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Abstract

The researches on magnetic monopole, both theoretically and experimen-
tally, have inspired many generations for it had the potential to provide new
physics beyond the standard model. Despite the lack of either experimental
or observational evidence of their existence, ideas and techniques that were
originally invented for the purpose of studying magnetic charges have already
played important roles in theoretical high-energy physics. In this thesis, the
historical development of monopole researches would be reviewed and the
discrete space-time lattice modification of the monopole theory would be
discussed in more details.
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1 Introduction

The theory of electromagnetism (EM) was one of the most profound and
fruitful theories in modern physics. From a theoretical respective, the ideas
used to construct the theory had laid down the foundations of some much
more fundamental theories. Among them, there are the theory of quantum
electrodynamics, the electroweak theory and what eventually leads to the
complication of the Standard Model in particle physics. Alternative thinking
of electric induction was also the initiative that inspired Albert Einstein to
build the theories of special and general of relativity [1]. There are also count-
less experimental apparatus built on the basis of electromagnetism, in fact,
one can rarely think of a piece of equipment in the arsenal of the experimen-
talists that does not, to some extent, involve the uses of electromagnetism.
This thesis, however, would focus on one specific property of the EM the-
ory, which is the arguably plausible existence of a magnetic charge, magnetic
monopole. We would show, as the chapter progresses, despite being nothing
but a simple concept when the idea was initially proposed, its later develop-
ment showed such a great potential that would not only refresh our thinking
about the existing theories but also provide route to completely new theories
of a much wider physical picture. The layout of the thesis follows the histor-
ical timeline as we will start from the classical theory of Maxwell’s in 1870s
and end up discussing the non-perturbative lattice C-boundary condition
approach that has been developed over the last decade.
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2 Classical/Semi classical theories of magnetic

monopoles

“A bar magnet has two poles, and they cannot be separated into two inde-
pendent monopoles.” This is what everyday experience tells people how one
should describe the basic nature of classical magnetism.

The concept of magnetic monopole was long regarded only as the hypothet-
ical particle that was merely introduced to Maxwell’s theory of electromag-
netism for computational convenience. Back then, it was believed that the
existence of an independent magnetic charge had no physical reality [2]. De-
spite being only a concept, because it would restore the electric-magnetic
dual symmetry, it had proven its value in practical calculations, for example
in Ref. [3]. Besides the opinions of the majority of scientific society at the
time, in 1894, Pierre Curie made a suggestion that it might be possible for
the real independent magnetic charge to exist in nature [4]. Almost all the
later developments on the subject would be under the concept of quantum
mechanics, yet I believe that a classical description would still be necessary,
not only as a conceptual introduction but also to provide a less-abstract
picture for discussion and to set the classical limit.

2.1 Maxwell equation

The classical theory of electromagnetism was regarded as one of the earliest
of unified theories. It was James Clerk Maxwell who combined the works
of earlier researchers in, at the time was been regarded as, separate fields of
electricity and magnetism to present a unified theory of electromagnetism [5].
Probably inspired by Faraday’s law of magnetic induction [6], the changing
magnetic field produces an electric field, Maxwell realised that a changing
electric field should also generate a magnetic field. He carried this ideas
further and wrote down a set of four equations that we now recognise as
Maxwell equations [5]:

∇ · E = 4πρ ∇ ·B = 0

∇×B =
1

c

∂

∂t
E +

4π

c
j ∇× E =

1

c

∂

∂t
B (2.1)

Although not manifestly obvious in this representation, the set of equa-
tions possess the Lorentz symmetry: invariance under spatial rotation (group
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SO(3), or O(3) if parity included) [7]. By the virtue of this property of sym-
metry, despite the fact that these equations were constructed prior to the
days of Einstein’s theory of relativity and the theory of quantum mechanics,
it stood alongside very few that had survived the scientific revolutions of the
20th century.

However, there is one thing that makes the theory less “satisfactory” to many
great minds of the time [8][9]. The lack of magnetic charge and magnetic
current spoils the other type of symmetry that makes the theory mathemat-
ically imperfect3. The original Maxwell equations had only electric sources,
the electric charge density, ρ, and the electric current density, j. This enables
people to write the set of four equations into two subsets of two equations
each, the sourced ones and the source-less ones. However, if we were able to
introduce the magnetic sources (magnetic charge and magnetic current) into
the theory, the electric-magnetic dual symmetry would be restored and four
equations become, essentially, one! To mathematicians (and many others, au-
thor included), the beauty of one completely unified equation is irresistible
and because the Maxwell equation does not forbid the existence of such an
object, the original version of the equations can be easily modified.

2.2 Dual Maxwell equation

After introducing the magnetic charge and the corresponding current, the
modified Maxwell equations read:

∇ · E = 4πρe ∇ ·B = 4πρm

∇×B =
1

c

∂

∂t
E +

4π

c
je −∇× E =

1

c

∂

∂t
B +

4π

c
jm (2.2)

where ρe and je are the original electric charge density and electric current
density respectively. In addition, the magnetic charge density ρm and mag-
netic current density jm are brought into the equations. It is easy to see how
the dual-symmetry is restored. In other words, it is trivial to notice that
the dual Maxwell equations are invariant under the exchange of electric and
magnetic components.

Mathematically, the electric-magnetic exchange can be written in a complex
form:

3This was arguably the very first initiative of introducing the monopole into the theory.
Unfortunately, no references or any prove were found to support this clasim.
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∇ · (E + iB) = 4π(ρe + iρm)

∇× (E + iB) = i
1

c

∂

∂t
(E + iB) + i

4π

c
(je + ijm) (2.3)

For convenience, we take natural units where, c = ~ = 1, and ignore the
numerical factor of 4π. The electric-magnetic exchange symmetry, or duality
transformation, has the form of a rotation of the complex phase θ.

E + iB −→ eiθ(E + iB)

ρe + iρm −→ eiθ(ρe + iρm)

je + ijm −→ eiθ(je + ijm) (2.4)

For further uses in later sections, I shall note that there is a symmetry group
corresponds to the transformation called U(1).

2.3 Semi-classical quantization

The charge quantization condition could be derived from the semi-classical
treatment in quantisation of the angular momentum. Consider a static sys-
tem consists of an electric charge (e) and a magnetic charge (g) separated by
a distance R. The rule of quantization of angular momentum reads:

J ·R = eg/c = n~/2, n = 0,±1,±2, . . .

or

eg = m~c, (2.5)

where m is a half integer. And we shall see later this is the essential require-
ment that Dirac proposed for electromagnetic charges to inevitably exist in
quantum theory.

In later section of this review, we would encounter somewhat more mathe-
matically sophisticated expressions of the same theory from different aspects
of understanding. Nevertheless, the laws of electromagnetism remain at the
heart of all the attempts to explain the magnetic monopole, which is gov-
erned by the Maxwell equations. These are the equations of motion all the
hypothetical construction of monopole theory must obey.
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3 Monopoles in quantum mechanics

3.1 Dirac monopoles

Despite the theory of monopole had been investigated by many prior to the
birth of quantum mechanics, the subject was not treated as importantly since
the classical approach does not provide any insight or explanation of its rea-
son of existence. The attitude of the scientific society did not change until
the paper published by the British physicist Paul Dirac in 1931[10]. The
theory proposed in this paper was originally supposed to give a theoretical
value of the fundamental electric charge, or as in the original paper the fine
structure constant. But instead, Dirac worked out a connection between
the unit electric charge and a unit magnetic monopole, hence proposed the
existence of a particular symmetry between electricity and magnetism, ana-
logues to the dual symmetry we have seen in the classical modification of the
Maxwell theory. He argued the necessity of such a symmetry that without
it the important experimental ratio ~c/e2 , fine structure constant, would
remain theoretically completely undetermined.

Dirac’s argument was based on the fact of redundant information of a phys-
ical system should not have any physical meaning and hence should not be
observable despite the conditions under which any experiments are to per-
form. For example, let us consider the simple case of a single particle whose
equation of motion is represented by a wave function ψ of the form ψ = Ceiθ,
where C and θ denote the amplitude and phase respectively. In this example,
the redundant degree of freedom is the complex phase, which does not have
physical meanings, either it should have. In order to avoid the ambiguity
in the practical applications of the theory, we shall propose the condition
that over a integer number of rotation around a loop, 2πn, the wave function
remains the same.

Therefore, we can write the wave functions that describe the electromagnetic
fields as,

ψ = Ceiθ = Cei2πnθ, n ∈ Z (3.1)

Let us then consider the case where the wave function of electromagnetic
field vanishes in three-dimensional space. Since the phase space of a general
wave function is complex it would require two conditions to vanish. So in
general it will vanish along a line, called nodal line[10].
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In any given finite volume of space, we could have three different scenarios.

• The trivial case is where the nodal lines do not cross the closed surface
of space.

• The second case is that all the nodal lines enter the volume would
necessarily leave. In another words, all the nodal lines would cross the
closed surface at least twice, and the magnetic flux would always be
zero as the incoming lines always have outgoing counter-flux.

For our purpose of discussion, the interesting case is

• if the nodal line ends inside a three-dimensional closed surface.

We would then see a non-zero magnetic flux crossing it. We can write down
the required change restriction in phase condition as:

2πn+
e

~c
·
∫

(H · dS) = 0, (3.2)

The first term represents the vanishing conditions we applied earlier, where
n is the number of end point of nodal lines inside the space. We can solve for
the simplest non-trivial case when n = 1, this means we have only a single
pole inside the surface and we integrate over the volume to get

4πµ = 2π~c/e. (3.3)

We can regard µ as the field strength of a single pole (end of a nodal line)
inside the surface. Effectively, µ ≡ g is the fundamental unit of a Dirac mag-
netic charge. It is easy to spot that we have obtained the same quantization
condition as what we have seen in the semi-classical approach. Therefore,
Dirac argued that the quantization of the equations of motion of charges in
the electromagnetism is possible if the multiples of unit charges satisfying
the Dirac quantization condition:

e0g0 =
1

2
~c, (3.4)

Note that the theory does not fix the value of either charge but only the
product, so it would be rather surprising if the monopole did not exist [10].
In nature, although the magnetic charges are yet to be discovered, the electric
charges do obey such a condition.
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3.2 Basic properties of an isolated monopole

Let us then consider what type of field such a monopole would cause. Anal-
ogous to the properties that of an electric charge, we would expect the mag-
netic monopole generates a field of the form,

B(r) =
g

4πr3
r (3.5)

In the model, we have assumed the present of a free magnetic charge at the
origin of he space. This configuration must satisfy the dual Maxwell equa-
tions (or more precisely the equivalent the field equation of), as well as the
requirement of charge quantization. In order to define a Hamiltonian, which
is the essential description in quantum field theories, one must introduce a
vector potential A and the magnetic field would be defined as the curl of that
potential, B = ∇×A. However, any continuous potential would not fit the
requirement of the dynamics, since

∇ ·B = ∇ · (∇×A) = 0. (3.6)

More generally, we can consider the field strength tensor of monopole–free
electromagnetism

Fµν = ∂µAν − ∂νAµ. (3.7)

The dual tensor is

F †νµ =
1

2
εαβνµF

αβ (3.8)

The dual Maxwell equation in the field notation can be written as

∂νFνµ = −4πjµ, ∂νF
†
νµ = −4πkµ (3.9)

where jµ and kµ are the electric and magnetic currents respectively.

In order to express the motion of the particle we denote the world line of
any given particle in terms of its proper time τ , and its four-coordinates
zµ = zµ(τ). Thus, according to Lorentz’s equation, the motion of the charged
particles obeys

16



me(
d2zµ
dτ 2

) = e
dzν

dτ
F (z)νµ (3.10)

and

mg(
d2zµ
dτ 2

) = g
dzν

dτ
F †(z)νµ (3.11)

While in the Eq. (3.6), the reason of vanishing flux is purely mathematical,
Eq.(3.10) and Eq. (3.11) fail because the field strength are to be taken at
any point z in space-time and are there infinitely great and singular [11]. It
turns out that the presence of monopole forces the conventional equations of
motion to fail at somewhere on the surface.

The way around this problem was to introduce a hypothetical object, along
which we could place the singularies. Suppose there is a large surface contain-
ing many monopoles, and we can divide it into a network of smaller closed
surfaces surrounding one pole each. We restrict Eq(3.11) to fail at one point
on every closed surface, so that it will fail on a line of such points forming a
string, the Dirac String. As a consequence of this configuration, every pole
must be attached to such a string. These strings do not corresponding to any
physical observables and the choice of variables to describe these strings must
be arbitrary and do not influence any physical phenomena. Mathematically,
we can write the new expression of the field strength including the strings
represented by singularities

F †µν = ∂µAν − ∂νAµ + 4π
∑

(G†µν)g, (3.12)

where each G†µν is a field quantity which vanishes everywhere except on the
sheets traced out by the strings. One natural choice of G†µν is to define a
singular vector potential [12]. Consider:

A(r) =
g

4πr

r× n̂)

r − r · n̂
(3.13)

where r is the position vector and n̂ is a unit vector. Under this particu-
lar choice of singularity, the resulting magnetic field will be identical to a
Coulomb-like field as in Eq.(3.5), apart from in the direction of the vector n
and this is a line of singularities.
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We can easily visualize this field by considering a semi-infinite long solenoid
with one end at the origin. It carries electric current of the magnitude
je = g/2πR, where R is the radius of the solenoid cross-section. Analo-
gous to the example of the complex phase in wave function if we propose
that the solenoid is infinitesimally thin and then, in the classical limits, it
would be necessarily unobservable and therefore unphysical. As far as the
physics is concerns, it will appear to be an isolated monopole at the origin.
Argued along this line, Dirac concluded [11], quantum electrodynamics al-
lows the existence of point-like magnetic monopoles attached to the end of
an unphysical string provided the Dirac quantization condition is satisfied
and the string does not cross the charged particles.

The effective quasi particle with magnetic charges analogous to the Dirac
monopole has been observed recently in spin ice, a frustrated magnetic con-
densed matter system [13][14]. The formation of these monopoles occurs
when the dipole moment of the electronic degrees of freedom fractionalizes,
which is essentially a phase transition in the spin ice at high-dimensional frac-
tionalization. One thing worth mention is that the Dirac strings attached to
the monopoles in the spin ice system are actually observables and therefore
the particles are not quantized. It is the “string soup” characteristic of the
system makes the strings energetically unimportant and practically impos-
sible to locate to any specific monopole in the system. Nevertheless, these
effective monopoles have very similar properties to actual Dirac monopoles
and can provide new ways to study the physics about them.

The theory of Dirac monopole was undeniably important as it pioneers the
way that people would think about the otherwise purely theoretical object.
However, the theory had its drawbacks. Among which the most inconvenient
is the fact that it attempted to introduce a new unphysical object, namely
Dirac string, in order to clarify the existence of the originally hypothetical
monopole. And also because of the fact that the monopole does not occur
automatically in QED, and it turns out to be rather difficult to add such
modification in it [15].
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4 t’ Hooft-Polyakov monopole

Back in 1970s, people had moved on from the formulation of QED towards the
construction of a theory that unifies the electromagnetic, weak and strong
interactions. Along its development, a new theory of magnetic monopoles
proposed independently by both Dutch scientist G. ‘t Hooft and Russian
(USSR) physicist A.M. Polyakov caught peoples’ attention once again. In
their papers, they demonstrated that in the broken phase of the unified gauge
field in which the U(1)em is embedded the field equation has a non-trivial
solution, and the solution turns out to be a new type of particle carrying
non-zero magnetic charge, ‘t Hooft-Polyakov monopole. [16][17]

The development of the unified theory laid down the foundations of the Stan-
dard Model in particle and high-energy physics. Back then, physicists started
to adapt the ideas of symmetry and gauge theory to formulate the unified
theory [18][19]. In the proceeding chapters we would start by reviewing some
of the basics in gauge theory. Then, we would reconstruct the models that ‘t
Hooft and Polyakov used to get this new monopole solution. After that, we
would show that this solution is nothing specific to our particular choices of
model but a general feature of any unified theory leaves a unbroken U(1)em
to describe electromagnetism.

4.1 Gauge theory

In quantum field theory, the equation of motion is described by Lagrangians.
Because of the redundant degrees of freedom in the Lagrangian, one can per-
form transformations between different choices of gauges within that gauge
group, or symmetry group, without alter any physics about the original the-
ory. In these cases, we say that Lagrangians remain invariant under sym-
metry transformation groups. So the challenge for theorists became to find
the “correct” choice of gauge under which the desirable physical quantity is
most manifestly accessible. In the case of quantum electrodynamics, the field
equation is described by an abelian gauge theory with the symmetry group
U(1)em. Similar to what we have done in previous chapters, we can see that
by replacing the scale factor with a complex phase and the corresponding
scale transformation will simply become a phase transformation in complex
plane. [20]

Let us consider the lagrangian of the quantum electrodynamics, it has a
relatively simple form:
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L [g(φ)] = L [φ] = −1

4
FµνF

µν + φ̄(iγµDµ −m)ψ (4.1)

where Dµ = ∂µ + ieAµ is the conventional covariant derivative for the cou-
pling e, and Fµ = ∂µAν − ∂νAµ is the strength tensor.

The invariant property of the Lagrangian is easy to spot if we perform the
gauge transformation on the wave function,

ψ(x)→ exp(iα(x))ψ(x); (4.2)

and to the gauge field,

Aµ(x)→ Aµ −
1

e
∂µα(x). (4.3)

These transformations are said to be local because there are space-time de-
pendences in the equations. In the case where the gauge field Aµ decou-
ples, we observe that the Lagrangian can be invariant only if the phase α
is constant in the whole space-time. Another way of saying this is that the
symmetry has become global.

Later, in 1954, Chen Ning Yang and Robert Mills attempted to construct a
non-abelian gauge theory to generalize the gauge invariance of the electro-
magnetism, known as the Yang-Mills theory [21][22]. Their ideas later leads
to the construction of the SU(2), describes the weak interaction, and SU(3),
describes quantum chromo dynamics for strong interactions. The unified
theory of all three types of natural interactions were developed later, using
a much more complicated group:

Standard Model ≡ SU(3)color × [SU(2)× U(1)]electroweak. (4.4)

This is the Standard Model of the particle physics.

4.2 Spontaneous symmetry breaking

Let us move on to refresh our minds with some of the basic ideas of spon-
taneous symmetry breaking. For the simplest case in 2D space, in which we
consider two different types of potentials:
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V1 = |ψ|2, and V2 = −m2|ψ|2 + λ|ψ|4, (4.5)

Figure 1: spontaneous symmetry breaking: V1, potential in black has a min-
imum at the origin; V2, the grey potential has two minima, reflect symmetric
about the y-axis.

Although both of the potentials are symmetric in the unbroken phase, simply
by looking at the shape of the potential well, we can see that in the case of
V2, we have two degenerated minima at |ψ| = ±(−m2/2λ)1/2. These two
minima in the potential means that the system would have two vacuum states
related to each other by a simple reflection transformation. As far as the
symmetry’s concern, these two vacua are completely identical, the choice of
which the actual particle would fall into is totally random. However, as soon
as the system fells into one of the vacuum state, the reflection symmetry of
the original Lagrangian would be spontaneously broken. In some symmetry
groups more complicated than U(1), the symmetry can also be partially
broken. It is possible for the vacuum to remain invariant under a subgroup
of the original symmetry group. We can take one of the simple case of SU(2),
and consider the scenario in which the group is broken by an scalar field Φ =∑

i φ
iσi , where σi is the Pauli matrices. We can choose φ = φ3σ3 without

loss of generality (wlog) since all the vacuum states are identical which makes
the choice arbitrary. In this case, the field transforms as φ → g†φg, where
g is the SU(2) matrix exp(iασ3). Then, even after one particular choice of
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vacua breaks the full SU(2) symmetry, the scalar field is still invariant under
U(1) [7].

4.3 t’Hooft-Polyakov monopoles

We would now follow the reasoning by ‘t Hooft in [16]. Consider a magnetic
flux φ entering at one spot on a 2-sphere. For a contour around the spot, we
have a magnetic potential field A, where

∮
(A · dx) = φ. We can rewrite the

field in terms of local gauge field, we have A = ∇Λ. Due to the redundancy
of the theory, the gauge field Λ is multivalued. We further require all fields to
be single valued, so φ must be an integer multiplied by 2π, a complete gauge
rotation along the contour. Therefore, we can write φ = m2π, where m is
the winding number. In the abelian gauge, another spot is necessarily re-
quired for the flux lines to come out. However, in a non-Abelian theory with
compact cover, a 4π (2π) rotation may be shifted towards a constant with-
out singularity, thus we could obtain a vacuum all around the sphere. Follow
this argument, the magnetic monopole with twice (or once in some cases) the
fundamental charges would be allowed in non-abelien theories, provided the
electromagnetic U(1)em is a subgroup of such a gauge group with compact
covering group. This leads to the consideration for a non-trivial solution in
the non-abelian Higgs-Kibble system.

Conventionally, the gauge is chosen in which the Higgs field is a vector in a
fixed direction in space-time. ‘t Hooft promoted a different condition of the
gauge that the Higgs field is chosen so that it is Ω(θ, φ) times the vector of our
choices, where Ω(θ, φ) is the gauge transformation that brings vacuum to a
non-zero vector potential outside the kernel that is at the origin of the three-
dimension space. This gauge would cause a different boundary condition at
the infinity that corresponds a solution of a stable monopole occurring at the
origin. For future references, the analogy of this boundary condition would
later play an important role in the lattice theory of monopole formation.

Mathematically, the choice of the non-abelian gauge group is arbitrary as
long as the conditions stated above are satisfied. However, what we are
really looking for is a theory that would work in the real physical world.
We now know that in the electro-weak theory, the U(1)em group is embed-
ded in the (SU(2) × U(1))electroweak group. Unfortunately, this group does
not have compact covering group and therefore would not necessarily yield
monopole solutions. However, it was realized [23] in a Grand Unification
Theory (GUT), of which the Standard Model group is embedded in, some
of the candidates do indeed have compact covering, eg. SU(5), hence they
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must always yield monopole solutions. In a higher order of unified theory,
theory of everything that includes gravity or “M-theory”, a similar argument
follows that they would always allow monopole solution analogous to the ‘t
Hooft-Polyakov monopole. [24]

4.4 Non-trivial monopole solution

Consider the Higgs isovector fields φa(x), a = 1, 2, 3. The lagrangian is

L =
1

2
π2
a +

1

2
(∇φa)2 − 1

2
µ2φ2

a +
1

4
λ(φ2

a)
2, (4.6)

where π is the conjugated momentum of the Higgs fields. This was a very
common lagrangian which had been studied for some time but what really
special is that we can apply a special boundary condition, φ2(± inf) = µ2/λ,
so that the model would allow the vacuum to be perturbed within a finite vol-
ume. Using Eular-Lagrangian equation to find the equation for the extremal,
we get

∇2φa + µ2φa − λ
∑
b

φ2
bφa = 0. (4.7)

Solve for φa, and we find the solution of the form

φa = xau(r)r−1. (4.8)

The function u(r) is subject to the equation

u′′ +
2

r
u′ + (µ2 − 2

r2
)u− λu3 = 0. (4.9)

In turn, the boundary condition, as we have stated earlier in this chapter,
becomes u(inf) = µ/

√
λ. This is the well-known “hedgehog” configuration.

Note that we have not yet couple to any external fields and the energy of the
solitary hedgehog solution diverges linearly at large distances, as we would
expect. We can solve the divergence problem by coupling it to the Yang-Mills
field. This would change the partial derivatives to the covariant derivative
of the form,

Dµφa = ∂µφa + gεabcA
µ
bφc. (4.10)
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Figure 2: “hedgehog” configuration corresponding to a monopole. [25]

Field solutions become

φa(x) = xau(r)r−1

Aaµ(x) = εµabxb(a(r)− 1

gr2
), (4.11)

where functions u and a are subject to the differential equations:

u′′ +
2

r
u′ + (µ2 − 2g2a(r)2)u− λu3 = 0

a′′ +
4

r
a′ − 3

r2
a− g2r2a3 − g2u2a = 0. (4.12)

Because of the gauge symmetry of the Yang-Mills fields, the inhomogeneity
of the distribution of the direction of the φa becomes unrealizable and makes
no contribution to the energy. The energy density falls as ρ ∼ 1/2g2r4,
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which means it turns out to be finite [25]. It also means there is a long-
range magnetic Coulomb-type force between monopoles. The model with
normal boundary conditions has been well studied [26][27][28], and the par-
ticle spectrum consists of one massless vecton and two massive vectons. If
the massless one is photon, the mass of the electrically charged W-bosons
are determined by the coupling and the value of the vacuum, mW = gv, and
the scalar Higgs field gained mass during spontaneous symmetry breaking,
mH =

√
2λv, then the hedgehog configuration obeys Eq[4.11] is a massive

monopole solution. However, the field solutions can only be solved numeri-
cally and we will re-visit their forms in later chapters. Nevertheless, in the
relatively simple Georgi-Glashow model [29], based on SO(3), we can esti-
mate the monopole mass as 137mW and mW is no heavier than 53GeV/c2 in
this model.

4.5 More about quantization

The virtue of Dirac’s monopole is that he showed that the quantum mechan-
ics does not preclude the existence of it. Moreover, if the monopole really
exists, it will imply the reason the electric charge quantization. At the time
when Dirac proposed his theory, the later was merely a conclusion or rather
a consequence of the former idea, and it made people wonder if the two ideas
are really connected within somewhat more fundamental laws of nature. It
was the old days when the quantization could not be explained otherwise. We
now have alternative ways of understanding the electric charge quantization
in the language of group theory [30]. For the electromagnetism gauge group
U(1)em, we can write the phase factors as, Ω(x) = eiω(x) . We may then in-
terpret this expression as a unitary representation of the gauge group U(1)em
of real numbers, hence ω(x)→ eiω(x)q, ω(x) ∈ R. Consider the mapping,

Ω = eiω → D(Ω) = eiωqr (4.13)

If we require D(Ω) also to be a representation, then qr must be an integer
other wise D(Ω) becomes not single valued as a function of Ω. The field in
the U(1)em theory transforms with the representation qr takes the form

ψ′r(x) = Dr(x)ψr(x), Dr(x) = Ω(x)qr (4.14)

We would, of course, require the action to be U(1)em gauge invariant. There-
fore, we must adapt the corresponding covariant derivative Dr

µ = ∂µ −
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iqreAµ(x). It then follows that the charge eqr are a multiple of a funda-
mental charge unit e.

Further more, we can generalize the above derivation and prove that the
charges will necessarily be quantized if the gauge group corresponding to the
field equation is compact, that is, if U(1)em is compact[31]. The real beauty
this new approach is that the U(1)em is automatically compact in a uni-
fied gauge theory in which U(1)em is embedded in a non-abelian semi-simple
group. To aid the understanding, we can make comparison in the simpler
case of quantization of angular momentum. The angular momentum is quan-
tized because its operator obeys nontrivial commutation relations with other
operators in the theory. The eigenvalue of Jz is required by such algebra to be
integer multiples of 1/2~ , where we can consider 1/2~ to be, in analogy, the
“fundamental charge” of angular momentum. The electric charge operator
obeys the similar commutation relations provided a non-abelian semi-simple
compact group and the quantization condition follows as a result. One thing
worth mention is that the conclusion is valid even in the phase of sponta-
neous symmetry broken.

These two rather distinct approaches are in fact not independent, according
to what ‘t Hooft and Polyakov have shown in the construction of monopoles.
What they managed to achieve was to have changed our viewpoint from the
consistency of the monopole existence demonstrated by Dirac to the necessity
of their existence in a grand unified theory.
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5 Search for monopoles

5.1 Cosmological defects

We have shown, up to this point in this review, the natural laws of physics
seem to allow the existence of magnetic monopole as stable particles. The
argument follows that they would have been produced in the Big Bang or
shortly afterwards when the unified theory was broken in the very early stage
of the universe [32][33]. Tom Kibble proposed the mechanism of how these
monopoles may be produced in 1976 [34], and the basic idea is known as
Kibble mechanism.

For the continuum of the literature, we would once again express our argu-
ment using the SU(2) Georgi-Glashow model. Although this model is much
less complicated than any of the candidates of the Hot Big Bang model [35],
we can still see the outline of the mechanism and defect formation.

In the event of the Big Bang or very shortly after, the universe is very hot,
provided the temperature is high enough, we could assume that the GUT
symmetry would be unbroken at that time and the scalar Higgs field was
zero. As soon as the universe started to cool down and expand, the phase
transition occurred and the universe went into a gauge symmetry broken
phase. This whole process took place when the universe is very young, only
10-35 second old. During the phase transition, the Higgs field became non-
zero and for the system to be in a minimum energy state the direction of the
vector would have to be the same everywhere. However, even in the stage
as early as that, we still need to obey the law of relativity, that restricts the
information travel speed no faster than the speed of light. If we consider
two spatially separated points, the choices of the directions of Higgs field of
these two points has to be completely independent to each other. It follows
that, due the symmetry, the choices of directions are random and totally
uncorrelated given that the separation is large enough and the minimum
energy requirement still holds at short distances. Therefore, it follows that
after the transition, we can roughly picture the structure this stage of the
universe consists of domains of size ξ within which the Higgs field is uniform.
This correlation length ξ cannot be longer than the particle horizon, which
is roughly the age of the universe at that time. When two of these domains
meet, the continuum of the Higgs field requires the overlapping be smooth.
However, in the cases of more than two domains, the field cannot continu-
ously interpolate between all domains without vanishing in the middle. In
the vanishing region, we would expect the formation of topological defects. In
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our SO(3) model, the spherical symmetry broken would result in the forma-
tion of the localized cube-like defects. Related to the theory reviewed in the
previous sections, this defect is the magnetic monopole (or anti-monopole)
that carries the non-zero magnetic charge (anti-charge). Similar type of the
monopole is expected in the GUT symmetry broken phase [36]. However,
because the probabilities of both monopole and anti-monopole production
are equally likely, they can initially meet and annihilate each other. After a
while, this initial process stops and the number density decreases only die to
the expansion of the universe. We can estimate the initial number density of
the monopole or anti-monopole is roughly the same as the number density
of the domains. That is equivalent of saying for each domain we expect the
production of at least one monopole or anti-monopole [32]. And an estimate
of the number density at the present time after considering the annihilation
and universe expansion was calculated by Preskill [37], and he showed that
it should be comparable to the number density of the nucleons. Recall the
mass of the proposed GUT monopole, ∼ 1016GeV , which is many orders of
magnitude higher than the nucleons. It is easy to conclude that this predic-
tion simply cannot be valid. This question is known as the monopole problem.

The monopole problem, along side with horizon problem [38] and flatness
problem [39], had troubled cosmologists for many decades and it was not
until 1980 Alan Guth proposed an alternative form of the mechanics known
as the idea of inflation that could potentially solve all of these questions [40].
Inflation is, by its own right, a very interesting and vast idea that is obvious
beyond the scope of this thesis and therefore I should refer the viewers to Ref
[40] for detailed review. The basic concept of inflation is that shortly after
the Big Bang, the universe expanded at an accelerated rate. If the inflation
occurred after the GUT symmetry breaking, it could potentially dilute the
monopole density and restrict it at a level that is acceptable to the obser-
vation and there is in a large number of theoretical models supporting this
theory.

Another interesting point to mention is that there are also models in which
the monopoles lighter than the GUT monopoles, known as intermediate mass
monopole, were to be formed at the end of the inflation or shortly afterwards
[25]. If any of these models turned out to be the true picture, it would be even
more important to study the precise mechanism of the monopole formation
and the time evolution after their production.

28



5.2 Experiments

After the publication of ‘t Hooft and Polyakov’s paper, there is no surprise
that experimentalists had tried so hard to find the real particles that either
have been existed in nature or produced in the high energy particle experi-
ments.

Unlike most of the hypothetical particles in particle physics, once confirm-
ing its existence, it is actually quite easy to detect magnetic monopole.
These particles are very stable and can only be destroyed by monopole-
antimonopole annihilation, so it would not decay in laboratory timescale.
It is also believed that at the core of monopoles, the GUT symmetry is re-
stored [41], and it would catalyze the decay of otherwise considered stable
nucleons [42][43]. It also carries strong magnetic charge, which means if one
could imagine a charged particle passing through a superconducting ring, the
changing magnetic field would induce a current in the ring and the current
can be measured to determine the magnetic charge very accurately. Ioniza-
tion loss of a monopole can also be detected when it passes through matter.
Although due to the unknown detailed ionization process for monopoles, the
results may be hard to spot or distinguish from other ionization processes.

The experimental aspects of finding this extraordinary new spice of particles
are an interesting and active field of researches. Numerous experiments and
techniques had been developed over the years and I would not include further
details of them in this review. Viewers are advised to refer to [44] [45] [46]
for more details.
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6 Theoretical studies

In short, the current status of experimental monopole research provides no
solid evidence of its existence to announce the discovery 4. We shall then
focus on the theoretical studies and computational simulations of it.

6.1 Monopole as soliton 5

The hedgehog configuration of the ‘t Hooft-Polyakov monopoles cannot be
turned continuously into the uniform vacuum state, so we say that it is topo-
logical stable. This configuration is an example of a topological defect or
soliton [33]. This type of monopole configuration is nothing but the simplest
non-trivial sector of the static soliton solution in 3+1 dimensions constructed
out of spin-1 fields, the gauge fields.

We shall now show briefly how the monopole emerges purely as gauge fields
soliton solution. A natural choice would be the gauge to describe a free
electromagnetic system, the Abelian group U(1)em. Unfortunately, it does
not yield solitary solution. In an abelian group, the solution exists as a packet
and will necessarily dissipate. The choice is then restricted to non-Abelian
groups and according to “what else can it be theorem” [7], the next simplest
candidate will be the non-Abelian SU(2) gauge group of which the Abelien
U(1)em is a subgroup embedded in it. This triplet of gauge fields is mentioned
in the previous section as the Yang-Mills fields. However, is has also been
shown that the set of pure Yang-Mills fields also fail to yield any static soliton
solutions [51][52][53], although Yang and Wu [54] did show that the model
allows singular solutions. One possible way to overcome this problem is to
enlarge the SU(2) further by coupling it to a triplet of scalar fields developed
by Georgi and Glashow in 1972 [29]. This new model consists of scalar fields
φa(x, t), the Higgs fields, and vector fields Aaµ(x, t) in 3+1 dimensions. The
space index a will transform according to local SU(2) and for a given value,
φa is a scalar and Aaµ is a vector under Lorentz transformation. The trivial
solution would be the vacuum where no stable particles exist and we are
looking for the solutions that satisfy two conditions:

1. Static,

4there are, however, some claims of the monopole-like event happening on various
occasions. For details, see [47][48]

5The calculations and approaches in this chapter are largely inspired by [30] [49] [50],
viewers are advised to refer to those for more details.
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2. Aa0(x) = 0 ∀a, x.

The second condition was used to restrict us to pure-magnetic charge for
mathematical simplicity. Although it also has been shown [55] that the
same lagrangian also yields dyon solution, particle carries both electric and
magnetic charges and can be thought as the excitation of the ground state
monopole solution. We also require the solution to have finite-energy, be-
cause we expect monopole to be a physically real particle, which cannot be
arbitrarily energetic.

The approach would be divided into three steps: Firstly, we would find the
vacuum solutions hence identify the set of allowed boundary conditions for
which the finite-energy requirement would be satisfied. We would then make
a homotopy classification of these boundary conditions. And finally, amongst
these possible configurations, we search for a finite-energy solution.

To start with, we write down the Hamiltonian, H =
∫
d3x(−L (4.1)), and

we set it to reach a minimum. The trivial solution would be when the Yang-
Mills fields vanish and the covariant derivatives got reduced to normal partial
derivative that also vanish. Because of the gauge invariance of the original
lagrangian, we would obtain a family of degenerate vacuum solutions H = 0.
For each of these solutions, φ ≡ {φa} must have a fixed magnitude, but can
point in any directions in internal space. Recall the local SU(2) gauge sym-
metry contains in it a global rotational symmetry of the scalar fields φ. It
means all the solutions within the family correspond to H = 0 are related
to each other by this symmetry. Let us then move on to non-zero but finite
energy, H 6= 0. This condition can be achieved by setting the boundary
conditions: the fields approach some H = 0 configuration at spatial infinity
sufficiently fast. In terms of Hamiltonian, we can see that this condition
requires the covariant derivatives to vanish as r →∞. Note that due to the
coupling fields, the partial derivative itself does not need to vanish. It turns
out that some components of Aaµ can even fall as slowly as 1/r, and it will
still be consistent with the finiteness of the energy. The general condition
would become that the allowed values of φa at the boundary lie on a spherical
surface in internal space. The radius of the sphere would be the fixed mag-
nitude of φ in the vacuum solution, determined by the specific parameters
of the lagrangian. Bear in mind that we are considering a 3+1 space-time,
therefore we can have another physical boundary of the entire space which
is also a 2-sphere. Hence, the set of allowed boundary conditions are the set
of all non-singular mappings of the physical spherical surface to the internal
space 2-sphere, f : Sphy

2 → Sint
2 . Suching mappings fall into a denumberable
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infinity of homotopy class, which forms a group. Divide the group into sec-
tors each parameterized by a topological parameter Q in such way that field
configurations from one sector in the group cannot be continuously deformed
into another sector.

The Q = 0 sector would be the trivial vacuum solution. Q = 1 field configu-
ration is the one that would have the scalar fields pointing radially outward
with its internal directions parallel to the coordinate vector, the hedgehog
configuration in Figure 4.4. Therefore, we have wed that the finite-energy
configurations of this model arose entirely from the boundary conditions con-
sideration of the fields, analogous to what ‘t Hooft and Polyakov did in 1974.

The topological parameter, however, has more meaning rather than a label.
We would now show that the monopole charge is proportional to Q and hence
prove that field configurations in the Q = 1 sector indeed corresponds to a
monopole solution.

This can be the most easily shown using ‘t Hooft’s definition of a gauge-
invariant field strength tensor:

Fµν ≡ φaGa
µν −

1

g
εabcφaDµφ

bDνφ
c. (6.1)

where Ga
µν is the original field tensor in the lagrangian. This effective U(1)

field strength tensor has a dual with non-zero divergence hence we can apply
the dual Maxwell equation and obtain:

1

2
εµνρσ∂

νF ρσ =
1

2g
εµνρσεabc∂

νφa∂ρφb∂σφc. (6.2)

On the other hand, one can then define a topological current [56]:

kµ =
1

8π
εµνρσεabc∂

νφa∂ρφb∂σφc. (6.3)

and the dual Maxwell could be re-written as:

1

2
εµνρσ∂

νF ρσ =
4π

g
kµ. (6.4)
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Analogous to the electric current, we denote the magnetic current as (1/g)kµ,
and the magnetic field satisfies the dual magnetic Gaussian equation:

∇ ·B = 4π
k0

g
.

Hence, the magnetic charge can be obtained by integration:

gm =

∫
k0

g
d3x =

Q

g
. (6.5)

Note that if one imposes the condition of Yang-Mills coupling, e = g~, equa-
tion above then becomes Schwinger quantization condition, which has double
the value of the fundamental charges restricted by Dirac’s condition. In the
simplest non-trivial case where Q = 1, we have reproduced the ‘t Hooft-
Polyakov monopole. The curious reader might be interested in the sectors of
which the Q number is greater than 1, and we would come back to it in later
chapters for reasons would become clearer then.

6.2 Magnetic charge in continuum

For the rest of this thesis, in order to make comparison between different
approaches and due to the special treatment we would use for various types
of simulations, we would introduce a new expression of the SU(2) Georgi-
Glashow model. Although the physical content is no different than the ex-
pressions we have used before (4.1), this new expression is more compatible
to lattice formulation, which we would discuss as the main frame work for
the non-purterbative study of the subject.

Consider the SU(2) Georgi-Glashow lagrangian of the form:

L = −1

4
Tr FµνF

µν + Tr [Dµ, φ][Dµ, φ]−m2Tr φ2 − λ(Tr φ2)2, (6.6)

where Dµ = ∂µ + igAµ is the covariant derivative and the field strength
tensor can be written as Fµν = [Dµ, Dν ]/ig. Both φ and Aµ are Hermitian
and traceless 2x2 matrix, which makes it possible to expand them in terms
of group generators. The common choice of generators for the gauge group
SU(2) is the Pauli matrices [???],

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6.7)
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This choice of generators, T a ∝ σa, corresponds to SU(2) adjoint repre-
sentation in which the fields can be expressed in terms of components, as
Φ = φaσa and Aµ = Aaµσ

a. The monopole solutions with an extended scalar

field occurs if we choose the vacuum expectation value Tr Φ2 = −m2

2λ
= ν2,

and the SU(2) symmetry breaks into U(1)em.

The effective U(1) field strength we have seen 6.1 could be written as:

Fµν = Tr Φ̂Fµν −
i

2g
Tr Φ̂[Dµ, Φ̂][Dν , Φ̂], (6.8)

where Φ̂ = Φ/
√

2Tr Φ2 represents the direction of the symmetry breaking.
We have chosen this specific form because it makes it easy for us to see the
outcomes of gauge fixing. If we fix the unitary gauge, in which Φ ∝ σ3, it
gets reduced to the Abelian form as in the monopole-free Maxwell equations
where Fµν = ∂µÃ

3
ν − ∂νÃ3

µ and B = ∇ × Ã3. In the gauge fixing scenario,
fields Φ becomes diagonal after the gauge transformation R(x)

Φ̃(x) ≡ R(x)†Φ(x)R(x) =

√
2Tr Φ2σ3

2
. (6.9)

And the gauge field takes the form

Ãµ = R†AµR−
i

g
R†∂µR. (6.10)

For a general unitary gauge Φ ∝ σa, where a = 1, 2, 3. We can alterna-
tively write in terms of the diagonal elements of the gauge field after the
transformation:

F a
µν = ∂µÃ

aa
ν − ∂νÃaaµ . (6.11)

Note that this is not the conventional field strength tensor, but they are
related by

Fµν = F 1
µν −F 2

µν , (6.12)

and the anti-symmetry of the tensor was preserved because of the traceless-
ness of the transformed gauge field,
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F 1
µν = −F 2

µν , (6.13)

The conserved magnetic current is defined via the dual Maxwell equation
(??) as,

jaµ = ∂νF †a
µν , (6.14)

which shares the anti-symmetric properties of the tensor and hence indicating
that there is only one monopole species. This current is the Noether current
corresponds to the symmetry and one can obtain the Noether charge by
integrating the 0th component of the current over a finite volume, which is
the magnetic charge of the monopole.

Q =

∫
V

d3xj0 = ±2π

g
. (6.15)

Note that these current and charge are the Noether’s definition associated
to the symmetry, and the there are structurally very different from those
mentioned before in the topological argument. However, it has been proven
that they are related and correspond to the same physical quantities[75].
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7 Computational monopole theory

Up to this point of this review, we have discussed the basic ideas of how
to construct different types of magnetic monopoles and talked fairly little
about their physical properties. Indeed, if we would ever actually discover
these interesting particles in experiments, what should we expect to see?

Consider the equations of motion for Dirac monopoles in classical theory.
The field quantities Fµν(z) (3.11) are spatially dependent and therefore can
be taken to where the particle is situated, infinitely great and singular [11].
One can even argue that these isolated Dirac monopoles may not even have
any physical meanings at all. The infinities may be due to the existence of the
strings that attached to the monopole yet extending to infinity. However, the
problem shall be solved in the construction of the ‘t Hooft-Polyakov monopole
which has finite energy. The problem then became really practical.

7.1 Lattice modification

Gauge invariance is formulated in the position space that makes the lattice
modification a natural candidate as a regulator for any gauge theories. In
lattice field theory, instead of the continuous space-time where the original
theories were constructed, we discretize the space-time hence introduces an
artificial cut-off to the infinite quantities in these theories. The visually sim-
plest model is a three-dimensional theory, it can be thought as a classical
statistic system. We denote the lattice spacing as a and the energy of any
monopole constructions inside the lattice would be confined inside the lat-
tice. The energy would be proportional to the inverse lattice spacing, and
the monopole would vanish in the continuum limit a→ 0.

We use link variable to represent the gauge field in the lattice formulation, the
link variables Ui is defined on links between the lattice points. In the compact
formulation, the link variables can be constructed out of the continuum vector
potential Ai as a complex number with unit norm.

Ui = exp(iaeAi) (7.1)

The action is,

S = β
∑
x

∑
i<j

Pij(x), where (7.2)
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Pij(x) = Ui(x)Uj(x + i)U∗i (x + j)U∗j (x)

is the plaquette, path-ordered product of four link variables around an
elementary closed loop. The magnetic field strength can be given as the
complex phase of the plaquette. Substitute Eq(7.1) into Eq(7.2), we obtain

Pij(x) = exp[iae(Ai(x) + Aj(x + i)− Ai(x + j)− Aj(x))] (7.3)

Consider for each elementary closed loop, we can rewrite the ordered path
in terms of magnetic flux. Because, as we have seen in Maxwell’s formulation,
the flux is related to the curl of the field it is analogous to the path around
the elementary loop. Therefore, Eq(7.3) can be written as:

Pij(x) = exp[iea(aεijkBk)] (7.4)

In three-dimensions, the total charge inside each lattice cube would be
equal to the total flux coming out of that cube, which is simply the sum of
the flux of six plaquttes on the sides. The main advantage of this treatment
is that the finite lattice spacing would provide an ultraviolet cutoff leads to
a finite value in the monopole mass. Note that in the continuum limit where
the lattice spacing a→ 0, the energy vanishes, indicating the monopole inside
the cube would disappear.

7.1.1 Perturbative calculation

For most theoretical studies in physics, one can often rely on the methods of
perturbative approach. One can often deduce an approximate solution to the
problem at some levels argue that this would be the classical approximation
of the full solution. Then, we can treat the corrections as small perturbations
and can often add to the approximated solution linearly. This approach does
not work well in the full ‘t Hooft-Polyakov monopole solution. The calcula-
tions of semiclassical quantum corrections of the monopole are difficult and
even the value of the classical quantities are hard to calculate.

To see this, let us consider the classical solution of the field equation (4.11),
which can be solved analytically up to the form:

φa =
ra
gr2

H(gvr) (7.5)

Ai = −εaij
rj
gr2

[1−K(gvr)] (7.6)
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where the values of functions H(ξ) and K(ξ) are determined by the spe-
cific Higgs fields that breaks the symmetry and the coupling strength of the
coupled fields. These values can only be obtained numerically. Once these
values are worked out, it can be integrated in the energy functional to get the
total energy of the configuration, which is effectively the mass of the particle.
The mass of the topological soliton is considered the most natural quantum
observables [49].

The classical monopole mass then has the form

Mcl =
4πmW

g2
f(z) (7.7)

where f(z) is a function of z = mH/mW . Trivial solution is when the
condition f(0) = 1 is satisfied [58][59]. Physically, it means that in the case
of a massless Higgs field, the classical monopole mass gets reduced to

Mcl =
4πmW

g2
, (7.8)

proportional to the mass of the exchange bosons corresponding to the
model. In practice, the value of the function f(z) has been calculated to
high accuracy. And the asymptotic expressions for small and large values of
z have been found [60][61][62]. For small-z, we can write it as an expansion
as

f(z) = 1 +
1

2
z +

1

2
z2(ln 3πz − 13

12
− π2

36
) +O(z3) (7.9)

For large z, they found:

f(z) = 1.7866584240(2)− 2.228956(7)z−1 + 7.14(1)z−2 +O(z−3) (7.10)

In the quantum mechanical treatment, one may refer the mass of the
soliton as the energy difference between sector Q = 0 and Q = 1, as we have
seen in section 6.1. If the perturbation theory works, we need to, Firstly,
find the classical solution φ0(x), and assume the quantum correction is small
enough to be considered as fluctuations δ(t, x) around the classical solution.
Then, the whole solution can be written as:
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φ(t, x) = φ0 + δ(t, x) (7.11)

We would now discuss the calculation of the process to leading order
[63][64]. Firstly, the higher terms of the lagrangian must be ignored and the
correction field is of the form U(δ) = 1

2
V ′′(φ0(x))δ2, which is an harmonic

potential. For this approximation, the energy level would be given by the
solution of the eigenvalue equation. The one-loop correction is then of the
form

M1-loop = M0 +
1

2

∑
har

(ω1
har − ω0

har), (7.12)

where ω1
har is the energy levels in Q = 1 sector, and ω0

har corresponds to
the trivial vacuum. The calculation is difficult but still possible, in theory,
and it has been done in the 1 + 1 λφ4 kink model [65]. The calculation for
monopole would follow the same procedure but with many extra complica-
tions. Technically, for start, the background solution is not known except for
the case near BPS limits, even then, the eigenvalue equation does not have
analytical solution [66]. It is also hard to maintain the gauge or rotational
symmetry due to the ultraviolet divergence. Although fortunately for the
monopole, the renormalization problem is not in the worrying list. The one-
loop expression would automatically cancel the running of the couplings[67].
Till the date of this review, only the leading logarithmic quantum correction
near the BPS limits has been calculated and even in that case, one can spot
an interesting result of its logarithmical divergence. The reason for this is
the effect named after Coleman and Weinberg [68], which, for short, makes
it impossible to reach the BPS limit in any quantum theory. The divergence
term φ4 log φ also restricts the stability condition of the monopole and we
are forced to work with the constraint mH & gmW . This means we can only
work with extremely weak coupling and the whole quantum correction would
become too small to measure at all! Furthermore, we are left with a mass
hierarchy and to overcome it one need an even larger lattice.

Up to this point of the discussion, we could see that although, in theory, we
can have perturbation theory working to some very restrictedly conditioned
cases, the perturbative approach is not suitable for the monopole model. We
shall then turn our attention towards the non-perturbative theories.
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7.2 Non-perturbative studies

The conventional methods of lattice simulation are to consider the creation
and annihilation operators of a topological defect. It was a popular choice
because it follows the spirits of lattice Monte Carlo simulation and if we
adapt the analogy between phase transition and topological defect, one can
use the expectation value as a order (disorder) parameter [70][71][72][73].
However, this type of treatment seems not so fit to the monopole studies.
To start with, these formulations are very complicated. If we consider one
cube cell in a large lattice space, we need a pair of creation and annihilation
operators inside the volume and a path connecting them can be seen as the
world line of the particle. One can immediately spot the problem as one can
take a ‘time slice’ of the space at some specific time and it would not have
to be magnetically neutral charged. In order to solve the problem, we need,
at least, add another pair of operators inside the cube cell and propagate
in the opposite direction to cancel the magnetic charge. To make the situa-
tion more complicated, our monopole has an infinitely ranged magnetic field
created with the monopole particle sitting in the middle and affect through
out the whole lattice space. Against our favor, one can even argue that the
expectation value is ill-defined as it would always vanish because of the finite
lattice size.

After all, although in theory, this approach can provide the test ground for a
very large range of observables and the ideas behind the theory are straight
forward, its complication is the vital factor to limit its own development.
Besides these technical problems, the way that the theory introduces the
monopole solution is also not satisfactory. The sketching of the idea can be
seen in Figure 3. By putting operators into the cube cell, it would force
the monopole to be in the system and the non-zero magnetic charge is the
structural feature very artificially applied to the system. Recall the ‘t Hooft-
Polyakov theory in section 4, the monopole should arise as a general result
of spontaneous symmetry breaking. In other words, its appearance should
be, at its very basic, natural and much less artificial.

For the rest of this thesis, we would consider a relatively new approach to the
theoretical study of the monopole [74]. The technique used in this method
has a very close analogy to the original construction of the ‘t Hooft-Polyakov
monopole. In the 1974’s papers, the major, if not the only, modification
required for the monopole solution is the non-trivial boundary condition at
infinity. The monopole construction method used in this method requires
nothing but a boundary condition which is analogous to the that in the orig-
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Figure 3: Sketching of proposed operators in one cell cube

inal papers called the twisted C-boundary condition.

However, before we start to look at this nice theory, we need to do some
preparation and first of which is the discretization of the continuum magnetic
charge.
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7.2.1 Lattice discretization

In continuum, we have seen the way to view the monopole configuration as
soliton solutions in terms of the topological stability. The transformation into
the discrete space-time is everything but trivial. Even in the most funda-
mentals of the theory, the 4D lattice space-time, on its own, has a completely
different topology to that of the continuum theory.

Let us consider how do we normally describe a quantum system. Instead of a
field equation or field configuration, a density operator often characterizes the
system. Analogous to those of the statistical mechanics and thermodynamics,
we can use the ideas of ensemble of configuration and partition function to
describe the system. The partition function is of the form:

Z =

∫
Dφ exp(−S), (7.13)

where S is the action. A standard technique is to carry out a Wick rota-
tion, and change the quantum system into the Euclidean space. The physical
interpretation of the partition function is that of a path integral. It is es-
sentially integrating over a large number of field configurations, almost none
of which are the solutions of field equation. The discrete analogy of the
topological parameter in the soliton argument is the winding number and for
the whole system, the winding number is well defined [74]. In cases of zero
winding number, although there can still be localized object that behave
in all ways like a topological defects, the overall number of configurations
correspond to both positive and negative, or anti, winding numbers must
be equal, and hence neutralize the whole system. If the non-zero value of
the winding number occurs, we know that apart from those defect-antidefect
pair, we have in the system a true defect.

We can then restrict ourselves to the cases where the total winding number
is a constant. This in turn, changes the type of the ensemble to the micro-
canonial Zq, where we q is the total winding number. We can then consider
the free energy of the given ensemble characterized by q as,

Fq = − lnZq (7.14)

The free energy difference between F1 and F0 is exactly the classical mass
of the defect. The difficult is that in lattice simulations, one can measure
neither the partition function nor the free energy. Instead, the only possible
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measurement is the expectation values correspond to a specific operator and
can be written as

〈Ô〉 = Z−1

∫
DφÔ exp(−S) (7.15)

7.2.2 Magnetic charge in lattice

Let us then consider the lattice version of section 6.2. Similarly, we would
start by defining the general SU(2) gauge group coupled to a scalar field Φ.
What we need is a expression of remaining U(1)em after the SU(2) gauge was
partially broken by the scalar field Φ. We would derive the topological charge
by looking at the time slice of the 4D lattice. As shown in the equation (7.1),
the gauge field in the continuum theory can be expressed as link variables
Ui(x), which are SU(2) matrices defined on links (x,x + i). The scalar field
Φ is defined on the lattice sites.

The symmetry and invariance of the lagrangian must be preserved in the
lattice theory, hence the fields are invariant under gauge transformations
Λ(x), a SU(2)-valued function defined on the lattice.

Φ(x)→ Λ†(x)Φ(x)Λ(x), (7.16)

U(x)→ Λ†(x)U(x)Λ(x + i). (7.17)

The next step is to make a gauge transformation that diagonalizes Φ, and
confirm that it is an Abelian gauge transformation. Recall the trick we have
used in the comtinuum case, and we can apply it here since the trick is still
valid in the lattice formulation. First, we notice that the gauge Λ can be
chosen in such way that it would transform Φ to the z-direction and hence it
would have zero measure in the partition function. We can use this property
to define the unit vector

Φ̂ = Φ(Φ2)−1/2 (7.18)

Use the definition above, we can therefore have a gauge transformation into
the unitary gauge. To see this, denote the gauge transformation that diago-
nalizes Φ.
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R(x) ∝ i(σ3 + Φ̂(x) (7.19)

R(x)Λ ∝ i(σ3 + Λ†Φ̂(x)Λ) (7.20)

We are now ready to define the residual Abelian gauge transformation as,

Λ̃ = R†ΛRΛ (7.21)

We perform the transformation on link variables,

Ũi = R†(x)UiR(x + i) (7.22)

Then the transformed link variables is invariant under the transformation
induced by Λ̃,

Ũi = Λ̃†(x)Ũi(x)Λ̃(x + i). (7.23)

This new transformation is unitary with its determinant equal to one. It is
also diagonal, according to the construction we proposed to Λ. Combine all
the restrictions and we can now state that the transformation is of the form

Λ̃ = exp(iλσ3) (7.24)

The next step is to get an expression for the magnetic charge density in
the lattice. For simplicity and to make a clearer connection to the later
section when we construct the ‘t Hooft-Polyakov monopole in the lattice, we
would carry out our discussion based on the discrete version of the lagrangian
(6.6). The method of discretization is standard and after the Wick rotation
to Euclidean space, we can write it as,

LE = 2
∑
µ

[Tr Φ(x)2 − Tr Φ(x)Uµ(x)Φ(x + µ)U †µ(x)]

+
2

g2

∑
µ<ν

[2− Tr Uµν(x)] +m2Tr Φ2 + λTr (Φ2)2 (7.25)

where the plaquette Uµν is defined as
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Uµν(x) ≡ Uµ(x)Uν(x + µ)U †µ(x + ν)U †ν(x) (7.26)

Compare to the continuum version, we can roughly thought of the link vari-
ables Uµ as to exp igAµ. And we can make use of the unit vector we have

defined before to get a projection operator Π+ = (1 + Φ̂)/2, hence use the
operator to define a projected link variable

uµ(x) = Π+(x)UµΠ+(x+ µ̂) (7.27)

Physically, this is the compact Abelian gauge field corresponds to the unbro-
ken U(1) subgroup. Therefore, we have the Abelian field strength tensor of
the form

αµν ≡
2

g
arg Tr uµ(x)uν(x+ µ̂)u†µ(x+ ν)u†ν(x) (7.28)

and the obtain the lattice version of the magnetic field as B̂i = 1
2
εijkαjk.

Take its divergence we then obtain the lattice magnetic density

3∑
i=1

[B̂i(x+ i)− B̂i(x)] ∈ 4π

g
Z (7.29)

One thing worth mention is that its already quantized. By the virtue of our
construction, the magnetic field would be well-defined and gauge-invariant,
and automatically conserved and fit to our requirement for a real physical
entity.

7.2.3 Boundary conditions

We have set the frame-work for which the continuum ‘t Hooft-Polyakov
monopole theory can be simulated in the lattice modification. Both the
vector fields and the scalar fields have been well defined in term of the lattice
theory. However, the big question still remains, which is how do we trigger
the monopole formation?

In the original theory, this was achieved by setting the special boundary con-
ditions at infinity. And we have noted in the previous section that the total
magnetic charge inside a finite volume is obtained by a path integration over
the boundaries. Therefore, the task left for us is to find the lattice boundary
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condition analogous to that in the continuum formulation and in such way
it can fix the total charge. One natural choices in general lattice theory is
to set the periodic boundary conditions. And it is a good place to start our
discussion.

The partition function for each topological sector can be written in the form
that is similar to the one people would often use in the statistical mechanics.
Let us denote the length of the time in the Euclidean space-time by T. We
can have the form,

ZQ = exp(−|N |MT )Z0 (7.30)

where N is the number of the monopole in the system and Z0 is the parti-
tion function of the trivial vacuum sector. The value of M is the quantum
mechanical mass of one isolated monopole and we can rearrange Eq. (??) to
have a expression for a monopole mass in Q = 1 sector.

MQ=1 = − 1

T
ln
Z1

Z0

. (7.31)

In order to simulate the mass, we need to obtain an expression for the Q = 1
sector partition function and Z0, and the mass would be the difference in
the free energy between these two sectors. Unfortunately, the conventional
periodic boundary condition does not yield possible solution. It does not
even allowed non-zero magnetic charge within the system [76].

Φ(x +N j) = Φ(x), Uk(x +N j) = Uk(x). (7.32)

The repeated lattice cells consists of one monopole and one anti-monopole
would always be at the same number, hence fixed the total charge of the
system to zero. It was reported [77], the simulation result would be largely
subject to the size of the lattice on certain boundary conditions. It makes
the result very restricted and even for the very large lattice size, one still
cannot make reasonable comparison with the classical result. However, we
can still learn something from it. The periodic boundary condition guaran-
tee that the actual boundary is not physical as it would not have finite-size
effect to the physics. This is useful because if anyone wants to determine the
monopole mass, they need to measure the free energy. The contribution of
the finite-size effect to the free energy can possibly dominate over its actual
value. However, we also know that we do not necessarily need the complete
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periodic condition. We may only require to have the boundary conditions pe-
riodic up to the symmetries of the lagrangian. Among which, the no physical
boundary constraint would be preserved if one can maintain the translation
invariance, it is easy to understand as we want to treat the cells in the lattice
identically.

Therefore, we look for candidate that satisfied the requirement. Recall the
classical monopole solution of the field equations in continuum (4.11).

Φ(x) ≈ xkσk
r

, Ai(x) ≈ εijkxjσk
2r2

(7.33)

Consider the adjacent cell cubes and if we move from one cell to another
we reverse the sign of the spatial coordinate, we can then write the set of
fields transformations:

xj → –xj : Φ→ −σjΦσj, Ai → σjAiσj, (7.34)

which is relatively straight forward to write in the lattice terms. It sug-
gests:

Φ(x +N j) = −σjΦ(x)σj, (7.35)

Uk(x +N j) = σjUk(x)σj (7.36)

The effects of these boundary conditions are easily spotted as in the
cases of the projection Π±. This implies Π+(x + N j) = σjΠ−(x)σj and the
most direct observables are the lattice field strength tensors. They have the
boundary conditions of the field strength tensor.

αij(x +Nk) = −αij(x) (7.37)

The change in the sign when we apply the boundary condition means
the direction of the magnetic flux is reversed at the boundary. Physically, it
means the boundary connects two cells each is the charge-conjugated copy
of the other. This is, however, not sufficient to suggest non-zero total charge
of the whole system. The arguments become the choice of the specific path
integral along the lattice boundary for which the details are stated in [74].
It was shown in that paper, for some specific choice of boundary conditions,
there will be a flux π through each of the halves of the boundary and from
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the boundary condition (7.37) we can get a total flux of 2π.

The result may not be as excited as it may look at the first glance. The flux
is only limitedly defined modulo 2π, and the most it can achieve is to force
the magnetic charge to be either even or odd.

Figure 4: Sketchings to explain the difference between C-boundary and the
twisted boundary

It was then another candidate, which is the C-boundary conditions proposed
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by Kronfeld and Wiese [78]. It states

Φ(x +N j) = −σ2Φ(x)σ2, (7.38)

Uk(x +N j) = σ2Uk(x)σ2 (7.39)

It is easy to spot the similarities between these two conditions. And the
former one was known as the “twisted” C-boundary conditions. The twisted
condition does not restrict itself to σ2 although it can be sort locally as the
same condition. It turns out the C-condition would only allow even value of
the magnetic charge.

Both conditions seem to lack, to some extent, the certainty in the absolute
value of the magnetic charge. However, if we consider the partition functions
corresponding to each of those conditions we can get the one-monopole so-
lution out of it. The configuration follows that for any non-zero monopole
mass and provided the time interval is large enough, the partition functions
are suppressed to their minimum possible number of monopoles.

ZC =
∑

Z2k = Z0(1 + Ô(e−2MT )) (7.40)

Ztw =
∑

Z2k+1 = Z1(2 + Ô(e−2MT ) (7.41)

In ZC where only the even number are allowed, the N = 0 will dominate
the result. In Ztw case, the partition function is dominated by the one-
monopole solution!

7.2.4 Measurable quantities

Once we have constructed the lattice in such way, we are guaranteed to get
non-zero magnetic charges in the system. However, it is not straightforward
to pull the desired information out of the simulation. This is due to both
the properties of the lattice Monte Carlo method [79] and the way how we
approached the problem.

Prior to our discussion, we need to figure out what can we extract out of
the system. Unlike the operator approaches, as we have mentioned in the
beginning of this section, which in theory should provide all the information
there is about the system. The twisted boundary condition methods rely on
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the measurement of the configuration ensemble, in particular, the partition
function and its corresponding free energy. Up to the date of this review,
only the masses of the monopole [63] and information about its form factor
[81] have been studied in the deeply broken phase with weak coupling. We
shall start with the mass result.

1. Mass of the monopole:
This is naturally proposed as the easiest, yet not in technical terms, and
the most straightforward observable of the soliton monopole. Once its
value in the quantum theory has been determined non-perturbatively,
one can compare its value to that in the classical limit. The quantum
equivalent of the classical limit is deep in the broken phase, where the
mass parameter m2 in the lagrangian becomes much smaller than zero.

We shall only continue our study on the partition functions and read off
the expression of the free energy difference in two not continuously con-
nected soliton sectors arisen from our choices of twisted or C-boundary
conditions. It is easy to see,

− 1

T
ln
Ztw
ZC

= M − ln 2

T
+ Ô(e−2MT ) (7.42)

In the limits T → ∞, we have he above equation equal to monopole
mass. However, this is not useful for practical uses as neither parti-
tion functions nor free energy are directly measurable in Monte Carlo
simulation. Furthermore, because we have applied different boundary
conditions on the partition function, we cannot even write their ratio
as expectation value. We can, nevertheless, define a new integration
variable in the twisted case in such way that it satisfy the C-condition.
This is achievable because there are locally the same. After doing that,
we can write the action S → S + ∆S. The expectation value of the
ratio then becomes Ztw/ZC = 〈exp(−∆S)〉C and perfectly defined in
the C-boundary condition. In practice, though, it has also little uses
because the overlap with the vacuum is very small and extremely high
statistics are necessary to even get any meaningful result.

In comparison, another approach makes much more sense in practice.
Let us differentiate the mass with respect to m2.

∂M

∂m2
= L3(〈Tr Φ2〉tw − 〈Tr Φ2〉C) (7.43)
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If we can choose a large value of m2 where we are definitely in the
symmetric phase, where the monopole mass vanishes. We can then
integrate this equation to any point where the parameter value, m2, is
very defined. Note that, in theory we can choose any point to start the
integration, another obvious choice would be the classical mass limit.
We do, however, expect a phase transition when the symmetric phase
got broken and at which point the derivative would be singular. The
actual simulation using this method has been carried out in [63], and
the viewer can refer to the paper for more details on the simulation.

2. For any local operator Ô, the form factor is defined as

f(p2,p1) = 〈p2|Ô(0)|p1〉 (7.44)

We can easily relate the form factor to the scattering amplitude between
the monopole and the particle corresponds to the creation operator Ô,
and hence this can be used to study the interaction of the monopole
with other particles. The theory can provide, by the virtue of twisted
boundary conditions, useful information about the real physics of the
monopole and guide the potentially accessible experiment observations.

Classically, the form factor is given by the Fourier transform of the clas-
sical profile of the operator in the monopole configuration. This means
that once again we could compare our quantum calculation with clas-
sical solution in cases of weak coupling. Similar calculation has been
carried out in 1+1 kink model where the precise classical solutions are
known [82]. The real difficulties in this approach are the ways to de-
fine good operators with correct boundary conditions in the monopole
configuration. Studies has been extended to the SU(N) adjoint Higgs
[83] cases and one could, in theory, obtain a numerical approximation
of the operators by a correct diagonalization. However, it is interesting
that although the standard diagonalization can always been performed,
the choice of path integral could not be agreed in all cases to guarantee
the monopole formation except of the SU(N) cases where N is even.
Recall that the important discovery in the monopole history is for the
GUT monopoles where the proposed symmetry group was SU(5). So
the theory in continuum does allow monopole solution and has nothing
to prevent the interaction with other particles. Whether this is due to
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the limitations of the lattice simulation or there is something deep in
the theory remain an open question stand with many others, suggesting
the potential further studies on this fascinating subject.
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8 Summary

I have reviewed the development of the magnetic monopole theory over years
of development and it was really amazing to see how little an idea it was yet
to expand and influence so many aspects on modern physics.

It was long before any quantitative arguments about the monopole was pro-
posed people have speculated that a bar magnet could consists of two “poles”.
Later when they found that it seemed that these poles could not be sepa-
rated. Maxwell developed his set of equations, in which the magnetic Gaus-
sian showed a vanishing divergence of the magnetic field indicating that the
magnetic charge does not exist. It was mathematicians who found that the
little “broken” symmetry of the theory could be restored by additional mag-
netic charges and currents. Probably inspired by the beauty of a restored
symmetry and also by the virtue of quantum mechanics, Dirac showed that
the new quantum theory at the time allowed the existence of monopole. Fur-
thermore, its existence would explain the quantization of the electric charge.
Later on, ‘t Hooft-Polyakov monopoles were to represented to be the nec-
essary consequences of symmetry breaking. The hedgehog configuration is,
in fact, the non-trivial Q = 1 sector of the soliton solution. Although the
experimental prove of the real particles are yet to be confirmed, theoretical
developments and the simulations showed great potential in many ways.
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9 Discussion

It would be humble for me to present this review as a concluded even as
an introduction to the subject. Along the writing of it, many ideas were
considered yet had no sections to fit in the original document. We, therefore,
included some of the interesting discussions in this section with the hope that
some of those may inspire any of the further studies on the subject.

1. The real starting point of the quantitative study of the monopole is the
paper Dirac presented in 1931. In his paper, he wrote down the quan-
tization condition of which the product of the electric and magnetic
charges must be quantized and being an integer multiple of some fun-
damental value (3.4). But interestingly, almost all the systems except
that of Dirac’s produce another quantization condition, Schwinger’s
condition, which gives precisely twice the value of the Dirac conditions.
Many literatures and relative books have been reviewed yet it seems
that even Schwinger himself could not provide a solid explanation. The
most convincing idea may be the one suggested by Milton, that provide
all the monopole species can be expressed as the Dirac type with a in-
finitesimal string attached to it. It can then be shown that the infinite
string with open ends would satisfy the Schwinger’s condition and that
of the semi-infinite string would obey Dirac’s condition. As illustrated
in Fig 5. Then, I would like to suggest that the condition is depend
on the actual symmetry of the monopole configuration with respect to
the singular nodal lines attached to the configuration. However, other
multiples of the Dirac’s value has also been suggested in some models,
where their arguments were based on the charge differences. And a
conclusive explanation is yet to be found.

2. Besides the types of monopoles I have stated in this review, there are
other possible species that have either theoretical or experimental im-
portances to some extent, here I would state some examples of interest:

• Abelian monopole
These monopoles are not the consequences of non-abelian sym-
metry group spontaneously broken, but merely the concept anal-
ogous to the ideas of gluons in QCD to explain the phenomenon
of confinement. We imagine to monopoles separated by a distance
in a condensed matter system. The analogy of the confinement
can be expressed if we can imagine the field lines connecting two
charges for a magnetic flux tube. [96] The properties of this type
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of object have been studied extensively, and can potentially pro-
vide good simulation methods and theoretical explanations to the
confinement theory. See Figure 6 for an illustration.

• Dyons
Consider the excited states of a ground state monopole in which it
interacts with some energetic particles. Provided the coupling is
strong enough, we can imagine the process in which the daughters
can consist of a particle with electric charge and an effectively
excited state of a monopole with electric charges. This object is
called Dyon (Figure 7) and it is proposed [] that its formation
can actually be simulated using the twisted boundary condition
methods in lattice theory. The difficulties are once we have entered
the strong coupling regime there is no existing theory to explain
the physical interaction.

• Supersymmetric monopole
These are the type of monopole that has been suggested in the
supersymmetric theory or (super)string theory. The treatment is
somehow much easier than that in the quantum theory since the
quantum correction is trivial under supersymmetric conditions.

3. Strong coupling simulation
We have attempted to adapt the theories that have been developed
in [81] and tried to extend it to a strongly coupled system. However,
because of the shortage of time and the complexity of the lattice Monte
Carlo simulation, we failed to get any result of analytical importance.
Nevertheless, the suggested behavior could still be useful in further
studies. An ideal case sketching is attached in Figure 8.

4. Mass scales
In the theory of ‘t Hooft – Polyakov monopole, we have two mass
scales that can be related to the actual isolated monopole mass. In the
classical solution, we have the mass of the interacting boson appearing
explicitly in the equation. Yet the information about the Higgs mass
is encoded in the function f(z) (??). In the weak coupling or deep in
the broken phase simulations, the values of both masses have been set
to similar values in order to compare the result with previous reports.
Since the treatment was non-perturbative, we do not have to restrict
ourselves to those values. Simulations with various values of these
mass scales could be carried out and by comparing the profile of the
monopole and studying its spreading, we would be essentially probing
the quantum structure of this objects.
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A Figures and sketchings

Figure 5: Sketching of different types of strings attach to a monopole
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Figure 6: Sketching of flux tube in analogous to the confinement
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Figure 7: Sketching of the excitation of the ground state monopole to form
a dyon and a particle with opposite electric charge
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Figure 8: Sketching of the idealized strong coupling interaction
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