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1 Introduction

It is well known that any field theory can be described using a variational principle. In particular, Einstein’s

general theory of relativity can be described by promoting the metric tensor gµν to a dynamical field variable

and using it to characterise the gravitational field. The action used in this variational formulation of the

theory is traditionally the Einstein-Hilbert action, which is second order in its derivatives of the metric. How-

ever, the Einstein-Hilbert action is the simplest such action that can replicate the Einstein field equations

that govern general relativity and other, more complicated actions involving higher order derivatives might

be possible.

These ’higher derivative’ theories are usually dismissed because of the fact that there are serious con-

straints on their physical viability. In particular, they are frequently subject to Ostrogradsky’s Instability

Theorem, a result which classifies all nondegenerate higher derivative theories as unstable (in the Lyapunov

sense). This is a major affliction because such unstable theories usually possess negative energy states of

the sort that are strenuously banished from quantum field theories. In spite of this, however, there has been

a recent flurry of interest in higher derivative theories because they are renormalisable, meaning that their

study might provide vital clues as to how to quantize gravity.

This project is divided into several parts. In the initial chapter, the Einstein field equations are reviewed

from a variational perspective, thus demonstrating the viability of the Einstein-Hilbert action. Objections

to the addition of higher derivatives to the action are then discussed at a classical level: these include

the derivation of Ostrogradsky’s Instability Theorem and the introduction of negative energy modes in

linearised gravitational perturbations. However, the project will then show that adding higher derivatives to

the Einstein-Hilbert action promotes gravity to a renormalisable theory and concludes by discussing recent

efforts to develop a physically acceptable higher derivative theory of gravity using asymptotic safety.
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2 Einstein-Hilbert Action

2.1 Variational Formalism

To derive the equation that yields the Einstein field equations as its equations of motion, we initially consider

the form that the action must take, namely the integral of a scalar Lagrange density. Since derivatives lower

the order on the field upon which it acts by one, this Lagrange density should contain at least two derivatives

of the metric to ensure that the equation of motion for the metric field - which is what we are ultimately

interested in when trying to find the dynamics of spacetime curvature - is at least linear. ISince any non-

trivial tensor made from the metric and its derivatives can be expressed in terms of the metric and the

Riemann tensor [31], the only independent scalar that can be constructed from the metric that is no higher

than second order in its derivatives is the Ricci scalar (as this is the unique scalar that we can construct from

the Riemann tensor that is itself made from second derivatives of the metric). This led Hilbert to suggest

that the simplest form of the action for gravity must be:

S =

∫
d4x
√
−gR

Here, the integral is over curved, rather than flat, spacetime, hence the factor of
√
−g where g = detgµν is

the determinant of the metric tensor.

We can infintesimally vary this action by treating the metric tensor gµν as the dynamical field variable:

δS =

∫
d4x[δ(

√
−g)R+

√
−gδR] =

∫
d4x
√
−g
[

1√
−g

(
1

2

1√
−g

(−δg)

)
R+

δR

δgµν
δgµν

]
We proceed by using Jacobi’s Rule for evaluating the derivative of determinants:

δg ≡ δ(detg) = ggµνδgµν (1)

IElse it would be constant and therefore not very dynamical!
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Suppose that we now want to express the variation of the covariant metric tensor in terms of the

variation of the contravariant metric tensor. To this end, we consider rewriting it in the equation:

gµνδgµν = gµνδ (gµρgνσg
ρσ) = gµν (δgµρgνσg

ρσ + gµρδgνσg
ρσ + gµρgνσδg

ρσ)

Multiplying out the brackets and using gµνgµρ = δνρ on the first and second terms on the R.H.S.:

gµνδgµν = gµνδρνδgµρ + gµνδσµδgνσ + gµνgµρgνσδg
ρσ = gµρδgµρ + gσνδgνσ + gµνgµρgνσδg

ρσ

We can rearrange the terms using dummy indices and the symmetry of gµν to get:

gµνgµρgνσδg
ρσ = gµνδgµν − gµνδgµν − gµνδgµν = −gµνδgµν

Since the indices on the R.H.S. are already summed, we cannot simply cancel the gµν terms by simply

multiplying both sides by gµν (as this would be repeating dummy indices more than twice), but we

can equate its coefficients instead:

δgµν = −gµρgνσδgρσ (2)

In a similar way, we can also derive:

δgµν = −gµρgνσδgρσ

This means that Jacobi’s Rule becomes:

δg ≡ δ(detg) = ggµνδgµν = −ggµνgµρgνσδgρσ = −gδνρgνσδgρσ = −ggρσδgρσ

This can be written more compactly using dummy indices as:

δg ≡ δ(detg) = ggµνδgµν = −ggµνδgµν (3)

Substituting (3) into our previous expression:

δS =

∫
d4x
√
−g
[
−R
−2g

(ggµνδgµν) +
δR

δgµν
δgµν

]
=

∫
d4x
√
−g
[
R

2
gµν(−gµαδgαβgβν) +

δR

δgµν
δgµν

]
=

∫
d4x
√
−g
[
−R

2
δµµδ

ν
αδg

αβgβν +
δR

δgµν
δgµν

]
=

∫
d4x
√
−g
[
−R

2
δgνβgβν +

δR

δgµν
δgµν

]
After rewriting the first term using dummy indices and the fact that the metric tensor is symmetric, we have:

δS =

∫
d4x
√
−g
[
−R

2
gµν +

δR

δgµν

]
δgµν

!
= 0 by the Principle of Least Action

Because an integral always vanishing can only be achieved by the vanishing of the integrand, we conclude

that the equation of motion for the gravitational field is:

−R
2
gµν +

δR

δgµν
= 0 (4)
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Let us now examine the second term of (4) further. It involves the derivative of the Ricci scalar, which

we find by contracting the Ricci tensor, itself a contraction of the Riemann tensor which is given by:

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ (5)

Taking the variation of this Riemann tensor yields:

δRρσµν = ∂µ(δΓρνσ)− ∂ν(δΓρµσ) + δΓρµλΓλνσ + ΓρµλδΓ
λ
νσ − δΓ

ρ
νλΓλµσ − ΓρνλδΓ

λ
µσ (6)

Now, δΓαβγ is the infintesimal variation of two metric connections and while the metric connection itself

does not constitute a tensor, the difference of two metric connections does.[19] Because of its tensorial

transformation properties, there will be a covariant derivative associated with this variation. Noting that the

covariant derivatives of a covariant (0,1) field and a (0,1) contravariant field are, respectively:

∇µφν = ∂µφν − Γρµνφρ ∇µφν = ∂µφ
ν + Γνµρφρ

we have the expression for a mixed (1,1) field:

∇µφρν = ∂µφ
ρ
ν − Γαµνφ

ρ
α + Γρβµφ

β
ν

The prescription is clear: to the ubiquitous partial derivative, we add an additional Christoffel symbol for

each upper index and subtract one for each lower index; working from left to right across the indices, we

shift the index encountered onto the field multiplying the Christoffel symbol and replace it with a dummy

index. Doing this for the (1,2) tensor field δΓρµν :

∇σ(δΓρµν) = ∂σ(δΓρµν) + ΓρασδΓ
α
µν − ΓβσµδΓ

ρ
βν − ΓρσνδΓ

ρ
µγ (7)

We can see that the structure of (6) roughly matches the structure of the difference of two of the above terms,

albeit with two less Christoffel symbols. Let us then match the indices of the partial derivative term of (7)

with the first two terms of (6):II

∇µ(δΓρνσ) = ∂µ(δΓρνσ) + ΓραµδΓ
α
νσ − ΓβµνδΓ

ρ
βσ − ΓγµσδΓ

ρ
γν

∇ν(δΓρµσ) = ∂ν(δΓρµσ) + ΓρδνδΓ
δ
µσ − ΓενµδΓ

ρ
εσ − ΓφνσδΓ

ρ
φµ

Subtracting these:

∇µ(δΓρνσ)−∇ν(δΓρµσ) =∂µ(δΓρνσ)− ∂ν(δΓρµσ) + ΓφνσδΓ
ρ
φµ + ΓραµδΓ

α
νσ − ΓγµσδΓ

ρ
γν − ΓρδνδΓ

δ
µσ

− ΓβµνδΓ
ρ
βσ + ΓενµδΓ

ρ
εσ

As hoped for, the terms on the second line cancel by dummy indices because, at least for applications

concerning General Relativity, the Christoffel symbol is summetric on its lower two indices. Comparing

IIThese would have to match in order for this strategy to work in any case!
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this with (6), we see that they are identical aside from some differing dummy indices and inconsequential

reorderings of Christoffel symbols (the above has been arranged so that its nth term corresponds to the nth

term of (6)). Hence, we can write:

δRρσµν = ∇µ(δΓρνσ)−∇ν(δΓρµσ)

The Ricci tensor is formed by contracting the first and third indices on the Riemann tensor:

Rµν ≡ Rρµρν ⇔ gαρRαµρν (8)

This means that the variation of the Ricci tensor is given by:

δRµσµν ≡ δRσν = ∇µ(δΓµνσ)−∇ν(δΓµµσ) (9)

This result is sometimes referred to as the Palatini Identity. For future applications, we note here that it

can be recast in the form[27]:

δRµν =
1

2
gαβ [∇α∇νδgµβ +∇α∇µδgνβ −∇µ∇νδgαβ −∇α∇βδgµν ] (10)

The Ricci scalar is formed by contracting the two indices of the Ricci tensor using :

R ≡ Rµµ ⇔ gµνRµν (11)

So, using (9), its variation will be given by:

δR = δ(gσνRσν) = δgσνRσν + gσνδRσν = δgσνRσν + gσν [∇µ(δΓµνσ)−∇ν(δΓµµσ)]

To proceed, we note that (by the product rule):

∇µ(gσνδΓµνσ) = ∇µ(gσν)δΓµνσ + gσν∇µ(δΓµνσ) = gσν∇µ(δΓµνσ)

∇ν(gσνδΓµµσ) = ∇ν(gσν)δΓµµσ + gσν∇ν(δΓµµσ) = gσν∇ν(δΓµµσ)

where the first term vanishes in both cases because, by definition of the Levi-Civita connection, the covariant

derivative of the metric vanishes (a result known as metric compatability)III:

∇µgνρ ≡ 0 (12)

This means that we can rewrite the above in terms of total derivatives:

δR = δgσνRσν +∇µ(gσνδΓµνσ)−∇ν(gσνδΓµµσ) = δgσνRσν +∇µ(gσνδΓµνσ − gσµδΓννσ)

IIIThe general result that the covariant derivative of any second order, covariant tensor vanishes provided that the connection

used in the covariant derivative is the Christoffel symbols of the 2nd kind and the tensor is both symmetric and positive definite

is known as Ricci’s Lemma.[25]
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Although the second and third terms form a total derivative and so will not contribute to the equations of

motion of the gravitational field gµν , we would be overly presumptious to discard it immediately because,

as it turns out, they can make a contribution to the action provided the the first derivative of the metric

is allowed to vary. Technically, this arises from the fact that the total derivative over the spacetime region

can be transformed into an integral over the boundary of this spacetime region using the generalised form of

Stokes’ Law; normally, it is enough to assume that δgµν = 0 on the boundary, but this particular integral is

non-vanishing unless δ∇ρgµν = 0 also, However, this unwanted boundary term can be removed by a trivial

redefinition of SEH and so we do not concern outselves with it for the remainder of this project.IV As a

result, we neglect the total derivative, yielding:

δR = δgµνRµν =⇒ δR

δgµν
= Rµν (13)

Substituting this result back into (4), we define the Einstein tensor:

Gµν ≡ Rµν −
R

2
gµν = 0

This is the Einstein equation for a vacuum with a vanishing cosmological constant. It can be modified in

several ways:

1. The inclusion of a matter field in the action:

S =

∫
d4x
√
−g(R+ LM )

gives rise to the field equation of motion:

Rµν −
R

2
gµ nu = − 1√

−g
δ(
√
−gLM )

δgµν

In analogy with the conventional theory of general relativity, we know by Noether’s Theorem that there

must be a conserved current, so we define the Hilbert stress-energy tensor:

Tµν ≡
−2√
−g

δ(
√
−gLM )

δgµν
(14)

Of course, for Noether’s Theorem to apply, we need a symmetry and in this case, the relevant isometry

(symmetry of the metric) is diffeomorphism invariance.[3]

2. We can also add an overall multiplicative constant:

S =
1

2κ

∫
d4x
√
−gR

IVSee Appendix E.1 of [26] for further details.
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where the form of the constant is purely conventional. The value of the constant is determined by the

requirement that the general relativistic theory should reduce to the Newtonian theory once the effects

of the gravitational field become very weak, conditions known as the weak field limit. The result is:

κ =
8πG

c4
(15)

3. Finally, we can add a non-zero cosmological constant:

S =

∫
d4x
√
−g(R− 2Λ)

where the factor of 2 is conventional (and can be reabsorbed into the definition of Λ). The resulting

field equation would be:

Rµν −
R

2
+ Λgµν = 0

This constant Λ would be zeroth order in derivatives, which does not be itself lead to any dynamics,

but the fact that it is multiplied by
√
−g, which does vary, means that it cannot be neglected entirely.

Furthermore, if Λ has a non-zero value, then the general relativistic theory does not exactly coincide

with Newtonian theory in the weak field limit, but if Λ ≈ 0, then the deviations should be negligible

(see Section 5.2 of [26]). Finally, because of metric compatability, it is automatically conserved since

∇µΛ
!
= 0 and so can be thought of as the energy-momentum tensor of the the vacuum.[3]

Because of the linearity on the underlying action, the previous results can be combined to give the

Einstein-Hilbert action:

SEH =
1

2κ

∫
d4x
√
−g(R− 2Λ + LM ) (16)

giving rise to the Einstein equation:

Rµν −
R

2
gµν + Λgµν = −κ 2√

−g
δ(
√
−gLM )

δgµν
=⇒ Gµν + Λgµν =

8πG

c4
Tµν (17)

This formula is identical to the relation found heuristically by Einstein himself based on considering the

covariant ways that one could couple mass and energy (c.f. Tµν) to curvature (c.f. Gµν). In fact, (17) is

the most general form of the equation of motion that a second-order derivative theory can produce: it can

be shown[11] that gµν and Gµν are the only two-index tensors that are both symmetric and divergence-free

(both of which are properties of Tµν on the R.H.S.) that can be built from the metric tensor and its first

two derivatives in 4 dimensions, so the most general expression satisfying these criteria must be a linear

sum of these. It is worth noting, however, that this result, known as Lovelock’s Theorem[12], that the

independent (0,2) tensors that satisfy the aforementioned criteria depend on the number of dimensions of the

theory, so we should not necessarily expect the above conclusion to hold in the higher dimensional theories

that we consider later in the project.
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Of course, (16) is the simplest action that could have produced a dynamical gravitational field in that

we insisted that it be second order in derivatives of the metric. That said, (17) has been tested extensively

in numerous settings, so any prospective alternate action would have to reproduce (17); the easiest way

to ensure this is simply to keep the Einstein-Hilbert action as it stands and add on additional derivative

terms, expecting the extra terms to only cause small, possibly high energy corrections to the experimental

predictions in a similar fashion to the addition of the non-zero cosmological constant. However, while most

introductory General Relativity textbooks cover Einstein’s heuristic derivation of the field equations, and

sometimes also the Einstein-Hilbert formalism, none mention higher derivative theories of gravity in any great

detail. The reason for this is because there are several flaws and complications in higher-derivative theories

that are not present in the lower-derivative counterpart, the details of which comprise the next chapter.
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3 Problems With Classical Higher Derivative Gravity

3.1 Introduction

In the Einstein-Hilbert action, we explicitly considered all possible second-order derivative terms and came

to the conclusion that only the Ricci and cosmological constants could act as suitable terms in the action.

We can perform a similar analysis on the fourth order derivative terms, and it turns out that, again, there is

only a limited number of scalars that we can construct:

1. RµνρσR
µνρσ

2. RµνR
µν

3. R2 ⇔ RµµR
ν
ν

Furthermore, we can eliminate one of these terms by expressing it in terms of the other two. We do this

by exploiting the Gauss-Bonnet Theorem, which states that for a compact, two-dimensional Riemannian

manifold M with boundary δM , then the Euler charateristic of M, χ(M), is given by:∫
M

KdA+

∫
δM

kgds = 2πχ(M)

In the above formula, K is the Gaussian curvature and kg is the geodesic curvature. Intuitively, this relation

is responsible for the sum of the interior angles θi of a triangle being 180 degrees in Euclidean space, since a

corollary of this result is: ∫
∆

KdA = π − (θ1 + θ2 + θ3)

Since Euclidean space is flat, the curvature K = 0 and so the L.H.S. vanishes and
∑3
i=1 θi = π. This result

is likewise responsible for the fact that in spherical trigonometry, the sum of interior angles exceeds π since

the curvature of a 3-sphere of radius r, K = 1
r2 , is always positive.

However, although the Gauss-Bonnet Theorem only applies in two-dimensions, it can be generalised

to give the Chern-Gauss-Bonnet Theorem, which holds for any compact, orientable, 2n-dimensional

Riemannian manifold without boundary. In particular, for n = 2, we have the result:

χ(M) =
1

32π2

∫
M

(
RµνρσR

µνρσ − 4RµνR
µν +R2

)
For our purposes, we can use the above result to write the following[24]:

√
−g
(
RµνρσR

µνρσ − 4RµνR
µν +R2

)
= T (18)

Here, T stands for a topological invariant quantity by virtue of the fact that the Euler charateristic χ(M)

is likewise topologically invariant. It is a constant whose value does not concern us because we will be

substituting it into the higher-derivative action and constant terms in a Lagrangian will not affect the
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equations of motion. This means that we can eliminate one of the previous higher-derivative scalars; because

the Riemann tensor is the most complicated of these terms, we discard that one. Since the most general

action is a linear superposition of all permissible terms, our higher-derivative action is:

S = −
∫
d4x
√
−g
(
αRµνR

µν − βR2 + γκ−2R
)

(19)

Note that the signs and forms of the dimensionless constants is a matter of convention. In the above action,

we have redefined the constant κ from satisfying (15) to instead having the value:

κ2 = 32πG (20)

We have also kept the value of γ arbitrary for the time being so as to leave open the possiblity of higher-

derivative corrections modifying the taking of the Newtonian limit.

Alternatively, we can use the Weyl tensor, which is defined for d > 2 dimensions as:[31]

Cµνρσ ≡ Rµνρσ +
1

d− 2
(gµσRρν + gνρRσµ − gµρRσν − gνσRρµ) +

1

(d− 1)(d− 2)
(gµρgσν − gµσgρν)R

By re-expressing the Riemann tensor using the Weyl tensor, we can rewrite (19) as:[14]

S =

∫
d4x
√
g

(
− 1

κ2
R+

2

s
CµνρσCµνρσ −

ω

3s
R2

)
⇔
∫
d4x
√
g

(
− 1

κ2
R+

2

s
C2 − ω

3s
R2

)
(21)

In what follows, we are not going to be working exclusively in 4 dimensions, in which case we need to add an

additional integrand of the Gauss-Bonnet term (in 4D, it is negligible, hence its previous omission), denoted

E. We can also include a cosmological constant term, Λ̃, yielding (after an absorption of a factor of 4 into

the definition of s):V

S =

∫
d4x
√
g

(
Λ̃− 1

κ2
R+

1

2s
C2 − ω

3s
R2 +

θ

s
E

)
If we use the following parameterisations:

Λ =
κ2Λ̃

2
x ≡ 1

s

[
θ +

1

2

]
y ≡ −2

s

[
2θ +

1

d− 2

]
z ≡ 1

s

[
θ − ω

3
+

1

(d− 1)(d− 2)

]
we can rewrite the above action as:[13]

S = −
∫
d4x
√
g

[
1

κ2
(2Λ−R) + xRµνρσR

µνρσ + yRµνR
µν + zR2

]
(22)

VNote that we have used the fact that κ2
!
= cdGN , which is derived by comparing the coefficients of R in (21) and the first

line of (2.14) of [13]
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3.2 Equations of Motion For Higher Derivative Gravity

We now proceed to find the equations of motion for the higher-derivative action. We start by taking the

variation of (19):

δS =

∫
d4xδ

[√
−g
(
αRµνR

µν − βR2 + γκ−2R
)]

=

∫
d4x

2
√
−g

(−δg)
(
αRµνR

µν − βR2 + γκ−2R
)

+

∫
d4x
√
−g
[
α (δRµνR

µν +RµνδR
µν)− βδR2 + γκ−2δR

]
Now:

δR2 = δ(RµµR
ν
ν) = δ(gµρRµρg

νσRνσ) = (δgµρRµρ + gµρδRµρ)g
νσRνσ + gµρRµρ(δg

νσRνσ + gνσδRνσ)

= (δgµρRµρ + gµρδRµρ)R+R(δgνσRνσ + gνσδRνσ) = 2R(Rµνδg
µν + gµνδRµν) by dummy indices

It is worth noting explicitly that naive application of the chain rule, δR2 = 2RδR, would only provide the

first term. Similarly:

δRµνR
µν +RµνδR

µν = δRµνR
µν +Rµνδ(g

µρgνσRρσ)

= δRµνR
µν +Rµνδg

µρgνσRρσ +Rµνg
µρδgνσRρσ +Rµνg

µρgνσδRρσ

= δRµνR
µν +Rρσg

ρµgσνδRµν +Rµρδg
µνgρσRνσ +Rσνg

σρδgνµRρµ

= 2(RµνδRµν + gρσRµρRνσδg
µν) by dummy indices

We therefore rewrite the above variation as:

δS =−
∫

d4x

2
√
−g

√
−g√
−g
(
αRµνR

µν − βR2 + γκ−2R
)
δg

+

∫
d4x
√
−g [2α(RµνδRµν + gρσRµρRνσδg

µν)]− 2βR [Rµνδg
µν + gµνδRµν ] + γκ−2δR

Grouping together terms yields:

δS =

∫
d4x
√
−g
[

1

2g

(
αRµνR

µν − βR2 + γκ−2R
)
δg + γκ−2δR

]
+ 2

∫
d4x
√
−g [(αRµν − βRgµν) δRµν + (αgρσRµρRνσ − βRRµν) δgµν ]

We now substitute (3), (10) and (13) for the variations:

δS =

∫
d4x
√
−g
[

1

2g

(
αRρσR

ρσ − βR2 + γκ−2R
)

(−ggµνδgµν) + γκ−2Rµνδg
µν

]
+ 2

∫
d4x
√
−g (αRµν − βRgµν)

(
1

2
gαβ [∇α∇νδgµβ +∇α∇µδgνβ −∇µ∇νδgαβ −∇α∇βδgµν ]

)
+ 2

∫
d4x
√
−g (αgρσRµρRνσ − βRRµν) δgµν

After some more rearranging, we gain the intermediate result:

δS =

∫
d4x
√
−g
[
−1

2

(
αRρσR

ρσ − βR2 + γκ−2R
)
gµν + 2 (αgρσRµρRνσ − βRRµν) + γκ−2Rµν

]
δgµν

+

∫
d4x
√
−g (αRµν − βRgµν)

[
∇β{∇νδgµβ +∇µδgνβ} − gαβ∇µ∇νδgαβ −∇β∇βδgµν

]
(23)

12



The first line is in the form that we desire, so the next task is to rework the second line to match it. We

do this by initially swapping dummy indices to form δgµν on each term:∫
d4x
√
−g (αRµρ − βRgµρ)∇ν∇ρδgµν +

∫
d4x
√
−g (αRρµ − βRgρµ)∇ν∇ρδgµν

−
∫
d4x
√
−g (αRρσ − βRgρσ) gµν∇ρ∇σδgµν −

∫
d4x
√
−g (Rµν − βRgµν)�δgµν

Exploiting the fact that both Rµν and gµν are symmetric, we can write:

2

∫
d4x
√
−g (αRµρ − βRgµρ)∇ν∇ρδgµν −

∫
d4x
√
−g (αRρσ − βRgρσ) gµν∇ρ∇σδgµν

−
∫
d4x
√
−g (αRµν − βRgµν)�δgµν

We now use integration by parts to shift around the covariant derivatives (subject to the previous caveat

concerning the vanishing nature of the boundary terms). Note that, although there is no overall sign change

- the factor of −1 from each integration by parts is nullified by the fact that we perform the integration twice

on each term - the order of differentiation on each term changes:∫
d4x
√
−g [2∇ρ∇ν (αRµρ − βRgµρ)− gµν∇σ∇ρ (αRρσ − βRgρσ)−� (αRµν − βRgµν)] δgµν

We have invoked metric compatability (12) to move the metric tensor out of the covariant derivative on the

second term.

Substitution of (2) into our previous expression yields:

−
∫
d4x
√
−g [2gµαgνβ∇ρ∇ν (αRµρ − βRgµρ)− gµαgνβgµν∇σ∇ρ (αRρσ − βRgρσ)− gµαgνβ� (αRµν − βRgµν)] δgαβ

After using (12) to bring the metric tensor inside the derivatives on the first and third terms and gµαgνβg
µν =

gµαδ
µ
β = gβα on the second term we have:

−
∫
d4x
√
−g [2∇ρ∇β{gµα (αRµρ − βRgµρ)} − gβα∇σ∇ρ (αRρσ − βRgρσ)−�{gµαgνβ (αRµν − βRgµν)}] δgαβ

We can now use gµαg
µρ = δρα on the first term, the symmetry of the metric tensor on the second term and

gµαgνβg
µν = gµαδ

µ
β = gβα on the final term:

−
∫
d4x
√
−g [2∇ρ∇β (αRρα − βRδρα)} − gαβ∇σ∇ρ (αRρσ − βRgρσ)−� (αRβα − βRgβα)}] δgαβ

Rearranging this equation with the help of (12):

−
∫
d4x
√
−g [α (2∇ρ∇βRρα − gαβ∇σ∇ρRρσ −�Rαβ)− β (2∇α∇βR− gαβgρσ∇σ∇ρR− gβα�R)] δgαβ

Recognising the penultimate term contains gρσ∇σ∇ρR = ∇ρ∇ρR ≡ �R, we can perform a final switching

of dummy indices and order of indices through the symmetry of gµν :

−
∫
d4x
√
−g
[
α
(
2∇ρ∇νRρµ − gµν∇σ∇ρRρσ −�Rµν

)
− 2β (∇µ∇νR− gµν�R)

]
δgµν
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To proceed, we first make use of the Second Bianchi Identity:

Rabmn;l +Rablm;n +Rabnl;m = 0 (24)

Using this, we can multiply both sides twice by the metric tensor and exploit the antisymmetries of

the Riemann tensor:

gbngam (Rabmn;l +Rabnl;m +Rablm;n) = gbn
(
Rmbmn;l +Rmbnl;m +Rmblm;n

)
= gbn

(
Rmbmn;l −R m

b nl;m −Rmbml;n
)

Realising that the contractions of the Riemann and Ricci tensors bring about the Ricci tensor and

scalar respectively:

gbngam (Rabmn;l +Rabnl;m +Rablm;n) ≡ gbn
(
Rbn;l −R m

b nl;m −Rbl;n
)

= Rnn;l −Rnmnl;m −Rnl;n

≡ R;l −Rml;m −Rnl;n = R;l − 2Rmn;m
!
= 0

In the second line, we have recognised that the two negative terms are identical via dummy indices.

Rearranging this gives us the Contracted Bianchi Identity:

Rmn;m =
1

2
R;l ⇔ ∇mRml =

1

2
∇lR (25)

Through the use of metric compatability, we can apply the Contracted Bianchi Identity to simplify:

∇σ∇ρRρσ = ∇σ∇ρ (gσαRρα) = gσα∇σ∇ρRρα = ∇α
(

1

2
∇αR

)
=

1

2
�R

This means that we can rewrite the second term of our previous expression. The integral becomes:

−
∫
d4x
√
−g
[
α

(
2∇ρ∇νRρµ −

1

2
gµν�R−�Rµν

)
− 2β (∇ν∇µR− gµν�R)

]
δgµν

We now move onto the first term, which can be simplified by using the commutator of covariant derivatives,

for which the general expression is given by (3.2.12) in [26]VI:

(∇a∇b −∇b∇a)T c1...ckd1...dl = −
k∑
i=1

R ci
abe T c1...e...ckd1...dl +

l∑
j=1

R e
abdj T c1...ckd1...e...dl (26)

In this case, we only have the mixed (1,1) tensor Rρµ; because of the symmetry of the Ricci tensor, we need

not go through the rigmarole of raising and lowering using the metric tensor and can instead apply (26)

immediately:

(∇ρ∇ν −∇ν∇ρ)R ρ
µ =

(
−R ρ

ρνe Re µ +R e
ρνµ Rρ e

)
= R ρ

ρν eR
e
µ +R e

ρνµ Rρ e by antisymmetry of Riemann tensor

≡ RνeReµ +R e
ρνµ Rρ e ⇔ RνeR

e
µ +RρνµeR

ρe

VISee also (3.19) of [22]
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We can also use (25) once more to write:

∇ρ∇νR ρ
µ = ∇ν∇ρRρµ +RρνµeR

eρ +ReνRµe =
1

2
∇ν∇µR+RρνµeR

eρ +ReνRµe

Substituting this into our integral gives:

−
∫
d4x
√
−g
[
α

(
2

[
1

2
∇ν∇µR+RρνµeR

eρ +ReνRµe

]
− 1

2
gµν�R−�Rµν

)
− 2β (∇ν∇µR− gµν�R)

]
δgµν

= −
∫
d4x
√
−g
[
α

(
∇ν∇µR+ 2RρνµσR

σρ + 2RσνRµσ −
1

2
gµν�R−�Rµν

)
− 2β (∇ν∇µR− gµν�R)

]
δgµν

Having simplified as much as we can, we now substitute our result back into (23):

δS =

∫
d4x
√
−g
[
−1

2

(
αRρσR

ρσ − βR2 + γκ−2R
)
gµν + 2 (αgρσRµρRνσ − βRRµν) + γκ−2Rµν

]
δgµν

−
∫
d4x
√
−g
[
α

(
∇ν∇µR+ 2RρνµσR

σρ + 2RσνRµσ −
1

2
gµν�R−�Rµν

)
− 2β (∇ν∇µR− gµν�R)

]
δgµν

Collecting together similar terms, we can write:

δS =

∫
d4x
√
−g
[
α

(
−1

2
RρσR

ρσgµν + 2gρσRµρRνσ −∇ν∇µR− 2RρνµσR
σρ − 2RσνRµσ +

1

2
gµν�R+ �Rµν

)]
δgµν

+

∫
d4x
√
−g
[
β

(
1

2
R2gµν − 2RRµν − 2∇ν∇µR+ 2gµν�R

)
+ γ

(
−1

2
κ−2R+ κ−2Rµν

)]
δgµν

The second and fifth terms on the first line cancel after switching dummy indices µ and ν and utilising the

symmetry of the metric tensor. This leaves us with:

δS =

∫
d4x
√
−g
[
α

(
−1

2
RρσR

ρσgµν −∇ν∇µR− 2RρνµσR
σρ +

1

2
gµν�R+ �Rµν

)]
δgµν

+

∫
d4x
√
−g
[
β

(
1

2
R2gµν − 2RRµν − 2∇ν∇µR+ 2gµν�R

)
+ γ

(
−1

2
κ−2R+ κ−2Rµν

)]
δgµν

!
= 0 by the Principle of Least Action

As before, the integral always vanishing is equivalent to the vanishing of the integrand and the equation of

motion is:

α

(
−1

2
RρσR

ρσgµν −∇ν∇µR− 2RρνµσR
σρ +

1

2
gµν�R+ �Rµν

)
+ β

(
1

2
R2gµν − 2RRµν − 2∇ν∇µR+ 2gµν�R

)
+ γ

(
−1

2
κ−2R+ κ−2Rµν

)
= 0 (27)
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3.3 Linearised Analysis

The equations of motion for the higher-derivative action are very complicated, so we begin by considering

the solution for a static, spherically symmetric field. The metric describing such a field can be written using

Schwarzschild co-ordinates as:

ds2 = A(r)dr2 + r2(dθ2 + sin2 θdφ2)−B(r)dt2

We calculate the components of the Riemann and Ricci tensors, along with the Ricci scalar, in Section 6.1

so as not to obscure the following argument with calculational detail. To further simplify the equations, we

linearise the metric by using the functions:

A(r) = 1 + w(r) B(r) = 1 + v(r)

Here, we are assuming that both w(r) and v(r) are infintesimal in magnitude so that we need only consider

terms that in linear in w or v. Because of this, we can calculate their inverses relatively easily by calculating

the Taylor series expansion:

A−1(r) = (1 + w(r))−1 ≈ 1− w(r) B−1(r) = (1 + v(r))−1 ≈ 1− v(r)

We also assume that this linearisation criterion applies to their derivatives with respect to r, the nth order

of which we denote by suffixing n dashes.

Using these definitions, the non-zero Riemann tensor components calculated in Section 6.1 simplify to:

1. Rtrtr ≈ −v
′′

2 (1− v)− v′

4 (1− v)[w′(1− w) + v′(1− v)] ≈ −v′′ − v′

4 (w′ + v′) ≈ −v′′

2. Rtφtφ ≈ r sin2 θ(1 + w) v
′

2 (1− v) ≈ r sin2 θ
2 v′

3. Rtθtθ ≈ r(1− w) v
′

2 (1− v) ≈ r
2v
′

4. Rrφrφ ≈ − r sin2 θ
2 w′(1− 2w) ≈ − r sin2 θ

2 w′

5. Rrθrθ ≈ − rw
′

2 (1− 2w) ≈ − r2w
′

6. Rθφθφ ≈ sin2 θ[−1 + (1− w)] = sin2 θw

The non-zero components of the Ricci tensor, meanwhile, are:

1. Rtt ≈ −v
′′

2 (1− w) + v′

4 (1− w)[w′(1− w) + v′(1− v)]− v′

r (1− w) ≈ −v
′′

2 −
v′

r

2. Rrr ≈ −w
′

r (1− w) + v′′

2 (1− v)− v′

4 (1− v)[v′(1− v) + w′(1− w)] ≈ w′

r + v′′

2 −
v′

4 [v′ − w′] ≈ w′

r + v′′

2

3. Rθθ ≈ −1 + (1−w) + r
2 (1−w)[−w′(1−w) + v′(1− v)] ≈ −w+ r

2 (1−w)(−w′+ v′) ≈ −w+ r
2 (−w′+ v′)

4. Rφφ = sin2 θRθθ ≈ sin2 θ
[
−w + r

2 (−w′ + v′)
]
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Finally, the Ricci scalar will be:

R ≈ − 2

r2
+

2

r2
(1− w) + w′′(1− v)(1− w) +

v′

2
(1− v)(1− w)[w2(1− w) + v′(1− v)]− 2

r
(1− w)[w′(1− w)− v′(1− v)]

≈ −2w

r2
− 2

r
(w′ − v′) +

v′

2
[w′ + v′]− 2

r
(1− w)[w′ − v′] ≈ −2w

r2
− 2

r
(w′ − v′)− 2

r
(w′ − v′) = −2w

r2
− 4

r
(w′ − v′)

We check that if we switch off the gravitational perturbation completely by setting w = v = 0, then the

components of the Riemann and Ricci tensors and the Ricci scalar of the resulting spacetime vanish, meaning

that the spacetime around which we are expanding is flat Minkowski. This acts as a useful check of the algebra.

Having calculated these linearised metric components, we can obtain the linearised equations of motion

by manipulating the equations of motion using the metric tensor, substituting the above results and then

simplifying the resulting expressions. This involves a lot of tedious, but straightforward computation, the

details of which we omit and simply state the answer[20]:

HL
rr =− (α− 4β)r−1v′′′ − 2(α− 4β)r−2v′′ + 2(α− 4β)r−3v′ − γκ−2r−1v′

+ (3α− 8β)r−2w′′ − 2(3α− 8β)r−4w + γκ−2r−2w (28)

HL
θθ =− 1

2
(α− 4β)r2v′′′′ − 3

2
(α− 4β)rv′′′ + (α− 4β)v′′ − (α− 4β)r−1v′ − 1

2
γκ−2r2v′′ − 1

2
γκ−2rv′

+
1

2
(3α− 8β)rw′′′ − (3α− 8β)r−1w′ + 2(3α− 8β)r−2w +

1

2
γκ−2rw′ (29)

HL
tt =(α− 2β)v′′′′ + 4(α− 2β)r−1v′′′ − (α− 4β)r−1w′′′ − (α− 4β)r−2w′′

+ 2(α− 4β)r−3w′ − 2(α− 4β)r−3w′ − 2(α− 4β)r−4w − γκ−2r−1w′ − γκ−2r−2w (30)

We now calculate the linear combinations:

HL
rr + 2r−2HL

θθ ±HL
tt = −(α− 4β)r−1v′′′ − 2(α− 4β)r−2v′′ + 2(α− 4β)r−3v′ − γκ−2r−1v′

+ (3α− 8β)r−2w′′ − 2(3α− 8β)r−4w + γκ−2r−2w

+ 2r−2

[
−1

2
(α− 4β)r2v′′′′ − 3

2
(α− 4β)rv′′′ + (α− 4β)v′′ − (α− 4β)r−1v′ − 1

2
γκ−2r2v′′′

]
+ 2r−2

[
−1

2
γκ−2rv +

1

2
(3α− 8β)rw′′′ − (3α− 8β)r−1w′ + 2(3α− 8β)r−2w +

1

2
γκ−2rw′

]
±
[
(α− 2β)v′′′′ + 4(α− 2β)r−1v′′′ − (α− 4β)r−1w′′′ − (α− 4β)r−2w′′

]
±
[
2(α− 4β)r−3w′ − 2(α− 4β)r−3w′ − 2(α− 4β)r−4w − γκ−2r−1w′ − γκ−2r−2w

]
= [−(α− 4β)± (α− 2β)] v′′′′ + [−4(α− 4β)± 4(α− 2β)] r−1v′′′ + γκ−2

[
−v2 − 2r−1v′

]
+ [−2(α− 4β) + 2(α− 4β)] r−2v2 + 2 [(α− 4β)− (α− 4β)] r−3v′

+ [(3α− 8β)∓ (α− 4β)] r−1w′′′ + [(3α− 8β)∓ (α− 4β)] r−2w′′ +
[
γκ−2 ∓ γκ−2

]
r−1w′

+ [−2(3α− 8β)± 2(α− 4β)] r−3w′ +
[
γκ−2 ∓ γκ−2

]
r−2w + [2(3α− 8β)∓ 2(α− 4β)] r−4w

17



All of the terms on the second line cancel (regardless of whether we choose ‘+’ or ‘-’). We are left with:

HL
rr + 2r−2HL

θθ ±HL
tt = [−(α− 4β)± (α− 2β)]

(
v′′′′ + 4r−1v′′′

)
− γκ−2

[
v2 + rr−1v′

]
+ [(3α− 8β)∓ (α− 4β)] r−1w′′′ + [(3α− 8β)∓ (α− 4β)] r−2w′′

− 2 [(3α− 8β)∓ (α− 4β)] r−3w′ + 2 [(3α− 8β)∓ (α− 4β)] r−4w

+
[
γκ−2 ∓ γκ−2

]
(r−1w′ + r−2w)

= [−(α− 4β)± (α− 2β)]
(
v′′′′ + 4r−1v′′′

)
− γκ−2

[
v2 + rr−1v′

]
+ [(3α− 8β)∓ (α− 4β)] (r−1w′′′ + r−2w′′ − 2r−3w′ + 2r−4w)

+ γκ−2 [1∓ 1] (r−1w′ + r−2w) (31)

To simplify this result further, we use the results for the Laplacian in spherical co-ordinates:

∇2f =
1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2

Since v = v(r), the angular derivatives vanish and we are left with:

∇2v =
1

r2

d

dr

(
r2 dv

dr

)
=

1

r2

(
2r
dv

dr
+ r2 d

2v

dr2

)
= 2r−1 dv

dr
+
d2v

dr2
(32)

We can also take the Laplacian of this result again:

∇4v ≡ ∇2(∇2v) ≡ ∇2E = 2r−1 dE

dr
+
d2E

dr2
≡ 2r−1 d

dr

(
2r−1 dv

dr
+
d2v

dr2

)
+

d2

dr2

(
2r−1 dv

dr
+
d2v

dr2

)
= 2r−1

(
−2r−2 dv

dr
+ 2r−1 d

2v

dr2
+
d3v

dr3

)
+

d

dr

(
−2r−2 dv

dr
+ 2r−1 d

2v

dr2
+
d3v

dr3

)
= −4r−3 dv

dr
+ 4r−2 d

2v

dr2
+ 2r−3 d

3v

dr3
+ 4r−3 dv

dr
− 2r−2 d

2v

dr2
− 2r−2 d

2v

dr2
+ 2r−1 d

3v

dr3
+
d4v

dr4

=
d4v

dr4
+ 4

d3v

dr3
≡ v′′′′ + 4r−1v′′′ (33)

Furthermore, inspired to substitute for the last term of (31), we define:

Y ≡ r−2(rw)′ = wr−2 + w′r−1 (34)

Now:

dY

dr
=

d

dr
(wr−2 + w′r−1) = w′r−2 − 2wr−3 + w′′r−1 − r−2w′ = −2wr−3 + w′′r−1

d2Y

dr2
=

d

dr
(−2wr−3 + w′′r−1) = 6wr−4 − 2w′r−3 + w′′′r−1 − w′′r−2

Substituting these into (32) with v ↔ Y yields:

∇2Y = 2r−1(−2wr−3 + w′′r−1) + 6wr−4 − 2w′r−3 + w′′′r−1 − w′′r−2

= 2wr−4 − 2w′r−3 + w′′′r−1 + w′′r−2 (35)
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Inserting (32), (33), (34) and (35) into (31), we get:

HL
rr+2r−2HL

θθ±HL
tt = [−(α− 4β)± (α− 2β)]∇4v−γκ−2∇2v+[(3α− 8β)∓ (α− 4β)]∇2Y +γκ−2 [1∓ 1]Y

Writing these equations out explicitly, we see that they match exactly with (3.5) of [20]:

HL
rr + 2r−2HL

θθ +HL
tt = 2β∇4v − γκ−2∇2v + (2α− 4β)∇2Y

= 2β∇4v − γκ−2∇2v + 2(α− 2β)∇2Y (36)

HL
rr + 2r−2HL

θθ −HL
tt = (−2α+ 6β)∇4v − γκ−2∇2v + (4α− 12β)∇2Y + 2γκ−2Y

= 2(3β − α)∇4v − γκ−2∇2v + 4(α− 3β)∇2Y + 2γκ−2Y (37)

The following substitution presents itself as a useful simplification:

X(r) ≡ (∇2v)(r) (38)

Using this variable, the above equations become:

HL
rr + 2r−2HL

θθ +HL
tt = 2β∇2X − γκ−2X + 2(α− 2β)∇2Y (39)

HL
rr + 2r−2HL

θθ −HL
tt = 2(3β − α)∇2X − γκ−2X + 4(α− 3β)∇2Y + 2γκ−2Y (40)

Despite their relatively simple appearance, (39) and (40) are two coupled, differential equations which are

very difficult to solve, even in the simplest possible case where HL
µν = 0 and so, since all of the summands

are zero, the L.H.S. of (39) and (40) both vanish. If this is the case, then we can rearrange (39) as:

∇2Y =
1

2(α− 2β)

[
−2β∇2X + γκ−2X

]
Substituting this into (40):

HL
rr + 2r−2HL

θθ −HL
tt = 2(3β − α)∇2X − γκ−2X +

4(α− 3β)

2(α− 2β)

[
−2β∇2X + γκ−2X

]
+ 2γκ−2Y

!
= 0

After some small rearrangements:

−2γκ−2Y = 2(3β − α)

[
1 +

2β

α− 2β

]
∇2X − γκ2

[
1 +

2(3β − α)

(α− 2β)

]
X =

2(3β − α)α

α− 2β
∇2X − γκ2 (−α+ 4β)

(α− 2β)
X

This means that we can put the equation into the form:

∇2X − γκ−2 (−α+ 4β)

2α(3β − α)

(α− 2β)

(α− 2β)
X = −2γκ−2(α− 2β)

2α(3β − α)
Y

There are some internal cancellations and we are left with:

∇2X − γκ−2 (4β − α)

2α(3β − α)
X = −γκ

−2(α− 2β)

α(3β − α)
Y
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This is in the form of a screened Poisson equation:

[
∇2 − λ2

]
X(r) = −F (r) with λ ≡

√
γ(4β − α)

2κ2α(3β − α)
and F (r) =

γκ−2(α− 2β)

α(3β − α)
Y (r) (41)

To solve the screened Poisson equation, we use the method of Green’s functions, which are defined as the

function G(r) which satisfies:VII [
∇2 − λ2

]
G(r) = −δ3(r)

The translational invariance of the Laplacian suggests that a continuous 3D Fourier transform would be

useful:

G(k) =

∫
dV e−ik.rG(r)

Doing this will mean that the spatial derivatives merely bring down a factor of −ik, so the Laplacian yields

a factor of −k.k = −k2. Dividing through by the negative sign, we are left with:

[k2 + λ2]G(k) = 1 =⇒ G(k) =
1

k2 + λ2

To get G(r) back, we perform the inverse 3D Fourier transform:

G(r) =
1

(2π)3

∫
d3keik.rG(k) =

1

(2π)3

∫ ∞
0

dk

∫ π

0

dθ

∫ 2π

0

dφ k2 sin θ
eik.r

k2 + λ2

=
1

(2π)2

∫ ∞
0

dk

∫ π

0

dθ k2 sin θ
eikr cos θ

k2 + λ2

Defining the variable K ≡ kr cos θ and substituting for θ puts the integral in the form:

G(r) =
1

(2π)2

∫ ∞
0

dk

∫ −kr
kr

k2

(
−dK
kr

)
eiK

k2 + λ2
=

1

(2π)2r

∫ ∞
0

dk k

∫ kr

−kr
dK

eiK

k2 + λ2

=
1

(2π)2r

∫ ∞
0

dk
k

k2 + λ2

eikr − e−ikr

i
=

1

2π2r

∫ ∞
0

dk
k sin(kr)

k2 + λ2
(42)

In the last line, we have used Euler’s formula to subsitute for the difference of to imaginary exponentials.

The above integral can be evaluated by using complex analysis. Initially, we note that the integrand has

poles at k = ±iλ, so we extend the range of integration from {0,∞} to {−∞,∞} to use a semi-circular

contour whose diameter spans the k-axis, meaning that the only pole inside our contour is at iλ. We now

evaluate the residue of this pole for the function keikr

k2+λ2 = keikr

(k+iλ)(k−iλ) :

a−1 = lim
k→iλ

(k − iλ)

(k − iλ)

keikr

(k + iλ)
=
iλei(iλ)r

2iλ
=
e−λr

2

Now, by the residue theorem: ∫
C

keikrdk

k2 + λ2
= 2πi

(
e−λr

2

)
VIITechnically, Green’s functions are like the Dirac-Delta functions in that they should strictly be called distributions.
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Since the semi-circular arc contribution Γ→ 0 by Jordan’s LemmaVIII, we have:∫ ∞
−∞

keikrdk

k2 + λ2
= πie−λr

We now equate the imaginary components and use the fact that the resulting integrand is even overall to

get: ∫ ∞
−∞

k sin(kr)dk

k2 + λ2
= 2

∫ ∞
0

k sin(kr)dk

k2 + λ2
= πe−λr

Having evaluated the integral, we substitute back into (42):

G(r) =
1

2π2r

(
πe−λr

2

)
=
e−λr

4πr
(43)

This is of the form of the Yukawa potential.

Having worked out the Green’s function for the problem, we can use it to find the full solution:

X(r) =

∫
d3R G(r −R) F (R)

Of course, since F (R) depends on Y (r), which we still have not determined yet, this is only of limited utility;

worse, even if we were to have obtained Y (r), we still have to substitute for (34) and (38) to find the original

functions v(r) and w(r). However, the problem is not intractable, merely one of onerous algebra more suited

for Mathematica or another mathematical computation package. In lieu of this, we will content ourselves with

having demonstrated the salient point of the calculation, namely the appearance of the Yukawa potential,

and simply quote the solutions[20]:

v(r) = C +
C2,0

r
+ C2+ e

m2

r
+ C2− e

−m2

r
+ C0+ e

m0

r
+ C0− e

−m0

r
(44)

w(r) = −C
2,0

r
− C2+ e

m2

r
− C2− e

−m2

r
+ C0+ e

m0

r
+ C0− e

−m0

r

+
1

2
C2+m2e

m2r − 1

2
C2−m2e

−m2r − C0+m2e
m0r + C0+m2e

m0r (45)

In the above equations, Ca are constants and mi are the masses in the Yukawa potential given by:

m2 ≡
√

γ

ακ2
m0 ≡

√
γ

2(3β − α)κ2
(46)

Comparing (45) with (41) shows the origin of the denominator factors of m0 and m2, further exonerating

our cursory analysis.

VIIISee Section 6.2 for a justification of this procedure.
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3.3.1 Results of Linearised Analysis For a Point Particle

In the case of the point particle, the Hilbert stress-energy tensor (14) takes the form δ0
µδ

0
νMd3(x) and the

gravitational field from (44) is:

v(r) = −κ
2M

8πγr
+
κ2M

6πγ

e−m2r

r
− κ2M

24πγ

e−m0r

r
(47)

This potential appears pathological at r = 0, but we can see that this is not a true singularity by Taylor

expanding the exponential:

v(0) = −κ
2M

8πγr
+
κ2M

6πγr
(1−m2r +O(r2))− κ2M

24πγr
(1−m0r +O(r2))

=

[
−3κ2M

24πγ
+

4κ2M

24πγ
− κ2M

24πγ

]
1

r
+

[
−4κ2Mm2

24πγ
+
κ2Mm2

24πγ

]
r

r
+O(r2/r)

=
κ2M

24πγ
(4m2 −m0) +O(r)

Hence, the singularity at the origin vanishes entirely at lowest order and since the above value is perfectly

finite, there are no further regularity problems in this case.On the other hand, in the limit r → ∞, the

Yukawa potentials become negligible and we are left with the first term. By imposing the weak field limit,

we insist that as r → ∞, the above potential reduces to its Newtonian counterpart, v(r) = −GM2r ; because

the Yukawa potentials will be negligible as r →∞, we are left after substituting (20) with the following:

v(r) = −κ
2M

8πγr
= −32πGM

8πγr
= −4GM

γr

!
= −GM

2r
=⇒ γ

!
= 2 (48)

If we want our higher derivative theory to reduce to conventional General Relativity in the weak field limit,

we must therefore set γ = 2.

This raises the question as to whether there are any restrictions on the values of α and β. From the

denominators of (46), we can see that there are two problematic values, α = 0 and α = 3β, that will cause

m2 and m0 to respectively diverge.IX Noting that a sensible Newtonian limit for (47) can only be recovered

if mi ∈ R, these potentials must correspond to exponential growth/decay, rather than oscillatory solutions;

as a result, having m2 or m0 diverge in (47) is equivalent to removing the associated massive field entirely.

Examining the form of (47) also leads to another startling conclusion: the overall potential for m2 is positive

in sign (and hence repulsive), whereas the other two potentials are negative (and hence attractive). The fact

that the m2 potential is repulsive means that its energy is negative and since the existence of negative energy

excitations results in the failure of causality,[1] such a theory cannot describe our universe. The only way

to avoid these undesirable, negative energy solutions is to banish them by setting α = 0, because this will

ensure the divergence of the decaying Yukawa potential.

IXAs κ2 is a constant, it has no effect on the asymptotic behaviour.
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What we have observed in the preceding analysis is a recurring obstacle in considering higher derivative

theories of gravity: for example, in Section 5 of [20], the dynamics of the linearised model are consideredX

and the problem of negative energy modes arises once more. In fact, this is a manifestation of a more general

result that we discuss in the next section.

XIt is proven here that the spins of m2 and m0 are 2 and 0 respectively, hence the initially puzzling choice of indices.
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3.4 Ostrogradsky Instability

Having exhaustively considered the possible terms that could make up our higher derivative action in Section

3.1, it is sobering to realise that they cannot be added in a haphazard manner. In fact, due to a general

result known as the Ostrogradsky Instability Theorem, it could have been anticipated that setting a

non-zero value of α would lead to the appearance of negative energy solutions.

To see this, it will be instructive to briefly review the construction of the Hamiltonian formulation of

Classical Mechanics. For the familiar Lagrangian L(q, q̇; t), we define the canonical co-ordinates:

P1 ≡
∂L

∂q̇
Q1 ≡ q

The Hamiltonian is then obtained by using a Legendre transform on q̇ to change the variables involved in

the Lagrangian to the canonical ones defined above:

H =
∑
i

Piq
(i) − L (49)

Here, the ‘i’ index on q(i) refers to the ith temporal derivative of q. The Euler-Lagrange equations of motion

are then recovered by Hamilton’s Equations:

Q̇i =
∂H

∂Pi
Ṗi = − ∂H

∂Qi
(50)

In higher derivative theories, although Hamilton’s Equations remain identical, there are more canonical

co-ordinates to take into account.XI For example, given the Lagrangian L(q, q̇, q̈; t), we can construct the

following canonical co-ordinates[17]:

P1 ≡
∂L

∂q̇
− d

dt

∂L

∂q̈
P2 ≡

∂L

∂q̈
Q1 ≡ q Q2 ≡ q̈

Using these co-ordinates, the higher-derivative Hamiltonian can be constructed via canonical transformations

to be of the following form:

H = Q1P2 + h(Q1, Q2, P1, P2) (51)

Of crucial importance is the fact that the function h(Q,P ) does not contain any linear terms, so it is at least

quadratic in Qi and Pi. The upshot of this is that near the origin of phase space, the first term will be the

leading order contribution:

H ≈ Q1P2 ∀ Pi ≈ Qi ≈ 0

The relevant Hamilton’s equations for this approximate Hamiltonian are:

∂H

∂P1
= 0

!
= Q̇1

∂H

∂P2
= Q1

!
= Q̇2 (52)

We now demonstrate the following result, known as Cheta(y)ev’s Theorem. . .

XIThe formerly extranneous subscripts on the previous equations were added in anticipation of this fact.
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Theorem 1 Let x = 0 be an equilibrium for the system

ẋ = f(x) with x(t = 0) = x0

Furthermore, let V (x) be a continuously differentiable function satisfying V (x0) > 0 for some x0 arbitrarily

close to the equilibrium point x = 0. Let Br be the closed ball for some r > 0:

Br ≡ {x ∈ Rn | ||x|| ≤ r}

Defining U as the set of all x in the closed ball of radius r such that the fuction V (x) > 0 (such a point will

always exist because V (x0) > 0 for some x0):

U ≡ {x ∈ Br | V (x) > 0}

Then if V̇ > 0 in U, then the origin x = 0 is unstable.

Proof: To prove this, we begin by noting that if the trajectory starts in the region U − {0}, then the

trajectory cannot leave through the boundary V = 0: by definition, U is the set of all points such that V > 0

and since V̇ > 0 by stipulation, if V > 0 initially, then it will continue to be so for all time. Geometrically,

this is stating that any trajectory that escapes the region Br must do so by passing through the boundary

x = ||r||, rather than through V = 0.

What we have left to prove, therefore, is that every trajectory that begins within U leaves U. Since

x0 ∈ U , V (x0) ≥ 0 and so the trajectory starting at x(t = 0) = x0 must leave U To see this, note that if if

V (t = 0) = a then V ≥ a since V̇ ≥ 0 in U. Now let γ be the minimum value of the rate of change of V in

this region:

γ ≡ min {V̇ | x ∈ U and V ≥ a}

As V̇ > 0, γ > 0. Hence, because γ is the minimum value of the rate of change, which must be a constant:

V (x(t)) = V (x0) +

∫ t

0

V̇ (x(s))ds = a+

∫ t

0

V̇ (x(s))ds ≥ a+

∫ t

0

γds = a+ γ

∫ t

0

ds = a+ γt

Furthermore, γ > 0 means that γt grows in time and since V (x)
!
≥ a + γt, then V (x) must likewise grow

in time. Hence, x MUST leave U at some point and since we’ve already established that it cannot do so by

going through V = 0, it must go through x = ||r||. Hence, by definition, x = 0 is unstable.

Having now proved Chetayev’s Theorem, let us consider the function V (Q1, Q2, P1, P2) = Q1Q2. Antici-

pating our interest in the higher-derivative Hamiltonian, we calculate its time derivative using (52):

V̇ = Q̇1Q2 +Q1Q̇2 = (0)Q2 +Q1(Q1) = Q2
1

!
≥ 0

This potential function satisfies the conditions of Chetayev’s Theorem and so the origin must be unstable.

But by appealing to the well-known result that translations in phase space are canonical[7], we conclude that
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we can equally well recover a Hamiltonian of the form (51) at any point in phase space simply by altering

the exact canonical transformations that we apply to our Hamiltonian in order to get it in the standard form

(51). As a result, we conclude that this theory must be unstable everywhere.

This problem is not encountered in the familiar L(q, q̇; t) because in this case, there are only two canonical

co-ordinates, P1 and Q1, and so it is impossible to construct a Hamiltonian of the form:

H = QiPj + f(Q,P ) ; i 6= j

In other words, we cannot form a Hamiltonian that is linear in one of the canonical momenta because

Hamilton’s equations mean that we can re-express q̇ as a function of q and P , q̇ = v(q, P ). This means that

the lower-derivative Hamiltonian can be put in the form:

H(Q,P ) = P q̇ − L = Pv(q, P )− L⇔ Pv(Q,P )− L

By inspection, we can see that the Hamiltonian is non-linear in P , so the previous argument cannot be

applied. On this basis, it would appear that the higher derivative terms in the Lagrangian are the source of

this instability, but it is not apriori inconceivable that adding higher-still derivatives might solve the problem.

However, this is not the case: as demonstrated in [30], the resulting Hamiltonian can always be cast in a form

similar to (51) with a QiPj leading order term, meaning that we can always find a pathological Chetayev

function that ensures the instability of the theory.

It is worth noting, however, that we have implicitly assumed throughout that the phase space transfor-

mation associated with the definition of canonical co-ordinates is invertible, so that for a given P (q, q̇) and

Q(q, q̇), we can calculate q(Q,P ) and q̇ = (Q,P ) (see, for instance, (52). This condition is known as nonde-

generacy; its higher-derivative generalisation is the assumption that the definition of the highest conjugate

momentum can be inverted to solve for the highest order derivative. It is this nondegeneracy that is at

the root of the Ostrogradsky Instability: any higher derivative theory whose conjugate momenta depends

nondegenerately on its highest derivative is necessarily unstable.

To understand the problems associated with a theory possessing an Ostrogradsky instability, we first have

to appreciate the physical meaning of the Hamiltonian. Recall that if the equations defining the generalised

co-ordinates q have no explicit temporal dependence and the potential V does not depend on the generalised

velocities, then the Hamiltonian is the energy of the system.[7] Because of the linearity in one of the conjugate

momenta, the energy of the field can be changed by assuming arbitrarily positive or negative values of this

conjugate momentum, thereby ensuring the existence of both positive and negative energy solutions. As

already mentioned, this leads to the breakdown of causality.[1] Furthermore, if the theory allows interactions

between particles, then the Second Law of Thermodynamics drives the system towards the state of maximum
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entropy, which consists of a cascade of positive and negative particles undergoing as many instantaneous self-

interactions as possible.[30] Such a theory cannot physically describe our universe, where such pandemonium

is not observed.

The only way to evade this conclusion is to violate the premises necessary to ensure it, namely the

nondegeneracy of the Lagrangian. In this case, the theory is degenerate and there will therefore be associated

continuous symmetries. These symmetries can sometimes impose couplings between the canonical variables

that stabilise the system, the details depending on the exact theory under consideration. In particular, it

can be shown that a fourth order higher-derivative theory for which there is no RµνRµν term (i.e. α = 0)

is capable of having solely positive energy soluions.[23] In fact, this result can be generalised to even higher

derivative models: theories whose Lagrangians consist of functions of the Ricci scalar only do not suffer from

Ostrogradsky instabilities.[16] This means that generalisations of the Einstein-Hilbert action (16) are stable

if they are of the following form :

Sf(R) =
1

2κ

∫
d4x
√
−g[f(R)− 2Λ + LM ] (53)

Such theories are known as f(R) theories of gravity and have been studied in various cosmological and general

relativistic models (see, for instance, [16] and [17]).

If higher-derivative theories with α 6= 0 are inherently classically unstable, it could be questioned whether

there was any virtue in pursuing such theories further. In a purely classical theory, there seems little point in

considering such models as the difficulties associated with them seem insurmountable. However, in a quantum

theoretical context, the picture is very different, as the inclusion of the RµνRνµ can have unexpected and

desirable consequences as we will see in the next chapter.
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4 Quantum Aspects of Higher Derivative Gravity

4.1 Introduction

It is well-known that conventional General Relativity is non-renormalisable, representing a major challenge

in quantizing gravity. The root of this non-renormalisability lies in the Einstein-Hilbert action upon which

the theory is based. To demonstrate this, consider (16):

SEH =
1

2κ

∫
d4x
√
−g(R− 2Λ + LM )

Using dimensional analysis on the above action reveals that, due to the fact that it is second order in

derivatives, the Ricci scalar R ∼ [L]−2 (or, alternatively, [m]2 since we are using natural units), whereas the

integral measure d4x ∼ [L]4 (the square root of the metric does not contribute). Because the overall action

needs to be dimensionless, S ∼ [L]0, we must have κ−1 ∼ [L]−2 or κ ∼ [L]2. Recall that power counting

arguments can result in one of three outcomes for the dimension of the coupling constant λXII:

• λ < 0: Super-renormalisable

• λ = 0: Renormalisable

• λ > 0: Non-renormalisable

For our purposes, it is sufficient to observe that since [κ] > 0, the Einstein-Hilbert action is non-renormalisable:

although t’Hooft and Veltman showed that the theory exhibited a surprising lack of divergences at one-loop

level[24], this phenomenon does not seem to be repeated at higher-loop level.[8] Note, however, that in two

dimensions, the integral measure becomes d2x ∼ L2, so [κ] = 0 and the theory becomes renormalisable. We

will make use of this fact in Section 4.2.

In contrast, it was argued by Deser and van Nieuwenhuizen[5] that a higher derivative theory of gravity

would be renormalisable, but that it would contain ghosts, states of negative norm whose existence violates

unitarity by allowing probabilities to be negative. Since unitarity is an essential component of any consistent

quantum field theory, this would necessarily introduce difficulties in the interpretation of the higher-derivative

theory as a step towards a successful quantisation of gravity, but this problem might not be insurmountable.

A rigorous proof of this result was provided by Stelle[21], who showed that a higher-derivative theory based

on the action (19) was renormalisable to all orders of perturbation theory However, as predicted, the addi-

tional renormalisability came with the caveat that unitarity was lost: as noted in [20], this is the quantum

field analogue of the negative energy modes that appeared in the classical theories.

XIIThese results only hold for when the reference dimension is length or time; if mass is used as the reference dimension, these

inequalities are reversed.
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Stelle’s proof employed a graviton propagator of the form:[21]

Dµνρσ =
1

i(2π)4

[
2

P
(2)
µνρσ(k)

k2(ακ2k2 + γ)
− 2P

(2)
µνρσ(k)

k2([3β − α]κ2k2 + 1
2γ)

+
4P

(0−s)
µνρσ (k)

κ2k4

]

− 1

i(2π)4

∆[3P
(0−s)
µνρσ (k)−

√
3{P (0−sw)

µνρσ (k) + P
(0−ws)
µνρσ (k)}+ P

(0−w)
µνρσ (k)]

κ2k4

=
1

i(2π)4

[
2

(P
(2)
µνρσ(k)− 2P

(0−s)
µνρσ (k)

γk2
− 2P

(2)
µνρσ(k)

γ(k2 + γ[ακ2]−1)
+

4P
(0−s)
µνρσ (k)

γ(k2 + γ{2(3β − α)κ2}−1)

]

− 1

i(2π)4

∆[3P
(0−s)
µνρσ (k)−

√
3{P (0−sw)

µνρσ (k) + P
(0−ws)
µνρσ (k)}+ P

(0−w)
µνρσ (k)]

κ2k4
(54)

Here, the P
(x)
µνρσ(k), x ∈ {1, 2, (0− s)(0−w)} terms are the projectors for symmetric, rank-two tensors while

P
(0−sw)
µνρσ (k)andP

(0−ws)
µνρσ (k) are the spin-zero transfer operators. It can be seen from the first line of (54) that

the general high energy behaviour of this propagator is k−4. However, from the third line of (54), we can

see the familiar factors of α and (3β − α) appearing as they did in Section 3.3.1. Furthermore, the opposite

sign of the k = γ[ακ2]−1 pole on the third line means that non-zero α is once again responsible for the bad

quantum behaviour, namely the possibility of either the norms or the energies being negative.

Despite this, the loss of unitarity might be confined to the extent that the higher-derivative model has

some value as an effective field theory. To explain what is meant by an effective theory, consider a field theory

that we know is valid up to a certain momentum k0. We can integrate out the high-momentum degrees of

freedom to find a new theory that is valid up to a lower momentum k1 < k0. However, by rescaling our

distances and momenta, we can expand its region of applicability such that it covers the old theory’s domain

(i.e. its validity is now considered up to k0). This process of successively integrating out high k and then

‘zooming out’ through rescaling is known as coarse graining and the resultant model is an effective field

theory. While it is not the ‘true’ microscopic field theory, it will give averaged results that can still be used

to give important predictions.XIII

The effective field theory framework relies on the decoupling assumption that there exists a scale Meff

for which the low energy degrees of freedom (E << Meff) obey dynamics that can be approximated by

autonomous differential equations.[13] An autonomous differential equation is an ODE that does not

depend on the independent, parametric variable:

dx

dt
= f(x(t)) 6= f(x(t), t)

This assumption may fail when massless degrees of freedom are present. The extent to which the decoupling

assumption holds is a dynamical problem that can be investigated by extrapolating the data from high energy

theory in the hope of discovering results in experimentally accessible energy regimes. In this framework, we

XIIIAn appropriate analogy might be the use of semiclassical mechanics in that both subjects retain ‘enough’ of the underlying

theory to be useful.
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can see that the effective theory approach relies on the higher energy results being available for its own vali-

dation; this viewpoint also emphasises that the true value of obtaining such a consistent theory of quantum

gravity lies not in the calculation of higher energy results, but in being able to compute potential signs of

quantum gravity at relatively low energies.

The effective theory also depends on the coarse-graining procedure; this similarly affects the renormali-

sation properties since each application of coarse graning incrementally alter the action. As to be expected

from any dynamical system, this differential change in the action can have fixed points whose local vicinity

can be divided into stable and unstable manifolds. These are defined as the set of all points related to the

fixed point by the given coarse graining procedure via a smooth flow that either flows towards the fixed point

and terminates at it in the case of a stable manifold or else flows away from the fixed point in the case of

an unstable manifold.

We are particularly interested in the unstable manifold since any small perturbation from the fixed point

on the unstable manifold will follow a renormalised trajectory and flow away from it: it is these fixed points

that will allow a continuous limit to be taken. This is because of the fact that, by definition, a fixed point

for a given coarse graining procedure does not change under this particular coarse graining procedure (i.e.

the location of the fixed point does not change with k); thus, if we have any cutoff k0, moving to a different

value, k1 will not change the value of the fixed point. Now, if the fixed point is stable, then any deviation

from the value k0 will cause the flow to return to k0: there will be no new physics to extract from the change

in cutoff as the flow is not allowed to move away from the fixed point. Hence, in order for there to be any

overall renormalisation flow, we need to look at the unstable manifolds.

However, our analysis of the unstable manifold will be complicated if the coupling constants have the

potential of diverging at intermediate points - this danger could be realised by the presence of a pathological

region which could contain unphysical singularities. To avoid this, we need to stipulate specifically that the

manifold around the fixed point partitions into stable and unstable manifolds without including any of the

unphysical regions described above.

For a given action with a particular set of couplings, we can make a number of definitions to classify the

various couplings:

• An irrelevant coupling is a coupling that moves towards the fixed point after a fixed number of

coarse grainings and hence lies on the stable manifold of the fixed point.

• A relevant coupling is a coupling that moves away from the fixed point after a number of coarse

grainings, thereby lying on the unstable manifold of the fixed point.
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• The dimension of the unstable manifold is hence defined as the number of independent, renor-

malised trajectories connected to the fixed point (since each renormalised trajectory, by definition, is a

flow of a different coupling constant on the unstable manifold).

• An essential coupling is a genuine coupling of the field, whereas an inessential coupling can be

absorbed by a redefinition of the fields involved.

• A quasi-essential coupling is a running coupling (a coupling whose value depends on the energy

scale) that runs to a fixed, positive asymptotic value. If the ith coupling constant λi runs, then its

behaviour when undergoing changes in energy scale will be determined by its beta functions, which

will always be a differential equation of the form:

βi ≡ k
dλi
dk
⇔ dλi

dτ
(55)

Here, k is the momentum/energy whereas τ ≡ ln(k). By definition of the fixed point, these beta

functions vanish at the fixed point.

The case could arise that the unstable manifold is infinite-dimensional for a particular description of a

theory (for example, Quantum Chromodynamics in lightfront formulation[15]). In such cases, the above

geometric picture breaks down. However, the presence of concealed dependencies is conjectured so that the

formerly infinite number of independent couplings is actually finite,XIV in a similar way that a countably

infinite set of integers can be made finite by employing modular arithmetic. However, it is clear that such a

reduction of couplings must remain intact under the renormalisation flow, else new couplings would appear

as the momentum scale was changed.

Although this infinite dimensional case might appear to have only academic interest, (at least) one fas-

cinating example demonstrates that it must be afforded due consideration. The k−4 propagator discussed

so far is not the only possible choice of propagator in higher-derivative theories. Gomis and Weinberg have

investigated the use of a k−2 graviton propagator and found that these do not have the same problems with

unitarity as associated with the k−4 propagator.[9] However, the k−2 propagator suffers from exactly this

infinity of unphysical modes described above and is hence called weakly renormalisable, to distinguish it

from renormalisable theories that are realised using a finite number of coupling constants. Perturbation

theory then shows that a Gaussian fixed point (i.e. a trivial zero) exists for this theory (depending on

the coupling flow, this may turn out be a non-Gaussian fixed point (i.e. non-trivial) in the full, non-

perturbative theory).

XIVAfter all, QCD in the lightfront formulation is still QCD, only written in a different way, and the two formulations should

be equivalent.
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So far we have discussed unstable manifolds, but we have not yet emphasised the necessity of the fixed

points themselves. Because of its scale invariance, the fixed point itself must be independent of the value of

the ultraviolet cutoff, meaning that we can vary the UV cutoff regulator without changing the value of the

fixed point. This is important in the construction of a scale limit: if there was no fixed point, then there

would be no reference point that we could use when changing scales, as all points in theory space would have

some form of k-dependence.

It should be stressed that a fixed point is only a fixed point with respect to a particular coarse graining

operation, and if a different method of momentum scaling is used, then the location of the fixed point will

change. However, universality should ensure that all field theories based on fixed points referring to different

coarse graining operations have the same asymptotic behaviour, indicating that this behaviour should be

considered in terms of an equivalence class of long range limits in which physical quantities are independent

of the choice of coarse graining operation. In any case, the scaling limit is found by extrapolating from the

fixed point along the renormalised trajectory in the unstable manifold.

Each point on the renormalised trajectory of the unstable manifold is described by using the coupling

constants for a given value of momentum, k. If the value of k changes, then a set of new points on the

manifold will be mapped out; the fixed point, being scale invariant, won’t be affected by this coarse graining

procedure. The trajectories of each of the coupling constants can be determined when k → ∞, with the

number of independent coupling constants being equivalent to the dimension of the unstable manifold.

However, not all of the paths that these coupling constants follow need be independent: some could be

described by the same variables if their paths are described parametrically. Hence, the number of parameters

needed to specify a point on a D-dimensional unstable manifold must be ≤ D, but not necessarily equal to D.

Furthermore, each of these parameters can describe a different type of limiting behaviour in the momentum

limit, and so the number of parameters needed to specify a point on the unstable manifold gives the number

of possible scaling limits. Even if this is infinite, this does not necessarily mean that the theory has no

predictive power due to the aforementioned hidden dependencies in the coupling constants.

This leads us to the following definition, first made by Weinberg:[28] an asymptotically safe theory

is one for which the essential (i.e. relevant) coupling parameters approach a fixed point as the momentum

scale of their renormalisation point goes to infinity. In other words, the coupling constant themselves will

be finite as the momentum k → ∞, for if this was not true, then it is conceivable that some physically

observable quantities would likewise diverge as k → ∞. For example, if the fine structure constant α(k)

diverged as k →∞, then the electric charge would likewise diverge. However, it is not always the case that a
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coupling constant is directly related to a physical observable, so it is a meaningful clarification to distinguish

between a coupling constant diverging and a physical observable diverging since there is not necessarily a 1:1

correspondence between them.

Although the beta functions for the k−2 propagator are not currently known, it is thought that some

of the coupling constants would diverge at some finite momentum scale k0 and so be unphysical at any

scale greater than this. Thus, at least some of the infinite couplings of the k−2 theory will be asymptotically

unsafe and hence unphysical. Heuristically, the problem with higher derivative quantum gravity is to reconcile

the finite couplings of the Stelle’s k−4 propagator theory with the unitarity of Weinberg and Gomis’s k−2

propagator theory. This will presumably be done by discovering hidden dependencies of the infinite couplings

on each other, as this would likely show that the set of non-redundant coupling constants in k−2 theory is

equivalent to the finite set of couplings in k−4 theory, thereby directly establishing a correspondence between

the theories.
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4.2 2 + ε Expansion

We now turn to the motivation behind the belief that a gravitational fixed point exists. Although the existence

of such a fixed point cannot yet proven with mathematical rigourXV, a strong hint as to its presence can be

gleaned using perturbation theory. The expansion, first performed by Weinberg,[13] is based on the fact that

in d = 2 dimensions, Newton’s constant (defined below) becomes dimensionless (see Section 4.1):

gN ≡ 16πG⇔ 2κ (56)

As a result, the bare Einstein-Hilbert action in 2d is power-counting renormalisable in perturbation theory.

Weinberg then proceeded to use dimensional regularisation to switch from 2d to (2 + ε)d:

SEH =
1

gN

∫
d2x
√
gR→ 1

gN

∫
d2+εx

√
gR

Weinberg used this to show how the renormalisability of the Einstein-Hilbert action changed with ε. The

result is a flow equation of the form (55):

µ
dgN
dµ

= εgN − γg2
N = gN (ε− γgN ) (57)

There is some choice in the coefficient γ, its value resulting from the choice of reference against which the

flow of gN is measured. This arises as a result of the fact that in 2d, the Einstein-Hilbert action is topological

and so extra kinematical poles of O( 1
ε ) arise in the graviton propagator, in addition to the O( 1

ε ) poles that

usually occur from the ultraviolet divergences as a result of dimensional regularisation. Regardless of the

numerical value of γ, however, we can still show the existence of a fixed point for γ 6= 0. By definition, the

R.H.S. of (57) must vanish at a fixed point, which it does if:

gN = 0 or ε− γgN = 0 =⇒ gN =
ε

γ

In order to apply this result to d = 4 dimensions, Weinberg extrapolated his argument to state that for

ε = 2, there will be a fixed point at gN = 2
γ . Furthermore, this non-trivial fixed point had a one-dimensional

manifold, thereby satisfying the criteria for asymptotic stability. The argument loses some credibility from

the fact that ε is meant to be a small parameter to enable the use of perturbation theory techniques necessary

to derive (57)XVI, but it at least provides a plausibility argument that a non-trivial fixed point around which

gN is asymptotically safe in the required 4 dimensions does, indeed, exist.

XVThe rigorous proof of asymptotic freedom for quantum Yang-Mills theory is involved in one of the seven prestigious Millen-

nium Prize problems of mathematics.
XVIAnd if we hope to use the regular Einstein-Hilbert action in string theory, which requires 11 dimensions, the situation is

worse still.
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4.3 Proof of Asymptotic Safety For k−4 Propagator

While the previous section provided a motivational demonstration of the existence of a non-trivial fixed point

for the Einstein-Hilbert action, we already know that such a theory is power-counting unrenormalisable,

meaning that its utility is limited. However, we are now in a position to show that the higher derivative

theory based on the k−4 is asymptotically safe. To do this, consider the higher-derivative action in the form

of (22). The one-loop counterterm arising from this action is given by:[13]

∆S(1) =
µd−4

(4π)2(d− 4)

∫
ddx
√
g 2s

(
40ω2 + 30ω − 1

12ω
− γ(ω)

)
λ̃

+
µd−4

(4π)2(d− 4)

∫
ddx
√
g

[( s
κ2

)2 20ω2 + 1

8ω2
+ γ(ω)

sR

κ2
+

133

20
C2

]
+

µd−4

(4π)2(d− 4)

∫
ddx
√
g

[
5

36

(
8ω2 + 12ω + 1

)
R2 +

196

45
E

]
Here, γ(ω) is a gauge-dependent function of ω.

Although γ(ω) depends on the gauge, the 1-loop flow equations resulting from this counterterm for s, ω

and θ and universal and given by:

µ
ds

dµ
= −133s2

160π

!
= 0 @ fixed points =⇒ s

!
= 0 @ fixed points (58)

µ
dθ

dµ
= − 7

1440π2
(171θ − 56)s

!
= 0 @ fixed points =⇒ s = 0 or 171θ − 56 = 0 @ fixed points (59)

µ
dω

dµ
= −

(
200ω2 + 1098ω + 25

960π2

)
s

!
= 0 @ fixed points =⇒ s = 0 or 200ω2 + 1098ω+ 25 = 0 @ fixed points

(60)

From (58), we deduce that s
!
0 at any fixed point. From (59) and (60), we can see that the full fixed points

consist of θ and ω either being constant or the solutions of:

171θ − 56 = 0 =⇒ θ =
56

171

200ω2 + 1098ω + 25 = 0 =⇒ ω =
−1098±

√
1, 205, 604− 20, 000

400
=
−1098±

√
1, 185, 604

400

=
−1098±

√
196
√

6049

400
=
−549±

√
49
√

6049

200
=
−549± 7

√
6049

200

The fixed points are given by:

(s, θ, ω) =

[
(0, constant, constant) ,

(
0,

55

171
,
−549± 7

√
6049

200

)]
(61)

The flows of the dimensionless Newton and cosmological constants are more complicated in form, but

they both have the same structure:[13]

µ
dui
dµ

= kiui +
1

(4π)2
suiXi(γ(ω))

35



Here, ki = ±2 and Xi(γ(ω)) is an extranneous function of the gauge-dependent γ(ω). The reason that Xi

does not concern us is because we are only interested in finding the fixed points of the above equation; we

proved in (61) that for any fixed point, s must vanish and so the Xi will likewise also vanish. The vanishing

of s at the fixed points also ensures the vanishing of any product of terms, collectively called a, with s that

is differentiated:
d(as)

dµ
=
da

dµ
s+ a

ds

dµ

By definition, ds
dµ vanishes at the fixed point and, as we have shown, s also vanishes at the fixed point, so the

entire R.H.S. vanishes. For the practical purpose of finding fixed points, we therefore take:

µ
dgN
dµ

= 2gN (62)

µ
dλ

dµ
= 2λ (63)

We will extensively use these results in what follows.

Assuming that θ and ω remain at their fixed point values, the most general field redefinition that we can

make at one-loop order are given by:

g̃N = gN + ~
(
c1g

2
N + c2gNs+ c3s

2
)

+O(~2)

λ̃N = λ+ ~ (d1gN + d2s) +O(~2)

This is because each loop adds on either a power of gN or s. Here, ~ counts the number of loops and is

not Planck’s constant: we will set it to unity at the end of the calculation, but retain it as a mathematical

book-keeping devide to keep track of the order of the number of loops. Now, as before, because we will

ultimately be seeking the fixed points, we discard any terms formed from products with s:

g̃N ≈ gN + ~c1g2
N =⇒ g̃2

N +O(~2)

λ̃ = λ+ ~d1gN

Inverting these:

g̃N ≈ gN + ~c1g̃2
N =⇒ gN ≈ g̃N − ~c1g̃2

N (64)

λ ≈ λ̃− ~d1gN = λ̃− ~d1g̃N +O(~2) (65)

We now substitute (64) into (62):

µ
d

dλ

(
g̃N − ~c1g̃2

N

)
= µ

dg̃N
dµ
− ~2c1µg̃N

dg̃N
dµ

= µ
dg̃N
dµ

(1− 2~c1g̃N )
!
= 2

(
g̃N − ~c1g̃2

N

)
After rearranging this expression, we can Taylor expand the first brack up to O(~):

µ
dg̃N
dµ

= (1− 2~c1g̃N )
−1

2
(
g̃N − ~c1g̃2

N

)
=
(
1 + 2~c1g̃N +O(~2)

)
2
(
g̃N − ~c1g̃2

N

)
= 2g̃N + ~2c1g̃

2
N +O(~2)
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To complete the proof, we set ~ to unity:

µ
dg̃N
dµ
→ 2g̃N (1 + c1g̃N ) (66)

In a similar manner, we substitute (65) into (63):

µ
d

dµ
(λ̃− ~d1gN ) = µ

dλ̃

dµ
− ~µd1

dgN
dµ

!
= −2

(
λ̃− ~d1g̃N

)
To simplify this expression further, we substitute (62):

µ
dλ̃

dµ
= ~µd1

dgN
dµ
− 2

(
λ̃− ~d1g̃N

)
= −2λ̃+ ~

(
d1µ

dgN
dµ

+ 2d1g̃N

)
= −2λ̃+ ~ (d1[2gN ] + 2d1g̃N )

Inserting (64) yields:

µ
dλ̃

dµ
= −2λ̃+ ~2d1

(
[g̃N − ~c1g̃2

N ] + g̃N
)

= −2λ̃+ ~4d1g̃N +O(~2)

Finally, we set ~ to unity, which gives the final expression:

µ
dλ̃

dµ
→ −2λ̃+ 4d1g̃N (67)

The flow equation (66) has fixed points:

2g̃N (1 + g̃Nc1) = 0 =⇒ gN = 0 or 1 + g̃Nc1 = 0 =⇒ g̃N = − 1

c1

We can now substitute these separately into (67):

g̃N = 0 =⇒ −2λ̃ = 0 =⇒ λ̃ = 0

g̃N = − 1

c1
=⇒ −2λ̃− 4

c1
d1 = 0 =⇒ λ̃ = − 2

c1
d1

These results agree with (2.26) of [13] upon the assumption that ∂d1
∂λ̃

vanishes. Although there is no obvious

reason that ∂d1
∂λ̃

should vanish, this term should not strictly appear in (2.25) of [13] either. Its presence is

due to an error in keeping track of the order of ~’s: the second term on the R.H.S. of µdgNdµ had had a power

of ~ set to unity, but it still contributes to the loop calculation and drops out at O(~2).

The motivation behind recasting (62) and (63) as (66) and (67) is to draw comparisons with other ways

of evaluating these fixed points. A recent study using heat kernel asymptotics confirms the above results

for (66) and (67) for particular choices of c1 and d1. The results for (66) and (67) are also strengthened by

matching with the equivalent (gN , λ) flow defined via the truncated effective action. We will briefly describe

these alternative methods in Section 5
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5 Conclusion

Whilst the Einstein-Hilbert action is the most general action that can be constructed from two-index, sym-

metric, divergenceless tensors in 4 dimensions using only up to second order in derivatives in the metric, more

general actions can be built by considering higher order derivatives. However, these higher order terms only

make small changes to Einstein’s equation and can be associated with the introduction of pathological nega-

tive energy solutions. We have demonstrated both of these facts explicitly in the linearised higher-derivative

theory of the point particle, showing not only the introduction of the negative energy mode for α 6= 0, but

also that the Newtonian limit only involved the original Einstein-Hilbert term. The latter problem was then

shown to be a pervasive difficulty in higher derivative theories through Ostrogradsky’s Instability Theorem

a general result that limits the physical applicable actions to f(R) theories, at least at a classical level.

The primary reason of continued interest in non-f(R) higher derivative theories stems from their quan-

tum properties, specifically that they are renormalisable. Because of this, renormalisation group techniques

involving the location and nature of fixed points from the beta functions of the coupling constants can be

used to probe its field theoretical properties. In particular, Weinberg’s notion of asymptotic safety - the

necessity of the relevant couplings to tend towards a fixed point as the energy scale diverges - is now used as

the outstanding criterion of renormalisation viability.

We considered three main theories of gravity, each with an associated physical problem when it came to

quantization:

1. Einstein-Hilbert Gravity:

(a) Non-renormalisable

(b) Physical, finite couplings

(c) Unitary

2. Higher derivative gravity with k−4 propagator:

(a) Renormalisable

(b) Physical, finite couplings

(c) Non-unitary

3. Higher derivative gravity with k−2 propagator:

(a) Renormalisable

(b) Unphysical, infinite couplings
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(c) Unitary

As an illustration of the concepts mentioned in the previous paragraph, we showed the asymptotic safety of

both the Einstein-Hilbert action and higher derivative theory of gravity with a k−4 graviton propagator. The

beta functions of k−2 propagator higher derivative theories are currently unknown, but it is thought that some

of the infinite couplings would diverge at finite momentum, leading to this theory being asymptotically unsafe.

There are several different areas of ongoing research in these topics that this project did not consider

in detail, particularly with regards to the quantum properties of higher derivative theories. A relatively

fertile area concerns the application of the Exact Renormalisation Group Equation (ERGE) which

was first developed by Wetterich[29] (in which context the ERGE was known as the Wetterich equation)

and adapted for gravitational use by Reuter[18]. It has the advantage of being non-perturbative in nature,

meaning that it can be used to demonstrate non-perturbative renormalisability even if the theory turns out

to be ultimately non-perturbatively renormalisable. The ERGE is difficult to solve, but can be dealt with

by using an effective action truncation, whereupon it can be expanded using heat-kernel asymptotics.XVII[4]

However, higher-derivative theories have been studied in cosmological and string-theoretical contexts.[6]

An interesting topic for higher derivative gravity at a classical level involves the Palatini formulation of

General Relativity. It has been shown[17] that Ostrogradsky’s Instability Theorem can be circumvented for a

(Born-Infeld) modification to the action beyond the aforementioned f(R) theories provided that the resulting

Lagrangian is varied in the Palatini formalism. Furthermore, it has been shown[2] that there can be solutions

(of the equation of motion) found using the Palatini formalism that cannot necessarily be found using the

metric formalism discussed in this project. It might therefore be a useful venture to analyse the solutions

of the equations of motion found by the Palatini formalism that are unique to the Palatini formalism, with

the view of finding a previously neglected solutions that might offer new insights into the renormalisation

process.

XVIIThese are also referred to as Hessian methods.
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6 Appendices

6.1 Appendix 1: Riemann & Ricci Tensors For a Static, Spherically Symmetric

Metric

Following the analysis of [20], the metric describing such a field can be written using Schwarzschild co-

ordinates as:

ds2 = A(r)dr2 + r2(dθ2 + sin2 θdφ2)−B(r)dt2

This means that the metric elements are:

grr = A(r) gθθ = r2 gφφ = r2 sin2 θ gtt = −B(r)

Correlating this with (8.1.7) of [27]XVIII, we immediately infer that:

grr = A−1(r) gθθ = r−2 gφφ = r−2 sin−2 θ gtt = −B−1(r)

and the non-vanishing Christoffel symbols will be given by (8.1.11) of [27]:

Γttr =
B′

2B
Γrrr =

A′

2A
Γrθθ =

r

A
Γrφφ =

r sin2 θ

A
Γrtt =

B′

2A

Γθrθ =
1

r
Γφφr =

1

r
Γφφθ = cot θ Γθφφ = − sin θ cos θ

In the above and successive formulae, the dashes indicate differentiation with respect to r.

In order to minimise the computation in the next section, we will need to compute the Riemann tensor

components for this metric.XIX The Riemann tensor is given by (6.1.5) of [27]:

Rαβγδ = ∂δΓ
α
βγ − ∂γΓαβδ + ΓµβγΓαµδ − ΓµβδΓ

α
µγ

Let us now consider how many independent components we have to calculate. Ostensibly for an n-dimensional

theory, since the Rieman tensor has 4 indices, each of which can take one of n values, then there are 4n

different combinations, but the symmetries heavily restrict this value. Firstly, the antisymmetry means

that any Riemann tensor with 3 or 4 repeated indices vanishes, so we need only consider those with 2 or

less repeated indices. There will be

 n

2

 ways of choosing two distinct indices out of the n available.

Furthermore, there will be

 n

3

 ways of choosing 3 distinct indices, with the repeated index being any one

of these 3; this means that there will be 3

 n

3

 components with one repeated index. Finally, for 4 distinct

XVIIINote that [27] uses the (+,−,−,−) metric, whereas [20] uses the (−,+,+,+) metric.
XIXDespite the applicability of these results, the author was unable to locate them in any textbooks or papers, so they will be

derived here.
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indices, there will be n(n − 1)(n − 2)(n − 3) different arrangements, but the symmetry and antisymmetries

reduce this number by a factor of 23 = 8. Finally, the first Bianchi identity:

Rαβγδ +Rαγδβ +Rαδβγ ⇔ Rα[βγδ] = 0 (68)

ensures that if we know two values of Rαβγδ, then the third is already determined. This means that we must

multiply this final value by a factor of 2
3 .

Putting this altogether, the total number of independent components of the Riemann tensor is: n

2

+ 3

 n

3

+
2

3

n(n− 1)(n− 2)(n− 3)

8
⇔ n2(n2 − 1)

12
(69)

The first, second and third terms correspond to the number of 2, 3 and 4 distinct indices respectively; the

final term is the usual formula that is quoted for this result. In our case, n = 4, so we will have

 4

2

 = 6

components with 2 distinct indices, 3

 n

3

 = 12 components with 3 distinct indices and 2
3

4×3×2×1
8 = 2

components with 4 distinct indices, or 20 in total. It might be surprising at first glance that there are many

more components with repeated indices than there are with no repeated indices, but it is exactly in the latter

case that there is the most freedom in index choice before the symmetries are imposed and therefore the case

for which the symmetries have the most restrictive power.

We list the 20 components of the Riemann tensor below:

1. Rtrtr = ∂rΓ
t
tr − ∂tΓtrr + ΓµrtΓ

t
µr − ΓµrrΓ

t
µt = ∂r

(
B′

2B

)
+ ΓtrtΓ

t
tr − ΓrrrΓ

t
tr = B′′

2B −
B′

4B

(
A′

A + B′

B

)
2. Rtφtφ = ∂φΓttφ − ∂tΓtφφ + ΓµφtΓ

t
µφ − ΓµφφΓtµt = −ΓrφφΓttr = r sin2 θ

A
B′

2B

3. Rtθtθ = ∂θΓ
t
tθ − ∂tΓtθθ + ΓµθtΓ

t
µθ − ΓµθθΓ

t
µt = −ΓrθθΓ

t
tr = r

A
B′

2B

4. Rrφrφ = ∂φΓrφr − ∂rΓrφφ + ΓµφrΓ
r
µφ − ΓµφφΓrµr = −∂r

(
− r sin2 θ

A

)
+ ΓφφrΓ

r
φφ − ΓrφφΓrrr = −r sin2 θ A′

2A2

5. Rrθrθ = ∂θΓ
r
rθ − ∂rΓrθθ + ΓµθrΓ

r
µθ − ΓµθθΓ

r
µr = −∂r

(
1
r

)
+ ΓθθrΓ

r
θθ − ΓrθθΓ

r
rr = − rA′

2A2

6. Rθφθφ = ∂φΓθθφ − ∂θΓθφφ + ΓµθφΓθµφ − ΓµφφΓθµθ = −∂θ (− sin θ cos θ) + ΓφθφΓθφφ − ΓrφφΓθrθ = sin2 θ
(
−1 + 1

A

)
7. Rtrtφ = ∂φΓttr − ∂tΓtrφ + ΓµrtΓ

t
µφ − ΓµφrΓ

t
µt = 0

8. Rtrtθ = ∂θΓ
t
tr − ∂tΓtrθ + ΓµrtΓ

t
µθ − ΓµθrΓ

t
µt = 0

9. Rtθtφ = ∂φΓttθ − ∂tΓtθφ + ΓµθtΓ
t
µφ − ΓµφθΓ

t
µt = 0

10. Rrtrφ = ∂φΓrrt − ∂rΓrtφ + ΓµtrΓ
r
µφ − ΓµφtΓ

r
µr = 0
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11. Rrtrθ = ∂θΓ
r
rt − ∂rΓrtθ + ΓµtrΓ

r
µθ − ΓµθtΓ

r
µr = 0

12. Rrθrφ = ∂φΓrrθ − ∂rΓrθφ + ΓµθrΓ
r
µφ − ΓµφθΓ

r
µr = 0

13. Rθtθr = ∂rΓ
θ
θt − ∂θΓθtr + ΓµtθΓ

θ
µr − ΓµrtΓ

θ
µθ = 0

14. Rθtθφ = ∂φΓθθt − ∂θΓθtφ + ΓµtθΓ
θ
µφ − ΓµφtΓ

θ
µθ = 0

15. Rθrθφ = ∂φΓθθr − ∂θΓθrφ + ΓµrθΓ
θ
µφ − ΓµφrΓ

θ
µθ = 0

16. Rφtφr = ∂rΓ
φ
φt − ∂φΓφtr + ΓµtφΓφµr − ΓµrtΓ

φ
µφ = 0

17. Rφtφθ = ∂θΓ
φ
φt − ∂φΓφtθ + ΓµtφΓφµθ − ΓµθtΓ

φ
µφ = 0

18. Rφrφθ = ∂θΓ
φ
φr − ∂φΓφrθ + ΓµrφΓφµθ − ΓµθrΓ

φ
µφ = 0

19. Rtrθφ = ∂φΓtθr − ∂θΓtrφ + ΓµrθΓ
t
µφ − ΓµrφΓtµθ = 0

20. Rtφθr = ∂rΓ
t
θφ − ∂θΓtφr + ΓµφθΓ

t
µr − ΓµφrΓ

t
µθ = 0

From this, we can calculate the components of the Ricci tensor. The non-diagonal components (i.e. Rµν

with µ 6= ν) all vanish because of the vanishing nature of the Riemann tensor with 3 or more distinct indices;

the non-diagonal components are:

Rtt ≡ Rµtµt = Rrtrt +Rθtθt +Rφtφt +Rtttt = grρRρtrt + gθρRρtθt + gφρRρtφt

= grρRtρtr + gθρRtρtθ + gφρRtρtφ by antisymmetry of Ricci tensor

= grρgtβR
β
ρtr + gθρgtβR

β
ρtθ + gφρgtβR

β
ρtφ

= grrgttR
t
rtr + gθθgttR

t
θtθ + gφφgttR

t
φtφ since metric is diagonal

= −BA−1

[
B′′

2B
− B′

4B

(
B′

B
+
A′

A

)]
− B

r2

(
r

A

B′

2B

)
− B

r2 sin2 θ

(
r sin2 θ

A

B′

2B

)
= −B

′′

2A
+
B′

4A

(
A′

A
+
B′

B

)
− B′

2Ar
− B′

2Ar
= −B

′′

2A
+
B′

4A

(
A′

A
+
B′

B

)
− 1

r

B′

A

Rrr ≡ Rµrµr = Rrrrr +Rθrθr +Rφrφr +Rtrtr = gθθgrrR
r
θrθ + gφφgrrR

r
φrφ +Rtrtr

= r−2A

(
− rA

′

2A2

)
+ r−2 sin−2 θA

(
−r sin2 θA′

2A2

)
+

[
B′′

2B
− B′

4B

(
B′

B
+
A′

A

)]
= − 1

2r

A′

A
− 1

2r

A′

A
+
B′′

2B
− B′

4B

(
B′

B
+
A′

A

)
= −1

r

A′

A
+
B′′

2B
− B′

4B

(
B′

B
+
A′

A

)

Rθθ ≡ Rµθµθ = Rrθrθ +Rθθθθ +Rφθφθ +Rtθtθ = Rrθrθ + gφφgθθR
θ
φθφ +Rtθtθ

= − rA
′

2A2
+

r2

r2 sin2 θ
sin2 θ

(
−1 +

1

A

)
+
r

A

B′

2B
= −1 +

1

A
+

r

2A

(
−A

′

A
+
B′

B

)
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Rφφ ≡ Rµφµφ = Rrφrφ +Rθφθφ +Rφφφφ +Rtφtφ = −r sin2 θ
A′

2A
+ sin2 θ

(
−1 +

1

A

)
+
r sin2 θ

A

B′

2B

= sin2 θ

[
−1 +

1

A
+

r

2A

(
−A

′

A
+
B′

B

)]
= sin2 θRθθ

The above calculations for the Ricci tensor agree with (8.1.13) of [27], increasing confidence in our

calculation of the components of the Riemann tensor. From this, we can finally calculate the Ricci scalar:

R ≡ Rµµ = gµνRνµ = grrRrr + gθθRθθ + gφφRφφ + gttRtt since metric is diagonal

= A−1

[
−1

r

A′

A
+
B′′

2B
− B′

4B

(
B′

B
+
A′

A

)]
+

1

r2

[
−1 +

1

A
+

r

2A

(
−A

′

A
+
B′

B

)]
+

1

r2 sin2 θ

[
sin2 θ

(
−1 +

1

A
+

r

2A

(
−A

′

A
+
B′

B

))]
−B−1

[
−B

′′

2A
+
B′

4A

(
A′

A
+
B′

B

)
− 1

r

B′

A

]
= − 1

Ar

A′

A
+

B′′

2AB
− B′

4AB

(
B′

B
+
A′

A

)
+

B′′

2AB
− B′

4AB

(
A′

A
+
B′

B

)
+

1

r

B′

AB
+

2

r2

[
−1 +

1

A
+

r

2A

(
−A

′

A
+
B′

B

)]
=
B′′

AB
− B′

2AB

(
A′

A
+
B′

B

)
− 1

Ar

(
A′

A
− B′

B

)
− 2

r2
+

2

Ar2
+

1

Ar

(
−A

′

A
+
B′

B

)
= − 2

r2
+

2

Ar2
+
B′′

AB
− B′

2AB

(
A′

A
+
B′

B

)
− 2

Ar

(
A′

A
− B′

B

)
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6.2 Appendix 2: Justification of Jordan’s Lemma

To be able to use Jordan’s lemma in the proof of the Green’s function of the screened Poisson equation, we

strictly need that for eizf(z) with:

f(z) ≤ M

Rn
, n ≥ 1

Only in this case will:

lim
R→∞

∫
Γ

eizf(z)dz → 0

We require, therefore, that:

|keikr|
|k2 + λ2|

≡ |z/reiz|
|(z/r)2 + λ2|

=
|zreiz|
|z2 + r2λ2|

≤ M

Rn

To this end, by inspection:

|z2 + r2λ2| ≥ |r2λ2| − |z2| =⇒ 1

|z2 + r2λ2|
≤ 1

|r2λ2| − |z2|

Furthermore, on ΓR, |z2 + r2λ2| ≥ R2 − r2λ2 since max z = R ≥ 0, meaning that:

1

|z2 + r2λ2|
≤ 1

R2 − r2λ2

Now, let us briefly assume that:

2(R2 − r2λ2) ≤ R2 =⇒ 1

R2
[2(R2 − r2λ2)] = 2

(
1− r2λ2

R2

)
≤ 1

This yields 2 ≤ 1 when R → ∞. Since R2
!
> 0, there is no possibility of changing ’≤’ into ’≥’ through

division of an inequality by a negative number and so, to avoid this absurd conclusion, we must have that as

R→∞:

2(R2 − r2λ2) ≥ R2 =⇒ R2 − r2λ2 ≥ R2

2
=⇒ 1

R2 − r2λ2
≤ 2

R2

Putting this all together yields the required form with M = n = 2:

1

|z2 + r2λ2|
≤ 2

R2
→ 0 as R→∞
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