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Abstract

There is a recent renewal of interest to include radiative corrections to neutrino
charged-current quasi-elastic(CCQE) scattering into modern neutrino interaction
generators[1][2]. This piece of work serves as a preliminary study of the significance of
such radiative corrections for the T2K experiment. The theoretical background relevant
to the discussion of such QED radiative corrections is provided by a brief review on
Fermi’s four-fermion theory, Glashow-Salam-Weinberg theory, neutrino oscillations and
the see-saw mechanism. Using the T2K experiment’s muon neutrino flux predictions at
the Super-Kamiokande detector, radiative corrections to muon neutrino CCQE events
were calculated. Calculation of the radiative corrections required information about the
double differential cross-section of the interaction. This is extracted from Monte Carlo
CCQE events generated using a neutrino interaction generator, NEUT. The radiative
corrections at the peak muon energy at the SK detector is found to be −22.41% which is
not small but further detailed investigations are required before comparing it to the
observed discrepancy between data and simulations.
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Chapter 1

Introduction

This dissertation presents a study of the QED radiative corrections to neutrino
charged-current quasi-elastic interactions, which is the dominant interaction via which
neutrinos are detected in neutrino oscillation experiments. The first attempt to calculate
the radiative corrections to neutrino scatterings dates back to the early 1970s by
Kiskis[6]. This was shortly after the advent of the Glashow-Salam-Weinberg(GSW)
theory which unified electromagnetism and the weak interactions. The calculations for
non-elastic neutrino scatterings were cumbersome and heavily dependent on the parton
models used to describe the nucleons that the neutrinos interact with. Nevertheless, this
calculations was made more tractable by de Rujula in the late 1970s by taking leading
approximations. Even though interests in this area of research continued into the early
1980s, radiative corrections are not incorporated into modern neutrino interaction event
generators used in neutrino experiments.

There is a renewal of interest in recent years because neutrino experiments are
approaching sensitivities at which radiative corrections are significant. A study in 2012
suggested that radiative corrections contribute a surprisingly large difference of ∼ 10% to
the difference between cross-sections of the electron neutrino and muon neutrino at the
energies from 200 MeV to 2 GeV, which is of interest to neutrino oscillation experiments.
This is comparable to the current systematic uncertainties at accelerator neutrino
experiments such as the T2K experiment[1]. This finding remains to be confirmed by a
full calculation implemented inside a generator, thus motivating this study.

It is important to consider radiative effects in neutrino oscillations analysis as emission of
soft photons by the outgoing charged leptons can alter the topology of the event and lead
to uncertainties in the reconstruction of the kinematical variables[2]. Hard photons
emitted by muons can be mistaken for electron neutrino events[7]. This is undesirable as
it is a source of unaccounted background events for experiments that search for νµ → νe
oscillations, such as the T2K experiment. In this study, the radiative corrections to muon
neutrino CCQE interactions are simulated according to the setup of the T2K experiment.
This serves as a preliminary study of the significance of radiative corrections in current
experiments so that efforts can be channelled into including them into modern
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7 CHAPTER 1. INTRODUCTION

generators.

This dissertation is structured as follow:

Chapter 2 provides a concise overview of weak interaction phenomenology by starting
with the Fermi four-fermion theory and introducing the V-A structure of the weak
leptonic and hadronic currents. A common approach in effective field theories is to use
form factors to package the properties of particle interactions without including all of the
underlying physics. There are some brief words on why Fermi theory is not the ultimate
description of nature and why it is still in use today anyway.

Chapter 3 introduces the GSW theory and the basic features of its Lagrangian, such as
its matter content, and roles of the gauge bosons and scalar fields. Spontaneous
symmetry breaking in the Electroweak sector and how fermions and boson acquire their
masses is explained, along with a few comments about the renormalisibility of the GSW
theory.

Chapter 4 is about neutrino physics and how the Standard Model can be minimally
extended to give neutrinos masses. The different types of neutrino masses and the
mechanism that can potentially give neutrinos masses will be elaborated on, along with
the most direct implication of neutrino masses - ocillations. The chapter contains
derivations of neutrino oscillations and explains how one may try to understand neutrino
oscillations experimentally. The current status of the measurement of oscillation
parameters is summarised, along with some words on the planned experiments to answer
some of those open questions in neutrino physics.

Chapter 5 introduces the T2K experiment. The chapter also includes the derivation of
the neutrino CCQE cross-section and discusses how the nuclear environment of the target
nuclei is modelled.

Chapter 6 explains what radiative corrections are considered. The potential problems,
such as infrared divergences, encountered when evaluating the radiative corrections are
elaborated on, along with how these divergences are cancelled when considering physical
processes. The chapter also introduces the concept of ’inclusive cross-section’ and why
they are more relevant in experiments than the bare tree-level cross-section. The
expression for the radiative corrections is annotated, along with some comments on the
assumptions made to render the calculation tractable.

Lastly, chapter 7 describes the details of the simulation, such as the softwares used and
the structure of the code. The results are presented, along with the conclusions and
recommendations for future work.



Chapter 2

Fermi theory

Fermi theory was introduced in 1934 to describe weak interaction and to explain beta
decay in particular[8]. It only contains one type of vertex in which four fermions interact
with each other at the same point. This implies an infinitesimal interaction length, which
is a good approximation of a theory with very massive intermediate vector boson. This is
indeed the case, but the existence of the massive vector boson was not proposed at the
time the theory was first constructed.

As a phenomenological theory, Fermi’s four-fermion theory describes the weak interaction
very well but it has serveral short-comings which eventually proved that it is not the
ultimate description of nature. Nevertheless, it is still widely used by experimentalists as
the theory remains a very good approximation at the energies at which modern
experiments are being carried out[9].

2.1 Fermi current-current Lagrangian

Fermi theory is called the current-current theory as the Lagrangian involves two local
currents, Jα, which exist at the same point in spacetime. This defines a four-fermion
interaction and there are no intermediate vector bosons, yet.

LF = −GF√
2
Jα(x)J†α(x) (2.1)

where

Jα(x) = lα(x) + hα(x) (2.2)

GF = 1.166× 10−5 GeV−2 (2.3)

There is only one coupling constant, GF , which is known as Fermi’s constant. It has
dimensions of energy−2 which renders the theory unrenormalisable by the power counting
theorem[10]. This means that some physical quantities, such as the cross-section of a
process, can potentially diverge and make the theory unphysical.

8



9 CHAPTER 2. FERMI THEORY

The weak current consists of a leptonic part, lα, and a hadronic part, hα. As such, the
Fermi Legrangian produces three kinds of interactions. The first kind of interaction is
leptonic in nature and corresponds to terms like lαl†α. This is responsible for processes
such as the decay of the muon.

µ− → e− + ν̄e + νµ

There is also the hadronic interaction which corresponds to the hαh†α term and is
responsible for processes such as the decay of the Lambda baryon.

Λ→ p+ π−

Lastly, there is the semileptonic interactions which correspond to terms like lαh†α + hαl†α
and cause processes like neutron decay.

n→ p+ e− + ν̄e

2.2 V-A structure

The weak force couples only to left-handed neutrinos (and right-handed antineutrinos).
To accommodate for parity and charge conjugation violation, the current must have the
vector minus axial (V-A) structure. This was introduced independently by Feynman and
Gell-mann, and Sudarshan and Marshak in 1958[11][12]. A generic four-fermion
interaction A+B → C +D is described by a universal four-fermion matrix element

M = 4
∑
i

fi

〈
ΨL
D

∣∣∣Oi ∣∣ΨL
B

〉 〈
ΨL
C

∣∣∣Oi ∣∣ΨL
A

〉
(2.4)

where

ΨL = aΨ =
1

2
(1− γ5)Ψ (2.5)

The sum is over the same operator Oi and the fi are coupling constants. A and B
represent the ‘in’ states, while C and D represent the ‘out’ states.

Considering all possible types of bilinear operators, āOia,
Scalar āa = 0

Vector āγµa = γµa

Axial-vector āγµγ5a = −γµa
Pseudoscalar āγ5a = 0

Tensor āσµνγ5a = 0

(2.6)

Substituting equation 2.6 into equation 2.4,

M(A+B → C +D) =
GF√

2

〈
ΨD

∣∣ γµ(1− γ5) |ΨB〉
〈
ΨC

∣∣ γµ(1− γ5) |ΨA〉 (2.7)

Only the vector and axial-vector bilinears survive because the weak force only couples to
left-handed fermions (right-handed anti-fermions).
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2.3 Leptonic currents

Charged lepton flavour is conserved as there are no cross-terms between charged leptons
and neutrinos from different generations.

lα(x) =
∑

generations

l̄(x)γα(1− γ5)νl(x) (2.8)

where the leptonic current sums over all three generations of leptons. An example of the
matrix element describing the leptonic current in neutrino-electron scattering is

〈e| lα |νe〉 ' ūeγα(1− γ5)uν (2.9)

where ūe and uν are Dirac spinors which are approximately chiral eigenvectors if the
initial neutrino is ultra-relativistic. This transition has a change in charge, ∆Q = −1,
which is why processes involving such lepton legs are called charged-current
interactions.

2.4 Hadronic current

The hadronic leg is more complicated than the leptonic leg. Unlike the charged leptons
and neutrinos, hadrons are affected by strong interactions and do not behave like point
particles. However, the mathematical structure of the hadronic current is similar to that
of the leptonic current. For example, the matrix element used to describe the hadronic
leg in β decay is given by

〈p|hα |n〉 ' ūpγα(gV − gAγ5)un (2.10)

where gV and gA are known as the vector coefficient and axial-vector coefficient
respectively. They are experimentally measured to be gV ' 0.98 and gA ' 1.27. The
hadronic current will have exactly the same structure as the leptonic current if the ratio
gV
gA

were to be exactly unity. A priori, there is no reason to expect the hadronic current to
be so similar to the leptonic current since the strong interactions can modify the vector
and axial-vector part of the current separately. This similarity is explained by the
conserved vector current (CVC) and partially conserved axial current (PCAC)
hypothesis.

2.4.1 CVC hypothesis

The CVC hypothesis is first proposed by Gerstein and Zeldovich in 1956 and it assumes
that the vector current is a component of a conserved isovector current[13]. The
conservation of this current prevents the hadronic weak vertex from being renormalised
by the strong interactions. The CVC hypothesis was experimentally verified in 1963 by
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measurements of the shape correction factor of the B12 and N12 nucleus β spectrum[14].
Examining the vector part of the hadronic leg in a β-decay,

V α = 〈p| γα |n〉 (2.11)

The general form of V α is restricted by Lorentz symmetry to be

V α = ūp

[
gV γ

α − i gM
2M

σαβqβ −
gS
2M

qα
]
un (2.12)

where the form factors gV , gM , gS are functions of the momentum transfer, q2. The CVC
hypothesis leads to the condition

qαVα = 0 (2.13)

which then implies that gS = 0 and equation 2.12 simplifies to

V α = ūp

[
gV γ

α − i gM
2M

σαβqβ

]
un (2.14)

The first term in equation 2.14 is the vector term which dominates if the nucleons are not
strongly interacting particles. The second term is the weak magnetism term which
determines the deviations from the allowed shape of the observed β spectra for the
B12 and N12 decays. Measurements of this shape deviation strongly supports the CVC
hypothesis.

2.4.2 PCAC hypothesis

The axial vector coefficient only deviates ∼ 25% from unity because of the PCAC
hypothesis. The deviation is bigger for the axial-vector coefficient than for the vector
coefficient as the axial-vector current is only partially conserved. In 1964, Adler proposed
a way to test the PCAC hypothesis by comparing cross-sections of the following
interactions

high-energy neutrino interactions ν + α→ l + β

pion-hadron interactions π+ + α→ β

where α is a nucleon or nucleus, l is the corresponding charged lepton of the ν, β is a
system of strongly interacting particles with a different invariant mass from α. The
incoming neutrino is ultra-relativistic and lepton mass is neglected[15].

When the momentum transfer is small, the resulting charged lepton is mainly forward
moving and the matrix element for the high-energy neutrino interaction is proportional
to the divergence of the axial vector current, provided that the CVC hypothesis holds.
Under the PCAC hypothesis, the cross-section of the high-energy neutrino interaction is
proportional to the cross-section of pion-hadron interactions. This was empirically
verified in 1969 by Bonetti et al. as their data was consistent with the PCAC hypothesis
in the low momentum transfer regime[16].
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In fact, the proportionality constant relating the cross-sections of the two interactions
vanishes in the limit of vanishing pion mass.

∂αA
α
i (x) = fπm

2
ππi(x)

lim
mπ→0

∂αA
α = 0

(2.15)

where Aαi (x) is the axial current, fπ is the pion decay constant, mπ is the charged pion
mass and πi(x) is the pseudoscalar field operator. Modern experiments give a
measurement of mπ ∼ 140 MeV and this further supports the hypothesis that the axial
current is not fully conserved[17].

2.5 Status of Fermi theory

Since its formulation in 1934, there were several modifications to the Fermi’s four-fermion
theory so that it can describe the weak force more accurately. Fermi theory, along with
those modifications, served well as a phenomenological theory. It withstood the
verifications of numerous experiments since its formulation in the 1934 before it was
superceded by the Glashow-Salam-Weinberg theory in the 1960s.

The greatest set-back of Fermi theory is that it violates unitarity at high energies and it
is not renormalisable. For example, consider the reaction νe + e→ e+ νe. Assuming
ultra-relativistic electrons, the calculated cross-section in the center-of-mass system grows
as [18]

σ =
4G2

Fk
2

π
' G2

FE
2
CM . (2.16)

The cross-section is unbounded as it grows with the center-of-mass energy. The theory
violates unitarity and it breaks down at ECM ' G−1/2

F ' 300GeV. However, this energy
is considered high given that current experiments, such as the T2K experiment, have
ECM on the order of ∼ 1 GeV, and hence the Fermi theory remains a good
approximation for the analysis of modern experiments.

One can hope to handle the diverging cross-section by absorbing it into the definitions of
the coupling constants, charge and normalisation of the fields. However, Fermi theory is
not renormalisable as GF has a dimension of energy−2 and is not renormalisable by
power counting. To solve this problem, Schwinger introduced intermediate vector bosons
to the theory in 1957 [19]. The four-fermion vertex was split up by introducing
intermediate vector bosons via the Lagrangian

L = gW [Jα(x)W+
α (x) + Jα†(x)W−α (x)] (2.17)

g2
W

m2
W

=
GF√

2
(2.18)

where W±α (x) are the intermediate vector bosonic fields and mW is the mass of the W±

boson.
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Equation 2.18 suggests that the new coupling strength, gW , is dimensionless and the
theory with intermediate vector bosons is thus superficially renormalisable. However, it is
still problematic for scattering processes such as ν̄ν →W+W− and e+e− →W+W−.
The W propagator approaches a constant at high energies and the cross-sections of these
proccesses diverge as E2

CM [20].

The intermediate vector bosons Schwinger proposed are massive given the short
interaction length and point-like nature of the vertex. However, the vector bosons in
Fermi theory are massless since explicit mass terms will break gauge invariance. The
vector bosons eventually acquired masses via the Higgs mechanism in the framework of
the Glashow-Salam-Weinberg electroweak theory that is widely used today.



Chapter 3

Glashow-Salam-Weinberg theory

3.1 GSW Lagrangian

The Glashow-Salam-Weinberg (GSW) theory describes the unification of
electromagnetism and the weak interaction. It is a gauge theory based on the product
group SU(2)W × U(1)Y which is subsequently spontaneously broken down to U(1)EM .
The Lagrangian density is

L = Lg + Lf + Ls + Lf−s (3.1)

where Lg describes the gauge fields in the theory, Lf describes the fermionic matter
content, Ls comes from the contribution of the scalar fields and Lf−s is the Yukawa
coupling between the scalar and fermionic fields.

3.2 Gauge fields

Due to the product group structure of the theory, there are two field strength tensors, fµν
and F jµν . The dimension of SU(2)W × U(1)Y is four and there are four gauge bosons:
bµ ≡ (b1µ, b

2
µ, b

1
µ) for SU(2)W and aµ for U(1)Y . They all transform under the adjoint

representation of their respective groups. The gauge field Lagrangian subsequently gives
the propagators of the gauge bosons.

Lg = −1

4
F jµνF

µν
j −

1

4
fµνf

µν (3.2)

The Abelian field strength tensor associated with weak hypercharge, U(1)Y , is

fµν = ∂µaν − ∂νaµ (3.3)

While the non-Abelian field strength tensor associated with the weak isospin, SU(2)W ,
is

F jµν = ∂µb
j
ν − ∂νbjµ − gεjklbkµblν (3.4)

14
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3.3 Fermionic matter fields

The Lagrangian associated with the fermions is only explicitly written out for the
electron and electron neutrino. The other generations of leptons have the same structure
as well.

Lf = R̄iγµ(∂µ +
ig′

2
aµy)R+ L̄iγµ(∂µ +

ig′

2
aµy +

ig

2
τ · bµ)L (3.5)

The left and right-handed leptons are defined via the projection operator 1
2(1± γ5).

R ≡ eR =
1

2
(1 + γ5)e

L ≡
(
ν
e

)
L

=
1

2
(1− γ5)

(
ν
e

) (3.6)

There are two independent couplings: the weak isopin coupling, g, and the weak
hypercharge coupling, g

′

2 , and the weak isopin only couples to the left-handed leptons.
Explicit mass terms are not allowed as they are incompatible with gauge invariance. The
fermions eventually get their masses via the Higgs mechanism after spontaneous
symmetry breaking.

3.4 Scalar fields

The scalar sector is where spontaneous symmetry breaking occurs and three of the gauge
bosons acquire their masses via the Higgs mechanism.

Ls = (Dµφ)†(Dµφ)− V (φ†φ) (3.7)

where the transformation properties of the scalar field φ can be inferred from the
definition of the covariant derivative

Dµ = ∂µ +
ig′

2
aµy +

ig

2
τ · bµ (3.8)

The potential used to spontaneously break the symmetry is

V (φ†φ) = µ2φ†φ+ λ(φ†φ)2, λ > 0 (3.9)

The charged leptons and three of the gauge bosons acquire their masses via the Higgs
mechanism. The most economical and consistent choice of scalars is a complex SU(2)
doublet.

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(3.10)
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3.4.1 Spontaneous Symmetry Breaking

The local gauge symmetry is broken by imposing a ‘tachyonic’ mass term for the scalars
µ2 < 0 and picking a specific vacuum expectation value for the scalar field.

〈φ〉0 ≡ 〈0|φ |0〉 =

(
0
v√
2

)
(3.11)

v =

√
−µ2

λ
(3.12)

The generators of the SU(2) algebra are ti ≡ σi
2 , where σi are the Pauli matrices while

the U(1) generator, y, is just the identity matrix (see A.2). The four generators for
SU(2)× U(1) mix and form a new set of generators (τ1, τ2,K,Q).

K ≡ τ3 − y
2

, Q ≡ τ3 + y

2
(3.13)

Q is the electric charge and it relates the third component of the weak isopin with the
weak hypercharge via

Q = t3 +
y

2
(3.14)

Recall the vacuum stability condition

(tî)ab φ̄b = 0 (3.15)

where tî are the generators of the stability subgroup, and act the generators on the choice
of vacuum given in 3.11,

τ1 〈φ〉0 =

(
v√
2

0

)
6= 0

τ2 〈φ〉0 =

(
−iv√

2

0

)
6= 0

K 〈φ〉0 =

(
0
−v√

2

)
6= 0

Q 〈φ〉0 =

(
0
0

)
(3.16)

For each generator that does not annihilate the vacuum, there is a would-be massless
Goldstone boson. This is undesirable since massless scalars are not observed in reality.
This disaster is averted by reparameterising φ and going into the unitary gauge. The
Goldstone fields then are absorbed into the gauge fields and reincarnate as mass terms
for those gauge bosons.
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3.4.2 Higgs Mechanism

φ can be reparameterised as[21]

φ(x) = ei
ξ·τ
2v

(
0

v+η(x)√
2

)
≡ U−1(ξ)

(
0
v+η√

2

)
(3.17)

Going into the unitary gauge and noting that the gauge fields, bµ, transform in the
adjoint representation,

φ→ φ′ = U(ξ)φ =
1√
2

(
0

v + η

)
τ · bµ → τ · b′µ aµ → aµ

R→ R L→ L′ = U(ξ)L

(3.18)

Substituting 3.18 into 3.7 and repackaging the terms,

Ls =
1

2
(∂µη)(∂µη)− 1

2
m2
ηη

2 +
1

2
m2
W

(
|W+

µ |2 + |W−µ |2
)

+
1

2
m2
Z |Z0

µ|2 + interaction terms

(3.19)

where the physical gauge bosons are

W+
µ ≡

1√
2

(b1µ − ib2µ) W−µ ≡
1√
2

(b1µ + ib2µ) (3.20)

Z0
µ ≡
−g′aµ + gb3µ√

g2 + g′2
Aµ ≡

gaµ + g′b3µ√
g2 + g′2

(3.21)

with masses

mη ≡
√
−2µ2 mW =

gv

2
mZ = mW

√
1 +

(
g′

g

)2

(3.22)

Looking at equations 3.16, three of the SU(2)× U(1) generators do not annihilate the
vacuum and thus three of the four gauge bosons acquire masses. Linear combinations of
these generators correspond to the W± and Z0 gauge bosons. However, the vacuum
remains invariant under the action of the Q operator, and SU(2)W × U(1)Y is
spontaneously broken down to U(1)QED. The electric charge is conserved and the
physical photon remains massless.

3.5 Yukawa coupling

Yukawa interaction is the interaction between a scalar field φ and Dirac field Ψ. It was
originally invented to describe the strong nuclear force between nucleons which is
mediated by pions. Yukawa couplings constants are free parameters in the Standard
Model. The Yukawa interaction is responsible for giving masses to the fermions.

Lf−s = −Ge[R̄(φ†L) + (L̄φ)R] (3.23)
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where Ge is an empirical constant that is independent of the gauge couplings, g and g′

2 .
Substituting the reparameterised scalar field(3.17) and the Dirac fields(3.6) into the
Yukawa term(3.23)

Lf−s = −Geη(x)√
2

ēe− Gev√
2
ēe (3.24)

The first term describes the interaction between the electron and the massive scalar field,
η, while the second term contains the electron mass

me =
Gev√

2
(3.25)

The Yukawa interaction couples a left-handed multiplet to a right-handed multiplet.
Right-handed neutrinos are not observed in nature and hence it will be hard to justify
the introduction of a multiplet with right-handed neutrinos. Neutrinos cannot participate
in the Yukawa interaction and they remain massless, for now.

3.6 Anomalies and Renormalisability

It is important to check that a gauge theory is renormalisable, that there is a way to
consistently isolate and remove the infinities that crop up in the calculation of physical
quantities such as the cross-section of a scattering process. Gerard’t Hooft and Veltman
showed in 1972 that the GSW theory is renormalisable, but the theory with only leptons
contains anomalies which render the theory unrenormalisable[22].

Anomalies are quantum mechanical symmetry breakings. Classically, Nöther’s theorem
ensures that there is local current conservation associated to each continuous gauge
symmetry. This holds at tree-level but Gross and Jackiw showed in the same year that
this is violated at loop-level[23]. The quantisation proccess necessarily breaks classical
symmetry and this makes the theory unrenormalisable. An example of a Feynman
diagram that produces an anomaly in four dimensions is shown in figure 3.1[24]

Vν
Vµ

Aλ

Figure 3.1: Triangle anomaly
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Two vector and one axial current are coupled through the fermion loop and this leads to
the breaking of chiral symmetry. Fortunately, this is the only fundamental anomaly and
it vanishes when[23]

∆Q = QR −QL = 0 (3.26)

where QR is the sum of the electric charges of the right-handed doublets and QL is the
sum of electric charges of the left-handed doublets. There are three generations of leptons
and quarks. Considering the first generation as an example,

Qleptons
L =

(
νl
l−

)
L

Qquarks
L =

(
u
dc

)
L

(3.27)

∆Q = Qleptons
L −Qquarks

L

= −1 + (
2

3
− 1

3
) = −2

3
6= 0

(3.28)

This shows that the GSW theory with only one lepton doublet and one quark double is
not renormalisable. One can try to cancel the contributions from the left-handed
doublets by introducing some right-handed doublets but right-handed weak doublets are
not observed in nature. The alternative is to introduce more left-handed quark
doublets. (

ured
dcred

) (
ublue
dcblue

) (
ugreen
dcgreen

)
(3.29)

The introduction of these extra left-handed quark doublets cancel the anomaly and hence
renormalisability of the weak interactions requires three internal degrees of freedom for
the quarks.

3.7 Status of GSW theory

The GSW theory is based on a product group SU(2)W × U(1)Y , leading to two
independent coupling constants, g and g′

2 , while a true unified theory should only have
one coupling constant. Nevertheless, it partially unifies weak and electromagnetic
interactions and is able to reproduce to QED and weak interaction phenomenology at the
appropriate energy levels.

Another set-back of the theory is that fermion masses, various mixing angles and other
physical quantities are free parameters in the theory which can only be constrained by
experiments; a more fundamental theory is required to calculate these quantities.
However, the theory is able to accurately predict the masses of W± and Z0 once the
weinberg mixing angle θW have been pinned down experimentally. The GSW theory has
remarkable predictive power as it also predicted the existence and properties of the weak
neutral current that is mediated by Z0

µ, along with the existence of the charmed quark
and Higgs boson.
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The GSW theory is also consistent with other gauge theories like QCD. The
renormalisability of GSW requires the quarks to have three internal degrees of freedom,
which can then be interpreted as the color charges in QCD.



Chapter 4

Neutrino Physics

The neutrino started out as a book-keeping particle to save the conservation of energy. In
1911, Lise Meitner and Otto Hahn discovered that the electrons from β-decays had a
continuous spectrum of energies. This finding was an apparent violation of energy
conservation as nuclear decays were thought to be two-body problems, and so discrete
emitted electron energies were expected. Further experiments confirmed this finding and
the neutrino was thus theorised in 1930 by Pauli to account for the missing momentum
and energy. An experiment to detect neutrinos was proposed in 1942 by Wang and the
elusive particle was finally detected in 1956 by Cowan et al.[25][26]. This discovery was
awarded the Physics Nobel Prize in 1995.

In the late 1960s, Davis and Bahcall found a deficit in the expected solar neutrino flux in
the Homestake experiment. This was confirmed by data from the Kamiokande II detector
in Japan in the 1980s[9]. This deficit then became known as the solar neutrino problem
and it was eventually resolved by neutrino oscillations. Electron neutrinos from the sun
oscillated during propagating into neutrinos of another flavour which the detectors was
not sensitive to. The first experimental evidence of neutrino oscillation came from the
Super-Kamiokande Collaboration in 1998[27]. Davis subsequently shared the 2002
Physics Nobel Prize with Masatoshi, who worked on the Kamiokande and
Super-Kamiokande experiments. The very fact that neutrinos oscillate hints at the
incompleteness of the Standard Model.

4.1 Massive neutrinos

Neutrinos are traditionally massless in the Standard Model. Fermions such as the
charged leptons and quarks get their masses from their Yukawa couplings to the Higgs
particle after the Electroweak spontaneous symmetry breaking. The neutrino remains
massless due to the lack of right-handed neutrino which is required to construct the
Yukawa coupling term. However, it is experimentally observed that neutrinos undergo
oscillations, which implies that there is at least one massive neutrino[27].

21
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The simplest way to construct mass terms for the neutrino is to introduce right-handed
weak isosinglets, νR. These right-handed neutrinos are sterile and do not interact with
other Standard Model particles, except via gravitation. Consequently, there are two
possible types of neutrino mass terms - the Dirac mass term and the Majorana mass
term. Note that having a Dirac mass term does not necessarily imply that the neutrino is
a Dirac spinor. The name of the mass term simply refers to the structure of the mass
term in the Lagrangian.

4.1.1 Dirac mass

The Dirac neutrino mass is built out of the left-handed neutrino and its sterile
right-handed counterpart.

LDirac = −νRmDνL + h.c. (4.1)

where

νL =


νeL
νµL
ντL
...

 νR =


νeR
νµR
ντR
...

 (4.2)

νL contains all the left-handed neutrino fields while νR contains the sterile right-handed
fields. In this basis, mD is a complex non-diagonal matrix. The Dirac mass term, along
with the rest of the SM lagrangian, are invariant under a global guage
transformation.

νL → eiανL νR → eiανR l→ eiαl (4.3)

This symmetry implies that the total lepton number is conserved.

4.1.2 Majorana mass

The Majorana mass is constructed out of a neutrino field and its charge-conjugate.

LMaj. = −1

2

(
νcLmLνL + νcRmRνR

)
+ h.c. (4.4)

where νcL is the charge-conjugate of νL. C is the unitary matrix of charge conjugation
which statisfies

νcL = CνL
T (4.5)

CγTαC
−1 = −γα CT = −C (4.6)

The Majorana mass term mixes particle and antiparticle and violates lepton number
conservation. Therefore, such mass terms are only allowed if the neutrino does not carry
other charges that are conserved by symmetry.
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In general, the neutrino can have both Dirac and Majorana masses.

Lmass = −νRmDνL −
1

2

(
νcLmLνL + νcRmRνR

)
+ h.c.

=
1

2
Ψc
LMΨL + h.c

(4.7)

where

ΨL =

(
νcL
νR

)
M =

(
mL mD

mD mR

)
(4.8)

Compared to even the lightest charged lepton, neutrinos are extremely light. The
strongest limit on neutrino masses comes from cosmology. The most recent data from the
Planck collaboration sets an upperbound of 0.66 eV to the summed masses of the three
neutrino species while the three year data from the WMAP collaboration sets a stronger
upperbound of 0.3eV[28][29]. Looking at equation 4.7, there is no reason why the electron
should be ∼ 106 times heaver than the neutrinos. This disparity in masses can be
explained by the See-saw mechanism.

4.1.3 See-saw mechanism

There are other types of see-saw mechanism which involve the addition of more exotic
fields such as scalar SU(2)L triplets for type II see-saw mechanism and fermion triplets
for type III see-saw mechanism[30][31]. For succinctness, only type I see-saw mechanism,
which involves right-handed neutrino singlets, will be discussed. For simplicity, only one
generation of leptons will be considered

Recall that the neutrino can have both Dirac and Majorana masses, expressed as
equation 4.7. It will be more convenient to work in a basis in which the mass matrix,M,
is diagonal.

Lmass =
1

2
Ψ

′c
LM̃Ψ

′c
L + h.c (4.9)

where

Ψ
′c
L =

(
ν
N

)
M̃ =

(
mν 0
0 M

)
(4.10)

The masses of the neutrinos, mν and M , are the eigenvalues ofM and can be read off
the diagonals of M̃. ν and N are the mass eigenstates of the neutrinos.

Solving for the eigenvalues ofM ∣∣∣∣mL − λ mD

mD mR − λ

∣∣∣∣ = 0 (4.11)

λ± =
1

2
(mL +mR)± 1

2

√
(mR +mL)2 − 4(mLmR −m2

D) (4.12)
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The Dirac mass term is a result of Yukawa couplings of the leptons to the Higgs after
Electroweak spontaneous symmetry breaking and so it is justified to assume that mD is
of the order of the Electroweak scale, mD ∼ 250 GeV. The right-handed sterile neutrino
was created when the universe was still at the GUT scale and hence mR is often assumed
to be at the GUT scale, mR ∼ 1015 GeV. This results in a mass hierachy
MGUT ' mR >> mD > mL ' 0. With these assumptions about the mass scales,

λ− ≡ mν '
1

2
mR −

1

2

√
m2
R + 4m2

D ∼
m2
D

mR
∼ 0.06 GeV

λ+ ≡M '
1

2
mR +

1

2

√
m2
R + 4m2

D ∼ mR ∼ 1015 GeV
(4.13)

The see-saw mechanism gives reasonably physical estimates of the neutrino masses and
this only requires simple assumptions of the energy scale at which the active and sterile
neutrinos were created.

4.2 Neutrino Oscillations

Proposed in 1957 by Pontecorvo, neutrino oscillation is a quantum mechanical
phenomenon that is analogous to K0 −K0 oscillations[32]. These oscillations are
generated by the interference of the different mass eigenstates, which are detected
coherently as they cannot be distinguished from each other due to the small mass
differences. Neutrino oscillations experiments can shed light on fundamental questions
such as whether CPT is really an exact symmetry, and provide an avenue for searching
for physics beyond the Standard Model.

4.2.1 Plane-wave derivation

An important assumption necessary for the plane-wave derivation of neutrino oscillation
probability is that the neutrinos are ultra-relativistic. This is a justified assumption as
the neutrino mass is on the order of 1 eV while only neutrinos with energies larger than
100 keV can be detected[33].

Assuming there are n neutrino flavours, the n orthonormal flavour eigenstates |να〉 are
related to the n orthonormal mass eigenstates |νi〉 via a unitary mixing matrix U

|να〉 =
∑
i

Uαi |νi〉 |νi〉 =
∑
α

U∗αi |να〉 (4.14)

where

U †U = UU † = 1 〈νβ|να〉 = δαβ 〈νi|νj〉 = δij (4.15)

Only the relative phases are meaningful in quantum mechanics. With n orthogonal
neutrino states, there are n− 1 relative phases and hence (n− 1)2 free parameters, which
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can be repackaged as mixing angles and CP-violating phases. It is then convenient to
reparameterise the unitary mixing matrix U as an n-dimensional rotational matrix with
nC2 = 1

2n(n− 1) weak mixing angles and 1
2(n− 1)(n− 2) CP-violating phases.

Solving the time dependent Schrödinger’s equation, where Ĥ is the Hamiltonian of the
system,

Ĥ |νi〉 = Ei |νi〉 (4.16)

the time evolution of the mass eigenstates can be expressed as plane waves

|νi(x, t)〉 = e−iEit |νi(x, 0)〉 (4.17)

where |νi(x, 0)〉 is the neutrino state at t = 0. For neutrinos emitted with momentum p at
position x = 0 and time t = 0,

|νi(x, 0)〉 = eip.x |νi〉
|νi〉 ≡ |νi(0, 0)〉 (4.18)

For ultra-relativistic neutrinos,

Ei =
√
m2
i + p2

i ' E +
m2
i

2E
(4.19)

The neutrinos are produced and detected via the weak force which couples to the flavour
eigenstates. However, they propagate as mass eigenstates in between production and
detection. If the difference in mass between two neutrino states with different masses
cannot be resolved, the flavour neutrino will be a coherent superposition of the mass
eigenstates. Neutrinos produced as a particular flavour |να〉 at t = 0 will evolve into a
superposition of other flavours.

|ν(x, t)〉 =
∑
i

Uαi |νi(x, t)〉

=
∑
i,β

Uαie
i(p.x−Eit) |νi〉

=
∑
i,β

UαiU
∗
βie

i(p.x−Eit) |νβ〉

(4.20)

The time-dependent transition amplitude for a flavour conversion α→ β is then

A(να → νβ)(t) = 〈νβ|ν(x, t)〉 =
∑
i

UαiU
∗
βie

i(p.x−Eit) (4.21)

Substituting the condition for relativistic neutrinos in equation 4.19,

A(να → νβ)(t) =
∑
i

UαiU
∗
βiexp

(
−im

2
iL

2E

)
= A(να → νβ)(L)

(4.22)

where L = x = ct is the distance between the source and the detector.
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The transition probability is then

P (να → νβ)(t) = |A(να → νβ)|2 =
∑
ij

UαiU
∗
αjU

∗
βiUβje

−i(Ei−Ej)t

=
∑
i

|Uαi|2|U∗βi|2 + 2Re
∑
j>i

UαiU
∗
αjU

∗
βiUβjexp

(
−i

∆m2
ijL

2E

)

= δαβ − 4
∑
j>i

Re
[
UαiU

∗
αjU

∗
βiUβj

]
sin2

(
∆m2

ijL

4E

)

+ 2
∑
j>i

Im
[
UαiU

∗
αjU

∗
βiUβj

]
sin

(
∆m2

ijL

2E

)
(4.23)

where

∆m2
ij = m2

i −m2
j (4.24)

The first term in equation 4.23 is the average transition probability,〈
Pνα→νβ

〉
=
∑
i

|Uαi|2|U∗βi|2 =
∑
i

|Uαi|2|U∗βi|2 =
〈
Pνβ→να

〉
(4.25)

The second term in equation 4.23 describes the time and spatial dependence of the
neutrino oscillations. In particular, if CP is conserved, Uαi is purely real and equation
4.23 is simplified to

P (να → νβ)(t) = δαβ − 4
∑
j>i

UαiUαjUβiUβjsin2

(
∆m2

ijL

4E

)

= δαβ +
∑
j>i

UαiUαjUβiUβjcos
(

2π
x

Losc.

) (4.26)

The transition probability has an oscillatory behaviour which is a function of the distance
travelled, x. It can also be expressed in terms of the oscillation length, Losc., between
|να〉 and |νβ〉.

∆m2
ijL

2E
≡ 2π

x

Losc.

Losc. = 2π
2pν

∆m2
ij

(4.27)

where pν is the momentum of the neutrino. Losc. can be interpreted as the distance at
which the phase generated by ∆m2

ij becomes equal to 2π.

4.2.2 Comments on neutrino oscillation probabilities

If the neutrinos are measured very near the source, x << Losc., most of the neutrinos will
be measured in their original flavour. Conversely, if the neutrinos are measured very far
away from the source, x >> Losc., the oscillation pattern will be washed out. This is due
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to the spread in momentum ∆pν in the neutrino beam. If a neutrino in the beam with
momentum pν has a phase shift of ∼ π with respect to another neutrino in the beam with
momentum p′ν = pν + ∆pν

2 , the oscillation will be cancelled out on average. In this
scenario, it is still possible to detect a neutrino of a different flavour from its original
flavour but the probability will no longer vary with distance.

From equation 4.26, one infers that oscillation requires non-trivial mixing and at least
one specie of neutrinos to have mass. The oscillatory behaviour arises from the
interference between the different mass eigenstates in the neutrino wavefunction. It is
governed by the second term which vanishes if the neutrinos have equal masses,
∆m2

ij = 0. The oscillatory term will also vanish if there is no mixing between amongst
the different flavours and there are no non-trivial off-diagonal elements in U . At
macroscopic distances, this effect of flavour oscillation can be large despite the small
differences in neutrino masses, ∆m2

ij .

Note also that the oscillation probability in equation 4.23 depends on the elements of the
mixing matrix U through the quartic product,

UαiU
∗
αjUβiU

∗
βj (4.28)

which is invariant under the phase transformation

Uαj → eiφαUαje
φj (4.29)

This corresponds to giving a phase to the charged lepton and neutrino fields. In fact, the
quartic product in equation 4.28 is free from the Majorana phases and hence they cannot
be measured in neutrino oscillation experiments[33].

4.2.3 Antineutrino transition probability

The unitary mixing matrix relating the neutrino flavour and mass eigenstates in equation
4.14 is associated to the unitary matrix relating the antineutrino flavour and mass
eigenstates by complex conjugation.

|να〉 =
∑
i

U∗αi |νi〉 |νi〉 =
∑
α

Uαi |να〉 (4.30)

Since massive neutrinos and antineutrinos share the same the kinematical properties, the
derivation for the antineutrino transition probability follows the same lines as the
derivation for neutrino transition probability and the following result is obtained.

P (να → νβ)(t) = δαβ − 4
∑
j>i

Re
[
UαiU

∗
αjU

∗
βiUβj

]
sin2

(
∆m2

ijL

4E

)

− 2
∑
j>i

Im
[
UαiU

∗
αjU

∗
βiUβj

]
sin

(
∆m2

ijL

2E

) (4.31)

The only difference is the sign of the imaginary part of the mixing matrix elements.
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4.2.4 Types of neutrino oscillation experiments

Neutrino oscillations experiments can be categorised according to the type of neutrinos
utilised and the distance between the neutrino source and the detector. The type of
neutrino source will determine the energy of the neutrinos observed in the experiment.
The ratio between the source-detector distance and the neutrino energy then determines
the experiment’s sensitivity to ∆m2

ij .

To understand how the ∆m2
ij sensitivity is affected by the neutrino energy and

source-detector distance, one has to examine the oscillation phase in equation 4.26.

∆m2
ijL

2E
= 2.53×

(
∆m2

ij

1eV2

)
×
(

1MeV
E

)
×
(
L

1m

)
(4.32)

This oscillation phase can also be expressed in terms of the oscillation length, Losc.

Losc. = 2.48m×
(

E

1MeV

)
×
(

1eV2

∆m2
ij

)
(4.33)

To observe neutrino oscillations, the oscillation phase in equation 4.32 must be of order
one. The sensitivity to ∆m2

ij of a neutrino oscillation experiment is then dependent on
the characteristic ratio L/E that is determined by the experimental setup. Using longer
baselines or smaller energies moves the sensitivity to smaller ∆m2

ij . Short baseline (SBL)
experiments are defined to have sensitivity ∆m2

ij & 0.1eV2 while long baseline (LBL)
experiments have sensitivity ∆m2

ij < 0.1eV2.

Experiment type L E ∆m2
ij

sensitivity
Examples

Reactor SBL ∼ 10 m ∼ 1 MeV ∼ 0.1 eV2 Gosgen[34],
Rovno[35]

Accelerator SBL
(Pion decay in flight)

∼ 1 km & 1 GeV & 1 eV2 NOMAD[36],
CHORUS[37]

Accelerator SBL
(Muon decay at rest)

∼ 10 m ∼ 10 MeV ∼ 1 eV2 KARMEN[38],
LSND[39]

Accelerator SBL
(Beam Dump)

∼ 1 km ∼ 102 GeV ∼ 102 eV2 CHARM[40]

Reactor LBL ∼ 1 km ∼ 1 MeV ∼ 10−3 eV2 CHOOZ[41],
Palo Verde[42]

Accelerator LBL ∼ 103 km & 1 GeV & 10−3 eV2 T2K[43],
MINOS[44]

Atmospheric 20− 104 km 0.5−102 GeV ∼ 10−4 eV2 Super-
Kamiokande[45],
Soudan-2[46]

Solar ∼ 1011 km 0.2− 15 MeV ∼ 10−12 eV2 Homestake[47],
SNO[48]

Table 4.1: Types of neutrino oscillation experiments with their typical sensitivity to ∆m2
ij
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Short baseline experiments are divided according to their neutrino source into reactor
SBL and accelerator SBL experiments. Reactor SBL experiments utilize large isotropic
fluxes of electron antineutrinos produced in β−-decays of heavy nuclei such as 235U, 238U
and 239Pu. Accelerator SBL experiments use beams of neutrinos from the decay of
particles, such as pions, kaons and musons, created by a proton beam hitting a target.
The distance between the source and detector in SBL experiments are typically not more
than 1 km. Long baseline experiments have similar sources to SBL experiments but the
distance between the source and detector are two to three orders of magnitude
longer.

It is also possible to use natural neutrino sources in experiments. Primary cosmic rays
interact with the upper layers of the atmosphere, producing pions and kaons which then
decay into muons (which subsequently decay into more neutrinos) and neutrinos.
Atmospheric neutrino experiments detect these neutrinos which have a wide range of
energies from 500 MeV to 100 GeV. The distance between the source and the detector
also has a wide range from ∼ 20 km for neutrinos coming from overhead to ∼ 1.3× 104

km for neutrinos coming from the other side of Earth. This makes atmospheric neutrino
experiments sensitive to very small mass differences.

Another natural neutrino source would be the Sun. Solar neutrino experiments detect the
neutrinos generated by the thermonuclear reactions in the core of the Sun. The distance
between the Sun and Earth is ∼ 1.5× 108 km and the solar neutrinos have energies in the
range 0.2− 15 MeV. This makes solar neutrino experiments sensitive to ∆m2

ij much
smaller than the other types of neutrino oscillation experiments. A table of the various
types of experiments along with their ∆m2

ij sensitivies are summarised in table 4.1.

4.2.5 Appearance vs Disappearance experiments

Neutrino oscillation experiments are divided into appearance experiments and
disappearance experiments. Appearance experiments measure the transition probability
by searching for neutrinos of a different flavour to the incoming neutrino beam. Hence
there is little contamination from the incoming beam and these such experiments can be
sensitive to very small mixing angles. Disappearance experiments measure the survival
probability by counting the number of interactions in the detector and comparing it with
the expected one. The number of expected and detected events have statistical
fluctuations, making it difficult to measure small values of mixing angle.

4.2.6 Pontecorvo-Maki-Nakagawa-Sakata(PMNS) matrix

When the mixing between the three neutrino species is considered, equation 4.14
becomes νeνµ

ντ

 = U

ν1

ν2

ν3

 (4.34)
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where U is the Pontecorvo-Maki-Nakagawa-Sakata(PMNS) matrix which is commonly
parameterised in equation 4.35. The PMNS matrix describes a rotation between the mass
and flavour basis, with the rotation characterised by the three mixing angles, θ12, θ13, θ23.
CP violation in the lepton sector is characterised by the phase, δ, and it is just
convention to put it in the term with θ13. α, β are Majorana phases which are only
relevant if neutrinos are Majorana particles. These phases are not observable in
oscillation experiments.

U =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


=

1 0 0

0 cosθ23 sinθ23
0 −sinθ23 cosθ23


︸ ︷︷ ︸

Atmospheric

 cosθ13 0 sinθ13eiδ

0 1 0

−sinθ13eiδ 0 cosθ13


︸ ︷︷ ︸

Cross-mixing

 cosθ12 sinθ12 0

−sinθ12 cosθ12 0

0 0 1


︸ ︷︷ ︸

Solar

eiα/2 0 0

0 eiβ/2 0

0 0 1


︸ ︷︷ ︸

Majorana phases

(4.35)

Under this parameterisation, the PMNS matrix factorises into three terms, with each of
the terms corresponding to a different experimental regime. The first term in equation
4.35 is identified with atmospheric neutrino mixing and is driven by a large mass
difference of |∆m2

atm.| = 2.43× 10−3eV2. Atmospheric neutrino and accelerator LBL
experiments are sensitive to mass splittings of this magnitude and the mixing angle is
measured to be sin2(2θ23) > 0.95(90%C.L).

The second term is related to the cross-mixing of the first and third mass eigenstates.
The CP violating phase, δ, are currently unknown but the mixing angle has been
measured to be sin2(2θ13) = 0.095± 0.010. Experiments that are sensitive to this term
are usually accelerator LBL experiments, such as T2K and MINOS, and reactor SBL
experiments such as Daya Bay. Experiments that are sensitive to θ13 and have access to
both neutrino and antineutrinos, such as T2K, are capable of measuring the CP violating
phase, δCP . It will be interesting to know if δ in the leptonic sector is enough to account
for matter antimatter asymmetry in the universe.

The third term is associated with solar neutrino mixing and is driven by a relatively
small mass splitting of ∆m2

Solar ≡ ∆m2
21 = (7.5± 0.2)× 10−5eV2. Measurements in this

regime are usually made by solar neutrino experiments and θ13 is measured to be
sin2(2θ12) = 0.857± 0.024 [49].

4.3 Open questions

Oscillation experiments have shed light on the three mixing angles and the absolute
values of the mass differences. However, little is known about the nature (whether it is a
Dirac or Majorana particle) and about the absolute masses of the neutrinos. These two
properties of the neutrino can be probed by experiments (e.g. Heidelberg-Moscow
experiment) that are searching for neutrinoless double β-decays[50].
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Figure 4.1: Neutrinoless double β-decay

Observations of such decays will imply that neutrinos are Majorana particles. The mass
of the neutrino can be measured from β-decay spectrums. The KATRIN experiment is
designed to measure the mass of the electron antineutrino with sub-eV precision by
analysing the high-energy tail of nuclear β-decays of Tritium[51].

The number of neutrino species is measured to be Nν = 3.00± 0.08 from the decay
widths of the Z-boson[52]. This means that the 3× 3 PMNS matrix holds complete
information about neutrino mixing and is unitary.

|Ul1|2 + |Ul2|2 + |Ul3|2 = 1|l=e,µ,τ
|Uei|2 + |Uµi|2 + |Uτi|2 = 1|i=1,2,3

Ul1U
∗
l′1 + Ul2U

∗
l′2 + Ul3U

∗
l′3 = 0|l,l′=e,µ,τ ;l 6=l′

UeiU
∗
ej + UµiU

∗
µj + UτiU

∗
τj = 0|i,j=1,2,3;i 6=j

(4.36)

However, it is possible to have a fourth neutrino specie that is so heavy that is it able to
fit within the decay width of the Z-boson. In fact, results from the LSND experiment
hints at the existence of a sterile fourth neutrino specie[53]. With the combination of
solar neutrino experiments and SBL experiments such as, Daya Bay and JUNO, it is
possible to test the unitarity of the PMNS matrix directly by checking that the
conditions in 4.36 are satisfied[54].



Chapter 5

T2K experiment

The Tokai-to-Kamioka(T2K) experiment is a long baseline accelerator neutrino
oscillation experiment. The intense νµ beam is produced at the Japanese Proton
Accelerator Research Complex(J-PARC) in Tokai, and directed(2.5◦off-axis) at the
Super-Kamiokande(SK) water Cherenkov detector 295km away in Kamioka.

Figure 5.1: Schematic of the T2K experiment. The neutrinos travelled 295 km through
the Earth from the J-PARC source to the Super-Kamiokande detector. Figure taken from
[3]

At J-PARC, protons accelerated up to 30 GeV interact with a graphite target, producing
a large number of secondary mesons. These mesons are then focussed by magnetic horns
into a meson beam which travel through a decay volume where they decay and produce
neutrinos. The νµ are primarily produced via the following processes

π+ → µ+ + νµ

K+ → µ+ + νµ

There is a small contamination (∼ 1%) from νµ and νe via the following unwanted

32
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processes[55]

K+ → π0 + e+ + νe

µ+ → e+ + νe + νµ

The properties of the neutrino beam, such as the neutrino flux, energy spectrum and
beam composition, are then measured at the ND280 near detector suite which is 280 m
downstream of the graphic target. The ND280 detector suite consists of the INGRID
on-axis detector and the ND280 detector which is collinear with the neutrino source and
the SK far detector(2.5◦ off-axis).

The SK detector is a cylinder containing 50 kTons of pure water surrounded by ∼ 13, 000
photomultiplier tubes. The 36.2m high detector has a diameter of 33.8 m and sits in a
cavern 1 km underground, 295 km away from the J-PARC facility. The large distance
between the neutrino source and the SK detector allows sufficient time for the νµ → νe
oscillation to occur. The SK detector is 2.5% off-axis and this modifies the neutrino
energy spectrum observed. The flux at higher neutrino energies is reduced while the flux
at the energy optimal for observing νµ disappearance is increased. This results in a
narrow band beam which reduces the expected background events, hence allowing the
neutrino oscillation parameters and mass differences to be measured more
accurately.

Currently, a νµ beam is used but it is possible to for J-PARC to produce νµ beams as
well. Details on the instrumentation aspect of the T2K experiment can be found in
[56].

5.1 Physics goals

The primary goal of T2K is to measure the oscillation of νµ to νe. Observations of such
oscillations will imply that θ13 6= 0. It is then possible to measure the mixing angle, θ13,
via the transition probability

P (νµ → νe) = sin2 θ23 sin2(2θ13) sin2

(
1.27

∆m2
32(eV 2)L(km)

E(GeV )

)
(5.1)

T2K is also capable of making precise measurements of ∆m2
23 and θ23. This can be

obtained from the νµ survival probability[57]

P (νµ → νµ) = 1− sin2(2θ23) sin2

(
1.27

∆m2
23(eV 2)L(km)

E(GeV )

)
(5.2)

The current limits on the atmospheric mixing parameters, sin2(2θ23) and ∆2m32 are
currently set by MINOS, K2K and T2K but T2K will achieve sensitivities of
δ(∆m2

32) = 10−4eV2 and δ(sin2(2θ23)) = 0.01[55].
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By using a νµ beam and comparing differences in neutrino-antineutrino cross-sections, it
is also possible to measure the CP-violating phase δ.

5.2 Neutrino detection

Neutrinos are detected at the SK detector via the charged-current quasi-elastic (CCQE)
process. Lepton flavour is conserved at this level, hence the flavour of the incoming
neutrino can be inferred from the flavour of the final-state charged lepton.

W+

νl l−

n p

Figure 5.2: Tree-level charged-current quasi-elastic(CCQE) neutrino scattering

The T2K neutrino flux peaks at ∼ 700 MeV. At this incoming neutrino energy, the
outgoing charged leptons will have energies ∼ 600 MeV, making them ultra-relativistic.
These charged leptons will produce a cone of Cherenkov photons as they travel faster
than the speed of light in water. The photons then produce a ring pattern when they hit
the PMTs on the detector walls. An example of a muon-like event is shown in figure 5.3.
Information about the interaction, such as the event vertex position and the momentum
of the final state particles, can be extracted from the geometry of the Cherenkov
ring.
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Figure 5.3: Example of a muon-like event detected at the SK detector. Image taken from
[4]

To measure νµ disappearance, the number of muon-like events have to be counted at the
SK detector. Muons are relatively massive and are miminum ionizing particles. They do
not lose much energy as they travel through the SK detector, producing sharp Cherenkov
ring images. On the other hand, electrons are light and experience multiple scattering
between being produced at the neutrino interaction vertex and exiting the SK detector.
The sum of the overlapping Cherenkov light cones result in a fuzzy ring detected by the
PMTs. The SK event reconstruction software then uses the fuzziness of the ring to
discern whether the image is more likely to be caused by muon-like or electron-like
particles.

5.3 Neutrino interactions

5.3.1 Llewellyn-Smith formalism for neutrino-free nucleon
scattering

The scattering proccesses that neutrinos and antineutrinos undergo with nucleons
are

νl + n→ l− + p

ν̄l + p→ l+ + n
(5.3)

The neutrino, corresponding charged lepton, initial nucleon and final nucleon have
4-momentum q1, q2, p1, p2 respectively. The neutrino is approximately massless, the
charged lepton has mass m, while the nucleons have equal masses, M . The
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4-momentuma are
q1 =

(
Eν ,pν

)
q2 =

(
El,pl

)
p1 =

(
M,0

)
p2 =

(
E,p

) (5.4)

The general nucleon weak interaction current operator is defined as[58]

〈p| J+
µ |n〉 = cos θc

[
p(p2)Γµn(p1)

]
(5.5)

where p(p2) and n(p1) are the final and initial state of the nucleon respectively. The
hadronic vertex, Γµ, is parameterised by two second class form factors(F 3

V , F
3
A) and four

first class form factors — vector current form factors, F1, F2, axial vector form factor, FA,
and pseudo scalar form factor, FP .

Γµ = γµ(F1 + FAγ5) +
1

2M
iσµνq

νξF2 +
1

M
PµF

3
Aγ5 +

qµ
M

(F 3
V + FPγ5) (5.6)

where ξ is the difference between the relative anomalous magnetic moment of the
interacting nucleons.

ξ = κp − κn = 3.706 (5.7)

The form factors are functions of the momentum transfer, Q2. For simplicity, they are
assumed to adopt the dipole form even though recent precision electron scattering
experiments reveal small deviations of the vector form factor from the simple dipole form
[59].

F1(Q2) =
1 + Q2

4M2 (1 + ξ)(
1 + Q2

4M2

)(
1 + Q2

M2
V

)2 (5.8)

F2(Q2) =
ξ(

1 + Q2

4M2

)(
1 + Q2

M2
V

)2 (5.9)

FA(Q2) =
gA(

1 + Q2

M2
A

)2 gA = 1.267 (5.10)

FP (Q2) =
2M2

m2
π +Q2

FA(Q2) (5.11)

where M,mπ,MA,MV are the nucleon mass, pion mass, axial mass and vector mass
respectively. The axial and vector masses are parameters that tune the dipole form of the
axial and vector form factors. The vector form factors are measured in electron scattering
experiments while the axial form factors are measured in neutrino scattering experiments.
The vector and axial masses are then obtained by fitting the observed Q2 distributions in
scattering events.

An alternative way of parameterising the hadronic vertex is[60]

Γµ = γµ(gV − gAγ5)− Pµ(fv − fAγ5) + qµ(hV − hAγ5) (5.12)
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where gV , gA, fV , fA, hV , hA are the familiar form factors in Fermi theory with the V-A
structure as seen in section 2.4. The derivation of the differential cross-section will be
carried out using the parameterisation in equation 5.12 for notational familiarity.
However, for historical reasons, the code is written following the parameteristion in
equation 5.6. It is possible to get from one parameterisation to the other by using the
Gordon’s decomposition.

ū(p′)γµu(p) = ū(p′)

[
(p′ + p)µ

2m
+
iσµν(p′ − p)ν

2m

]
u(p) (5.13)

Using the Feynman rules, the differential cross-section is

dσ

dQ2
=

1

64πE2
νM

2

G2
F

2(2sp + 1)(2sν + 1)

×
∑
spin

[cos θc(p̄Γµn)] [cos θc(p̄Γνn)]†
[
l̄γµ(1− γ5)ν

] [
l̄γν(1− γ5)ν

]†
=

1

64πE2
νM

2

G2
F cos2 θc

4
ωµντ

µν

(5.14)

The first term came from the Lorentz-invariant phase space while ωµν and τµν are the
tensors associated to the hadronic and leptonic legs respectively. GF is Fermi’s constant.
Calculation of the charged-current tensors is straight-forward but non-trivially tedious,
hence only a sketch of the calculation will be provided here. A merticulous derivation can
be found in [57].

Proceeding with the leptonic tensor, τµν , and using gamma matrix algebra(see appendix
A.1),

τµν = Tr
{ [
l̄γµ(1− γ5)ν

]
[ν̄γν(1− γ5)l]

}
= 2Tr

[
γµ/q1

γν/q2

]
+ 8iεµανβq1αq2β

= 8[q1µq2ν − (q1 · q2)gµν + q2µq1ν ] + 8iεµανβq1αq2β

= 4[nµnν − qµqν + (q2 −m2)gµν + iεµναβnαqβ]

(5.15)

where the antisymmetric property of εµανβ and the following relation is used to get from
the penultimate line to the last line.

nµqν = (q1 + q2)µ(q1 − q2)ν (5.16)

Moving on to the hadronic tensor,

ωµν = Tr
{

[p̄{γµ(gV − gAγ5)− Pµ(fV − fAγ5) + qµ(hV − hAγ5)}n]×
[n̄{γν(g∗V − g∗Aγ5)− Pν(f∗V + f∗Aγ5) + qν(h∗V + h∗Aγ5)}p]

}
= ω1gµν + ω2PµPν + ω3iεµναβqαPβ + ω4qµqν + ω5(Pµqν + Pνqµ) + ω6(Pµqν − Pνqµ)

(5.17)
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where
ω1 = −8M2g2

A + 2q2(g2
V + g2

A)

ω2 = 2g2
A + 2|gV − 2MfV |2 − 2q2(f2

V + f2
A)

ω3 = −4Re[g∗AgV ]

ω4 = −2g2
V − 2|gA + 2MhA|2 + 2(−q2 + 4M2)(h2

V + h2
A)

ω5 = 4MRe
[
{gV − 2MfV (1− q2

4M2
)}h∗V + {g∗A +

q2

2M
h∗A}fA

]
ω6 = i4M Im

[
{gV − 2MfV (1− q2

4M2
)}h∗V + {g∗A +

q2

2M
h∗A}fA

]
(5.18)

Substituting the hadronic and leptonic tensors back into equation 5.14, the
neutrino-nucleon differential cross-section is

dσ

dQ2

(
νl + n→ l− + p
ν̄l + p→ l+ + n

)
=
M2G2

F cos2 θc
8πE2

ν

[
A(Q2)±B(Q2)

(s− u)

M2
+ C(Q2)

(s− u)2

M4

]
(5.19)

where s and u are the Mandelstam variables. For an event in which an ingoing neutrino
of energy Eν scatters of a nucleon of mass M with momentum transfer, Q2, and
producing an outgoing charged lepton of mass m,

(s− u) = 4MEν −Q2 −m2 (5.20)

A(Q2), B(Q2), C(Q2) are functions of the form factors given as

A(Q2) =
(m2 +Q2)

M2

{(
1 +

Q2

4M2

)
|FA|2 −

(
1− Q2

4M2

)
|F1|2

Q2

4M2

(
1− Q2

4M2

)
|ξF2|2 +

Q2

M2
Re(F ∗1 ξF2)− Q2

M2

(
1 +

Q2

4M2

)
|F 3
A|2

− m2

4M2

[
|F1 + ξF2|2 + |FA + 2FP |2 − 4

(
1 +

Q2

4M2

)(
|F 3
V |2 + |FP |2

)]}

B(Q2) =
Q2

M2
Re [F ∗A(F1 + ξF2)]− m2

M2
Re
[(
F1 −

Q2

4M2
ξF2

)
F 3∗
V − (F ∗A −

Q2

2M2
FP )F 3

A

]
C(Q2) =

1

4

[
|FA|2 + |F1|2 +

Q2

4M2
|ξF2|2 +

Q2

M2
|F 3
A|2
]

(5.21)

The double differential cross-section for antineutrinos is obtained by crossing symmetry
and replacing q2 ↔ −q1 which corresponds to s↔ u. This results in the following
exchange

dσ

dQ2
(s, t, u)→ dσ

dQ2
(u, t, s)

B(Q2)→ −B(Q2)

The second class form factors, F 3
V and F 3

A, violate G-parity and do not exist in the
Standard Model[61]. These terms are therefore not included in the simulation.
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5.4 Nuclear environment

In high energy processes O(100 GeV), such as neutrino deep inelastic scattering, the
neutrinos interact with leptons and asymptotically free partons. In this energy regime,
perturbative QCD is applicable and the nuclear effects are not significant. However, at
neutrino energies relevant to the SK detector (Eν < 30GeV), the neutrinos interact with
bound nucleons and the nuclear environment of the nucleus has to be taken into
account.

The first assumption made is treating neutrino-nucleon scattering as an incoherent sum
of scatterings from free nucleons. This approach is know as impulse approximation and
any interference between the feynman diagrams of the individual neutrino-free nucleon
scatterings are ignored.

Recalling the general form for the differential cross-section in equation 5.14

dσ

dQ2
=

1

64πE2
νM

2

G2
F cos2 θc

4
ωµντ

µν

The effective hadronic tensor for the entire nucleus, ωµν , can be written as a sum of
hadronic tensors describing the interactions of each of the nucleons with the neutrino,
ωiµν [62].

ωµν =
∑
i

∫
d3pdEP (p, E)ωiµν(p̃, q̃) (5.22)

The function P (p, E) is known as the target spectral function and it describes the
probability distribution of having a nucleon with momentum p and requires energy, E, to
be removed from the nucleus. The specific form the spectral function takes depends on
the model of the nucleus and the nuclear model adopted here is the relativistic Fermi gas
model.

5.4.1 Relativistic Fermi Gas (RFG) model

The nucleus is modelled as an ideal gas composed of weakly interaction fermions. The
nucleons(neutrons and protons) are distinguishable fermions and they create two
decoupled potentials.
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Figure 5.4: The proton and neutron potential wells and energy levels within the nucleus.
The binding energy and Fermi momentum are adjusted with experimental data. Figure
taken from [5]

In this simple model, the nucleon potentials are step-functions. The proton potential well
is shallower than the neutron potential well as the protons experience Coulomb repulsion
and require less energy to be ejected from the nucleus. Nevertheless, the protons and
neutrons share the same Fermi surface, otherwise the nucleus will be unstable and
undergo a series of β-decay until the Fermi energies of the protons and neutrons match
up.

The spectral function for the RFG model is then[5]

PRFG(p, E) = θ(pF − |p|)δ(E|p| −M + E + EB) (5.23)

where E|p| is the energy of the nucleon with momentum p. EB is the average binding
energy, pF is the Fermi momentum, and E = −(EB + EF ) is the ground state of the
nucleon. Note that the protons and neutrons have different ground states within the
nucleus. θ(x) is the Heaviside step function and it describes a flat Fermi momentum
distribution for the nucleons within the nucleus.

5.4.2 Pauli blocking

The only condition for the spectral function in equation 5.23 is that the nucleons are not
allowed to have momentums greater than the Fermi momentum, pF . However,
electron-nucleus scattering experiments showed that there is strong correlation between
nucleons in the same nucleus. This results in excitation of nucleons to states with large
momentums[63]. This correlation between the nucleons can be taken into account by
adding a Pauli blocking function[64].

PRFG(p, E) = θ(pF − |p+ q|)θ(pF − |p|)δ(E|P | −M + E + EB) (5.24)

The Pauli blocking term, θ(pF − |p+ q|), is a function of the momentums of the final
nucleon states. The neutrino-nucleus interaction can leave nucleons excited, but with
insufficient energy to be ejected from the nucleus. The final state of the excited nucleon
must be one that is not already occupied, otherwise the interaction is not allowed.



Chapter 6

Radiative corrections in QED

Radiative corrections are higher-order contributions to the tree-level process from
diagrams that contain loops. Bremsstrahlung is another source of radiative corrections
and they involve the emission of final-state photons in a process. The corrections of order
α to the total cross-section arises from the interference terms of the loop and
bremsstrahlung diagrams with the tree-level diagram[65].

Figure 6.1: O(α) corrections to tree-level cross-section come from interference of these
diagrams with tree-level diagram.

The first diagram in figure 6.1 is known as the vertex correction and it gives rise to a
plethora of effects such as the anomalous magnetic moment of the electron, which was
first calculated by Schwinger in 1948. Measurements of the electron anomalous magnetic
moment agree with the QED predictions up to more than 10 significant figures, making
QED one of the most empirically tested theory in physics[66].

The second and third diagram in figure 6.1 give the first-order corrections to the external
lepton legs. This eventually leads to a renormalisation of the lepton wavefunction and
mass. The fourth diagram is associated to the self-energy of the photon and it leads to
the renormalisation of the photon wavefunction and also a mass renormalisation if the
regularization breaks gauge symmetry. Each of these 4 diagrams involves an integration
over an undefined momentum loop. As the loop momentum increases (k →∞), particles
of arbitrarily high momentum can appear in the loop, making the integral diverge in the
ultraviolet region. Hence these diagrams are said to be UV divergent.
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The last diagram is the bremsstrahlung diagram and it is divergent in the infrared region
(k → 0). This divergence is associated to the diverging probability of the lepton emitting
a photon of arbitrarily low energy. It is crucial to include the bremsstrahlung diagrams
when calculating physical cross-sections. The IR divergences of the bremsstrahlung
diagrams will cancel the IR divergent pieces of the loop diagrams, giving an overall finite
total cross-section, as illustrated in this section.

6.1 Bremsstrahlung

Bremsstrahlung refers to the radiation of photons from the charged final-state particles.
The charged particles can emit an arbitrarily large number of photons. However, the
cross-section of the process is suppressed by O(α) for every additional photon radiated.
Hence, it is reasonable to consider the first-order diagram where only one photon is
emitted.

LetM0 denote the part of the amplitude that describes the coupling of the lepton legs to
the hadronic legs.

νl

γ

l−

pn

W+

p− (p′ + k)

p′

p′ + k

p

k

Figure 6.2: Low energy neutrinos interact with the bound nucleons and all the details of
the interaction are represented by the grey blob,M0, which is a function of the momentum
transfer.

The amplitude for the process described in figure 6.2 is then

iM = −ieūcharged lepton(p′)

[
γµε∗µ(k)

/p′ + /k +m

(p′ + k)2 −m2
M0(p′ + k, p)

]
uneutrino(p) (6.1)
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where m is the mass of the outgoing charged lepton and the momentums of the particles
are as labelled in figure 6.2.

The scenario of interest involves the radiation of a soft photon that is beyond the
sensitivity of the SK detector. The emission of a hard photon can be detected and those
events are clearly distinct from the tree-level CCQE events. Hence the bremsstrahlung
diagrams with hard photon emission will not contribute to the inclusive cross-section. It
is then reasonable to assume that the photon radiated is soft |k| � |p′ − p| and
approximate

M0(p′ + k, p) ≈M0(p′, p) (6.2)

The numerator of the propgator can be further simplified using the dirac equation and
ignoring /k.

ūcharged lepton(p′)γµε∗µ(/p
′ +m) = ū(p′)[2p′µε∗µ + (−/p′ +m)γµε∗µ]

= ū(p′)2p′µε∗µ
(6.3)

Summing over the two photon polarisation states,

dσ(p→ p′ + γ) = dσ(p→ p′)

∫
d3k

(2π)3

1

2k

∑
λ=1,2

e2

∣∣∣∣∣p′.ε(λ)

p′.k

∣∣∣∣∣
2

(6.4)

The integral, which has an IR divergence, is regularised by introducing a small photon
mass, µ and the following is obtained.

dσ

dΩ
(p→ p′ + γ) =

(
dσ

dΩ

)∣∣∣∣
0

[
1 +

α

π
log

(−q2

m2

)
log

(−q2

µ2

)
+O(α2)

]
(6.5)

The q2 dependence of equation 6.5 is known as the Sudakov double logarithm and the
dependence on the fictious photon mass, µ, poses a problem as one takes the limit of a
physical massless photon, µ→ 0. However, this problematic term will be cancelled by
corrections from the vertex.

6.2 Electron vertex modification

There is only one type of vertex allowed in QED and this vertex receives corrections from
both virtual lepton and photons.



44 CHAPTER 6. RADIATIVE CORRECTIONS IN QED

O(e5)= + + + + +

Figure 6.3: QED vertex up to one-loop corrections

The first diagram corresponds to the bare QED vertex. The second and third diagrams
correspond to the self-energy corrections to the electron propagators, while the last
diagram is associate with the self-energy correction to the photon propagator. The third
diagram is referred to the vertex correction as such corrections cannot be wrapped up in
any corrections to the propagators.

ū(p′)Γµ(p′, p)u(p) = ū(p′)
[
γµ(p′, p) + δΓµ

]
u(p) (6.6)

where
Γµ = γµA+ (p′µ + pµ)B + (p′mu− pµ)C

= γµF1(q2) +
iσµνqν

2m
F2(q2)

(6.7)

A priori, the form of Γµ is restricted by Lorentz symmetry. The allowed form of Γµ is
further simplified by using the Gordon identity of equation 5.13 and repackaged in terms
of form factors, F1 and F2. The form factors are functions of the momentum
transfer,Q2 = −q2, and they contain all the information about the charged lepton’s
effective electric charge and magnetic couplings. Form factors describe the dependence of
interactions on the momentum transfer, without going into the full details of the
underlying physics. This is particularly useful when there is a lack of theoretical models
or when theoretical calculations become too cumbersome since form factors can be
measured experimentally.

Concentrating on the leading order vertex correction,

q

p′

k′ = k + q

k

p

p− k

Figure 6.4: First order vertex correction

Naively applying the QED Feynman rules,
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ū(p′)δΓµ(p′, p)u(p)

=

∫
d4k

(2π)4

−igνρ
(k − p)2 + iε

ū(p′)(−ieγν)
i(/k
′
+m)

k′2 −m2 + iε
γµ

i(/k +m)

k2 −m2 + iε
(−ieγρ)u(p)

= 2ie2

∫
d4k

(2π)4

ū(p′)[/kγµ/k
′
+m2γµ − 2m(k + k′)µ]u(p)

((k − p)2 + iε)(k′2 −m2 + iε)(k2 −m2 + iε)

(6.8)

The evaluation of this integral is non-trivial, but it is made possible with the usage of
Feynman parameter (see appendix equation A.3). The general strategy is to combine the
denominator of equation 6.8 into a third power of a single polynomial in k. This allows
one to perform a Wick rotation of the integral to turn it from Minkowskian to Euclidean,
and subsequently evaluate it in spherical polars.
Introducing a Feynman parameter for each of the photon propagator terms, the
denominator of equation 6.8 becomes

1

((k − p)2 + iε)(k′2 −m2 + iε)(k2 −m2 + iε)
=

∫ 1

0
dxdydzδ(x+ y + z − 1)

2

(l2 −∆ + iε)3

=

∫ 1

0
dxdydzδ(x+ y + z − 1)

2

D3

(6.9)

where

l = k + yq − zp, D = l2 −∆ + iε, ∆ = −xyq2 + (1− z)2m2 (6.10)

The form of the numerator of equation 6.8 is restricted by Lorentz symmetry. Odd
powers of l must vanish otherwise they will pick out some particular direction in
space-time and break Lorentz invariance. Odd powers of q also vanish by the
Ward-Takahashi identity. The numerator is then further simplified using the Dirac
equation and the Gordon identity and becomes

/kγµ/k
′
+m2γµ − 2m(k + k′)µ

= γµ(−1

2
l2 + (1− x)(1− y)q2 + (1− 4z + z2)m2) +

iσµνqν
2m

(2m2z(1− z))
(6.11)

Putting things together, equation 6.8 becomes

ū(p′)δΓµ(p′, p)u(p)

= 2ie2

∫
d4l

(2π)4

∫ 1

0
dxdydz δ(x+ y + z − 1)

2

D3
ū(p′)

×
[
γµ(−1

2
l2 + (1− x)(1− y)q2 + (1− 4z + z2)m2) +

iσµνqν
2m

(2m2z(1− z))
]
u(p)

(6.12)
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However, when trying to evaluate the above integral in spherical polars after performing
the Wick rotation (formula A.13), one then finds that the integral is divergent in the
ultraviolet and infrared. This can be cured by regularising the integrals using the
Pauli-Villars prescription, which essentially introduces fictious mass terms in the photon
propagator. The rationale for choosing this regularization scheme is elaborated in
A.9.
After all those mathematical gymnastics, a finite cross-section is finally obtained.

dσ

dΩ
(p→ p′) =

(
dσ

dΩ

)∣∣∣∣
0

[
1− α

π
log

(−q2

m2

)
log

(−q2

µ2

)
+O(α2)

]
(6.13)

Notice that this term is also divergent as µ→ 0, but it cancels the divergence in equation
6.5 exactly. The IR divergence from the emission of arbitrarily soft real photons is
cancelled by the vertex corrections arising from virtual photons and lepton loops. This is
the Block-Nordsieck theorem, which states that the sum of the contributions from the
virtual particles and soft photons will give a finite contribution[67]. At first sight, it may
seem unsettling that diagrams with different number of vertices are added to cancel the
IR divergence and that things may still blow up at higher orders. However, the IR
divergence does cancel to all orders[68].

6.3 Radiative corrections to neutrino scattering

As the measured inclusive neutrino scattering cross-section becomes increasingly precise,
the effects of electromagnetic radiative corrections starts to become significant. Inclusive
cross-section refers to the sum of diagrams with the same ingoing particles/initial states
but with different outgoing particles/final states. The inclusive cross-section is
meaningful as some of the quantities (such as the energy and momentum of some of the
final state particles) are not measured in an experiment. Also, physical detectors have
finite energy resolution and they are unable to detect photons below a certain energy
threshold. Hence, it will be useful to package these soft photons as part of the tree-level
diagram via the inclusive cross-section.

The first calculations on the radiative corrections to charged-current neutrino scattering
were done by Kiskis in 1973, which utilised a particular quark-proton model[6]. The
corrections obtained had poorly defined terms like ln Q

mq
where Q is the momentum

transfer and mq is the quark mass. The definition of the quark mass is ambiguous. In
particular, for Q = 10GeV , setting mq = 350MeV where the quark mass is interpreted as
the constituent quark mass, yields a correction that is very different when setting
mq = 1MeV , which is the current algebra mass.

There were subsequent efforts in the community to investigate the dependence of such
radiative corrections on the relatively unknown paramaters such as the quark mass.
Notably in 1979, De Rujula claimed that most of the radiative corrections and physically
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relevant questions are actually independent of the quark mass, and even the quark-model.
This was achieved by using the leading log approximation along with other simplifying
assumptions[69].

6.4 Contributing diagrams

Considering only the leading order diagrams, the diagrams that contribute to the
radiative corrections to neutrino charged-current quasi-elastic scattering are as
follow,

νl l−

n p

W+ γ, Z0

νl l−

n p

W+

νl l−

n p

W+

νl l−

n p

W+

νl l−

n p

W+Z0

νl l−

n p
W+ γ, Z0

νl l−

n p

W+

νl l−

n p

W+

νl l−

n p

W+

W+

νl l−

n p
Z0

νl l−

n p

W+ γ, Z0

a) b)

c)

d) e)

f)

g)

h)

Figure 6.5: a: lepton leg bremsstrahlung, b: lepton propagator self-energy, c: interference,
d: hadron leg bremsstrahlung, e: hadron propagator self-energy, f,g: two-boson exchange,
h: gauge boson self-interactions.
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The diagrams in figure 6.5 are not complete as the corrections to the weak intermediate
vector bosons are not included. However, those diagrams will contribute terms of order
O(αQ2/M2

W ) where MW is the mass of the W boson. Hence these diagrams only
contribute to higher order and can be neglected.

6.5 Leading log approximation

The radiative corrections become independent of the quark model and definition of quark
mass in the leading log approximation. The relation between the observed cross-section,
σobs, and the bare cross-section, σB, takes the following form,

σobs = σB +
α

2π
ln
Q2

µ2
F{σB}︸ ︷︷ ︸

lepton log

+
α

2π
ln
Q2

M2
H︸ ︷︷ ︸

hadron log

+
α

2π
G︸ ︷︷ ︸

constant term

(6.14)

where µ is the charged-lepton mass, M is the nucleon mass, α is the electromagnetic
coupling constant and Q is the energy scale of the overall process.

Conventionally, leading log refers to all terms up to order, O
[
α
π ln Q2

M2

]n
. However, in this

leading log approximation, only contributions from the lepton log is considered. The
lepton log arises from the emission of collinear soft photons. Looking at equation 6.4, the
momentum of the undetected soft photons is integrated over, giving rise to the following
factor ∫

d3k

2k

1

p′ · k ∼
∫ 1

0
d cos θ

1

Eµk
(

1− |p
′
µ| cos θ

Eµ

) (6.15)

The outgoing lepton is ultra-relativistic, |p′µ| ∼ Eµ and the expression diverges as
cos θ → 1. This corresponds to the emission of photons that are almost parallel to the
charged lepton. The lepton log factorises and the leading corrections only depend on the
momentum distribution of the outgoing charged lepton. The coefficient of the lepton log,
F{σB}, is a functional of the bare cross-section and can be computed from data.

The hadron leg also factorises and its potentially large contribution only comes from the
diagrams involving the hadron leg. Hadron leg corrections only arise when one tries to
discern the hadrons from the real collinear or virtual photons in the hadron shower. The
final-state hadrons are often not detected in neutrino oscillation experiments and hence it
is justified to ignore the contribution from the hadron leg to the overall radiative
corrections.

The constant term is dependent on the model used to describe the strong interactions
within the nucleus, making it non-trivial to calculate. However, the constant term only
scales the cross-section up and down and can be interpreted as an overall normalisation
factor.
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6.6 Double differential cross-section

Dividing the cross-section by the allowed phase space of the outgoing charged lepton, the
double differential cross-section of the radiatively corrected process is[69]

dσLLL
dEldΩ

=
dσB
dEldΩ

+
αEM
π

ln
2E∗l
m

∫ 1

0

1 + z2

1− z

(
1

z

dσB

dÊldΩ

∣∣∣∣
Êl=El/z

− dσB
dEldΩ

)
dz (6.16)

where z is the fraction of energy the charged lepton retains after emitting the soft
collinear photon. E∗l is the final-state energy of the charged lepton in the center-of-mass
frame.

The leading log corrections arise from collinear emission of photons in the lepton legs.
The emission of photons moves events from a large to a smaller outgoing lepton energy,
Eµ while keeping the angle between the outgoing lepton and the incoming neutrino fixed
since the emitted photons are collinear with the outgoing charged lepton.

In a physical gauge, the first term in the integrand corresponds to the contribution from
bremsstrahlung diagrams(see diagram (a) in figure 6.5). The second term in the
integrand comes from the charged lepton self-energy diagrams(see diagram (b) in figure
6.5). The bremsstrahlung term is divergent as z → 0 and this is the IR divergence
discussed in section 6.1. However, in the soft photon limit, the infrared singularity is
cancelled by the self-energy term. Summing the contributions from both real and virtual
photons, a finite correction is obtained. This is an important result which will be
explored further via simulations described in the following chapter.



Chapter 7

Simulations

Using realistic input muon neutrino flux predictions, muon neutrino interactions were
generated using a neutrino interactions generator, NEUT. The double differential
cross-sections for the charged-current quasi-elastic (CCQE) interactions were then
extracted and the radiative corrections to the CCQE events were calculated using the
result equation 6.16 discussed in the previous chapter. The graphs obtained were created
using ROOT, a data analysis and graphics package written in C++ that is widely used in
High Energy Physics.

7.1 Software

7.1.1 NEUT

Written mainly in FORTRAN77, NEUT is a neutrino interaction simulation library which
was first developed to study atmospheric neutrino and nucleon decay in Kamiokande. It
was subsequently updated for the Super-Kamiokande and K2K experiment, both of
which used water-based Cherenkov detectors to detect neutrino interactions. Even
though NEUT was designed with neutrino interactions with protons and oxygen nuclei in
mind, it is capable of generating neutrino interactions with other nuclei as well[70].

The list of neutrino interactions that can be selected in NEUT is as follows:

CC/NC (quasi-)elastic scattering ν +N → l +N ′

CC/NC single meson(π,K, η) production ν +N → l +N ′ + meson
CC/NC deep inelastic scattering ν +N → l +N ′ + hadrons
CC/NC coherent pion production ν +16 O → l +16 O + π
where CC and NC refer to charged current and neutral current respectively. N and N ′

are the interaction target nucleons and l is the charged lepton.
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The calculation of interest is the radiative corrections to charged-current
quasi-elastic(CCQE) interactions and hence only the first mode was explored. The
CCQE interactions were simulated based on the Llewellyn-Smith formalism, which was
described in section 5.3.1. The vector and axial-vector form factors are assumed to take
the dipole form. The SK detetor is filled with pure water and hence the neutrinos
interact mainly with 16O nuclei. The nuclear effects of the 16O nuclei were taken into
account using the relativistic Fermi Gas model and Pauli blocking described in sections
5.4.1 and 5.4.2 respectively.

7.2 Code structure and Findings

The radiative corrections to the CCQE interactions are calculated using equation 6.16,
where the radiative correction term is

dσLLL
dEldΩ

− dσB
dEldΩ

=
αEM
π

ln
2E∗l
m

∫ 1

0

1 + z2

1− z

(
1

z

dσB

dÊldΩ

∣∣∣∣
Êl=El/z

− dσB
dEldΩ

)
dz (7.1)

The crux of this calculation lies in the calculation of the double differential cross-section,
dσ

dEdΩ .

7.2.1 Double differential cross-section

While it is not impossible to analytically calculate the double differential cross-section of
the CCQE scattering while incorporating the nuclear effects from the target nuclei, a
more tractable task is to extract the double differential from the Monte Carlo(MC)
events generated by NEUT.

To generate events, NEUT requires several input parameters which are defined in a card
file. The important input parameters are summarised in the following table.

Input parameter Value
No. of events 10 million
Neutrino type Muon neutrino
Neutrino momentum Randomly sampled from SK muon neutrino flux prediction

(figure 7.1)
Target nuclei Water (8 bound protons, 8 bound neutrons, 2 free protons)
Neutrino modes All modes turned on
Fermi motion Turned on
Pauli blocking Turned on
CCQE vector mass 0.84 GeV
CCQE axial mass 1.21 GeV

Table 7.1: Important input parameters for NEUT. The input card codes found in Appendix
B shows the full list of input parameters and options available in NEUT. The full analysis
code and shell scripts are available upon request.
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Figure 7.1: Muon neutrino flux prediction at the SK detector. Data taken from [4]. The
flux can be split into three regions. Most of the muon neutrinos have energies below 2 GeV,
a substantial amount of them have energies from 2 GeV to 10 GeV and a trace amount
have energies above 10 GeV but below 23 GeV. The flux is peaked at 0.6 GeV.

The double differential cross-section is extracted from a sample of 10 million MC events
in which all possible neutrino interaction modes are turned on. It is important to include
all the interaction modes so as to not artificially inflate the CCQE cross-section. The
generated MC events are stored in a .root file and analysed using ROOT. The number
of CCQE events per outgoing muon kinetic energy per solid angle is stored in an
one-dimensional histogram. This histogram is then normalised using the flux according
to the following expressing to yield the double differential cross-section.

18

8

∑
iNi∑
i Φi

No. events in bin
Total no. events

1

bin area
(7.2)

where the summation is over all the neutrino energy bins in the histogram. Ni is the
event rate in the i-th energy bin, which is defined as the cross-section multiplied by the
flux, Φi, at that particular neutrino energy. The cross-section in NEUT is defined per
neutron and given in units of 10−38cm2. The numerical prefactor takes into account that
there are 18 nucleons with 8 neutrons in the target water nucleus. The last factor divides
the cross-section by the bin area to turn it into a double differential cross-section. An
example of the extracted double differential cross-section is shown in figure 7.2.
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Figure 7.2: θ is the deflection angle between the incoming neutrino and outgoing muon,
while Eµ is the outging muon energy. The z-axis gives the cross-section(cm2) for muon
neutrino CCQE scattering in each bin in the event kinematics space.

7.2.2 Optimisation

Calculation of radiative corrections highly sensitive to accuracy of the extracted double
differential cross-section. The accuracy of the double differential cross-section is
dependent on the way it is stored. The double differential cross-section is stored in a 2D
histogram and the free parameters are the bin sizes of the histogram along the two axes.
Another free parameter is the step size when integrating over z when calculating the
radiative correction. These free parameters are optimised to minimise the fraction of
problematic events.

There are two identified classes of problematic events.

Type I: Sparse events

Looking at the right-hand side of equation 7.1, the calculation of the radiative corrections
requires taking the difference of the cross-sections evaluated at the energy of the muon
before, Êl, and after emitting the photon, El. The first type of problematic events are
events in which either of the double differential cross-sections, dσB

dÊldΩ
or dσB

dEldΩ , is zero.
Such events are common near the fuzzy edges of the double differential cross-section
histogram, where the histogram is sparsely populated.
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One way to minimise Type I problematic events is to increase the bin size of double
differential cross-section histogram. However, this compromises on the accuracy of the
calculation. More detrimentally, there is a limit to which the bin sizes can be increased
before El and Êl end up in the same energy bin, returning a trivial radiative correction
when the correction is actually non-zero.

Type II: High Q2 events

The second type of problematic events are associated with events at constant high
momentum transfer, Q2. The double differential cross-section is non-zero and distinct at
both El and Êl for these events and further investigations are required to probe why the
calculation fails for such events.

Figure 7.3: Problematic events at high Q2. The boxes reflect the distribution of type
II problematic events. The line overlaid is a curve constant neutrino energy, Eν = 0.6
GeV, and constant momentum transfer,

√
Q2 = 0.8 GeV. Most of the CCQE events have

momentum transfer ∼
√
Q2 = 0.4 GeV.

A series of bin sizes were explored before deciding on the binning scheme of (6MeV/bin,
2e-2/bin). The number of problematic events for the various binning schemes can be
found in table C.1 in appendix C.
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z steps

Looking again at equation 7.1, the difference between the double differential cross-section
at El and Êl is then integrated over all possible energy fraction retained by the muon, z,
while weighted by the QED splitting function, 1+z2

1−z . This integral is carried out
numerically by doing a Riemannian sum and the integration step size, ∆z, is a free
parameter in this calculation. A range of values for ∆z is tested and it is found that
increasing the number of integration steps does not decrease the number of problematic
events drastically. The results of this parameter search can be found in table C.2.
Subsequent analysis are carried out with the coarsest integration step-size, ∆z = 0.02, to
reduce the time required to complete the computation.

7.2.3 Radiative correction calculations

After optimising the extraction of the double differential cross-section, the the radiative
correction calculation is carried out on a sample of 1 million MC events. This sample is
generated with only the pure CCQE mode turned on but keeping other input parameters
the same as summarised in table 7.1. The other neutrino interaction modes are only
relevant for obtaining the correct normalisation during the extraction of the double
differential cross-section. For each event in the sample, the radiative correction is
calculated by direct application of equation 7.1.

The absolute value of the double differential cross-section is very small and on the order
of O(10−40) cm2. A more meaningful quantity to examine is the fractional radiative
corrections, δradcor, which is defined as

δradcor ≡
dσLLL
dEldΩ −

dσB
dEldΩ

dσB
dEldΩ

(7.3)

The definition of the fractional radiative corrections makes it easy to apply to analysis as
the corrected double differential cross-section is related to the uncorrected double
differential cross-section via a simple multiplicative factor.

dσLLL
dEldΩ

= (1 + δradcor)
dσB
dEldΩ

(7.4)

The fractional radiative corrections is calculated for each event in the sample of pure
CCQE events and stored in a 2D histogram. The binning scheme of this histogram does
not affect the value of the calculated radiative corrections drastically since the value in
each bin is an averaged value of the radiative correction to all the events that fall within
that bin. Figure 7.4 shows the averaged radiative corrections calculated on a sample of 1
million CCQE events, with the all Type I problematic events skipped and Type II
probematic events skipped if the resulting fractional radiative corrections is greater than
unity.
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Looking at figure 7.1, the bulk of the muon neutrinos arriving at the SK detector have
energies less than 2 GeV. Therefore, a significant amount of the muons produced in the
neutrino-target nuclei interactions have energies less than 2 GeV. Focusing on events with
muon energies in the range of interest, the fractional radiative corrections is presented in
figure 7.4.

Figure 7.4: The fractional radiative corrections as defined in equation 7.3 is represented
by the z-axis. The value of the radiative corrections in each bin can be found in table C.3
in Appendix C.

Figure 7.4 suggests that low energy muons(Eµ < 0.3 GeV) receive small positive radiative
corrections while energetic forward moving muons receive large positive corrections.

The radiative corrections obtained are dependent on both the energy and direction of the
outgoing muon. The energetic muons, Eµ > 0.4 GeV receive a negative radiative
corrections while the muons with energies, Eµ <0.4 GeV, receive small positive
corrections on the order of ∼ 1%. A possible explanation to this is that energetic muons
are more likely to radiate off photons and the double differential cross-section is greater
after the emission of photons than before emitting the photons. Conversely, at low muon
energies, Eµ < 0.4 GeV, the muons are less likely to radiate off photons. This is avoids
the IR singularity as it the probability of the muon radiating off a photon vanishes as the
photon becomes arbitrarily soft. This trend of changing signs for the radiative corrections
is also reported in a very recent study on radiative corrections to CCQE[2].

In the the peak muon energy bin(0.5 < Eµ0.6 GeV), the radiative correction is −22.41%,
which is non-trivial. There is a known small difference between total CCQE cross-section
measurements and NEUT predictions of ∼ −7.14%. This value is obtained from the
numbers read off figure 13 in [71]. Further investigations are needed to convert the
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radiative corrections on the double differential cross-section to corrections on the total
cross-section before a justified comparison can be made between the value obtained in
this study and the discrepancy observed in [71].

The radiative corrections are dependent on the direction of the outgoing muons. The
forward going muons, 0.9 < cos θ < 1.0, receive small corrections regardless of their
energie. For 0.9 < cos θ < 1.0, the corrections are 0.14% for muons with 0.1 < Eµ < 0.2
GeV and −0.84% for energetic forward muons with 1.9 < Eµ < 2.0 GeV. Energetic muons
that undergo large deflections, −0.3 < cos θ < −0.2 and 0.6 < Eµ < 0.7, receive large
corrections of −88.50%. This is reminiscent of classical bremsstrahlung in which charged
particles that are more accelerated radiate more.

7.3 Conclusions

The radiative corrections obtained for muon neutrino CCQE interactions are found to be
dependent on both the energy and direction of the outgoing muon. The muons that are
greatly deflected receive greater radiative corrections and is suggestive of classical
bremsstrahlung. The radiative corrections at the peak muon energy at the SK detector is
found to be −22.41% which is not small but further detailed investigations are required
before comparing it to the observed discrepancy between data and simulations. It is also
interesting to note the change in sign of the radiative corrections with increasing muon
energy and how this is possibly the manifestation of the cancellations between diagrams
containing virtual photons and soft photons that makes the theory IR safe.

7.4 Recommendations

Recall from chapter 4 that precise measurements of the neutrino mixing angle, θ13 and
the CP-violating phase, δ, are made from observing νµ → νe oscillations. Neutrinos are
detected primarily through their CCQE interactions with the target nuclei in the
detector, hence, it is important to understand the difference between muon neutrino
interactions and electron neutrino interactions well so that the two different neutrino
flavours are well distinguished.

It will be interesting to extend this study to incoming electron neutrinos and investigate
if radiative corrections can alter the difference between the cross-section of an electron
neutrino interaction and a muon neutrino interaction. Note, however, that electrons are
∼ 200 times lighter than muons and the energy lost during the electrons’ propagation can
be as large as the radiative corrections[69]. Also, if such QED radiative corrections are
significant, the calculation can also be extended to include the two-boson exchange
diagrams shown in figure 6.5.



Appendix A

Useful mathematical tools

A.1 Gamma matrix properties

The gamma matrices are defined by the Clifford algebra

{γµ, γν} = γµγν + γνγµ = 2ηµν14 (A.1)

The following useful properties of the gamma matrices will be utilised when calculating
cross-sections for scattering processes.

Tr(odd no. of γµ) = 0

Tr(γ5 odd no. of γµ) = 0

Tr(/a/b/c/d) = 4[(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)]
Tr(γ5) = 0

Tr(γ5/a/b) = 0

Tr(γ5/a/b/c/d) = 4iεµνλσa
µbνcλdσ

γµ/aγ
µ = −2/a

γµ/a/bγ
µ = 4a · b

γµ/a/b/cγ
µ = −2/c/b/a

Tr(γµ/p1
γν/p2

) = 4[pµ1p
ν
2 + pν1p

µ
2 − (p1 · p2)gµν ]

Tr(γµ(1− γ5)/p1
γν(1− γ5)/p2

) = 2Tr(γµ/p1
γν/p2

)− 8iεµνλσp1λp2σ

Tr(γµ/p1
γν/p2

)Tr(γµ/p3
γν/p4

) = 32[(p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)]

Tr(γµ/p1
γνγ5/p2

)Tr(γµ/p3
γνγ5/p4

) = 32[(p1 · p3)(p2 · p4)− (p1 · p4)(p2 · p3)]

Tr(γµ(1− γ5)/p1
γν(1− γ5)/p2

)Tr(γµ(1− γ5)/p3
γν(1− γ5)/p4

) = 256(p1 · p3)(p2 · p4)
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A.2 SU(2)× U(1) generators

τ1 =

(
0 1
1 0

)
τ2 =

(
0 −i
i 0

)
(A.2)

K ≡ τ3 − y
2

=

(
0 0
0 −1

)
Q ≡ τ3 + y

2
=

(
1 0
0 0

)
(A.3)

A.3 Feynman Parameters

1

AB
=

∫ 1

0

1

xA+ (1− x)B2 =

∫ 1

0
dxdyδ(x+ y − 1)

1

[xA+ yB]2
(A.4)

Differentiating A.4 with respect to B,

1

ABn
=

∫ 1

0
dxdyδ(x+ y − 1)

nyn−1

[xA+ yB]n+1
(A.5)

Repeated differentiation of A.5 will give

1

A1...An
=

∫ 1

0
dx1...dxn δ (Σxi − 1)

(n− 1)!

[x1A1 + ...+ xnAn]n
(A.6)

The most general identity is

1

Am1
1 ...Amnn

=

∫ 1

0
dx1...dxn δ (Σxi − 1)

Πxmi−1
i

[
∑
xiAi]Σmi

Γ(m1 + ...+mn)

Γ(m1)...Γ(mn)
(A.7)

where the mi do not have to be integers. The identity given in A.7 is overkill and is given
only for completeness. It is not used anywhere in this paper.
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A.4 Regularisation schemes

Quantum Field Theory is plagued by divergences, but those badly behaved integrals can
be regulated and made finite in a number of ways.
The most intuitive way to regularise a diverging integral is to impose a cut-off and limit
the integration over the loop momentum up to k2 ≤ Λ2 instead of infinity. However, this
way of regularisation is very intrusive as it breaks many symmetries such as translational
invariance in the momentum space p→ p+ k. This is not desirable as translational
invariance in momentum space is required for combining many propagators into a single
one using Feynman parameters. The momentum cutoff also breaks gauge invariance,
which makes calculations cumbersome as one cannot then use the Ward-Takahashi
identity to kill off stray terms.
Pauli-Villars regularisation is another way of regularising a diverging integral. It involves
subtracting from the photon propagator, the propagator of a particle with a much larger
mass. This substraction can be interpreted as the propagator correction from a ghost
field with the same quantum numbers as the original field but with opposite statistics.
The ghost field then decouples from the theory at energies very much lower than its
mass, M. This regularisation method has the advantage of keeping translational
invariance in the momentum space. However, the Pauli-Villars prescription is not gauge
covariant due to the very nature of introducing a mass term.

1

(k − p)2 + iε
−→ 1

(k − p)2 + iε
− 1

(k − p)2 − Λ2 + iε
(A.8)

There is also dimensional regularisation, in which badly behaved integrals are evaluated
over d-dimensional spacetime, instead of the usual 4 dimensions. The physical theory is
then recovered by setting d = 4− ε and taking limits of ε→ 0. This method of
regularisation is more common in modern literature as it is more mathematically elegant
and is compatible with more symmetries, making it computationally more efficient. Its
main setback is that is it very involved and often physical intuition of the theory is lost
when the number spacetime dimensions take on non-integer values.
Remaining in 4-dimensional spacetime, the IR divergence encountered when calculating
the first order QED vertex correction by introducing a small mass, µ, to the photon
propagator.

1

(k − p)2 + iε
−→ 1

(k − p)2 − µ2 + iε
(A.9)
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A.5 Wick rotation

Wick rotation is a mathematical technique common used for evaluating integrals which
are otherwise cumbersome to evaluate in Minkowskian spacetime due to its
pseudo-Riemannian metric of signature (1,3). By making time imaginary, Wick rotation
turns the integral over Minkowskian spacetime into an integral over Euclidean space. The
Euclidean integral can then be integrated in 4-dimensional spherical polar
coordinates.

k0 = ik0
E , k = kE (A.10)

For example in 4-dimensional space-time,∫
d4k

(2π)4

1

[k2 −∆]m
=
i(−1)m

(4π)2

∫
dΩ4

∫ ∞
0

dkE
k3
E

[k2
E + ∆]m

(A.11)

The pole on the real axis at k2 = ∆ is avoided by making time imaginary and integrating
along the imaginary axis instead. Explicit evaluation of this integral gives∫

d4k

(2π)4

1

[k2 −∆]m
=
i(−1)m

(4π)2

1

(m− 1)(m− 2)

1

∆m−2
(A.12)

Another useful formula is∫
d4k

(2π)4

k2

[k2 −∆]m
=
i(−1)m−1

(4π)2

2

(m− 1)(m− 2)(m− 3)

1

∆m−3
(A.13)

The case for m = 3 after regularization using the Pauli-Villars prescription∫
d4k

(2π)4

[
k2

[k2 −∆]3
− k2

[k2 −∆Λ]3

]
=

i

(4π)2
log

(
∆Λ

∆

)
(A.14)
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NEUT card file

C========================================================================
C Input card for Super-Kamiokande Monte Carlo simulation
C========================================================================
C
C Number of events ; EVCT-NEVT
C
EVCT-NEVT 1000000
C
C--------------------------------
C
C Particle Code ; EVCT-IDPT
C
EVCT-IDPT 14
C
C--------------------------------
C
C fixed VERTEX ; EVCT-MPOS 1
C random VERTEX ; EVCT-MPOS 2
C
C EVCT-MPOS 1
C VECT-POS 100. 0. 0.
C
EVCT-MPOS 2
EVCT-RAD 100.
C
C--------------------------------
C
C fixed DIRECTION ; EVCT-MDIR 1
C random DIRECTION ; EVCT-MDIR 2
C
EVCT-MDIR 1
EVCT-DIR 0. 0. 1.
C
C
C--------------------------------
C
C fixed MOMENTUM ; EVCT-MPV 1
C random MOMENTUM ; EVCT-MPV 2
C
C random MOMENTUM based on flux times cross section distribution
C EVCT-MPV 3
C EVCT-FILENM : name of ROOT file containing flux histogram
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C EVCT-HISTNM : flux histogram name
C EVCT-INMEV : flag for histograms in MeV
C (MeV => 1, GeV => 0)
C
CEVCT-MPV 1
CEVCT-PV 400.
CEVCT-MPV 2
CEVCT-PV 0. 200.
C
EVCT-MPV 3
EVCT-FILENM ’t2kflux_2013_horn250kA.root’
EVCT-HISTNM ’enu_sk_numu’
EVCT-INMEV 0
C
C
C **** TARGET INFORMATION ****
C
C NUMBNDN : total number of neutron
C (e.g. CH => 6, H2O => 8, Ar => 22, Fe => 30)
C
NEUT-NUMBNDN 8
C
C NUMBNDP : total number of bound proton
C (e.g. CH => 6, H2O => 8, Ar => 18, Fe => 26)
C
NEUT-NUMBNDP 8
C
C NUMFREP : total number of free proton
C (e.g. CH => 1, H2O => 2, Ar => 0, Fe => 0)
C
NEUT-NUMFREP 2
C
C NUMATOM : atomic number of atom heavier than hydrogen
C (e.g. CH => 12, H2O =>16, Ar => 40, Fe => 56)
C
NEUT-NUMATOM 16
C
CNEUT-PFSURF 0.217
CNEUT-PFMAX 0.217
CNEUT-VNUINI -.034
C
C **** NEUTRINO INTERACTION ****
C
C FERM : Fermi motion 0 : on ( default ) 1 : off
C
NEUT-FERM 1
C
C PAUL : Pauli blocking 0 : on ( default ) 1 : off
C
NEUT-PAUL 1
C
C NEFF : Nuclear effect in O16 0 : on ( default ) 1 : off
C
NEUT-NEFF 0
C
C IFORMLEN : Formation zone 1: on (default) 0: off
C
NEUT-IFORMLEN 1
C
C Resonant Pion-less Delta Decay (20% Default)
C IPILESSDCY: 1: on (default), 0: off
C RPILESSDCY: Fraction of 1pi events (0.2 default)
C
NEUT-IPILESSDCY 1
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NEUT-RPILESSDCY 0.2
C
C
C ABSPIEMIT : Nucleon emission after absorption of pi 1: on (default) 0: off
C
NEUT-ABSPIEMIT 1
C
C
C NUSIM : Toggle neutrino simulation or not (piscat/gampi) 1: yes (default) 0: no
C
NEUT-NUSIM 1
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C MODL : Toggle between low energy pion mean free path models
C ( momentum of pi < 500MeV/c, but also add absorption for p > 500 MeV/c)
C 0: Salcedo et al. calculation (used in productions prior to 2011)
C 1: Tuned to pion scattering data
C
NEUT-MODL 1
C
C
C MODH : Toggle between high energy pion mfp models ( momentum of pi > 500MeV/c )
C 0: p/n cross sections normalized to pion-deuteron (prior to 2011)
C 1: Actual p or n cross section used; Intermediate pion charge fixed;
C p/n density considered for non-isoscalar nuclei
C
NEUT-MODH 1
C
C KINMODH : Toggle between high energy pion quasielastic scattering models
C (Only relevant if FEFQEHF > 0)
C ( momentum of pi > 500MeV/c )
C 0: Isotropic decay of some resonance (Deprecated, do not use)
C 1: SAID Phase shift analysis + Artificial Fwd. Scatter
C
CNEUT-KINH 1
C
C
C FEFQE : Factor to modify pion quasi-elastic scattering mean free path
C ( momentum of pi < 500MeV/c )
NEUT-FEFQE 1.
C
C
C FEFABS : Factor to modify pion absorption mean free path
C ( Prior to 2011: All MFP scaling = 1.0 )
C ( Tune to pion scattering data: 1.1 )
NEUT-FEFABS 1.1
C
C
C FEFINEL : Factor to modify pion hadron production mean free path
C ( momentum of pi > 500MeV/c )
NEUT-FEFINEL 1.
C
C
C FEFCOH : Factor to modify pion foward scattering mean free path
C ( momentum of pi > 500MeV/c )
NEUT-FEFCOH 1.
C
C
C FEFQEH : Factor to modify quasielastic scattering mean free path
C ( momentum of pi > 500MeV/c )
C ( Tune to pion scattering data: 1.8 )
NEUT-FEFQEH 1.8
C
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C
C FEFCX : Factor to modify charge exchange amplitude
C ( momentum of pi < 500MeV/c )
NEUT-FEFCX 1.
C
C
C FEFCXH : Factor to modify charge exchange mean free path
C ( momentum of pi > 500MeV/c )
C ( Tune to pion scattering data: 1.8 )
NEUT-FEFCXH 1.8
C
C
C FEFQEHF: Portion of QE scattering that has inelastic-like kinematics
C ( momentum of pi > 500MeV/c )
C
C NEUT-FEFQEHF 0. ! all forward-like scattering (prior to 2011)
C ! ( 1 = Tune to pion scattering data, mix of quasielastic
C and forward-like scattering)
NEUT-FEFQEHF 1.
C
C
C FEFCXHF: Portion of inel. scattering that includes true CX
C ( momentum of pi > 500MeV/c , MODH=1 only)
C
C NEUT-FEFCXHF 0. ! pi+,neutron charge exchange and inelastic
C cross sections separated (default)
NEUT-FEFCXHF 0.
C
C
C FEFCOHF: Amount of forward scatter relative to quasi-elastic (p<500)
C
CNEUT-FEFCOHF 0. ! Default, no forward scattering at low momenta
NEUT-FEFCOHF 0.
C
C FEFCOUL: Pion trajectory modified by Coulomb field
C
CNEUT-FEFCOUL 0. ! Default, no Coulomb correction
NEUT-FEFCOUL 0
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C Nucleon rescattering
C
C NUCRES-RESCAT 1: on (default) 0: off
C
NUCRES-RESCAT 1
C
C NUCRES-XNUCFACT cross-section factor to study uncertainty default = 1.
C
NUCRES-FACT 1.
C
C
C
C
C MODE : Interaction mode
C 0 : normal ( default )
C -1 : input cross section by CRSNEUT
C n : sellect one mode ( n > 0 ) See nemodsel.F
C n = 1 : charged current Q.E.
C n = 11,12,13
C : charged current Single pi production
C n = 16 : coherent Single pi production
C n = 21 : charged current Multi pi production
C n = 31,32,33,34
C : neutral current Single pi production
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C n = 36 : coherent Single pi production
C n = 41 : neutral current Multi pi production
C n = 51,52 : neutral current elastic
C n = 22,42,43 : single eta production
C n = 23,44,45 : single K production
C
NEUT-MODE 0
C
C nu nub
C 1: CC Q.E. CC Q.E.( Free )
C 2-4: CC 1pi CC 1pi
C 5: CC DIS 1320 CC DIS 1.3 < W < 2.0
C 6-9: NC 1pi NC 1pi
C 10: NC DIS 1320 NC DIS 1.3 < W < 2.0
C 11: NC els CC Q.E.( Bound )
C 12: NC els NC els
C 13: NC els NC els
C 14: coherent NC els
C 15: coherent coherent
C 16: CC eta coherent
C 17 NC eta CC eta
C 18: NC eta NC eta
C 19: CC K NC eta
C 20 NC K CC K
C 21: NC K NC K
C 22: N/A NC K
C 23: CC DIS CC DIS (W > 2.0)
C 24: NC DIS NC DIS (W > 2.0)
C 25: CC 1 gamma CC 1 gamma
C 26,27: NC 1 gamma NC 1 gamma
C
C
C CRS : Multiplied factor to cross section on each mode. ( neu )
C CSRB : Multiplied factor to cross section on each mode. ( neu-bar )
C
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
NEUT-CRS 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
NEUT-CRSB 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
C
C PDF for DIS is set in this section
C (GRV94DI -> 7, GRV98_LO -> 12 (default))
CNEUT-PDF 12
C Which PDF is used ( original=0, modified=1 (default))
CNEUT-BODEK 1
C Select Coherent pion model (Rein & Sehgal=0(default), Kartavtsev et al.=1
CNEUT-COHEPI 0
C
C CCQE Axial Mass (For simulation, must be set to: 1.01, 1.11, 1.21{default}. 1.31)
CNEUT-MAQE 1.21
C
C CC1pi Axial Mass (For simulation, must be set to: 1.21{default}, 1.11)
CNEUT-MASPI 1.21
C
C CCQE Vector Mass (Default: 0.84)
CNEUT-MVQE 0.84
C
C CC1pi Vector Mass (Default: 0.84)
CNEUT-MVSPI 0.84
C
C CCQE Kappa Factor (Default: 1.0)
CNEUT-KAPP 1.0
C
C Coherent Pion Axial Mass (Default: 1.0)
CNEUT-MACOH 1.0
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C
C Coherent Pion Nuclear Radios (Default: 1.0 fm)
CNEUT-R0COH 1.0
C
C MDLQE : CC Quasi-elastic / NC elastic model
C : xx1 : Smith-Moniz for CC
C : xx2 : Smith-Moniz for CC with BBBA05
C : x0x : Scaling to CCQE ( same as 5.0.x )
C : x1x : Scaling to Spectrum func. with Dipole
C : x2x : Scaling to Spectrum func. with BBBA05
C : 1xx : Transverse enhancement (0: off, default)
C
NEUT-MDLQE 01
C
C
C RAND : random seed
C 0 : Read RANDOM number from FILE
C 1 : Generating RANDOM SEED from the time
C
NEUT-RAND 1



Appendix C

Data tables

C.1 Optimising binning schemes

cos θ bin Eµ bin 1MeV/bin 2MeV/bin 6MeV/bin 10MeV/bin
5e-4/bin — — 3.08243 % —
1e-3/bin — — 1.40456 % —
5e-3/bin 2.08429 % 0.909039 % 0.298813 % 0.218909 %
1e-2/bin — — 0.209709 % —
2e-2/bin — — 0.161807 % —

Table C.1: Percentage of problematic events for the Various binning schemes. The binning
scheme (6 MeV/bin, 2e-2/bin) gives the smallest percentage of problematic events while
not compromising on the accuracy of the calculation.

z steps Type I Type II total
500 0.0983042 % 0.111405 % 0.209709 %
1000 0.0915039 % 0.120305 % 0.211809 %
5000 0.0858037 % 0.131106 % 0.216909 %
10000 0.0847036 % 0.132606 % 0.217309 %

Table C.2: Percentage of problematic events for the various Z binning schemes. Varying
the Z bin size does not affect the percentage of problematic events drastically.
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C.2 Values of fractional radiative corrections

cos θ
Eµ(GeV )
µ 0.1,0.2 0.2,0.3 0.3,0.4 0.4,0.5 0.5,0.6 0.6,0.7 0.7,0.8 0.8,0.9 0.9,1.0 1.0,1.1 1.1,1.2 1.2,1.3 1.3,1.4 1.4,1.5 1.5,1.6 1.6,1.7 1.7,1.8 1.8,1.9 1.9,2.0

+0.9,+1.0 0.14 1.17 1.67 2.11 2.15 1.81 0.76 -0.28 -0.54 -0.43 -0.34 -0.42 -0.29 -0.43 -0.35 -0.54 -0.70 -0.62 -0.84

+0.8,+0.9 0.38 1.30 1.80 2.14 1.99 1.18 -0.46 -2.01 -2.78 -3.40 -4.30 -5.28 -6.45 -8.13 -10.10 -11.78 -14.83 -17.67 -23.79

+0.7,+0.8 0.59 1.34 1.83 2.07 1.65 0.15 -2.42 -4.57 -6.36 -8.64 -12.81 -16.62 -22.87 -31.01 -40.04 -48.37 -57.10 -55.46 -64.22

+0.6,+0.7 0.21 1.38 1.87 1.95 1.11 -1.34 -4.93 -8.47 -12.95 -20.90 -31.79 -42.06 -57.53 -66.85 -70.69 -68.92 -68.28 — —

+0.5,+0.6 0.36 1.42 1.87 1.74 0.34 -3.54 -8.97 -15.87 -26.17 -46.89 -62.70 -63.76 -70.40 — — — — — —

+0.4,+0.5 -0.12 1.44 1.86 1.48 -0.73 -6.52 -15.80 -30.19 -55.34 -65.25 -70.31 -98.55 — — — — — — —

+0.3,+0.4 0.74 1.47 1.82 1.07 -2.26 -11.59 -28.98 -52.76 -75.19 -80.58 — — — — — — — — —

+0.2,+0.3 0.60 1.51 1.74 0.56 -4.66 -18.76 -45.91 -68.45 — — — — — — — — — — —

+0.1,+0.2 0.70 1.53 1.61 -0.05 -8.73 -33.96 -65.18 -83.82 — — — — — — — — — — —

0.0,+0.1 0.70 1.55 1.43 -1.05 -14.41 -56.20 -75.29 — — — — — — — — — — — —

-0.1,0.0 0.77 1.56 1.22 -2.41 -26.95 -64.75 — — — — — — — — — — — — —

-0.2,-0.1 0.82 1.56 0.98 -4.66 -39.97 -77.78 — — — — — — — — — — — — —

-0.3,-0.2 0.83 1.56 0.65 -7.81 -54.93 -88.50 — — — — — — — — — — — — —

-0.4,-0.3 0.86 1.51 0.28 -15.29 -67.54 — — — — — — — — — — — — — —

-0.5,-0.4 0.80 1.47 -0.20 -21.19 -66.26 — — — — — — — — — — — — — —

-0.6,-0.5 0.89 1.40 -0.80 -34.34 -79.35 — — — — — — — — — — — — — —

-0.7,-0.6 0.92 1.34 -1.67 -39.41 — — — — — — — — — — — — — — —

-0.8,-0.7 0.99 1.26 -2.81 -51.21 — — — — — — — — — — — — — — —

-0.9,-0.8 0.97 1.14 -5.01 -52.89 — — — — — — — — — — — — — — —

-1.0,-0.9 0.96 1.02 -8.48 -61.27 — — — — — — — — — — — — — — —

Average 0.65 1.40 0.08 -13.92 -22.41 -27.68 -24.72 -29.60 -25.62 -32.30 -30.38 -37.78 -31.51 -30.30 -32.40 -35.23 -24.58 -29.62

Table C.3: Fractional radiative corrections for νµ CCQE interactions. Table shows value of each bin in figure 7.4, expressed as a
percentage.
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