropy in quantum mechanics [40],

S(ρ) = −
∑
i

ηi log ηi.

where ρ is the density matrix ρ =
∑
i ηi|i〉〈i| with eigenvectors |0〉, |1〉, . . . . The similarity is strik-

ing, to the point that, in the view of some workers (e.g. [38], [39]), thermodynamic entropy should
be regarded as an application of Shannon’s information theory: “the thermodynamic entropy is
proportional to the amount of further Shannon information required to define the detailed micro-
scopic state of the system, that remains uncommunicated by a description solely in terms of the
macroscopic variables of classical thermodynamics, with the constant of proportionality given by
the Boltzmann constant” [38].

The relationship between graphical models and physics is a long and fruitful one. One of the
earliest and most famous examples is given by the Ising model: a lattice (i.e. a particular instance
of undirected graph which implies an isotropic spatial structure) is used as the support to a set
of interacting, binary random variables, called “spins” due to their connection with the physical
quantity of the same name, each of which is associated to a lattice site (i.e. to a vertex in the
graph). The idea first occurred to physicists Wilhelm Lenz (1920) and Ernst Ising (1925), who
were looking for ways of modelling the behaviour of a one-dimensional atomic lattice exposed to
an external magnetic field. Its main purposes are the description of residual magnetism and phase
transitions in ferromagnetic materials, which occur when a small change in the state parameters
of a thermodynamic system causes a large-scale qualitative transformation.

During the course of the 20th century, the Ising model was extended to multi-dimensional lattices
and arbitrary graphs aswell, and generalised to include an arbitrary number of spin values. The
versatility and mathematical completeness of these models allowed them to spread to a number
of disciplines, ranging from condensed matter physics and molecular biology to computer science
and socioeconomics (see [22], [23], [20], [24], [25] for some examples). Today, the Ising model
“represents a paradigm framework for cooperative behavior” [20].

The Ising model is just one of the many physical systems that are modelled after the Gibbs distri-
bution,

Pr(X = x) =
1

Zβ
exp (−βE(x)) ,

where X is a random variable taking value x in a set of states Ω, β is a parameter known as inverse
temperature, Zβ is a normalisation constant known as partition function and E(x) is a function
E : Ω→ R that is interpreted as the energy of state x.

This Gibbs distribution is of capital importance to modern physics, since it is the probability
measure associated to the Boltzmann statistics in classical thermodynamics, and to the Bose-
Einstein and Fermi-Dirac statistics in quantum thermodynamics. It turns out that there is a
“revolving door” between the Gibbs measure and probabilistic graphical models too, a result
known as Hammersley-Clifford theorem (see Theorem 2.2). The connection became fully apparent
only in the early 1970s, due to the work by Dobrushin [33], Spitzer [34] et al. In essence, every set
of random variables that obey the Gibbs measure (the so-called Gibbs random field) is represented
by a weighted undirected graph (known as Markov network), and viceversa.

How is all this relevant to causal sets, which are DAGs? Well, we will see that if the probability
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distribution that governs a state system on a causet C can be written as a multiplication of parts,
a property called direct factorisation, there exists an undirected graph Cm, the moralisation of the
DAG C, that preserves the probability distribution and state space of the DAG. This enables us
to apply the Hammersley-Clifford theorem to causal networks, paving the way to the development
of a “thermodynamics of state systems on causal sets”.

Before being in that position, it is necessary to familiarise ourselves with the two main classes of
stochastic models: Bayesian networks and Markov networks.

2.4 Bayesian networks

If the graph underlying a given stochastic model is a DAG ~G, the model is called Bayesian network
(or belief network). The formal definition requires the notion of d-separation:

Definition 2.21. (d-separation) Consider a directed acyclic graph ~G = (V,E) and let T be a trail
joining two vertices u, v ∈ V . T is said to be d-separated by a set of vertices Z if and only if (at
least) one of the following is true:

� T contains a serial connection (or “chain”), u→ z → v, such that z ∈ Z,

� T contains a diverging connection (or “fork”), u← z → v, such that z ∈ Z, or

� T contains a converging connection (or “collider”), u → z ← v such that z /∈ Z and ∀v ∈
de(z), v /∈ Z.

Thus, u and v are said to be d-separated by Z if all trails between them are d-separated. Otherwise,
they are called d-connected.

Definition 2.22. (Bayesian network) A set of random variables X on an acyclic directed graph
~G = (V,E) is a Bayesian network if

Xu ⊥⊥ Xv |XZ , ∀u, v ∈ V,

where u and v are d-separated by set Z.

Bayesian networks obey the direct factorisation property (DF), i.e. the joint probability mass
function of the set of random variables X = (Xv)v∈V on the DAG, taking values in a set x =
(xv)v∈V , can be written as a product of the individual mass functions, conditional on their parent
variables [42]:

(2.2) Pr(X = x) =
∏
v∈V

Pr(Xv = xv | Xpa(v) = xpa(v)) pa(v) = {parents of v in ~G}

or equivalently,

Pr(X = x) =
∏
v∈V

Pr(Xv = xv | Xu = xu) ∀u ∈ pa(v).

When we compare this with the chain rule (see Eq. 2.1),

Pr(X = x) =
∏
v∈V

Pr (Xv = xv | Xu = xu) ∀u ∈ pr(v)
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we clearly notice the effect of the conditional independence of the variables in Eq. 2.2 from any of
their non-descendents, given the values of their parent variables.

Bayesian networks also satisfy the directed local Markov property (DL), i.e. each variable is condi-
tionally independent of its non-descendants given its parent variables [42]:

Xv ⊥⊥ Xnd(v) |Xpa(v) ∀ v ∈ V nd(v) = {non-descendants of v in ~G}

or equivalently,

Pr(Xv = xv | Xi = xi) = Pr(Xv = xv | Xj = xj) ∀i ∈ nd(v),∀j ∈ pa(v)

where pa(v) ⊆ nd(v) since the graph is acyclic.
Bayesian networks can be used to represent causal relationships, but the converse is not true: a
directed edge from u to v does not require that Xv is causally dependent on Xu. In fact, each
Bayesian network belongs to a group of Bayesian networks known as an equivalence class. In a
given equivalence class, all of the Bayesian networks are characterised by the same joint probability.
For example, consider the following three networks:

A→ B → C A← B → C A← B ← C

The joint probabilities of random variables A,B,C in the three cases are:

Network 1 : Pr(A,B,C) = Pr(A) Pr(B | A) Pr(C | B).

Network 2 : Pr(A,B,C) = Pr(B) Pr(A | B) Pr(C | B).

Using Bayes’ theorem on Pr(A | B), this writes Pr(A,B,C) = Pr(A) Pr(B | A) Pr(C | B).

Network 3 : Pr(A,B,C) = Pr(C) Pr(B | C) Pr(A | B).

Using Bayes on Pr(A | B) and Pr(B | C), this writes Pr(A,B,C) = Pr(A) Pr(B | A) Pr(C | B).
Therefore, we can clearly see how the three networks share the same joint probability, despite
codifying for different dependences:

Pr(A,B,C) = Pr(A) Pr(B | A) Pr(C | B) = Pr(B) Pr(A | B) Pr(C | B) = Pr(C) Pr(B | C) Pr(A | B).

We conclude this section by presenting the definition of causal network given in [43] by Judea Pearl,
a pioneer of Bayesian networks and father of the theory of causal and counterfactual inference based
on structural models:

Definition 2.23. (Causal network) A causal network is a Bayesian network with the explicit
requirement that the relationships be “causal”, in the following sense: if a vertex v is caused to
be in a given state X (an operation known as do(X = x)) then the probability density function
becomes the one of the network obtained by removing the edges from v’s ancestors to v, and setting
v to the caused value X.

2.5 Markov processes

A Markov process is a stochastic process satisfying the Markov property,
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“The probability of an outcome at time (or step) n+ 1 given all
previous outcomes depends only on the outcome at time n.”

In this context, an “outcome” is a change in the value of the random variable (also known as
“state” or “spin”) associated to a vertex of a graph. This event is called a transition in the state
of the system, and the probabilities associated with the various state-changes are called transition
probabilities. The process is completely specified by providing:

� A state space, i.e. a countable set x = {xv} (v ∈ V ) of possible values of the random variables
X = {Xv}.

� A transition matrix, i.e. an N ×N matrix P whose entry Pij contains the transition proba-
bility from Xi to Xj .

� An initial probability distribution across the state space, or an original state that initialises
the system at time 0.

The aforementioned Markov property lacks symmetry in time and could induce one to think that a
directed graph is somewhat required. In reality, a generalised and time-symmetric Markov property
can be applied to any graph structure [31]:

“The probability that a specific outcome is realised at time (or step) n given all past
and future outcomes depends only on the outcomes at times n− 1 and n+ 1”.

The prototypical Markov process is represented by the Markov chain [46]:

Definition 2.24. (Markov chain) A Markov chain is a sequence of random variablesX1, X2, X3, . . .
with the Markov property:

Pr(Xn+1 = x | X1 = x1, X2 = x2, . . . , Xn = xn) = Pr(Xn+1 = x | Xn = xn).

Markov chains can be visualised as a directed graph whose edges are labeled by the probabilities
of going from one state to the other states.

2.5.1 Markov properties

A probability distribution Pr on an undirected graph G = (V,E), given a set of random variables
X = {Xv}v∈V , can actually satisfy four apparently distinct “Markov properties” (or semantics).
Let us denote by XW the set of random variables on the elements of a subset W ⊆ V . Then, we
have the following statements:

Pairwise Markov property (P):
Any two non-adjacent variables are conditionally independent given all other variables, i.e.

Xu ⊥⊥ Xv | XV \{u,v} if {u,v} /∈ E.

Local Markov property (L):
A variable is conditionally independent of all other variables given its neighbours:

Xv ⊥⊥ XV \∂̄v | X∂v

where ∂v is the set of neighbours of v and ∂̄v = {v} ∪ ∂v is the closed neighbourhood of v.
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Global Markov property (G):
Any two subsets A and B of X are conditionally independent given a separating subset8 S,
i.e.

XA ⊥⊥ XB | XS .

Graph factorisation property (F):
The joint probability mass Pr relative to the graph G can be factorized over the cliques of
G, i.e.

Pr(X) =
∏

c∈cl(G)

ψc(Xc = xc),

where cl(G) is the set of cliques of G (or, equivalently, a subset of it) and the functions ψc
are called clique potentials. Xc is the set of random variables on the clique and xc is the set
of values that Xc can take.

It can be shown that, for undirected graphs G and any probability distribution over X, these
Markov properties are all equivalent to each other [47]:

(F )⇔ (G)⇔ (L)⇔ (P )

Consequently, they all go under the umbrella term “Markov property” often found in the literature.

2.5.2 Directed Markov properties

A treatment of Markov properties on DAGs is also possible. To this end, we must first introduce
the notion of moral graph, consisting in the equivalent undirected form of a directed acyclic graph:

Definition 2.25. (Moral graph) A moral graph Gm = (V,Em) is the graph obtained by a DAG
~G = (V,E) by connecting (“marrying”) the parents of each vertex and dropping the directions of
the edges.

Just like undirected graphical models, for a DAG ~G one can show that the “directed Markov
properties” (defined below) are all equivalent [47]:

(DF )⇔ (DG)⇔ (DL)⇔ (DP ).

Direct factorisation (DF):

The joint probability mass Pr relative to digraph ~G can be factorised in terms of the individual
mass functions, conditional on their parent variables:

Pr(X) =
∏
v∈V

Pr(Xv | Xpa(v)).

Global directed Markov property (DG):
Two subsets A and B of X are conditionally independent given a separating set S ⊂
(GAn(A∪B∪S))

m, the moral graph of the smallest ancestral set containing A ∪B ∪ S, i.e.

if A ⊥⊥ B | S on (GAn(A∪B∪S))
m, then XA ⊥⊥ XB | XS .

8A separating set with respect to two vertices a and b is a subset of vertices S ⊂ V such that every path from
a ∈ A to v ∈ B passes through S.
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Local directed Markov property (DL):
A variable is conditionally independent of its non-descendant variables given its parents:

Xv ⊥⊥ Xnd(v) | Xpa(v).

Order directed Markov property (DO):
For any well-ordering, a variable is conditionally independent of its predecessors given its
parents, i.e.

Xv ⊥⊥ Xpr(v) | Xpa(v) for any well-ordering.

We also have a very useful lemma [47]:

Lemma 2.1. If Pr obeys (DF) with respect to ~G, then it factorises according to Gm, that is,

Pr(X) =
∏
v∈V

Pr(Xv | Xpa(v)) ⇒ Pr(X) =
∏

c∈cl(Gm)

ψc(Xc)

This implies that any inference done on the moralised graph Gm will be valid for the original graph
G. This is true because Gm corresponds to a broader class of probability models, since it has more
edges than the original graph G and lacks the additional semantics implied by directed edges.

Moralisation There exists an algorithm, known as moralisation, that allows to transform a
Bayesian network into its UG equivalent. The procedure is as follows:

1. Initialise all clique potentials to unity, so that ψc(xc) = 1, ∀c ∈ cl(Gm).

2. For each Pr(xv | xpa(v)), choose a clique c such that {xc} ∪ xpa(v) ⊆ c.

3. “Update” the clique potential ψc(xc) to ψ
(u)
c (xc), where

ψ(u)
c (xc) = ψc(xc) Pr(xv | Xpa(v)).

The resulting network is a UG characterised by the same state space as the original DAG, and
with the same probability distribution Pr(X).

Notice that the clique potentials are not unique: one can always introduce scaling constants to
alter the clique potentials without affecting the global distribution Pr(X). In particular, one could
allow the clique potentials to be arbitrary positive values as long as these are normalised to satisfy

the Markov sum rule
∑
{Xv}

Pr(Xv) = 1, namely

Pr(X) = Z−1
∏

c∈cl(Gm)

ψc(Xc), Z =
∑
Xc

∏
c∈cl(Gm)

ψc(Xc).

An example Consider the DAG on the left in Figure 2.5.2 and a set of random variables X =
{Xv} on its vertices v ∈ V . After it has been moralised to yield the UG on the right, one may take
the following cliques: (X1X2X3), (X3X4X5), (X4X5X6), (X2X7). These determine the following
clique potentials:

ψX1X2X3
= Pr(X1) Pr(X2) Pr(X3 | X1, X2), ψX3X4X5

= Pr(X4 | X3) Pr(X5 | X3),

ψX4X5X6
= Pr(X6 | X4, X5), ψX2X7

= Pr(X7 | X2).
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2 – Elements of network theory

On the other hand, the joint distribution of the random variables on the DAG can be written as

Pr(X) = Pr(X1, . . . , X7)

= Pr(X1) Pr(X2) Pr(X3 | X1, X2) Pr(X4 | X3) Pr(X5 | X3) Pr(X6 | X4, X5) Pr(X7 | X2)

= ψX1X2X3
ψX3X4X5

ψX4X5X6
ψX2X7

that is, as the product of the cliques on the moralised graph.

Figure 2.1. A directed acyclic graph (left) and the corresponding moral graph (right).
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2 – Elements of network theory

2.6 Markov random fields

If the graph underlying a given stochastic model is an undirected graph, then the model is said to
represent a Markov network. For an extensive introduction to the topic, please refer to [44] or [45].

Let L and D be two alphabets, i.e. two sets L = {0, 1, . . . , `} and D = {0, 1, . . . , d}. Let S =
{0, 1, . . . , N −1} be a set of indices and R = {ri, i ∈ S} be any family of random variables indexed
by S, in which each random variable Ri takes a value ri in its state space. Such a family R is
called a random field. The joint event (R0 = r0, · · · , RN−1 = rN−1) will be abbreviated R = r,
where r = {r0, · · · , rN−1} is a configuration of R, corresponding to a realisation of this random
field. Let X and Y be two of such random fields whose state spaces are L and D respectively, so
that Xi ∈ L, Yi ∈ D (∀i ∈ S). Let x denote a configuration of X and X be the set of all possible
configurations of X, i.e.

X = {x = (x0, · · · , xN−1) | xi ∈ L, i ∈ S}.

Similarly, let y be a configuration of Y and Y be the set of all possible configurations of Y , i.e.

Y = {y = (y0, · · · , yN−1) | yi ∈ D, i ∈ S}.

Given Xi = ` and a set of parameters θ`, Yi obeys a conditional probability distribution

(2.3) Pr(yi | `)
def
= f(yi; θ`), ∀` ∈ L.

The function family f( · ; θ`) has the same known analytic form for all `. We also assume that
(X,Y ) is pairwise independent, i.e.

(2.4) Pr(y,x) =
∏
i∈S

Pr(yi, xi).

2.6.1 The finite mixture model

Given ` ∈ L and i ∈ S, let us define the mixing parameter ω` as

ω`
def
= Pr(Xi = `).

Notice that the mixing parameter is independent of the individual sites i ∈ S. We then introduce
a model parameter set φ given by

φ
def
= {ω`; θ` | ` ∈ L}.

Consider two configurations x ∈ X and y ∈ Y. From Eq. 2.3 and Eq. 2.4, one can compute the
joint probability distribution of x and y dependent on the model parameters (treat φ as a random
variable), i.e.

(2.5) Pr(y,x | φ) =
∏
i∈S

Pr(yi, xi | φ) =
∏
i∈S

ωxi · f(yi; θxi).

We can then compute the marginal distribution of Yv = yv dependent on the parameter set φ:

Pr(yv | φ) =
∑
`∈L

Pr(yv, ` | φ)

=
∑
`∈L

ω` · f(yv; θ`).(2.6)

This is the so-called finite mixture (FM) model; due to its simple mathematical form, it represents
the most frequently employed statistical model.
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2 – Elements of network theory

2.6.2 Markov random field theory

Definition 2.26. (Local characteristic) The local characteristics of a probability measure Pr :
S → R on the state space S are the conditional probabilities of the form

Pr(Xv = xv | XV \{v} = xV \{v}),

that is, the probability that Xv ∈ X on vertex v is assigned value xv ∈ S, given the values xV \{v}
at all other vertices V \ {v}.

In an graph, the sites in S are related to one another via a neighbourhood system ∂ = {∂i, i ∈ S},
where ∂i is the set of sites neighbouring i, i /∈ ∂i and i ∈ ∂j ⇔ j ∈ ∂i. Such a neighbourhood
system is in general multi-dimensional.

Definition 2.27. (Markov random field) A random field X is said to be a Markov random field
on S with respect to a neighbourhood system ∂ if and only if the following properties are satisfied:

Pr(x) > 0, ∀x ∈ X (Positivity)

Pr(xv | xV \{v}) = Pr(xv | x∂v), ∀v ∈ V (Markovianity)

Said otherwise, a MRF is a random field with a probability measure whose local characteristics
depend only on the outcomes at neighbouring points.

According to the Hammersley-Clifford theorem 2.2, an MRF can equivalently be characterized by
a Gibbs distribution, defined as

(2.7) Pr(x) = Z−1 exp(−U(x)),

where the factor e−U(x) is known as Boltzmann factor, and

(2.8) Z =
∑
x∈X

exp(−U(x))

is a normalizing constant called the partition function. U(x) is the (canonical) energy of configu-
ration x,

(2.9) U(x) =
∑
c∈C

Vc(xc)

which is a sum of clique potentials Vc(x) ≡ ψc(x) over all possible cliques C. The value of Vc(x)
depends on the local configuration on clique c. Notice that in order to calculate a Gibbs distribution
it is necessary to evaluate the partition function Z, which is a sum over all possible configurations
in X . Since the cardinality of X for a discrete state space S is a combinatorial number, such task
can turn out to be prohibitive even for problems of moderate size. Several methods, such as the
mean-field approximation, have been developed to give approximate solutions.
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2 – Elements of network theory

2.6.3 About the Gibbs measure

Two main reasons make the Gibbs measure a probability measure of remarkable interest. The first
one is related to its entropy:

Definition 2.28. (Entropy) The entropy S(Pr) of a probability measure Pr(x) on a finite con-
figuration space X = {x} is defined as:

S(Pr) = −
∑
x∈X

Pr(x) log Pr(x).

The entropy of a measure can be interpreted as the amount of uncertainty in the outcome, where,
in our case, the “outcome” is the particular configuration x taken by the random field X. For
example, if X contains N configurations, the probability measure with greatest entropy is the one
which assigns an equal probability to each x.

Now, in a typical problem of statistical mechanics one is trying to assign a probability measure
Pr to a sample space Ω representing outcomes (or “microstates”) which cannot be observed. In
practice, only broad properties of the system can be observed (the totality of which defines a
“macrostate”). If we assume that one can estimate the energy of such a macrostate, say E[U ] = a,
then the Gibbs measure is the measure which maximises entropy (that is, uncertainty) among
those probability measures which give a as the expected value for U .

The second reason behind the importance of the Gibbs measure has to do with probability the-
ory. In fact, not only the Gibbs measure obeys the Markov property, but the converse is also
true: any strictly-positive probability distribution having the Markov property, sometimes called a
Gibbs random field (GRF), can be represented by the Gibbs measure, given an appropriate energy
function. This is the Hammersley-Clifford theorem:

Theorem 2.2. (Hammersley-Clifford) A probability distribution Pr with strictly-positive mass
function fX(x) satisfies the global Markov property (G) with respect to an undirected graph G =
(V,E) if and only if it factorises according to G, i.e. (F ) ≡ (G).

The Hammersley-Clifford theorem states that the joint probability distribution of a MRF can be
written as a Gibbs distribution9, and, furthermore, that for any Gibbs distribution there exists
an MRF for which it is the joint. That is to say that MRFs and Gibbs models are completely
equivalent.

2.6.4 The energy of a field configuration

Definition 2.29. (Potential) Consider an undirected graph G = (N,E) and a family of subsets
of the vertex set, A : A ⊂ N ∀A ∈ A, such that ∪AA = N . Given a configuration space X , the
potential is a function V : X → R that assigns a number VA(x) to every subconfiguration xA of
x ∈ X .

Definition 2.30. (Energy) Given a configuration space X , the energy of a configuraton x ∈ X
is the function U : Ω→ R defined by

U(x) =
∑
A∈A

VA(x)

9More precisely, as a particular instance of a Gibbs distribution, known as neighbourhood Gibbs distribution (see
next page).
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A potential V is called a neighbourhood potential (NP) if VA(x) = 0 whenever A ⊂ V is not a
clique. That is to say, VA is identically zero whenever the subgraph induced by A is not complete.
Thus, a NP induces a neighbourhood Gibbs measure (NGM) given by:

Pr(x) = Z−1 exp

(
−
∑
c∈C

Vc(x)

)

Despite there is not a unique set of potentials associated with a probability measure, since this
depends on the choice of the subsets A, one can produce a unique canonical potential associated
with a particular measure. Suppose that the elements of the state space S can be numbered
0, 1, 2, . . . , s, with 0 being the “preferred state”. Then, given the set C = cl(G) of cliques c on

graph G, a potential is said to be canonical (and we write Ṽ ) if Vc(x) = 0 when x assigns value 0
to at least one vertex in c. This proves that there is only one such potential for a given MRF.

We will now show how to build such canonical potential. Given a UG G = (N,E), denote by xA

the configuration which agrees with x on A ⊂ N but assigns value 0 elsewhere. For the empty set
∅, define Ṽ∅(x) = 0. For A /= ∅, define

ṼA(x) =
∑
B⊂A

(−1)|A\B| log Pr(xB),

where |A \B| is the cardinality of A \B. Equivalently,

ṼA(x) =
∑
B⊂A

(−1)|A\B| log Pr(xBa | xBn ), n ∈ ∂A, a ∈ A.

Given this, one can work out that the canonical energy Ũ(x) is given by

Ũ(x) =
∑
A

ṼA(x) =
∑
c∈C

Vc(x) = log Pr(x)− log Pr(0),

where 0 = (0, · · · , 0) is the configuration with 0 at all sites.

One useful property of the neighbourhood Gibbs measure is that it equals the (normalised) clique
factorisation. To see this, consider the definition of NGM on graph G and configuration space X ,

Pr(x) = Z−1e−U(x), Z =
∑
x∈X

e−U(x), U(x) =
∑
c∈C

Vc(xc).

Now, by setting

φc(xc)
def
= e−Vc(xc)

we immediately see that

Pr(x) = Z−1
∏
c∈C

φc(xc), Z =
∑
X

∏
c∈C

φc(xc),

which proves our claim. For this reason, φc(xc) and Vc(xc) are often both called “clique potentials”.
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2.6.5 The hidden Markov random field model

Hidden Markov models (HMM) are stochastic processes generated by a Markov chain whose state
sequence cannot be observed directly, but only through a sequence of observations. Each observa-
tion is assumed to be a stochastic function of the state sequence. The underlying Markov chain
changes its state according to a `× ` transition probability matrix, where ` is the number of states
in the state space L. In this essay, we are interested in a special case of a HMM, that in which
the underlying stochastic process is a Markov random field (MRF) instead of a Markov chain,
therefore not restricted to one dimension. We refer to this special case as a hidden Markov random
field (HMRF) model. Mathematically, an HMRF model is characterized by the following:

� Hidden Random Field (HRF): An underlying MRF X = {Xi, i ∈ S} assuming values
in a finite state space L with probability distribution given by Eq. 2.7. The state of X is
unobservable.

� Observable Random Field (ORF): A RF Y = {Yi, i ∈ S} with a finite state space D.
Given any particular configuration x ∈ X , every Yi obeys the known conditional probability
distribution Pr(yi | xi) of the same functional form f(yi; θxi

), where the θxi
’s are the involved

parameters. This distribution is called the emission probability function and Y is also referred
to as the emitted random field.

� Conditional independence: For any x ∈ X , the random variables Yi are conditionally
independent, i.e.

Pr(y | x) =
∏
i∈S

Pr(yi | xi).

Based on the above, we can write the joint probability of (X,Y ) as

Pr(y,x) = Pr(y | x) Pr(x) = Pr(x)
∏
i∈S

Pr(yi | xi).

According to the local characteristics of MRFs, the joint probability of any pair (Xi, Yi) given Xi’s
neighbourhood configuration X∂i, is:

Pr(yi, xi | x∂i) = Pr(yi | xi) Pr(xi | x∂i).

Thus, we can compute the marginal probability distribution of Yi = yi dependent on the parameter
set θ and X∂i (this time, treat θ as a random variable),

Pr(yi | x∂i, θ) =
∑
`∈L

Pr(yi, ` | x∂i, θ)

=
∑
`∈L

f(yi; θ`) Pr(` | x∂i),(2.10)

where θ = {θ`, ` ∈ L}. We call this the hidden Markov random field (HMRF) model. Note, the
concept of an HMRF is different from that of an MRF in the sense that the former is defined with
respect to a pair of random variable families (X,Y ) while the latter is only defined with respect
to X. More precisely, an HMRF model can be described by the following:

� X = {Xi, i ∈ S} - HMRF with prior distribution Pr(x);

� Y = {Yi, i ∈ S} - ORF with emission probability distribution Pr(yi | xi) for each yi;
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2 – Elements of network theory

� θ = {θ`, ` ∈ L} - the set of parameters involved in the above distributions.

If we assume that the random variables Xi are conditionally independent of one another, i.e.

Pr(Xi = ` | X∂i = x∂i) = Pr(Xi = `) = ω` ∀` ∈ L, ∀i ∈ S,

then Eq. 2.10 reduces to

Pr(y | θ) =
∑
`∈L

ω` · f(y; θ`),

which is the definition of the finite mixture model. Therefore, a FM model is a degenerate special
case of an HMRF model.

The illustration of Hidden Markov random fields concludes our digression on network theory.
We will now carry on with our review of the causal set hypothesis by discussing the dynamics of
causal sets. This relies on the powerful idea that causets are evolving entities, whose complex of
events and relations can grow according to a Markov process. However, we will see that the steps
of this Markov process does not correspond, in general, to instants of physical time. A general
formula for the probability of growing a given causet from the empty set will be provided, following
Rideout and Sorkin in [4]. Hidden Markov models will reappear in Chapter 5, where a Hidden
Markov random field theory on causal sets will be outlined. This will allow us to rederive “from
prime principles” (essentially, counting and partial order alone) the results obtained with much
labour in the next Chapter.
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Chapter 3

Classical dynamics of causal sets

3.1 Note on the vocabulary

Before we can discuss the classical growth model of causal sets, it is necessary to revise the vocab-
ulary that was introduced in Chapter 2 for graphs, here adapted to the specific case of causal sets
and expanded to include some new definitions.

Causet genealogy The past of an element x ∈ C is the subset past(x) = {y ∈ C|y ≺ x}. An
element x ∈ C is maximal if it is to the past of no other element. A partial stem of C is a finite
subset which contains its own past. A full stem is a partial stem such that every element of its
complement lies to the future of one of its maximal elements. A family is a set of causal sets which
can be formed by adjoining a single maximal element to a given original causet; this is not to be
confused with CN , the set of all causets with N elements, which we may call a generation. The
original causet is called the parent of the family, every member of the family being a child of the
parent. The child formed by adjoining an element which is to the future of every other element of
the parent is called timid child. The child formed by adjoining an element which is unrelated (i.e.
spacelike) to every other element is called gregarious child [4].

Causet growth A causet forms a partially ordered set with respect to the inclusion relation,
where by “inclusion” we mean that, given two causets A ∈ Cn and B ∈ Cm with n < m, B could
have come from A by adding a suitable number of elements and relations. This partially ordered
set goes under the name of poscau, a portmanteau for ‘poset’ and ‘causet’, and is represented in
Figure 3.1. A transition is the act of passing from one parent causet C ∈ Cn to a child C ′ ∈ Cn+1.
The set of all transitions from Cn to Cn+1 will be called stage n. The result of each transition is
the addition of a new element to the original causet, an occurrence which we call birth. The past
of the new element will be called precursor set of the transition [4].

3.2 The classical sequential growth model

In their seminal paper on the enumeration of partial orders on finite sets [18], Kleitman and
Rothschild showed that, in the infinite limit of its cardinality N , almost every poset takes the
generic form of a DAG with three “tiers” , with N/2 elements in the middle tier and N/4 elements
in the top and bottom tiers. Indeed, this would imply that the space of all causets is dominated
by objects that do not look like spacetimes at all. One way to break this impasse is to devise a list
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3 – Classical dynamics of causal sets

Figure 3.1. A partial rendition of the poscau. The blue arrows denote a path from the
empty causet to a causet of choice in C4. Image taken from A Classic Sequential Growth
Dynamics for Causal Sets [4].

of guiding principles that allow to select a family of physically plausible dynamics, one capable of
isolating causets of physical relevance by prescribing how to grow them from scratch. The first list
of this kind, consistent with discrete analogues of general covariance and relativistic causality, was
given by David Rideout and Rafael Sorkin [4], who named it classical sequential growth (CSG):

� Condition of internal temporality: Each element is born either to the future of, or un-
related to, all existing elements.

That is, no element can arise to the past of an existing element. All physical time is that of
the intrinsic order defining the causet itself.

� Condition of general covariance: The probability of forming a causet is independent of
the order of birth of its elements.

Said otherwise, given any path in the poscau that starts at the empty causet C0 and ends
at a chosen causet C ∈ CN , the product of the transition probabilities among intermediate
causets along such path must be the same as any other path to C.

� Bell causality condition: An element x ∈ C is influenced exclusively by those elements
that lie to its past.
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3 – Classical dynamics of causal sets

The Bell causality condition translates in the requirement that the ratio of the transition
probabilities to two possible children of a given causet depend only on their precursors and
their union. Consider C ∈ Cn and C1, C2 ∈ Cn+1 , and let C → C1, C → C2 represent the
transitions from C to C1 and C2 respectively. We also introduce B ∈ Cm (m ≤ n) as the
union of the precursor sets of C1, C2, and B1, B2 ∈ Cm+1 as B with an element added in
the same way as in the transitions from C → C1 and C → C2 respectively. Then, the Bell
causality condition writes:

(3.1)
Pr(C → C1)

Pr(C → C2)
=

Pr(B → B1)

Pr(B → B2)

� Markov sum rule: The sum of all transition probabilities from a given causet to its children
is unity.

3.3 Transitive percolation

One simple procedure for randomly growing a causet that is compatible with the principles of
CSG is given by transitive percolation. A percolation is a mathematical model that describes the
behaviour of connected vertices in a random graph, and is based on the following algorithm:

“Given a set with N elements labelled 0, 1, . . . , N − 1, introduce a bond
between every pair of elements with a fixed probability p ∈ [0, 1]”.

A transitive percolation is nothing but a specific instance of this algorithm where we impose (a) that
only bonds between elements x, y whose labels satisfy the natural labelling / internal temporality
condition x ≺ y can be formed; (b) the transitive closure of all relations.

Brightwell and Georgiou have shown that the continuum limit of transitive percolation does not
reproduce Minkowski spacetimes [19]. Nevertheless, Ahmed and Rideout presented evidence of a
period of de Sitter-like expansion using originary percolation, a version of transitive percolation
such that the birth of disconnected causets is forbidden [9]. Despite its many appealing futures,
transitive percolation is not feasible as a theory of quantum gravity: its dynamics are stochastic
only in a classical sense, since no interference arises between the different paths in the poscau
leading to the same causet. Moreover, the only spacetimes that a transitively-percolated causet
could yield would necessarily be homogeneous, since the future of each element is completely
independent of anything causally unrelated to that element.

Lemma 3.1. In a transitive percolation model, the probability of growing an unlabelled causet
C ∈ CN is given by

(3.2) Pr(C) = W (C)pLq(
N
2 )−R

where p is the bonding probability, q = 1− p, W is the number of natural labellings of C, L is the
number of links and R is the number of relations.

Proof. Consider a naturally-labelled causet C = (N ,R). Its N = |N | elements make
(
N
2

)
pairs, of

which R = |R| are relations and
(
N
2

)
−R are non-relations. Thus, given a percolation with bonding

probability p, the probability of growing C is equal to pRq(
N
2 )−R. In a transitive percolation, every

relation implied by transitivity does not count, otherwise we would encounter statements such
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3 – Classical dynamics of causal sets

as p2q = p3. Therefore, the probability of transitively-percolating C is p · · · p︸ ︷︷ ︸
L

q · · · q︸ ︷︷ ︸(N
2

)
− R

. Since this

probability is label-independent, every labelled instance of the same causet will percolate with an
identical probability. Thus, in order to give the probability of transitively percolating the unlabelled
causet it is enough to multiply the above by the number of its natural labellings W (C).

Note that Eq. 3.2 is manifestly covariant with respect to the path taken, as it is written in terms
of causet invariants (N,R,L).

3.4 The general form of transition probabilities

Recall that causets form a partially ordered set with respect to the “inclusion” relation, the so-
called poscau. Whenever a growth model, such as transitive percolation, is chosen, a probability
becomes associated to every inclusion relation in the poscau. This can be thought of as representing
the likelihood of a transition between the preceeding causet to the subsequent causet in the order.
Following Rideout and Sorkin, let us establish a notation for the different types of transitions from
Cn to Cn+1:

� qn is a transition with empty precursor (“gregarious transition”);

� βn is a transition whose precursor is not the entire parent (“non-timid transition”);

� γn is a transition whose precursor is the entire parent (“timid transition”);

� αn is an arbitrary transition, such that at each stage n the Markov sum rule implies

1 =
∑
i

αn,i = γn +
∑
i

βn,i.

A small set of theorems severely restricts the characteristics of these transition probabilities [4]:

Lemma 3.2. Each transition has at most one free parameter.

Lemma 3.3. The probability of a gregarious transition depends only on the cardinality of the
parent.

Lemma 3.4. A generic transition probability of stage n writes

αn =

n∑
i=0

λi
qn
qi
, λi ∈ Z

where λi depends only on the transition in question and not on the qn’s.

Transition probabilities for a transitive percolation model Our aim is to determine the
generic form of a transition probability from a given member C of generation Cn to a member C ′

of generation Cn+1 under the assumption that no probability vanishes.

Lemma 3.5. In a transitive percolation model, the transition probability αn from C ∈ Cn to
C ′ ∈ Cn+1 is given by

(3.3) αn = pmqn−$

where p is the bonding probability, q = 1−p, m is the number of maximal elements in the precursor
set and $ is the size of the precursor set.
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Proof. Consider the transition C → C ′ and let x′ ∈ C ′ be the newborn element. C can be thought
of as the union of the set past(x′) of the ancestors of x′ and the set C\past(x′) of all points unrelated
to x′. These two sets have cardinality |past(x′)| = $ and |C \ past(x′)| = n−$ respectively. Now,
the birth of x′ implies the formation of n new pairs, of which n − $ are not relations, m are
local relations (of x′ with the maximal elements of the precursor) and $−m are relations already
implied by transitivity. Since the probability of forming a relation in a transitive percolation model
is p, the net probability associated with the transition C → C ′ will be p · · · p︸ ︷︷ ︸

m

q · · · q︸ ︷︷ ︸
n−$

.

Remark 3.1. αn ∈ [0,1] if and only if the probability q satisfies the Kolmogorov axioms:

αn = qn−$(1− q)m ≥ 0 ⇐⇒ 0 ≤ q ≤ 1 (n > $, ∀m).

In practice, we actually have to exclude q = 0 (i.e. αn = 0) for Lemma 3.4 to hold.

Histories The set of elements of a causal set is in a 1-to-1 correspondence with the unordered
history of the causet, that is, with the set of all pairs ($,m):

←→
h(m)def

= {($x0 ,mx0), ($x1 ,mx1), . . . ,($xN−1
,mxN−1

)}.

Now, let L = {0, 1, . . . , N − 1} be a set of labels and suppose we assign a label to each causet
element so as to form a natural labelling. Suppose that the following assignment is a natural

labelling of C
(m)
N :

(x0 = 1, x1 = N − 1, . . . , xN−1 = 0).

This induces a partial order on
←→
h(m), which we call a history :

h(m) def
= {($0,m0), ($1,m1), . . . ,($N−1,mN−1)}.

We then see that each natural labelling of C
(m)
N is in a 1-to-1 correspondence with a history of

C
(m)
N . Different histories on the same causet are permutations of the pairs {($k,mk)} such that

the corresponding labelling is still natural.

Remark 3.2. Since the probability of growing a causal set C ∈ CN is given by the product of all
the intermediate transition probabilities,

Pr(C) =

N−1∏
i=0

αi

by combining Eq. 3.3 and Eq. 3.2,

(3.4)

N−1∏
i=0

αi = p
∑N−1

i=0 miq
∑N−1

i=0 i−$i = pLq(
N
2 )−R

we find that L and R encode all the possible histories, that is, ordered pairs (mi, $i), of a causet
C ∈ CN with L links and R relations:

(3.5)

N−1∑
i=1

mi = L,

N−1∑
i=1

$i = R (m0 = $0 = 0).

This property is not exclusive to transitively-percolated causets; as we will see in Chapter 4, it
applies to any growth process.
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3 – Classical dynamics of causal sets

The general form of transition probabilities We can now utilise Lemma 3.4 and Lemma 3.5
to obtain the general form of transition probabilities αn = αn(m,$). Resorting to the use of
transitive percolation will not limit the generality of our conclusions, since λi is independent of the
qn’s, that is, of the choice of the underlying stochastic model (Lemma 3.4). We begin by writing

αn(m,$) =

n∑
i=0

λi
qn
qi

= (1− q)mqn−$

for some stage n′ > n with m′ < n′. Expanding in a series the factor (1− q)m and recalling that
qn = qn for a transitive percolation yields

n∑
i=0

λi
qi

=

m∑
i=0

(−1)iqi−$
(
m

i

)
.

If we now change the summation index so as to make the hypergeometric nature of the series
manifest, we obtain

n∑
i=0

λi
qi

=

$∑
k=$−m

(−1)$−k
(

m

$ − k

)
1

qk
.

Since 0 ≤ m ≤ n for a generic transition, we may extend the range of index k to be {0, . . . , n}. In
fact, for 0 ≤ k < $ −m and $ < k ≤ n the binomial coefficient is ill-defined and yields 0. This
gives

n∑
i=0

λi
qi

=

n∑
k=0

(−1)$−k
(

m

$ − k

)
1

qk
,

which in turn allows us to write

(3.6) λk(m,$) = (−1)$−k
(

m

$ − k

)
.

In conclusion, we have shown that αn writes

(3.7) αn(m,$) = qn

$∑
k=$−m

λk
1

qk
=

m∑
i=0

(−1)i
(
m

i

)
qn
q$−i

.

A new set of parameters Consider the quantity

(3.8) tn
def
=

n∑
i=0

(−1)n−i
(
n

i

)
1

qi
.

Since 0 < qn ≤ 1, the range of parameters tn is [0,∞). This should not surprise us, since tn is
the ratio of two probabilities xn/qn (xn being the transition probability form an antichain of n
elements to its timid child) and thus cannot represent a transition probability, which must range
in [0, 1]. We also notice that the qn’s get smaller as n grows, q0 = 1 ≥ q1 ≥ q2, . . . , whereas the
tn’s get larger, t0 = 1 ≤ t1 ≤ t2 ≤ . . . .

The generic transition probability αn can then be recast in terms of the tn’s as

(3.9) αn(m,$) =

∑$
i=m

(
$−m
$−i

)
ti∑n

j=0

(
n
j

)
tj
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3 – Classical dynamics of causal sets

where
αn
qn

=

m∑
i=0

$−i∑
k=0

(−1)i
(
m

i

)(
$ − i
k

)
tk =

$∑
i=m

(
$ −m
$ − i

)
ti.

In conclusion, if we express αn in terms of a new quantity λ(m,$),

λ(m,$) =

$∑
i=m

(
$ −m
$ − i

)
ti, αn(mn, $n) =

λ(mn, $n)

λ(n, 0)
,

we obtain a definitive expression for the net probability of formation of an unlabelled causet C in
a transitive percolation model:

(3.10) Pr(C) = W (C)

N−1∏
i=0

λ(mi, $i)

λ(i, 0)
.

In the next Chapter, we will see how Eq. 3.10 can be interpreted in the light of two different
spin models on causal sets: the one with spins living on the relations (“edge-spins”), the other
with spins living on the elements (“vertex-spins”). A preliminary interpretation and a proof of the
equality between the two descriptions will be provided.
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Chapter 4

The edge- and vertex-spin pictures
of causal set dynamics

4.1 The Rideout spin prescription for causets

Towards the end of his doctoral thesis [10], David Rideout briefly explained how a spin system on
causal sets with binary spins living on the causal relations spontaneously emerges from the CSG
dynamics. By analogy with the Ising model, which in its simplest versions is also binary and in
certain instances has been used to produce fermionic and bosonic fields [51], he concluded that this
could indicate how “non-gravitational matter may arise from the theory without having to be built
in at the fundamental level. [...] It should be noted that these “spin models” are “non-interacting”
in that each “lattice site” has its own “reserved” set of spins which affect the value of only its
vertex factor (a coupling constant associated to each vertex A/N), with no two lattice sites sharing
any spins. In order for these spin models to give non-trivial results, an effective interaction must
emerge from the gravitational dynamics in the sum over causal sets.”

Based on the knowledge of graphical models we have accumulated so far, this sounds rather odd.
As a matter of fact, in newtork theory sites are containers of information (e.g. the spin value)
and interactions between sites are just an expression of the flow of this information (e.g. the
atomic bonds in the case of the Ising model, the causal structure in the case of causets). On
the contrary, Rideout’s interpretation seems to indicate that, for a causet (which, we recall, is
a synonym for (transitively reduced) DAG), it would be the interactions between elements (i.e.
the causal relations) that store information, rather than the elements. This is at odds with the
purpose of the graph structure itself, which is to map interactions between the elements of a set
(and between the possible random variables associated to them), in lack of which all sites would
be completely disconnected from each other (think of an anti-chain).

Rideout’s manipulation turns out to be an intermediate step towards a fully-blown spin model
where spins live on the vertices of causets (that is, a spin system in the ordinary sense of Section
2.6.3). In the next pages, we will quickly review Rideout’s prescriptions for assigning “edge-spins”
when either the qn or the tn notation is used. We will then prove two theorems which show how
this edge-spin model is completely equal to a “vertex-spin” model. In essence, we will see that
CSG-grown causets can be thought of as “superpositions” of vertex-spin configurations, in the
sense that the probability of a causet will be proportional to the sum of the probabilities of all the
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4 – The edge- and vertex-spin pictures of causal set dynamics

vertex-spin configurations allowed on its vertices.

Before discussing Rideout’s interpretation, it is necessary to establish a rigorous framework and
introduce a few new concepts. Suppose we choose a (non transitively reduced) causet C with N
elements and R relations. Let N = {x | x ∈ C} denote the set of elements and R = {(x, y) ∈
C × C |x ≺ y} denote the set of relations. We now wish to use the DAG C as the basis for a
weighted graph with weights equal to either 0 or 1. The laws that specify how to assign these
values will be given in a moment. For now, it will suffice to know that they are probabilistic in
nature; therefore, 0 and 1 can be regarded as the possible outcomes of a set of random variables.
These are functions φ : R → Z2 = {0, 1} such that ∀(x, y) ∈ R : x, y ∈ N , φ(x, y) = 0 or 1. Hence,
we will call φ(x, y) the edge-spin associated to the causal relation x ≺ y. We then identify the
state space to be the set Ω = ZN2 and the random field to be the set Φ = {φ : R → {0, 1}} of all
edge-spins on R.

We conclude by giving the following auxiliary definitions:

� Ri = {(x, xi) ∈ C × C |x ≺ xi;∀x ∈ C} will be the subset of R of those relations having xi
as a future endpoint;

� Φi = {φi : Ri → {0, 1}} will be the set of all edge-spins on Ri;

� a(φ) = |{(x, y) ∈ R|φ(x, y) = 0}| will count the number of 0’s on the edges of C;

� r(φ) = |{(x, y) ∈ R|φ(x, y) = 1}| will count the number of 1’s on the edges of C.

� a(φi) = |{(x, y) ∈ R|φ(x, y) = 0}| will be the number of 0’s on the new edges of C added at
stage i;

� r(φi) = |{(x, y) ∈ R|φ(x, y) = 1}| will be the number of 1’s on the new edges of C added at
stage i.

4.1.1 The qn Ising-like model

Let us consider the probability of growing an unlabelled causet C ∈ CN (Eq. 3.10), written explicitly
in terms of the parameters qi:

(4.1) Pr(C) = W (C)

N−1∏
i=0

mi∑
k=0

(−1)k
(
mi

k

)
qi

q$i−k
.

Now choose a natural labelling for C so that we can manipulate the product on the right hand
side. At a closer inspection, k = 0, 1, . . . ,mi accounts for the cardinality of each subset of the
set of the maximal elements of past(xi+1), sometimes denoted as max(past(xi+1)), in a transition
from A ∈ Ci to B ∈ Ci+1, where 0 ≤ i < N − 1 (see Figure 4.1). At stage i, $i stands for both
the cardinality of the precursor set past(xi+1) and the number of relations having xi+1 as a future
element (recall that every ancestor of an element shares a causal bond with it). Now, suppose to
carry out the following procedure:

Rideout’s qn spin prescription
Assign value 0 to non-links and value 0 or 1 to links (according to all possible configurations).

We can then reinterpret k as the number of 0’s on the links to xi+1 due to different sub-configurations
φj , j = 1, . . . , 2Li , where Li is the number of new links formed at stage i. For example, the number
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4 – The edge- and vertex-spin pictures of causal set dynamics

of new links formed at stage i in Figure 4.1 is 4, allowing for 24 = 16 possible spin configurations
on causet B.

The quantity $i − k now reads as the difference between the number of relations pointing to xi+1

and the number a(φj) of newly-formed links with spin 0, which is nothing but r(φj). Under this
light, the binomial coefficient

(
mi

k

)
stands for the number of combinations of k zeros and mi − k

ones on mi links. For example, there is 1 single configuration φi with 0 zeros on mi links, mi

different configurations φi with 1 zero on mi links,
(
mi

2

)
different configurations φi with 2 zeros on

mi links, etc.

Figure 4.1. The CSG transition from a causet A ∈ Ci to a causet B ∈ Ci+1.

By introducing φ̌ as the range restriction of φ to those maps satisfying the above spin prescription,
we can rewrite Eq. 4.1 as:

Pr(C) = W (C)

N−1∏
i=0

qi
∑
φ̌i∈Φ̌i

(−1)a(φ̌i)
1

qr(φ̌i)


= W (C)

(
N−1∏
i=0

qi

)N−1∏
i=0

∑
φ̌i∈Φ̌i

(−1)a(φ̌i)
1

qr(φ̌i)

 .

By expanding the sum and the product in the last term, we can re-package this expression as:

Pr(C) = W (C)

(
N−1∏
i=0

1

qi

)−1
∑
φ̌∈Φ̌

N−1∏
i=0

(−1)a(φ̌i)
1

qr(φ̌i)

 ,

where the sum is over the 2mi φ̌i sub-configurations available at each stage i. Rideout named the
argument of the product on the far right “vertex factor” and interpreted it as the weight of an
edge-spin sub-configuration φ̌i. Notice that one gets negative weights for odd numbers of “present”
past-links, something that Rideout could not make sense of (we will see how to interpret this in
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4 – The edge- and vertex-spin pictures of causal set dynamics

the next Section). Also notice that this probability formula is completely symmetric under the
exchange of zeros and ones (and the respective counters), since the actual value of the spins never
shows up in the calculations. Therefore, Rideout’s choice of the values 0 and 1 seems premature,
since we do not know yet whether the numerical value associated to these spins will represent any
physical quantities and what. Equally good choices would have been (π, e) or the Boolean variables
(T, F ); for clarity’s sake, we will stick to Rideout’s convention.

4.1.2 The tn Ising-like model

Let us consider again the probability of growing an unlabelled causet C ∈ CN (Eq. 3.10), now
written explicitly in terms of the tn’s:

(4.2) Pr(C) = W (C)

N−1∏
k=0

∑$k

i=mk

(
$k−mk

$k−i
)
ti∑k

j=0

(
k
j

)
tj

.

As before, choose a natural labelling of C so as to be able to manipulate the product on the right
hand side. We know from Eq. 3.8 that the denominator is equal to 1/qk, that is, we obtain an

overall prefactor of
∏N−1
k=0 qk. We notice that $k −mk is the number of relations to element xk+1

which are not links. Therefore, if we rewrite the numerator as a sum over i = 0, . . . , $k − mk,
that is,

$k−mk∑
i=0

(
$k −mk

i

)
tmk+i,

we can read i as representing the different cardinalities of subsets of past(xk+1)\max(past(xk+1)).
This enables us to introduce a new prescription for the edge-spins:

Rideout’s tn spin prescription
Assign value 1 to links and value 0 or 1 to non-links (according to all possible configurations).

Then, i becomes the number of 1’s in past(xk+1) \ max(past(xk+1)), while mk + i is the total
number of 1’s (remember mk is the number of links to xk+1). Again, we interpret the binomial
coefficient

(
$k−mk

i

)
as the number of combinations of i ones and $k −mk − i zeros on $k −mk

non-links. Introducing φ̂ as the range restriction of φ to those maps satisfying the above spin
prescription, we can rewrite Eq. 4.2 as

Pr(C) = W (C)

(
N−1∏
k=0

qk

)N−1∏
k=0

∑
φ̂k∈Φ̂k

tr(φ̂k)

 .

Expanding the sum and the product in the last term yields:

Pr(C) = W (C)

(
N−1∏
k=0

qk

)∑
φ̂∈Φ̂

N−1∏
k=0

tr(φ̂k)

 ,

where the sum is over the 2$k−mk φ̂k sub-configurations available at each stage k. Just as for the
qn model, the choice of {0, 1} as spin values is completely arbitrary.

Remark 4.1. Consider a causet C = (N ,R) and suppose a new element xi is added as the result
of a growth process. The set of maximal elements of xi has cardinality mi. Now, every new relation
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4 – The edge- and vertex-spin pictures of causal set dynamics

established with xi by its ancestors in C is a link. If a further element xj is created such that xi is
to its past, the aforementioned links will remain such, since every relation between the past of xi
and the new element is already implied by transitivity. If we imagine following the growth process
from stage 0 and counting over the cardinalities of the set of maximal elements at each stage, than
we easily see that:

N−1∑
i=0

mi = L

Similarly, since $i−mi is the number of relations to element xi+1 which are not links, we will find
that:

N−1∑
i=0

$i = R.
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4.2 Two equality theorems

We will now prove two theorems that show how Classical Sequential Growth admits an equivalent
description in terms of two distinct spin systems on the elements of a causet, which we name
the Θ spin system and Ψ spin system. These correspond to the qn and the tn Ising-like models
respectively.

4.2.1 The Θ equality theorem

Theorem 4.1. Consider causet C
(m)
N = (V,R) in generation CN , a set of labels L = {0, 1, . . . , N−

1} and a set of coupling constants θ` ∈ [1,∞) (` ∈ L). Let σ = {σ`}`∈L be a random field such that
each spin σ` takes a value s` in a state space S = {0, 1, . . . , N − 1}, and let s = (s0, s1, . . . , sN−1)
be a configuration of σ. Also, let σm = {σm,`}`∈L be the restriction of σ to state space Sm,` =
{$` −m`, . . . , $`}m ⊆ S, and let sm = (sm 0, sm 1, . . . , smN−1) denote a configuration of σm.

Then, the probability of realising C
(m)
N through classical sequential growth is equal to

(4.3) Pr(C
(m)
N ) =

Wm

∑
sm
xΘ(sm)Θ(sm)∑

smΘ(s)Θ(s)

where

� Wm is the number of natural labellings of C
(m)
N ;

� Θ(s) = ϑs0 · · ·ϑsN−1
is the weight of configuration s;

� mΘ(s) and xΘ(sm) are multiplicity factors given by:

mΘ(s) = δ` s` , xΘ(sm) =

N−1∏
`=0

(−1)$`−sm,`

(
m`

$` − sm,`

)
.

where δab, for a, b ∈ R, is Kronecker’s delta (i.e. δab = 1 if a = b, δab = 0 otherwise).

Proof. The proof consists in showing that the weights and normalisation constants in Eq. 4.3 and
Eq. 4.1 are equal upon providing a suitable expression for coefficients xΘ(sm) and mΘ(s). Setting
θn = q−1

n ∀n ∈ N in Rideout’s notation, we must then show that:

Z(CN ) :

N−1∏
`=0

ϑ` =
∑
s

mΘ(s)Θ(s)

B(C
(m)
N ) : Wm

N−1∏
`=0

m∑̀
k=0

(−1)k
(
m`

k

)
ϑ$`−k = Wm

∑
sm

xΘ(sm)Θ(sm).

This is done by Lemmas 4.1 and 4.2 respectively, and thus the theorem is proved.

In conclusion, what the theorem shows is that the probability of realising causet C
(m)
N with a Θ

spin system is given by

(4.4) Pr(C
(m)
N ) =

Wm

∑
sm

N−1∏
`=0

(−1)$`−sm,`

(
m`

$` − sm,`

)
θsm,`

∑
s

N−1∏
`=0

δ` s`θs`
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Notice that the sum at the numerator could have equivalently been written
∑

s. In fact, because
Sm,` ⊆ S, all configurations s such that there exists at least one spin si ∈ S such that si <

m
(m)
i or si > $

(m)
i will produce a vanishing binomial coefficient. The net result is that only the

configurations sm will survive. In the next page, we will often make use of this property without
an explicit mention.

Lemma 4.1. (Equality of normalisation constants) Consider causet C
(m)
N = (V,R) in generation

CN , a set of labels L = {0, 1, . . . , N − 1} and a set of coupling constants θ` ∈ [1,∞) (` ∈ L).
Let σ = {σ`}`∈L be a random field such that each spin σ` takes a value s` in a state space S =
{0, 1, . . . , N−1}, and let s = (s0, s1, . . . , sN−1) be a configuration of σ. Then, the following equality
holds:

N−1∏
`=0

ϑ` =
∑
s

mΘ(s)Θ(s)

Proof. Let us rewrite the left-hand side by introducing Kronecker’s delta,

δ`i =
∑̀
j=0

(−1)`−j
(
`

j

)(
j

i

)
,

so that
N−1∏
`=0

ϑ` =

N−1∏
`=0

N−1∑
i=0

δ`iϑi =

N−1∏
`=0

N−1∑
i=0

∑̀
j=0

(−1)`−j
(
`

j

)(
j

i

)
ϑi.

From the definition of binomial coefficent, we know that
(
`
j

)
≡ 0 if j > `. Since the product sets

the maximum value of ` to be N − 1, we may then fix the range of j to be [0, N − 1] without
affecting the result of our expression, i.e.

N−1∏
`=0

ϑ` =

N−1∏
`=0

N−1∑
i=0

N−1∑
j=0

(−1)`−j
(
`

j

)(
j

i

)
ϑi.

Expanding the sums and the product yields:

N−1∏
`=0

ϑ` =

N−1∑
i0, i1,...,iN−1=0

N−1∑
j0, j1,...,jN−1=0

N−1∏
`=0

(−1)`−j`
(
`

j`

)(
j`
i`

)
ϑi`

or, by utilising the associative properties of addition and multiplication,

N−1∏
`=0

ϑ` =

N−1∑
i0=0

· · ·
N−1∑

iN−1=0

N−1∑
j0=0

· · ·
N−1∑

jN−1=0

N−1∏
`=0

(−1)`−j`
(
`

j`

)(
j`
i`

)(N−1∏
`=0

ϑi`

)

=

j0∑
i0=0

· · ·
jN−1∑
iN−1=0

 0∑
j0=0

· · ·
N−1∑

jN−1=0

N−1∏
`=0

(−1)`−j`
(
`

j`

)(
j`
i`

)(N−1∏
`=0

ϑi`

)

where in the last step we have taken into account that some values of i`’s and j`’s produce vanishing
summands and can thus be discarded. If we now identify i` with s`, we can recognise the last term
in the product as the weight Θ(s) of configuration s,

Θ(s) = Θ(s0, s1, · · · , sN−1) =

N−1∏
`=0

ϑs` ,
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while the first term is the coefficient mΘ(s) we have been looking for,

mΘ(s) =

0∑
j0=0

· · ·
N−1∑

jN−1=0

N−1∏
`=0

(−1)`−j`
(
`

j`

)(
j`
s`

)
=

N−1∏
`=0

∑̀
j=0

(−1)`−j
(
`

j

)(
j

s`

)
= δ`s` .

Notice that, as one could have expected by looking at the normalisation constant in Rideout’s
probability formula, mΘ(s) vanishes for every configuration except s̃ = (0, 1, . . . , N − 1)↔ s̃` = `,
i.e. the configuration corresponding to weight Θ(s̃) = ϑ0ϑ1 · · ·ϑN−1.
This concludes our proof, since we have just shown that:

N−1∏
`=0

ϑ` =
∑
s

mΘ(s)Θ(s).

Lemma 4.2. (Equality of weights) Consider causet C
(m)
N = (V,R) in generation CN , a set of labels

L = {0, 1, . . . , N − 1} and a set of coupling constants θ` ∈ [1,∞) (` ∈ L). Let σm = {σm,`}`∈L be
a random field such that σm takes a value sm,` in a state space Sm,` = {$` −m`, . . . , $`}m ⊆ S,
and let sm = (sm 0, sm 1, . . . , smN−1) denote a configuration of σm. Then, the following equality
holds:

N−1∏
`=0

m∑̀
k=0

(−1)k
(
m`

k

)
ϑ$`−k =

∑
sm

xΘ(sm)Θ(sm)

where Θ(sm) =
∏N−1
`=0 ϑs`,m is the weight of configuration s and mΘ and xΘ are multiplicity factors.

Proof. Let us begin by expanding the sum over ` on the left-hand side:

N−1∏
`=0

m∑̀
k=0

(−1)k
(
m`

k

)
ϑ$`−k =

N−1∏
`=0

[(
m`

0

)
ϑ$`
−
(
m`

1

)
ϑ$`−1 + · · ·+ (−1)m`

(
m`

m`

)
ϑ$`−m`

]
.

At each growth stage `, the maximum value of m` is the one determined by the transition from
the `-antichain to its timid child, for which m` = `. Hence, the maximum overall value of m` is
N − 1. We can once again utilise the saturation properties of the binomial coefficient to write:

N−1∏
`=0

m∑̀
k=0

(−1)k
(
m`

k

)
ϑ$`−k =

N−1∏
`=0

[(
m`

0

)
ϑ$`
−
(
m`

1

)
ϑ$`−1 + · · ·+ (−1)N−1

(
m`

N − 1

)
ϑ$`−(N−1)

]
,

so that at each stage all those terms
(
m`

n

)
for which m` < n will vanish automatically. We can now

expand the product over ` and collect the resulting summands as:

N−1∑
i0,i1,...,iN−1=0

(−1)i0+i1+···+iN−1

(
m0

i0

)(
m1

i1

)
· · ·
(
mN−1

iN−1

)
ϑ$0−i0ϑ$1−i1 · · ·ϑ$N−1−iN−1

.

This expression can be further simplified by re-introducting a product over stages ` = 0, . . . , N −1
and by making use of the associative property of multiplication:

N−1∏
`=0

m∑̀
k=0

(−1)k
(
m`

k

)
ϑ$`−k =

N−1∑
i0=0

N−1∑
i1=0

· · ·
N−1∑

iN−1=0

(
N−1∏
k=0

(−1)ik

)(
N−1∏
k=0

(
mk

ik

))(N−1∏
k=0

ϑ$k−ik

)

=

m0∑
i0=0

m1∑
i1=0

· · ·
mN−1∑
iN−1=0

(
N−1∏
k=0

(−1)ik

)(
N−1∏
k=0

(
mk

ik

))(N−1∏
k=0

ϑ$k−ik

)
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where in the last step we have taken into account that some values of ik’s produce vanishing
summands and can thus be discarded. Changing variables from i` to j` = $` − i` yields:

$0∑
j0=$0−m0

$1∑
j1=$1−m1

· · ·
$N−1∑

jN−1=$N−1−mN−1

(
N−1∏
`=0

(−1)$`−j`

)(
N−1∏
`=0

(
m`

$` − j`

))(N−1∏
`=0

ϑj`

)
.

By identifying j` with sm,` we recognise the last factor as the weight Θ(sm) of configuration sm,

Θ(sm) = Θ(sm0, sm1, · · · , smN−1) =

N−1∏
`=0

ϑsm,`

while the first factor gives the sign of the spin configuration, i.e. the sign with which the weight
“mixes” with other weights to produce the causet weight,

sign(sm) = sign(sm0, sm1, · · · , smN−1)
def
=

N−1∏
`=0

(−1)$`−sm,`

and the middle factor gives the multiplicity coefficient of sm, i.e. the number of times that the

same configuration sm appears on C
(m)
N ,

m(sm) = m(sm0, sm1, · · · , smN−1)
def
=

N−1∏
`=0

(
m`

$` − sm,`

)
.

sign(sm) and m(sm) can then be merged into a single factor to give the coefficient xΘ(sm) we have
been looking for,

xΘ(sm) = xΘ(sm0, sm1, · · · , smN−1)
def
= sign(sm)m(sm) =

N−1∏
`=0

(−1)$`−sm,`

(
m`

$` − sm,`

)
.

This concludes our proof, since we have just shown that:

N−1∏
`=0

m∑̀
k=0

(−1)k
(
m`

k

)
ϑ$`−k =

∑
sm

xΘ(sm) Θ(sm).
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Remark 4.2. Lemma 4.2 sheds some light on the issue of the negative edge-spin weights in the
qn Ising-like model, which arises again in the Θ spin model. Consider a probability space whose
sample space is the set of all vertex-spin configurations in the generation CN , {s}, and whose events
are tensor products of subsets of {s}. That is to say that a single vertex-spin configuration s can
appear multiple times in the same outcome. To be more precise, we already know it will show up
exactly mΘ(s) times within the same generation CN . The weight of a vertex-spin configuration is
thus given by mΘ(s)Θ(s), and its probability writes

Pr(s) =
mΘ(s)Θ(s)∑
smΘ(s)Θ(s)

=
B(s)

Z(CN )
.

On the other hand, the probability for the same configuration to appear on a given (labelled)

causet C
(m)
N ∈ CN is

PrC(s) =
m(s)Θ(s)∑
smΘ(s)Θ(s)

=
BC(s)

Z(CN )
.

Thus, the individual configuration weights are actually all positive, since the probability of a single
spin configuration has to be non-negative. Now, as a consequence of 4.2, the probability of the

(unlabelled) causet C
(m)
N is given by

Pr(C
(m)
N ) =

Wm

∑
sm
xΘ(sm) Θ(sm)∑

smΘ(s)Θ(s)
=
Wm

∑
sm

sign(sm)m(sm) Θ(sm)∑
smΘ(s)Θ(s)

= Wm

∑
sm

sign(sm) PrC(sm).

Therefore, we come to understand that the sign associated to each sm is just a “tool” that allows

to sum the weights in the “correct” manner to produce the weight of the causal set C
(m)
N . The

reason why a negative sign is required for certain configurations is unclear. Since subtraction of
probabilities occurs whenever one wants to calculate the probability of something not happening,

we must conclude that despite a given configuration might be compatible with C
(m)
N , the model

imposes its removal from the set of outcomes. We will see that this conceptual issue is completely
solved in the Ψ spin system, where all probabilities are summed with a positive sign. For this
reason, Ψ will be preferred to Θ as our reference when discussing spin models on causets.
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Figure 4.2. The five causets C
(1)
3 , . . . , C

(5)
3 (from left to right, top to bottom) of the generation C3

in their seven labelled instances. The size of the parent causet $k and the number of its maximal

elements mk are shown for each stage k of the growth. Notice that the (unlabelled) causet C
(3)
3 can

arise from three possible histories.

Figure 4.3. The allowed edge-spin configurations in the generation C3 and the ϑω parameters of
the Θ vertex-spin system. Each index ω represents the vertex-spin associated with the vertex. This
ω can be obtained from Rideout’s qn prescription following a simple algorithm:

(1) Take a natural labelling of a causet C
(m)
N in the generation CN of causets with cardinality N .

(2) Attribute 0,1 spins to the relations following Rideout’s qn prescription.

(3) Pick a spin configuration φ̌i (i = 1, . . . , 2L) on C
(m)
N and turn every relation with spin 0 into an

undirected edge.
(4) Assign a parameter ϑω to each vertex of the DAG, where ω is the indegree of the vertex, that
is, the number of ingoing edges wrt that vertex. Do the same for every spin configuration. By
convention, ϑ0 ≡ 1.
Therefore, the role of the qn edge-spins is to turn “on” (edge-spin 1) and “off” (edge-spin 0) the
links. How this operation affects the causal structure is unclear.
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4.2.2 The Ψ equality theorem

There is at least a second spin system whose probability measure yields the probability of CSG-
grown causets, which we designated by Ψ. From an observational standpoint, there is no actual
difference between the Ψ and the Θ spin systems. The two are describing the same physical model,
and despite giving rise to different probability measures, these return identical probability values
for each causet. We can pass from one system to the other by using the transformation law

(4.5) Ψv =

v∑
i=0

(−1)v−i
(
v

i

)
Θi

where Θx = Θ(x) is a polynomial of degree d such that

Θ(x) =

d∑
j=0

Ψv

(
x

j

)
x ∈ R.

In combinatorics, Eq. 4.5 is known as the binomial transform of sequence {Θi}.

Theorem 4.2. Consider causet C
(m)
N = (V,R) in generation CN , a set of labels L = {0, 1, . . . , N−

1} and a set of coupling constants Ψ` ∈ [1,∞) (` ∈ L). Let σ = {σ`}`∈L be a random field such that
each spin σ` takes a value s` in a state space S = {0, 1, . . . , N − 1}, and let s = (s0, s1, . . . , sN−1)
be a configuration of σ. Also, let σm = {σm,`}`∈L be the restriction of σ to state space Sm,` =
{m`, . . . , $`} ⊆ S, and let sm = (sm 0, sm 1, . . . , smN−1) denote a configuration of σm.

Then, the probability of realising C
(m)
N through classical sequential growth is equal to

(4.6) Pr(C
(m)
N ) =

Wm

∑
sm
xΨ(sm)Ψ(sm)∑

smΨ(s)Ψ(s)

where

� Wm is the number of natural labellings of C
(m)
N ;

� Ψ(s) = ψs0 · · ·ψsN−1
is the weight of configuration s;

� mΨ(s) and xΨ(sm) are multiplicity factors given by:

mΨ(s) =

N−1∏
`=0

(
`

s`

)
, xΨ(sm) =

N−1∏
`=0

(
$` −m`

sm,` −m`

)
.

Proof. The proof consists in showing that the weights and normalisation constants in Eq. 4.6 and
Eq. 4.2 are equal upon providing a suitable expression for coefficients xΨ(sm) and mΨ(s). Setting
ψn = tn ∀n ∈ N in Rideout’s notation, we must then show that:

Z(CN ) :

N−1∏
`=0

∑̀
j=0

(
`

j

)
ψj =

∑
s

mΨ(s)Ψ(s)

B(C
(m)
N ) :

N−1∏
`=0

$`−m`∑
j=0

(
$` −m`

j

)
ψm`+j = Wm

∑
sm

xΨ(sm)Ψ(sm).

This is done by Lemmas 4.3 and 4.4 respectively, and thus the theorem is proved.
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In conclusion, what the theorem shows is that the probability of realising causet CmN with a Ψ spin
system is given by

(4.7) Pr(C
(m)
N ) =

Wm

∑
sm

N−1∏
`=0

(
$` −m`

sm,` −m`

)
ψsm,`

∑
s

N−1∏
`=0

(
`

s`

)
ψs`

Lemma 4.3. (Equality of normalisation constants) Consider causet C
(m)
N = (V,R) in generation

CN , a set of labels L = {0, 1, . . . , N − 1} and a set of coupling constants Ψ` ∈ [1,∞) (` ∈ L).
Let σ = {σ`}`∈L be a random field such that each spin σ` takes a value s` in a state space S =
{0, 1, . . . , N−1}, and let s = (s0, s1, . . . , sN−1) be a configuration of σ. Then, the following equality
holds:

N−1∏
`=0

∑̀
j=0

(
`

j

)
ψj =

∑
s

mΨ(s)Ψ(s).

Proof. Let us start by expanding the sum over j on the left-hand side:

N−1∏
`=0

∑̀
j=0

(
`

j

)
ψj =

N−1∏
`=0

[(
`

0

)
ψ0 +

(
`

1

)
ψ1 + · · ·+

(
`

`

)
ψ`

]
.

From the definition of binomial coefficent, we know that
(
x
y

)
≡ 0 if x < y. Hence, since the product

sets the maximum value of ` to N − 1, we may write

N−1∏
`=0

∑̀
j=0

(
`

j

)
ψj =

N−1∏
`=0

[(
`

0

)
ψ0 +

(
`

1

)
ψ1 + · · ·+

(
`

N − 1

)
ψN−1

]
,

so that at each stage all those
(
`
n

)
for which ` < n will vanish. We can now expand the product

over ` and collect the resulting summands to yield:

N−1∏
`=0

∑̀
j=0

(
`

j

)
ψj =

N−1∑
i0,i1,...,iN−1=0

(
0

i0

)(
1

i1

)
· · ·
(
N − 1

iN−1

)
ψi0ψi1 · · ·ψiN−1

.

This expression can be further simplified by re-introducting a product over stages ` = 0, . . . , N −1
and by making use of the associative property of multiplication:

N−1∏
`=0

∑̀
j=0

(
`

j

)
ψj =

N−1∑
i0=0

N−1∑
i1=0

· · ·
N−1∑

iN−1=0

N−1∏
`=0

(
`

i`

)
ψi`

=

0∑
i0=0

1∑
i1=0

· · ·
N−1∑

iN−1=0

(
N−1∏
`=0

(
`

i`

))(N−1∏
`=0

ψi`

)
where in the last step we have taken into account that some values of i`’s produce vanishing
summands and can thus be discarded. By identifying i` with s`, we recognise the last term in the
product as the weight Ψ(s) of vertex-spin configuration s,

Ψ(s) = Ψ(s0, s1, · · · , sN−1) =

N−1∏
`=0

ψs` ,
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while the first term is the coefficient mΨ(s) that tells how many times configuration x appears on
all causets of generation CN ,

mΨ(s) = mΨ(s0, s1 · · · , sN−1)
def
=

N−1∏
`=0

(
`

s`

)
.

This concludes our proof, since we have just shown that:

N−1∏
`=0

∑̀
j=0

(
`

j

)
ψj =

∑
s

mΨ(s) Ψ(s).

Lemma 4.4. (Equality of weights) Consider causet C
(m)
N = (V,R) in generation CN , a set of labels

L = {0, 1, . . . , N − 1} and a set of coupling constants ψ` ∈ [1,∞) (` ∈ L). Let σm = {σm,`}`∈L be
a random field such that σm takes a value sm,` in a state space Sm,` = {m`, . . . , $`} ⊆ S, and let
sm = (sm 0, sm 1, . . . , smN−1) denote a configuration of σm.
Then, the following equality holds:

N−1∏
`=0

$`−m`∑
j=0

(
$` −m`

j

)
ψm`+j =

∑
sm

xΨ(sm)Ψ(sm).

Proof. Let us expand the sum over ` on the left-hand side, defining $`−m` = ∆` for convenience:

N−1∏
`=0

∆∑̀
i=0

(
∆`

i

)
ψm`+i =

N−1∏
`=0

[(
∆`

0

)
ψm`

+

(
∆`

1

)
ψm`+1 + · · ·+

(
∆`

∆`

)
ψm`+∆`

]
.

At each growth stage `, the maximum value of ∆` is the one determined by the transition from
the `-chain to the ` + 1-chain, for which $` = `, m` = 1 and ∆` = ` − 1. Hence, the maximum
overall value of ∆` is ∆N−1 = N − 2. For calculation purposes, we will increase the range up to
N − 1 so as to include the null quantity

(
∆`

N−1

)
= 0,∀`. We can once again utilise the saturation

properties of the binomial coefficient to write:

N−1∏
`=0

∆∑̀
i=0

(
∆`

i

)
ψm`+i =

N−1∏
`=0

[(
∆`

0

)
ψm`

+

(
∆`

1

)
ψm`+1 + · · ·+

(
∆`

N − 1

)
ψm`+N−1

]
,

so that at each stage all those terms for which ∆` < N − 2 will vanish automatically. Expanding
the product over ` and collecting all summands gives

N−1∏
`=0

∆∑̀
i=0

(
∆`

i

)
ψm`+i =

N−1∑
i0,i1,...,iN−1=0

(
∆0

i0

)(
∆1

i1

)
· · ·
(

∆N−1

iN−1

)
ψm0+i0ψm1+i1 · · ·ψmN−1+iN−1

.

This expression can be further simplified by re-introducting a product over stages ` = 0, . . . , N −1
and by making use of the associative property of multiplication:

N−1∏
`=0

∆∑̀
i=0

(
∆`

i

)
ψm`+i =

N−1∑
i0=0

N−1∑
i1=0

· · ·
N−1∑

iN−1=0

(
N−1∏
`=0

(
∆`

i`

))(N−1∏
`=0

ψm`+i`

)

=

0∑
i0=0

1∑
i1=0

· · ·
N−1∑

iN−1=0

(
N−1∏
`=0

(
∆`

i`

))(N−1∏
`=0

ψm`+i`

)
,
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where in the last step we have taken into account that some values of i`’s produce vanishing
summands and can thus be discarded. Changing variables from i` to j` = m` + i` yields:

N−1∏
`=0

∆∑̀
i=0

(
∆`

i

)
ψm`+i =

m0∑
j0=m0

m1+1∑
j1=m1

· · ·
mN−1+N−1∑
jN−1=mN−1

(
N−1∏
`=0

(
$` −m`

j` −m`

))(N−1∏
`=0

ψj`

)
.

A quick look at the binomial coefficient tells that there are values of j`’s that still produce vanishing
summands. We can therefore limit the range of j` to be [m`, $`] and finally obtain:

N−1∏
`=0

∆∑̀
i=0

(
∆`

i

)
ψm`+i =

$0∑
j0=m0

$1∑
j1=m1

· · ·
$N−1∑

jN−1=mN−1

(
N−1∏
`=0

(
$` −m`

j` −m`

))(N−1∏
`=0

ψj`

)
.

By identifying j` with sm,`, we thus recognise the second factor in the summand as the weight
Ψ(sm) of configuration sm,

Ψ(sm) = Ψ(sm0, sm1, · · · , smN−1) =

N−1∏
`=0

ψsm,`

while the first factor is the coefficient xΨ(sm) that tells how many times the same configuration

§m appears on causet C
(m)
N :

xΨ(sm) = xΨ(sm0, sm1, · · · , smN−1)
def
=

N−1∏
`=0

(
$` −m`

sm,` −m`

)
This concludes our proof, since we have just shown that:

N−1∏
`=0

$`−m`∑
i=0

(
$` −m`

i

)
ψm`+i =

∑
sm

xΨ(sm) Ψ(sm)

Remark 4.3. Consider a probability space whose sample space is the set of all vertex-spin config-
urations in the generation CN , {s}, and whose events are tensor products of subsets of {s}. That
is to say that a single vertex-spin configuration s can appear multiple times in the same outcome.
We already know it will show up exactly mΨ(s) times within the same generation CN . The weight
of a vertex-spin configuration is thus given by mΨ(s)Ψ(s), and the probability for s to appear on
any member of CN writes

Pr(s) =
mΨ(s)Ψ(s)∑
smΨ(s)Ψ(s)

=
B(s)

Z(CN )
.

On the other hand, the probability for the same configuration to appear on a given (labelled)

causet C
(m)
N ∈ CN is

PrC(s) =
xΨ(s)Ψ(s)∑
smΨ(s)Ψ(s)

=
BC(s)

Z(CN )
.

Then, the probability of the (unlabelled) causet C
(m)
N is given by:

Pr(C
(m)
N ) =

Wm

∑
s xΨ(s) Ψ(s)∑

smΨ(s)Ψ(s)
= Wm

∑
s

PrC(s) = Wm

∑
sm

PrC(sm).
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Notice that this time, unlike the Θ spin system, the prefactor of the weight of a vertex-spin

configuration is always positive. The probability of a (labelled) causet C
(m)
N is simply the sum of

the probabilities of all vertex-spin configurations allowed on it. The probability of the unlabelled
causet follows, as usual, by multipling by Wm.

Figure 4.4. The allowed edge-spin configurations in the generation C3 and the ψω = tω parameters
of the Ψ vertex-spin system. Each index ω represents the vertex-spin associated with the vertex.
This ω can be obtained from Rideout’s tn prescription following a simple algorithm:

(1) Take a natural labelling of a causet C
(m)
N in the generation CN of causets with cardinality N .

(2) Attribute 0,1 spins to the relations following Rideout’s tn prescription.

(3) Pick a spin configuration φ̂i, i = 1, . . . , 2R−L, on C
(m)
N and consider the DAG underlying C

(m)
N .

Turn every relation with spin 0 into an undirected edge.
(4) Assign a parameter ψω to each vertex of the DAG, where ω is the indegree of the vertex, that is,
the number of ingoing edges with respect to that vertex. Do the same for every spin configuration.
By convention, ψ0 ≡ 1..
Therefore, the role of tn edge-spins is to turn “on” (edge-spin 1) and “off” (edge-spin 0) non-
link relations. This has a clear result in terms of causal structure: turning on and off relations
while keeping links fixed means switching between the different non-transitively reduced causal
sets corresponding to a given Hasse diagram.

In this Chapter, we have introduced the idea that CSG can be thought of as a growth process
across different “causet states”, each one resulting from a “superposition” of different configurations
of random variables, or “spins”, on either the relations or the elements of a causet. However, as
already noticed by Rideout, CSG is a “non-interacting” type of dynamics, since each spin value
(either edge-spin or vertex-spin) is not related to that of the neighbouring spins. Two equality
theorems were provided that demonstrated the complete equality between the edge-spin growth
pictures qn and tn and the vertex-spin growth pictures Θ and Ψ. In the next and final chapter,
we argue that describing growth probabilites in terms of random spins on vertices is the key to a
mathematical framework that allows for the development and study of all sorts of causet dynamics,
both interacting and non-interacting. This framework is that of Markov random fields on causal
sets.
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Chapter 5

Random Field Theory on causal
sets

5.1 The labelling of a fixed causal set

Consider a causet C = (V,R), |V | = N , and a set of labels L = {0, 1, . . . , N − 1}. Let us denote
the cardinality |de(v)| of the set of descendants of an element v ∈ V by %v. Define a random field
X = {Xv}v∈V such that each random variable Xv takes a value xv in a finite state space Tv given
by:

Tv = [$v, . . . , N − 1− %v] ⊆ L

We name these variables placeholders, and the assigned values will be called labels. The operation of
assigning labels to placeholders will be referred to as the labelling process. Given any two elements
u, v ∈ V , let a configuration of X be an N -size array x such that

x = (. . . , xu, . . . , xv, . . . ) ∀xu ∈ Tu, ∀xv ∈ Tv : xu < xv

These configurations will be called labellings1 of the causet C. Thus, the configuration space of X
is given by a Cartesian product of the state spaces Tv,

X = ×v∈V Tv
= · · · × Tu × · · · × Tv × · · ·

such that ∀xu ∈ Tu, ∀xv ∈ Tv, xu ≤ xv. Each placeholder Xv obeys a marginal probability
distribution given by:

(5.1) Pr(xv) = Z−1
v

(
N − 1− %v −$v

xv −$v

)
, Zv =

N−1−%v∑
xv=$v

(
N − 1− %v −$v

xv −$v

)
Suppose the causet has not been “instanced” yet, that is, that every placeholder is still without
a value. Choose a placeholder at random, say Xu, and assign value xu = ` to it. Then, pick a
second placeholder at random, say Xv. The space state for this variable can no longer be $v ≤
xv ≤ N − 1− %v, since the previous assignment (do(Xu = `)) introduced the additional semantics

1These labellings correspond to the “old” natural labellings; we drop the specification “natural” since, with this
new definition, all and only those labellings which are natural are produced.
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“xw /= `, ∀w ∈ V : w /= u”; said otherwise, we must make sure that xv /= xu. Thus, assuming
that Pr(Xv = `) = 0, there are three non-trivial cases: either ` < $v, or $v ≤ ` ≤ N − 1 − %v,
or N − 1 − %v < `. Let us denote by Pr`(xv) the probability of Xv = xv given that value ` has
already been assigned. Then, we have the following:

� if ` < $v or N − 1 − %v < `, the assignment of ` to Xu does not affect the state space of
Xv, which can thus retain its original boundaries $v ≤ xv ≤ N − 1 − %v; consequently, the
probability distribution stays the same: Pr`(xv) = Pr(xv);

� if $v ≤ ` ≤ N − 1− %v, we must exclude xv = ` from the state space, i.e.

Pr
`

(xv) =

(
N−1−%v∑
k=$v

δ`k

)
Pr(xv)

where δij is Kronecker’s delta.

Overall, we find:

Pr
`

(xv) = (1− δ`xv
)

[
Pr
`<$v

(xv) + Pr
$v≤`≤N−1−%v

(xv) + Pr
N−1−%v<`

(xv)

]
= (1− δ`xv

)

[
θ($v − `) Pr(xv) +

(
N−1−%v∑
k=$v

δ`k

)
Pr(xv) + θ(`−N + 1 + %v) Pr(xv)

]

where θ(x) is a step function defined as

θ(x) =

{
0 if x < 0

1 if x > 0
.

This allows to rewrite the sum of step functions as

θ($v − `) + θ(`−N + 1 + %v) =

N−1−%v∑
k=$v

(
1

∆v
− δ`k

)
where ∆v = N − %v − $v is the number of elements of C that are unrelated to element v. By
substituting this sum in the above expression for Pr`(xv), we get:

Pr
`

(xv) = (1− δ` xv
) Pr(xv)(5.2)

Assume placeholders are now indexed according to a set of labels L = {0, 1, . . . , N − 1}, so that,
for instance, Xi corresponds to some vertex v ∈ V , Xj corresponds to some vertex u ∈ V , etc. (for
i, j ∈ L, i /= j). As before, the assigments Xi ↔ v, Xj ↔ u, etc. are uniformly random. Suppose
we assign labels to the placeholders following the ordering 0, 1, . . . , N − 1 induced by L on X. By
convention, whenever variable Xv takes value xv = x` (` ∈ L), we will set [·]` = [·]v, where [·] is
any parameter indexed by vertex v ∈ V (such as $v, mv, etc.). Therefore, Eq. 5.2 generalises to

(5.3) Pr
x0...xt−1

(Xv = xt) = Pr(xt)

t−1∏
i=0

(1− δxi xt
)

51



5 – Random Field Theory on causal sets

and the probability of generating a labelling x = (x0, x1, . . . , xN−1) on C writes

(5.4) Pr(x) = Pr(x0) Pr
x0

(x1) Pr
x0, x1

(x2) · · · Pr
x0, x1,··· , xN−2

(xN−1) =

N−1∏
t=0

Pr
xpr(t)

(xt)

where xpr(t) = {x0, x1, . . . , xt−1} is the set of predecessors of label xt, i.e.

xpr(t) = {xs | xs < xt}.

One remarkable feature of Eq. 5.4 is that it does not depend explicitly on the structure of the causal
set. In fact, the factorisation remains the same since the ordering induced by L is unchanged by the
adoption of a different assignment X ↔ V between placeholders and vertices. A new assignment
simply ’shuffles’ the placeholders on the graph, while the causal structure stays the same.

To see this, consider Eq. 5.4 written explicitly with respect to Pr(xt):

(5.5) Pr(x) =

N−1∏
t=0

Pr(xt)

t−1∏
i=0

(1− δxi xt
) =

(
N−1∏
t=0

Pr(xt)

)(
N−1∏
t=1

t−1∏
i=0

(1− δxi xt
)

)
Pr(xt) purely depends on the geometric properties $v = $t and %v = %t of vertex v ∈ V , to the
extent that, by using the [·]t = [·]v equality established before, we may neglect ordering in the first
parenthesis and write:

N−1∏
t=0

Pr(xt) =
∏
v∈V

Pr(xv) =
∏
v∈V

Z−1
v

(
N − 1− %v −$v

xv −$v

)
This product is fixed for each causet C, with only x as a variable. We cannot say the same for the
term in the second parenthesis in Eq. 5.5, which can only be assessed if the labels are ordered. In
fact, there is no way to rewrite it exclusively in terms of a product over vertices

The labelling process realises an directed N -chain: given a label xt, its probability distribution is
conditional to its ancestor labels x0, x1, . . . , xt−1 but not to its descendant labels xt+1, . . . , xN−1.
This may generate some confusion, since the ancestor labels of xt are its parents with respect to
the labelling process but are not its parents with respect to the causal structure. Said otherwise,
the predecessors of a vertex are the parents of its label.

Also notice that, by construction, Pr(x) factorises with respect to Prxpr(t)
(xt) = Pr(xt | pa(xt) )

and thus satisfies Eq. 2.2 (DF). That is to say, the labelling process is a directed Markov process,
and placeholders X form a Markov random field which can be equally described by a Gibbs
distribution.

Remark 5.1. So far, we have been able to assign a complete set of labels to a given causet only
because we had access to the entire causal structure (i.e we could “see the full DAG on paper”). If
the universe were to be a causal set, this would never happen. In the first place, because the order
of birth of spacetime events (i.e. the labelling) may not produce any observable features. Then,
even if it did, an observer “sitting” on a given causet element would experience only its past, so
their uncertainty about the labelling would be proportional to the amount of cosmological causet
which they do not experience. For these reasons, we may say the labelling of a cosmological causet
is physical, since different labellings correspond to different configurations of the random variables
X, but it is unobservable, since it cannot be determined by means of experimental measures.
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Suppose causet C
(m)
N , where m = 1, 2, . . . is the number of causets in generation CN , is grown

according to some history h
(m)
h = {($0,m0), ($1,m1), . . . }, with h counting the number of histories

compatible with the causal structure of C
(m)
N . Let Bm,h(x`) denote the relative weight of label x`

in the probability distribution Prxpr(`)
(x`):

Bm,h(x`) =

(
N − 1− %(m,h)

` −$(m,h)
`

x` −$(m,h)
`

) `−1∏
i=0

(1− δxi x`
)

where index m is to specify that the set of all (%`, $`) univocally identifies the C
(m)
N , while the

partial order in which they appear, indexed by h, can change. In the above expression, the binomial
coefficient counts the number of labels allowed on the vertex v ∈ V such that Xv = x`, while the
product forces each label on the graph to take a different value. As a result, summing over Bm,h(x`)
counts both the number of natural labellings Wm and the number of graph automorphisms Am:∑

h

∑
x∈X

∏
`∈L

Bm,h(x`) =
∑
h

∑
x∈X

Bm,h(x`) = Am +Wm

where Am = 1 means that a given labelled causet is only automorphic to itself. Thus, the proba-

bility that labelling x will appear on C
(m)
N is given by:

PrC(x) = Z−1
C

∏
`∈L

Bm,h(x`), ZC =
∑
h

∑
x∈X

∏
`∈L

Bm,h(x`) = Am +Wm

Consequently, the probability of causet C
(m)
N would write:

Pr(C
(m)
N ) = Z−1

CN

∑
h

∑
x∈X

∏
`∈L

Bm,h(x`) =
Am +Wm∑
n(An +Wn)

Automorphisms of labelled causets are generally regarded as irrelevant, due to the fact that they
correspond to identical partial orders on labels. Nevertheless, if the labelling is realised as a random
field, we can see that automorphic causets actually correspond to different outcomes in the event
space, i.e. to different configurations of the random variables. This raises the question of whether
automorphisms play a role in the dynamics or not. In particular, they seem to imply a spatial
property i.e. the causet would be able to tell “left” from “right” despite no embedding is assumed.

5.1.1 Probability of a causal set in terms of growing labellings

The sequential growth of a labelling can be thought of as a particular type of labelling process
where the assignment of placeholders to vertices is not random, but instead follows the order of
birth of the elements, i.e. X0 is assigned to the first born so that X0 = 0, X1 to the second born
so that X1 = 1, etc. Also, each newborn element has an empty set of descendants, so %` = 0, ∀`.
By substituting N = t+ 1 in Eq. 5.1, where t labels the stages of growth (0 being the first stage),
the marginal probability of label xt at stage t now writes:

Pr(xt, t) = G−1
t

(
t−$t

xt −$t

)
, Gt =

t∑
xt=$t

(
t−$t

xt −$t

)
Thus, the probability of label xt conditional to the predecessor labels is given by:

Pr
xpr(t)

(xt, t) = Pr(xt, t)

t−1∏
i=0

(1− δxi xt
)
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By taking the product over stages t of Prxpr(t)
(xt, t), one obtains the probability of growing a given

causet C
(m)
N ∈ CN with labelling x:

PrG(x) =

N−1∏
t=0

Pr
xpr(t)

(xt, t)

Once again, suppose causet C
(m)
N is grown according to some history h

(m)
h , with h counting the

number of histories compatible with its causal structure, and let Bm,h(x`, `) denote the relative
weight of label x` in the probability distribution Prxpr(`)

(x`, `):

Bm,h(x`, `) =

(
`−$(m,h)

`

x` −$(m,h)
`

) `−1∏
i=0

(1− δxi x`
)

With the above setup, each label can only take a single value per history. Thus, given a history

for C
(m)
N , the sum of the weights of all labellings always yields 1, and the sum over histories of the

latter yields the number of labellings of C
(m)
N :∑

x∈X
Bm,h(x) =

∑
x∈X

∏
`∈L

Bm,h(x`, `) = 1 ⇒
∑
h

∑
x∈X

Bm,h(x) = Wm

In conclusion, the probability of growing C
(m)
N is given by:

Pr(C
(m)
N ) = Z−1

CN

∑
h

∑
x∈X

∏
`∈L

Bm,h(x`, `) = Z−1
CNWm

= Z−1
CN

∑
h

∑
x∈X

∏
`∈L

(
`−$(m,h)

`

x` −$(m,h)
`

)
Ξx`

Ξx`

def
=
∏
i∈L

(1− δxi x`
)

= Z−1
CN

∑
h

∏
`∈L

∑̀
x=$`

(
`−$(m,h)

`

x−$(m,h)
`

)
Ξx

The normalisation constant ZCN writes

ZCN =
∑
m

∑
h

∑
x∈X

∏
`∈L

Bm,h(x`, `) =
∑
m

Wm

Said otherwise, ZCN is the number of all labelled causets (or, if preferred, the number of histories)
in a given generation CN . We conjecture that ZCN can be written as∑

m

Wm =
∑
x∈X̃

∏
`∈L

H(x`)

for some function H(x`) on X̃ = S̃N , where S̃ = {0, 1, . . . , `}. If we now substitute ZCN in the

expression for Pr(C
(m)
N ), we obtain:

Pr(C
(m)
N ) =

∑
h

∑
x∈X

∏
`∈L

(
`−$(m,h)

`

x` −$(m,h)
`

)
Ξx`

∑
x∈X̃

∏
`∈L

(
`

x`

)
Hx`

=
Wm∑
n

Wn
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Therefore, the probability of growing some causet in a given generation is proportional to the
number of its labellings. On the other hand, all labellings on same-size causets are equiprobable:

Pr(C
(m,h)
N ) =

∑
x∈X

∏
`∈L

(
`−$(m,h)

`

x` −$(m,h)
`

)
Ξx`∑

x∈X̃

∏
`∈L

Hx`

=
1∑

n

Wn

By expanding sums and products, this expression can be recast in terms of transition probabilities
α`, which give the likelihood of a transition from a “labelled causet” of generation C` to one of
generation C`+1:

Pr(C
(m)
N ) =

∏
`∈L

`−%`∑
x=$`

(
`−$(m,h)

`

x−$(m,h)
`

)
Ξx

∏
`∈L

∑̀
x=0

Hx

=
∏
`∈L

α`

where the transition probability α` from C` to C`+1 is

α` =

`−%`∑
x=$`

(
`−$(m,h)

`

x−$(m,h)
`

)
Ξx

∑̀
x=0

H(x)

The function H(x) and the characteristics of this α`, such as its possible conformity to Bell causality
and the Markovian sum rule, are yet to be determined.

5.1.2 Remarks

Because each labelling is a partially ordered set and labellings can be related to one another by
inclusion, the space of all labellings is itself a partially ordered set. The corresponding DAG is an
“expanded poscau” in which each causet “splits” into its labellings (see Figure 5.1). Labellings can
be causally equivalent, i.e. result in identical causets, but they are all dynamically inequivalent,
since the partial order they produce is the outcome of (often radically) different growth processes.
For example, consider a causet with two arbitraily complicated “branches”, such as the one below:
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This causet might have grown “isotropically”, with newborn elements approximately equally dis-
tributed between the two branches. Alternatively, the branch on the right might have developed
completely before the one on the right even started to grow. Or viceversa. Many other intermedi-
ate scenarios are possible. All these different histories manifest themselves in the form of different
partial orders on the set of labels. From the point of view of the target causet, this is very anal-
ogous to the notions of “microstates” and “macrostates” in statistical mechanics, where different,
unobservable microscopic configurations produce identical, observable macroscopic features. As a
consequence, if one wishes to interpret causal sets as dynamical entites which “grow”, identifying
the spacetime elements by means of labels becomes a necessity, i.e. we have no choice but to resort
to Markov random fields.

Figure 5.1. The partial order of labellings.

Notice that, as opposed to the original, the extended poscau is a tree, since no two paths between its
nodes intersect. This means that the model never “loses memory” of the growth process, contrary
to the case of non-interacting spins (see next Section) where the paths corresponding to different
configuration growths are allowed to intersect, thus losing all the information about the preceeding
steps.

The probability of a labelling on a fixed causal set is different than that of a labelling on a causal set
resulting from the growth process above. Consider causet and a set of placeholders (X0, X1, X2)
on it:

If the causet is fixed, two outcomes are possible: (X0 = 0, X1 = 1, X2 = 2) or (X0 = 0, X1 =
2, X2 = 1). If the causet is the result of a growth process, then only one outcome is possible:
(X0 = 0, X1 = 1, X2 = 2).

56



5 – Random Field Theory on causal sets

Indications of interacting spin thermodynamics We have seen that placeholders satisfy
(DF) and thus form a MRF. As a consequence, we can write their probability distribution as a
Gibbs distribution

Pr(x) = Z−1 exp(−U(x)), Z =
∑
x∈X

exp(−U(x))

with Boltzmann weights

exp(−U(x)) =
∏
`∈L

(
`−$(m,h)

`

x` −$(m,h)
`

)
Ξx`

(=1 if the labelling is natural)

and partition function Z, i.e.

Z =
∑
x∈X

∏
`∈L

(
`−$(m,h)

`

x` −$(m,h)
`

)
Ξx`

= 1

Therefore, the canonical energy of a grown labelling x is U(x) = 0. Thus, we see that the energy of
a random field is a measure of the amount of configurations on it, that is, a measure of the number
of possible histories. If only a single configuration exists, the energy vanishes. What happens,
then, in the case of a fixed causal set? The Boltzmann weights are given by:

exp(−U(x)) =
∏
`∈L

(
N − 1− %(m,h)

` −$(m,h)
`

x` −$(m,h)
`

)
Ξx`

The canonical energy of configuration x writes:

U(x) = − log

[∏
`∈L

(
N − 1− %(m,h)

` −$(m,h)
`

x` −$(m,h)
`

)
Ξx`

]

= −
∑
`∈L

[
log

(
N − 1− %(m,h)

` −$(m,h)
`

x` −$(m,h)
`

)
+ log(Ξx`

)

]
=
∑
`∈L

U(x`)

where U(x`) can be interpreted as the energy of a spacetime element. Therefore, we see that if the
labelling is natural, the formula yields a generally non-zero element energy:

U(x`) = − log

(
N − 1− %(m,h)

` −$(m,h)
`

x` −$(m,h)
`

)
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5.2 Classical sequential growth as a hidden Markov model

Consider a causet C = (V,R), |V | = N , a set of labels L = {0, 1, . . . , N − 1} and the placeholder
field X introduced above. Define a second random field σ = {σv}v∈V such that each random
variable σv takes a value sv(xv) = sxv

in a finite state space Sxv
given by:

Sxv
= Sv = [mv, . . . , $v] ⊆ L

We will name these variables spins. Notice that σ is a non-interacting random field, since the state
space depends only on the geometric properties of each vertex, and not on the other spins. Let a
configuration of σ be an N -size array s given by:

s = (· · · , sxu
, · · · , sxv

, · · · ) ∀xu ∈ Tu, ∀xv ∈ Tv : xu < xv

= (s0, s1, . . . , sN−1)

Thus, the configuration space of σ is given by a Cartesian product of the state spaces Sv,

Ω̃ = · · · × Sxu
× · · · × Sxv

× · · · ∀xu ∈ Tu, ∀xv ∈ Tv : xu < xv

= S0 × S1 × · · · × SN−1

= ×`∈LS` ⊆ Ω Ω = LN = ×`∈LL`
Recall that each assignment X ↔ V sets an equality [·]xv = [·]v, and that the ordering on X
induced by L implies xv = xt for some v ∈ V and t ∈ L. Thus, given any particular configuration
x ∈ X on C, every spin σv obeys the known conditional probability distribution

Pr(sv | xv) = Z−1

(
$xv
−mxv

sxv
−mxv

)
ψsxv

= Z−1

(
$v −mv

sv −mv

)
ψsv

def
= f(sv; ψsv ) ∀xv ∈ Tv, ∀sv ∈ Sv

= Pr(sv)

where Ψ = {ψv}v∈V is a set of arbitrary coupling constants and Z is a normalisation constant
given by:

Z =
∑
s∈Ω̃

(
$v −mv

sv −mv

)
ψsv

The fact that Pr(sv | xv) = Pr(sv) means that σ is conditionally independent of placeholders X,

or equivalently:

Pr(s | x) =
∏
v∈V

Pr(sv | xv) ⇔ Pr(s) =
∏
v∈V

Pr(sv)

Notice how Pr(s) satisfies Markov property (F) despite σ being a non-interacting random field,
i.e. despite each spin does not depend on any of the spins on the neighbouring vertices. Thus,
non-interacting systems form a degenerate, trivial case of random Markov field, and can, too, be
expressed in terms of a Gibbs distribution.

In conclusion, based on the definition given in Sec. 2.6.5, placeholders X and spins σ define a
hidden Markov model (X,σ,Ψ) on C = (V,R) such that:

� X = {Xv, v ∈ V } is a HMRF with prior distribution Pr(x) (Eq. 5.4);

� σ = {σv, v ∈ V } is an ORF with emission probability distribution Pr(sv | xv) for each sv;

� Ψ = {ψv, v ∈ V } is the set of parameters involved in the above distributions.
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Figure 5.2. The three “layers” of a random spin model. The base layer is an unlabelled DAG: the
causet. The middle layer is an instance of the base causet, given by a uniformly-random distribution
of five “placeholders” a, b, c, d, e whose values are compatible with the partial order of the DAG.
The top layer is an observable random field σ: the spin system

Given the mixing parameter ωv = ω`,

ω` = Pr
x0...x`−1

(Xv = x`) = Pr(x`)

`−1∏
i=0

(1− δxi x`
)

the model parameter set φ = {ω`; ψ`}`∈L and two configurations x ∈ X and s ∈ Ω̃, one can
compute the joint probability distribution of x and s dependent on the model parameters:

(5.6)
∏
`∈L

ω` · f(s`; ψ`) =
∏
`∈L

Pr(x`)

(
`−1∏
i=0

(1− δxi x`
)

)
Pr(s`) =

∏
`∈L

Pr(s`, x` | φ) = Pr(s,x | φ)

We can then compute the marginal distribution of σv = sv dependent on the parameter set φ as:∑
`∈L

ω` · f(s`; ψ`) =
∑
`∈L

Pr(s`, x` | φ) = Pr(s | φ)

Finally, the joint probability of (X,σ) is given by:

Pr(s,x) = Pr(s | x) Pr(x) = Pr(s) Pr(x)

=

(∏
`∈L

Pr(s`)

)(∏
`∈L

Pr
xpr(`)

(x`)

)
=

∏
`∈L

Pr(s`) Pr
xpr(`)

(x`)

=
∏
`∈L

Pr(s`, x`)
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5.2.1 Probability of a causal set in terms of non-interacting CSG spins

Let us begin by checking that the sum of the joint probability of fields X and σ over all configu-

rations x and s on a given causet C
(m)
N ∈ CN yields 1:

Pr(C
(m)
N ) =

∑
s

∑
x

Pr(s | x) Pr(x)

=
∑
s

∑
x

∏
`∈L

Pr(sx`
| x`)

∏
`∈L

Pr
xpr(`)

(x`)

=
∑
s

∑
x

∏
`∈L

Pr(sx`
) Pr
xpr(`)

(x`)

=
∑
s

∑
x

(∏
`∈L

Pr(sx`
)

)(∏
`∈L

Pr
xpr(`)

(x`)

)

=
∑
s

∑
x

(∏
v∈V

Pr(sv)

)(∏
`∈L

Pr
xpr(`)

(x`)

)

=

(∑
x

Pr(x)

)(∑
s

Pr(s)

)
= 1

where we have used the x` ↔ xv correspondence and the independence of spins from labels, i.e.
sxv

= sv (v ∈ V ).

We now want to give the probability of causet C
(m)
N relative to the sample space of all causets

in generation CN . The relative weights of label x` and spin s` are:

Bm,h(x`, `) =

(
`−$(m,h)

`

x` −$(m)
`

) `−1∏
i=0

(1− δxi x`
) Bm(s`) =

(
$

(m)
` −m(m)

`

s` −m(m)
`

)
ψs`

so that the relative weight of the joint event (s`, x`) on C
(m)
N writes Bm(s`, x`) = Bm(s` |

x`)Bm,h(x`, `) = Bm(s`)Bm,h(x`, `). Thus, the probability that spin configuration s will appear

on C
(m)
N is given by:

Pr
(m)
C (s,x) = Z−1

C

∏
`∈L

Bm(s`, x`)

where the normalisation constant writes:

ZC =
∑
h

∑
s∈Ω

∑
x∈X

∏
`∈L

Bm(s`, x`)

=

(∑
h

∑
x

∏
`∈L

Bm,h(x`, `)

)(∑
s

∏
`∈L

Bm(s`)

)

=

(∑
h

∏
`∈L

∑̀
x=$`

Bm,h(x)

)(∏
`∈L

∑̀
s=0

Bm(s)

)
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In conclusion, the probability of realising C
(m)
N out of all the causets in CN is given by:

Pr(C
(m)
N ) = Z−1

CN

∑
h

∑
s∈Ω

∑
x∈X

∏
`∈L

Bm(s`, x`)

= Z−1
CN

∑
h

∑
s

∑
x

∏
`∈L

Bm(s`)Bm,h(x`, `)

= Z−1
CN

∑
h

∑
s

∑
x

Bm,h(x)Bm(s)

= Z−1
CN

(∑
h

∑
x

Bm,h(x)

)(∑
s

Bm(s)

)
= Z−1

CNWm

∑
s∈Ω

Bm(s)

where the normalisation constant writes

ZCN =
∑
m

Wm

∑
s∈Ω

Bm(s) =
∑
s∈Ω

∏
`∈L

(
`

s`

)
ψs`

If we now substitute ZCN and Bm(s) in the expression for Pr(C
(m)
N ), we obtain:

Pr(C
(m)
N ) =

Wm

∑
s∈Ω

∏
`∈L

(
$

(m)
` −m(m)

`

s` −m(m)
`

)
ψs`

∑
s∈Ω

∏
`∈L

(
`

s`

)
ψs`

This is Eq. 4.7, i.e. the CSG probability formula for a Ψ spin system. By utilising equality theorem
4.2, this expression can be recast in terms of transition probabilities α`, which, as we have seen
in Chapter 3, represent the probability of a transition from a causet of generation C` to one of
generation C`+1:

Pr(C
(m)
N ) =

Wm

∏
`∈L

∑
s∈S`

(
$

(m)
` −m(m)

`

s−m(m)
`

)
ψs

∏
`∈L

∑
s∈S

(
`

s

)
ψs

= Wm

∏
`∈L

α`

Therefore, we see that classical sequential growth is nothing but the result of a particular state
space choice for a non-interacting spin system on causal sets.
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5.2.2 Remarks

A configuration of non-interacting CSG spins is a non-strict partial order. In fact, an arbitrary
number of random variables in the same set are allowed to take an identical value, i.e. we could
have Xu = Xv for some u, v ∈ V , but lower-valued spins must preceed higher-valued ones, i.e. we
could have Xw < Xu = Xu for some w, u, v ∈ V . The two examples may then be rewritten in
terms of the non-strict partial ordering relation ≤ as Xu ≤ Xv and Xw ≤ Xu ≤ Xv.

0
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011
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00



000

001


0011

0012

0013

002

Figure 5.3. The non-strict partial order of CSG spins.

An identical configuration of CSG spins, though, can correspond to different causets. This was
expected: we have seen that the probability distribution of the random field σ is independent of the
underlying labelling, that is, it is independent of the partial order of the causet. Not only a given
spin configuration can arise from different causets, but it also corresponds to all different labellings
of the same causet. Thus, in order to describe a causet unequivocally in terms of CSG spins,
one must sum over all possible spin configurations on it, and then multiply by the number of its
labellings (since all spin configurations are identical over different labellings). This is evident in the

expression for Pr(C
(m)
N ), where the probability of a causet is given by the sum of the probabilities

of the allowed spin configurations, times the number of labellings.

Since the partial order of labels is a “carbon copy” of the partial order of spacetime elements, it
is now evident how CSG does not say much in terms of the “actual” causet dynamics2, whose
encoding requires an interacting random field that mimics the partial order of the causet, such as
the field of placeholders. To see this, consider causet . What CSG does is to label it as “0 -
0” instead of the sequentially correct “0 - 1”. Therefore, CSG does not describe the dynamics of
causal sets3, which are strict partial orders, but instead it describes the dynamics of a particular
type of non-interacting spins on causets, those with configuration space Ω̃ defined above, which
are non- strict partial orders.

2Remember that, in this context, “dynamics” is a synonym for “growth”.
3Or, more precisely, the dynamics of particular types of interacting spin systems designe to reproduce the ordering

of the causet
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Figure 5.4. The non-strict partial order of CSG spins superimposed on the strict partial
order of spacetime elements.

Indications of non-interacting spin thermodynamics Classical sequential growth satisfies
the Markov property (DF) and thus forms a MRF, which can be described by a Gibbs distribution

Pr(s) = Z−1 exp(−U(s)), Z =
∑
s∈Ω

exp(−U(s))

with Boltzmann weights

exp(−U(s)) =
∏
`∈L

(
$` −m`

s` −m`

)
ψs` = B(s),

and partition function Z, i.e.

Z =
∑
s∈Ω

∏
`∈L

(
$` −m`

s` −m`

)
ψs`

Therefore, the canonical energy of a CSG spin configuration s is

U(s) = − log

[∏
`∈L

(
$` −m`

s` −m`

)
ψs`

]

= −
∑
`∈L

[
log

(
$` −m`

s` −m`

)
+ logψs`

]
=
∑
`∈L

U(s`)
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where U(s`) is the canonical energy of a CSG spin. Consequently, CSG spins can occupy the same
state, as opposed to labellings. For example, consider again causet ; its two spins share the
same energy4:

U(s0 = 0) = − log

(
$0 −m0

s0 −m0

)
− logψs0 = − logψ0 = 0

U(s1 = 0) = − log

(
$1 −m1

s1 −m1

)
− logψs1 = − logψ0 = 0

This also means that entire spin configurations, even on different causets, can have identical energy.

For example, configuration s = (0, 1, 1) returns the same CSG energy on either causet or :

U(0, 1, 1) = U(s0 = 0) + U(s1 = 1) + U(s2 = 1) = −2 logψ1 − logψ0 = −2 logψ1

As a potentially illuminating application, one might study the character of this energy functional
for some toy cosmological causets such as the ones introduced by Rideout and Sorkin in [4]. In
fact, CSG has already produced some attractive ideas on how to attack the “open questions” of
cosmology, particularly the ultimate fate of our universe (see [8]) and the horizon problem (see
[9]).

4More generally, we observe that every n-antichain has zero energy.
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Chapter 6

Conclusions

The main goal of this essay has been to make manifest the deep connections between the causal set
approach to quantum gravity, probabilistic graphical models and statistical mechanics. Their union
is realised in the definition of Markov random field (MRF) on a causal set, whose introduction is
unavoidable if one tries to develop a probabilistic model for partial orders on a finite set. The
most intuitive of these, the “natural labelling” of the causal set, is an interacting field that arises
by assigning an integer number to each element in the partial order, such that for every two
elements joined by a relation of order, the label of the preceeding element is lesser than that of
the following. These labels form a partial order identical to that of the underlying causal set
and thus reproduce its causal structure. We introduced the idea that each labelling may have
physical significance, because it codifies for a specific growth process in the dynamics. Just as a
matter particle can cover the distance between two points following a multitude of different paths,
label growth processes that result in the same causet generally tell very different stories about its
behaviour. Labelled causal sets are related to one another by inclusion and thus form a “partial
order of partial orders”. Faithful to the principle “one labelling, one history”, the resulting graph is
a tree, and the probability of reaching a given labelled causal set can be expressed as the product of
the intermediate transition probabilities. With regards to this, we conjectured that an expression
exists that allows to write the number of all natural labellings in a given generation,

∑
mWm, as

the sum over spin configurations of the product over labels of a still unknown function.

The second field examined, whose growth process was identified with the classical causet dynamics
(CSG), is a non-interacting system of random “spins” defined on the causet elements but indepen-
dent of their partial order. Differently from the labels, these spins form a non-strict partial order,
which is only partially dependent on the causal structure of the causet. Spin configurations are
related to one another by inclusion and thus, too, form a “partial order of partial orders”. This,
however, does not translate into a tree graph, meaning that the growth process of non-interactng
spins is “memoryless”, since identical configurations on the same causet can be the result of very
different spin growth dynamics. Despite this spin model is “impermeable” to the ordering of space-
time elements, information regarding the sequential growth of a chosen causet can be extracted by
means of sums over the spin configurations allowed on its elements. For instance, the probability
of growing a given causet is the sum of the probabilities of each spin configuration allowed on its
elements, times the number of natural labellings.

In essence, the use of MRFs allows to tell the probability of a certain partial order / causet by
means of one of these random fields alone, either interacting or non-interacting. Because the state
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space of these MRF on causets is arbitrary, a multitude of spin systems whose characteristics are
expression of the properties of the underlying causet can be devised. Their properties remain to
be explored, as well as determining which of them have physical significance. The Hammersley-
Clifford theorem, which marries MRFs to the Gibbs distribution of statistical mechanics, makes
us presume that it should be possible to model spin systems on causet which obey the Bose-
Einstein and the Fermi-Dirac statistics, which descend from the Gibbs distribution, and tie them
to the growth dynamics by suitably defining their state space. A similar result would prove to be
particularly meaningful, since, in an ideally unified picture, matter is expected to spontaneously
emerge from the discretum, e.g. as the result of a dynamical property, and not as the result of a
“third-party” field imposed on a discrete background spacetime.

Moreover, the Hammersley-Clifford theorem implies that a thermodynamical study of spin systems
on causets is feasible. With regard to this, the first and most obvious questions are: What is the
entropy of a causet spin system? What is the energy of a causet spin system? Can we relate
the two in an expression that leads to the first law of black hole thermodynamics? Can we relate
the energy functional of an interacting spin system to the Einstein-Hilbert action? Determining
an action principle (perhaps something analogous to Schwinger’s quantum action principle) would
very likely bring us closer to solving the problem of the cosmological constant, which has already
been addressed successfully with the causal set approach (see [5]), despite only in heuristic terms.
It also remains to be seen if the dynamics of labelled causal sets, which are the result of a sum over
histories, actually produce a quantum behaviour of any sort, such as interference between paths.

The study of these new aspects of causet dynamics, hereby merely sketched, will require further
work.
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