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Abstract

In this project, we would go through the basic of the collapse theory (the Dy-
namical Reduction Models) which is a possible solution to solve the measurement
problem in Quantum Mechanics and a theory to somehow bridge the micro and
macroscopic world (as nowadays the microscopic world is described by QM and
the macro one is described by classical physics, and do not have a satisfactory
theory to connect two of them yet). We would see the overall effect of the collapse
model on Quantum Mechanics by designing a simple Mach-Zehnder Interferometer
Experiment. Through this experiment, we would indicate a possible way to design
a real experiment to test the important parameters in the collapse model and so
as the collapse model itself.
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Part I

Dynamical Reduction Models
As a physics theory, Quantum Mechanics was a great breakthrough in physics and is a
theory that describes the microscopic world correctly. However, it also brought out some
philosophical problem such as the famous Schrodinger’s cat. The major problem of QM
is the measurement problem, which appears mainly because the linear property of QM
allows superposition of different quantum states.

1 QM Measurment

We consider an ideal measurement case here. We have a microsystem S and its observ-
able quantum states s here, for example a particle and its spin. The quantum state has
two different states, say spin up and down. The system S is associated with a macro-
scopic measurement apparatus B with an initial ready state B0, which interacts with
the microsystem S. The pointer of the apparatus has two position to indicate the two
different states in S

|su〉 ⊗ |Bu〉 and |sd〉 ⊗ |Bd〉

If the system S starts with a single state |su〉 or |sd〉, then there is no problem as the
resultant macrostate is either |Bu〉 or |Bd〉, which means the pointer either points to up
position or down position. However, if the system starts with a superposition state, for
example 1√

2
(|su〉+ |sd〉), then the measurement would be

1√
2

(|su〉+ |sd〉)⊗ |B0〉 →
1√
2

(|su〉 ⊗ |Bu〉+ |sd〉 ⊗ |Bd〉)

This means that there is a superposition of the macrostate, a superposition of the pointer
pointing up and down position, which is obviously impossible. The wave packet suppres-
sion assumption of Quantum Mechanics which saying that the superposition quantum
state would suppress to one of the quantum state with certain probability, 1

2
for both

states for the above example, when measurement is carried out. However, it is a rather
embarrassing assumption as it means that the linear property of the quantum theory is
broken in some level. The quantum theory then cannot fully explain what happens in
the measurement and the theory breaks down in the macroscopic world [1].

Some solutions were proposed to solve this measurement problem such as hidden vari-
able theory, which indicates Quantum Mechanics cannot describe the physical system
completely and it is not a complete theory, and Dynamical Reduction Models, which
modify Quantum Mechanics without changing the known results of the present quan-
tum theory. Here we would consider the latter case, assuming that there is no hidden
variables and Quantum theory is the one describing the whole system. One idea of the
reduction models is the GRW theory, which basically is a theory to describe the ran-
dom wave suppression process in quantum theory without changing the known results
of Quantum Mechanics. One first consistent model of this is the Quantum Mechanics
with Spontaneous Localizations model (QMSL) [1].
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2 QMSL

One satisfactory theory of the dynamical reduction models is the Quantum Mechanics
with Spontaneous Localizations (QMSL), which was first proposed by Ghirardi, Rimini
and Weber. The aim of this model is to solve the measurement problem of the macro-
scopic system, which means to reduce the superposition of different macroscopic states
without having many changes on the microscopic objects, so that it would not violate
the known aspects of the quantum theory [1].

The QMSL model is based on 5 assumptions [1]:

1. All the particles of the system would experience a sudden spontaneous localization
with a mean rate λ.

2. The system evolves with respect to the normal time dependent Schrodinger equa-
tion between each spontaneous localization.

3. One particle spontaneous localization is described as: |ψ〉 → |ψx〉
‖|ψx〉‖

where |ψx〉 = Lx|ψ〉 and ‖|ψx〉‖ = 〈ψx|ψx〉
1
2 , which Lx is a positive linear operator

describing a localization of the particle at point x.

4. The probability density for a localization at point x is: P (x) = ‖|ψx‖2 = 〈ψx|ψx〉
requiring that

∫
dx[Lx]

2 = 1.

5. The localization operator Lx have the following form:

Lx = (
α

π
)

3
4 e−

α
2
(x̂−x)2

where x̂ is the position operator of the particle, and α is relevant to the width of the
localization Gaussian (the wave suppression length scale). As we are assuming a
simple random process for the spontaneous localization, we use a normal Gaussian
here to represent the process.

By using statistical operator ρ to describe the localization process, the process of
localization is as follow [1]:

ρ = |ψ〉〈ψ| →
∫
dxP (x)

|ψx〉〈ψx|
〈ψx|ψx〉

=

∫
dx|ψx〉〈ψx|

=

∫
dxLx|ψ〉〈ψ|Lx

= T [ρ]

which describes that starting with a statistical pure state and becomes a mixed state
through the localization process.
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Based on the above assumptions and the ordinary Schrodinger equation, we can de-
rive the master equation governing the whole process of the system. Here we will use
the statistical operator formalism, as it is convenient to use this form to investigate
some useful physical properties of the model such as the time evolution of the means of
dynamical variables [1]. Also we are considering one dimensional case here for simplicity.

First considering that in a time interval dt, there is a probability λdt for a localization
to occur, and so the probability for no collapse occur would be 1−λdt. When a collapse
happens, the statistical operator ρ transforms as above, so ρ(t + dt) = λdtT [ρ] for a
localization. When there is no collapse, ρ just evolves according to the time dependent
Schrodinger equation, and is as follow: ρ(t + dt) = (1− λdt)[ρ(t)− i

~ [H, ρ(t)]dt], where
H is the normal Hamiltonian due to Schrodinger equation. Putting them together, ρ
evolves as follow under this mechanism [1]:

ρ(t+ dt) = (1− λdt)[ρ(t)− i

~
[H, ρ(t)]dt] + λdtT [ρ] (1)

By rearranging the above equation and using first principle of differentiation, the equa-
tion becomes

ρ̇(t) = − i
~

[H, ρ(t)]− λ[ρ(t)− T [ρ(t)]] (2)

which is the master equation of this collapse mechanism. The equation decribes the
quantum evolution of a one particle system with the random spontaneous localization
processes, which is the main point of this model.

In coordinate representation, we have ρ(x, y) = 〈x|ψ(t)〉〈ψ(t)|y〉 for a pure state,
and so generally we have ρ(x, y) = 〈x|ρ(t)|y〉. According to assumption 1 and 5 for the
statistical operator formalism, we found that 〈x|T [ρ]|y〉 = e−

α
4
(x−y)2〈x|ρ|y〉. Therefore the

master equation in coordinate representation is as follow [1]

ρ̇(x, y) = − i
~

[H, ρ(x, y)]− λ[1− e−
α
4
(x−y)2 ]ρ(x, y)

=
i~
2m

[
∂2

∂x2
− ∂2

∂y2
]ρ(x, y)− λ[1− e−

α
4
(x−y)2 ]ρ(x, y) (3)

From equation 3, we can see that the most important part is second term, which is the
collapse process part. To see a rough behaviour for a macroscopic system, we can ignore
the first term by assuming that the mass of the particle m is large. Focusing on the
second term, we can see that the values of λ and α determine how the collapse process
would affect the system.

To determine the values of these two parameters, there are some considerations to be
taken into account. For example, the localization distance, which proportional to 1

α
here,

is relevant to the atomic spacing of the lattice. Also by looking at the master equation
of the model, we can see that a localization process would increase the energy of system.
Therefore considering the situation of the present world such as the temperature of the
universe, the mean rate of the occurence of collapse λ must not be too large.

About the possible values of this two parameters, it has been discussed in a paper by
William Feldmann and Roderich Tumulka [2]. They have considered some experiments
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such as diffraction experiments and universal warming, and have determined the possible
regions of the parameters from the experiment data. The following graph is quoted from
their paper, showing the forbidden and possible regions of the values for λ and α.

Figure 1: The shaded regions are the forbidden regions of the values of λ and σ, which
is proportional to 1

α
here. (a) is corresponding to GRW theory and (b) is corresponding

to CSL theory [2].

From the above graph we can see that the possible value of σ (the wave suppression
length scale), which is proportional to 1

α
, can be very large. Therefore it is not forbidden

to assume that α is very small. By assuming that, equation 3 becomes

ρ̇(x, y) =
i~
2m

[
∂2

∂x2
− ∂2

∂y2
]ρ(x, y)− D

~2
(x− y)2ρ(x, y) (4)

where D = λα~2

4
, which the two important parameters are included. One useful property

of the density matrix is that the diagonal elements ρ(x, x) of ρ describe the quantum
statistical probability distribution of finding a particle at space point x, which is one
reason why we would like to use the statistical operator formalism here.

Based on this property and equation 4, we can design a simple experiment which
would be able to test the values of λ and α, and so as the effects of the model, given
the value of α is very small. We would consider a simple model of Mach-Zehnder inter-
ferometer here. As we are assuming that the suppression length scale is large, in reality
the setup of the interferometer would be very long.
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3 CSL

The QMSL model seems to be a good one for the dynamical reduction models. However
the model is not suitable for a system containing identical particles, since it does not
preserve the symmetry property of the wavefunction for such a system. This problem
is solved in the other model, the Continuous Spontaneous Localization Model (CSL),
proposed by Ghirardi, Pearle, and Rimini. It is a model that replaces the discontinuous
jumps in QMSL with a continuous stochastic process. To derive the master equation of
the CSL model, we first look at the stochastic formalism of the QMSL model [1].

We first consider the Ito differential equation for a stochastic process |ψB(t)〉 [1]

d|ψ〉 = [Cdt+ AdB]|ψ〉 (5)

where C is the operator according to the normal Schrodinger evolution, A and B are set
of operators {Ai} and {Bi} according to the random localization processes. Bi indicates
a realization Bi(t) of the Wiener processes (also known as the Brownian motions), which
mean is zero and squared mean is proportional to t.

<< dBi >>= 0 and << dBidBj >>= γδijdt

where λ is a real constant. The above raw process however does not conserve the norm
of vectors. By using Ito calculus, we have the following [1]

d‖|ψ(t)〉‖2 = 〈dψ|ψ〉+ 〈ψ|dψ〉+ << 〈ψ|dψ〉 >>
= 〈ψ|(A+ A†)|ψ〉dB + 〈ψ|(C + C†)|ψ〉dt+ 〈ψ|A†A|ψ〉γdt (6)

where |dψ〉 ≡ d|ψ〉. If the norm of the state vector ψB(t) is one, then the probability of
occurrence can just be the physical probability. However the norm is not one here, so
we consider two normalized vectors here [1]

|χB(t)〉 =
|ψB(t)〉
‖|ψB(t)〉‖

|φB(t)〉 =
|ψB(t)〉
‖|ψB(t)〉‖

|χB(t)〉 has the probability according to vector |ψB(t)〉, and |φB(t)〉 has the probability
for |ψB(t)〉 times the squared norm ‖|ψB(t)〉‖2. We choose the latter one as the physical
probability, which is usually called cooked probability Pcook, and |χB(t)〉 as the raw one.
Now we have [1]

Pcook[Bi(t, t0)] = Praw[Bi(t, t0)]‖|ψB(t, t0)〉‖2 (7)

Because of the linear property of the raw Ito differential equation 5 and the property of
the Wiener process Bi. We can consider that the process from raw to physical is just
performed at final time tf or any number of time between initial time t0 and tf . We
then can have the specialization of the above equation 7 for a infinitesimal time interval
(t0, t0 + dt), which gives us

Pcook[dBi] = Praw[dBi][1 + ‖|ψB(t)〉‖2] (8)
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By requiring that Pcook is one, we have d << ‖|ψ〉‖2 >>=<< d‖|ψ〉‖2 >>= 0. From
this result and equation 6, we have C + C† = −γA†A. The raw process equation then
becomes [1]

d|ψ〉 = [C†dt+ AdB − γ

2
A†Adt]|ψ〉

= [− i
~
Hdt+ AdB − γ

2
A†Adt]|ψ〉 (9)

which is the Ito linear equation for the stochastic process.

Alternatively, the above linear equation and the cooking probability statement 7 can
be combined into one non linear stochastic differential equation for the state vector φ,
which conserves the norm. This is an alternative way to express the QMSL in stochastic
formalism.

By using the relation C + C† = −γA†A and equation 6, we have [1]

d‖|ψ‖2 = 〈ψ|(A+ A†)|ψ〉dB (10)

and then from equation 8 we gets [1]

Pcook[dBi] = [1 + 2RdB]Praw[dBi]

R =
1

2
〈ψ|(A+ A†)|ψ〉

We have the normalized physical probability distribution Pcook, and we use a random
variable dB′ for this Pcook, with the following means

<< dB′i >>= 2γRidt and << dB′idB
′
j >>= γδijdt

then we have dB′ = dB + 2γRdt. B′i has the same diffusion as the raw diffusion process
Bi but shifted by 2Riγ. Now we can rewrite equation 9 for the two normalized vectors
|χ(t)〉 and |φ(t)〉 by using equation 10 [1].

d|χ〉 = [− i
~
Hdt+ (−1

2
γA†A− γAR +

3

2
γRR)dt+ (A−R)dB]|χ〉 (11)

R =
1

2
〈χ|(A+ A†)|χ〉

The above equation conserves the norm and this property does not depend on the diffu-
sion process Bi, which is different from the physical one with a shift.
The equation for the physical normalized vector is as follow, by replacing Bi with B′i

d|φ〉 = [− i
~
Hdt+ (−1

2
γA†A− γAR +

3

2
γRR)dt+ (A−R)dB′]|φ〉 (12)

R =
1

2
〈φ|(A+ A†)|φ〉

As we have the same diffusion Bi and B′i, we can write

d|φ〉 = [− i
~
Hdt+ (−1

2
γA†A− γAR +

3

2
γRR)dt+ (A−R)dB]|φ〉 (13)

R =
1

2
〈φ|(A+ A†)|φ〉
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which is a non linear stochastic differential equation for the physical process [1].

We can also write the stochastic differential equation in the statistiacal operator
formalism. We have the density operator defined as [1]

ρ =

∫
D[Bi]

|ψ〉
‖|ψ〉‖

〈ψ|
‖〈ψ|‖

Praw[Bi]‖|ψ〉‖2

=<< |ψ〉〈ψ| >> Praw

where
∫
D[Bi] is the functional integral corresponding to all realizations of the random

process Bi. Using the stochastic differential equation and the above definition, and do
the Ito calulus, we have [1]

ρ̇ = − i
~

[H, ρ] + γAρA† − γ

2
{A†A, ρ} (14)

Now we can derive the master equation of the CSL model from the stochastic form of
QMSL.

We start by choosing the proper functions of the creation and annihilation operators
of particles for the operators Ai. Considering two operators, that satisfy the canonical
commutation or anticommutation relations, a†(y, s) and a(y, s) for a particle at position x
with a spin components s. Then the averaged density operator in general three dimension
is defined as [1]

N(x) =
∑
s

∫
d3yg(y − x)a†(y, s)a(y, s) (15)

where g(x) is a spherically symmetric and positive real function peaked at x = 0, re-
quiring that

∫
d3g(x) = 1, and so

∫
dxN(x) = N , where N is the number operator. We

choose g to be the following form (comparing with the choice of localization operator in
QMSL) [1]

g(x) = (
α

2π
)

3
2 e−

α
2
x2

(16)

in which α
3
2 indicates the volume where the average is taken in the definition 15. The

normalized eigenstate vectors of N(x) are defined as usual [1]

|q, s〉 = Na†(q1, s1)a†(q2, s2)...a†(qn, sn)|0〉 (17)

with normalization factor N and vacuum state |0〉.
The corresponding eigenvalues are n(x) =

n∑
i=1

g(qi − x).

With the above definition of N(x), the Ito differential equation 9 then becomes [1]

d|ψ〉 = [− i
~
Hdt+

∫
d3xN(x)dB(x)− γ

2

∫
d3xN2(x)dt]|ψ〉 (18)

with
<< dB(x) >>= 0 and << dB(x)dB(y) >>= γδ3(x− y)dt

For the statistical operator formalism, equation 14 becomes

ρ̇ = − i
~

[H, ρ] + γ

∫
d3xN(x)ρN(x)− γ

2

∫
d3x{N2(x), ρ} (19)
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By using the definition 17, the above equation 19 then becomes

∂

∂t
〈q′, s′|ρ(t)|q′′, s′′〉 =− i

~
〈q′, s′|[H, ρ(t)]|q′′, s′′〉

+
γ

2

∑
ij

[2G(q′i − q′′j )−G(q′i − q′j)−G(q′′i − q′′j )]〈q′, s′|ρ(t)|q′′, s′′〉

(20)

where

G(q′ − q′′) =

∫
d3xg(q′ − x)g(q′′ − x) = (

α

4π
)

3
2 e−

α
4
(q′−q′′)2

which is the master equation for the CSL model [1].

Now if we only consider a one particle system, the master equation 20 becomes [1]

∂

∂t
〈q′|ρ(t)|q′′〉 = − i

~
〈q′|[H, ρ(t)]|q′′〉 − γ(

α

4π
)

3
2 [1− e−

α
4
(q′−q′′)2 ]〈q′|ρ(t)|q′′〉 (21)

Rcall the master equation 3 we had in the above section for the QMSL model,

ρ̇(x, y) = − i
~

[H, ρ(x, y)]− λ[1− e−
α
4
(x−y)2 ]ρ(x, y)

where ρ(x, y) = 〈x|ρ(t)|y〉. We can see that these two master equations are in fact the

same one if we set γ( α
4π

)
3
2 = λ. Therefore, the effect of the collapse model on a single

particle system is governed by the above master equation.

In the next part, we would focus on the approximated master equation 4 for a single
particle system, from the QMSL section, and consider a simple thought experiment to
see the effect of the collapse model (both QMSL and CSL for this one particle case) on
the behaviour of a quantum interference.
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Part II

Mach-Zehnder Interferometer
Experiment
In this part, we would investigate how the quantum interference of particles is affected by
the collapse model. We would consider a simple setup of Mach-Zehnder interferometer
for one particle system. We are assuming that the quantum wave packets of the particle
are separated rapidly at the beginning, so that there is no chance for the spontaneous lo-
calization to occur. Then bring them back together more slowly (so that the localization
can occur). The setup is roughly like this:

Figure 2: Simple setup of a Mach-Zehnder interferometer.

The first left part of the setup is designed to be short so that the separation process
is very fast and short. The right part, where we would focus on and where everything
happens, is much longer. Finally the two packets coincide on the plane. Based on Quan-
tum Mechanics, we should see a interference pattern on the plane. By considering the
spontaneous localization model, we will see how it would affect and change the result to
be closer to the classical result.

For simplicity, we are considering one dimensional case here. Considering the two
splitted waves move towards the plane as if there are two wave packets moving to each
other in a one dimensional space.
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1 Solution of The Approximated Master Equation

Based on the design of the experiment, we would set up an initial condition for solving
equation 4. We consider an initial wave function that looks like this:

Figure 3: Initial wave function, where µ is the separation, p is the momentum and σ is
the width of the Gaussian wave packets.

Two Gaussian peaks moving towards each other according to the two particles moving
to the plane in the experiment setup. The wavefunction can be represented as:

ψ(x) =
1√
2

[
1

(2πσ2)
1
4

e−
(x−µ)2

4σ2 + ipx
~ +

1

(2πσ2)
1
4

e−
(x+µ)2

4σ2 − ipx~ ] (22)

Then we can construct the initial density matrix as ρ0(x, y) = ψ∗(x)ψ(y). The full
expression of the initial density matrix would be a linear combination of 4 terms of the
following form:

ρ̃0(x, y) =
1√

2πσ2
e−

(x−x̄)2

4σ2 e−
(y−ȳ)2

4σ2 e
ip̄x
~ e−

iq̄y
~

where x̄, ȳ, p̄ and q̄ are with respect to different µ and p in ψ(x) for the 4 terms. Then we
solve equation 4 for an initial density matrix of the above form and we find the diagonal
elements as follow:

ρ̃t(x, x) =
1√

2πσ2J
e−

x̄2

4σ2 e−
ȳ2

4σ2 e
~tK∗
2mJ

X2

e
~tK
2mJ

Y 2

e
2Dt3

3mJ
XY (23)

X = −im
~t
x+

x̄

2σ2
+
ip̄

~
Y =

im

~t
x+

ȳ

2σ2
+
iq̄

~

K =
2Dt2

3m~
+

~t
2mσ2

− i

J =
2Dt3

3m2σ2
+

~2t2

4m2σ4
+ 1

The full expression of the diagonal elements solution is a linear combination of 4 terms
of the above form, according to the initial wave function 22.

We want to investigate the behaviour of the interference pattern under the collapse
mechanism. From equation 4, we can see that the effect of the spontaneous localization
process mainly depends on the value of D. We only want to see the behaviour of the
resultant pattern, so for simplicity we set ~, σ and m to be 1, and plot the solution in
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unit of those 3 parameters for all the following simulations. If D is zero, the solution
simply describes a quantum interference pattern like the following graph.
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Figure 4: The normal quantum interference pattern, where D = 0, µ = 15 and p = 5.

By putting in the value of D, we would see the effect of the collapse on the resultant
pattern. The pattern is sensitive to the value of D. If the value is too small, the result
would just be a normal Quantum Mechanics interference result. If it is too large, the
result would just be a classical one without any quantum effect.

We want to set a reasonable value of D by now to see the behaviour, to do this we
first choose a reasonable values of µ and p for the simulation. We chose the values of
them so that the width of the Gaussian peak when it reaches the zero position point
(the plane) would be less than the distance it travelled (the separation). Here we have
chosen µ = 15 and p = 5. Based on these two values, we chose a value of D to be 0.0025
by now. Then the resultant pattern would look like the following figure.
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Figure 5: The resultant pattern on the plane, where D = 0.0025, µ = 15 and p = 5.

From the above figure we can see how the behaviour would be under the collapse
mechanism. The quantum interference pattern is being vanished and getting to a clas-
sical result for a macroscopic system.

Looking at the master equation, it is obvious that the resultant finge would be affected
by the separation and time. Therefore we then want to investigate how µ and t would
affect the pattern independently. By setting up a experiment to observe the change of
the fringe according to the two parameters, we can check the correct values of D, and so
as λ and α. In reality, it seems that changing the separation is better than changing the
time in an experiment, as longer the time, harder to handle the whole system. That is
why we consider a interferometer here, which allows us to change the separation. Now
we would need a measure to observe the change of the fringe in the experiment. We
would use fringe visibility as a measure here.
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2 Fringe Visibility of The Interference Pattern

As we can see from figure 5, the interference pattern is losing as time evolves, which
should be the case because there is more chances for the localization process to occur.
The fringe visibility can help us to determine whether the pattern can still be distin-
guished as a quantum interference or not. Here we would use the normal definition of
fringe visibility, which is V = Imax−Imin

Imax+Imin
, where Imax is the probability of the central

maximum and Imin is the probability of the first minimum of the pattern.

It is obvious to think that as time evolves, the fringe visibility would decrease because
there is more chance for localization to occur and the fringe would tend to a classical
result. In addition to time, we are interested in the effect of the separation µ, also
from experiment point of view. Frome equation 4, we would expect that the increase
of separation would reduce the fringe visibility, because the suppression term in the
equation increases. The following graph describes the fringe pattern when two quantum
packets concide on the plane for two different initial separations
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Figure 6: Fringe pattern for µ = 5 and µ = 10, where t is fixed to be 3 and D = 0.0025.

As expected, the fringe pattern tends to a classical result when increasing µ. Also
from the graph we notice that the fringe spacing and the probability distribution keep
changing for different values of µ, which is not surprising.

As the fringe spacing, so as the position of the first minimum, changes according to
those parameters µ and t, we need to determine the position of the first minimum before
we can look at the effects of changing µ and t. To do that, we first expand the full
expression of solution 23. We find that all the complex components vanish, as expected,
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and left as the following form:
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where
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(
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µ
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+
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~2t
)− 2Dt2µ

3Jσ2~
(25)

A =
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~t
+
p

~
B =
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~t
− p

~
From equation 24 and 25, we can see that the first minimum is at the point when β = ±π.

Now we can use the above results to see how the fringe visibility changes according
to µ and t independently.

First of all we like to see the effect of changing t. We fixed the value of µ and using
the fact that µ = pt to simulate the change of the fringe visibility. The following graph
shows the change of fringe visibility according to time when D is fixed to be 0.0025.
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Figure 7: Fringe visibility according to time t, where µ is fixed to be 15 and D = 0.0025.

The result is as expected. It is also useful to see the differences between different
values of D. The following graph indicates the change of fringe visibility for three
different values of D.
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Figure 8: Fringe visibility according to time t for D = 0.0015, D = 0.0025 and D =
0.0035, where µ is fixed to be 15.

From the above figure, we can see that decreasing D would cause an increase of the
overall fringe visibility and vise versa. The value of D governs the collapse process, from
equation 4 we can see that decreasing D would reduce the effect of the localization pro-
cess, so the simulation result of the solution agrees with the master equation. Frome this
result, one can design an experiment to observe the fringe visibility and test the values
of D, so as the two important parameters of the theory λ and α.

As written in the earlier section, from the experimental point of view, it is more
convenient to use separation µ rather than time t. Because it is more difficult to control
the system so that it is not disturbed in long time. The following graph indicates the
change of fringe visibility according to the separation µ, with t fixed to be 3.
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Figure 9: Fringe visibility according to separation µ for D = 0.0025, where t is fixed to
be 3.

The fringe visibility decreases as separation increases, which agrees with the master
equation. However, the fringe visibility at the small µ region should not be the case.
Because if the separation is so samll and so that the fringing spacing is larger than the
length scale of the Gaussian peak, when two packets concide on the plane, then the
measure of fringe visibility is not a meaningful one in this case. The following graph
shows the fringe pattern for small separation.
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Figure 10: Fringe pattern for µ = 1, µ = 1.5 and µ = 2, where t = 3 and D = 0.0025.
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From the above figure we can see that the region lower than µ = 1 is not good and
should not be considered. Considering the change of fringe spacing according to D and
experimental purpose, we choose µ = 2 as a lower bond here.

Now we would see how fringe visibility change according to the value of D. The
following graph indicates the fringe visibility for three different values of D.
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Figure 11: Fringe visibility according to separation µ for D = 0.0015, D = 0.0025 and
D = 0.0035, where t is fixed to be 3.

The result agrees with equation 4, as the suppression rate would increase with the
value of D and so the overall fringe visibility drops. From this result, one can design an
experiment for changing separation to check the values of the two important parameters,
λ and α in the spontaneous localization model. The above result is based on the solu-
tion of equation 4, which we assumed that the length scale of localization process is very
large. Therefore an experiment based on this must be a setup with very large separation.

If we look at the second term, localization term, of the original master equation 3, we
can see that the suppression rate would tend to a fixed value if the separation is large,
given the value of λ and α is fixed. Comparing with equation 4, which the suppres-
sion rate increases with the separation, the fringe visibility result for the original master
equation may not be the same as the above one. The fringe visibility may not drop as
obvious for the original one.

As from the result of the paper by William Feldmann and Roderich Tumulka [2], small
value of α is not forbidden by the experimental data. The approximation of the master
equation can still be a good one. Looking at the overall behaviour of the fringe pattern
in the above result, it seems that the result agrees with the original master equation to
some extent and the approximation seems to be alright. An experiment with a large
separation setup can be used to test the approximation of the master equation.
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Conclusion

Here we designed a very simple thought experiment based on the single particle system
solution of the master equation for QMSL and CSL. The overall behaviour of the re-
sultant fringe pattern of a quantum interference experiment was simulated, taking into
account the random spontaneous localization process. As the above results are based on
an approximation for large length scale of the localization process. One can design a real
Mach-Zehnder interferometer experiment with very long legs to test the behaviour of the
resultant fringe, which would be a possible way to test whether the collapse model is a
good theory to solve the measurement and connects the micro and macroscopic physical
world. Also the experiment could be a test to find the values of the two important
parameters, the mean rate and the length scale of the random localization process, in
the theory.
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