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Introduction

Why an Alternative to Inflationary Models
The aim of this dissertation is to describe an alternative model to the

standard Big Bang picture for what concerns the history of the universe with
special emphasis towards its early stages. From where does this idea derive?
The first concept that has captivated me and captured my interest is the notion
of Big Bang in the inflationary scenario. Indeed its definition says that it
represents a physical singularity of space-time in which the energy density and
temperature diverge, are infinite. Moreover it is assumed to be the moment in
which time has begun to flow, t = 0. The first question that raises in the human
mind usually after facing such a definition is: "..and what about before?" Well,
the cyclic model of the universe addresses this problem in its own way, since
as the name suggests, there is not such a moment in which the "universal
clock" starts running for the first time, but just a succession of cycles with
the starting point coinciding with the end of the previous one. Philosophically
speaking, it furnish a more acceptable view for what concerns the time with
respect to the inflationary scenario since, to be honest the problem of an initial
set remains, but in the cyclic case is due more to the fact that the human mind
finds difficult to accept the idea of infinity and subconsciously needs to define
a beginning and an end to everything.

More important, physically speaking, this alternative model includes the
Big Bang event, redefining it and describing it as the transition phase between
two cycles, with the fundamental difference from inflation that in this picture
the temperature and the energy density remains finite and do not diverge.
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Another important aspect to keep in count is the fact that, even if inflation
has proved thanks to observational evidences in the recent past to be a model
with a truly strong predictive power, it requires a precise fine tuning of certain
cosmological parameters in order to work. There is not a physical reason for
this parameters to have such values. Henceforth, the scientific method runs
faster and it turns out to be usually much more productive if there are two
competing models that try to explain the same physical situation. In addition
to this, the presence of an alternative explanation to the same experimental
results allows to understand if the owned data are sufficient in order to declare
the plausibility of a theory. As a matter of fact, the cyclic model, supposing
at least the same level of fine tuning as inflation, satisfies the same observa-
tional constraints as the standard picture. Therefore as it will be showed and
discussed later, observational data available nowadays are not enough to rule
out one of the two models, or at least they leave the discussion still open.

Furthermore, the discovery of Dark Energy and its effects on the evolution
of the universe has shaken a little the inflationary picture. In particular, in
the standard scenario the cosmic history appeared to be set once the proper-
ties of the scalar field causing the initial accelerated expansion where defined,
together with its decays product (radiation and matter). Hence the universe
should have just undergone a series of different phases of decelerated expan-
sion after inflation, characterized by the component dominating each period.
Instead with the apparition of a phase dominated by Dark Energy, since it can
be thought as an element with "negative pressure", has revealed that at the
present day the universe is in a period of accelerated expansion. Therefore in
order to accommodate the observations with the standard scenario, it is ne-
cessary to find a physical explanation linking the predicted part of the history
of the universe with the Dark Energy dominated phase or the all picture will
seem as an assembly of different components.

On the contrary the cyclic model of the universe predicts the existence
of this period of accelerated expansion, assigning it also a precise role and a
function in order to allow to the model to work. However it must be noticed
that the cyclic picture has been developed after the discovery of Dark Energy
and hence it is natural and necessary that the model furnishes a coherent
explanation for it. Nevertheless it surely represents an interesting solution to
an unsolved problem of the inflationary scenario as we will see later.

As a matter of fact, the fascinating feature of the cyclic theory, together
with the fact already mentioned that it allows to go infinitely backwards in
time, is that it tries to explain and include all the history of the universe in a
single frame where the transition from one part of it to another is justified by
physical reasons. In particular, effectively speaking, the connections between
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phases and the evolution of the cycle is determined by the behaviour of one
scalar field during time and its potential.

In the second chapter of the dissertation it will be presented a quick sum-
mary of the standard inflationary picture. Firstly we will introduce the so
called "cosmological puzzle", a set of problems with regards to the early history
of the universe and how inflation solves them. Later it will follow a qualitative
description of the evolution of the universe according to the standard model.

In the same fashion but entering more deeply into mathematical details, the
third chapter introduces the concept of cyclic universe, describing in the first
section the ideas that lead to its formulation and that lie behind its effective
form. After we will derive the equations that rule the evolution of the universe
in the cyclic picture. Consequently as did for inflation, it will described each
phases of the cycle, with particular attention to the one responsible for the
solution of the cosmological puzzle in this model. We will see that this phase
describes a period in which the universe undergoes a contraction, caused by
a particular behaviour of the scalar field potential V (ϕ). Moreover in this
chapter it will be described the particular role of the Dark Energy and its
interpretation in the cyclic universe.

The fourth chapter carries on the parallel between inflation and cyclic the-
ory focusing the attention on the evolution in the two models during the dif-
ferent phases of the main cosmological parameters with respect to the time,
like the scale factor a, the scalar field ϕ(t), the Hubble parameter H(t) and
the number of e-folds N . At the end the results will be summarized in two
separate tables.

Last but not the least, we finally face in the fifth chapter the analysis of
perturbations in both models induced by a single scalar field. This is done in
order to underline the fact that, as we will see, at the linear order the cyclic
scenario reproduces the same results about the spectrum as the ones obtained
by a computation in the inflationary frame. Indeed, also the alternative model
retrieves a scale invariant spectrum even if there are some important subtleties
with the single scalar field formulation which require some kind of expedient
like the introduction of a second scalar field in order to explicit the duality
between the two models. However this argument will be faced and discussed
qualitatively also in the conclusions.

In the last section of the perturbations chapter we introduce a short analysis
of the tensor modes perturbations, which turn out to be really important
since the two models give different predictions about their spectrum. Indeed
for what concerns inflation the spectrum of the gravitational waves produced
during the accelerating stage just after the Big Bang is scale invariant, while
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on the contrary in the cyclic model the spectrum of the same produced during
the contracting phase results to be blue-shifted.

In the conclusive chapter we will analyse the results obtained, particularly
focusing the attention on the problems and the proposed solutions in the cyclic
background, in order to recover the successful predictions of the inflationary
picture.
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Inflationary Model Recap

2.1 Flatness and Horizon Problems
Before starting the description of the cyclic model of the universe it is

useful to review the standard inflationary scenario in order to allow later quick
comparisons between the two models. The main reason for which it has been
introduced the idea of inflation in cosmology is that it represents an effective
solution to the cosmological puzzle composed by the flatness and homogeneity-
isotropy problems.

The flatness problem is related to the fact that if today the universe that
we observe is close to be flat, the critical energy density observed is Ω0 ∼ 1,
then it must have been much closer to be flat in the past. This because writing
the Hubble equation in terms of the critical energy density at any time and
manipulating it in order to emphasize the relation between spatial curvature
and Ω as

H2 = H2Ω− K

a2

ΩK ≡ Ω− 1 =
K

a2H2
(2.1.1)

where the critical energy density contains contributions from matter or radia-
tion, it is possible to see that if Ω = 1 then also the right hand side of the
equation will be zero. Therefore the situation will be stationary but if on the
contrary ΩK 6= 0 then the value of Ω will evolve with time. Indeed, considering
for example an universe filled with matter or radiation it’s easy to find from
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the standard Friedmann equations that:

am ∼ t2/3 and aγ ∼ t1/2

=⇒ ΩK ≡ |Ω− 1| ∼ t2/3 or ∼ t (2.1.2)

Just to give an idea of the orders of magnitude we are talking about, if we
assume that the time of which experimental observations are made is approx-
imately t ≈ 1017 s, the time at which it has occurred the matter-radiation
equivalence is teq ≈ 1011 s and that the Planck time at which the initial con-
ditions were set is tpl ≈ 10−43 s, we obtain an infinitesimal upper bound for ΩK :

ΩK(tpl) < 10−61 if ΩK(t0) < 0.02 . (2.1.3)
The homogeneity and isotropy problem goes also under the name of hori-

zon problem because it is closely related with the concept of the comoving
particle horizon. Indeed, knowing that at recombination the particle horizon
was roughly η∗ ∼ 200 Mpc and that the today horizon is η0 ∼ 14 Gpc, it is
clear that the surface of last scattering that is observed nowadays spans lots
of regions that were casually disconnected at recombination. Nevertheless the
CMB spectrum is homogeneous and isotropic to one part in 104 even though
no casual physical process could have made regions so homogeneous. It can be
estimated that the universe seen today is composed of 1078 regions that were
casually disconnected at the Planck time and yet the distribution of matter was
very smooth over this whole region, in other words, assuming that gravity was
always attractive and hence was decelerating the expansion, the homogeneity
scale was always larger than the causality scale. Moreover it is assumed, with
the support of General Relativity, that inhomogeneity cannot be dissolved by
expansion.

2.2 The Solution represented by Inflation
An important parameter to study in order to find an explanation to this

problem is the comoving Hubble radius defined by 1/aH and related to the
particle horizon by the relation

η =

∫ a0

0

da

a

1

aH
=

∫ a0

0

d lna
1

aH
(2.2.1)

that, while the particle horizon tells us whether two points were ever in casual
contact, it tell us whether two points are in casual contact at a time/scale
factor a.
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Since the modes that are experimentally observed today are super-horizon
modes entering the horizon, the stratagem that can help us in recovering the
causality relation between the data collected is to realize that if the comoving
Hubble radius was larger during the setting of the initial conditions and then
decreased in size, even if now the comoving Hubble radius is much smaller
than in the past, the comoving particle horizon can be still very large:

η0 >>
1

a0H0

(2.2.2)

with most of its contribution coming from early times. Then, if the comoving
Hubble radius decreases while the comoving particle horizon keeps increasing
linearly, regions that at the beginning were causally connected become casually
disconnected. Physically this means that wavelengths that were sub-horizon
turn into super-horizon modes.

The only way in which it is possible to have the comoving Hubble radius
decreasing with time is to have ȧ increasing with time and then ä > 0. From
the acceleration Friedmann equation we can understand which features must
own the kind of matter dominating this phase of cosmic evolution:

ä

a
= −4πG

3
(ρ+ 3p) =⇒ p < −ρ

3
i.e. w < −1

3
(2.2.3)

Therefore this kind of matter must violate the strong energy condition
ρ + 3p > 0, for example a cosmological constant that implies a de Sitter
universe, which expands exponentially quickly. However the exact de Sitter
solution would spoil the results obtained by the standard decelerating cosmo-
logy. Consequently the inflation, this stage of accelerated expansion, must last
enough to solve the cosmological puzzle but also end enough quickly with a
smooth transition to the decelerating phase as it is shown in the graphic in
the next page.

Accordingly to this fact, the question that immediately arises now is how
long does inflation last? In cosmology instead of using time in order to express
the length of a phase of the universe is useful to introduce the concept of e-fold,
which corresponds to the interval of proper time necessary for a patch of space
to increase its dimension of a factor of e. Doing the approximation that the
main contribution to 1/aH is given by the radiation period and hence assum-
ing that from the end of inflation until now the universe has been radiation
dominated, let’s compare the comoving Hubble radius at the two extremes of
the interval:

since H ∼ 1

a2
and

a0H0

aeHe

=
ae
a0

=⇒ 1

aeHe

=
ae
a0

1

a0H0

=
T0

Tinf

1

a0H0

(2.2.4)
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Figure 2.1: ȧ(t) with graceful exit from inflationary phase [8]

where ae is the scale factor at the end of inflation and given that in the radiation
era a ∼ 1/T . Tinf is the energy scale associated to the temperature of the
universe at the start of the Big Bang picture. With the proper values for the
temperatures we obtain the relation

1

aeHe

≈ 10−28 1

a0H0

(2.2.5)

which shows that at the end of inflation the visible universe was 28 orders of
magnitude smaller than nowadays.

The minimal requirement to solve the horizon problem is that all the largest
scales observed today were sub-horizon at the start of inflation. For this reason
the comoving Hubble radius has to decrease by at least 28 orders of magnitude
during the inflation. Assuming that, since the Hubble parameter is constant in
the de Sitter approximation, H is constant, a must then grow by 28 orders of
magnitude during inflation. In the de Sitter universe the scale factor depends
exponentially on the time t:

a(ts) = aee
H(ts−te) ts < te (2.2.6)

then the number of e-foldings of the scale factor during the acceleration phase
is: Ni ' ln(1028) ∼ 64.
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2.3 Cosmic Evolution
The standard way in order to obtain this superluminal phase of expansion

after the Big Bang, interpreted as the beginning of space and time with infinite
temperature and energy density, is to introduce a scalar field called the inflaton
with a proper scalar potential V (ϕ). This potential must satisfy the condition
to be approximately flat (slow rolling of the field) for an interval of values of
ϕ in which the kinetic energy is negligible with respect to the potential. As
we will see better later for the cyclic universe, this situation implies that since
for a scalar field we have:

ρϕ =
1

2
ϕ̇2 + V (ϕ) and pϕ =

1

2
ϕ̇2 − V (ϕ) (2.3.1)

the equation of state gives w ∼ −1 (negative pressure) which makes the inflaton
act like a cosmological constant on the "plateu" of the potential, in other words
accelerates the expansion.

Figure 2.2: V (ϕ) [12]

The height of the plateu determines the rapi-
dity of the acceleration, and it is chosen in such
a way that the universe doubles its size every
10−35 s.

The inflaton comes since on the plateu, it be-
haves like a cosmological constant with equation
of state w = −1. Using the continuity equation
derived from the Bianchi Identities:

dρ

dt
= −3

ȧ

a
(1 + w)ρ (2.3.2)

we see that every energy term scales as:

=⇒ ρ(a) = ρ0

(
a

a0

)−3(1+w)

(2.3.3)

which justifies the fact that just after the Big Bang the first Friedmann equa-
tion describing the emerging universes has the form:

H2 =
1

3

[
ρm
a3

+
ργ
a4

+
σ2

a6
+ ...ρI

]
− k

a2
(2.3.4)

where ρm and ργ are the matter and radiation energy densities at the beginning
of inflation (a = 1); σ2 measures the anisotropy and ρI is the energy density
associated with the inflaton. The dots refer to other possible contributes such
as the energy associated with inhomogeneous spatially varying fields and k is
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the spatial curvature. Immediately we notice that the inflaton’s contribute is
approximately a-independent. This implies that whilst all other contributes
shrink as a increases, ρI remains almost constant (ϕ is on the plateu and
therefore w ≈ −1 fo the inflaton). Therefore this explains why after the Big
Bang the universe evolution is determined by the inflaton and depends on its
decay products since all others contributions, including the anisotropy and the
spatial curvature, are tending to zero as the the universe expands. Hence a
complex multivariable initial state which needed a precise fine tuning in order
to solve the cosmological puzzle, after a sufficient interval of time of accelerated
expansion, is converted into a much more simpler state of the space-time, on
which, applying the conditions of being homogeneous, isotropic and spatially
flat, is easier and more natural.

The graceful exit previously mentioned is gained through a smooth falling
of the inflaton into a potential well at the end of the "plateu". As ϕ reaches
the bottom, it starts oscillating around the minimum and hence decaying into
ordinary matter and radiation.

The next phase is then the radiation dominated epoch in which the universe
starts to undergo a decelerated expansion, called in this way since the cosmic
evolution of the universe is determined by ργ. Indeed from eq. (2.3.3) together
with the fact that for the radiation we have w = −1/3 it is clear that at
the beginning it is the radiation component the one dominating since it scales
as ρ ∝ a−4, while the matter component having equation of state w = 0
(pressureless) goes as ρ ∝ a−3.

The radiation-matter equality occurs when ργ = ρm when the universe was
approximately 50000 years old and represents the starting point of the matter
dominated era, which is still a decelerated expanding phase.

Finally, the last turning point, occurring approximately when the universe
was 9.65 billions years old, is the matter-Dark Energy equality (ρm = ρde)
since when the cosmological evolution of the universe has been dominated by
this cosmological constant (w = −1 → ρde = const). This phase is different
from the other two since it is an accelerating expanding phase of the universe.
Moreover from an inflationary cosmology point of view the Dark Energy rep-
resents an unpredicted surprise since in the standard model it has no know
specific role. Indeed, until its discovery from observational evidences like large
scale structures and distant supernovae, it was not supposed to exist, with the
belief that the universe would have still continued to expand decelerating. The
only way in which it is possible to reconcile the existence of the Dark Energy
with the standard inflationary model is to postulate that the inflaton didn’t
decay just in a combination of matter and radiation but in a mix of matter,
radiation and Dark Energy. This requires a fine tuning of the respective pro-
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portions for each component in order to save the theory. Instead as we will
see later, in the cyclic model the D.E. dominated phase has a specific role in
the cosmic evolution. Even it must be noted that the elaboration of the cyclic
theory was started after the discovery of D.E. and the same level of fine tuning
is necessary, especially in the potential of the equivalent of the inflaton, to
make the theory work.

The future in the inflationary model relies on the nature of D.E.:

• if D.E. is a cosmological constant then the accelerated expansion will go
on forever and the universe will become colder and colder with the total
energy density falling towards zero;

• if D.E. is some sort of quintessence there are different alternatives, indeed
it may decay into something else and then put an end to the accelerated
expansion.
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Cyclic Model of the Universe

3.1 Main Ideas of a Cyclic Universe
The cyclic theory of the universe starts to differ from the standard infla-

tionary models since from the basic concepts, for example, giving a radically
new interpretation of the idea of Big Bang. Indeed, while in the inflationary
models the Big Bang is seen as the singularity representing the beginning of
space and time, in the cyclic model it is nothing more than a transition phase
between the end of a cycle of the universe and the starting point of a new one.

Another obvious point is that as the name suggests, the evolution of the
universe is cyclic and not "linear" as in the inflationary case.

The solutions to the problems of the homogeneity, isotropy and flatness
of the universe and the generation of a nearly scale-invariant spectrum of
density fluctuations are furnished in the cyclic model by the idea of a slow
contraction phase preceding the Big Crunch, called ekpyrotic phase, in which
as it will be explained in details later, the equation of state gives w >> 1
(where w = p/ρ is the ratio of pressure to energy density). This represents
one of the main differences respect the inflationary models because while in
the latter what we observe today is a consequence of something happened in a
period of accelerated expansion (ä > 0) just after the Big Bang, in the cyclic
universe the experimental observations performed nowadays are the result of
what happened in a slow contracting phase before the end of the previous cycle
of the universe.

A very useful aspect is the geometrical visualization and dynamical expla-
nation for a cyclic model that can be found in string theory (Horava-Witten
and heterotic M-theory) where it is presented the idea of two 3-dimensional
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colliding branes (orbifold planes) separated by a "small" gap in an hidden
extra-dimension. All the process can be described for what concerns cosmo-
logical aspects by an effective 5d bulk space-time picture (3-dimensional branes,
extra-dimension and time) even if the M-theory is 10-dimensional, since the
other six hidden dimensions do not play an active role. The dynamical idea of
the cyclic universe consists then in the periodically slightly inelastic collision
of the two branes along the extra spatial dimension which produces each time
new matter and new radiation. Our world lies on one of the two branes and
the only interaction allowed with the particles present on the other brane is
the gravitational one; strong and electroweak interactions are forbidden. In
other words, all the matter and forces, except for gravity that can propagate
on the whole spacetime, are localized on the 3-dimensional branes.

Figure 3.1: the brane-world picture of the universe [7]

Why do the branes collide? The cyclic model postulates the existence of an
attractive force between them that in the literature is due to a potential V (ϕ)
where ϕ is a scalar field describing the distance of the two branes along the
extra dimension. This potential tends to be flat when the branes are far apart
from each other, corresponding to a very weak attraction force. However, as
the distance along the extra dimension decreases, the potential as it will be
better seen later, decreases almost exponentially, reaching a negative minimum
value, in such a way that the attraction force becomes stronger and stronger
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until it is reached the Big Crunch corresponding to ϕ→ −∞. This also shows
that, as said before, in the cyclic model the Big Bang represents a physical
event and not a mysterious moment of creation. Indeed, since the collision
only occurs in the extra dimension between the branes the singularity in this
case means only the momentarily disappearance of that dimension while the
branes exist before, during and after the collision. This inter-brane potential
energy density is identified in the cyclic model with the Dark Energy, that
as observed nowadays represents approximately the 70% of the critical energy
density and plays in this model an essential role in restoring the universe to
a nearly vacuous state. This aspect is fundamental in order for the cyclic
solution to become an attractor that means that the cycling is stable.

Last interesting point in this brief review of the string theory explanation
of the cyclic universe is about density perturbations production. Indeed, due
to the presence of quantum fluctuations, when the branes are close to col-
lide they are not perfectly flat and smooth everywhere, but instead they are
characterised by ripples and wrinkles. This implies that they do not collide
everywhere exactly at the same time, but instead there will be zones colliding
a little bit earlier and so they will have more time to expand and cool down.
On the other side there will be regions colliding slightly later and this means
they will be to some extent hotter than the average. Therefore this provide
a natural explanation within the model for how temperature fluctuations are
produced.

Finally, the introduction of the potential allows to switch to a 4-dimensional
effective theory in which all the computations and results concerning the tar-
get of this dissertation are much easier to obtain. If it is assumed that the
background universe is spatially flat then the resulting metric is

ds2 = −dt2 + a2(t)δijdx
idxj (3.1.1)

where a(t)2 is the scale factor.

3.2 Cosmic Evolution in a Cyclic Universe
The main character of the cosmic evolution in a cyclic model of the universe

is, as it was anticipated earlier, the scalar field ϕ called in the literature as
radion (the respective one of the inflaton in inflationary cosmology) and its
potential V (ϕ). It is important to notice that whilst the inflaton governs only
the beginning of the cosmic evolution in the standard theory, here the scalar
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field is the engine that drives the whole scenario. Assuming the radion to be
homogeneous, in other words it does not depend on the spatial coordinates
ϕ(t, ~x)→ ϕ(t), its Lagrangian density is (adopting from now on units in which
8πG = 1):

L = −1

2
gµν∂µϕ∂νϕ− V (ϕ) (3.2.1)

From the definition of the energy-momentum tensor and from the action for
the radion:

Tµν = −2
1√
−g

δS

δgµν
S = −

∫
d4x
√
−g
[

1

2
gµν∂µϕ∂νϕ+ V (ϕ)

]
(3.2.2)

and varying the action with respect to the inverse metric:

δS = −1

2

∫
d4x
√
−g
[
∂µϕ∂νϕ− gµν

(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)]
δgµν (3.2.3)

we obtain substituting in (3.2.2) the form of the energy momentum tensor for
the radion:

Tµν = ∂µϕ∂νϕ− gµν
(

1

2
gσρ∂σϕ∂ρϕ+ V (ϕ)

)
. (3.2.4)

If we consider the universe filled by a perfect fluid we know that the energy-
momentum tensor assumes the form Tµν = diag (−ρ, p, p, p) and since the
spatial derivatives disappear cause of the homogeneity assumption, the energy
density ρ and the pressure p are easily obtained as a function of ϕ:

ρϕ =
1

2
ϕ̇2 + V (ϕ) pϕ =

1

2
ϕ̇2 − V (ϕ) (3.2.5)

Then it is now possible to write down the equation of state for the radion field:

w =

1

2
ϕ̇2 − V (ϕ)

1

2
ϕ̇2 + V (ϕ)

(3.2.6)

from which it immediate to see that all the cosmological evolution in the cyclic
model depends on the form of V (ϕ). One of the easiest form for the potential
that can be chosen in order to make the model work and that is motivated my
string theory is:

V (ϕ) = V0

(
1− e−cϕ

)
F (ϕ) (3.2.7)
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where V0 is the value of today’s Dark Energy density, c is positive and typically
c >> 1. The precise form of F (ϕ) has not cosmological interest as long as it
cuts off the steep exponential fall-off of the potential as ϕ goes from 0 to −∞.
As we can see in the next image, in this case the steep decline cuts off near a
negative minimum Vend = V (ϕend). Indeed, as it will be show few steps later,
the value of the potential after having passed Vend is no more relevant since in
the equation of state will be dominated by the kinetic term. In order to start
the description of the cosmic evolution let’s consider the full action describing
also gravity, radiation and matter together with the scalar field ϕ:

S =

∫
d4x
√
−g
(

1

2
R− 1

2
(∂ϕ)2 − V (ϕ)− ξ4(ϕ)(ρm + ργ)

)
(3.2.8)

where R is the Ricci scalar, ξ(ϕ) is the coupling constant between ϕ and the
matter ρm and radiation ργ energy densities. The reason for the existence
of this coupling will be clear later. Then we can now obtain the equation of
motion varying the action with respect to the inverse of the metric δgµν so
that δS (δgµν) = 0 and:

δS =
1

2

∫
d4x
√
−g
[
Rµν − ∂µϕ∂νϕ− gµν

(
1

2
R+

1

2
ϕ̇2 − V − ξ4(ρm + ργ)

)]
δgµν

=⇒ Rµν − ∂µϕ∂νϕ− gµν
(

1

2
R+

1

2
ϕ̇2 − V − ξ4(ρm + ργ)

)
= 0. (3.2.9)

Computing for example the time-time component of the equation and knowing
that for a spatially flat FRW metric we have

R = 6

[
ä

a
+

(
ȧ

a

)2
]

R00 = −3
ä

a
Rij = δij

(
äa+ 2ȧ2

)
(3.2.10)

it is obtained the first Friedmann equation:

H2 =
1

3

(
1

2
ϕ̇2 + V + ξ4ργ + ξ4ρm

)
(3.2.11)

From the spatial component of the equation follows also the acceleration equa-
tion:

ä

a
= −1

3

(
ϕ̇2 − V + ξ4ργ +

1

2
ξ4ρm

)
(3.2.12)

where a(t) is the scale factor and H = ȧ/a is the Hubble parameter and the
dot represents a time derivative. The fluid equation of motion can be obtained
by the Bianchi’s identity:

â
dρi
dâ

= a
∂ρi
∂a

+
ξ

ξ′
∂ρi
∂ϕi

= −3(ρi + pi), i = m, γ and â = ξa. (3.2.13)
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The equation of motion for the radion can always be obtained through the
variation of the action with respect to ϕ paying attention to a couple of facts:

• ργ ∼ (aξ)−4 −→ ξ4ργ does not depend on ϕ and disappears in the
variation;

• since gµν = diag [−1, a2, a2, a2] then
√
−g = a3

Then from the action (3.2.8) we have:

δS =

∫
d4x a3

(
ϕ̇δϕ̇− V,ϕ δϕ− 4 ξ3ξ,ϕ ρmδϕ

)
(3.2.14)

where integrating by part the first term and remembering that since the varia-
tion at the extremes of integration is set δt = 0 then

∫
d4x d

dt
(δϕa3ϕ̇) = 0 and

we have:
δS =

∫
d4x

[
− d

dt

(
a3ϕ̇
)
− V,ϕ− 4 ξ3ξ,ϕ ρm

]
δϕ (3.2.15)

and from the immediate equality
d

dt
(a3ϕ̇) = 3a3Hϕ̇+ a3ϕ̈ we obtain

ϕ̈+ 3Hϕ̇ = −V,ϕ− 4 ξ3ξ,ϕ ρm (3.2.16)

the desired equation of motion. Finally in this graphic it is shown the evolution
of the potential with respect to the radion field:

Figure 3.2: V (ϕ) and the stages of one cycle of the universe [9]
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3.2.1 Phases of the Cycle: Dark Energy Period

In the next chapter each single phase will be analysed in details but in
order to get an idea of what is going on is useful to go through a cycle just
using words to grasp the main features of each step.

A good starting point is the nowadays situation that in the figure 3.2 is
represented by the filled black circle. At t0 the universe is in an epoch domi-
nated by Dark Energy. This in the cyclic model is identified with the radion
potential that as we can see has a positive and almost constant value, what
is called a plateu. Due to this particular situation and as consequence of the
previous phase (radiation-matter) the kinetic energy term is very small com-
pared to the potential one V (ϕ) >> 1

2
ϕ̇2 and then from equation (3.2.6) it

is immediate to see that w ∼ −1 and from the acceleration equation in this
phase that:

ä

a
= −1

3

(
ϕ̇2 − V (ϕ)

)
−→ ä > 0 (3.2.17)

it is a phase of cosmic acceleration. However it is called a period of slow
acceleration since the universe needs 15 billions of years to double its size
instead of the 10−35s in the inflationary phase.

This period it is estimated to last for trillions of years, since its importance
derives from the fact that it allows to restore flatness and homogeneity in the
universe emptying it from all the matter and radiation. Actually at the end
of this phase the universe has returned to a nearly vacuous state, where there
is less than one particle per horizon. This solves the problem of entropy that
has afflicted all the previous models of cyclic universe. Indeed in these ones it
has been computed that the entropy density rose from one cycle to the next
which would have been then longer than the previous, implying that going
backwards in time it was impossible to avoid the existence of an initial singu-
larity like in the inflationary models. On the contrary in our model, even if
it is still true that the entropy rises from cycle to cycle, the physical entropy
density (the entropy per proper volume, measurable inside the observer’s hori-
zon) is expanded away each cycle equalizing the length of the expansion and
contraction history of on cycle and the next.

3.2.2 Phases of the Cycle: Ekpyrotic Contraction

Due to the very small slope, the field ϕ rolls down the plateu very slowly
until the potential becomes zero at ϕ = 0, since when the evolution becomes
dominate by the kinetic term which decelerates the expansion. Meanwhile the
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potential keeps falling below the zero and the 1
2
ϕ̇2 keeps increasing until the

expansion stops (H = 0) as we see from the simplified version of the Friedmann
equations:

H2 =
1

3

(
1

2
ϕ̇2 + V (ϕ)

)
and

ä

a
= −1

3

(
ϕ̇2 − V (ϕ)

)
(3.2.18)

and the universe begins to contract (ä < 0). Moreover we can see from eq.
(3.2.6) that in this phase w >> 1. At the beginning, around V (ϕ) ∼ 0, the
contraction is very slow, going on for billions of years.

As it will be accurately described in a specific section later, this is exactly
the period in which the nearly scale invariant spectrum of perturbations ob-
served in the next cycle is produced by spatial variations caused by quantum
fluctuations. Indeed the spatial variations will imply slightly different colli-
sion times for some zones of the brane as written in the end of the chapter’s
introduction, which turn into energy density and temperature fluctuations af-
ter the bounce. To make a comparison, while in the inflationary model the
property of scale invariance is given by a having during the acceleration phase
H−1 nearly costant and the scale factor a expanding much more quickly, in
the cyclic model it is obtained by having during the ekpyrotic phase a nearly
static and H−1 rapidly contracting.

Solutions to Homogeneity, Isotropy and Flatness Problems

It is during the Ekpyrotic Contraction phase that the cosmological puzzle
is solved in the cyclic model of the universe. Let’s consider again eq. (2.3.4),
substituting in this case the energy density of the inflaton ρI with the addition
of a cosmological constant Λ:

H2 =
1

3

[
ρm
a3

+
ργ
a4

+
σ2

a6
+ ...Λ

]
− k

a2
(3.2.19)

During a phase in which the universe is contracting, the cosmological constant
soon becomes irrelevant with respect to the terms which are scaling as some
negative power of the scale factor. Indeed the term that will dominate is the
anisotropy one which goes as∝ a−6. Analysing more carefully the situation one
discovers that the universe does not just become more and more anisotropic,
but also grows a large anisotropic spatial curvature and it enters a phase called
of chaotic mixmaster behaviour as it gets closer to the Big Bounce. The mix-
master behaviour produces severe inhomogeneities, and the universe undergoes
stretching and contracting phases in different directions which extremely vary
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by slightly changing the initial conditions. This represents exactly the con-
trary of a solution to the cosmological puzzle, an universe that is anisotropic,
curved and inhomogeneous as it approaches the Big Crunch.

Whereas, the situation and its evolution drastically changes if instead of
an energy density component as the cosmological constant characterized by
an equation of state w ≈ −1 we introduce one with w >> 1. This is what
happens in the Ekpyrotic phase thanks to the particular behaviour of the
radion potential. Indeed the energy term relative to the scalar field goes as
∝ a−3(1+w) where 3(1 + w) > 6 and hence it grows faster than the anisotropy
term (and all the others). Therefore, as in the inflation case, the longer the
contraction phase lasts, the flatter and the more homogeneous and isotropic
the universe is as it approaches the Big Bounce. In other words a contracting
phase with w >> 1 has the same effects in homogenizing, making flat and
isotropic the universe as an accelerated expanding phase with w < −1/3.

3.2.3 Phases of the Cycle: Big Crunch and Big Bounce

The radion reaches then the bottom of the potential well at Vend but given
the exponential-steep form of the potential and the blueshift of the kinetic
energy of ϕ due to the previous contraction phase, the minimum is quickly
surpassed. This phase is characterized by an equation of state w ≈ 1 having
the 1/2ϕ̇2 term that keeps increasing since the the conversion into it of the
gravitational energy released by the contraction of the scale factor a. The field
then speeds up towards −∞ and reaches it in a finite time.

Here is the point in which the coupling factor ξ(ϕ) plays its crucial role.
Indeed as the a → 0 the kinetic term diverges but thanks to the coupling
with matter and radiation, at the Crunch and during the Bounce, the energy
density and the temperature are finite even if they are very high. This since
at the Bounce part of the scalar kinetic energy of the radion is converted into
radiation and matter and the universe reheats.

Immediately after the Bounce there is an expanding phase still dominated
by kinetic energy since for a small scale factor the the term dominating in the
Friedmann equations is the one with the lowest exponent for a. In fact, from
continuity equation we have that:

ρi ∝ a−3(1 +wi) and wϕ ≈ 1 =⇒ ρϕ ∝ a−6 (3.2.20)

that shows how the radion energy density prevails on the other contributes.
In the middle of this brief phase there is also a much more shorter w >> 1
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phase which has no important influence on the cosmic evolution. As a result
of the expansion of the universe and of the presence of matter and radiation,
the kinetic energy of ϕ is redshifted and soon the radiation comes to dominate
approximately 10−25s after the Big Bang.

3.2.4 Phases of the Cycle: Radiation and Matter Period

The domination of ργ over the other contributes causes the breaking of the
time-reversal symmetry, since after the Bounce and until now the motion has
been exactly the time reverse of contraction phase driven by the kinetic energy
of ϕ. From the continuity equation we have that ργ ∝ a−4 and then from this
phase the evolution is the same as the one described in the inflationary model.
In the same way indeed the radiation dominated phase ends when it reached
the matter-radiation equality characterised by ργ = ρm after which begins the
matter period.

Furthermore the cosmic evolution in both these phases is a decelerated
expansion as in the standard inflationary theory. Finally, the potential of the
radion field comes to dominate again, and another cycle starts again with the
accelerated expansion phase.
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Parameters Evolution Analysis

In this chapter we will analyse in details the evolution of the fundamental
parameters describing each phase of the cosmic history of the universe. As
did before, it is useful to start with a quick review of them in the inflationary
model, in order to set the basis for a comparison and an operative method.

4.1 Inflation Analysis
As it has been mentioned before, in the standard model of cosmology,

immediately after the Big Bang there is a period of acceleration caused by the
domination of the inflaton scalar field over the other components. Therefore
the Friedmann equations are the same of (3.2.18) and in order to obtain the
equation of motion for ϕ is enough to take the time derivative of the first and
substitute in the acceleration equation. Finally using the definition of pressure
and energy density for a scalar field defined in eq. (3.2.5) we obtain something
very similar to what computed in the case of the radion:

ϕ̈+ 3Hϕ̇+ V,ϕ = 0 (4.1.1)

The potential described in the introduction and represented in the figure 2.2
describes the behaviour of a slow-rolling scalar field. Indeed the inflaton is
directed towards the potential well but the plateu shape of the potential entails
that it does it very slowly. Translating this concept in mathematical formalism
corresponds with imposing these two conditions:

• |ϕ̈| << 3Hϕ̇, the acceleration of the scalar field is negligible compared
to the friction term;
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• ϕ̇2 << V (ϕ), the kinetic energy is much more smaller than the potential.

Applying these two conditions to the equation of motion and to the first Fried-
mann equation we obtain:

3Hϕ̇+ V,ϕ' 0 and H2 ' 1

3
V (ϕ) (4.1.2)

which together, knowing that H =
d ln a

dt
, allow us to find:

d ln a

dt
= ϕ̇

d ln a

dϕ
' −V,ϕ

3H

d ln a

dϕ
=⇒ V ' 3H2 = −V,ϕ

d ln a

dϕ
(4.1.3)

that integrated gives the dependence of the scale factor a during the inflation-
ary phase from the scalar field:∫ ϕ

ϕi

− V

V,ϕ̄
dϕ̄ =

∫ a

ai

d ln ā =⇒ a(ϕ) ' ai exp

(∫ ϕi

ϕ

V

V,ϕ̄
dϕ̄

)
(4.1.4)

This exponential relation is valid only if both conditions mentioned before are
satisfied; this depends on the specific form of the potential, hence it is useful
to rewrite them using the relations (4.1.2) as constraints on V (ϕ):

|ϕ̇2| << |V | =⇒ 1

|V |

(
V,ϕ
3H

)2

<< 1 =⇒
(
V,ϕ
V

)2

<< 1 (4.1.5)

|ϕ̈| << 3Hϕ̇ =⇒
∣∣∣∣ ϕ̇

3H
V,ϕϕ

∣∣∣∣ << 3Hϕ̇ =⇒
∣∣∣∣ V,ϕϕV

∣∣∣∣ << 1

These are fulfilled for example by a power-law potential of the type
V = 1

n
λϕn when |ϕ| >> 1. In addition from (4.1.2) we can immediately obtain

the time dependence of the scale factor:

H '
√

1

3
V (ϕ) =⇒ H =

ȧ

a
=

√
λ

3n
ϕ
n
2 =⇒ a(t) = a0 exp (Hϕt)

(4.1.6)
where Hϕ =

√
λ
3n
ϕ
n
2 . Therefore as the field decreases (slow-rolls), the H-term

falls down and the exponential growth ends.
The time dependence of the inflaton is easy to compute in the case n = 2

because in the slow-roll approximation the equation of motion would reduce
to: √

3λ

2
ϕ̇ϕ+ λϕ = 0 =⇒ ϕ̇ = −

√
2λ

3
(4.1.7)
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and then by simply integrating: ϕ(t) = ϕi−
√

2λ
3

(t− ti), which shows that the
value of the radion decreases linearly with the passing of time. If we define tf
as the time at which at the end of inflation the inflaton disappears (decays),
the last relation can be rewritten as

ϕ(t) =

√
2λ

3
(tf − t). (4.1.8)

Inverting the relation we see that the inflation lasts for ∆t ' tf − ti '
√

3
2λ
ϕi

considering ϕi >> ϕf .
The number of e-folds during the inflation, defined by Ninf = ln (af/ai) is

given by eq. (4.1.4) that in the case of a power-law exponential gives:

Ninf =

∫ ϕi

ϕ

1

n
ϕ̄ dϕ̄ ' 1

2n
ϕ2
i (4.1.9)

In the introduction it has been presented that, as a minimum requirement for
inflation in order to be successful, it must have lasted at least 64 e-folds. Since
non-perturbative quantum gravity effects would become relevant if the energy
density would reach the Planckian value, let’s consider in the case n = 2 the
scalar field having a mass of ∼ 1013 GeV for which the maximum value of ϕi in
order to remain in the sub-Planckian limit is ϕi ∼ 106. Inserting this value in
the previous equation we see immediately that inflation could last much and
much more than the minimum required.

Finally, the dependence of the Hubble parameter on the time follows im-
mediately from taking the time derivative of the expression of the scale factor
in eq. (4.1.6) in the case n = 2:

H =
ȧ

a
=

d

dt
(Hϕt) = Hϕ + t

d

dt
Hϕ (4.1.10)

remembering that Hϕ =
λ

3
(tf − t) and that tf =

√
3

2λ
ϕi + t, we have:

H(t) =

√
λ

6
ϕi −

λ

3
t (4.1.11)

from which we see that in this approximation, while the scale factor in the
inflationary phase expands exponentially with time, the Hubble parameter
decreases linearly with time and hence the Hubble radius H−1 increases much
more slower than a(t).
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Immediately after the end of inflation starts the radiation dominated period
in which the Friedmann equations can be simplified keeping in mind that:

• pγ = 1
3
ργ ;

• we are assuming a spatially flat universe k = 0 ;

• ργ = ρ0 (a/a0)−4 ,

and written in conformal time as:

a′ 2 =
1

3
ρ0 a

4
0 and a′′ = 0 (4.1.12)

hence it follows immediately that a(η) = a0 η and that from the definition
of conformal time dt = a(η)dη integrating we have t = a0 η

2/2, which finally
allows us to write the relations with t:

a(t) ∝ t
1
2 and H(t) =

1

2t
(4.1.13)

Consequently we can esteem the number of e-folds Nγ occurred during this
phase. Assuming that the end of inflation occurred at ti ∼ 10−34 s and the
radiation-matter equality had been at teq1 ∼ 3.16 × 1011 s (50000 years) it is
straight forward to compute:

Nγ =
1

2
ln

(
teq1
ti

)
=⇒ Nγ ' 52.4 (4.1.14)

After the radiation-matter equality the Friedmann equation are dominated
by the contribution of ρm and then remembering that:

• ρm = ρ0(a/a0)−3 ;

• k = 0 ;

• pm = 0 ,

they can be directly written in conformal time as:

a′ 2 =
1

3
ρ0 a

3
0 a and a′′ =

1

6
ρ0 a

3
0 (4.1.15)

Again it is easy to notice that in this case a(η) ∝ η2 and consequently t = a0 η
3

which allows us to write:

a(t) ∝ t
2
3 and H(t) =

2

3t
(4.1.16)
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As before we can now compute the number of e-folds Nm occurred during
the matter dominated period; considering that it has lasted until
teq2 ∼ 9.65× 109 years the relation to use is:

Nm =
2

3
ln

(
teq2
teq1

)
=⇒ Nm ' 8.1 (4.1.17)

Finally, the last known period of the cosmic evolution in the inflationary
model is the Dark Energy dominated one. This can be approximated to a de
Sitter universe characterised by:

• ρde = const ;

• k = 0 ;

• pde = −ρde, characteristic of a cosmological constant perfect fluid.

Therefore the Friedmann equations become (we can avoid in this case to use
the conformal time):

H2 =
1

3
ρde and

ä

a
=

1

3
ρde (4.1.18)

and hence:

a(t) ∝ exp(Hdet) and H(t) = Hde = const (4.1.19)

where Hde =
√
ρde/3. Moreover the number of e-folds Nde up to now, consid-

ering the current age of the universe equivalent to t0 ∼ 12.7 × 109 years, it
follows straight forward:

Nde =
t0
teq2

=⇒ Nde ' 1.43 (4.1.20)
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4.2 Cyclic Universe
Let’s start now the same analysis of the parameters evolution for the dif-

ferent phases in the cyclic model. Before facing the first phase it is useful to
remember the form of the potential:

V (ϕ) = V0

(
1− e−cϕ

)
F (ϕ) where c >> 1, (4.2.1)

and the useful equations:

ϕ̈+ 3Hϕ̇+ V,ϕ = 0

H2 =
1

3

(
1

2
ϕ̇2 + V (ϕ)

)
, (4.2.2)

which are the same obtained in the previous chapter but ignoring the coupling
term ξ(ϕ) since it becomes relevant only at the moment of the Big Crunch and
can be neglected for all the rest of the time.

4.2.1 Dark Energy Period

In this phase the radion is positive (ϕ > 0) and the potential is approxi-
mately flat, earning the epithet of "plateu" (V (ϕ) ' V0). As a consequence
of this the kinetic energy of the scalar field is negligible with respect to the
potential and therefore the Friedmann equation simplifies to:

V0 >>
1

2
ϕ̇2 =⇒ H2 ' 1

3
V0, (4.2.3)

from which we also see that H as in the de-Sitter universe can be treated as a
constant. Moreover the other eq. of (4.2.2) gives:

ϕ̈+ 3Hϕ̇ ' 0. (4.2.4)

Now, knowing that ϕ̈ = ϕ̇
dϕ̇

dϕ
, the last equation becomes

ϕ̇
dϕ̇

dϕ
+ 3Hϕ̇ = 0. (4.2.5)
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Since even if it is small on the plateu, the coordinate time derivative of the
scalar field is always different from zero, ϕ̇ 6= 0 and hence we can dividing by
it simplifying further the equation:

dϕ̇

dϕ
+ 3H ' 0 =⇒ ϕ̇ ∝ 3Hϕ (4.2.6)

which integrating gives:

=⇒
∫

1

ϕ̄
dϕ̄ = −A3H

∫
dt̄

=⇒ ln |ϕ| = −A3Ht+ A1 A,A1 = const.

=⇒ ϕ(t) = A2 exp (−3Ht) A2 = const. (4.2.7)

From this result we see that during the D.E. phase the radion decreases
exponentially with time going towards ϕ = 0. For what concerns the scale
factor dependence on time we obtain immediately from the Friedmann equation
the classical de-Sitter exponential result:

a(t) = a0 exp

(√
V0

3
t

)
. (4.2.8)

In both results we have to keep in mind that the coordinate time is negative
and going from −∞ to 0.

In order to compute the number of e-folds in this phase it is necessary to
face the problem created by the definition of time in the cyclic picture. Indeed
until now it has been assumed that the time is flowing from −∞ towards 0
during one cycle. This does not represents a problem in the other phases but
in this one yes since it has been taken for simplicity as the begging of the
cycle. Therefore, in order to compute the number of e-folds we have to change
the definition of the time-flow which now goes from t = 0 corresponding to
the previous Big Bounce to some value t during the Dark Energy dominated
phase. Hence the number of e-folds results the same as in the inflationary
corresponding case:

NDE =
tf
ti
. (4.2.9)

4.2.2 Ekpyrotic Contraction

Let’s consider now the slow contracting ekpyrotic phase in which
ϕmin < ϕ < 0. In this period the scalar field potential is dominated by the
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steep falling exponential term and can be approximated as:

V (ϕ) ' −V0 e
−cϕ (4.2.10)

so that the eq. (4.2.2) becomes

ϕ̈+ 3Hϕ̇+ cV0e
−cϕ = 0

H2 =
1

3

(
1

2
ϕ̇2 − V0e

−cϕ
)

(4.2.11)

Now assuming valid the zero-energy universe hypothesis for which the total
energy density of the universe is zero, we have that:

0 =
1

2
ϕ̇2 + V =⇒ ϕ̇ =

√
−2V =⇒

∫
dt̄ =

∫
dϕ̄

1√
2V0

e
c
2
ϕ̄ (4.2.12)

In order to fix the extremes of integration let’s notice that:

• t̄ is going from some generic negative value t to tcrunch = 0;

• ϕ̄ is going from some negative value ϕ to ϕcrunch → −∞.

Therefore integrating we obtain that:

−t =

∫ 0

t

dt̄ =

∫ −∞
ϕ

dϕ̄
1√
2V0

e
c
2
ϕ̄ =

2

c
√

2V0

e
c
2
ϕ

e
c
2
ϕ = −c

√
2V0

2
t = −

√
c2V0

2
t = −

√
V0

p
t where p =

2

c2

ϕ(t) =
2

c
ln

(√
V0

p
(−t)

)
(4.2.13)

From the result obtained we see that the radion ϕ is decreasing logarithmically
with time towards → −∞ which agrees perfectly with what has been stated
before.

Consequently we can now compute the dependence on the coordinate time
of the scale factor a. From eq. (4.2.13) we immediately obtain that:

=⇒ ϕ̇ =
2

c

1

t
and V = −V0 exp

[
2 ln

(√
V0

p
(−t)

)]
= − p

t2
(4.2.14)



4.2 Cyclic Universe 30

which using the second Friedmann equation for a scalar field gives:
ä

a
= −1

3

(
ϕ̇2 − V

)
=⇒ ä

a
= −1

3

(
2
p

t2
+
p

t2

)
= − p

t2
(4.2.15)

which integrated twice:∫
1

a
d ˙̄a = −p

∫
1

t̄2
dt̄ =⇒ ȧ

a
=
p

t
+ const∫

dā

ā
= p

∫
dt̄

t̄
+ const =⇒ a(t) ∝ |t|p (4.2.16)

Before describing this result let’s compute also the time dependence of the
Hubble parameter H:

H(t) =
p

|t|
(4.2.17)

These two last equations together shows what it was meant in the beginning
when it has been said that during ekpyrotic contraction, the fact that the
Hubbe radius ∼ H−1 is shrinking while the scale factor remains nearly constant
allows the production of a scale invariant spectrum. Indeed as we see from
eq. (4.2.16), remembering that p = 2/c and that c >> 1, given a value a0

for the scale factor, after an interval of time ∆t the new value of a will be
a0(∆t)p ' a0 since (∆t)p ' 1. On the contrary, since the Hubble parameter
increases as |t|−1, (t → 0), the Hubble radius is decreasing proportionally to
the coordinate time t. This is the mechanism that allows to obtain the same
result of inflation at linear order in perturbations.

Finally it is remained only to compute the number of e-folds as a function
of time. From the definition it is straightforward to get:

Nekp = p ln

∣∣∣∣tfti
∣∣∣∣ = −p ln

∣∣∣∣ titf
∣∣∣∣ (4.2.18)

where the fact that the time is flowing towards −∞ implies that |ti| > |tf |.
Using this, flipping denominator with the numerator of the logarithm it is
possible to bring out a negative sign which explicates the fact that the universe
is contracting of |Nekp| e-folds.

Moreover keeping in mind the fact the previous phase of the cycle was the
D.E. dominated expanded phase which is estimated to last for trillions of years
in order to bring the universe to a nearly vacuum state, since the ekpyrotic
phase is instead supposed to be much more shorter, of the order of billions of
years, the ratio between ti and tf must be very close to the unity. Therefore
Nekp ' 0 and hence we see that being very precise it almost as the universe
stops expanding instead of contracting during the ekpyrotic phase. This is not
in contradiction with what said before since what matters is the relationship
between the growth of the scale factor and the shrinking of the Hubble radius.
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4.2.3 Big Crunch and Big Bounce

After the ekpyrotic phase, since the radion has rolled down a steep expo-
nential potential well, its kinetic energy is increased in such a way that the
possibility that it remains trapped at the bottom of the well does not exist and
on the contrary it passes the minimum Vmin speeding up towards ϕ → −∞.
Therefore it is a good approximation to assume that this period is dominated
by kinetic energy and hence 1

2
ϕ̇2 >> V (ϕ). The equations of motion become:

ϕ̈+ 3Hϕ̇ ' 0 and H2 ' 1

6
ϕ̇2 (4.2.19)

From the second one follows that H = 1/
√

6 ϕ̇ and then immediately we obtain
the relation between the scale factor and the radion:

da

a
=

1√
6
dϕ =⇒ a ∝ exp

(
ϕ√
6

)
. (4.2.20)

In order to obtain the time-dependence of the scalar field, substituting the
second equation of motion into the first and performing a double integration
we get:

ϕ̈+

√
3

2
ϕ̇2 = 0 labelling x = ϕ̇

ẋ = −
√

3

2
x2 =⇒

∫
−dx̄
x̄2

=

√
3

2

∫
dt̄ =⇒ 1

x
=

√
3

2
+ const

∫
dϕ̄ =

√
2

3

∫
dt̄

t̄
=⇒ ϕ(t) =

√
2

3
ln|t|+ ϕ0 (4.2.21)

Since |t| → 0 this shows that radion is going logarithmically with time towards
−∞ which corresponds to the Big Crunch.

Immediately we can compute from the second equation of motion (4.2.19)
the time dependence of the Hubble parameter and after the one of the scale
factor. Knowing that:

ϕ̇ =

√
2

3

1

|t|
=⇒ H =

1

3

1

|t|
(4.2.22)

and then immediately∫
dā

ā
=

1

3

∫
dt̄

|t̄|
=⇒ a(t) ∝ |t|

1
3 (4.2.23)
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which confirms the fact that this is still a contracting phase of the universe.
The number of e-folds corresponding to this phase as a function of time

follows straightforward from the definition:

NKE = −1

3
ln

∣∣∣∣ titf
∣∣∣∣ (4.2.24)

where once again ti and tf have been swapped in order to make explicit that
the universe has contracted of |NKE| e-folds during this phase.

The mathematical description of what happens at the Big Crunch and im-
mediately after at the Big Bounce it’s beyond the purposes of this dissertation
since it requires a string theory background and the formulation of the problem
no more in terms of 4D effective theory but in terms of a 5D branes theory.
Therefore it can be given just a qualitative description as the one given in the
previous chapter. Let’s just point out that in the five dimensional picture, the
Big Crunch and the Big Bounce are a different kind of singularity with respect
to the Big Bang in the standard inflationary scenario. Indeed at the instant
t = 0 it’s only the fifth dimension that disappears momentarily, the dimension
describing the distance between the two branes. The others, the three spatial
ones relative to the surface of the brane and the temporal one, behave normally.

After the bounce, the situation of the universe is exactly the time-reversal
of the one just described. The fact the the time is now flowing from zero to-
wards some positive value implies that all the parameters that were decreasing
now increase and vice versa, therefore this kinetic energy dominated phase is
a period of expansion for the universe. Therefore rewriting the results just
obtained, the parameters behaves like:

ϕ(t) =

√
2

3
ln t+ ϕ0, H =

1

3

1

t
, a(t) ∝ t

1
3 and NKE =

1

3
ln

(
tf
ti

)
(4.2.25)

However, as written previously, this phase is very short since the kinetic energy
of the scalar field is soon redshifted due the expansion of the universe and the
radiation comes to dominate.
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4.2.4 Radiation and Matter Period

During the Big Bounce the energy density of the radion and the tempera-
ture do not diverge but remain finite because part of the scalar field energy
is converted into matter and radiation. This is the purpose of the coupling
function ξ in the action of eq. (3.2.8). However since the the energy density of
the radion goes as ρϕ ∝ a−6 the beginning of the expansion remains dominated
by the kinetic energy of the scalar field. Very shortly after the universe enters
in a radiation dominated phase which is the same as the one of the inflationary
model. The same is true for what concerns the following matter epoch and
therefore all the parameters behave in the same way as in the standard picture.

Then the only thing that remains to compute is the behaviour of the radion
in these two epochs. Since the first Friedmann equation is dominated in one
case by the radiation term and in the other by the matter one, the Hubble
parameter can be approximated to be independent of ϕ. Therefore we just
have the second first equation of motion that becomes:

ϕ̈+ 3Hiϕ̇ = 0 where i = γ,m (4.2.26)

and performing a double integration with x = ϕ̇ we have:∫
dx̄

x̄
= −3Hi

∫
dt̄ =⇒ ϕ̇ = exp (−3Hit)∫

dϕ̄ =

∫
exp (−3Hit̄)dt̄ =⇒ ϕ(t) = ϕ0 −

1

3Hi

exp (−3Hit)

Substituting the value of the Hubble parameter as a function of t we see that
during these two epochs the scalar decreases proportionally with the coordinate
time t. Indeed:

ϕγ(t) = ϕ0 −
2t

3
e−

3
2 and ϕm(t) = ϕ0 −

t

2
e−2. (4.2.27)

Finally, let’s see with a simple argumentation the reason for which the cycle
should start again reasoning in terms of critical energy density defined as

Ωi =
ρi
ρcr

with ρcr =
3

8πG
H2(t) and i = ϕ, γ,m (4.2.28)

where the Hubble parameter dependence on time is based on the phase in
which it is computed. Therefore lets consider what happens to the critical
energy density of the radion Ωϕ during the radiation and matter dominated
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periods. During the radiation phase, taking the approximation of considering
a time t in the middle of it, we have that:

1

ρcr
∝ t2 =⇒ Ωγ ∼ a−4t2 ∼ const and Ωϕ ∼ V (ϕ)t2 (4.2.29)

where it has been considered that since the kinetic energy of the scalar field
has been red-shifted cause of the expansion, ρϕ ∼ V (ϕ). Therefore the critical
energy density of ϕ keeps increasing and becoming more and more relevant.

The same happens during the matter dominated phase, indeed computing
in the same way the dependence of the critical density on the time we get that
Ωm is constant while Ωϕ ∼ V (ϕ)t2. Therefore at a certain instant the radion
energy density term will become again dominant cause the beginning of a new
Dark Energy dominated phase.

In the same fashion we could have proved before that during the kinetic
energy dominated expansion phase, the critical energy densities of radiation
and matter keep increasing while the critical density of the scalar field remains
approximately constant. Indeed we have that:

ρcr ∼ H(t)2 ∼ 1

t2
and ρϕ ∼

1

2
ϕ̇2 ∼ 1

t2
=⇒ Ωϕ = const (4.2.30)

while
Ωγ ∼ t

2
3 and Ωm ∼ t (4.2.31)

and hence at a certain instant the radiation comes to dominate. However it is
important to note that this is a simplified computation since the ρcr changes
during each phase more and more the other contributes become relevant. Ne-
vertheless it furnish an intuitive idea of the reason for which a phase of the
cycle follows the other in the described way.
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4.3 Recap of the Parameters Evolution
In this section will be summarized all the results obtained for both infla-

tionary and cyclic picture in the analysis of the parameter evolution. Let’s
begin with inflation:

Inflation Recap

phase inflaton ϕ a(t) H(t) e-folds

inflation
√

2λ

3
(tf − t) a0 exp (Hϕt)

√
λ

6
ϕi −

λ

3
t

1

2n
ϕ2
i

ργ dominated ∼ 0 a0 t
1
2

1

2t

1

2
ln

(
teq1
ti

)

ρm dominated ∼ 0 a0 t
2
3

2

3t

2

3
ln

(
teq2
teq1

)

ρde dominated ∼ 0 a0 exp (Hdet)

√
ρde
3

t0
teq2

Where we remember that Hϕ =
√

λ
3n
ϕ
n
2 is not a constant whilst Hde it is.

This tables regroup the standard results of inflationary cosmology, let’s see
now the summary of the cyclic scenario analysis.
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Cyclic Universe Recap

phase radion ϕ a(t) H(t) e-folds

D.E. dominated ϕ0 exp (−3Ht) a0 exp (HDEt)

√
V0

3

tf
ti

ekpyrotic p. ln

[√
V0

p
(−t)

] 2
c

a0|t|p
p

|t|
−p ln

∣∣∣∣ titf
∣∣∣∣

before the B.C.
√

2

3
ln|t|+ ϕ0 a0|t|

1
3

1

3|t|
−1

3
ln

∣∣∣∣ titf
∣∣∣∣

after the B.B.
√

2

3
ln t+ ϕ0 a0 t

1
3

1

3t

1

3
ln

(
tf
ti

)

ργ dominated ϕ0 −
2t

3
e−

3
2 a0 t

1
2

1

2t

1

2
ln

(
teq1
ti

)

ρm dominated ϕ0 −
t

2
e−2 a0 t

2
3

2

3t

2

3
ln

(
teq2
teq1

)

where a0 and ϕ0 are constants of integration relative to each phase and different
between each others.
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Perturbations

5.1 Scalar Perturbations in Inflation
One of the greatest merits of inflationary theory is to be able to connect

the large-scale structures that we observe nowadays with the micro-physics
relative to early times of the universe. Indeed considering the fact that the
primordial perturbations are supposed to derive from quantum fluctuations
and since the amplitudes of the latter are relevant only on scales close to the
Planckian length, it is fundamental the stretching effect which also leaves the
amplitudes almost unchanged caused by a stage of cosmic acceleration. Indeed
this effect makes these quantum fluctuations substantial on galactic scales.

Moreover the spectrum of inhomogeneities obtained in this way does not
depend strictly on the tuning and on the kind of inflationary model chosen.
Instead before the introduction of inflation, inhomogeneities were explained
by postulating their existence and spectrum just in order to fit observational
data. Therefore this shows the predictive power of inflation which can furnish
a physical explanation for the CMB anisotropies.

Consequently in this section we will recap how to derive the spectrum
caused by small inhomogeneities δϕ(η, ~x) in the field ϕ with the approximation
of slow-roll inflation. For a scalar field with potential V (ϕ) we have the action:

S =

∫ √
−g
(

1

2
gµνϕ,µ ϕ,ν −V

)
d4x (5.1.1)

which through the variation of the scalar field:

δS =

∫ (√
−ggµνϕ,µ

∂δϕ

∂xν
−
√
−gV,ϕ δϕ

)
d4x (5.1.2)
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integrating by part and knowing that δϕ = 0 when computed at the extremes
we get the Klein-Gordon equation:

1√
−g

∂

∂xµ

(√
−ggµν ∂ϕ

∂xν

)
+
∂V

∂ϕ
= 0 (5.1.3)

In order to obtain the simplest form of the metric for the background it is
useful now to choose the well known longitudinal or Newtonian gauge which
allows us to put equal to zero two of the four parameters characterizing the
scalar perturbations (El = Bl = 0) leaving only φl, which is identified as
the generalization of the Newtonian potential, and ψl related to the curvature
perturbation. Nice property of the Newtonian gauge is the fact that the pa-
rameters different from zero corresponds to the gauge invariant parameters Φ
and Ψ which for definition do not change under coordinate transformation.
Therefore the metric gµν for a scalar perturbation δϕ(η, ~x) takes the simple
form:

ds2 = a2
[
(1 + 2Φ)dη2 − (1 − 2Ψ)δijdx

idxj
]
. (5.1.4)

Considering then the inflaton written as ϕ = ϕ0(η) + δϕ(η, ~x) where ϕ0(η) is
the the unperturbed homogeneous part for which the metric g0

µν is:

ds2 = a2
[
dη2 − δijdxidxj

]
(5.1.5)

it’s easy to obtain the Klein-Gordon equation for the homogeneous part:

g00ϕ′′0 +
1

a4
ϕ′0

∂

∂η

(
a4a−2

)
+
∂V

∂ϕ
= 0 =⇒ ϕ′′0 + 2ϕ′0H + a2∂V

∂ϕ
= 0 (5.1.6)

where H = a′/a and
√
−g = a4.

Since computing the Klein-Gordon equation to linear order in metric per-
turbations and δϕ requires some algebra it will be written here just the final
result and the entire computation can be found at the end in the Appendix.
The equation is:

δϕ′′ + 2Hδϕ′ − ∆δϕ + a2V,ϕϕ δϕ − ϕ′0(Φ + 3Ψ)′ + 2a2V,ϕ Φ = 0

(5.1.7)

Furthermore this expression has an ulterior simplification reached remembering
the property of the Newtonian gauge which says that if the spatial part of the
energy-momentum tensor is diagonal, in other words δT ij ∝ δij then φl = ψl
and consequently Φ = Ψ. Indeed, as already seen before, for a scalar field the
energy-momentum tensor assumes the form:

T µν = gµρϕ,ρ ϕ,ν − (gγσϕ,γ ϕ,σ −V (ϕ)) δµν (5.1.8)
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and it is immediate to see that using the Newtonian gauge metric (5.1.4) for
scalar perturbations, the tensor is diagonal in its spatial part. For this reason
we are left with just two variables, Φ and δϕ. The second condition needed to
solve the system comes from the perturbed Einstein equations:

δGµν = 8πG δT µν (5.1.9)

As showed in Mukhanov cosmology textbook [8], one of the resulting equations
that we are going to use is:

(Ψ′ + HΦ),i = 4πGa2 δT 0
i . (5.1.10)

From the expression given for the energy-momentum tensor we see that

T 0
i = g00ϕ,0 ϕ,i =⇒ δT 0

i =
1

a2
ϕ′0 δϕ,i =

1

a2
(ϕ′0 δϕ) ,i (5.1.11)

since ϕ0 = ϕ0(η) and just considering the linear order in metric perturbations
and δϕ. Hence (5.1.10) gives:

Φ′ + HΦ = 4πGϕ′0 δϕ (5.1.12)

The system of equations composed by (5.1.7) and (5.1.12) will be solved in
two limiting cases:

• when the perturbations are sub-horizon, their physical wavelength is
much smaller then curvature scale λph << H−1;

• for super-horizon perturbations, λph >> H−1.

Remembering the relation (4.1.11) and knowing that inflation last for a very
small interval of time, we see that the curvature scale H−1 changes infinite-
simally during inflation. On the contrary the physical wavelength increases
exponentially with time λph ∼ a/k and therefore modes that at beginning
were sub-horizon can eventually become super-horizon.
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5.1.1 Sub-Horizon Modes

In the case of λph << H−1, condition that can be rewritten as kη >> 1 since
from the definition of conformal time dη = dt/a(t) we get that during inflation
η ∼ (aH)−1, we are considering distances that are under the curvature scale
and therefore it is possible to assume the space-time locally Minkowskian. For
this reason the gravitational field does not influence substantially the evolution
of the modes and all the terms of Φ or derivatives of it can be neglected. Indeed
in equation (5.1.7) the spatial derivative term dominates. Now considering the
fact that the conformal time derivative can be expressed in terms of number
of e-folds derivative as

d

dη
= H d

dN
where H =

a′

a
and N = ln a (5.1.13)

Therefore the first term of (5.1.7) can be written as:

δϕ′′ =
d

dη

(
Hd δϕ
dN

)
= H2d

2δϕ

dN2
+
dH
dη

d δϕ

dN

= H2d
2δϕ

dN2
+

[
a′′

a
−H2

]
d δϕ

dN

= H2d
2δϕ

dN2
+

[
2

3
a2V −H2

]
d δϕ

dN
= H2d

2δϕ

dN2
+H2d δϕ

dN
(5.1.14)

Where they have been used both Friedmann equations in slow-roll approxima-
tion:

1

a2
H2 ' 1

3
V and

a′′

a
=

2

3
a2V (5.1.15)

Finally since also the second term of (5.1.7) can be written as
2Hδϕ′ = 2H2 (d δϕ/dN), if we divide by the a2 of the fourth term of eq.
(5.1.7), all the H2 become H2. Therefore dividing again by H2, since from
the Friedmann equation we know that H2 ∼ V , we see that the term δϕV,ϕϕ
vanishes due to the fact that in the slow-roll approximation |V,ϕϕ /V | << 1.

As a result of this, only the first three terms of eq. (5.1.7) matter and for
a plane wave perturbation with comoving wave-number k, the same equation
in Fourier space reduces to:

δϕ′′k + 2Hδϕ′k + k2δϕk ' 0 (5.1.16)

which introducing the new variable uk = a δϕk becomes:

u′′k +

(
k2 − a′′

a

)
uk = 0. (5.1.17)
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Now since we are considering modes for which k >> |η−1|, together with the
fact that in inflation a ∼ η−1 and therefore a′′/a ∼ η−2, the last term of the
previous equation can be ignored and hence the solution is:

δϕk '
Ck
a

exp (±ikη) (5.1.18)

where Ck is an integration constant depending on the initial conditions. Im-
mediately from this expression is possible to see that the amplitude of the
oscillation is not fixed but goes as ∼ a−1 which means that it decreases expo-
nentially with the passing of the coordinate time t.

5.1.2 Super-Horizon Modes

In order to study the long wavelength modes we will use the slow-roll
approximation for an inflation model. Therefore equation (4.1.1) is valid for
the homogeneous part of the scalar field ϕ0 and hence neglecting the second
derivative with respect to the coordinate time t we have the equation:

3Hϕ̇0 + V,ϕ' 0 (5.1.19)

Moreover it is necessary now to rewrite the system of equations formed by
(5.1.7) and (5.1.12) in terms of the physical time t:

δϕ̈+ 3Hδϕ̇−∆δϕ+ V,ϕϕ δϕ− 4ϕ̇0Φ̇ + 2V,ϕ Φ = 0,

Φ̇ +HΦ = 4π ϕ̇0δϕ. (5.1.20)

The next step is to consider the facts that:

• for λph >> H−1 we can ignore the spatial derivative term ∆δϕ;

• in order to find the non-decaying slow-roll solution the terms containing
δϕ̈ and Φ̇ can be omitted;

• it is useful to introduce the variable y ≡ δϕ/V,ϕ;

• remembering that from the constraints on the slow-roll potential V (ϕ)
it derives that |V,ϕϕ /V,ϕ | << 1;

• during inflation 3H2 ' 8πV .
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Henceforth dividing the first of the two equations (5.1.20) by V,ϕ and for the
other one multiplying and dividing keeping only the first order in δϕ:

HΦ = 4π
δϕ

V,ϕ

∂V (ϕ0 + δϕ)

∂ϕ
ϕ̇0 = 4π y

∂V (ϕ0)

∂ϕ0

ϕ̇0 = 4πyV̇ , (5.1.21)

the system reduces to:

3Hẏ + 2Φ = 0 and HΦ = 4πyV̇ . (5.1.22)

Starting with substituting the second equation into the first, the next short
algebra steps are:

3Hẏ + 8πy
V̇

H
= 0

V ẏ + yV̇ = 0

d(V y)

dt
= 0 =⇒ y =

A

V
(5.1.23)

and hence for the non-decaying mode the solutions are:

δϕk = Ak
V,ϕ
V

and Φk = 4πAk
ϕ̇0

H

V,ϕ
V

= −1

2
Ak

(
V,ϕ
V

)2

. (5.1.24)

Consequently we can now plot the evolution of δϕk with respect to the
scale factor a, underlining the turning points with the labelling of ak for the
scale factor corresponding to the exit from the horizon of the mode with wave-
number k and af for the scale factor corresponding to the end of inflation.

Figure 5.1: behaviour of δϕ(a) [8]

Then for a < ak we see the expo-
nentially damped oscillating solution
for the sub-horizon modes, while for
ak < a < af we see the behaviour
of the amplitude for super-horizon
modes. The latter particularly, since
from (5.1.24) it goes as ∼ V,ϕ /V ,
which for example for a power-law
exponential means that δϕk ∝ ϕ−1,
shows that the amplitude increases
slowly once the modes exit the hori-
zon (the value of ϕ is decreasing with
the passing of time). At the end of in-
flation, the conditions on the poten-
tial of the scalar field are no longer
valid and in particularly ∼ V,ϕ /V becomes of order of unity.
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In order to fix the integration constants Ck and Ak we use the fact that as
explained in Appendix B, an estimation of the minimal amplitude of quantum
fluctuations is |δϕk| ∼ k

1
2/a and hence comparing this relation with the two

solution at the moment in which the mode crosses the horizon we get:

Ck ∼ k−
1
2 and Ak ∼

k−
1
2

ak

(
V

V,ϕ

)
k∼Ha

(5.1.25)

Since we are considering perturbations as a Gaussian random process, the
spectrum of the inhomogeneities is characterized by the variance of the gra-
vitational potential σ2

k = |Φk|2. The power spectrum δ2
Φ(k) is defined as the

dimensionless variance:
δ2

Φ(k) ≡ |Φk|2k3

2π2
(5.1.26)

where δΦ(k, t) is the typical amplitude of the metric fluctuations. We are inter-
ested in computing the power spectrum for modes relative to supercurvature
scales in order to reach the target represented by the spectral index nS defined
as:

nS − 1 =
d ln δ2

Φ

d ln k
. (5.1.27)

Therefore since at the end of inflation the ratio V/V,ϕ← 1 we have that
the solution for Φk simplifies and hence:

Φk ' −
1

2
Ak

=⇒ δΦ(k, tf ) ∼ Akk
3
2 ∼

(
H

V

V,ϕ

)
k∼Ha

∼

(
V

3
2

V,ϕ

)
k∼Ha

. (5.1.28)

where it has been used the fact that at the horizon crossing k ∼ Ha and
that during inflation from (4.1.2) H ∼ V

1
2 . Finally we can compute the spec-

tral index nS. Before proceeding with the algebra let’s notice that since the
expression depends on quantities (Ak) that have been estimated when the
mode crosses the horizon, from the fact that k ∼ Ha and that during infla-
tion H is almost constant, we have the useful relation d ln k = d ln a. This,
together with the relation found in the previous chapter (4.1.3) which gives
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d ln a = −dϕV/V,ϕ, is everything we need in order to find nS:

nS − 1 =
1

δ2
Φ

d δ2
Φ

d ln k
' 1

δ2
Φ

d

d ln k

(
V 3

V,2ϕ

)
k∼Ha

' 1

δ2
Φ

[(
d V 3

d ln k

)
1

V,2ϕ
+ V 3 d

d ln k

1

V,2ϕ

]
k∼Ha

' 1

δ2
Φ

(
V

V,ϕ

)2 [
3
d V

d ln k
− 2

V

V,ϕ

d V,ϕ
d ln k

]
k∼Ha

' 1

δ2
Φ

[
−3V + 2

V 2

V,2ϕ
V,ϕϕ

]
k∼Ha

nS − 1 ' −3

(
V,ϕ
V

)2

+ 2
V,ϕϕ
V

(5.1.29)

and defining the slow-roll parameters of inflation:

ε̄ =
1

2

(
V,ϕ
V

)2

and η̄ =
V,ϕϕ
V

(5.1.30)

we recover the classical expression

nS − 1 = −6ε̄+ 2η̄. (5.1.31)

In the case of a power-law potential like the one used until now for our simple
model of inflation, V ∝ ϕn, it is immediate to see from (5.1.29) that the
spectral index becomes:

nS − 1 '
(
−3n2 + 2n2 − 2n

)
ϕ−2
k∼aH ' −

n (n+ 2)

ϕ2
k∼aH

(5.1.32)

where the value of the inflaton is the one corresponding at the time at which
the mode with wave-number k exits the horizon. Remembering the definition
of e-folds during inflation given in (4.1.9), substituting the initial value of the
inflaton ϕi with the value of the field when the mode crosses the horizon ϕk∼aH
and replacing the arbitrary value ϕ with the value of the scalar field at the
end of inflation ϕf = 0 we see that the number of e-folds that miss from the
end of the acceleration phase is given by:

Nmissing =

∫ ϕk∼Ha

ϕend

1

n
ϕ̄dϕ̄ =

1

2n
ϕ2
k∼Ha (5.1.33)
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and therefore:
nS − 1 ' −n+ 2

2Nm

(5.1.34)

For example for a massive scalar field with n = 2 and considering galactic
scales for which N ' 50 we have nS ' 0.96.
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5.2 Scalar Perturbations in the Cyclic Model
In order to start the analysis of the spectrum in the case of a single scalar

field (the radion), it is useful to recap some of the results or the informations
presented before. Since we are considering the perturbations produced during
the ekpyrotic phase, the action for ϕ can be rewritten without the coupling
factor ξ(ϕ) which plays a relevant role only at the moment of the Big Crunch.
Therefore we rewrite the action as:

S =

∫
d4x
√
−g
[

1

2
R− 1

2
(∂ϕ)2 + V0e

−cϕ
]

(5.2.1)

from which we can be obtained the well known equations of motion (4.2.2) :

ϕ̈+ 3Hϕ̇+ V,ϕ = 0

H2 =
1

3

(
1

2
ϕ̇2 + V (ϕ)

)
. (5.2.2)

The solution of these ones in the ekpyrotic phase are summarized in the last
table of the previous chapter. The background metric is the same of the
inflationary case eq. (5.1.4).

Therefore let’s consider now the linearized Einstein equations δGµν = 8πGδT µν .
In case of a diagonal stress-energy tensor as the one for the radion, in terms
of the gauge invariant variable Φ, it is a long but standard computation to
obtain the components of the Einstein tensor Gµν and the one of T µν as:

δG0
0 =

2

a2
[−3H(HΦ + Φ′) + ∆Φ] ,

δG0
j =

2

a2
[HΦ + Φ′] ,j ,

δGij = − 2

a2

[
Φ(2H′ +H2) +HΦ′ + Φ′′

]
δij ,

δT 0
0 =

1

a2

[
−ϕ′20 Φ + ϕ′0δϕ

′ + a2V,ϕ δϕ
]

δT 0
j =

1

a2
[ϕ′0δϕ] ,j ,

δT ij =
1

a2

[
ϕ′20 Φ− ϕ′0δϕ′ + a2V,ϕ δϕ

]
δij .

where it has been used the metric (5.1.4), as in the inflationary case ϕ0 is the
homogeneous part of the field and finally the stress-energy tensor for the radion
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is of the form T µν = diag [ρ, p, p, p] with ρϕ = 1/2ϕ̇2 +V and pϕ = 1/2ϕ̇2−V .
Therefore the Einstein equations becomes:

−3H(HΦ + Φ′) + ∆Φ = 4πG
(
−ϕ′20 Φ + ϕ′0δϕ

′ + a2V,ϕ δϕ
)
,

HΦ + Φ′ = 4πG (ϕ′0δϕ) ,

Φ(2H′ +H2) + 3HΦ′ + Φ′′ = 4πG
(
−ϕ′20 Φ + ϕ′0δϕ

′ − a2V,ϕ δϕ
)
. (5.2.3)

Let’s write now the non perturbed Einstein equation for the background with
metric (5.1.5). The components of the Einstein tensor are easy in this case to
compute and they are:

G0
0 =

3H2

a2
, G0

i = 0, Gij =
1

a2
(2H′ +H2)δij (5.2.4)

Hence, keeping in mind the stress-energy tensor for ϕ we can write the Einstein
equation for the background:

3

a2
H2 = 8πG

(
1

2a2
ϕ′0 + V

)
,

1

a2

(
2H′ +H2

)
= 8πG

(
− 1

2a2
ϕ′20 + V

)
. (5.2.5)

Subtracting the second equation from the first it immediately follows that:
H2 −H′ = 4πGϕ′20 . Using this relation it is possible to rewrite the equations
(5.2.3) as

−3HΦ′ − 2H2Φ−H′Φ + ∆Φ = 4πG
(
ϕ′0δϕ

′ + a2V,ϕ δϕ
)
,

HΦ + Φ′ = 4πG (ϕ′0δϕ) ,

Φ(H′ + 2H2) + 3HΦ′ + Φ′′ = 4πG
(
ϕ′0δϕ

′ − a2V,ϕ δϕ
)
. (5.2.6)

The next step consists in subtracting the first of the three equations from the
first obtaining:

Φ′′ + 6HΦ′ −∆Φ + 2Φ(H′ + 2H2) = −8πGa2V,ϕ δϕ (5.2.7)

Together with this, remembering the equation of motion (5.1.6) for the homo-
geneous part:

ϕ′′0 + 2Hϕ′0 = −a2V,ϕ (5.2.8)

we see that multiplying the second equation of (5.2.6) by 2 [2H + (ϕ′′0/ϕ
′
0)] we

get:

4H2Φ + 4HΦ′ + 2HΦ
ϕ′′0
ϕ′0

+ 2Φ′
ϕ′′0
ϕ′0

= −8πGa2V,ϕ δϕ , (5.2.9)
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and finally subtracting (5.2.9) from (5.2.7) we obtain the final equation

Φ′′ + 2

(
H− ϕ′′0

ϕ′0

)
Φ′ −∆Φ +

(
2H′ − 2Hϕ

′′
0

ϕ′0

)
Φ = 0 . (5.2.10)

Rewriting the same equation passing in the Fourier space we get:

Φ′′ + 2

(
H− ϕ′′0

ϕ′0

)
Φ′ +

(
k2 + 2H′ − 2Hϕ

′′
0

ϕ′0

)
Φ = 0 (5.2.11)

In order to simply this equation it is necessary to introduce a new parameter
z together with a new variable u defined as

z−1 ≡ a′

a2
ϕ′−1

0 = H 1

aϕ′0
and u ≡ a

ϕ′0
Φ (5.2.12)

which after long computations allow to rewrite the equation for Φ as:

u′′ +

(
k2 − (1/z)′′

(1/z)

)
u = 0 (5.2.13)

In order to understand better the result obtained for the analysis of single
scalar field perturbations in the cyclic model it is fundamental to describe the
same also using the other gauge invariant variable ζ, the one representing the
curvature perturbation on spatial hypersurfaces. ζ is related to the Newtonian
potential Φ by the relations:

ζ = Φ +
1

ε

( a
a′

Φ′ + Φ
)

and Φ = −ε a
′

ak2
ζ ′ (5.2.14)

and ζ’s equation of motion is:

ζ ′′ + 2
z′

z
ζ ′ + k2ζ = 0. (5.2.15)

As for the Φ’s equation, it is useful to introduce the new variable v = zζ, and
hence the equation of motion becomes:

v′′ +

(
k2 − z′′

z

)
v = 0 . (5.2.16)

In Appendix C it is shown how the two coefficients of u and v in the two
equations, (1/z)′′/(1/z) and z′′/z respectively, depend on the conformal time
η. Here we give just the results:

(1/z)′′

(1/z)
=

ε

(ε− 1)2η2

z′′

z
=

2− ε
(ε− 1)2η2

(5.2.17)



5.2 Scalar Perturbations in the Cyclic Model 49

5.2.1 Sub-Horizon Modes

From this kind of dependence we can study, as in the inflationary case, the
limit in which the modes are sub-horizon. In the cyclic picture this corresponds
to large |η| since the conformal time is flowing from −∞ → 0. Therefore in
both equations for u and v the k2 term dominates over the one depending on z.
Immediately the form of the two equations conveys the idea of asymptotically
oscillatory solutions. Indeed on scales much smaller than H−1 the space-time
can be considered with very good approximation to be flat (Minkowskian) and
hence it is logical to impose that the solutions satisfy the boundary condition
of tending to the Minkowski vacuum:

u → i

(2k)3/2
e−ikη and v → 1√

2k
e−ikη (5.2.18)

with η → −∞.
Following the standard treatment for this equations of motion described in

the literature, since they are Bessel equations, their exact solutions are given
by:

u(x) = x1/2
[
A(1)H(1)

α (x) + A(2)H(2)
α (x)

]
v(x) = x1/2

[
B(1)H

(1)
β (x) +B(2)H

(2)
β (x)

]
(5.2.19)

where it has been introduced the dimensionless time variable x = k|η|,H(1,2)
s (x)

are Henkel functions and A(1,2), B(1,2) are constants. Moreover α and β are
functions of z defined as:

α ≡

√
(1/z)′′

(1/z)
η2 +

1

4
=

1

2

∣∣∣∣ε+ 1

ε− 1

∣∣∣∣
β ≡

√
z′′

z
η2 +

1

4
=

1

2

∣∣∣∣ε− 3

ε− 1

∣∣∣∣ (5.2.20)

where we have used the relations (5.2.17).
In order to study sub-horizon modes then we need to take the limit x → ∞
for which the Henkel functions assume the asymptotic expression:

H(1,2)
s (x) →

√
2

πx
exp

[
±i
(
x− sπ

2
− pi

4

)]
(5.2.21)

where we need to take the + sign since in the definition of x the conformal time
appears as |η|. From (5.2.20) and from the boundary conditions (5.2.18) we
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see that A(2) and B(2) must be null. Then the solutions for the Minkowskian
vacuum take the forms:

u =
P1

2k

√
πx

4k
H(1)
α (x) and v = P2

√
πx

4k
H

(1)
β (x) . (5.2.22)

The phase factor parameters P1 and P2 are computed equating the last ex-
pression with (5.2.18). For example for what concerns the first one:

i = P1 exp
[
i (−2α− 1)

π

4

]
=⇒ P1 = exp

[
i (2α + 3)

π

4

]
(5.2.23)

In the same way it is obtained the second parameter:

1 = P2 exp
[
i (−2β − 1)

π

4

]
=⇒ P2 = exp

[
i (2α + 1)

π

4

]
(5.2.24)

5.2.2 Super-Horizon Modes

For what concerns super-horizon modes, corresponding to late times η → 0,
we need then to take the limit x→ 0. The asymptotic expression for the Henkel
function in this case is:

H(1)
s (x) → − 1

π
Γ(s)

(x
2

)−s
(5.2.25)

where s > 0 and Γ(s) is the Euler Γ function. Hence the limit for the super-
horizon solutions becomes:

u = −P1

2k

√
x

4πk
Γ(α)

(x
2

)−α
and v = −P2

√
x

4πk
Γ(β)

(x
2

)−β
.

(5.2.26)
Therefore using the definition for the power spectrum (5.1.26), we have

that for the gravitational potential Φ

δ2
Φ(k) =

|Φk|2k3

2π2
=

k3

2π2

|u|2ϕ′20
a2

∝ x1−2α. (5.2.27)

Using also the definition of spectral index introduced before in (5.1.27) we have
that:

nΦ − 1 = 1− 2α = 1−
∣∣∣∣ε+ 1

ε− 1

∣∣∣∣. (5.2.28)

This result for nΦ shows that, for what concerns the gauge invariant gra-
vitational potential variable Φ, perturbations during the ekpyrotic contract-
ion (ε >> 1) result in a scale-invariant spectrum as in the inflationary case
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(ε << 1). If the computation would have been done keeping the parameter ε
slowly varying with time instead of constant, as it is shown in the literature,
the spectral index can be written in terms of the fast-roll parameters ε̄ and η̄:

nΦ − 1 = −4(ε̄+ η̄) with ε̄ =

(
V

V,ϕ

)2

, η̄ = 1− V V,ϕϕ
V,2ϕ

. (5.2.29)

Therefore if we assume an exponential potential as the one used before to
analyse the parameter behaviour in the ekpyrotic phase,V = −V0 exp (−cϕ),
the spectral index becomes:

nΦ − 1 = − 4

c2
= −2p =⇒ nΦ ' 1 (5.2.30)

since in the cyclic model it is assumed c2 >> 1.
It seems then that the analysis of the perturbations in the single scalar field

model for the cyclic universe reaches the same conclusion as inflation. However
if one computes the power spectrum with respect to the gauge invariant varia-
ble ζ some problems arise as it will be shown shortly. Computing the power
spectrum and therefore the spectral index for the variable ζ is important since
when it comes to study the evolution of perturbation modes when they exit
the horizon, this variable has the fundamental property of remaining constant
on super-horizon scales and starts to change again only when it renters the
horizon. Instead if one studies the evolution of the modes outside the hori-
zon using the gauge invariant variable Φ he or she must keep in count that it
continues evolving also on super-horizon scales.

Let’s see what happens using ζ. From the asymptotic v solution the power
spectrum for ζ results to be proportional to:

Pζ(k) =
k3

2π2

|v|2

z2
∝ x3−2β . (5.2.31)

Immediately it follows that the spectral index nζ is:

nζ − 1 = 3− 2β = 3−
∣∣∣∣ε− 3

ε− 1

∣∣∣∣. (5.2.32)

This result highlights the fundamental problem of the single scalar field per-
turbations model in the ekpyrotic phase. Indeed, while for a parameter ε << 1
typical of an inflationary model the spectrum of the curvature perturbation
would be scale invariant, in the cyclic picture, since ε >> 1 the spectrum re-
sults to not be scale invariant but instead blue-shifted. Consequently cyclic
model prediction of ζ spectrum are in contradiction with the experimental evi-
dences. The solutions proposed to this problem will be discussed in the final
chapter of the dissertation.
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5.3 Tensor Perturbations: Gravitational Waves
The last section of this chapter will deal with the tensor perturbations.

Instead of presenting as usual what happens before in the inflationary scenario
and after study the cyclic one, we will write down as final result the spectral
index as function of ε and after take the limits for the two cases, ε → 0 for
inflation and ε >> 1 for the ekpyrotic phase.

Analysing tensor perturbations, in other words the gravitational waves in
both models, results to be very interesting since it’s the only aspect in which
inflationary and cyclic picture diverge, predicting different spectral index as
we will find out shortly. Let’s write down the perturbed metric in the case of
tensor perturbations:

ds2 = a2
[
dη2 − (δij − 2hTY

(2)
ij )dxidxj

]
(5.3.1)

where Y (2)
ij is a tensor harmonic and hT is a gauge invariant variable. Com-

puting the perturbed Einstein equations as in the scalar case, the resulting
equation of motion in the Fourier space is:

h′′T + 2Hh′T + k2hT = 0. (5.3.2)

Proceeding as in the single scalar field case, it is useful in order to eliminated
the first derivative of hT with respect to the conformal time to perform the
substitution with the new variable fT = ahT . Substituting in eq. (5.3.2) we
get:

f ′′T
a
− 2Hf ′T −H ′fT + 2H

(
f ′T
a
−HfT

)
+ k2fT

a
= 0

f ′′T
a
− a′′

a2
fT + 2HHfT − 2HHfT + k2fT

a
= 0

=⇒ f ′′T +

(
k2 − a′′

a

)
fT = 0 . (5.3.3)

Always following the computation for the single scalar field, considering the
boundary condition in the far past η → −∞, we impose the Minkowski vacuum
solution as limit:

fT →
1√
2k

e−ikη (5.3.4)

Now, looking back to the equation for v in the single scalar field case, eq.
(5.2.16), ve notice the similarity with the equation for fT . Moreover, rewriting
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the solution for the scale factor a and the radion field ϕ obtained for the
ekpyrotic phase in terms of conformal time η, we see that:

a(η) ∝ |η|
p

1−p and ϕ(η) ∝ ln|η|. (5.3.5)

This, together with the definition of z in eq. (5.2.12), implies that:

z(η) ∝ η
2p
1−p−

p
1−p+1−1 = η

p
1−p ∝ a(η) =⇒ a′′

a
=
z′′

z
(5.3.6)

which proves that fT and v obey to the same equation of motion and hence
have the same solution:

fT = P2

√
πx

4k
H

(1)
β (x). (5.3.7)

Henceforth from the definition of the tensor spectral index as k3|fT |2 ∝ knT

in the super-horizon modes limit, using the same expansion for H(1)
β (x) as for

the v solution, it is straightforward to get:

nT = 3− 2β = 3−
∣∣∣∣ε− 3

ε− 1

∣∣∣∣. (5.3.8)

Whilst the result predicted for the power spectrum of ζ in the cyclic problem
represents a problem for the theory, the tensor spectral index just computed
could represent the experimental turning point in order to choose between
inflationary and cyclic picture. Indeed for ε >> 1 the gravitational waves
produced during the ekpyrotic phase own a strongly blue-shifted spectrum,
nT ≈ 2. On the contrary for ε << 1 in th inflationary case, the spectrum
results to be scale invariant.

Unfortunately the amplitudes predicted for the gravitational waves pro-
duced during the ekpyrotic phase is so small that observing them is far from
being possible with the current technology. Nevertheless they still represents
for the future the possibility of performing a crucial observational test which
depending on the result can reinforce and confirm the reliability and the pre-
dictive power of one of the two model while ruling definitely out the other.
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Conclusions

The principal interesting aspect described in the second and third chapter
that is worth to recall in these final considerations is the fact that the cyclic
model in its formulation gives a unitary explanation for the history of the
universe, which in a relative simple way solves the cosmological puzzle and at
the same time assigns a meaning and a function to the Dark Energy, which
instead for the standard Big Bang picture it has been an unexpected discovery
source of many unanswered questions. Again it must be underlined that the
formulation of the cyclic model has been made later and also in response to
the discovery of D.E. and hence it was a necessary prerequisite to be able to
furnish a physical explanation to it in order to be considered a possible alter-
native to the inflationary model.

Let’s consider the results summarized in the two tables at the end of the
fourth chapter, especially focusing our attention on the behaviour of the Hub-
ble parameter during the different phases in the two models. This in order to
compare the evolution of the Hubble horizon defined as H−1 with respect to
the scale factor a in the two backgrounds.

In the inflationary picture we immediately see that during the accelerating
phase after the Big Bang, as mentioned before, H−1 increases approximately as
∼ 1/(A− t), where A is a constant. Nevertheless the scale factor increases ex-
ponentially during inflation and therefore points that were casually connected
may fall out of casual contact by the end of inflation.

On the contrary during the radiation and matter dominated epochs, the
Hubble horizon increases linearly with time while a ∼ tb with b < 1 and hence
during these two phases points that were casually disconnected may be in
casual contact after a certain interval of time.

In the last period however the situation changes again, indeed the domi-
nation of Dark Energy implies an approximately constant Hubble horizon and
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hence, since a increases exponentially with time even if much more slower than
during inflation, points in the space-time tend to fall out of casual contact.

In the cyclic picture things go a little bit in a different way, indeed even if
starting from the Dark Energy phase we recognize the same relation between
H−1 and a seen in the inflationary scenario, when we look at what happens
during the ekpyrotic phase something new appears. In particular during the
first stage of contraction ruled by the steep falling exponential potential of the
radion, H−1 decreases linearly with the coordinate time |t|, which is now going
towards zero, whilst a is going as |t|p, and hence for definition p << 1, stays
almost constant. Therefore the same result of inflation is obtained but in a
different way, the fall out of contact is caused by the shrinking of the Hubble
horizon instead of the more quickly increase rate of the scale factor.

Also during the second stage of the contraction ruled by the kinetic energy
of the scalar field we see that since H−1 ∼ |t| while a ∼ |t| 13 the space-time
points progressively tend to fall out of casual contact.

After the Big Bounce, thanks to the changing direction of the time flow,
the situation in reversed in the expansion ruled by the kinetic energy, with
the Hubble horizon increasing more quickly of the scale factor. The becoming
casually connected of space-time points goes on at different rates also in the
two next phases of the cyclic picture, in the same way of the corresponding
radiation and matter dominated phases in the standard scenario.

For what concerns the results obtained in the perturbations chapter, it is
interesting to analyse the ostensible duality achieved between the spectrum
relative to the single scalar field model in the inflationary and cyclic picture.
Indeed the main point for the computation in the cyclic background was to
retrieve the successful prediction about the energy density perturbation spec-
trum given by the inflationary model which are well approximated already by
the simple case of one scalar field classical model. However even if the spec-
trum for the gauge invariant potential variable Φ results to be scale invariant
also in the cyclic picture, when we have computed the same spectrum for the
other gauge invariant variable ζ we got a blue-shifted spectrum. Hence, since
the result that is experimentally relevant is the ζ-spectrum because this gauge
invariant variable has the fundamental property of remaining constant once
the mode exits the horizon, the single scalar field model is not enough to re-
cover and to prove the duality between ekpyrotic contraction and inflation for
what concerns the perturbation spectrum.

The first solution to this problem that has been proposed in the literature,
is that at the Big Bounce occurs a mixing between Φ and ζ so that at large
scale the scale invariant component of the mix due to Φ dominates. However
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this stratagem is strongly dependent on the dynamic of what happens during
the Big Crunch and the Bounce, which is still not clear and varies from model
to model of cyclic universe.

Another way to face the problem is to introduce a second scalar field,
which in the higher dimension theories represents the volume modulus of the
internal manifold. For example in a four dimensional theory with two scalar
fields minimally coupled, one can introduce the potential with the following
form:

V = −V1e
−

∫
c1dϕ1 − V2e

−
∫
c2dϕ2 (6.0.1)

where c1 and c2 are respectively functions of ϕ1 and ϕ2. The solution in this
kind of models, comes from the fact that with the introduction of a second
scalar field one then can have entropy perturbations. These can source cur-
vature perturbations and hence the scale-invariance of the spectrum must be
proved for entropy perturbations. In the literature concerning cyclic universe
this computation is widely described and it is shown that with this prescription
one proves the duality between the spectrum of scalar perturbations obtained
for inflation and for the ekpyrotic phase. The only aspect that we can un-
derline without performing the computation is that introducing a second field
increases the degree of fine tuning of the theory. Indeed, since the degree
of fine-tuning of the theory largely lies on the particular shape of the radion
potential V (ϕ) and for example in the case of the single scalar field the only
parameter for the potential is c which has to satisfy c2 >> 1, in the case of
two scalar fields we have instead two functions, c1(ϕ1) and c2(ϕ2), that will
have to satisfy certain requirements in order to make the model work.

Moreover it must be pointed out, as said previously, that it is still not
completely clear what happens during the Big Crunch and the Big Bounce
and how the perturbed modes behaves in that phase. In the literature can
be found numerous hypothesis and computations concerning this still open
problem.

Finally we have seen the the tensor spectral index nT assumes different
values in the cases of inflationary or cyclic picture. This is due to the fact
that during the phases in which gravitational waves are generated in the two
models the gravitational background is completely different. Indeed during
inflation the Hubble parameter is large and almost constant, which implies
strong gravitational fluctuations and hence a nearly scale invariant spectrum.
On the contrary, during the ekpyrotic phase the Hubble parameter is much
more smaller, of the order of the nowadays parameterH0 which is exponentially
smaller than the value that it assumes during inflation. As a result of this, the
average amplitude of the gravitational perturbations produced is very small,
since gravity is almost negligible in that phase. Indeed it is computed in the
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literature that the gravitational waves produced in a cyclic scenario are tens of
orders below the measurable limit for a wide range of frequencies. Moreover,
since as we have seen the Hubble parameter increases hyperbolically with time
during the ekpyrotic phase, the gravitational waves spectrum tends to be blue-
shifted.

In conclusion we can state that even if it represents a fascinating alternative
to the standard inflationary picture, the cyclic model of the universe presents
at least as many issues that need to be answered as the Big Bang scenario.
Nevertheless it offers also interesting and elegant solutions to certain questions
which are unsolved or solved in a more elaborate way by the standard model,
hence are strongly justified the need and effort in order to measure the gravi-
tational waves spectrum, which as it has been said before, represents the only
way known so far to rule out one of the two models.
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Appendix

7.1 Appendix A

K.-G. equation to linear order in metric perturbations and δϕ

Computing the Klein-Gordon equation to linear order in metric perturba-
tions and δϕ requires some algebra and hence before starting let’s underline
some facts:

• thanks to Newtonian gauge the metric is diagonal so there are just two
cases, µ = ν = 0, i;

• the expansion of the potential is
∂V (ϕ0 + δϕ)

∂ϕ
=
∂2V

∂ϕ2
δϕ+

∂V

∂ϕ
;

• for convenience let’s call A = (1 + 2Φ) and B = (1− 2Ψ);

• then we have that
√
−g = a4A

1
2B

3
2 .

Now we can start with rewriting equation (5.1.3):

1√
−g

∂

∂xµ

(√
−ggµν ∂(ϕ0 + δϕ)

∂xν

)
+
∂2V

∂ϕ2
δϕ+

∂V

∂ϕ
= 0 (7.1.1)

Let’s focus on the first term, starting with the easy case of µ = ν = i:

− 1√
−g

∂

∂xi

(√
−ga−2B−1∂(ϕ0 + δϕ)

∂xi

)
= −a−2B−1∂

2δϕ

∂xi 2
(7.1.2)



7.1 Appendix A 59

where it has been neglected the term relative to ϕ0 since it does not give
contributes to the linear approximation equation.

Now let’s face the term µ = ν = 0:

1√
−g

∂

∂η

(√
−gg00∂ϕ

∂η

)
=

1√
−g

[
∂

∂η

(√
−gg00∂ϕ0

∂η

)
+

∂

∂η

(√
−gg00∂δϕ

∂η

)]

(7.1.3)

It is more orderly to analyse separately the two terms of the R.H.S. of the
previous equation. The first one gives:

1√
−g

∂

∂η

(√
−gg00∂ϕ0

∂η

)
= g00ϕ′′0 + ϕ′0

1√
−g

∂

∂η

(√
−gg00

)
(7.1.4)

where expanding for small Φ and Ψ:
√
−gg00 = a4A

1
2B

3
2A−1a−2

= a2(1 + 2Φ)−
1
2 (1− 2Ψ)

3
2 ' a2(1− Φ)(1− 3Ψ) + O(Ψ2,Φ2,ΨΦ..)

' a2(1− (Φ + 3Ψ))

(7.1.5)

where the first term of the R.H.S. of (7.1.4) gives using the Klein-Gordon
equation for the homogeneous part (5.1.6):

g00ϕ′′0 = g00(−2Hϕ′0 − a2V,ϕ )

= −2a−2Hϕ′0A−1 − V ′ϕA−1 (7.1.6)

and the second term of the R.H.S. of (7.1.4) gives:

ϕ′0
1√
−g

∂

∂η

(√
−gg00

)
=

1√
−g

ϕ′0
[
2aa′(1− (Φ + 3Ψ))− a2(Φ + 3Ψ)′

]

= ϕ′0

[
2a−2HA−1 1− Φ− 3Ψ

A−
1
2B

3
2

− a2

√
−g

(Φ + 3Ψ)′
]

' ϕ′0
[
2a−2HA−1 − a−2(Φ + 3Ψ)′

]
+ O(Ψ2,Φ2,ΨΦ..) (7.1.7)

Therefore (7.1.4) is equal to:

1√
−g

∂

∂η

(√
−gg00∂ϕ0

∂η

)
= −a−2ϕ′0(Φ + 3Ψ)′ − V ′ϕA−1. (7.1.8)
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The last piece remained to analyse is the second term of the R.H.S. of
(7.1.3):

∂

∂η

(√
−gg00∂δϕ

∂η

)
= a−2A−1δϕ′′ +

1√
−g

δϕ′
∂

∂η
(
√
−gg00)

' a−2A−1δϕ′′ +
1√
−g

δϕ′
∂

∂η
(a2)

' a−2A−1δϕ′′ + 2a−2Hδϕ′ (7.1.9)

where in the second and third step we have discarded many terms due to
expansions since we are interested just in the linear order. Finally we can
return to (7.1.1) substituting all the terms found in (7.1.2), (7.1.8) and (7.1.9):

− a−2B−1∆δϕ − a−2ϕ′0(Φ + 3Ψ)′ − V ′ϕA
−1 + a−2A−1δϕ′′

+ 2a−2Hδϕ′ + V,ϕϕ δϕ+ V,ϕ = 0

(7.1.10)

The last step consists just in multiplying everything for a2A and keeping only
the linear order in δϕ and in the metric perturbations. As a result of doing so
we obtain the final equation:

δϕ′′ + 2Hδϕ′ − ∆δϕ + a2V,ϕϕ δϕ − ϕ′0(Φ + 3Ψ)′ + 2a2V,ϕ Φ = 0.

(7.1.11)
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7.2 Appendix B

Vacuum Quantum Fluctuations Amplitude (Inflation)

In order to determine the behaviour of the integration constants in the
perturbations solutions (Ck and Ak) we need to compute the typical amplitude
of vacuum quantum fluctuations δϕL on physical scales L (volume V ∼ L3).
Then for a massless scalar field assumed to be homogeneous within V the
action can be written as:

S '
∫ (

Ẋ2 + ...
)
dt (7.2.1)

where we have introduced:

• X = δϕLL
3
2 is the canonical quantization variable;

• P = Ẋ ∼ X/L is the conjugate momentum.

Therefore using the Heisenberg uncertainty relation satisfied by these two va-
riables ∆X∆P ∼ 1 (with ~ = 1) we can compute the minimal amplitude of
the quantum fluctuations:

δϕLL
3
2 δϕLL

1
2 ∼ 1 =⇒ δϕL ∼ L−1 (7.2.2)

which together with the fact that δϕL ∼ |δϕk|k
3
2 , where k ∼ a/L is the

comoving wave-number, gives the result:

|δϕk| ∼
k−

1
2

a
. (7.2.3)

and hence the typical amplitude of fluctuations for a given comoving wave-
number k is approximately:

δϕ(k) ∼ |δϕk|k
3
2 ∼ k

ak
∼ Hk∼Ha (7.2.4)

where Hak ∼ k at the moment of horizon crossing.
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7.3 Appendix C

η-dependence of (1/z)′′/(1/z) and z′′/z

The first step consists in finding the relation between the parameter
p = 2/c2 and the parameter characterizing the equation of state ε = 3/2(1+w).
From the definition of w = p/ρ for a scalar field as the radion we have:

w =
1
2
ϕ̇2 − V

1
2
ϕ̇2 + V

=
ϕ̇2

3H2
− 1 (7.3.1)

In chapter 4 we have proved that in the ekpyrotic phase ϕ̇ =
2

c t
and that

H =
p

|t|
, hence:

w =
2

3p
− 1 =⇒ p =

1

ε
. (7.3.2)

Now, we have seen also that in the ekpyrotic contraction the scale factor goes
as a ∝ |t|p. Rewriting now the parameters for the ekpyrotic phase as functions
of the conformal time η and the variable ε instead of the coordinate time t and
p we have that:

a(t) = |t|
1
ε = |ηa|

1
ε =⇒ a(η) = |η|

1
ε−1

ϕ(t) ∝
√

2

ε
ln|aη| =⇒ ϕ(η) ∝

√
2ε

ε− 1
ln|η| (7.3.3)

H(t) =
1

ε|t|
=⇒ H(η) =

1

ε
η

ε
1−ε

Since they will turn out to be necessary later let’s compute some conformal
time derivative of H and ϕ:

H ′ =
1

1− ε
η

2ε−1
1−ε ,

H ′′ =
2ε− 1

(1− ε)2
η

3ε−2
1−ε ,

ϕ′ =

√
2ε

ε− 1

1

η
,

ϕ′′ = −
√

2ε

ε− 1

1

η2
,

ϕ′′′ = 2

√
2ε

ε− 1

2

η3
. (7.3.4)
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Finally we can start with the coefficient (1/z)′′/(1/z). Remembering that
(1/z) = Hϕ′−1 we compute the second derivative:

(1/z)′ = H ′ϕ′−1−H ϕ′′

ϕ′2
=⇒ (1/z)′′ =

H ′′

ϕ′
−2H ′

ϕ′′

ϕ′2
−ϕ

′′′

ϕ′2
+2

ϕ′′2

ϕ′3
, (7.3.5)

and therefore:

(1/z)′′

(1/z)
=
H ′′

H
− 2

H ′

H

ϕ′′

ϕ′
− ϕ′′′

ϕ′
+ 2

(
ϕ′′

ϕ′

)
. (7.3.6)

Using the derivatives just computed one finds:

(1/z)′′

(1/z)
= η−2

[
2ε2 − ε
(1− ε)2

+
2ε

(1− ε)
− 2 + 2

]
=⇒ =

ε

(1− ε)2η2
. (7.3.7)

Let’s pass then to the second coefficient; given z = H−1ϕ′ the second
derivative immediately follows:

z′ = H−1ϕ′′ − H ′

H2
ϕ′ =⇒ z′′ = 2

H ′2

H3
ϕ′ − H ′′

H2
ϕ′ − 2

H ′

H2
ϕ′′ +

ϕ′′′

H
(7.3.8)

and hence:
z′′

z
= 2

(
H ′

H

)2

− H ′′

H
− 2

H ′

H

ϕ′′

ϕ′
+
ϕ′′′

ϕ′
. (7.3.9)

Substituting the derivatives:

z′′

z
= η−2

[
2ε2

(1− ε)2
+
ε− 2ε2

(1− ε)2
+

2ε− 2ε2

(1− ε)2
+

2 + 2ε2 − 4ε

(1− ε)2

]
=⇒ =

2− ε
(1− ε)2η2

. (7.3.10)
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