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Introduction

Modern physics is formulated in a language that intensively employs the concept of
symmetry in order to understand the fundamental phenomena encountered in na-
ture. The notion of symmetry however soon becomes rather subtle. Often enough it
is found to be realised in the ordinary sense – as an invariance of observables against a
specified set of operations in real space. But in a further sense, symmetries may also
be realised in the more abstract space of those quantities by which we aim to describe
reality. In the second category fall situations in which even at the cost of redundancy,
additional symmetries are created in order to obtain suitable mathematical descrip-
tions. Complementary to what might be the intuiton, either approach proves not only
successful in situations where the concerned symmetry is present, but rather becomes
particularly valuable in its absence. The viewpoint suggested by the mathematical
framework is that symmetries are never truly absent but under certain circumstances
might merely be hidden. In fact, many of the most interesting phenomena in physics
are observed on systems in such a state of hidden symmetry. Not the least, Grand
Unified Theories understand three of the four fundamental interactions experienced
in today’s world as the remnants of what used to be unified in an early and more
symmetric stage in the evolution of the universe. But the applicability of symme-
try considerations is not constrained to the high energy scales. Only one prominent
example being superconduction, a majority of the forms in which condensed matter
appears can be understood in a similar way.

Whenever symmetry is being lost, this will be accompanied by the emergence of
order and as such will become noticeable in the macroscopic appearance of a sys-
tem. Transitions between states with different degrees of order are known as phase
transitions and the standard framework in which to think of them is known by the
name of spontaneous symmetry breaking. The thermodynamics of phase transitions
are well understood and yield remarkable predictions, known as scaling and univer-
sality. In essence, these refer to the phenomenon that at their transitions, otherwise
considerably different systems exhibit identical behaviour with respect to the relevant
quantities and that the laws that describe this maintain their form at all different
scales. Refined field-theoretic calculations could later made use of renormalisation
group techniques to provide quantitative improvements to these scaling laws, while
preserving their form. It were also renormalisation group ideas that finally led to an
understanding of universality in terms of fixed points in the space of theories that is
approached near phase transitions.

In contrast to the success in developing a consistent picture of equilibrium phase
transitions, their non-equilibrium dynamics provide major obstacles to any attempt of
a theoretical description. Apart from the limited validity of the thermodynamic limit,
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the most important property of observable systems distinguishing them from idealised
ones is that any process will be happening in a finite amount of time and it is this lack
of adiabaticity which becomes crucial in the study of phase transitions. As will be
illustrated in the course of this work, the formation of topological defects follows as an
inevitable consequence of this and in fact all predictive power is largely constrained
to a sensible description of these ’shards of broken symmetry’ [1]. The investigation
of their distribution spans a whole field of contemporary research, which has gained
particular momentum by the ideas originating from Kibble and Zurek. While it is
primarily not obvious if and why the thermodynamic results should be maintainable
in non-equilibrium situation where phase transitions can be induced by strong exter-
nal influences, the Kibble-Zurek mechanism provides an approximation scheme that
succeeds to considerable extent in this respect. Its major achievement is to translate
the equilibrium scaling laws into more general statements about the distribution of
defects that has to be expected after a phase transition. Relying mainly on causality,
the arguments invoked in this approach are of general applicability. While Kibble
originally applied them in the context of predicting the formation of cosmic strings
in the early universe, their recognition in condensed matter scenarios originates to
Zurek, and since then there has been active collaboration between cosmologists and
condensed matter physicists, hoping that each side could learn from the other. How-
ever, especially the tempting prospect of being able to draw conclusions about the
structure of the universe from performing experiments in the laboratory has proven
problematic. Reflected in the differences in structure towards the relativistic theories
used in the cosmological setting, the inhomogeneities present in condensed matter put
bounds on the presence of scaling in systems that are brought out of equilibrium.

The intention of this dissertation is to provide a broad, although therefore rather
basic overview over the subject. A strong focus has been placed upon an extensive
introduction to the elementary aspects of the underlying theory. In addition and
exemplified by three of the experimental realisations currently enjoying the strongest
interest, it is shown explicitly how their dynamics in the vicinity of a phase transition
reflect the breaking of a symmetry and, supported by a numerical analysis, in how
far the predictions of the Kibble-Zurek mechanism need to be extended.

Chapter 1 begins with a minimal review of the necessary concepts from thermo-
dynamics and introduces the general notion of phase transitions in order to develop
a further understanding based on the classic example of the ferromagnetic transition.
The conceptual details of spontaneous symmetry breaking are elucidated and from
the Landau approach to mean field theory, universality is motivated as a classification
by critical exponents before a deeper explanation is given in terms of renormalisation.
Chapter 2 shows which effects arise in non-equilibrium situations and how this gives
rise to the production of topological defects. The Kibble-Zurek mechanism is pre-
sented as well as possible modifications to it in an elementary case. In chapter 3 all
ideas are collected and found to be applicable to the three different realisations given
in the title. Finally, the numerical simulations of defect formation in these systems
are presented and evaluated in comparison to the predictions of Kibble and Zurek as
well as more recent investigations. A summary concludes the work.
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1. Theoretical Framework

Phase transitions are ubiquitous in nature. The fact that they can be observed in
such a variety of different systems makes it difficult to describe the underlying physics
in a general language without losing track of important details. Moreover, some
mathematical subtleties will turn out to lie at the heart of critical behaviour. Hence
it will be useful to always bear in mind a particular setting to refer to and for which
the general ideas presented in the following can be made precise. This way, in turn,
the general aspects to phase transitions will become much easier to appreciate. As
the paradigmatic example for this cause the famous Ising model is chosen, which
initially formed an attempt to explain ferromagnetism in the 1920s, but due to its
phenomenological power today finds applications even in social network theory.

1.1 Basic Principles and Phenomenology

1.1.1 Thermodynamic basics

Statistical mechanics is the attempt to describe systems with a large number of de-
grees of freedom. In thermal equilibrium, this becomes a tractable task for which a
systematic theoretical framework is available. A short account will be given here of
those tools which will be most relevant for the present work. The main parts of the
discussion, including notation, rely on [2].

Consider a physical system, represented in some abstract sample region Ω for
which a Hamiltonian HΩ can be defined. Further, assume that this region has a
boundary ∂Ω, and it is possible to define its volume V (Ω) and surface area S(Ω) =
V (∂Ω). In the simplest case, Ω might be an ordinary cube with side length L. But
even for more complicated geometries it is useful to think about the extent of a system
approximately as

V (Ω) ∝ Ld

S(Ω) ∝ Ld−1, (1.1)

where d is the spatial dimensionality. A very basic question concerns the physical
nature of the boundary. In principle, one could allow fluxes through ∂Ω and in
fact this is what has implicitly been assumed in introducing a Hamiltonian and thus
allowing for different energy levels in the system. If we excluded energy exchange
with the surroundings, i.e. if we were examining a perfectly isolated system, we could
simply replace HΩ by a definite energy E. On the other hand, we do not wish to
be concerned about an exchange of particles through ∂Ω, as would be necessary for
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membrane-like surfaces. The resulting picture is the one referred to as canonical
ensemble. The Hamiltonian can be written in terms of the coupling constants {Kn}
and combinations of the N(Ω) dynamical degrees of freedom {Θn} as

HΩ = − 1
β

∑
n

KnΘn, (1.2)

where, introducing Boltzmann’s constant kB , 1/β = kBT defines a basic thermal
energy scale which is determined by the temperature T . The temperature is itself
part of the set {Kn} that also contains other external parameters such as present
fields.

The central object that can be computed from this stage is the partition function

Z[{Kn}] = Tr e−βHΩ . (1.3)

Taking the trace here means summing over all configurations of the system,

Tr =
∑
Θ1

∑
Θ2

...
∑

ΘN(Ω)

, (1.4)

each one weighted by the Boltzmann factor e−βHΩ evaluated at the respective values
of the external parameters. The meaning of this factor is that in thermal equilibrium
the probability of measuring the system to be in a state of energy E is

p(E) =
e−βE

Z
. (1.5)

A good derivation of this result can be found in [3].
The significance of the partition function is that all thermodynamic properties of

Ω are encoded in it. Or to be precise, they are the derivatives of the free energy with
respect to the coupling constants, where the free energy is defined as

FΩ[{Kn}] = − 1
β

logZΩ . (1.6)

There is also a second, equivalent expression for the free energy that relies on a
definition of entropy. The relation between the two forms is quickly revealed:
First consider the average internal energy

U :=
∑

r

Erp(Er) = − ∂

∂β
log Z (1.7)

as well as the generalised forces

κn|r = − ∂Er

∂Kn
, (1.8)

with averages

κn :=
∑

r

p(Er)κn|r =
1
β

∂ log Z

∂Kn
. (1.9)
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We can then write

d log Z =
∂ log Z

∂β
dβ +

∑
n

∂ log Z

∂Kn
dKn

= −Udβ + β
∑

n

κn dKn

= −d(βU) + β dU + β
∑

n

κn dKn . (1.10)

The second law of thermodynamics reads

dU = TdS −
∑

n

κndKn , (1.11)

with the entropy defined as

S = kB log ω (1.12)

where ω denotes the number of microstates compatible with a certain macroscopic
state of Ω. Combining eqn. (1.10) and (1.11) to

S =
∫

T=0

dS =
U

T
+ kB log Z , (1.13)

we can conclude that

FΩ = U − TS (1.14)

is the free energy from above in eqn. (1.6), but as a function of the entropy S. The
integration constant in eq. (1.13) has been omitted as it can be determined to be zero
from looking at the limit limT→∞ S.

Finally, we have to invoke the thermodynamic limit, which is usually defined as
the limiting procedure

N(Ω) →∞ and V (Ω) →∞

s.t.
N(Ω)
V (Ω)

= const. (1.15)

and without which phase transitions have no formally precise meaning, as will become
clear later. In this limit the free energy also becomes infinite – it is extensive. Two
better, that is, intensive quantities to work with in the thermodynamic limit are the
associated bulk and surface densities

fb = lim
V (Ω)→∞

FΩ[{Kn}]
V (Ω)

fs = lim
S(Ω)→∞

FΩ[{Kn}]− V (Ω)fb

V (Ω)
. (1.16)

9



Figure 1.1: Schematic form of a typical temperature-pressure phase
diagram. A continuous phase transition happens only at the critical
point C.

For systems defined on a lattice the quantity that corresponds to fb and which we
will use extensively is the free energy per degree of freedom

f = lim
N(Ω)→∞

FΩ[{Kn}]
N(Ω)

(1.17)

It is important to note however that there are cases in which the thermodynamic limit
does not exist. One example for which fb diverges in the limit is a uniform cloud of
equally charged particles [2].

1.1.2 Classification of phase transitions

The fact that the same matter can develop very different macroscopic appearance
depending on the external circumstances and the observation of transitions between
the different states calls for a systematic classification. A pictorial way to capture this
type of phenomena is given by phase diagrams like in fig. 1.1.2, where the parameter
space is partitioned into regions of equal phase, seperated from each other by phase
boundaries.

Mathematically, phase boundaries are identified as sets of points in parameter
space where certain thermodynamic functions become singular. This is only possible
in the thermodynamic limit since for finite systems the partition function must al-
ways be the sum of analytic functions and thus can never exhibit singularities. An
infinite number of terms however can produce discontinuities or infinities at certain
parameter values. Because usually observed systems have a large number of degrees
of freedom (∼ 1023) sharp phase transitions will never appear in any experiment but
instead the phase boundaries are observed to be smeared out.

When Ehrenfest developed the original classification scheme, he distinguished be-
tween phase transitions of first and second order. While in the former case the first
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derivative of the thermodynamic potential with respect to the relevant parameter ex-
hibits a discontinuity at the critical point, in the latter case it is the second. In the
modern approach phase transitions are characterised by whether or not latent heat is
developed. The advantage of this criterion is that it is accessible to experiment. At
the same time, it generalises Ehrenfest’s scheme, which is why it is usually preferred
today. Transitions which are accompanied by latent heat are referred to as discon-
tinuous, and would have been identified as of first order by Ehrenfest. One familiar
example of a discontinuous phase transition is the boiling of water. The change of
phase from liquid to vapour does not happen instantaneously but gradually through-
out the system and in order to maintain the process thermal energy has to supplied by
the environment. Phase transitions that occur without latent heat are called continu-
ous, and fall into the second order category. These processes are usually realised only
in distinct regions of parameter space, labelled as critical points (or surfaces). The
non-analytic behaviour of systems undergoing continuous phase transitions displays
an extraordinary richness and is summarised under the name of critical phenomena.
Instances of these provide the foundation of this work.

From comparison in terminology between the two classification schemes, it is evi-
dent that from the modern point of view only the first derivative of the thermodynamic
potential plays a distinct role. Although rare, discontinuities in higher than second
derivatives are not excluded and all fall into the same class of continuous phase tran-
sitions.

In order to quantify the meaning of a phase, it is appropriate to define an ob-
servable that takes on distinct values in the different phases and thus makes them
distinguishable. Such a quantity is called an order parameter and its choice is not
necessarily unique. The common definition is, that it only needs to be zero in one
phase and non-zero but finite in the other. However, there are deviations from this
rule, as will be seen in sec. 1.1.3 for the zero-temperature transition in the Ising model.
The term ’order parameter’ itself originates from the fact that, as will be seen, phase
transitions can be understood as the breakdown of some degree of order in a system.
Nevertheless, order parameters can also be defined more abstractly, independent of
this meaning.

So far, the discussion was concerned with classical phase transitions, which are
driven by thermal fluctuations. At low temperatures however, quantum fluctuations
become relevant, spanning a whole new field of analysis. In fact, at T = 0 it is possi-
ble to define quantum phases and again there exist transitions between these, with a
separate range of effects. However, this will not be treated.

1.1.3 Ising model

All materials react on an externally applied magnetic field H by exhibiting a mag-
netisation M, resulting in a magnetostatic force. For pure diamagnets this force is
repulsive and often negligible, while for paramagnets it becomes attractive but, with
some exceptions, also stays small so that in both cases and for large temperature
ranges the magnetisation can be seen as a linear response to the magnetic field as
long as this does not exceed a certain critical strength. In contrast, when cooled down
below a material-specific temperature, ferromagnets are capable of exhibiting a large
magnetisation even without an externally applied magnetic field. It was this phe-
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Figure 1.2: A representative 3 × 3 block of a two-dimensional Ising
lattice in some random configuration at a single instant in time. Only
nearest neighbours interact in the Ising model, here represented by
bigger arrows.

nomenon that Lenz and Ising aimed to understand when they established the Ising
model during the years from 1920 to 1925. With the Stern-Gerlach experiment per-
formed in 1922, a rigorous theory of spin was only at its start. But already had it been
understood that there exists a two-valued internal degree of freedom attributable to
atoms with unpaired electrons, giving rise to microscopic magnetic dipoles. The Ising
model formalises this observation by considering N(Ω) interacting spins on a lattice
of which we label the vertices by an index i. To each lattice site a variable is assigned
that has only two possible values

Si = ±1 ∀ i = 1 ... N(Ω) , (1.18)

corresponding to the spin being either up or down. The crucial simplification is
to restrict the interaction between spins only to nearest neighbours. Even bearing
in mind the rapid, inversely cubic radial fall-off in magnitude of the magnetic dipole
interaction, this assumption seems like an oversimplification at first sight but will turn
out to yield major insights already. Is is the power of the Ising model that it replaces
the complicated quantum mechanical interaction between the lattice constituents by
an almost trivial-seeming term while retaining a great amount of predictive strength.
This is in fact a first example of a more general phenomenon which will be adressed
later in this work. This section will be restricted to the discussion of a lattice with
hypercubic structure, the lattice spacing being denoted as a. As for now, we can
leave the spatial dimension d unspecified. The Ising Hamiltonian in its simplest form
assumes a uniform magnetic field and equal coupling between all pairs of neighbouring
spins – denoted by îj – and can be written as

HΩ = −H

N(Ω)∑
i=1

Si − J
∑

bij
SiSj . (1.19)

This is readily justified phenomenologically: Pointing in the direction of the magnetic
field and aligning with the nearest neighbours is energetically favourable for each
single spin (assuming J > 0). The ground state will thus be

Si =

{
+1 for H > 0
−1 for H < 0

∀i (J > 0) . (1.20)
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We will now see that this is the first instance of a phase transition we encounter. The
corresponding order parameter is the magnetisation

MΩ :=
1

N(Ω)

∑
i

Si , (1.21)

which is nothing but the normalised first derivative of the free energy (1.14) with
respect to the external field H,

MΩ = − 1
N(Ω)

∂FΩ

∂H
= − ∂f

∂H
, (1.22)

for free energy density f . At T = 0, the value of MΩ changes from +1 for H > 0
towards −1 for H < 0, so it has indeed the correct bahaviour for an order parameter
as introduced in sec. 1.1.2. For H = 0 however, the two states of all spins up and all
spins down are energetically degenerate and we cannot make a statement about the
expected value of MΩ. In fact, which value MΩ assumes will depend on nothing but
the initial conditions on the system. We will return to this point later, when discussing
spontaneous symmetry breaking. For now, let us relax the condition of zero temper-
ature to make the discussion more generally applicable. For non-zero temperature
T > 0, each of the N(Ω) spin degrees of freedom carries kinetic energy, approaching
kBT/2 for increasing T as stated by the equipartition theorem. Correspondingly, a
finite entropy is emerging and the spin system will tend to minimise the free energy
instead of only the internal energy. As shown in section 1.1.1, the free energy density
f is derived from the partition function, which for the Ising model takes the form

ZΩ =
∑

{Si=±1}

e−βHΩ({Si}) . (1.23)

Here we have partly abandoned notational rigour and only made explicit the de-
pendence of the Hamiltonian (1.19) on the configuration of spins. One important
symmetry of the Ising model can be identified at this point. Regarding eqn. (1.23),
one realises that because ZΩ is evaluating a configuration-dependent function and
sums over all possible configurations every term has a partner term corresponding to
the same configuration but with all spins flipped. Thus the whole sum is invariant
against a simultaneous change of sign in all spin variables Si

Z2 : Si → −Si ∀i (1.24)

where the associated symmetry group has been recognised as the smallest discrete
group, that is Z2. The Hamiltonian transforms under its action as

HΩ(H,J, {Si}) −→ HΩ(H,J, {−Si})
= HΩ(−H,J, {Si}) . (1.25)

It follows that the free energy density is even in the magnetic field H:

f(H,J, T ) = f(−H,J, T ) (1.26)

We could also try and reverse only single spins instead of all spins at once. An
operation of this kind still leaves the value of ZΩ unaltered but clearly changes HΩ,
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the energy of a configuration. That is why we refer to the Z2 symmetry of the Ising
model as being global (or rigid) as opposed to local. It can also be understood as a
time reversal symmetry when the spin is being associated with the direction of the
magnetic moment arising from an electronic current at atomic level.

Let us now ask for the physical relevance of this global Z2 in the Ising model. The
central question is in how far this symmetry property will become visible not only in
the equations that describe the system, but also in its actually realised states.

When discussing the form of the Hamiltonian (1.19) a partial answer to this was
already found. The ground state at T = 0 was seen to be a configuration of all
parallel spins –– a state clearly not symmetric under the Z2 action above. For high
temperatures on the other hand, thermal fluctuations become dominant and at H = 0
the states can be regarded as Z2-symmetric as long as we average over short time (or
length) scales with the magnetisation being zero. The exact argument is slightly more
subtle and will be presented in detail later. But accepting this, then it has to be ex-
pected that, when lowering the temperature, from some distinct temperature on it
will become favourable again for the system to regain some of the long range order
exhibted in its ground state. This is indeed what happens and the mathematical
picture that captures this symmetry breaking process for a general setting is being
elucidated in sec. 1.1.4. For now, the aim is to explore in some more detail the Ising
model as a representative system.

We start with one single spatial dimension, d = 1, and ask how thermal fluctua-
tions in general influence the ground state at H = 0. To answer this, we first examine
one of the two T = 0 ground states, say the one with all N spins up:

... ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ...

The free energy of this state is simply

FN = −NJ . (1.27)

If thermal energies are high enough to flip a finite fraction of spins, a positive contri-
bution to the entropy is to be expected. It is worth noting that for this to be true
in the thermodynamic limit, an infinite number of reversals would be needed. It is
thus much more convenient to speak about regions of spins with the same orientiation
rather than about that of each spin separately. Regions of uniform microscopic con-
figuration like this are generally referred to as domains. What marks the transtion
between two domains is called a domain wall, or defect. In the groundstate from
above there is only one single domain. Adding one domain or, equivalently, inserting
one defect, the microscopic state looks like

... ↑ ↑ ↑ ↑ ... ↑ ↑ ↓ ↓ ... ↓ ↓ ↓ ↓ ... (1.28)

or like its mirror image. The change of orientation from one to the other side of the
domain wall has cost an energy of ∆E = +2J , no matter where in the chain the
defect sits. For perdiodic boundary conditions, the entropy of the state is thus

SN = kB log N , (1.29)

whereas in the case of open ends, SN = kB log(N − 2), which for large N does not
make a considerable difference. Assuming the periodic case, the difference in free

14



energy to the ground state becomes

∆FN = 2J − kBT log N (1.30)

which is negative for all temperatures T > 2J/kB log N . But from ∆FN < 0 we
conclude that all the states with one defect are now thermodynamically preferred by
the system. In fact, in the limit N →∞, defect creation becomes preferrable for any
temperature, ∆FN → −∞ ∀ T > 0. By repeatedly applying the above argument
to the domains, it becomes obvious that for T > 0 the configuration of lowest free
energy will have no domains left:

... ↑ ↓ ↑ ↓ ↑ ↓ ↑ ... (1.31)

While for T = 0 the magnetisation was either +1 or −1, now it is strictly zero.
This also means that the phase transtion occuring when H changes sign vanishes for
non-zero temperatures. This is because the long range order encoded in the nearest-
neighbour spin interaction is unstable against even the smallest thermal fluctuations.
There are simply no more two different possible phases existent at H = 0.

The result, that the Ising model in d = 1 lacks a finite temperature phase transi-
tions, explicitly relies on the nature of the assumed interaction in the model. However,
there is a generalisation to this. Promoting the interaction strength J to a function
of the distance r between lattice sites, J → J(r) , it was established [4] that in fact
there do exist phase transitions for sufficiently long-ranged interaction. Assuming the
form

J(r) ∝ 1
rα

(1.32)

this is precisely the case for 1 ≤ α ≤ 2, while for α > 2 the interaction qualifies as
being short-ranged.

Increasing the number of space dimensions d, the number of nearest neighbours
for each lattice site will increase. Consequently, not only for the Ising model but quite
generically, the effect of internal interactions on the free energy will rise compared to
the remaining, externally caused energetic contributions. This means that long range
order is more likely to be seen in higher values of d. If a model does not exhibit a
T 6= 0 phase transition in some low space dimension, it might still do so in higher
dimensions. If this is the case, a lower critical dimension dc can be identified, which
marks the maximal space-dimensionality at which the interactions are just not strong
enough to give rise to long-range order. For the Ising model, dc = 1. This means
that mathematically, the model exhibits a transitions for any d = dc + ε with ε > 0
as can be shown by a more rigorous analysis. We shall subsequently only give the
phenomenological reasoning for the next integer dimension.

In two space dimensions, the energy difference between a state with all spins
pointing in the same direction and one exhibiting a domain wall along n̂ lattice sites
will be of the order

∆E ' 2Jn̂ . (1.33)

The entropy of the state with one domain now becomes more difficult to calculate
than in d = 1. As a first approximation however, we can make the analogy to a
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Figure 1.3: Spontaneous magnetisation Ms ≡ ± limH→0± ∂f/∂H as
a function of temperature. That fact that it is continuous indicates
that the ferromagnetic phase transition is of second order.

random walk. If the co-ordination number of our lattice is z, i.e. each lattice site has
z nearest neighbours, then there will be roughly (z − 1)n possible shapes the domain
wall can take, because it cannot intersect itself in the state of only one domain. This
guess will be an overestimate, because we have neglected the existence of boundaries.
The corresponding entropy is

∆S ' kBn̂ log(z − 1) (1.34)

and so the change in free energy will be

∆F ' n̂(2J − kBT log(z − 1)) . (1.35)

As before, we require n̂ to be a non-zero fraction of N so that n̂ →∞ in the thermo-
dynamic limit. Then we can identify a critical temperature at which ∆F changes sign
and thus distinguishes between ∆F → +∞ and ∆F → −∞ in the thermodynamic
limit. This critical temperature is

Tc '
2J

kB log(z − 1)
. (1.36)

It is not surprising that Tc depends on the shape of the lattice. Denser lattices (higher
z) are less susceptible to long range order. However, unlike the space dimensionality
d, it only affects when the transition occurs, and not if it occurs.

As in the case of d = 1 the argument above can be extended to states with more
than one domain wall and so we conclude that Tc separates two phases. For higher
temperatures T > Tc, the system becomes unstable against thermal fluctuations, do-
mains vanish, and the magnetisation will be strictly zero. For lower temperatures
T < Tc, long-range order is protected against thermal effects and the magnetisation
will be finite, either positive or negative. It will continue to increase with decreasing
temperature until it reaches its maximum absolute value |M | = 1 at T = 0. The
exact behaviour can be calculated and is shown in fig. 1.1.3.

The arguments presented in this chapter are not only applicable to a Z2 symmetric
system like the Ising model. Similar reasoning stays valid also in systems invariant
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under any discrete symmetry group. The fact that these properties were derived from
a Z2 symmetric system but are extendable to situations exhibiting other symmetries
supports the approach of F. Baroni, who promotes this observation to the conjecture
that actually all of what is necessary to understand phase transitions might be seen
from Z2 symmetric models [5].

Up to now we have only given semi-phenomenological arguments. To complete
the discussion, the actual formal solution to the d = 1 Ising model will be presented,
most importantly because it employs the transfer matrix technique, which is of wide
applicability in statistical physics. The difficult two-dimensional case was solved ex-
actly by Onsager [6] whereas no analytical solution is known for higher dimensions.

Writing out the d = 1 partition function (1.23) by using the Hamiltonian (1.19)
gives, when simplifying notation to N ≡ N(Ω) and assuming periodic boundary con-
ditions SN+1 = S1 for convenience,

ZΩ =
∑

{Si=±1}

N∏
j=1

exp
{

β
[1
2
H (Sj + Sj+1) + J SjSj+1

]}
(1.37)

The surprising observation is that this can be written as a trace, and a reader familiar
with quantum mechanics and the density matrix formulation will notice the close
formal analogy. Defining the 2× 2 transfer matrix T to have components

TSiSj = exp
{

β
[1
2
H (Sj + Sj+1) + J SjSj+1

]}
, (1.38)

implies its matrix form to be

T =
(

eβ(H+J) e−βJ

e−βJ eβ(−H+J)

)
(1.39)

and the partition function becomes

ZΩ = Tr
(
TN

)
. (1.40)

The trace operation is invariant against a change of basis, and so we diagonalise into
the eigenbasis of T to realise that

ZΩ = λN
+ + λN

− (1.41)

with eigenvalues

λ± =
TrT

2
±

√(TrT

2

)2

− det T

= eβJcoshβH ±
√

e2βJsinh2 βH + e−2βJ . (1.42)

The free energy density then becomes

f = −kBT ln (λN
+ + λN

− ) . (1.43)

Note that in the thermodynamic limit the contribution from the smaller eigenvalue λ−
becomes neglible and Z Ω → λN

+ so that the system’s behaviour remains completely
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determined by the largest eigenvalue of the transfer matrix. Having obtained an
analytic expression for the partition function, we could simply invoke the canonical
derivative formulas to calculate the magnetisation or any other observable. In this
case however, it is easier to further employ the transfer matrix method.

Still maintaining periodic boundary conditions, we conclude for the magnetisation,

MΩ = 〈Sj〉

=
1

ZΩ

∑
{Si=±1}

TS1S2 ... TSj−1Sj
SjTSjSj+1 ... TSN S1

=
Tr

(
T jσzT

N−j
)

λN
+ + λN

−
=

Tr
(
σzT

N
)

λN
+ + λN

−
, (1.44)

where the third Pauli matrix σz was introduced. T is real and symmetric, so that
there exist an orthogonal transformation matrix R (Rt = R−1) that diagonalises T .
Using the second Pauli matrix σy, we parametrise the rotation as R(θ) = exp(iθσy)
by an angle θ that can be read off from eqn. (1.39) to obey

tan 2θ =

√
e−2βJ

e2βJsinh2 βH

= e−2βJsinh−1βH . (1.45)

Hence,

T −→ R(θ) T Rt(θ) =
(

λ+ 0
0 λ−

)
=: Λ . (1.46)

The implicit use of this in eqn. (1.44) led to the simple form of Z. Now however,
introducing R(θ) explicitly was necessary as we are left with

MΩ =
Tr

(
σz[Rt(θ) Λ R(θ)]N

)
λN

+ + λN
−

=
Tr

(
σzR

t(θ) ΛNR(θ)
)

λN
+ + λN

−

=
Tr

(
R(θ)σzR

t(θ) TN
)

λN
+ + λN

−
. (1.47)

We compute

R(θ)σzR
t(θ) = exp(iθσy)σz exp(−iθσy)

=
(

cos θ sin θ
− sin θ cos θ

) (
1 0
0 −1

) (
cos θ − sin θ
sin θ cos θ

)
=

(
cos 2θ − sin 2θ
− sin 2θ − cos 2θ

)
(1.48)

to find the result for the magnetisation:

MΩ =
λN

+ − λN
−

λN
+ + λN

−
cos 2θ (1.49)
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Again, the contribution of λ− vanishes in the thermodynamic limit, where MΩ →
cos 2θ. Note also that MΩ does not depend on j, as it should be.

A measure for spin fluctuations is given by the connected two-point correlation
function

Gij := 〈SiSj〉 − 〈Si〉〈Sj〉
= 〈SiSj〉 −M2

Ω (1.50)

Periodic boundary conditions encode translational invariance via the trace, and so
correlations can only depend on the difference i− j. We calculate:

〈SiSi+j〉 = 〈S1Sj + 1〉

=
1
Z

Tr
(
σzT

jσzT
N−j

)
=

1
Z

Tr
[
R(θ)σzR

t(θ)ΛjR(θ)σzR
t(θ)ΛN−j

]
=

1
λN

+ − λN
−

Tr
[(

λj
+ cos 2θ −λj

− sin 2θ

−λj
+ sin 2θ −λj

− cos 2θ

) (
λN−j

+ cos 2θ −λN−j
− sin 2θ

−λN−j
+ sin 2θ −λN−j

− cos 2θ

) ]
=

1
λN

+ − λN
−

[
cos2 2θ

(
λN

+ + λN
−

)
+ sin2 2θ

(
λN−j

+ λj
− + λN−j

− λj
+

)]
. (1.51)

Here,

〈SiSi+j〉 −→ cos2 2θ +
(

λ−
λ+

)j

sin2 2θ for N →∞ (1.52)

and we conclude for correlations in the thermodynamic limit:

Gij = sin2 2θ
(λ−

λ+

)|i−j|
(1.53)

When multiplying |i− j| by the lattice constant a, we can also see this as a function
of distance r to find that correlations decay exponentially,

G(r) ∼ e−r/ξ , (1.54)

on a characteristic length scale

ξ = (lnλ+/λ−)−1 . (1.55)

This result is central as it extends to many other systems, as we will see. It might
still happen that further, smaller length scales appear, but with increasing system
size they will all be determined by the few highest eigenvalues of the tranfer matrix.
In natural units, ξ has dimensions of a mass, which is why 1/ξ = m is sometimes
referred to as the mass gap in a theory.

Summarising, in this section it has been shown that, while for d = 1 the Ising model
exhibts only a zero temperature phase transition, for d = 2 and zero external field it
additionally accomodates for one at a critical temperature Tc which depends on the
interaction strength J and the lattice co-ordination number z. In the thermodynamic
limit, the order parameter MΩ changes continuously from zero to non-zero value at Tc.
However, the sign of MΩ in the ordered phase inherently supersedes our observation.
A situation like this is known as spontaneous symmetry breaking and will be the topic
of the following section.
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1.1.4 Spontaneous symmetry breaking

Figure 1.4: Free energy density (top) and magnetisation (bottom) as
functions of the external magnetic field. The spontaneous magneti-
sation is temperature dependent as depicted in fig. 1.1.3.

Describing physical systems in terms of the symmetries they exhibit often leads to
a great simplification in their theoretical description and at the same time provides a
way to capture their characteristical behaviour. Often however, the symmetries are
only approximately present in reality. In that case, one can still hope that a model
incorporating the exact symmetry preserves a great part of predictional capacity. Go-
ing further, it could be that the states in which one observes the system do not even
approximately reflect any symmetry. Even in that case, the conjecture could be that
there are states, unobserved because at too high energies, that are invariant under
certain symmetry transformations. This scenario is what the idea of spontaneous
symmetry breaking puts into a general framework.

The first distinction one has to make is between discrete and continuous symme-
tries, which then each can be realised either globally or locally. The discrete case
extends the discussion of the preceding section and is relevant in particular to con-
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densed matter physics. The continuous case is very rich in theoretical consequences of
general applicability. If locally present, it has direct effects on the particle spectrum
of a theory. We begin with the first example, focussing again on the representative
case of the Ising model from above.

Regarding the free energy density f as a function of the external field H only,
the global Z2 symmetry we found in (1.26) meant that f(H) = f(−H). From
eqns. (1.14) and (1.19) it can further be concluded that f(H) has to be concave,
that is f(αH1 + βH2) ≥ αf(H1) + βf(H2) (c.f. 1.1.4). Particular interest lies on
its analytical properties, especially at the origin. From the stated two properties it
follows that

∂f

∂H
≶ 0 for H ≷ 0 . (1.56)

Now, if f were differentiable then we could write

lim
ε→0

∂f

∂H

∣∣∣∣
H=−ε

=
∂f

∂H

∣∣∣∣
H=0

= lim
ε→0

∂f

∂H

∣∣∣∣
H=+ε

(1.57)

and because of eqn. (1.56) one would be lead to find that the magnetisation is always
zero in zero external field:

M(0) ≡ ∂f

∂H

∣∣∣∣
H=0

= 0 if f ∈ C1 (1.58)

But this cannot be true in general as we just showed in section 1.1.3 that in d > 1
there must exist a temperature Tc below which M 6= 0. The conclusion is that f is
not differentiable, its first derivative exhibits a discontinuity at H = 0.

The Z2 symmetry must be broken by the transition at H = 0 because otherwise
we would see no magnetisation. As there is no other than the technical argument
above, this breaking of symmetry is said to happen spontaneously. What is more, the
sign of the magnetisation below Tc is infinitely sensitive to the environment, making
the outcome effectively unpredictable. This further justifies the terminology. The
phenomenon of spontaneous symmetry breaking is clearly to be distinguished from
the process of explicitly breaking a symmetry by tuning coupling constants, which in
the case of the Ising model would simply mean changing from H = 0 to H 6= 0 for
any T > Tc.
The general situation arising from the spontaneous breaking of a global, continuous

symmetry was analysed first by Goldstone. His ideas will be presented here for the
simplest case, a system invariant under the action of the one-parameter unitary group
U(1), which will be of direct relevance later in this work.

Let the Lagrangian density for a classical, complex scalar Ψ be

L(Ψ,Ψ∗) = ∂mΨ∗∂mΨ− U(Ψ∗Ψ) (1.59)

where µ runs over time and space indices, µ = 0, ..., 3, and Einstein convention is
assumed – as it is subsequently. The potential is assumed to be of the form

U(Ψ∗Ψ) = −m2Ψ∗Ψ +
λ

2
(Ψ∗Ψ)2 , (1.60)
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Figure 1.5: A typical potential giving rise to spontaneous symmetry
breaking. It is sometimes referred to as ’mexican hat’ or ’wine bottle’
potential and has the standard form V (φ1, φ2) = −a|φ|2 + b|φ|4 for
a, b > 0 and a two-component variable φ = (φ1, φ2) which often is a
complex scalar field.

and hence only depends on the modulus of the field. Relativistic notation is ap-
plied here, although the following arguments do not rely on Lorentz invariance. L is
symmetric under a global change of phase by a constant θ

Ψ −→ Ψeigθ

Ψ∗ −→ Ψ∗e−igθ

⇒ L(Ψ,Ψ∗) −→ L(Ψeigθ,Ψ∗e−igθ) = L(Ψ,Ψ∗) (1.61)

where g is some coupling constant. The Hamiltonian density is

H = ∂tΨ∗∂tΨ− ∂iΨ∗∂iΨ + U(Ψ∗Ψ) . (1.62)

In the non-relativistic setting, instead of H we would need to consider a thermo-
dynamic potential at this point. This does however not alter the structure of the
following argument so that for simplicity we may stick to only regarding the Hamilto-
nian. For systems exhibiting a continuous symmetry, Noether’s theorem states that
as long as the equations of motion hold,

∂µ
∂L

∂(∂µΨ)
− ∂L

∂Ψ
= 0

∂µ
∂L

∂(∂µΨ∗)
− ∂L

∂Ψ∗ = 0 , (1.63)

then for each independent symmetry transformation, that is, for every generator of
the symmetry group, there exists a conserved current,

∂µJµ = 0 . (1.64)

One then identifies the respective charge Q carried by each Jm as

Q =
∫

d3xJ0 (1.65)
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and, in the case of a Lie group symmetry, recognises them to be in turn the respective
generator. In the U(1) example defined in eqn. (1.61) the single Noether current is

Jµ = −i

(
Ψ∗∂µΨ−Ψ∂µΨ∗

)
, (1.66)

carrying charge Q = 1.
For m2 > 0 , the lowest energy states of the Hamiltonian (1.62) are infinitely

degenerate and lie on the ring of potential minima in field space with radius

ρ0 :=
√

Ψ∗Ψ
∣∣∣∣
U

!
=min

=
m√
λ

. (1.67)

The situation is similar to the Z2 case, only that the range of values the field can
equivalently assume for the ground state is no longer twofold or even finite but has
become on its own a smooth subspace M0 of the whole space of field configurations
M. Especially in particle physics, M0 is often referred to as the vacuum manifold,
while in general the groundstates are not necessarily empty space. Here, M0 is a
circle of ρ0 = const. and can be parametrised by the phase angle:

M0 =
{

p ∈ M

∣∣∣∣(Ψ∗Ψ)|p = ρ0, arg(Ψ) ∈ [0, 2π)
}

(1.68)

Again, arbitrarily small, quantum or thermal fluctuation will inevitably make the
system pick one point on the ring. Once it has chosen some ground state (ρ0, θ0), the
U(1) symmetry is lost. Although the current (1.66) is still conserved, its charge Q
does no longer generate the symmetry but transports the field an infinitesimal amount
δθ along the circle:

Q : (ρ0, θ0) 7−→ (ρ0, θ0 + δθ) . (1.69)

The masses Mij in the theory are obtained from the second derivatives of the potential
at the ground state,

Mij =
∂2U

∂qi∂qj

∣∣∣∣
(ρ0, θ0)

(1.70)

where the identification q1 := |Ψ| and q2 := θ has been made. The crucial observation
now is that M22 = 0. This means that a massless mode has entered the system, or,
non-relativistically speaking, a mode excitable without having to overcome an energy
gap. Massless modes arising from spontaneous symmetry breaking are called Gold-
stone modes. It is to be emphasised that spontaneous symmetry breaking only occurs
due to the negative mass term in the potential. For a potential with all positive co-
efficients the global minimum lies at Ψ = Ψ∗ = 0, which then is a stable point with
all masses positive because it is invariant under the U(1) action.

Goldstone’s Theorem is the generalisation to the situation of a theory globally
invariant under any continuous group G that is spontaneously broken to some sub-
group H ⊂ G leaving only the ground states invariant. Then the vacuum manifold
M0 can be written as the coset

M0 = G/H . (1.71)
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In the simple case above we had G = U(1) and H being the trivial group, so that
the manifold of degenerate ground states became a circle: M0 = U(1) ∼ SO(2). The
essence of Goldstone’s theorem is that a massless mode will appear for each generator
ti of G that fails to leave the ground state invariant, meaning∑

k

(ti)jkΨk|p∈M0 6= 0 (1.72)

in some representation Ψk of G. Hence, the predicted number of massless particles
equals dimM0 = dimG−dimH. In case a symmetry was only approximately present
initially, then the particles will be light at least. However, the theorem does not state
a one-to-one correspondence between these so-called broken generators and massless
(or light) particles but leaves open the possibility of accidentally vanishing zero modes
of the mass matrix. In momentum space, the Goldstone modes – which are in fact
bosonic — correspond to long wavelength excitations. As such, they are directly asso-
ciated with the emergence of long-range interaction as observed in the Ising model in
the preceding section. This potentially raises worries about finiteness in the infrared
region of the energy spectrum and thus usually makes a theory subject to renormal-
isation, as will be seen later. Note lastly that we have left open the possibility of G
describing not only internal but also Galilean or Lorentz symmetry. This is in fact
the case for any crystal, in which case the lattice oscillations, described in terms of
phonons, take the role of the Goldstone modes.

Finally, the case of a broken local, or gauge, symmetry has to be considered. The
principle work on this has been done in the late 60s and early 70s by Kibble and
others, eventually leading to the prediction of the Higgs boson. The central idea will
be illustrated here again in terms of a simple abelian U(1) model from above. But
now, the symmetry transformations admit a space-dependent parameter θ → θ(x):

Ψ −→ Ψeigϑ(x)

Ψ∗ −→ Ψ∗e−igϑ(x) (1.73)

The type of Lagrangian density incorporating this symmetry relies on the introduction
of a gauge field Aµ transforming as

Aµ −→ Aµ + ∂µϑ (1.74)

and has the shape

Lloc = DµΨ∗DµΨ− U(Ψ∗Ψ) (1.75)

with covariant derivatives

DµΨ = (∂µ − ig Aµ)Ψ
DµΨ∗ = (∂µ + ig Aµ)Ψ∗ . (1.76)

We have omitted the gauge field’s self-interaction

Lem =
1
4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) (1.77)
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because it does not affect the discussion. Lem is invariant against gauge transforma-
tions (1.74) and could simply be added to Lloc for completeness. So far there is no
mass term for the gauge field, but the symmetry breaking has not yet been consid-
ered. The potential U(Ψ∗Ψ) is the same as in the preceding case and so we know
already that the states of minimum energy will lie on a circle with non-zero radius in
field space and that the system will pick one of them as the ground state. As before,
we change coordinates from (Ψ,Ψ∗) to (ρ, θ) = (

√
Ψ∗Ψ, argΨ) and choose to call the

randomly chosen ground state to be lying at (ρ0, θ0). Taking θ0 = 0 without loss of
generality and re-parametrising as

Ψ(x) = (ρ0 + ρ(x))eiθ(x)/ρ0 (1.78)

we can write when close to (ρ0, θ0):

Ψ(x) = (ρ0 + ρ(x) + iθ(x)) +O(ρ2, θ2, ρθ) (1.79)

The global U(1) symmetry had been broken at this point, with θ(x) corresponding to
the massless Goldstone mode. But now there remains a freedom to transform locally
with ϑ(x) = −θ/ρ0 and thus gauge the Goldstone away at every point in spacetime:

Ψ(x) −→ Ψ′(x) = e−θ/ρ0Ψ(x) = ρ0 + ρ(x) +O(ρ2) (1.80)

However simultaneously the gauge field and with it the covariant derivative becomes

Aµ −→ A′
µ = Aµ −

1
ρ0

∂µθ

Dµ −→ D′
µ = ∂µ − igA′

µ (1.81)

so that the Lagrangian at the chosen point on M0 changes to

L′loc|(ρ0,0) = [D′µ(ρ0 + ρ)]∗[D′
µ(ρ0 + ρ)]− U((ρ0 + ρ(x))2)

= [D′µρ]∗[D′
µρ] + g2A′µA′

µρ0(ρ0 + 2ρ)− U(ρ2)

− 2m2ρρ0 + λ(3ρ2ρ2
0 + 2ρ3ρ0) + const. . (1.82)

Strikingly, Aµ has acquired a mass of
√

2gρ0, while the Goldstone mode has disap-
peared completely, by virtue of a transverse polarisation of the gauge field. This is
what is commonly referred to as the Higgs mechanism. This particular example is the
theoretical basis for superconduction, where at the phase transition the electromag-
netic field acquires its mass from merging with the phonons to form new quasi-particles
– the Cooper pairs. The generalisation to the non-Abelian case lies at the heart of
the Standard Model where G = SU(3) × SU(2) × U(1) and, in the evolution of the
universe, this product group is being broken in a sequence of phase transitions that
leave the photon as the only exact vacuum Goldstone field known today.

1.2 Criticality

1.2.1 Mean fields and Landau theory

Phase transitions are the result of complex interactions between a large number of
particles. It is an overwhelming and often impossible mathematical task to capture
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the complete microscopic dynamics. Instead, one focusses on the description in terms
of a suitable order parameter. Landau was the first to promote the idea that there
might be a fairly general framework appropriate for a description like this and incor-
porated the ideas of mean-field theory to develop such a scheme for the description of
critical phenomena. One can of course not expect that as such it will be correct for
all values of parameters. In fact, its validity is severely constrained to the vicinity of
second order phase transitions, that is to small values of T − Tc. An overview over
Landau’s approach will be given in the following.

First we realise that, if there exists a description suitable for a range of different
systems, then this will need to be in terms of a field which varies on scales that are in-
different to the microscopic details. Thus we anticipate that a continuum description
will be possible i.e. that the partition function can be converted to a functional inte-
gral over appropriately weighted field configurations. For now, we can leave open how
this field will relate to a possible order parameter belonging to a specific transition.
But what Landau demanded is that the field shall exhibit the same symmetries as
the underlying system. For the Ising model this would mean invariance of the action
against Z2 transformations and in fact we could introduce Landau’s ideas simply by
looking at a field Φ(r) with an action S[−Φ] = S[Φ]. However, it is not much more
difficult to consider Φ to be complex and additionally demanding U(1) invariance
S[Φ∗] = S[Φ]. This has the virtue of directly connecting to our example of spon-
taneous symmetry breaking and will also provide insights into the Ginzburg-Landau
theory of superconductivity, one of the major applications of the principles of Landau
theory. The generalisation to other symmetries and more component fields is possible.

We start off by writing the partition function of a general system in equilibrium
as

Z =
∫
DΦ∗(r)DΦ(r)e−S[Φ] (1.83)

with the action being of the simplest possible form incorporating the wanted symme-
tries:

S[Φ] = β

∫
ddr

[
1

2m
|∇Φ(r)|2 − µ|Φ(r)|2 +

λ

2
|Φ(r)|4

]
(1.84)

The integration measure on the field space in eqn. (1.83) is only defined up to constant
factors, which will cancel in any calculation of observables. Therefore it is enough to
define it by the following short-hand notation:∫

DΦ(r) ∝
∫ d∏

a=1

lim
Na→∞

Na∏
ia=1

ddΦ(ri1...id
) (1.85)

with space divided into a hyper-cubic grid consisting of Na → ∞ sites in the a-th
dimension, labelled by {ri1...id

}, and with infinitesimal distances between them being
in the a-th dimension

(dxa)i = lim
Na→∞

|ri1..ia+1...id
− ri1..ik...id

|
Na

, i = 1 ... Na . (1.86)

The theory like this can be viewed as the time independent version of the standard
path integral formulation of scalar field theory, with the time coordinate taken to be
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imaginary. Bearing this in mind, we could just as well have called S the free energy
of the system. The integral Z will pick up the most contributions from points where
S is minimised. Hence a first step is to look at the theory for such configurations Φ0

of the field that satisfy

δS

δΦ

∣∣∣∣
Φ0

= 0 . (1.87)

This defines the saddle-point approximation. A phase transition induced by sponta-
neously broken symmetry is incorporated by assuming µ to be a tuning parameter
behaving as

µ ∼ −(T − Tc) +O((T − Tc)2) . (1.88)

Just as described in sec. 1.1.4, for T > Tc µ is negative and eqn. (1.87) yields Φ0 = 0
while for T < Tc µ is positive and Φ0 = 0 becomes a local maximum and S is
minimised by all field configurations satisfying |Φ0|2 = µ/λ. The minimum value of
the action is proportional to β and, because it is constant in space, to the volume V
of the system:

S[|Φ0|] =
√

µ

λ
= −βV

µ2

2λ
(1.89)

We have seen in the Ising model how the magnetic field couples linearly to the internal
variables. In Landau theory the linear coupling of an external parameter is realised
by the introduction of a source field j(r) that modifies the action to

S[Φ] −→ S[Φ; j] +
∫

ddr

[
Φ(r)j(r) + c. c.

]
(1.90)

where the complex conjugate Φ∗(r)j∗(r) is needed to preserve U(1) symmetry in the
action. Much like a one-dimensional Gaussian distribution is characterised by its
variance, a central quantitiy to describe fluctuations in Φ is the susceptibility

χ(r, r′) : =
〈(

Φ(r)−
〈
Φ(r)

〉)∗(
Φ(r′)−

〈
Φ(r′)

〉)〉
=

〈
Φ∗(r)Φ(r′)

〉
−

〈
Φ∗(r)

〉〈
Φ(r′)

〉
=

〈
Φ∗(r)Φ(r′)

〉
−

∣∣〈Φ(r)
〉∣∣2 (1.91)

where again, the expectaion value is calculated analogously to the discrete discription,
as the average over all configurations,〈

...
〉

=
1
Z

∫
DΦ∗(r)DΦ(r) ... e−S[Φ; j] . (1.92)

It can equally well be understood as the linear response to the external field as it is
obtained via the derivative of Z with respect to the source:

χ(r, r′) =
δ2 lnZ

δj∗(r)δj(r)

∣∣∣
j=0

. (1.93)
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In field theory, this would be referred to as as the connected two-point correlation
function G(r). In the common case, where systems are translationally invariant, one
can anticipate that the susceptibility is only a function of the difference between
coordinates, χ(r, r′) → χ(r− r′). Deriving an analytic expression for it is non-trivial
in general. For weak coupling however (λ � 1), and small fluctuations around Φ0, S
becomes approximately quadratic in Φ, so that the integral can be easily performed
and we obtain an expression for the susceptibility around the saddle point. To this
end, we first bring the free partition function

Z0[Φ; j] =
∫
DΦ∗(r)DΦ(r) e−S0[Φ;j] (1.94)

to Gaussian form:

S0[Φ; j] =
∫

ddr
[
β
( 1

2m
∇Φ∗(r)∇Φ(r)− µΦ∗(r)Φ(r)

)
+ Φ(r)j(r) + Φ∗(r)j∗(r)

]
=

∫
ddr

[
− βΦ∗(r)

( 1
2m

∆ + µ
)
Φ(r) + Φ(r)j(r) + Φ∗(r)j∗(r)

]
, (1.95)

assuming Φ to fall off at spatial infinity at least as fast as 1/|r|. Further, denoting
Fourier transforms with a hat, we can write

S0[Φ; j] =
∫

ddr
ddk

(2π)d

ddk′

(2π)d
eik·reik′·r×

×
[
− βΦ̂∗(k)

(−k2

2m
+ µ

)
Φ̂(k) + Φ̂(k)ĵ(k) + Φ̂∗(k)ĵ∗(k)

]
=

∫
ddk

(2π)d

[
βΦ̂∗(−k)

( k2

2m
− µ

)
Φ̂(k) + Φ̂(−k)ĵ(k) + Φ̂∗(−k)ĵ∗(k)

]
=

∫
ddk

(2π)d

[
β
( k2

2m
− µ

)(
Φ̂(−k) +

ĵ(−k)/β
k2

2m − µ

)∗(
Φ̂(k) +

ĵ(k)/β
k2

2m − µ

)
− ĵ∗(−k)ĵ(k)/β

k2

2m − µ

]
(1.96)

A shift by terms independent on Φ like

Φ̂(k) −→ Φ̂(k) +
ĵ(k)

k2

2m − µ

Φ̂∗(−k) −→ Φ̂∗(−k) +
ĵ∗(−k)
k2

2m − µ
(1.97)

will have no effect on Z0 and so it follows that

Z0[Φ; j] = exp
[

1
β

∫
ddk

(2π)d

ĵ∗(−k)ĵ(k)
k2

2m − µ

]
×

×
∫
DΦ̂∗(k)DΦ̂(k) exp

[
β

∫
ddk

(2π)d

( k2

2m
− µ

)
Φ̂∗(−k)Φ̂(k)

]
(1.98)
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where the last term of eqn. (1.96) was pulled of the integral as it only depends on the
source fields and DΦ∗(k), DΦ(k) can be defined analogously to their counterparts in
coordinate space in eqn. (1.85) and (1.86). The remaining functional integral does not
depend on the sources and factorises into one-dimensional Gaussian integrals which
can be solved (

∫
dx e−x =

√
π). But only the first term is of interest to see how the

field reacts on the sourcing fields. So we write

lnZ0[Φ; j] =
1
β

∫
ddk

(2π)d

ĵ∗(−k)ĵ(k)
k2

2m − µ
+ const. . (1.99)

After returning to coordinate space this means

lnZ0[Φ; j] =
1
β

∫
ddrddr′ j∗(r)χ0(r− r′)j(r) + const. (1.100)

where we have introduced

χ0(r− r′) =
∫

ddk

(2π)d

eik·(r−r′)

k2

2m − µ
(1.101)

as the mean-field susceptibility, valid for small fluctuations around the ground state,
in the non-broken phase of a non-interacting system. Defining the correlation length

ξ :=
~

2m|µ|
(1.102)

we find the more comprehensive form

χ0(r) =
2m

β~2

F (r/ξ)
rd−2

(1.103)

where F is a dimensionless function only of distance, varying on the scale given by ξ:

F (x) = xd−2

∫
ddk

(2π)d

eik·x

1 + k2
(1.104)

From the last two equations we already see that correlations become isotropic near
Tc. Within the range of our approximation, we set |µ| ∼ (T −Tc) and realise that the
scale ξ on which the susceptibility changes is divergent as

ξ ∼ |T − Tc|−1 . (1.105)

Correspondingly, the Fourier transform of ξ0 itself becomes singular at k = 0:

χ̂0(k = 0) = (β|µ|)−1 ∼ (T − Tc)−1 (1.106)

We conclude that, without assuming much about the microscopic details of the system,
we have discovered that the critical point gives rise to long range order. This was
a central observation from our detailed discussion of the Ising model. If one is not
willing to take this as a mere coincidence, then one is lead to the assumption of
universality.
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1.2.2 Critical exponents & Universality

It was an extraordinary experimental observation that widely different physical sys-
tems can show very similar behaviour in the vicinity of a phase transition, at their
respective critical temperatures Tc. The conjecture that there might exist an under-
lying mechanism for this arose under the name of universality. To make this notion
quantitatively meaningful one introduces critical exponents, which characterise the
behaviour of macroscopic quantities near the transition. Two of them have just been
calculated already in Landau theory, where the divergence of the correlation length
and mean-field susceptibility were revealed. In general, ν is the exponent associated
with the divergence of the correlation length with respect to the reduced temperature
ϑ = (T − Tc)/Tc as it passes from positive to negative values through zero:

ξ ∝ |ϑ|−ν . (1.107)

It is not immediately obvious why ξ should be symmetric at the critical point and
for some models additional exponents for ϑ < 0 are defined. But often there is
experimental evidence enough to assume symmetry. While we found ν = 1 for Landau
theory, the correlation function near the critical point was derived to χ0(r) = G(r) ∼
F (r/ξ)/rd−2. Any departure from this form by a general, possibly time-dependent
correlation function G(r, t) is characterised in terms of the anomalous dimension η:
via

G(r, t) =
F±(r/ξ(t))

rd−2+η
(1.108)

where one allows a possible discontinuity at Tc to distinguish between F+ and F−.
Equations like (1.107) and (1.108) are called scaling laws because they preserve their
form at all different scales. Equivalently speaking, under a change of scale in the
argument, the functional relationship stays the same up to a factor.

Scaling laws also apply to other quantities like the susceptibility of a system, or
its specific heat. Accordingly, many further critical exponents are defined. But all
these relations follow from the assumption that the free energy density itself obeys a
scaling law near the critical point:

f(T,H) = |ϑ|1/wΦ±(H/|t|u/w) . (1.109)

This is of course a severe restriction, which is why criticality only appears in distinct
regions of phase diagrams. For example, in magnetic systems the behaviour of the
magnetisation m (for generality here assumed either to be defined per d.o.f. or volume)
can then be written as

m = − ∂f

∂H

∣∣∣
H=0

= (−ϑ)
1−u

w Φ′−(0) (1.110)

for ϑ < 0 and m ≡ 0 for ϑ > 0, which defines a further exponent

β =
1− u

w
. (1.111)

We see from here that critical exponents are not all independent from each other and
it becomes a matter of convenience which to use as the basic ones. It is possible to
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derive more relations than eqn. (1.111) between the different exponents so that there
remain only three independent critical exponents. Under a further assumption known
as hyperscaling (c.f. table 1.1) this reduces to only two. For instance, we could take
them to be ν and η and deduce all the others from these. The crucial point is that
the values of critical exponents come in sets, each holding for a variety of different
systems. The small number of different sets is referred to as universality classes and
one of them is represented by the Ising model. In fact there are other universal quan-
tities besides the critical exponents, as for instance the amplitude ratios between the
observables’ value on both sides of the transition, as they appear in the repsective
scaling laws. Systems in the same universality class exhibit the same macroscopic
behaviour at their transitions. Only very basic properties like the dimensionality of
a model and its symmetry can affect to which class it belongs. Apart from the Ising
universality class, two important other classes are represented by the XY and the
Heisenberg model, which can be understood as extensions of the Ising model. While
in the XY model, the spins are allowed to point in any direction in the plane instead
of only up or down, the Heisenberg model comes closest to reality by allowing the spin
directions vary continuously in three space dimensions. A table of critical exponents,
their meaning as well as their experimentally obtained values is given in table 1.1.

Let us go back a step and reconsider what it actually means for a system to obey
a series of scaling laws. The property of these laws to preserve their form at all
scales implies that the systems they describe must appear to an observer identical
irrespective of where on the scale he looks. Most of the scaling laws in the description
of critical phenomena are formulated with respect to the dimensionless parameter
ϑ = (T −Tc)/Tc. This reflects the fact that the temperature itself comes with a natu-
ral scale associated with it in this context – the critical temperature Tc. We have seen
the second characteristic quantity to be the correlation length ξ. This characteristic
distance also directly scales with ϑ and so we could reformulate every scaling law
in terms of it without doing any harm other than possibly rendering some of them
dimensionful. A change in the argument by a constant factor can then be understood
as the observer zooming into the system by the same amount. If the scaling laws
hold true, then he will see exactly the same picture. The system is self-similar. This
means, in conclusion, that ξ(T ) cannot possibly be the only relevant length scale in
the system. If at some initial scaling level, say, the major fluctuations in the order
parameter are perceived to happen on distances of the order of ξ0, and, looking at
smaller scales, the same picture appears, then the most prominent fluctuations at the
new stage must happen at smaller distances of the order of ξ < ξ0. This of course
means nothing else but that ξ′ was present from the beginning. Hence we realise that
systems obeying scaling laws in the vicinity of their respective critical point are af-
fected by processes happening at many different scales and the important observables
obtain contributions from the dynamics on all them. This is not at all a trivial physi-
cal insight and lies on the origin of a very general theoretical framework of addressing
problems in physics. The necessary set of diverse tools are summarised under the
name of renormalisation and need a separate discussion. In fact, renormalisation will
provide an answer to the question of how universality arises. One of the very first,
and at the same time, most convincing pieces of experimental evidence for universal-
ity is shown in fig. 1.2.2. This already displayed an obvious discrepancy between the
values calculated by formerly known approximation schemes such as the mean-field
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Figure 1.6: On the liquid-gas coexistence curve the mean-field theory predicts that,
when rescaled with respect to their values at the critical point, the temperature should
depend quadratically on the density. In contrast, the data displayed here suggests
a cubic dependence, which is what renormalisation group calculations predict. By
measuring this extremely similar behaviour of the different liquids near their critical
point, Guggenheim provided overwhelming evidence for the existence of universality
classes. (Reprinted with permission from [8].)

approach. Although inspired by the astonishing success of phenomenological theories
like Landau’s, renormalisation facilitates calculations which are able to predict, with
high precision, values for critical exponents that agree with experiment.

1.2.3 Renormalisation group approach

One possible approach to the study of renormalisation is to ask how a generic theory
changes when its smallest length scale increases. At first sight, this question might
seem rather academic and of little practical use. But already within the limited ac-
count given here it will become clear how such a coarse-graining procedure leads to a
better understanding of universality. A more detailed discussion can be found in [2]
or [7].

Developed by Kadanoff in 1966 [9] for the two-dimensional Ising model, the block-
spin method was one of the early approaches to the topic and it serves well in illus-
trating the basic ideas of renormalisation. The first step is to appreciate once again
the situation at temperatures T near Tc: The distance ξ(T ) at which the spins corre-
late grows rapidly towards the critical point. This also means that, given the lattice
spacing a, it should not be unreasonable to assume that there always is some integer
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` such that all spins separated by less than `a can be approximated to be acting as a
single unit. The condition would only be that

a < `a � ξ(T ) . (1.112)

Then we can average over the obtained blocks I to obtain new spin variables SI that
assume the same values SI = ±1 as the original ones. But of course, instead of
N , one is now left with N/`2 block spins. One also must not forget to rescale all
lengths that are measured in the lattice spacing. In particular, the correlation length
of the block spins will have decreased like ξ(T ) → ξ′(T ) = ξ(T )/` and so the newly
obtained system will be further apart from criticality. One step of blocking is depicted
in fig. 1.2.3. Intuitively, we expect a single coarse-graining step of this kind not to
affect the singular behaviour at the critical point because we know that that is due to
the long-range interactions at scales of ξ(T ). What in this case we take as a further
assumption, but in a more general picture appears as an approximation that can be
systematically improved, is that the original Hamiltonian (1.19) may change under
the described spin-blocking only in its coefficients, i.e.

H ≡ H1(H1, J1) −→ H`(H`, J`) , (1.113)

but it will maintain its functional form. Inevitable for such a behaviour of the Hamil-
tonian under a change of fundamental scale will always be some rescaling prescription.
This is why the prescription for transformations of this kind is usually referred to as
a renormalisation scheme.

To make the notation more general, we write the set of coupling constants as K.
A general finite coarse-graining transformation on a system can then be expressed as

K′ = R`[K] , (1.114)

where the transformation R` can and will often be non-linear. However, one requires
that a change of scale by ` = ˜̀̀ should be equivalent to two successive changes by ˜̀
and `,

K′′ = R˜̀[K′] = R˜̀·R`[K] (1.115)

and thus

R˜̀[K] = R˜̀·R`[K] . (1.116)

This last property explains the term renormalisation group, although strictly the
transformations R` only form a semi-group as an inverse can in general not be defined.
An important property of renormalisation group transformations is that they admit
fixed points K∗ for which

K∗ = R`[K∗] . (1.117)

For these particular values of the coupling constants the correlation length must obey

ξ[K∗] = ξ[K∗]/` . (1.118)

This can only possibly be true either for ξ[K∗] = 0 or ξ[K∗] = ∞. Fixed points with
vanishing correlation length are called trivial and an obvious example is given by
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K = 0. The major insight however is that those fixed point with diverging correlation
length each correspond to a critical point in some phase transition. Therefore they
are called critical fixed points. In fact, it is straightforward to see that all points [Kc]
for which limN→∞ RN

` [Kc] = [K∗] must already have exhibited an infinite correlation
length, ξ[Kc] = ∞. The set of all these point is called the basin of attraction of the
critical fixed point K∗ and its existence is responsible for universality. Although for
discrete models like the Ising model it does not seem beneficial, it is a generalisation to
allow ` to vary continuously. An infinitesimal renormalisation group transformation
is obtained from eqn. (1.114) by setting ` → (1+ε) with ε � 1. Labelling K` ≡ R`K1

one can define

dKl

d`
= lim

ε→0

K(1+ε)` −K`

ε`
(1.119)

to find that the flow equation becomes

dKτ

dτ
= B[Kτ ] (1.120)

where τ := ln ` and the transformation B has been defined by

B[K`] :=
∂R(1+ε)[K`]

∂ε

∣∣∣∣
ε=0

. (1.121)

Fixed points satisfy

B[K∗] = 0 . (1.122)

Because eqn. (1.120) is first order in τ , for given B, any initial point determines
the trajectory completely and in particular its endpoint at τ → ∞. The basin of
attraction of a critical fixed point can thus be understood as a critical manifold.
Systems exhibiting critical behaviour correspond to points near but not on a critical
manifold. Following the renormalisation group flow, their correlation length decreases
and eventually one will be able to perform ordinary perturbation theory. Due to the
one-to-one correspondence between final and initial points of any trajectory not lying
on the critical manifold, one can then map the obtained results to the system one
started with. This, in short, is the virtue of the renormalisation group.

Finally, let us see how in principle the local flow behaviour ultimately gives rise
to scaling at the critical fixed points and how this connects to universality. Consider
K to be in the neighbourhood of the critical fixed point K∗, separated only by δK,
and another point K′ = K∗ + δK′ generated via RG transformation R. Then we can
expand

K∗ + δK′ = R[K] = R[K∗ + δK]

= R[K∗] + δK · ∂R[K̃]
∂K̃

∣∣∣∣
K̃=K∗

+O(δK2) (1.123)

and hence, using ∇R[K] ≡ ∂R[K̃]/∂K̃|K̃=K to denote the vector gradient in coupling
constant space, we have

δK′ = ∇R[K∗] · δK . (1.124)
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Note that in the earlier notations, B[K] = (∂K̃
∂ε ·∇R1+ε[K̃])|K̃=K. For simplicity,

we assume ∇R(K∗) to be symmetric and having eigenvalues βn corresponding to
eigenvectors en,

∇R[en] = βnen , (1.125)

and rewrite δK and δK′ in terms of this basis:

δK =
∑

n

hnen

δK′ =
∑

n

h′nen (1.126)

Here, the coefficients hn and h′n correspond to the scaling fields, or variables, from the
earlier phenomenological discussion of scaling. And indeed we can see this by noting
from eqn. (1.124) that

h′n = βnhn (1.127)

and rewriting this as

h′n = bδnhn (1.128)

with δn = ln βn/ ln b. In those directions n in which |hn| increases under RG transfor-
mations near the critical fixed point, that is for δα > 0, hn is called a relevant variable.
If on the other hand δn < 0, then n labels a direction in which |hn| decreases. In that
case hn is called an irrelevant variable and it will eventually tend to zero. Marginal
variables correspond to δn = 0 and lead to logarithmic corrections to scaling. The
number of irrelevant variables is equal to the dimension of the critical manifold, while
the number of relevant variables is called its codimension. It equals the number of pa-
rameters that have to be tuned in order for the system to undergo a phase transition.
The central point is that each δn that corresponds to a relevant variable determines
one critical exponent and because under RG group transformations all points on the
critical surface merge to the same fixed point, the critical exponents will be the same
for all of them. Each universality class is thus associated with one critical manifold.

Although one could in principle allow for further external fields, the Ising model
as we introduced it had coupling constants that were functions of T and H. both
of them had to be tuned to induce a continuous phase transition. Hence the critical
manifold was zero-dimensional – a point in the phase diagram.

The discussion in this section focussed on the real space renormalisation group to
provide an illustrative and immediate access to the main ideas. Equivalently and in
the same spirit, one defines a realisation in momentum space. Coarse-graining there
corresponds to integrating out those degrees of freedom with the highest momenta
and the renormalisation group flow is being generated by continuously lowering the
corresponding cutoff. While the basic ideas are the same, this approach enables the
development of direct, perturbative calculation schemes for the partition function,
that are of general applicability.
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Figure 1.7: The block-spin method is a simple example for a renormalisation group
operation. It means coarse-graining the 2d-Ising lattice by a factor of 2, shown here
for a representative 9×9-block. First, the magnetisation is averaged over 3×3 blocks
of spins to obtain a new lattice with twice the original lattice constant. Afterwards
one needs to ’zoom out’ by a factor of 2 to make the coarse grained lattice appear as
the original one.
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2. Non-equilibrium: Defect
formation

2.1 Fluctuation-Dissipation-Theorem

In this section a first attempt is made to study in greater detail the general effect of
fluctuations around the equilibrium of a classical field. By constraining ourselves to
small deviations, we will see that the relaxation behaviour to first order is independent
of whether the fluctuations are spontaneous or if they are caused by external forces.
The equations we obtain will be central to our aim of obtaining a time-dependent
Landau theory that will provide a suitable first handle to compare our results from
equilibrium to the critical behaviour of realistic systems. The general ideas contained
in the subsequent passages are developed in orientation along [10], with the phase
space formulation of statistical mechanics employed there being translated into field
theoretic language here in order to match our way of introducing Landau theory.

We start by investigating the notion of a dynamical susceptibility for a real scalar
field Φ, for which we write the partition function as

Z0 =
∫
DΦ e−βH0[Φ] (2.1)

with a generic Hamitonian given by H0. The expectation value of the field in equi-
librium is

〈Φ(x)〉0 :=
∫
DΦ ρ0[Φ]Φ(x) (2.2)

with the equilibrium probability distribution being

ρ0[Φ] =
e−βH0[Φ]

Z0
. (2.3)

Fluctuations around this value can be introduced via perturbations to the Hamiltonian
so that

H0 → H = H0 + H ′ (2.4)

where the simplest form for H ′ we can assume is

H ′ = −
∫

ddxJ(x)Φ(x), (2.5)
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the source term from the Landau discussion. In this context, J(x) can be seen as
an external force, or on a more technical level, a generalised Lagrange multiplier.
In contrast to averages 〈...〉0 computed in equilbrium as represented by eqn. (2.3),
expectation values under the perturbed Hamiltonian will be denoted as

〈...〉 =
∫
DΦ ... ρ[Φ] (2.6)

with probability density

ρ[Φ] =
e−βH[Φ]

Z
, (2.7)

where Z is the partition function from eqn. (2.2) with H0 being replaced by H. Asking
how small changes in J shift the field expectation value we calculate

δ

δJ(y)
〈Φ(x)〉 =

δ

δJ(y)

∫
DΦ Φ(x) e−βH0

(
1 + β

∫
ddx′ J(x′)Φ(x′) +O(J2)

)∫
DΦ e−βH0

(
1 + β

∫
ddx′ J(x′)Φ(x′) +O(J2)

)
=

δ

δJ(y)
Z0

〈
Φ(x)

〉
0

+ Z0β
〈
Φ(x)

∫
ddx′ J(x′)Φ(x′)

〉
0

+O(J2)

Z0 + Z0β
〈 ∫

ddx′ J(x′)Φ(x′)
〉
0

+O(J2)

=
δ

δJ(y)

[〈
Φ(x)

〉
0

+ β
〈
Φ(x)

∫
ddx′ J(x′)Φ(x′)

〉
0

− β
〈
Φ(x)

〉
0

〈 ∫
ddx′ J(x′)Φ(x′)

〉
0

+O(J2)
]

= β
[〈

Φ(x)Φ(y)
〉
0
−

〈
Φ(x)

〉
0

〈
Φ(y)

〉
0

+O(J)
]

= β
〈(

Φ(x)− 〈Φ(x)〉0
)(

Φ(y)− 〈Φ(y)〉0
)〉

0
+O(J)

≡ β
〈
δΦ(x)δΦ(y)

〉
0

+O(J)

≡ β
〈
Φ(x)Φ(y)

〉
c
+O(J) (2.8)

where we have given a name to fluctuations around the equilibrium, δΦ(x) := Φ(x)−
〈Φ(x)〉0, and now recognise the (equilibrium connected) two-point correlation func-
tion, or susceptibility G(x,y) = χ(x,y) =

〈
Φ(x)Φ(y)

〉
c

that we already encountered
in equations (1.91) — (1.93). Taking the limit J → 0 in eqn. (2.8), we can then
expand 〈Φ(x)〉 in the following way up to linear order in J :

〈Φ(x)〉 = 〈Φ(x)〉0 +
∫

ddy J(y)
δ〈Φ(x)〉
δJ(y)

∣∣∣
J=0

+O(J2)

= 〈Φ(x)〉0 + β

∫
ddy J(y)

〈
δΦ(x)δΦ(y)

〉
0

+O(J2)

= 〈Φ(x)〉0 − β
〈
Φ(x)H ′〉

c
+O(J2) (2.9)

From here the conclusion is, that in a linear approximation for the perturbations, they
in turn only linearly affect the shift of averages away from the equilibrium values. This
is an example for the behaviour of system being captured within a linear response
theory.
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Now, we go on and wish to explore the relaxation properties of the system once
the perturbations have vanished. This means that now we have to consider an ex-
plicit time dependence in the field, Φ(x) → Φ(x, t). For simplicity, the perturbations
are assumed to be turned off instantaneously at the time t = 0. That is, the new
perturbative part of the Hamiltonian will be

H ′(t) = H ′Θ(−t) =

{
H ′, t < 0
0, t ≥ 0

. (2.10)

As before, we will restrict the discussion to small perturbations, so that we can rely
on a linear approximation. Then, for t < 0 the field expectation value reduces to its
time-independent form which we already calculated in eqn. (2.9). For positive times
however, Φ(x, t) obeys Liouvillian time evolution determined by the unperturbed
Hamiltonian H(t ≥ 0) = H0:

∂Φ
∂t

(x, t) =
{
Φ(x, t),H0

}
, t > 0 (2.11)

where the field-theoretical Poisson bracket is{
Φ(x, t),H0

}
=

δH0

δΦ(x, t)
−∇ · δH0

δ∇Φ(x, t)
+ ∂t

δH0

δ∂tΦ(x, t)
(2.12)

Given a Hamiltonian H0, the field configuration at t = 0, denoted as ΦI , will com-
pletely determine its configuration at a time t. So we can label the solutions to
eqn. (2.11) by ΦI and write

Φ(x, t; ΦI) = ΦI(x) +
∫ t

0

dt′
{
Φ(x, t′),H0

}
(2.13)

We then obtain 〈Φ(x, t)〉 by averaging, with the probability density ρ[ΦI ] at t=0,
over all initial field configurations ΦI which have been evolved in time according to
eqn. (2.13): 〈

Φ(x, t)
〉

=
∫
DΦI ρ[ΦI ]Φ(x, t; ΦI) (2.14)

From eqn. (2.9) it follows that the difference to the equilibrium value at t = 0 (or any
other t < 0) has an expectation value of

〈δΦ(x, t)〉 ≡ 〈Φ(x, t)〉 − 〈Φ(x)〉0

= β

∫
ddy J(y)〈Φ(x, t)Φ(y, 0)〉c = β

∫
ddy J(y)〈δΦ(x, t)δΦ(y, 0)〉0 .

(2.15)

Note that Φ(x, 0) ≡ Φ(x) so that at t = 0 we recover eqn. (2.9) exactly. Here one
identifies the relaxation (or Kubo) function C(x,y, t) to be

C(x,y, t) = 〈Φ(x, t)Φ(y, 0)〉c = 〈δΦ(x, t)δΦ(y, 0)〉0 (2.16)

which is the analogue of G(x,y) but now measures not the correlation of fluctuations
around equilibrium in space but in time. Eventually the system is expected to reach
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equilibrium, so C(x,y, t → ∞) = 0, and again we expect not to lose anything by
anticipating C(x,y, t, t′) ≡ C(x− y, t− t′).

The meaning of eqn. (2.15) is that the relaxation of a slightly perturbed system
back towards equilibrium is in turn determined only by equilibrium fluctuations. In-
terestingly, it does not matter whether the perturbation is spontaneously produced
or the result of external forces.

In order to measure fluctuations both in space and in time, the dynamical sus-
ceptibility χ(x,y, t, t′) is defined from the most general ansatz for a linear response
to an external perturbation, which is now allowed to have explicit time dependence
(J(x) → J(x, t)):

〈δΦ(x, t)〉 =
∫

ddy

∫ t

−∞
dt′ χ̃(x,y, t, t′)J(y, t′)

=
∫

ddy

∫ ∞

−∞
dt′ χ(x,y, t, t′)J(y, t′) (2.17)

We have chosen here to write χ(x,y, t, t′) = χ̃(x,y, t, t′)Θ(t − t′) in order to un-
derstand causality as contained in the susceptibility and not making it explicit in
the equations. For the non-dynamical susceptibility we found that in translationally
invariant systems it is only dependent on the difference of coordinates. We further as-
sume energy conservation, i.e. that translational invariance extends to the time coor-
dinate, and hence we can write χ(x,y, t, t′) ≡ χ(x−y, t−t′). For J(x, t) = J(x)Θ(−t)
as discussed above we can write

〈δΦ(x, t)〉 =
∫

ddy J(y, t)
∫ 0

−∞
dt′ χ(x− y, t− t′)

=
∫

ddy J(y)
∫ ∞

t

dτ χ(x− y, τ) (2.18)

Taking the time derivative

d
dt
〈δΦ(x, t)〉 = −

∫
ddy J(y)χ(x− y, t) = β

∫
ddy J(y)Θ(t)

∂

∂t
C(x,y, t) (2.19)

and comparing to the definition of the Kubo function in eqns. (2.15) and (2.16), the
conclusion is that the dynamical susceptibility is just proportional to the time deriva-
tive of the Kubo function

χ(x− y, t) = −βΘ(t)Ċ(x− y, t) . (2.20)

Having established this result, we are not far from understanding how the relaxation
process for equilibrium fluctuations can be understood in dissipative terms. The way
leading there employs the analyticity properties of χ(x,y, t, t′).

In order to simplify the subsequent purely mathematical discussion, we make a
physical assumption. This is that the equilibrium fluctuations we wish to describe
are uncorrelated in space, so that we can write

χ(x,y, t, t′) = δd(x− y)χ(t) (2.21)

and thus limit the following discussion to a single point x0, denoting Φ(x0, t) ≡ φ(t)
and J(x0, t) ≡ j(t), but also C(x−y, t− t′) → C(t) by the same argument as for the
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susceptibility, leading to a specialisation of eqn. (2.20) by our Gaussian approximation
to

χ(t) = −βΘ(t)Ċ(t) . (2.22)

This assumption means treating the fluctuations as a Gaussian field in space. How-
ever of course, although so in surprisingly many situations, it is not always justified
and more generally we should expect the susceptibility to be distributed in a more
complicated way than as given in eqn. (2.21). But we leave these cases aside for
the immediate purposes. The first thing we remember about χ(t) is that it satisfies
causality, χ(t < 0) = 0. This makes it possible to define its Laplace transform

χ(z) =
∫ ∞

0

dt χ(t)e−st (2.23)

which, as a function of the complex argument z ∈ C is analytic in the positive half
complex plane, as the integral only converges for Re s > 0 (assuming χ(t) does not
grow exponentially). However, it will turn out to be more useful to work with a
slightly modified Laplace transform, which corresponds to a rotation of eqn. (2.23) in
the complex plane. We define

χ(z) =
∫ t

0

dt χ(t)eizt (2.24)

which is now analytic in the upper half complex plane, i.e. for Im z > 0. From
eqn. (2.22) it follows that

χ(z) = −β

∫ ∞

0

dt Ċ(t)eizt = −β

∫ ∞

0

dt

∫ ∞

−∞

dω

2π
iωC(ω)ei(z+ω)t

= β

∫ ∞

−∞

dω

2π

ωC(ω)
z + ω

, (2.25)

where C(t) has been expressed by its Fourier transform C(ω). This relation can be
seen as a dispersion relation for the susceptibility. We can regard χ(z) as the analytic
continuation of the Fourier transform χ(ω) to the upper half complex plane and write

lim
ε→0+

χ(ω + iε) = χ(ω) . (2.26)

Using this in eqn. (2.25) gives

χ(ω) = lim
ε→0+

β

∫ +∞

−∞

dω′

2π

ω′C(ω′)
ω + ω′ + iε

= PV
{

β

∫ +∞

−∞

dω′

2π

ω′C(ω′)
ω + ω′ + iε

}
+ β

iπ

2π
(−ω)C(−ω) (2.27)

where PV denotes the Cauchy principle value of the integral, which is a real number.
We also know that C(t) is an even and real function so that its Fourier transform
C(ω) must be real. This lets us conclude that

Im χ(ω) = −β

2
ωC(ω) . (2.28)
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With C(ω) being the Fourier transform of 〈φ(t)φ(0)〉0, the right hand side of this
result is clearly a measure for the equilibrium fluctuations. The imaginary part of the
susceptibility can be shown generally to be responsible for dissipation in a system. A
rigorous discussion of this can be found in [10]. For our purposes, it will be enough to
give only an intuitive understanding of this fact by the following elementary argument.

Consider an external force of the simple form j(t) = jω cos(ωt) and write the
susceptibility χ(t) = Reχ(t)+i Imχ(t) ≡ χ1(t)+i χ2(t). We know that χ1(ω) must be
even. Due to eqn. (2.28) however, χ2(ω) will be odd. Further, the Fourier transformed
external force will be j(ω′) = πfω[δ(ω + ω′) + δ(ω − ω′)]. Bringing all this together,
we then have according to eqn. (2.17):

〈δφ(t)〉 =
∫

dt′ χ(t− t′)j(t′) =
∫

dω′

2π
χ(ω′)j(ω′)eiω′t

=
1
2
fω

(
χ(−ω)e−iωt + χ(ω)e+iωt

)
= fω

(
χ1(ω) cos ωt− χ2(ω) sinωt

)
=

(
χ1(ω) + χ2(ω)ω−1∂t

)
j(t) (2.29)

Hence we see for this example that that part of the response being out of phase with
the driving force, and thus corresponding to dissipative contributions proportional to
∂tj, is governed by Im χ(ω). With this argument in mind, we can now really appreciate
the content of eqn. (2.28), which is the classical version of the fluctuation-dissipation
theorem. We derived it in the approximation that the fluctuations in the field are
uncorrelated in space but in fact it can be generalised by modifying the ansatz from
eqn. (2.21). The statement that stays unaltered is that, for small perturbations around
the equilibrium, the fluctuations in the field are the immediate cause for dissipative
effects. As one would expect, this relationship is amplified for higher temperautures
β−1. Also, the relation is weighted by frequency, which means that correlations at
higher frequencies give rise to more losses than those at low frequencies.

2.2 Homotopy classes

In the preceding section it has been seen how causality limits the time it takes a
system to react on an external source of excitation, but in the same way also the
time it needs to relax back to equilbrium. Hence the conclusion must be that if a
critical point is passed too quickly, then it is possible for sufficiently distinct regions to
remain causally unrelated for an amount of time that has been long enough for them
to choose their respective groundstates independently, giving rise to the formation of
domain structures. Before the next section will provide a more detailed reasoning for
this in terms of the Kibble-Zurek mechanism, it will now be shown how the different
possible domain structures are categorised purely by their topological conditions.

When discussing the spontaneous breaking of a continuous symmetry group G to
some subgroup H, we identified the degenerate set of broken vacuum states as the
coset M0 = G/H and named it the vacuum manifold. In 1995, Kléman could show
[11] that the conditions on the existence and shape of toplogical defects all follow
from the structure of M0 and in particular from its homotopy classes.

Consider first the simple case ofM0 being a disc with a hole cut out of it. Starting
from any point φ0 ∈ M0, there will be different kinds of closed loops, some going

44



around the hole and some not. If we identify those loops with each other that can be
deformed into another in a continuous way, i.e. without crossing the hole and thus
leaving M0, then there will be a clear classification of loops by the number of times
they wrap around the hole. This number is called the winding number. Loops that
can be deformed into each other in the allowed way are called homotopic and together
form a homotopy class. Note that this classification does not depend on the point φ0

we chose as the starting and ending point of the loops. A further observation is that
the different homotopy classes as a whole own a group structure. This can be seen
in our simple example by taking the group product to be the composition of loops.
Then, every loop will have an inverse which corresponds to the same loop but with
opposite orientation (i.e. reversely parametrised), while the identity is given by the
homotopy class corresponding to zero winding number, i.e. containing those loops
that do not go around the hole. If the classes comprise closed loops, the arising group
is denoted by π1(M0) and called the fundamental group. From our characterisation
by the winding number we note that if M0 has the form of a disc with a whole cut
out, then π1(M0) = Z.

The notion of homotopy can be generalised from closed loops to other and higher
dimensional closed surfaces which then give other homotopy groups. The mean-
ing of a homotopy class simply generalises: For a closed n-dimensional hypersurface
Σ(n) containing φ0, the corresponding homotopy class will comprise all other closed
n-dimensional hypersurfaces Σ(n)′ that also contain φ0 and can continuously be de-
formed into Σ(n).

One example is the second homotopy group π2(M0). Its elements are the homo-
topy classes of maps from the two-sphere S2 into M0. π0(M0) consists of classes of
maps from the S0 to M0. As S0 only includes two points (it is the boundary of a
line segment), π0(M0) effectively counts the number of disconnected pieces in M0.

It belongs to the immediate conclusions of these observations that domain walls
can only exist when the vacuum manifold is disconnected, i.e. π0(M0) is not the
trivial group. If M0 is not simply connected, which means there are non-shrinkable
loops as described above and so π1(M0) is not trivial, then strings can form. Further,
monopoles can exist if π2(M0) is non-trivial.

For our example of a broken U(1) symmetry, the stability group was trivial and
so we found M0 = U(1). The circle U(1) ' SO(2) is connected but not simply con-
nected and so we expect strings to appear from such a transition. As we will observe
later, they become manifest in a continuously varying phase along the circle in space.

From the analysis of homotopy groups follow further major insight to all of which
we may only refer here. Much of them rely on the simplification that the vacuum
manifold can be written as a coset. In particular, stability of the various topological
structures is addressed but also the means by which composite defects can emerge
from sequences of phase transitions.

2.3 The Kibble-Zurek mechanism

Zurek and Kibble (Z&K) were the first to develop a possible scenario of how contin-
uous phase transitions might be realised in systems that cannot be approximated by
the standard framework of equilibrium statistical mechanics, which could be the early
universe or condensed matter systems. For the original work, see [12], [13], [14]. The
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Figure 2.1: While the adiabatic correlation length ξad diverges at
the critical point, causality prevents the true correlation length to
do so. Assuming it grows as fast as possible, its shape will be given
by ξ in relativistic scenarios, or ξ′ if the causal speed is smaller than
the speed of light.

basic argument begins with realising that in real systems the correlation length ξ will
stay finite, deviating from the equilibrium value in the critical region. The predic-
tion of a diverging correlation length like in eqn. (1.107) relied on adiabaticity. But
in reality, the temperature cannot change infinitely slowly. Moreover, the speed at
which correlations propagate in a system must be bound by the relevant finite causal
speed in the respective medium, which could be the speed of light or sound. Thus in
essence, it is causality that puts the major bounds on the validity of an equilibrium
description of phase transitions. In conclusion, there must be a maximum correla-
tion length ξ̂. This has fundamental consequences for the realisation of symmetry
breaking in the order parameter. If different regions in a system cannot communicate
changes in the order parameter fast enough to keep up with the speed at which the
external conditions change, then it becomes inevitable that spatial domains form, of
which each will minimise the energy, but will correspond to a different point on the
vacuum manifold M0 and hence show a different value of the order parameter. While
the type of defects that can form is completely defined topologically, their spatial
distribution is random and can even be subject to further evolution governed by new
dynamics appearing after the transition. The prediction of their density however can
be attempted and a first handle is provided by the approach of Z&K. The prediction
of defect densities is of great interest in the cosmological setting, where the hope is
to gain a better understanding for the role of strings in the early universe. Due to
the fact that the qualitative description is identical, there exist the great hope that
experiments with condensed matter systems might yield insights into the era of the
universe where the known forces were unified.

Imagining the change in temperature of a system given by a function T (t) in time
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with T (0) = Tc, we can write

ξ̂ = ξeq(T (t̂)) (2.30)

with ξeq being the equilibrium correlation length with predicted pole at T = Tc. The
question then becomes what the time t̂ is, or equivalently, when the real dynamics
diverge from the equilibrium ones. First it is assumed that T changes at a charac-
teristic scale τq, which is called the quenchtime, and can be defined to be the rate of
change in temperature at the critical point:

τ−1
q := −Tc

dT

dt

∣∣∣∣
T=Tc

(2.31)

A linear quench would mean Tlin(t) = Tc(1 − t/τq) but other quench forms are con-
ceivable and their relevance has to be discussed. An upper bound on t̂ is given by
the time t̂> > t̂ at which the growth of the equilibrium correlation length exceeds the
relevant causal speed c in the system

dξeq

dt

∣∣∣∣
t=t̂>

= c . (2.32)

t̂> actually becomes a good estimate for t̂ in the early universe but in condensed matter
systems the dynamics of the order parameter significantly refine the constraints merely
inferred from causality. One therefore refers to the relaxation time τ of the system
as a second time scale, for which the equilibrium value is known to obey a similar
diverging power law as the correlation length:

τeq(t) =
τ0

ϑ(t)νz
(2.33)

The reduced temperature is her for convenience taken to be ϑ(t) = |T (t) − Tc|/Tc,
and τ0 is the relaxation time far from the critical point. The true value τ stays finite
but will still grow faster than ϑ. Z&K suggest to approximate t̂ as the time when
the relaxation length first grows above the time left to reach the critical point. This
instant is referred to as the freeze-out time. At t̂, it is still reasonable to approximate
τ ' τeq and so we can set

−t̂ ' τ0

ϑ(t̂)νz
' τ0

(t̂/τq)νz
(2.34)

At the same time, the definition of the quenchtime can be exploited,

−t̂ ' ϑ

dϑ/dt

∣∣∣∣
t=t̂

, (2.35)

so that an estimate for the dependence of t̂ on the quenchtime is possible as

t̂ ≈ (τ0τ
zν
q )

1
1+zν . (2.36)

We assumed ϑ(t̂) ' −t̂/τq and by combining this with eqn. (2.36), the correlation
length at t̂ will be

ξ(T (t̂)) = ξ0

(
τq

τ0

) ν
1+zν

(2.37)
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with ξ0 = ξeq(t � t̂). Both ξ0 and τ0 are parameters specific to a particular system
and are often only determined by experiment. For short enough quenchtimes, the time
spent in the vicinity of Tc is small enough to assume ξ(T (t̂)) = ξ(T (−t̂)), which is
known as the impulse approximation. In this case, the domains will be essentially set
immediately after passing through the critical point and their typical seperation can be
well approximated by the correlation length ξ(t̂) at freeze-out. This is especially true
when temperatures are small enough to prevent thermal fluctuations from changing
the order parameter value for whole domains. If this is not the case, then a second
length scale must be introduced, which will modify the result in eqn. (2.37) and is
defined by the correlation length at the time when temperatures have fallen far enough
to meet the above condition (c. f. [13]). Our concern however is the condensed matter
side where we can rely on eqn. (2.37). In a d-dimensional system with characteristic
linear length L, the Z&K prediction for the behaviour of the final defect density
resulting from a quench is then given by

nD ∝ Ld

ξ(T (t̂))
∝ τ−σ

q (2.38)

where we have renamed σ := ν
1+zν .

2.4 Departure from scaling

While the Kibble-Zurek picture tries in some extent to convey the scaling behaviour
from equilbrium transitions to the non-equilbrium situation, in the following will be
shown that this cannot be true for all circumstances. Oriented along [15], the analysis
is conducted for the case of a generic real scalar field theory in 1+1 dimensions and
applies directly to the Z2 breaking case. Nevertheless, similar considerations are found
to be applicable to the U(1) case [16], and are expected to also be important for the
Z breaking in Josephson Junctions.

In order to estimate the final defect density it is sufficient to start the observations
in the broken phase, so that the field φ(x, t) faces a potential

V (φ) = −µ2

2
φ2 +

λ

4
φ4 (2.39)

with positive µ. At any time t in the evolution, φ(x, t) corresponds to a certain
configuration Φ(x) in space for which the equilibrium values lie at the two minima
of V . Because none of them is preferred, at late times Φ(x) will exhibit a domain
structure in which a transition between one potential minimum to the other must
be accompanied by crossing Φ = 0. This type of domain wall is called a kink when
Φ′(x) > 0 at the transition and an antikink when Φ′(x) < 0. There are therefore
two different relevant quantities: The total number of kinks plus antikinks and the
topological number of kinks minus antikinks. Enumerating the zeroes of Φ at a given
time by x = x1, x2, ... the corresponding densities are, respectively,

ρ̄(x) =
∑

i

δ(x− xi) (2.40)
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and

ρ(x) =
∑

i

σiδ(x− xi) (2.41)

with σi = sign(Φ′(xi)). In terms of Φ, these translate into

ρ̄(x) = δ[Φ(x)] |Φ′(x)| (2.42)

and

ρ(x) = δ[Φ(x)]Φ′(x) . (2.43)

To each configuration Φ(x) at a time t, we can ascribe a probability pt[Φ] that it
will correspond to the true realisation of φ(x, t). The ensemble average 〈O[Φ]〉t of a
quantity at t then means weighting by these probabilities. If the broken symmetry is
exact, kinks and antikinks are expected to appear with equal probabilities so that

〈ρ(x)〉t = 0 . (2.44)

Their total number however will be non-zero and obey

n̄(t) = 〈ρ̄(x)〉t

=
∫
DΦ pt[Φ]δ[Φ(x)] |Φ′(x)| > 0 . (2.45)

How the zeroes of the field distribute is best described by the correlation function for
the topological density

C̃(x; t) = 〈ρ(x)ρ(0)〉t

=
∫
DΦ pt[Φ] δ[Φ(x)] δ[Φ(0)] Φ′(x) Φ′(0) . (2.46)

Note that defining a corresponding quantity for ρ̄(x) will not be as useful because it
does not capture the fact that a kink can only be followed by an antikink and vice
versa. In this sense, ρ(x) must be considered the more natural quantity. We evaluate
C(x; t) by taking from eqns. (2.40) and (2.41) that

ρ(x)ρ(y) = ρ̄(x)δ(x− y) +
∑
i 6=j

σiσjδ(x− xi)δ(y − yi) (2.47)

and defining

C(x− y; t) :=
〈 ∑

i 6=j

σiσjδ(x− xi)δ(y − yi)
〉

t
(2.48)

so that it follows:

C̃(x; t) = n̄(t)δ(x) + C(x; t) . (2.49)
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The condition that the integral of C̃(x; t) over the whole space must give zero can be
thought of as charge conservation:∫ +∞

−∞
dx C̃(x; t) = 0 (2.50)

This constraint simply reflects the circumstance that kinks and antikinks appear with
equal probability. Using it on eqn. (2.49) implies∫ +∞

−∞
dxC(x; t) = −n̄(t) , (2.51)

which settles formally what could have been inferred already from eqns. (2.45) and
(2.49): The density correlation function C̃(x; t) splits into a strictly positive diagonal
and a non-diagonal part that is largely negative.

On some finite interval x ∈ [0, L] we find the topological charge

nL =
∫ L

0

dx ρ(x) , (2.52)

which, in the case of a broken Z2-symmetry can only assume three values, namely
nL ∈ {−1, 0, 1}. By virtue of eqns. (2.49) and (2.51), its variance becomes

(∆tnL)2 = 〈n2
L〉t − 〈nL〉2t = 〈n2

L〉t

=
∫ L

0

dx

∫ L

0

dy 〈ρ(x)ρ(y)〉t

= Ln̄(t) +
∫ L

0

dx

∫ L

0

dy C(x− y; t)

= −
∫ x>L

x<0

dx

∫ L

0

dy C(x− y; t) , (2.53)

which due to vanishing average, is equal to the probability of the topological charge
being either +1 or −1, or equivalently the probability that there is an odd number of
zeroes in the interval [0, L]. As C(x; t) = C(−x; t), we can rewrite eqn. (2.53) as

(∆tnl)2 = −
∫ L

0

dy

∫ 0

−∞
dxC(y − x; t)−

∫ ∞

L

dx

∫ L

0

dy C(x− y; t)

= −
∫ L

0

dy

∫ 0

−∞
dxC(y − x; t) +

∫ ∞

0

dx

∫ 0

−L

dy C(x− y; t) , (2.54)

where in the second term both integration variables have been shifted by −L. Thus,
the variance (∆tnl)2 changes with L as follows:

d
dL

(∆tnL)2 =
d

dL

[
−

∫ L

−L

dx C(x; t) + const.
]

(2.55)

with those terms suppressed as const. that are independent of L. Taking one further
derivative results in a relation between correlations in the defect density and the
variance of the topological charge:

d2

dL2
(∆tnl)2 = −2C(L; t) (2.56)
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Two extreme cases can be distinguished. For perfect correlation, the zeroes are located
equidistantly with some seperation ξ(t). Then C(x; t) is a sum of delta functions with
alternating sign while (∆tnL)2 has saw-tooth shape. However, more interesting for the
purposes of this work is the opposite limit of independent zeroes, Poisson-distributed
with a mean distance of ξ(t). In this case we expect that on average L/(ξ(t)/2) zeroes
will be found in the interval [0, L] so that

(∆tnL)2 = 〈n2
L〉t = e−2L/ξ(t)/2 (2.57)

and from eqn. (2.56) it follows

C(L; t) = −e−2L/ξ(t)/ξ(t)2 . (2.58)

For large intervals L � ξ(t), this tends to zero so that we can estimate (∆tnL)2 =
〈n2

L〉t = O(L/ξ), i.e. a linear dependence of the expected squared number of defects on
the interval length. This results should also be valid for periodic boundary conditions
as their effect will vanish in the limit of large L. On the other hand, if the interval
we are interested in is as short as L << ξ, then we can expand C(L; t) in powers of
L/ξ and find 〈n2

L〉t ∼ O(L2/ξ2). However, in the case of small L, periodic boundary
conditions must be expected to make this last estimate invalid.
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3. Representatives: Z2, Z and
U(1)

3.1 Emergence of criticality

3.1.1 Ion chains

One important test field for the study of non-linear dynamics in many models of statis-
tical physics is provided by systems of equally charged ions that are spatially confined
in Pauli or Penning traps [17] which, depending on their various architectures, gen-
erate suitable electromagnetic fields that can be described as effective potentials in
which the ions distribute. Laser cooling is employed to extract kinetic energy from the
ions and thus regulate the temperature of the system. While at high temperatures the
ions are found to be in an unordered configuration, at sufficiently low temperatures
they form Wigner-like crystals of which the shape is determined by the Coulomb in-
teraction between the ions [18]. Importantly, during the last two decades it has been
recognised that in response to a variation of the trapping potential, the trapped ion
chains exhibit structural changes that can be described as non-equilibrium continuous
phase transitions [19] and as such are subject to a comparison against the predictions
of the Kibble-Zurek picture. In the following, only one-dimensional systems of this
kind will be reviewed, for which crystalisation means that the ions settle in equidistant
positions on a line, each of them well-described as being in some low-energy, only-
vibrational state. Both linear and circular chain configurations are studied. While
the critical behaviour is expected to be identical, each of them introduces distinct
experimental challenges and in particular the actual realisation of the transition is
different.

The study of linear chains is usually constrained to a relatively small number of
ions, N being of the order of 10. This is due to density gradients that inevitably
develop towards the centre of the chain where the axial trapping potential is lowest.
Inhomogenieties like this gain importance with increasing chain length and quickly
make the crystal model invalid. Usually, like recently done in [20], the structural
transition is then induced by willingly increasing the axial while keeping constant
the transverse confinement. At a critical point, the so augmented Coulomb repulsion
between the ions leads to a break up of the linear to what is usually called a zig-zag
structure — a configuration in which initially neighbouring ions oppose each other.

More suitable to study the behaviour of larger number of ions are circular chains
that are preparable in multipole traps (e.g. [21], [22]) or storage rings (e.g. [23], [24]),
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which constrain the trapping potential to the plane perpendicular to the axis and
hence are capable of creating homogeneous chains much closer to the thermodynamic
limit and admit the study of periodic boundary conditions. Circular chains assume
a zig-zag structure when the transverse trapping potential is lowered below a critical
value.

For both the linear and the circular chains the global form of the zig-zag configu-
ration after the phase transition is determined by the shape of the transverse trapping
potential.

If the transverse potential is strongly anisotropic, i.e. the confinement in one of
the transverse directions can be neglected against the other, then the zig-zag structure
is in fact a plane bordered by two chains which have emerged form the initial one,
each consisting of ∼ N/2 ions separated by ∼ 2a if the initial lattice constant was a.
Defects are identified at lattice sites where this planar zig-zag order is broken.

If the transverse potential is rotationally symmetric around the chain axis, then
the local zig-zag structure globally has to be seen not as a plane but as a double helix
that will have inherited a number of twists from the transition. These are captured
in a winding number that can be taken as a measure for the defect density.

While the case of an anisotropic transverse trapping potential can be viewed as
an instance of spontaneous Z2 symmetry breaking, in the axisymmetric situation a
U(1) symmetry is being broken. These are precisely the two generic situations that
we have encountered earlier when presenting the Ising model and Landau theory. In
the rest of this section we will see how the description for a typical realisation of an
ion chain [25] continues this correspondence by deriving for this representative system
the equations that govern the dynamics of the order parameter for phase transitions
in this universality class.

The typical potential U for a chain oriented along the x-axis and consisting of N
ions, with mass m, charge q and coordinates ri = {xi, yi, zi} can be written most
generally as

Ū =
m

2

N∑
i=1

(ω2
xx2

i + ω2
yy2

i + ω2
zz2

i ) +
1

4πε0

1
2

N∑
i,j=1

q2

|ri − rj |
, (3.1)

when applying Gaussian cgs-units. While the second term accounts Coulomb poten-
tial of the configuration, the first term represents the common approximation that
the trapping potential be harmonic in all of the three directions. For the purpose of
the following analysis we will focus on circular chains and set ωx = 0. Also we will
ignore the case of a weakly anisotropic transverse potential. The axisymmetric case
is obtained by specifying only one transverse frequency ω :=

√
ω2

y + ω2
z so that we

have

U =
m

2

N∑
i=1

ω2(y2
i + z2

i ) +
1
2

N∑
i,j=1

q2

|ri − rj |
. (3.2)

From there we will finally be able to obtain the limit of strongly anisotropic trapping
by setting either of the transverse direction yi, zi to zero. Solving for the ground state
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configuration {r̄i} by setting

∂U

∂ri

∣∣
ri=r̂i

∀ i (3.3)

one finds [26] a critical frequency

ωc =

√
7ζ(3)

2
ω0 , (3.4)

where ζ denotes the Riemann zeta function and ω0 =
√

q2/ma3 is a characteristic
frequency. While for ω > ωc the potential is minimised only by yi = zi = 0 ∀i, when
ω < ωc the ground state configuration has zig-zag shape. Note that it should be
anticipated that condition eqn. (3.3) will not completely determine {r̄i} but instead
give rise to a free parameter corresponding to a massless Goldstone mode. Because
it is a real system (c.f. M in fig. 1.1.4), instabilities in the ion chain grow already at
values of ωt slightly above ωc, also all others observable consequences of the precise
mathematical description of phase transition in the thermodynamic limit will never be
exactly present. But once having accepted the hypothesis that this structural change
in the ion chains corresponds to a continuous, symmetry breaking phase transition one
can at this point adopt a phenomenological point of view and apply Landau’s effective
continuum description to this one-dimensional problem as long as the corresponding
order parameter, which we will in this context call A(x), varies on scales much larger
than the lattice spacing a. This condition is indeed satisfied when A(x) is taken to
describe the position of the ion chain measured from the x-axis, i.e. A(x) = y + i z.
This is a valid choice of order parameter when the initial stable chain is taken to lie at
x = 0, so that then the expectation value for A(x) will change from zero to non-zero
value during the transition. In the Z2 breaking case of strongly anistoropic transverse
confinement A reduces to be real-valued, while for rotational symmetry it has to be
complex in order to capture the U(1) breaking. Then, the angle θ(x) := argA(x) gives
the angular position of the chain at x. The precise analysis of this exact situation has
been done already when introducing Landau theory.

A correct Lagrangian L(A,A∗) should be reconcilable with the expected dynamics
resulting from eqn. (3.2). Either by making a phenomenological ansatz for the energy
of a particular configuration or simply by writing down the most general form for the
Lagrangian of a complex scalar field and afterwards adjusting the parameters, one
finds in the vicinity of the critical point [26]:

L(A,A∗) =
∫

dxL
(
A(x, t), A∗(x, t)

)
=

m

a

∫
dx

[
|∂tA|2 − h2|∂xA|2 − δ|A|2 − g

2
|A|4

]
(3.5)

with the first term being kinetic and all others corresponding to the (negative) po-
tential, and where the (x,t) dependece has been suppressed. The equation of motion
for A is

0 =
∂L
∂A∗ −

∑
µ=t,x

∂µ
∂L

∂(∂µA∗)

=
m

a

[
−

(
δA + g|A|2A

)
−

(
∂tA− h2∂2

xA
)]

, (3.6)
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where δ = ω2
t − ω2

c plays a role equivalent to that of the chemical potential in the
discussion of Landau theory and h, g are some realisation-specific constants of which
the precise value is not central to the following discussion. Eqn. (3.6) extremises
the action S =

∫
dtL, and thus so far we only describe an equilibrium situation.

However, we know that fluctuations will be present and that they may have multiple
causes. Internal sources can be of quantum or thermal nature. And among the many
possible external influences that arise in an experiment will certainly at least be small
variations in the trapping potential. With the justification that the fluctuations will be
attributable to a variety of effects, one customarily makes the Gaussian approximation
that was presented in sec. 2.1. And thus without making explicit reference to the
details, one takes into account the Fluctuation-Dissipation theorem by adding two
further terms to eqn. (3.6) – one that acts as a stochastic force term ε(x, t) and at
the same time another one which implements dissipation of some intensity η into the
system. According to eqn. (2.28), at a temperature T , in the Gaussian approximation
their relation is given by〈

ε(x, t)ε(x′, t′)
〉
0

= 2ηkBT δ(x− x′)δ(t− t′) (3.7)

where 〈
ε(x, t)

〉
0

= 0 (3.8)

and the averages are taken in equilibrium, analogously to eqn. (2.3). Including fluc-
tuations in A in this way, eqn. (3.6) becomes[

∂2
t − h2∂2

x + η∂t + g|A(x, t)|2 + δ(t)
]
A(x, t) = ε(x, t) , (3.9)

where δ has been been made time-dependent to refer to a process in which a phase
transition is imposed externally by tuning the trapping potential. An equation of
this type is known in the literature as a Langevin equation. In strongly dissipative
situations (large η) the relaxation of the systems happens on a time scale much larger
than the scale at which fluctuations take place. In that case the second time derivative
can effectively be neglected and one obtains instead a first order differential equation
in time. Given an inital configuration, differential equations like (3.9) are usually
considered impossible to solve analytically. An attempt to extract at least some
information in terms of the critical exponents is given by the Kibble-Zurek approach.
The numerical investigation in the last section of this work will address how far this
is possible.

3.1.2 Superconductors

A microscopic explanation of superconductivity has been provided by Bardeen, Cooper
and Schrieffer in 1957 [27]. Their fundamental insight was that in a solid below a crit-
ical temperature Tc, valence electrons with opposite momenta can form boundstates
via interaction with the lattice phonons to give rise to bosonic quasiparticles. These
Cooper pairs have twice the elementary charge and can condense in a single state.
Ginzburg and Landau had been unaware of the underlying microscopic dynamics
when, years before, they had already realised that near the critical point, the essential
behaviour of superconductors can also be understood in terms of a single macroscopic
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wavefuntion due to similar ideas as presented in sec. 1.2.1, but additionally respecting
the dynamics of the electromagnetic gauge field. Gorkov then showed in 1959 that
the Ginzburg-Landau theory is not merely phenomenological but can be derived in a
limiting procedure from the microscopically underlying BCS theory of superconduc-
tion. It is this what justifies a description of the superconducting phase transition in
terms of the Ginzburg-Landau theory and in fact, the macroscopic wavefunction has
the role of the corresponding order parameter. Its form is

Ψ(r, t) =
√

n(r, t)eiφ(r,t) (3.10)

where the squared modulus equals the Cooper pair density n(r, t), i.e. the fraction
of electrons that has condensed into the Cooper pair state. When a superconductor
cools down across its critical temperature, this number rises from 0 to 1. For type-II
superconductors, the transition is continuous and it is induced by the spontaneous
U(1) gauge symmetry breaking by which the vector potential loses its local U(1)
invariance. Once phrased like this, the Meißner effect, which is the expulsion of mag-
netic flux from the interior of a superconductor, does not appear as a phenomenon
separated from the one of vanishing electric resistance. Together they are merely the
two sides of the same coin signifying the breakdown of electromagnetism’s local U(1)
invariance. Each phase φ(r, t) in (3.10) corresponds to one choice of gauge.

In superconducting rings, an additional global U(1) symmetry arises due to the
requirement of a single-valued order parameter which, when being spontaneously bro-
ken, can give rise to flux trapping during non-equilibrium transitions. Hence, annular
configurations of superconductors provide a further test-field for the predictions of
Z&K in the laboratory. For thin rings, the order parameter can be viewed to ef-
fectively vary in only one dimension, where magnetic fields become non-dynamical.
Then, under idealised experimental conditions, not only the same critical behaviour
has to be expected from annular superconductors as for ion chains trapped in an
isotropic transverse potential as described above. But in fact, these two experimental
situations will be captured to a good approximation by the same theory – Ψ will take
the same role as A in eqn. (3.9):[

∂2
t − h2∂2

x + η∂t + gn(x, t) + δ(t)
]
Ψ(x, t) = ε(x, t) . (3.11)

It is a remarkable fact that at the same time, there exist situations in which Ψ is
sufficiently understood by ordinary quantum mechanics. A prominent example is
given by Josephson Junctions.

3.1.3 Josephson Junctions

When two superconductors are linked by a small region of vanishing superconductiv-
ity, there might still be a supercurrent observable between them. If this is the case,
then the configuration is called a Josephson (Tunnel) Junction, due to Josephson who
first described the responsible mechanism in 1962. The connecting barrier can be un-
derstood as a weak link and might be an insulator, a regular conductor or a purely
geometrical obstruction. Irrespective of the realisation, very similar equations hold.
It will become clear that the Josephson effect is a macroscopic quantum phenomenon
and Josephson Junctions can have considerable spatial extent, at the micrometer
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scale. It might thus not surprise that their common description borrows the notion of
the macroscopic order parameter (3.10). But here, Ψ(r, t) can be treated as an ordi-
nary quantum mechanical wavefunction of a single particle obeying the Schrödinger
equation

i~
∂Ψ
∂t

(r, t) = HΨ(r, t) (3.12)

in the presence of an electromagnetic field, with the Hamiltonian

H = (−i~∇+ eA)2/2m− eΦ , (3.13)

m and e being electron mass and charge. A and Φ are vector and scalar potential,
transforming together with Ψ as

Ψ 7−→ Ψeiχ

A 7−→ A +
1
e
∇χ

Φ 7−→ Φ− 1
e

∂χ

∂t
. (3.14)

Independent of the gauge remains the current density j that flows in the supercon-
ductor and which is given by

j(r, t) =
ne

m

(
~∇φ(r, t)− 2eA(r, t)

)
(3.15)

where e and m are electron charge and mass and A(r, t) is the gauge field. This form
can be derived from the Lagrangian formulation of field theory or, even simpler, by
considering the continuity equation

∇ · j +
∂n

∂t
= 0 (3.16)

together with the Schrödinger equation.

We shall not overuse this quantum mechanical viewpoint because the focus of this
work lies on classical effects in phase transitions. Nevertheless, it provides immediate
access to an understanding of Josephson Junctions.

In order to investigate the Josephson effect, we consider two superconductors,
with wavefunctions Ψ1 =

√
n1eφ1 and Ψ2 =

√
n2eφ2 , separated by a distance d. As

d decreases and reaches the nm-scale, the flow of ordinary electronic current will be
observed. But if the separation decreases even further (d < 3 nm [28]) then Ψ1 and
Ψ2 have an overlap and a flow of supercurrent, i.e. of Cooper pairs can be registered.
Feynman’s approach to a quantitative description [29] assumes a linear coupling be-
tween the two Schrödinger equations and, after simple algebraic manipulation and
treating real and imaginary parts separately, arrives at the Josephson equations:

j = j0 sin(ϕ) (3.17)
dϕ

dt
= 2eV/~ (3.18)
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The first relation states how the current density j = |j| across the junction depends
on the gauge independent phase difference

ϕ = φ2 − φ1 −
2e

~

∫ 2

1

dr ·A . (3.19)

It is also known as the DC Josephson equation, as opposed to the second, AC Joseph-
son equation which relates the rate of change in ϕ to the voltage V applied to the
junction. The characteristic quantity j0 is proportional to the coupling strength
K between the superconductors and the Cooper pair density in the vicinity of the
Josephson junction n0:

j0 = 2Kn0/~ (3.20)

It has to be stressed that the Josephson equations only capture the effects caused
by Cooper pair tunneling through the junction. Geometrical effects as well as the
contribution ĵ coming from single electron flow need to be considered separately. An
expression for the full current

J = j + ĵ (3.21)

is derived in [30] where in conclusion the expression for the overall current density J
across the junction takes the form

J = J0 sinϕ +
(

1
R0(V )

+
1

R1(V )
cos ϕ

)
V . (3.22)

The first term originates from the tunnelling of Cooper pairs, whereas the second
and third terms take into account classical and quantum contributions respectively,
R0(V ) and R1(V ) being voltage dependent parameters specific to geometry and ma-
terial. The aim now is to find out about the full dynamics of ϕ throughout the barrier.
The presentation below is largely oriented along [28].
We first consider a typical geometry, as depicted in fig. ??. The two superconductors
lie in the (x, y) plane. The insulator between them is taken to be of rectangular ge-
ometry with side lengths (Lx, Ly, Lz) in the three spatial dimensions. Furthermore,
now we allow for an external magnetic field H⊥ ẑ to be applied in the junction plane,
which will decay exponentially from the surface towards the bulk of the superconduc-
tors, on a length scale given by the London penetration depth λL,i , i = 1, 2. This
is also where the supercurrents sit. We then define the distance characterising the
thickness of the Josephson Junction to be d = Lz + λ1 + λ2. Taking an appropriate
contour for the integration of (3.15) (see fig. ??) and assuming Lz/λi � 1 the gradient
of the phase difference becomes (in Gaussian cgs-units)

∇ϕ =
2ed

~
H× ẑ . (3.23)

The junction is a non-superconducting area, where we can invoke Maxwell’s equations.
Ampère‘s law reads

∇×H = ĵ +
∂D
∂t

(3.24)

59



Figure 3.1: Schematic view on a Josephson Junction and the inte-
gration path to derive H- dependence of ϕ.

where in a preliminary approximation the low frequency limit ∂D
∂t ≈ 0 will be suf-

ficient. Further assuming Ohm’s law with isotropic electrical resistance R in the
junction region, i.e. E = R ĵ, it follows that

E = R∇×H . (3.25)

Taking the divergence on both sides, we realise that ∇ · E = 0 in the junction, as
it should be because (∇ · ∇ × ...) ≡ 0. But we can use this tautology by specifying
H = (Hx,Hy, 0) as proposed above and thus extracting

∂Ez

∂z
= −R

(
∂2Hy

∂z∂x
− ∂2Hx

∂z∂y

)
(3.26)

or, after integration,

Ez = −U(t, x, y)
Lz

+ R

(
∂Hy

∂x
− ∂Hx

∂y

)
(3.27)

with a z-independent function U . Now the crudity of the low frequency limit becomes
obvious – neither V nor H are in principle constrained in their time behaviour. At
best, H might be arranged for to vary slowly in time under experimental conditions.
Treating any results from here on with precaution, we insert the last equation back
into (3.24) to obtain

Jz =
(

1 + εR
∂

∂t

)(
∂2Hy

∂z∂x
− ∂2Hx

∂z∂y

)
− ε

Lz

∂V

∂t
, (3.28)

which has to be equated to (3.22). Recalling (3.23) and defining

λJ =
1√

2edJ0

(3.29)

cS =

√
Lz

εd
(3.30)
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this leads to([
1 + εR

∂

∂t

][
∂2

∂x2
+

∂2

∂y2

]
−

[
1

R0
+

cos ϕ

R1

]
d

∂

∂t
− 1

c2
s

∂2

∂t2

)
ϕ =

1
λJ

sinϕ . (3.31)

The Josephson coherence length λJ and the Swihart velocity cS together yield a
characteristic time scale at which the dynamics happen. This plasma frequency is

Ω =
cS

λJ
. (3.32)

Rescaling time and space with respect to Ω and λJ , and introducing the three dimen-
sionless parameters

α =
Lz

εω
(3.33)

β = εRΩ (3.34)

κ =
R0

R1
, (3.35)

we finally arrive at

�ϕ + β∆ϕ̇− α(1 + κ cos ϕ)ϕ̇ = sinϕ , (3.36)

where ϕ̇ = ∂ϕ/∂t and

� = − ∂2

∂t2
+ ∆ (3.37)

∆ =
∂2

∂x2
+

∂2

∂y2
. (3.38)

Our result is the Perturbed Sine-Gordon Equation (PSGE) and it approximises the
dynamics of the electron plasma in the junction in terms of the gauge invariant phase
difference between the order parameters of the two adjacent superconductors, in the
presence of an external magnetic field and with the given geometry. It incorporates a
Z-symmetry, which is seen from the fact that it is invariant under a constant shift of
φ by any multiple of 2π. Without dissipation, the PSGE reduces to the Sine-Gordon
equation

�ϕ = sinϕ (3.39)

which differs from the Klein-Gordon-equation (KGE) for a relativistic real scalar
field, �ϕ = 0, only in the additonal sine-term, thus giving reason to the similarity
yet difference in name. It has to be stressed that the SGE is still a Lorentz invariant
equation, the speed of light in vacuum only replaced by the Swihart velocity cS .

But of course, the PSGE involves a dissipative term, which had to be expected as
soon as we included usual electrical conductance. In fact, by only thinking about a
Josephson junction, we made the premise of broken superconductivity. Least easily
understood remains the mixed derivative term ∼ ∆ϕ̇, which further adds to the
complexity of the dynamics of ϕ. Some first insights are obtained by considering the
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limiting cases.
The static solution ϕ0 of the PSGE is easily seen to obey

∆ϕ0 = sinϕ0 , (3.40)

which for small phase differences ϕ � 1 and after restoring units has exponentials as
the fundamental solution,

ϕ0(x, y) ∝ e
+(x±y)√

2λJ , e
−(x±y)√

2λJ (3.41)

with four coefficients determined via (3.23) by the derivatives of H at the boundary
of the junction.

A second case is immediately accessible. This is for small junctions, i.e. Li � λJ ,
ϕ may be approximated by a constant in space which oscillates in time, as realised
after restoring units, with a frequency ωJ

∂2ϕ

∂t2
+ ωJ sinϕ = 0 . (3.42)

For small amplitudes as considered above already, a harmonic oscillator is recovered,
with solutions of the form (3.41) but with imaginary exponents.

The system of immediate interest to us is a long and narrow Josephson Junction,
which can effectively be treated as one- dimensional in space. As already seen in the
case of ionic crystals, one accomodates for fluctuations in ϕ by adding a random force
term ε(x, t) to the equations of motion, which is supposed to approximately obey
eqns. (3.7) and (3.8). Furthermore, one usually neglects those terms in the PSGE
that contain either mixed derivatives or are of quadratic order in ϕ, as these are
expected to only contribute negligeable contributions to the dynamics in the vicinity
of the critical point. This means effectively setting α = κ = 0. As a result of these
additional considerations, the dynamics of the Josephson phase in a realistic system
are expected to be sufficiently described by

(∂2
x − ∂2

t − η∂t)ϕ(x, t)− j0(t) sinϕ(x, t) = ε(x, t), (3.43)

where the critical current j0(t) through the junction appears explicitly again.

3.2 Simulations

3.2.1 Preliminaries

Accompanying the experimental observations of defect formation, many numerical
simulations have been performed in the field. Most of them could confirm the scal-
ing exponents predicted by Z&K for large parts of the parameter space. However,
apart from numerical anomalies which are usually attributed to finite-size effects,
substantial deviations from scaling were observed that are assumed to extend Z&K
qualitatively, supported by analytical approximations. Specifically for the three sys-
tems mentioned in the preceding chapter, Z&K suggests that the (inverse) correlation
length – and thus the number of defects – should scale with the quenchtime via an
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exponent σ = 1/4 (c.f. eqn. (2.38)). But in a number of publications a doubling of the
exponent was proposed for large quenchtimes τq � τ0. For such slow transitions, the
number of defects becomes small and so we can alternative think about a putative
doubling occurring for low defects densities, that is 〈n2〉 � 1.

While for the Z2-type ionic crystals we derived the general behaviour in sec. 2.4
and found 〈n2〉 = exp(−2L/ξ), for narrow (i.e. approximately 1d) superconducting
rings there also exists a proposition for the case of strong damping [16], and from the
previous sections we assume this to be maintainable for U(1)-type ionic crystals. Dif-
ferent from the Z2 case above, we now have a continuous symmetry that is broken and
instead of counting kinks, n now acts as a winding number as introduced in sec. 2.2.
In contrast to the (anti-)kink density, the winding number density n(x) varies contin-
uously, as it simply corresponds to the phase gradient dθ/dx = n(x). Intuitively, if we
assume fluctuations in n(x) to be independent in space, we would replace the discrete
Poisson distribution from the Z2 discussion by a Gaussian. And this is indeed what
is found in [16], giving 〈n(x)n(0)〉 ' exp(−x2/2ξ2) and thus 〈n2〉 ∝ exp(−[τq/τ0]2).
In case of L � ξ, this leads to an estimate of 〈n2〉 ∼ O(L/ξ) – just as in the case
of Z2. For L � ξ, the Jacobi Theta function has been used to render the Gaussian
form periodic in L [31]. This yields an approximation of 〈n2〉 ∝ exp(−4π2[ξ/L]2),
i.e. an exponential damping in the quenchtime instead of a scaling with the doubled
exponent at large quenchtimes. But of course, the exponential form is not unlikely to
be mistaken for doubling between two separated regimes.

For Joesphson junctions, the question how the defect density behaves for large
τq is being complicated by an uncertainty about the temperature dependence of the
critical current. In numerical simulations, linear dependence has shown σ = 1/4 while
a quadratic dependence gave σ = 1/2 [32]. The relation between temperature and
critical current is sensitive towards fabrication techniques and thus prevents a unique
interpretation of experimental data so far.

Starting on this basis, the subsequently presented simulations were hoped to sup-
port these approximations and especially explore further the region of large τq. In
addition, when simulating Z-symmetry breaking in Josephson Junctions an attempt
was made to gain some insights that have so far not been found in the literature.

3.2.2 Numerical approach

There are two types of differential equations that need to be considered. In the U(1)
case it is the Ginzburg-Landau (GL) type (3.39) (= (3.11)), which reduces to the
correct equation for the Z2 breaking by considering a real instead of a complex field.
The appropriate equation to simulate the Z breaking in long Josephson Junctions has
been introduced as eqn. (3.43) and will be referred to as the JJ-type. All equations
are evolved in time by using a modified leapfrog algorithm with a discretisation of
∆x = 0.2 and ∆t = 0.05, and so far only on rings of length L = 32, where – as
in the following – dimensionless units are used. Exploring the effect of non-periodic
boundary conditions and other lattice spacings and domain lengths is subject to future
work.

In the GL-type cases, the temperature was maintained constant at T = 0.01 while
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the phase transition was implemented by a linear quench of the form

δ(t) =

{
−t/τq for t ≤ τq

−1 for t > τq

. (3.44)

and the evolution was performed from t = −2τq until the stationary state in which
the defects were frozen out, which was the case at times t ∼ aτq where a ∼ 1..10
decreases with τq. The initial configuration of the fields is given by the unbroken
equilibrium value, which is zero.

The evolution of the JJ-type equation is of slightly different nature. Here, the
transition is implemented as a change in temperature in order to accommodate for
different dependencies of the critical current. Hence, in [32] an exponential quench
is suggested. However, as long as dT/dt|t=0 = 1/τq this is assumed to not alter
significantly the expected number of defects [31]. Thus for our purposes it seemed
preferable to implement a linear quench in T with the same form as eqn. (3.44) in
order to arrange for better comparability of the results. The time interval of evolution
was specified in the same way as described for the GL-cases. But now we are not
evolving the order parameter but its phase. This must be assumed as being randomly
distributed at the initial point in time, uniformly across the ring. That means however
that we are not able to reflect true Z-symmetry on the computer but rather need
to constrain the initial phase to be distributed in a finite interval. It might then
be interesting to explore in how far this explicit symmetry breaking in the initial
configuration affects numerical results. It should be noted that once confined to a
finite interval I, the phase will not leave I at any point during the transition and
so different shapes of defects will form. In [32], scaling in accordance with the Z&K
has been observed with good precision for small quenchtimes already when confining
the initial phase to the interval [0, 2π). The question of doubling however could not
be answered completely. For the present simulations, a much weaker constraint was
applied by assuming φ to be initially distributed across 100 intervals of 2π.

At the end of each evolution, the number defects n and its square could be read-
off from the the final configuration. To obtain the ensemble average, this procedure
had to be followed repeatedly. It was found that even in order to obtain acceptable
qualitative results, the average had to be taken over N ' 1500 realisations. This
meant a major practical hurdle. The available computing time was not enough to
gather the desired amount results.

3.2.3 Results

The dependence of the final total density of kinks and antikinks is shown in fig. 3.2.3 for
a statistical average over 2000 realisations. In the doubly logarithmic plot, the straight
line for small quenchtimes confirms the prediction from Z&K. At large quenchtimes
however, this gives way to a non-linear fall-off that corresponds to more than doubling
in the slope. The linear appearance at large τq in the corresponding semi-logarithmic
plot suggest exponential form. This would mean that exponential damping at small
defect densities occurs not only in small superconducting rings but also in circular
ion chains for which the transverse trapping potential is highly anisotropic.

While the result for Z2 should be expected to have considerable significance,
the simulations of U(1) and Z breaking could so far only be performed with av-
erages over 100 realisations each. Nevertheless, a tendency should be possible to
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extract. Fig. 3.2.3 shows plots of the average square number of defects 〈n2〉 versus
the quenchtime τq. Large statistical variations are clearly visible at fast quenches
already. At large quenchtimes however, the formation of defects becomes so unlikely
that an average over only 100 realisations becomes completely unreliable, rather pro-
viding a lower bound. This is particularly true for the continuous U(1) case. And
indeed, the small-τq behaviour for U(1) suggests σ = 0.5, in contradiction to the K&Z
prediction. This aside, non-linear fall-off at small densities is indicated. The latter
seems also present in the Z case. There, at small quenchtimes 〈n2〉 appears to scale
with τq via an exponent different from 0.25 or 0.5. A linear fit over all points with
τq < 103 gave σ = 0.38± 0.035 (with a 2σ confidence interval). Bearing in mind the
low level of statistical significance, it is nevertheless tempting to interpret this as the
mean between the values previously found for Z2 and U(1) and thus confirming the
intuitive picture of the discrete but finite group Z lying in between. A comparison to
[32], where σ = 0.25 was found for the average number of defects 〈|n|〉, has so far not
been made possible. To do this, the additional feature would be needed to extract
the probability of finding only single kinks or antikinks. These numerical results are
unsatisfying and will have to be tested and extended in the future. Apart from the
need of accumulating more computing time, it will be necessary to implement the
possibility of statistical error analysis.

While the quantitative results need to be improved, the qualitative behaviour of
the system during the phase transitions could be observed without constraints, and
figs. 3.2.3 – 3.2.3 provide some insights. As the system approaches the transition,
fluctuations of the order parameter increase, giving rise to different choices between
the new degenerate vacua at different positions in space. In an intermediate regime,
fluctuation still allow to reverse some of these choices so that at the end only a small
number of defects will have formed. Assuming a randomly distributed phase initially,
the phase of the order parameter always condenses around the centre of its initial dis-
tribution. While the multiple kink-antikink structures that form while the Z-breaking
relax to simpler shapes until they freeze out, in the U(1) case no intermediate stages
have been observed in which the instantaneous winding number exceeded 1.
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Figure 3.2: Dependence of the expected number 〈|n|〉 and squared number 〈n2〉 of
(kinks+antikinks) on the quenchtime τq for periodic boundary conditions. At small
quenchtimes (τq . 102), the Z&K scaling prediction with σ = 0.25 is observed. When
τq gets larger, defect densities become smaller and the exponential damping in τq

becomes perceivable. This can clearly be distinguished from a mere doubling in σ
and is consistent with the linear appearance at large τq in the semilogarithmic plot.
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Summary & Outlook

This work explained the basic principles that are responsible for the existence of phase
transitions and the production of defects. In particular, we saw how the behaviour
of systems near a critical point can be understood in terms of a number of scale-
invariant laws and how this gives rise to a division of different kinds of systems into
only a few universal classes. The fundamental reason for this could be identified as
the divergence of correlations at the critical point and the idea of renormalisation
was introduced as a way to understand critical behaviour as a flow in the landscape
of theories. Importantly, we saw how the loss of symmetry in the realisations of a
system during a continuous phase transitions leads to the production of defects when
causality introduces bounds on the correlations within a system and we elucidated
how the shape of those defects coming from the breaking of a continuous symmetry
can completely be determined in topological terms. It has also been explained how
the Kibble-Zurek mechanism uses the scaling assumption from the equilibrium dy-
namics to estimate defect densities. Although the success of this approach has been
realised for many situations, we could see how finite-size effects in condensed matter
can lead to a departure form scaling. Specifically for low defect densities the proposal
of an exponential suppression of defect production with increasing quenchtime was
discussed and supported by numerical analysis.

Among all possible systems, three have been chosen to be discussed in more detail
and exemplify the preceding general concepts. Each of them represents one of the
smallest possible symmetry groups of its kind. Ionic crystals, depending on the exact
experimental realisation have been shown to be suitable for the study of spontaneous
breaking of either the finite symmetry group Z2 or the continuous U(1). The latter
has also been seen realisable in annular superconductors. Spontaneous breaking of the
discrete but infinite symmetry group Z was found to happen in Josephson Junction
that are cooled down across the superconducting phase transition. While in the Z2

case the defects are primitive kinks, Z breaking causes the formation of defects that
can be characterised as compound kinks. U(1) breaking leads to flux trapping as it
is predicted by its topological classification.

Due to limited computed time available, the numerical work is far from complete
and significant quantitative results could not be established. It is intended to sup-
port the few performed simulations by further runs which explore the behaviour at
different domain lengths, other quench forms and other values of damping. It would
also be necessary to see the results for non-periodic boundary conditions. Also, an
account an account of other observables like the probabilities to find a certain number
of defects would be of virtue.

So far however, strong indication has been found for the expected scaling regime
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at small quenchtimes is present for all three symmetries. In particular, the Kibble-
Zurek prediction was found in the Z2 case with statistical significance. For all three
symmetries, a non-linear fall-off at large quenchtimes is evident and could be at-
tributed to finite-size effects at low defect densities. For Z2 this fall-off appeared to
have exponential form as it was proposed already for U(1).

72



Acknowledgements

Foremost, I would like to express my deep gratitude towards Ray Rivers, who intro-
duced me to a topic that left me with great fascination. Working on this dissertation
became a pleasure under his kind supervision.

I would also like to thank David Weir, without whom I would most likely have
missed the experience to peek into the interior of phase transitions.

Thanks also to all those who made this last year possible. And to those who made
it joyful.

73





Bibliography

[1] Wojciech H. Zurek. The shards of broken symmetry. Nature, 382:1175–1204, Jul
1996.

[2] Nigel Goldenfeld. Lectures on phase transitions and the renormalization group.
Frontiers in Physics, 1992.

[3] Fundamental of Statistical and Thermal Physics.
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