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Abstract

The presence of solid, micro-impurtities in tokamak plasmas has become a topic of great
importance. Dust, originating from the reactor wall surfaces as a result plasma surface inter-
actions, has the potential to cause serious safety hazards and confinement issues and there-
fore the transport of these particle contaminants in the plasma of an operational tokamak is
therefore, a matter of great importance. An important aspect of Dust transport models is the
charge acquired by a dust grain immersed in plasma. This study analyses methods at com-
puting the corresponding ’floating potential’. The orbital motion limited (OML) theory is
presented in 4 guises as a means for calculating this floating potential in a tokamak plasma.
In addition OML is compared to the ABR model, which assumes that the incoming ion mo-
tion is radial. It is found that ABR gives a floating potential that is an explicitly function of
dust grain radius in contrast to OML which gives the floating potential as a function of the
ration of the ion to electron temperature only. Analysis of the plasma dust interaction sug-
gests that, whilst small dust grains possess more or less the vacuum potential, large grains
modify the plasma on scales of λD and far beyond to such an extent that the potential struc-
ture is very different, and includes potential barriers to ion collection. OML is modified to
account for 4 situations, small grain flowless (OML), large grain flowless (MOML), small
grain flow (SOML)and large grain flow (SMOML). It is shown that in the context of the
dust transport code DTOCKS, in the regime of interest both flow and grain size should be
accounted for, and instead of using basic OML, SOML and SMOML should be considered
for the charging model.
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Chapter 1

Introduction

1.1 Background and Motivation: Nuclear Fusion

Of all the low carbon methods of energy generation, controlled nuclear fusion, if it proves
practical on a industrial scale, is undoubtedly the most attractive. There is good reason
to be optimistic, for nuclear fusion could offer electricity generation accompanied by zero
Carbon emissions, inherent safety, only small quantities of short half-life nuclear waste
and perhaps most importantly, a practically unlimited fuel supply [31]. Nuclear fusion
is the fusing of two small nuclei to form a larger one with an accompanying release of
energy arising from the conversion of mass to binding energy. In order to achieve fusion a
critical triple product of density, temperature and pressure must be satisfied. There are three
confinement approaches to maximise this product, namely gravitational confinement (stars),
inertial confinement and magnetic confinement [38]. There are many reaction pathways
which are energetically favourable. These may be identified using figure 1.1 - any reaction
pathway which leads to an increase in binding energy will release energy in the ideal case.
Considering Nuclear Fusion for terrestrial energy generation, only the most energetically
favourable pathways are useful. By a quirk of nuclear shell structure, the said reactions are
just those which result from the fusion of hydrogen isotopes to form Helium-4. Of these
reactions the one with the best combination of cross section and net energy release is the
Deuterium-Tritium (D-T) pathway, equation 1.1, which releases 17.6MeV per reaction [38].

D2
1 +T 3

1 → He4
2 +n1 +17.6MeV (1.1)

Despite the energetic advantages of the D-T pathway it has two major drawbacks. Firstly,
although Deuterium is relatively abundant, being present with a concentration of 156ppm
in naturally occurring Hydrogen, Tritium is scarce and must be bred using Lithium (equa-
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tion 1.2). This process is fraught with safety concerns due to the toxicity of Lithium. In
addition however, tritium itself is radioactive and highly toxic [10].

Li6 +n → He4 +T +4.8MeV (1.2)

The most promising nuclear fusion device is the ’Tokamak’, a magnetic confinement de-
vice. In Tokamak conditions, the fuel must be heated to around 100× 106K and on this
temperature scale, the fuel exists in the plasma state. The plasma is so hot that any solid
material coming into contact with it would be instantly vaporised and so the plasma must be
contained by magnetic fields. Considering the Fusion reaction only, the Tokamak is an in-
herently safe device since at any one time, only a few grams of fuel is present in the reactor
so there is no chance of a runaway reaction. This also means the reactor could be shut down
very rapidly unlike a fission plant. Such safety claims are widely proliferated by Tokamak
researchers. However, this picture is complicated by the presence of ’dust’.
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Fig. 1.1 Binding energy vs nucleon number, indicating potential viable fusion reactions for
energy generation
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1.2 Dust in Fusion Devices

In essence a Tokamak consists of a Torus shaped reactor vessel and an iron core, figure 1.2.
The plasma within the reactor vessel acts just like a secondary winding on an ordinary trans-
former, and the configuration allows large currents to be induced in the plasma. The plasma
is subsequently heated by the ohmic effect. Further heating is achieved by the injection
of neutral particles (NBI), and/or by radio waves. Together, these methods can take the
temeprature of the core plasma up to around 150×106K [38], [36] The plasma is confined

Fig. 1.2 Schematic of Tokamak Geometry Illustrating The Poloidal and Toroidal Directions

within the vessel by a helical magnetic field consisting of nested flux surfaces upon which
particles are transported freely but across which transport is strongly suppressed. The helical
confinement field is produced by a superposition between the plasma’s own poloidal mag-
netic field and a toroidal magnetic field, generated via external current coils. The boundary
between the closed field lines that make up the nested flux surfaces and the open field lines,
which end on material targets in the vessel, is called the seperatrix in Divertor Tokamaks.
The Divertor consists of a magnetic field configuration along with material targets, Divertor
plates, which prevent the hot plasma from coming into contact with the first wall of the
reactor vessel, thereby maximising rector life [36]. The region of open field lines is known
as the scrape off layer, and it is here that so called ’dust’ particles are found. The scrape off
layer is at a much lower temperature than the core, and any dust grains transported to the
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core are immediately vaporised (reference). The magnetic field configuration is illustrated
by the schematic poloidal cross section through a reactor vessel in figurer̃effig:pol. Due to

Fig. 1.3 Schematic of a poloidal cross section through a Tokamak showing the nested
poloidal flux surfaces, the scrape off layer (SOL), the plasma edge and the last closed flux
surface.

the enormous heat loads divertor targets are subject to, they emit impurities via sputtering
mechanisms. Despite the divertor targets baring the brunt of the heat load, plasma interac-
tions with the reactor vessel’s first wall are unnavoidable leading to more impurities. These
solid impurities are called ’dust’ and are found in the SOL. ITER’s divertors are slated to be
of Beryllium (Be) with the first wall of Tungsten (W), so that dust from these elements is
expected to be present. Significant safety and operational concerns arise with the presence
of dust. Briefly, dust can be either transported to the core, in which case it is vaporised and
disrupts fusion whilst also causing significant energy losses due to Bremsstrahlung radia-
tion, or it can be re-deposited on the reactor walls. In the latter case, Tritium absorption by
dust grains is a serious safety concern [5]. In order to ensure adequate safety precautions
are made against dust, it is vital that engineers can predict where dust will proliferate. To
achieve this, physicists must develop accurate dust transport codes. A dust grain immersed
in a plasma will naturally acquire a negative charge in the first instance due to collection
of electrons on its surface (see Chapter 2). Positive charges are possible too (see Subsec-
tion 2.1.1 and Chapter 3). The dust grain charge is a vital component of any Dust transport
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code, and there are a variety of theoretical approaches for computing it. Dusty plasma lit-
erature will be reviewed in this regard, and predictions for the dust grain charge in a typical
steady state Tokamak plasma shall be produced. Before beginning the discussion on charg-
ing mechanisms, a brief review of some pre-requisite plasma physics is presented. This
dissertation deals with dust grains but it is noted that liquid ’grains’ are likely to be signifi-
cant in number. Plasmas with liquid grains are termed ’misty plasmas’ (insert reference).

1.3 Essential Plasma Physics - A Brief Overview

A plasma is a fully ionised gas. As a result the dominant particle-particle interaction is
via the Lorentz force and so plasmas exhibit collective behaviour. The number density
in the SOL is of the order 1018m−3, and so an exact solution to this plasma equation of
motion requires the solution of 1018 coupled differential equations; clearly and intractable
problem [36]. Instead, kinetic theory is applied by introducing a distribution function,
f (⃗r, v⃗, t), defined in a 6 dimensional phase space, whose element d3xd3yd3zd3vx d3vy d3vz

shall be denoted d3⃗r d3⃗v. The quantity f (⃗r, v⃗, t)d3⃗r d3⃗v is defined to be the number of par-
ticles in the volume (x+ dx,y+ dy,z+ dz) in configuration space with velocity between
(vx +dvx,vy+dvy,vz+dvz). Therefore, defining n(⃗r, t) and N, the number density distribu-
tion function and the total number of particles in the system respectively, we can normalise
by distribution function to obtain:

n(⃗r, t) =
∫

∞

−∞

d⃗v f (⃗r, v⃗, t) N =
∫

∞

−∞

∫
∞

−∞

d⃗r d⃗v f (⃗r, v⃗, t) (1.3)

In a collisionless plasma, such as that existing in a Tokamak, the evolution of the distribu-
tion function is governed by the collisionless Vlasov equation 1.4. The connection between
observables and the distribution function is found by taking velocity moments of the distri-
bution function. In this way, average plasma quantities are obtained. For instance, the first
velocity moment gives the average velocity, ⟨v(⃗r, t)⟩ [38] 1 [34].

∂ f
(⃗
r, v⃗,⃗ t

)
∂ t

+ v⃗ ·∇r f
(⃗
r, v⃗,⃗ t

)
+

q
m

(
E⃗ + v⃗× B⃗

)
·∇v f

(⃗
r, v⃗,⃗ t

)
= 0 (1.4)

1
n(⃗r, t)

⟨v(⃗r, t)⟩=
∫

∞

−∞

d⃗v⃗v f (⃗r, v⃗, t) (1.5)

1The plasma pressure, a tensor quantity, obtained by taking the 2nd velocity moment, shall not be required
in this review
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1.3.1 The Maxwell Boltzmann Distribution (Maxwellian)

The Maxwell Boltzmann distribution, fm
(
v⃗ j
)

written for species j, is valid for collisional
plasmas in thermal equilibrium and is given by equation 1.6. The collisions are binary
coulomb collisions governed by the Fokker Plank equation, whose only steady state solu-
tions are Maxwellians. This does not mean that evolving plasmas will always or are even
likely to have Maxwellian distributions [41]. However, in an approximately steady situ-
ation, a Maxwellian distribution is well justified. Despite the fact that Tokamak plasmas
are considered to be collisionless, it is generally assumed that the distribution function of
thermal ions and electrons in Tokamak plasmas is, to lowest order, Maxwellian [28]. A
more detailed discussion on non-Maxwellian distribution functions in Tokamak plasmas is
beyond the scope of this short review, but the ubiquity of the assumption in the literature is
the main justification for its inclusion here. This is certainly a debatable conclusion.

fm
(
v⃗ j
)
= n

(
β

π

) 3
2

exp
(
−β |v⃗ j|2

)
(1.6)

Where:
β =

m
2kBT

(1.7)

From 1.5 and 1.6, the average velocity of a particle in the Maxwellian plasma is:

⟨v⃗ j⟩=
∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

dvxdvydvz

(
β

π

) 3
2

exp
(
−β |v⃗ j|2

)
(1.8)

Noting that equation 1.8 is spherically symmetric the average speed may be computed by
converting to spherical coordinates with dvxdvydvz = v2 sinθdrdθdφ , and integrating over
all angles to obtain 1.9:

⟨v j⟩=
(

8kBT
mπ

) 1
2

(1.9)

The particle flux is defined Γ⃗ j := n jv⃗ j. A very useful quantity for dust grain charging (see
Chapter 2) is the average one way flux to a surface S immersed in the plasma, ΓS, j = n⟨vS, j⟩.
The one way flux is useful because the net flux on any symmetrical surface is zero by
symmetry. Consider a surface S with unit normal Ŝ. The component of velocity normal to
the surface is simply |⃗v||⃗S|cosθ . Then ΓS, j simplifies to 1.11

Γs, j =
n√
π

β
3
2

∫ π

2

0

∫ 2π

0

∫
∞

0
dθdφdr exp(−βv2

i ) (1.10)
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Γs =
n
4
⟨v j⟩ (1.11)

Again using spherical polars and integrating the Maxwellian over all angles, the Maxwell
speed distribution is obtained.

fm(v j) = 4πn
(

β

π

) 3
2

v2 exp(−βv2
j) (1.12)

In chapter 2, Poisson’s equation 1.13 is solved (see 2.2.1), where φ is the potential, e is
the charge on a singly charged ion, and ni and ne are the number densities of the electrons
and ions respectively. Solving equation 1.13 requires knowledge of the density distribution
function n (⃗r, v⃗, t). In the case of a Maxwellian plasma, n (⃗r, v⃗, t) can be estimated from
the Vlasov equation, which modifies fm (v) in the presence of an EM field. Considering a
spherically symmetric potential with B⃗ = 0, the Vlasov equation becomes 1.14.

∇
2
φ =

e
ε0

(ni −ne) (1.13)

v j
∂

∂ r

[
n j

(
β

π

3
2

exp
(
−βv2

j
))]

=
q j

m j

∂φ

∂ r
∂

∂v j

[
n j

(
β

π

3
2

exp
(
−βv2

j
))]

(1.14)

Defining n∞ as the density given by equation 1.3 and φ∞ = 0 as the potential at infinity. Inte-
gration of equation 1.14 results in the Boltzmann relation, equation 1.15, an approximation
widely used in plasma physics [38].

n j = n∞ exp
(

q jφ

kBTj

)
(1.15)

It is essential to be precise about its applicability. Strictly speaking of course, with B⃗ = 0,
it is invalid everywhere in a Tokamak plasma since magnetic fields on the order of 100 to
101 are present everywhere [36]. However, on closer inspection it can be argued that under
certain circumstances the approximation is, although slightly tenuous, at least defensible.
For instance, consider the flow of electrons onto a negatively charged plate immersed in a
plasma. If we assume that the system is in equilibrium, the electrons will have a Maxwellian
distribution from [28]. Since the electrons are in a repulsive potential, only those electrons
on the right tail of the Maxwellian distribution will reach the plate and so the flow of elec-
trons onto the plate will be much slower than the random thermal velocity. In this case,
providing the electrostatic potential is adequate, this term will dominate the magnetic term
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in the Vlasov equation and then the approximation of B⃗ = 0 is . Of course this argument
cannot hold for the ions which find themselves in an attractive potential. In that case the flow
towards the surface will be large and the magnetic term can no longer be ignored [36]. Equa-
tion 1.6 is only applicable to a stationary plasma whereas a Tokamak plasma possesses large
poloidal and toroidal flows. Therefore equation 1.16, the drifting Maxwellian, where vd is
the plasma fluid velocity, shall be useful in charging models which include flow (see 2.2.5
and 2.2.6).

fm(v⃗ j) = n j

(
β

π

) 3
2

exp
(
−β
(
|v⃗ j|2 −|v⃗d|2

)
−|v⃗ j||v⃗d|cosθ

)
(1.16)

1.3.2 Debye Shielding

That plasma dynamics will change in response to electric fields is clear on an intuitive
level. For instance, the coulomb force tells us that in response to a spherical positive probe
immersed in the plasma, electrons will proliferate around it forming a shielding cloud. In
a cold plasma the shielding cloud will contain exactly the opposite charge carried by the
probe, and beyond the radius of the cloud will shield the probe perfectly by Gauss’ law.
However if we consider electrons of finite temperature, it is clear that they will be able to
escape the shielding cloud when the shielded potential is around kBTe. Therefore, the radius
of the electron shielding cloud will extend only up to the point where the shielded potential
is of order kBTe. This situation is referred to as ’Debye shielding’ [32]. To quantify the
length-scale over which Debye shielding takes place and the degree to which potentials are
shielded in a plasma, we apply the Poisson equation to calculate the effective potential, φ (r),
around a spherical probe immersed in the plasma. For simplicity, we shall assume a quasi-
neutral plasma with a Boltzmann distribution of ions and electrons. We shall also make a

weak coupling approximation so that
eφ (⃗r)
kbTi,e

≪ 1. Writing equation 1.13 with the Laplacian

in spherical polars (r = 0 at the grain) and taking the system spherically symmetric, we
obtain [15]:

1
r2

d
dr

(
r2 dφ (r)

dr

)
=

n0e2φ (r)
ε0

(
1

kbTi
+

1
kbTe

)
(1.17)

d2φ

dr2 +
2
r

dφ

dr
=

φ (r)
λD

(1.18)

where
λ

2
D =

ε0

n0e2
(

1
kBTi

+ 1
kBTe

) (1.19)
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Equation 1.18 has an analytic solution, the Dëbye-Huckel potential [39]:

φ (r) = φp
Rp

r
exp
(

Rp − r
λD

)
(1.20)

λD, sometimes called the linearized Debye length, is the characteristic length scale over
which shielding occurs. Therefore, charges on a scale ≪ λD are not shielded and they’re
potential falls off as 1

r [39]. For objects < λD the Dëbye-Huckel potential is often used
(see section 2.2.2) [17] Intuitively, we can extend equation 1.19 to separate the shielding
responses by the ions and electrons. We therefore define the ion and electron Debye lengths:

λ
2
Di =

ε0kBTi

n0e2 λ
2
De =

ε0kBTe

n0e2 (1.21)

1
λ 2

D
=

1
λ 2

Di
+

1
λ 2

De
(1.22)

The ion and electron temperatures in the scrape off layer of a Tokamak plasma are typically
on the same order of magnitude, so shielding is not dominated by either species [38]. The
preceding analysis has drawbacks for the study of dusty plasmas, namely the weak coupling
approximation is invalid for dust[15], [11]. Despite this, λD is still a commonly used length
scale in the Dusty plasma literature. We must be wary how we apply it though.





Chapter 2

Charging by Collection

2.1 The Basic Plasma Surface Interaction

Plasmas are often thought of as comprising of an electron fluid and an ion fluid, the ’two
fluid’ model. Since the electrons are on the order 1× 103 less massive than the ions, their
thermal velocities are significantly greater and so an object immersed in a plasma experi-
ences a rapid collection of electrons at its surface, gaining a negative charge. There is also
an ion flux onto the grain, so that the ambipolarity condition dictates that the grain will
reach a steady state potential when the electron and ion currents balance. This potential
is referred to as the ’floating potential’. Debye shielding of this potential occurs as dis-
cussed in section 1.3.2. Applying the preceding model to a dust grain, one would expect
the dust grain potential to be of the Dëbye-Huckel form. However, this simplified model
breaks down when the dust size ∼ λDe as the potential is complicated by the presence of the
sheath 2.1.1. Unfortunately in SOL λDe ∼ 1× 10−5m and the average dust grain radius,a,
is usually around a micrometer (see figure 2.1) so that in order to describe the physics
of the dust plasma interaction adequately, it is necessary to introduce the concept of the
sheath [30].

2.1.1 The Sheath, Pre-Sheath and Bohm Criterion

The shielding of the potential of a charged probe of radius a in a plasma is much researched
and surprisingly incompletely understood when a is on the same scale or much larger than
λDe. In the opposite limit, the potential tends to 1

r as shielding takes place on the scale
λDe. If we take λDe → 0, it is found that the plasma surface interaction decomposes into
a two scale problem consisting of a collision free sheath and a quasi-neutral presheath.
Assuming a negatively charged probe, the electron density very close to the probe is reduced
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Fig. 2.1 Count based distribution of DUST obtained from behind the divertor targets of
ASDEX upgrade with radius a [30]

substantially resulting in a positive space charge region; the sheath. The sheath extends to
a scale ≈ λDe subsequently shielding the potential to a varying degree depending on the
scale of the probe, it’s floating potential and the temperature. Unfortunately, this simple
situation is complicated by significant ion losses due to absorption at the probe surface,
rendering sheath formation impossible unless the ’Bohm criterion’ is fulfilled. The essence
of this condition is that in order to enter the sheath, ions must have velocity greater than or
equal to the ion sound speed, Cs. Such ion velocities cannot derive from thermal motion
alone and so the presence of a space region L ≫ λDe containing an accelerating potential
for the ions has been postulated and subsequently observed experimentally. This is the
presheath. The ion velocity at the presheath-sheath boundary is often taken to be equal to
Cs (see below), implying the presence of a discontinuity at the boundary informing the two
scale formulation of the problem [27]. A simplified analysis of this situation in the case of
a perfectly absorbing planar wall is expounded below [35]

Cs =

√
kB (γTi +Te)

mi
(2.1)

In order to theoretically illustrate the existence of the sheath, presheath and Bohm criterion,
some simplifying assumptions are made, namely: the plasma is assumed quasi-neutral,
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collisionless, isothermal and unmagnetized with ambipolar flow (vi = ve = v) and singly
charged ions. The collisionless assumption is good for the SOL where the mean free path
is ∼ 10cm, 1000× smaller than the length over which shielding takes place λD [40]. The
perfectly absorbing planar wall scenario means that the ion distribution will not have a
Bolztmann factor due to wall losses and the situation is effectively 1d. The unmagnetized
assumption simplifies the equation of motion and the isothermal situation implies that the
adiabatic index, γ = 1 and that the ideal gas law, Pi,e = ni,ekBTi,e may be used. This assump-
tion, whilst not applicable to the SOL, is used because it simplifies the analysis enormously
and the essential physics is the same as the full problem. We begin by illustrating the ex-
istence of a discontinuity. Beginning in the quasi-neutral plasma and including ionizations,
ions and electrons are produced at the same rate, Θ, giving a continuity equation 2.2.

v
dn
dx

+n
dv
dx

= Θ (2.2)

Both species are subject to three fluid forces.

1. Pressure force:
−d pi

dx

2. Electrostatic force: −nq
dφ

dx

3. Effective drag due to ionization: −mvΘ

The drag force can be justified as follows. If ion electron pairs are assumed to be produced at
rest, since the plasma is assumed isothermal, the momentum of the new ion and electron will
on average after a short time become mi,evi,e respectively. On average then the momentum of
each fluid particle ignoring the new ion electron pair is reduced by that amount respectively.
Thus it is seen that ionization creates a drag force on the fluid. The total drag will simply
be the drag for 1 ionization multiplied by the rate of ionization. The momentum of a fluid is
given by nmvdv

dx , and force balance for each species is obtained by equating this to the sum
of the three forces. An overall fluid momentum equation can be written by summing the
contributions from both species and since the electron mass is negligible compared to the
ion mass, terms proportional to me are neglected. Rewriting the pressure using the ideal gas
law then leads to equation 2.3

nmv
dv
dx

=−mC2
s

dn
dx

−mvΘ (2.3)
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Where C2
s =

nkB(Ti+Te)
mi

in the isothermal scenario. Defining the mach speed, M = v
Cs

, subbing
in equation 2.2 and rearranging results in:

dM
dx

(
n−nM−2)=− Θ

Cs

(
M−2 +1

)
(2.4)

Rearranging gives equation 2.5 which implies the existence of a discontinuity at |M| = 1,
the inference being that the initial assumptions break down at this point, suggesting that
v < Cs in the quasi-neutral region. This region shall be denoted the ’presheath’ and the
region beyond is named ’sheath’.

dM
dx

=
Θ
(
1+M2)

Csn(1−M2)
(2.5)

The sheath boundary shall now be analysed by probing the boundary on the sheath side
region, formulating the Poisson equation. At this point it is convenient to introduce the
following normalized variables:

X =
x

λDe
Φ =− eφ

kBTe
θ =

Ti

Te
Ni,e =

ni,e

n0
(2.6)

Defining the potential at the sheath edge φs = 0, with the normalised variables, the electron
density is simply:

Ne = Ns exp((Φ)) (2.7)

Working on the sheath side and so on scales λDe, ionizations may be neglected and ion con-
tinuity at the boundary is simply nivi = nsvs. With normalised variables continuity becomes:

Ni =
NsMs

M
(2.8)

At a point in the sheath where the potential is φ (x) and the ion velocity is vi, ion force
balance gives:

d
dx

(
1
2

miv2
i + eφ (x)+ kBTi ln [ni]

)
= 0 (2.9)

Integrating from a point in the sheath up to the boundary, with φs := 0 where the velocity is
vs, produces equation 2.10.

1
2

mi
(
v2

i − v2
s
)
+ eφ (x)+ kBTi ln

(
ni

ns

)
= 0 (2.10)
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Ion continuity at the sheath edge gives ni =
nsvs
vi

, where the quantities with s subscript are
taken on the sheath side of the boundary. In steady state at Substituting in the normalised
variables and substituting in for C2

s gives:

M2 = M2
s +

2
1+θ

(
Φ(X)−θ ln

[
Ni

Ns

])
(2.11)

Poisson’s equation can be written in terms of equations 2.7, 2.10 and 2.11.

d2Φ(X)

dX2 = Ns

{
1+

2
M2

s (1+θ)

[
Φ(X)−θ ln

(
Ni

Ns

)]}− 1
2

− exp(−Φ) (2.12)

Very close to the sheath edge where Φ(X) ≪ 1, the normalised ion density Ni ≈ Ne =

Ns exp(−Φ) by ion continuity. In that limit, equation 2.12 reduces to:

d2Φ(X)

dX2 |X≈Xs = Ns

(
1+

2Φ(X)

M2
s

)− 1
2

− exp(−Φ(X)) (2.13)

Taylor expanding about the sheath edge produces equation 2.14. If the situation is assumed
to reach a steady state, then oscillatory solutions are to be avoided and so M2

s ≥ 1. In other

words, the ion velocity in the sheath must satisfy the Bohm criterion: vs ≥
√

KB (Te +Te)

mi
.

However, equation 2.5 implied that the velocity in the presheath was restricted to the oppo-
site inequality. We therefore conclude that at the sheath edge, the ion velocity is equal to
the ion sound speed. Whenever the sound speed is reached, a shock is formed, so the Bohm
criterion is the origin of the discontinuity noted previously. This is denoted the Bohm speed,
UB. More generally, this conclusion can be reached in the non-isothermal case applicable
for a Tokamak with the full ion distribution. Riemann [27] performs the analysis.

d2Φ(X)

dX2 |X≈Xs ≈
Ns

M2
s

(
M2

s −1
)
+O

(
Φ

2) (2.14)

2.2 Dust Grain Charging

Two main approaches to calculating the floating potential of a dust grain immersed in a
plasma due to charge collection shall be review; the Orbital Motion (OM) family of theories
and the Radial Motion theory (ABR) approach valid for cold ions [17]. OM in it’s complete
form assumes Maxwellian ions and electrons in a two fluid approximation explicitly calcu-
lating the ion trajectories right up to the grain. However, since the full OM problem is very
difficult to solve and solutions are only available in a limited number of cases, a restricted
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OM theory, OML, is very often used. The ’L’ stands for ’limited’ and refers to the fact that
the ion current is assumed to be limited by the angular momentum of the ions. By contrast
with full OM, OML models are not full physical theories because they do not calculate ion
trajectories explicitly and do not include the sheath. As a result they do not contain explicit
dependence on dust grain size. This will be expounded on in section 2.2.2. ABR on the
other does include sheath physics to a degree, as the Poisson equation is integrated from the
bulk plasma right up to the grain. As a result the ABR floating potential contains explicit de-
pendence on the radius of the dust grain. ABR is included despite not being appropriate for
Tokamak conditions, since it is a complete theory which explicitly includes the ion trajecto-
ries onto the grain (they’re radial) and provides an accurate limiting case which highlights
the shortcomings of OML. Despite OMLs shortcomings it is by far most prolific model used
in Tokamak literature and so it shall be explored thoroughly. In particular it finds practical
use in the Tokamak dust transport codes DTOCKS and DUSTT (see Chapter 3

2.2.1 Radial Motion Theory (ABR)

As discussed in 2.1.1, an object immersed in a plasma will experience a flux of ions and
electrons, consequently charging by collection. The ’floating potential’ is reached when
the electron and ion currents onto the object balance, Ii + Ie = 0, and a steady state is
reached. ABR assumes cold ions and Maxwellian electrons 1.12 obeying a Boltzmann
distribution 1.15 Consider an ion approaching a dust grain of radius a centred on r = 0

Fig. 2.2 And ion approaches a dust grain of potential Φ(r) radially
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from the quasi-neutral bulk plasma (figure 2.2). Since the ions are cold vi,∞ = 0, and the
assumption of a quasi-neutral bulk implies that there are no potentials in this region, energy
conservation gives:

vi (r) =
(
−2eφr

mi

) 1
2

(2.15)

Then the ion current through a spherical shell at radius r is:

Ii (r) = 4πr2ni (r)e
(
−2eφr

mi

) 1
2

(2.16)

It is computationally expedient to follow Kennedy and Allen ([16]) and introduce the fol-
lowing normalized variables.

X =
r

λDe
Φ =− eφ

kBTe
φ =

Ti

Te
A =

a
λDe

Ni,e =
ni,e

n0
µ =

mi

me
(2.17)

J =
Ii

4πλ 2
Den0e

√
2kBTe

mi

(2.18)

We can then write the ion density as ni = n0JΦ
− 1

2 X−2 and substituting this and the Boltz-
mann electron density into the spherically symmetric Poisson equation leads to equation 2.19.
Integrating the Poisson equation will result in φ (r) and subsequently also the normalized
form Φ(X).

d
dX

[
X2 dΦ

dX

]
= JΦ

− 1
2 −X2 exp(−Φ) (2.19)

Assuming a negatively charged grain we expect the electron distribution to be adequately
approximated by the Boltzmann law (see subsection 1.3.1). Since the potential is repulsive
for the electrons, we assume a Maxwellian distribution right up to the grain. Subsequently
the electron current is found by taking the first velocity moment of the Maxwellian velocity
distribution, substituting in the Boltzmann law, multiplying by the surface area of the grain
and multiplying the electric charge e. The core of this calculation is the same as for the one
way particle flux given by equation 1.11. The electron current Ie is then found to be:

Ie =−eπa2n0 exp(−Φ)

(
8kBTe

me

) 1
2

(2.20)

Rearranging equation 2.18 for Ii and equating with equation 2.20 gives 2.21, the floating
condition which, together with Φ(X) allows determination of the floating potential for a
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particular A.
J

A2 =

√
µ

4π
exp
(
−Φ

f
d

)
(2.21)

It will be apparent later that the re-arranged form of equation 2.21 given below will be more
useful.

Φ
f
d (A) =

1
2

ln
(

A4µ

4πJ2

)
(2.22)

Equation 2.19 is a second order differential equation requiring two boundary boundary
conditions if it is to be integrated: dΦ(X)

dX |Xb and Φb where Xb is the boundary of integration.
Integration shall be performed from far within the plasma in the quasi-neutral region up
to the grain. The quasi-neutral solution is termed the ’plasma solution’. We obtain the
boundary conditions as follows. dΦ

dX |Xb: in the quasi-neutral plasma the normalised electron
and ion densities are approximately equal to unity. This implies that the Laplacian term
is very small compared to unity, therefore the ’plasma’ solution is obtained by setting the
Laplacian term in equation 2.19 equal to zero. Upon rearranging, equation 2.23, the plasma
solution, is obtained [12].

X =

J
1
2 exp

(
Φ

2

)
Φ

1
4

(2.23)

In order to obtain dΦb
dx , equation 2.23 is differentiated:

d
dX

(
XJ−

1
2

)
=

d
dX

(
exp
(

Φ

2

)
Φ

1
4

)
(2.24)

dΦ

dX
=

4Φ
5
4

J
1
2

exp
(
−Φ

2

)
(2Φ−1)

(2.25)

By factoring out X using equation 2.23, the first boundary condition is obtained.

dΦ

dX
=

2XΦ
3
2 exp(−Φ)

J
(
Φ− 1

2

) (2.26)

In order to derive Φb, it is necessary to quantify the acceptable boundary values XB. The Xb

are arbitrary points where the plasma solution is valid. Since the plasma solution is valid
only when the Laplacian term of equation 2.19 is small compared to the other two terms,
may take one of the left hand terms and form an inequality, for instance, equation 2.27.

d
dX

(
X2 dΦ

dX

)
≪ JΦ

1
2 (2.27)
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Substituting in equation 2.26 and differentiating then produces:

6X2Φ
3
2 exp(−Φ)

J
(
Φ− 1

2

) +
2X4Φ2 exp(−2Φ)

J2
(
Φ− 1

2

)2

(
3−2Φ− 2Φ(

Φ− 1
2

)2

)
≪ JΦ

1
2 (2.28)

Substituting in equation 2.23 and simplifying leads to:

4Φ
3
2 (2Φ+1)(2Φ−3)

(2Φ−1)3 ≪ J (2.29)

By introducing an arbitrarily large parameter γ , we can may re-write equation 2.29 as an
equality giving a relationship between J and the boundary value ΦXb , equation 2.30.

J
γ
=

4Φ
3
2
b (2Φb +1)(2Φb −3)

(2Φb −1)3 (2.30)

The boundary value Φb is obtained by arbitrarily choosing J and solving equation 2.30 nu-
merically [15]. The allowed boundary values are plotted in figure 2.3 Before outlining the

Fig. 2.3 The allowed boundary potentials Φb for a given
J
γ

, with γ and arbitrarily large

parameter

numerical procedure for determining the ABR floating potential and discussing its conse-
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quences, the general procedure shall be elucidated. Equation 2.19 is integrated for varying
values of J with the boundary conditions and initial point computed as described. This pro-
duces a series of ΦX curves for varying J 2.4. In the context of a dust grain of radius A,
Φ(X) is the potential due to the grain at a normalised distance of X −A for a certain value of
J. Radii within A are redundant. The point on any potential curve at X = A corresponds to
the floating potential of the grain at that value of J. The solution, containing two unknowns,
can be used to produce a function Φ

f
d (A) by combining with equation 2.22, which matches

grain radius parameters to specific J values. The result is figure 2.5, computed for a D+T
plasma mix.

0 5 10 15
0

1

2

3

4

5

6

7

8

9

10

X

Φ

Fig. 2.4 Potential curves for the following selections of normalised current densities:
0.1,5,30,55,80.

Figures 2.4 and 2.5 where produced using ’MATLAB’. The numerical solving function
’vpasolve’ was applied to equation 2.30 to obtain Φb (J), and the integration of equation 2.19
was computed using ’ode45’, which implements a 4th and 5th order Runga-Kutta formula
(seec̃itepode45). Since ode45 can only handle first order equations, equation 2.19 was first
converted into a system of two first order equations. This can be achieved by defining

the variables Φ1 (X) = dΦ(X)
dX and Φ2 (X) = JΦ

− 1
2

1 (X)X−2 − exp [−Φ1 (X)]−2X−1Φ2 (X).
In addition it was found that ode45 becomes unstable when integrating ’backwards’ so a
change of variables was made in order to effectively integrate forwards in X . Rather than
being explicitly calculated, it is more accurate to say that Φ

f
d (A) was ’generated’. More
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Fig. 2.5 Floating potential as a function of grain radius computed with ABR theory.

precisely, the function Φ(X) as a function of J and equation 2.22 were overplotted for each
iteration of J and the value of X which corresponded to the point of intersection between
the two curves gave Φ

f
d (A). Figure 2.6 illustrates this procedure graphically for a few

points. Ideally the point of intersection would have been obtained by fitting a function to
Φ(X), equating with equation 2.22 for every iteration and solving. However, a suitable
fitting function was not readily apparent and so an alternative method was applied. This
involved calculating the differences between the two functions on a fine grid using a shape
preserving spline interpolant, finding the point at which an element in the differences vector
changed sign, and picking the previous X value to be the intersection point. The accuracy of
this method can be selected by setting the fineness of the grid. The spacing used to produce
figures 2.4 and 2.5 was 1×10−2. This is the dominant error in the calculation. 1×10−2 is an
adequate tolerance because rather than using ABR to produce accurate values of the floating
potential for Tokamak dust, the theory has been included in order to probe the behaviour of
the floating potential in the cold ion limit. Looping over J generates the desired function
Φ

f
d . It is important to note that it is not possible to perform the above calculation for a

pre-selected value of A since J and A constrain one another and it is not possible to compute
the Φ(X) curves without pre-selecting J. However, once Φ

f
j (A) has been generated, the

floating potential for arbitrary grain radius can be obtained by interpolation or estimated
graphically on figure 2.5. All of the above subtleties are documented in Appendix A where
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the full code is included and extensively annotated. The numerical results show that the

Fig. 2.6 Graphical example of the determination of the ABR floating potenial for 4 values
of normalised grain radius marked by crosses.

ABR model is asymptotic in the small and large grain limits. The asymptote values are 0
and 3.80 for Φ

f
d .

2.2.2 Orbital Motion Limited (OML)

OML and its modifications are the simplest and perhaps most widely used charging models
and belong to a class of theories known as Orbital Motion (OM). Unlike ABR, OM theories
consider both hot ions and electrons. OML shall be presented in various guises in this paper.
First of all the basic theory, applicable to negatively charged dust grains, is described in this
section. The three subsequent sub-sections detail modifications addressing some of OML’s
shortcomings. It should be said at the outset, that the justification for these particular modifi-
cations comes not from theory but from experiment. In Chapter 3 the DTOCKS and DUSTT
codes OML based charging mechanisms are reviewed. These take into account some of the
various electron emission processes leading to the aforementioned positive grains. Unlike
ABR, OML deals with both hot ions and electrons so it is immediately more applicable to
a Tokamak. OML is theoretically questionable on many counts. One of the most striking
features of OML is that it doesn’t calculate or assume any ion trajectories. In this sense, it
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is not a complete theory unlike the ABR model which assumes radial motion of the incom-
ing ions. Secondly OML assumes a negatively charged grain when in fact there are many
circumstances under Tokamak conditions when the grain charges positive (see 3). The dust
transport codes DUSTT and DTOCKS both modify OML to rectify this (see 3). Another
issue is that, as we shall see in 2.2.4, the assumption that grazing ions are collected is in-
validated for a

λD
≪ 1 by the presence of an ’absorption radius’, aab

λD
where aab ̸= a. Again,

OML may be modified to account for this phenomenon 2.2.4. Finally, since OML contains
a fixed Maxwellian distribution used to calculate the electron and ion fluxes onto the grain,
the theory is invalid when flows are present, as in a Tokamak. A version of OML with a
shifted Maxwellian shall be presented in subsection 2.2.5. It is assumed that the grain has
rapidly charged negative by electron collection, and only ion collection need be considered.
Figure 2.7 illustrates the situation. We consider ions approaching from infinity with veloc-
ity v∞. Ions which have a certain critical parameter ηc will follow an unspecified trajectory
which just grazes the surface of the grain, and ions with parameter less than ηc will be
collected at the surface grain.

Fig. 2.7 The allowed boundary potentials Φb for a given
J
γ

, with γ and arbitrarily large

parameter

Following Kennedy and Allen ( [17]), we begin by assuming a Maxwellian plasma and
a spherical grain, implying that the situation is spherically symmetric. with This allows us
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to assume angular momentum 2.31 and energy 2.32 conservation respectively

m jv∞ηc = m jv ja (2.31)

1
2

miv2
∞ =

1
2

miv2
i + eφd (2.32)

Where m j, φd , v∞ are the mass of species j, potential at the surface of the dust grain and the
velocity in the bulk plasma. We assume ’ambipolar’ flow so that in the bulk vi = ve = v∞

[22]. ηc is the critical parameter for which particles follow an unspecified trajectory which
is at some point tangential to the dust grain complete with zero radial velocity with respect
to the grains radius. We may calculate the effective area upon which ions are collected by
first combining equations 2.31 and 2.32 to derive an expression for ηc. Subsequently we
straightforwardly obtain expression 2.33 for the effective cross section of collection for the
ion current, σi.

σi = πa2
(

1− 2eφd

miv
′2
∞

)
(2.33)

From the exposition in 2.1.1 we know that ion collection on the negatively charged grain
will result in the formation of a sheath. It was argued that ions must enter the sheath with
vi = UB, so we would expect the presence of a potential barrier against the ion collection
during formation of the sheath. OML ignores this complication. This simplification is en-
coded in the initial ’grazing’ assumption and shall be addressed in 2.2.4 by the inclusion of
the aforementioned ’absorption radius’. In addition it is assumed that the ion distribution
remains Maxwellian right up to the grain. This assumption is not justifiable theoretically
since Tokamak plasmas are generally considered collisionless although despite this, the
Maxwellian assumption is a common approximation. The main advantage of this simpli-
fication is computation expediency, very important when one considers that the dust grain
charge routine is one of many aspects to a dust transport code like DTOCKS or DUSTT
(see 3) for it allows one to obtain the ion flux simply by integrating the Maxwellian from
the bulk right up to the grain. Before proceeding it’s worth noting that since the dust grain
number density is far inferior to the plasma number density, if we assume that the reactor is
operating at steady state we may assume that the presence of dust grains in the edge plasma
has little affect on the plasma, and since it has been shown that Maxwellian distributions are
good approximations in steady plasmas, there is at least some validity to the Maxwellian via
experiment. For now, the grazing condition allows us to approximate the ion current, DIi,
due to ions with velocity vi +dvi as:

dIi = σiedvivi fm (vi) (2.34)



2.2 Dust Grain Charging 25

Where n∞ is the number density far into the bulk plasma. We shall assume a quasineutral
bulk so that ni (∞) = (ne (∞) = n∞. Assuming that the grain is charged negative, the mini-
mum speed for collection is simply vi = 0. Then Substituting into 2.34 the Maxwell speed
distribution 1.12, and integrating over all speeds we obtain:

Ii = 4πa2n0e
(

βi

π

) 3
2 ∫ ∞

0
dv

′
i

[
v
′3
i − 2eφdv

′
i

mi
exp
(
−βiv

′2
i

)]
(2.35)

Where
β j =

m j

2kBTj
(2.36)

Performing the Gaussian integral leads to the ion current, Ii:

Ii = πa2n0e
(

8kBTi

miπ

) 1
2 [

1−Φd,i
]

(2.37)

Where we have defined a normalised dust grain potential, Φd, j as:

Φd, j =
φdq j

kBTj
(2.38)

The electron current is derived the same way except that whereas the minimum collection
speed for ions is just zero, since the electrons are in a repulsive potential if they are to be
collected they must have speed ve,min. Therefore the electron current is given by 2.39

Ie = 4πa2n0e
(

βe

π

) 3
2 ∫ ∞

ve,min

dv
′
i

(
v
′3
i − 2eφdv

′
i

mi
exp
(
−βev

′2
i

))
(2.39)

We must be careful to ensure none of our limits diverge to infinity so they shall be written
explicitly. First, label the integrals IA and the IB so that:

IA =
∫

∞

ve,min

dv
′
ev

′3
e exp

(
−βev

′2
e

)
(2.40)

IB =−
∫

∞

ve,min

dv
′
i

(
2eφdv

′
i

mi

)
exp
(
−βev

′2
i

)
(2.41)
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To evaluate IA we integrate by parts to obtain

IA =

[
− 1

2βe
v
′2
e exp

(
−β

2
e v

′2
e

)
− 1

2β 2
j

exp
(
−β

2
e v

′2
e

)]∞

ve,min

(2.42)

Observe that in the first term of 2.42, the upper limit converges to zero quicker in the expo-
nential term than the squared term goes to infinity, so the upper limit is duly zero.

IB =

[
v2

e,min

2βe
exp
(
−βev

′2
e

)]∞

ve,min

(2.43)

Combining 2.42 and 2.43 gives the OML electron current onto a negatively charged dust
grain 2.44

Ie =−πa2n0e
(

8kBTe

πme

) 1
2

exp
(

eφd

kBTe

)
(2.44)

Using 2.37 and 2.44, the floating condition is obtained:

exp
(
−Φ

f
d

)
=

(
θ

µ

) 1
2
(

1+
Φ

f
d

θ

)
(2.45)

Where the following normalised quantities are introduced:

Φ
f
d =− eφd

kBTe
θ =

Ti

Te
µ =

mi

me
(2.46)

It is notable that Equation 2.45 produces a result for the floating potential that is independent
of grain radius, in direct contradiction to ABR theory which finds the floating potential
tending to zero as the normalised dust radius tends to 0 [16] Figure 2.8 shows normalised
floating potential Φ

f
d against the ratio of the ion to electron temperature θ for the OML

solution. ITER’s benchamark mode of operation, ELMy H-Mode, is expected to operate
at approximately θ = 1 [31]. Since OML does not solve the Poisson equation it gives no
potential profile. Therefore, it is often assumed that the potential is of the Dëbye-Huckel
form (equation 1.20). This is limited to the regime A < 1 after which point the effects of
the sheath must be included [16]. The Dëbye-Huckel potential is plotted in figure 2.9 for
various values A.



2.2 Dust Grain Charging 27

Fig. 2.8 The floating potential Φ
f
d against the normalised ion temperature θ
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Fig. 2.9 The Dëbye-Huckel potential for various values of Normalised grain radius A.
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2.2.3 The Lambert W Function - An Analytic OML Solution

The Lambert W Function W (Z) is defined as the inverse function of f (x) = xexp(x) for
any complex number Z so that its defining property is 2.47 [7]

Z =W (Z)exp(W (Z)) (2.47)

By multiplying equation 2.45 by exp(−θ) and rearranging, we see that the OML floating
condition can be thought of as being of the form Γexp(Γ) = κ (µ,φ). The solution of this
expression may be written as Γ =W (κ (µ,θ)). Subsequently, it is found that equation 2.48
has an analytic solution which can be written as equation 2.49(

θ +Φ
f
d

)
exp
(

θ +Φ
f
d

)
=
√

µθ exp(θ) (2.48)

Φ
f
d =W

[√
µθ exp(θ)

]
−θ (2.49)

Equation 2.49 is confirmed by plotting and checking that the result matches that of figure 2.8
and indeed this is the case.

2.2.4 Modified OML (MOML)

To derive equation 2.49 it was assumed that only grains with a parameter less than the ηc are
collected. However this assumption breaks down in the large grain limit, A > 1, due to the
presence of a sheath. As discussed in section 2.1.1 the sheath occurs at a discontinuity from
the pre-sheath plasma where strong electric fields accelerate electron. Bohm’s postulate,
that ions entering the sheath must be travelling at the Bohm speed (the sound speed) c2

s =
Kb(γTi+Te)

mi
where γ is the ratio of the specific heats at constant pressure and constant volume

respectively, implies the presence of potential barriers which are functions of ion energy.
Taking the original OML derivation to apply strictly only in the small grain, A< 1 sheathless
limit, we now derive an OML equation for the opposite limit which is commonly named
’MOML’. Following Willis et. al [40] we assume that all potential barriers exist at or within
the sheath thereby making the sheath edge the effective grain radius. The MOML floating
condition is derived by applying OML at the sheath edge. The situation is illustrated by 2.10.

Assuming a negatively charged grain, the electrons will be unaffected by the potential
barriers due to the sheath since it is a region positive charge density shielding the negatively
charged grain in this instance. Following Willis et. al [40] and assuming that all ions which
enter the absorption radius are collected at the grain surface the ion current, equation 2.50,
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Fig. 2.10 Ions of energy E ′ and angular momentum L′ will graze the absorption radius, aab.
Ions with L < L′ will be collected by the grain and ions with L > L′ will not. φs and φd are
the potentials at the sheath and dust grain edge respectively.

is obtained.

Ii = πa2n0e
(

8KBTi

πmii

) 1
2
[

1− e
KBTi

(φs)

]
(2.50)

Substituting φd −∆φ = φs and equating with the electron current equation 2.44 and normal-
ising as before, the floating condition is obtained.

exp
(
−Φ

f
d

)
=

√
θ

µ

(
1+

Φ
f
d

θ
− ∆Φ

θ

)
(2.51)

In the thin sheath limit, the situation is equivalent to the planar wall in section 2.1.1 so that,
with the assumption that all ions enter the sheath are collected by the grain, it is possible
to estimate the potential drop across the sheath. The ion flux at the sheath edge, Γi

se =

ni
secs, is assumed to be equal the electron flux at the sheath edge, Γe

se = ne
seve

se, by charge
conservation. Since the electrons are still in a repulsive potential, Γe

se is just the one way
particle flux in a Maxwellian distribution given by equation 1.11. Therefore, we have:

ni
se

√
kBTeγkBTi

mi
=

1
4

ne
se

(
8kBTe

πme

) 1
2

exp
(

e∆φ

kBTe

)
(2.52)
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Making the usual assumption of a quasi-neutral pre-sheath, the above equation can be solve
for ∆φ and normalised in the usual manner to give equation 2.53.

∆Φ =
1
2

ln
[

2π

µ
(1+ γθ)

]
(2.53)

Substituting into equation 2.51 gives the full MOML floating condition.

exp
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−Φ

f
d

)
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√
θ

µ

(
1+

Φ
f
d

θ
− 1

2θ
ln
[

2π

µ
(1+ γθ)

])
(2.54)

Equation 2.54 can be solved numerically in its present form or, as with the original OML
formula, has an analytic solution in terms of the Lambert W function. This can be seen by
rearranging to give: √

θ µ exp
(

θ − θ

2
ln
[

2π

µ
(1+ γθ)

])
=

(
θ +Φ

f
d −

1
2

ln
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(1+ γθ)

])
exp
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{θ +Φ
f
d −

1
2

ln
[

2π

µ
(1+ γθ)

]/
} (2.55)

The solution of which is equation 2.56

Φ
f
d =W

/
{
√

µθ exp [β (µ,θ)]
/
}−β (µ,θ) (2.56)

Where β (µ,θ) is defined as:

β (µ,θ) = θ

[
1− 2π

µ
(1+ γθ)

]
(2.57)

Willis et. al [40] have found that taking γ = 5
3 fits the simulation data from the SCEPTIC

code the best. Equations 2.56 and 2.49 are plotted in figure 2.11. Since the only fundamental
difference between MOML and OML is the inclusion of potential barriers in the former, it
would be expected that the MOML floating potential would be lower than the OML value
for low temperatures, gradually converging to the OML value the ion temperature rise and θ

heads towards and beyond unity. This is just the pattern shown in the figure which indicates
that for the conditions of interest in an edge Tokamak plasma, θ ̸= 1, MOML offers a
significant correction to the standard OML expression for large grains. In the small grain
limit, MOML is expected to converge to OML since on scales A ≪ 1 there is no sheath
and so no potential barriers to ion collection, the original OML situation. So far we have
developed two theories which can be applied to large and small dust grains in a stationary
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plasm. Are equations 2.56 and 2.49 applicable to the SOL of a Tokamak? Unfortunately
the SOL contains contains very strong plasma flows in the toroidal and poloidal directions
on the order of ̸= 103 and 10Kms−1 respectively. In the next section, OML and MOML
will be modified to include flow in the small and large grain limits. The resulting theories
will be name SOML and SMOML where the ’S’ denotes the fact that a shifted Maxwellian
distribution 1.16 replaces the ordinary Maxwellian.

Fig. 2.11 The OML and MOML floating potentials as a function of temperature for a 50-50
D+T mix.

2.2.5 Shifted Maxwellian OML (SOML)

SOML is OML with the Maxwellian distribution replaced by the drifting Maxwellian 1.16 [18].
The fluxes onto the grain are again calculated in the usual OML method 2.2.2. The current
onto the grain due to species j can be written as the integral 2.58. Substituting in the shifted
Maxwellian distribution 1.16 and the OML cross section σ j 2.33 and subsequently integrat-
ing over θ and π leads to 2.59.

I j =
∫ 2π

0

∫
π

0
dθ sinθ

∫
∞

vmin
j

dv jv3
jσ jq j f j

(
v j,θ

)
(2.58)
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I j = Γ j

∫
∞

vmin
j

dv j

(
v2

j −
2φdq j

m j

)[
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(
−α

2
j
)
− exp

(
−β

2
j
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(2.59)

where the quantities Γ j, α j and β j are defined for mathematical simplicity as:

Γ j =
v2

t j

vd
(πa)2 q jn j

(
m j

2πkBTj

) 3
2

(2.60)

α j =
v j − vd

vt j
β j =

v j + vd

vt j
(2.61)

Where vt j is the thermal velocity of species j defined as:

v2
t j =

2kBTj

m j
(2.62)

Expanding Equation 2.59 leads to the following Gaussian integrals 2.63, 2.64, 2.65 and 2.66

I j = Γ j

∫
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dv jv2
j exp

(
−α

2) (2.63)
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∫
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∫
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dv j exp
(
−β

2) (2.65)

−Γ j
2φdq j
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∫
∞
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j

dv j exp
(
−α

2) (2.66)

Again the ion current for a negative grain is found by setting vmin
j = 0 and electron current

uses the limit vmin
j =

√
−2eφd

me
. In the general situation of a positive grain, it is clear that

when the condition q jφd ≤ 0 is satisfied then the limit is vmin
j = 0, and when q jφd > 0 then

vmin
j =

√
−2eφd

me
. With shall deal with the former case first. In order to evaluate the integrals

we change the integration variables to match the term α j or β j in the exponential terms. For
instance, term 2.63 is computed as follows.
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∫
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dα j
(
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2v2
T j +2αvT jvd + v2

d
)

exp
(
−α

2) (2.67)
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The middle term integrates trivially but the other two do not have an analytic solution so
we use the standard Gaussian error function 2.68 which can evaluated numerically as the
situation demands.

er f (x) :=
2√
π

∫ x

0
duexp

(
−u2) er f (∞) = 1 (2.68)

The third term becomes:

vT jv2
d

[∫ 0
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0
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2)] (2.69)

The right hand term integrates straightforwardly to
√

π

2
but the left term requires the error

function. Since exp
(
−α2

j

)
is an even function integrating from − vd

vT j
→ 0 is equivalent to

integration from 0 → vd

vT j
. We therefore make this change of limits, and write this term in

terms of equation 2.68 to give:
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(
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(2.70)

Where Ui is the drift velocity normalised with the thermal velocity.

Ui =
v2

d

v2
t j

(2.71)

The first term in term 2.63 is:
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The second term is another standard Gaussian integral but the first term requires integration
by parts and another application of the error function leading to:

√
πv3
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4

(
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Putting all the pieces together we find that term 2.63 integrates to 2.74
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(
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Terms 2.64, 2.65 and 2.66 are computed similarly, together leading to the current 2.75
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Where we have defined η1 (Ui) and η2 (Ui) as:
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The electron current may be written in a similar form by defining the functions Λ1
(
Ue,Φd,e

)
and Λ1

(
Ue,Φd,e

)
giving 2.81
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To summarise, for a negatively charged grain in a quasi-neutral plasma, the ion and electron
SOML currents are given by equations 2.80 and 2.81 respectively [18].
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The above may then be combined in the usual way and solved for the Φ
f
d . The result is

equation 2.82 where we have used the Φd,i =
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For a positively charged grain the currents are switched because the equations 2.80 and 2.81
were derived from the same integral just with different limits selected depending upon
whether the particle type, j, in question was in an attractive or a repulsive potential. Ob-
viously electron quantities are substituted for their ion counterparts and vice versa where
relevant. The internal consistency of OML and SOML taken together can be established by
taking the limits of normalised drift velocity U j ≪ 1 and U j ≫ 1. For instance, we can take
the former limit of equation 2.80 by Taylor expanding to first order. The error function is
convergent and has a Taylor expansion computed by 2.83. We subsequently obtain 2.84
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Which is just the original OML ion current 2.37. A similar analysis performed on equa-
tion 2.81 leads to the current 2.44 as expected. In the opposite limit we find that the ion and
electron expressions both converge to equation 2.87, which is the formula for the current
due to a mono-energetic ion or electron beam. For instance, taking the limit for the electron
beam this time, the analysis goes as follows.
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And in general equation 2.86 can be written 2.87

I j,mon = πa2q jn jvd

[
1−2

q jφd

m jv2
d

]
(2.87)

This is logical intuitively because if the plasma drift velocity is very large in relation to
either the electron or ion mean velocity, then the electron’s and the ion’s velocities with re-
spect to the grain are effectively just the drift velocity of the plasma. Solving equation 2.82
is very laborious. fortunately by resorting to experiment data, it is possible to simplify
the situation. Studies have found flows on the order of 103kms1 and 101 in the toroidal
and poloidal directions respectively in the core plasma [37]. The toroidal measurements
were collected from the JET, DIII-D and NSTX Tokamaks, and the poloidal data came
from the JET, DIII-D and TFTR Tokamaks. We can gain a sense of the relevance of ion
and electron flow respectively by comparing the data to ITER’s benchmark operating tem-
perature is around 13KeV with Te = Ti. Calculating the electron and ion thermal speeds,
vte = 1.33×107√Te, vte = 2.19×105√Td and vtd = 1.79×105√Td (temperatures in KeV
) implies that the toroidal normalised flow velocity is of order 1 (i.e. mach ̸= 1 for the ions,
but of order 10−2 for electrons. The poloidal flow is clearly insignificant. More pertinent
to the problem in hand, Mach probe measurements of toroidal flows in the SOL of ASDEX
Upgrade have also been made, finding flows on the order of mach 1 with respect to the ion
sound speed, Csi =

kBTi
mi

, for a D-D plasma (the only current Tokamak capable of operating
with a D-T fuel mixture is JET and such experiments ceased in 1997 [13]) [25]. As a result
it is clear that in the SOL off layer, and indeed in a Tokamak in general, we may ignore
electron flows relative the electron thermal speed. In this case, SOML is simplified by re-
placing equation 2.81 with the original OML form, equation 2.44. Rewriting the floating
condition then leads to equation 2.88 which has an analytic solution in terms of the Lambert
W function, equation 2.89.
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exp
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− θη1 (Ui)

η2 (Ui)
(2.89)

It can be shown that equation 2.89 reduces to the OML expression in the limit Ui → 0
as was shown for the full SOML expression. This is confirmed by numerical solution to
equation 2.89 which is plotted in figure 2.12 for various Ui. Note that when Ui = (1+ γ),
this approximately corresponds to Mach 1 with respect to the ion sound speed. To see
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this, observe that the ion sound speed in an arbitrary plasma is given by c2
s = KBTe+γKBTi

mi
,

but in a Tokamak where Ti ≈ Te, this reduces to c2
s ≈ (1+γ)kBTe

mi
. All forms of the SOML

Fig. 2.12 The floating potential predicted by SOML neglecting electron flow for a 50-50
D+T plasma as a function of normalised ion temperature. The OML value is plotted for
reference

floating equations have two severe shortcomings. The first is the problem shared from its
parent theory OML that it fails to take into account the potential barriers arising from the
formation of a sheath for the situation A ≫ 1. In addition SOML is fundamentally invalalid
from a theoretical perspective as strictly speaking the presence of a drifting Maxwellian
distribution invalids the OML approach owing to the breaking of spherical symmetry and
subsequently conservation of angular momentum. Recall it is precisely conservation of
angular momentum which OML uses to place a limit on the ion current onto the grain.
However, despite SOML’s shortcoming, simulations run using the PIC code ’Sceptic’ have
provided good validation of SOML’s floating current prediction [40]. As a result SOML is
widely used, for instance in the DUSTT code [33]. Just as OML was extended to account
for the potential barriers present in a large grain situation, so SOML can be extended in
much the same way. The result is SMOML, where the ’M’ stands for ’modified’.
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2.2.6 Shifted Maxwellian Modified OML (SMOML)

SOML can be easily extended for large grains if electron flows are neglected. The electron
current is again just the usual OML expression. However, the SMOML ion current is ob-
tained by applying SOML to the sheath edge in the same way as in section 2.2.4. Therefore,
the floating condition becomes:
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])]
(2.90)

Just as before equation 2.90 may be written in the form Γexp(Γ) = κ (µ,φ) and so once
again it may be solved analytically using the Lambert W function, the result being given by
equation 2.91.
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Where the function Ξ(γ,θ ,Ui) is defined as:
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− 1

2
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(1+ γθ)

]
(2.92)

From sections 2.2.4 and 2.2.5 it is readily apparent that equation 2.90 and by extension 2.91
reduce to the equation 2.56 as Ui → 0. This can also be shown by the numerical solution
as well whereby the SMOML value converges exactly onto the MOML value in that limit.
Only plots for Mach 1 and 0.5 have been shown for clarity in figure 2.13 ??

2.3 Summary Of Collection Theories

The ABR potential is a function of dust radius as it takes into account sheath effects by
integrating the Poisson equation from the grain surface into the bulk. The resulting poten-
tial profile matches very well with the full OM theory in the limit θ < 1 for large radii [15].
However, for small grains, the ABR theory departs from the full OM model. Since the OML
potential is only a function of θ , it is difficult to compare ABR and OML since the latter
does not reduce to the former in the appropriate limit. Indeed, the two theories are com-
pletely different, suggesting that the effects of ion angular momentum are significant. Thus
it can be confirmed that assumption of radial motion for the ion current is not applicable to
a Tokamak, since the ion angular momentum is certainly significant in the SOL where field
flux surfaces are broken. It is shown in [15] that the Dëbye-Huckel provides a good estimate
for the dust grain potential up to A ∼ 102, supporting the use of OML in this regime. Exper-
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Fig. 2.13 The floating potential predicted by SMOML neglecting electron flow for a 50-50
D+T plasma as a function of normalised ion temperature for various values of normalised
ion flow. The MOML value is plotted for reference.

iments show that almost all dust grains fall within this limit [29], and so together OML and
MOML should provide a good estimate in the limit of low flow. The significance of flow
for small and large grains is illustrated by figure 2.14. Flor Ui → 0 it is confirmed that the
flowless situation is the same as the non flowing situation. However, for θ < 1, the flowing
solution diverges from the non-flowing case by over 5% for speeds of around mach 1, that
is Ui ≈ 5

3 . For θ > 1 the impact of flow becomes more and more sudden so that by θ ≈ 4,
the shifted theories diverge rapidly from the stationary theories for Ui ∼ mach 1. In this
regime, any charging model certainly needs to take account of flow.
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Fig. 2.14 Plots showing the variation of the floating potential for SOML and SMOML along-
side the OML and MOML solution for θ = 1

2 and θ = 1 with a D-T plasma assuming γ = 5
3 .

Mach1 is approximately 22
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Chapter 3

Positively Charged Grains and Dust
Transport Codes

3.1 Charging By Emission

Conditions vary greatly in the SOL between the inboard and outboard regions. In the out-
board side where the plasma surface interactions occur, typical parameters are λDe = 10−5,
Te ∼ 5ev and n ∼ 1017 [30]. The extreme conditions present in tokamak plasmas mean that
other effects than just charge collection must be considered when computing the floating po-
tential of a dust grain. The two electron emission mechanisms of interest in a Tokamak are
’Thermionic’ and ’Secondary’. Under certain circumstances, the emitted flux can become
larger than the ingoing flux in which case the dust grain can begin to charge positive [33]. In
Tokamak plasmas, it is predicted that a few grains will gain a net positive charge. Consider-
ing any of the OML based models, in this situation the collected flux of electrons effectively
become the ion expression and vice versa, and the collected currents could be computed as
before. The following section gives expressions for the thermionic and secondary currents
as used by the transport code DTOCKS, and outlines the DTOCKS charging model. Unfor-
tunately time constraints have prevented the author from conducting a full theoretical review
of the Thermionic and secondary Emission mechanisms as had been originally planned, so
only the key formulae shall be provided here. The goal of this chapter is to outline the
DTOCKS charging model and to see if its assumption of zero flow is important using the
work on SOML.
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3.1.1 Thermionic Emission

When a surface reaches a certain temperature, electrons or ions may be emitted from its
surface by thermionic emission. The manifestation of thermionic emission exhibited by
dust grains is derived from extensive work in space plasmas, see Whipple (1981) [39] for
example. From such work, and from simulations run for tokamak plasmas, it is known
that when the dust temperature Td ∼ 3000K, thermionic becomes the dominant charging
mechanism [21]. The thermionically emitted electron current from a negative dust grain
in a plasma is commonly given by the Richardson-Dushman formula, equation 3.1, where
A = 1.29173×106Am−2K−2 is Richardson’s constant [42], [39], [23], [26].

Ith = (Pb)4πa2AT 2
d exp

(
−

Wf

kBTd

)
(3.1)

Where Td is the temperature of the dust grain, and Wf is the work function of the dust grain
material which is assumed to be constant.

3.1.2 Secondary Emission

An electron incident on a surface can either reflect or be absorbed. In the latter case and pre-
suming the electron is sufficiently energetic, it can scatter with other electrons, stimulating
the emission of other electrons. This process is known as ’Secondary Electron Emission’
(SEE). SEE can also occur as a result of a flux of energetic ions. The SEE yield from a beam
of monoenergetic electrons can be approximated by the equation 3.2, the Sternglass equa-
tion, where E is the energy of the beam [3]. Yields from SEE are typically in the 1− 5ev
range.

Γsec

Γmax
= (2.72)2 E

Emax
exp
(
−2
√

E
Emax

)
(3.2)

Where Γsec is the SEE yield from the surface for measured with an incident beam energy
of E. Γmax is the maximum SEE yield possible from that surface material in question,
and Emax is the corresponding beam energy. Since the plasma electrons are a Maxwellian
distribution and not a mono energetic beam, equation 3.2 may be integrated numerically to
obtain Γ(Td) [4].

3.2 DTOCKS Charging Model

The papers relating to the following version of the DTOCKS charging mechanism date from
between 2008 and 2012, references [23], [2] and [4]. A dust transport code consists of 3
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elements:

1. Charging model

2. Transport model

3. Heating model

Only the charging model shall be reviewed although this is linked with the heating model
since Td is required to calculate the thermionic current.

DTOCKS uses standard flowless OML, modified to include thermionic and secondary
emission. It utilizes the Richardson-Dushman and Sternglass Formulae respectively. De-
spite this, DTOCKS does not allow for grains with net positive charge. As in section 2.2.2,
dust grains are assumed spherical with a spherical potential of the Dëbye-Huckel form.
Magnetic effects are ignored despite the presence of fields of order 1T in the SOL. It has
been estimated that including the magnetic field could result in a 30 % decrease in the
value of the dust grain charge [33]. The flowless assumption is justified in [23] by the as-
sumption that in the regime vd ∼ mach 1, flows are more or less neglectable. The analysis
presented in figure 2.14 lends support to this assumption in the low theta limit as is assumed
in DTOCKS [23]. However, it has become apparent that the assumption Ti ≈ Te, which is
accurate in the core, is incorrect for the SOL. Recent measurements on the Tokamaks Tore
Supra [24], ASDEX-Upgrade [19] and MAST [1] all indicate that θ > 1, sometimes reach-
ing as high as 16 [19] in the SOL. Tore Supra and ASDEX-Upgrade are both large aspect
ratio Tokamaks similar to JET wheras MAST is a small aspect ratio ’spherical tokamak’.
Since MAST is specifically used for the quality of its diagnostics, its mean value of θ = 4
shall be taken as a guide. In this case, referring back to section 2.3, figure 2.14c suggests
that SOML and OML will give significantly different answers for the dust grain charge and
that flow is therefore important. It’s interesting to note that the reason the approximation
Ti ≈ Te is relatively good for the core plasma is that as one moves in from the SOL towards
the core, the collisionality increases, allowing the temperatures to equilibrate [6]. In order to
account for electron emission, DTOCKS modifies the standard OML floating value. If the
collected and emitted fluxes of electrons and ions are denoted as Γem and Γcol respectively.
Two scenarios are considered:

1. Gammacol ≫ Γem

2. Gammacol ≈ Γem not considered see below.

3. Gammaem ≫ Γcol
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In the first case, the emitted electron current can be considered a perturbation to the original
OML electron current. Then assuming that the OML potential maintains its Dëbye-Huckel
form and there are no potential barriers preventing, the emitted electrons will all escape from
the sheath structure and the floating condition may be written simply as Ie → Icol − Iem =

Icol (1−δ ) where δ := Iem
Icol . Applying the results of OML from section 2.2.2, the floating

condition is Ie + Ii = 0, and equation 3.3 is obtained.

(1− γ)exp
(
−Φ

f
d

)
=

(
θ

µ

) 1
2
(

1+
Φ

f
d

θ

)
(3.3)

The temperature in the coolest part of the SOL is around 5ev, and so initially cold dust
grains are expected to heat rapidly to beyond Td > 3000K, the threshold when thermionic
emission becomes dominant. Therefore the second limit is ignored and DTOCKS only
considers the first and third situations [23]. In the latter scenario, PIC code simulations
suggest that the grain potential is modified significantly by the presence of a potential barrier
caused by the trapping of emitted electrons in the sheath [8], [9] as a result of the increased
grain potential. The position of the potential barrier maximum shall be denoted b where
b > a so that the floating condition now has the form Ie (a) + Ii (a) + Iin

em (a)− Iout
em (a) =

0. Figure 3.1 gives a schematic of the form of the potential and illustrates the various
emitted and collected currents. Since thermionic emission is dominant in this regime, the
assumption that the emitted particles possess a Maxwellian distribution of temperature Td

suggests that the height of the potential barrier ∆φ ≈ kBTd
e [23]. Therefore, the original

normalised OML potential is reduced by this quantity. Normalising as usual with respect to
the electron temperature gives equation 3.4 [23]

Φ
f
d = Φ

f
d,OML −

Td

Te
(3.4)

In order to compute the charge on the dust grain as a function of φ
f

d and a, it is necessary to
estimate the capacitance, Cg, of the grain. Recall from section 2.1.1 that a probe in a plasma
has associated with it a narrow space charge region of thickness ∼ λDe, the sheath. We must
calculate the capacitance of the grain and sheath together. As usual spherical grains and
therefore spherical sheaths are assumed so that the situation is just the textbook problem of
the calculating capacitance between two concentric spheres. For a dust grain of radius a and
a sheath of radius λDe the solution is given by equation 3.5 [39]

Cg = 4πε0a2
(

1
a
+

1
λDe

)
(3.5)
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Fig. 3.1 Schematics showing (a) the form of the DTOCKS potential in the case where emis-
sion dominates the collection flux, and (b) the various collected (col) and emitted currents
(em) to the grain [22]

Since DTOCKS uses straight OML which is only valid in the small grain limit a ≪ λDe, the
capacitance is taken to be Cg = 4πε0a. This is intuitively sensible since small dust grains
don’t possess a sheath. From the definition of the capacitance, we obtain equation 3.6,
which provides an adequate estimate of the charge on a small dust grain Qd .

Qd = 4πε0aφ
f

d (3.6)

DTOCKS is a pragmatic code, that is, at times precision is eschewed for computational
expedience. For example, the assumption of a stationary Maxwellian is strictly incorrect,
and the assumption that the height of the potential barrier in the preceding paragraph is
≈ kBTd

e was only heuristically justified. However, the work of chapter 2 has shown that flows
are important in the regime of interest, Ui ∼ mach 1 and θ ≈ 4 (see figure ?? ). In addition,
figure 2.1 shows that there exist a significant fraction of dust grains for which a≥ λDe imply-
ing that a modified OML theory could be more applicable. It would be interesting to check
the validity of SMOML for the regime of interest, as this model takes into account both the
effects of flow and the sheath, albeit crudely. Certain Tokamaks e.g. LHD, which has the
ability to run at steady state, has been found to have dust grains with average radius 10µm,
so in this case SMOML would readily apply. Another simplification is the assumption of
spherical dust grains. An irregular shaped dust grain charging by collection, would obtain
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angular momentum from the collected currents. The same goes for emitted currents. If the
dust possessed angular momentum, it would not only lead to more more particle emission
but would also affect the dust transport section of the code. Experiment shows that many
dust grains are far from spherical [20]. [29], [14].



Chapter 4

Conclusions

4.1 Conclusion

Dust grain charging by collection has been reviewed in the cold ion, low flow, high flow,
small radius and large radius limits. It has been shown that the inclusion of ion angular
momentum is important for calculating the floating potential of a dust grain immersed in a
tokamak plasma 2.2.1, 2.1.1 as are flows of order mach 1 2.3 and the presence of potential
barriers associated with the formation of a sheath around larger dust grains 2.2.4. The OML
theory has been presented in 4 guises:

1. OML: small grains without flow

2. SOML: small grains with flow

3. MOML: large grains without flow

4. SMOML: large grains with flow

Research has shown that one of DTOCKS’ key assumptions, that θ ≈ 1 is incorrect, imply-
ing that flows should actually be accounted for. This suggests that DTOCKS may need to
be modified to include SOML at least [24], [19], [1]. The assumption of small grains is also
questionable since experiments on LHD have shown that in certain conditions, the average
dust grain radius can be 10 times that of the Debye length [29]. In this case a combination
charging model containing SOML and SMOML could perhaps be looked at. The ubiquity
of OML theories in dust charging literature is primarily down to computational expediency
for OML has many shortcomings. It was shown explicitly via the ABR solution, that the
floating potential is an explicit function of grain radius. However, the basic OML solution
is only a function of θ . This was also shown more explicitly in section 2.1.1, where it was
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argued that the presence of large dust grains changes the structure of the plasma, introduc-
ing a quasi-neutral presheath and collisionless presheath. A full orbital motion theory does
exist, but unfortunately such is its level of complexity that solutions are only available for
a limited number of cases. Thus, OM is not much use for a dust transport code other than
to act as a benchmark for a simplified charging model. Future work on the charging by
collection problem could focus on attempting to constrain the trajectories of the collected
particles. For instance, in tokamaks, particle transport is strongly supressed across field sur-
faces, but is uninhibited along them. Obtaining a constraint on particle motion could allow
OML to be extended to contain explicit particle trajectories as with the ABR theory. The
principle objection on theoretical grounds with the standard OML model is simply that it
says nothing about these trajectories. In addition, an extension of this form could potentially
open up the possibility of including magnetic effects, essential when the scenario of interest
contains strong magnetic fields.
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Appendix A

The ABR Solution

Extensively documented MATLAB code is provided for obtaining the ABR floating poten-
tial value as a function of grain radius.

1 %SOLVE the ABR Poisson equation to calculate how the potential varies from

2 %the plasma solution to the grain. The ABR Poisson equation,

3 %d2vdx2 = j*v^(-1/2)/x^(2) - exp(-v) - 2*dvdx/x is integrated from a point

4 in quasi-neutral plasma, initial_x, inwards to an arbitrary radius, end_point.

5 %The boundary values are denoted 'initial_dvdx' and 'initial_v'.

6

7 function ABRsolution

8 format long

9 gam=1e3; %Gam is an arbitrarily large adjustable parameter (same for each

10 %set of curves in a given calculation. The calculation was found to be

11 insensitive to Gam>1e3).

12

13 The Poisson equation is integrated from initial_x to end_point. However,

14 it has been found that 'ode45' is unstable when integrating 'backwards' so

15 %we make a change of variables, x = initial_x - xnew and integrate forwards

16 from xnew = 0 to xnew = initial_x - 0.01.

17 %The function 'rhs(xnew,v)' contains the Poisson equation broken up into

18 %a system of two first order differential equations with the change of

19 %variables above implemented.

20

21 end_point=1e-2;

22

23 for j = 5:25:100

24 initial_v=double(bdryV(j,gam)); %Function included for completed below

25 initial_x=double(bdryX(j,initial_v)); %-------------------------------

26 initial_dvdx=double(bdrydV(initial_x,initial_v,j)); %-----------------
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27 xnew=0:0.0001:initial_x- end_point; %Integration range

28 options=odeset('Refine',12);

29 [xnew,v]=ode45( @rhs, xnew, [initial_v initial_dvdx],options);

30

31 %Convert back to the original variables to produce the potential curves

32 for selected J.

33 x=initial_x-xnew;

34 plot(x,v(:,1));

35 hold on

36

37

38 %Below the grid for the interpolation used to find the point where the ABR

39 %floating condition crosses with the potential v(x)

40 %fineness = step size for x_fine. Set a large ending value in x_fine for

41 %large values of j otherwise vector will be too small to take the floating

42 %point values

43 fineness=1e-2;

44 x_fine=end_point:fineness:1e4;

45 crosspoint(x,v(:,1),j,x_fine);

46 %convert the indes number 'float_point' in x_fine to the gird coordinate in

47 %x

48 float_point= end_point+ fineness*crosspoint(x,v(:,1),j,x_fine);

49 %convert float point to index number in x

50

51 %'spline(x,v(:,1)) performs a spline interpolation on v(:,1) to estimate the

52 potential value corresponding to the coordinate 'float_point'.

53

54 float_pot=spline(x,v(:,1),float_point);

55 plot(float_point,float_pot);

56 hold on

57

58 %Finally produce the floating potential graph. The function 'ABRfloat(j,v_f)'

59 %inputs matching values of j to potential values, outputting values for

60 %the matching dust grain radius. The intersection between the two

61 %curves on the resultant plot gives the floating potential at A.

62 plot(x,ABRfloat(j,x))

63 hold on

64 end

65

66 xlabel('\(X\)','Interpreter','LaTex','FontSize',11)

67 ylabel('\(\Phi\)','Interpreter','LaTex','FontSize',11)

68

69 function dvdx=rhs(xnew,v)

70 dvdx_1 = v(2);
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71 dvdx_2 = j*v(1)^(-1/2)*(initial_x-xnew).^(-2) - exp(-v(1)) + 2*(initial_x -xnew).^(-1)*v(2);

72 dvdx = [dvdx_1; dvdx_2];

73 end

74

75 end

Listed below for completeness are the short functions bdryV(j,gam), bdryX(j,initial_v),
bdrydV(initial_x,initial_v,j), crosspoint(x,v(:,1),j,x_fine) and ABRfloat(j,x) should the reader
wish investigate the ABR solution further. It is noted that the author produced the calcula-
tions on a home laptop.

1 function v_b = bdryV(j,gam)

2 syms z

3 v_b=vpasolve(j-gam*(4.*z^(1.5)*(2*z-3)*(2*z+1)/((2*z-1)^(3))) == 0, z,[0,1]);

4 end

5

6 function x_b = bdryX(j,v_b)

7 x_b = j^(1/2)*exp(v_b/2)/(v_b^0.25);

8 end

9

10 function dv = bdrydV(initial_x,initial_v,j)

11 dv=2*initial_x*initial_v^1.5*exp(-initial_v)/(j*(initial_v-0.5));

12 end

13

14

15 function x_point = crosspoint(xcoarse,v,j,x_fine)

16

17 %function to calculate the points at which the analytic floating condition

18 %function crosses with the potentials calculated in 'ABRsolution'.

19 %Uses spline interpolation to find where the difference between the

20 %floating value and integrated value changes sign. The first point is taken

21 %as the crosspoint and thus the floating point at the corresponding radius.

22

23 differences=ABRfloat(j,x_fine)-spline(xcoarse,v,x_fine);

24

25 differences(differences>0)=1;

26 differences(differences<0)=0;

27

28 %x_point is the index in x_fine corresponding to the floating potential at

29 %that particular of j. Note, the problem is not overspecified since each

30 %value of j corresponds to a particular radius.

31 x_point=find(diff(differences)~=0);
32 end
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33

34 function v_f = ABRfloat(j,A)

35 %calculate the allowed floating potential values for a given J

36 mu=1836*2.5;

37 v_f = 0.5.*log(A.^4*mu./(4*pi*j.^2));

38 end
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