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Abstract

Using lattice methods, the mass of the ’t Hooft-Polyakov monopole in the

3+1 dimension Georgi-Glashow model is calculated non-perturbatively as the

difference in energy between the vacuum lattice configuration and a config-

uration with one magnetic monopole. These two types of configurations are

created by using C-periodic and twisted boundary conditions respectively.

The mass calculation is carried out using several lattice sizes.
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Chapter 1

Introduction

Even though the discovery of particles that carry just one type of electric

charge has turned out to be relatively straightforward, this has not been the

case with regards to magnetic charges. Magnetic monopoles, that is, stable

particles carrying magnetic charges have remained experimentally elusive to

this day.

However, there is strong theoretical evidence that allows us to remain

hopeful that magnetic monopoles may one day be experimentally confirmed.

Already in the early days of Quantum Mechanics, Dirac [1] showed, in 1931,

that it was compatible with their existence and he even went on to claim

that “. . . one would be surprised if Nature had made no use of it”.

Much more generally, in 1974, ’t Hooft [2] and Polyakov [3] found that

any Grand Unified Theory (GUT) that, within their laws, included the sub-

group, U(1), responsible for electromagnetism would also inevitably lead to

the existence of magnetic monopoles.

The fact that, so far, only theory backs up the existence of magnetic

monopoles has in no way made the effort devoted to their investigation less
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worthwhile. On the contrary, their study has not only led to different dis-

coveries along the way but has also helped in shaping the way other theories

have been developed.

For example, Dirac’s [1] investigation provided an explanation for the

quantisation of electric charge while ’t Hooft and Polyakov’s work led the

way for a much deeper understanding of gauge field theories. There is also

research that points to magnetic monopoles as a possible explanation for

QCD confinement [4].

However, the theories above predict that magnetic monopoles are quite

heavy and so unlikely to be directly produced in current particle accelerators.

Nonetheless, if they do exist, events in the Universe like the Big Bang should

have been able to produce them in sufficient amounts to make their detection

possible. Our failure to detect them so far then impose some limits to their

number in today’s Universe and this has forced us to review some of the

theories about the Big Bang and the expansion of the Universe. This led to

the proposal of the theory of inflation [5] in 1981 by Alan Guth which has

been successful in explaining the monopole problem as well as the flatness

and horizon problems in Cosmology. So we see here as well, that the no

observation of monopoles has however been useful in suggesting other theories

whose predictions have been successfully tested experimentally.

The purpose of this document is to use computer simulations to estimate

the mass of the magnetic monopole as defined by ’t Hooft [2] and Polyakov [3]

under the Georgi-Glashow [6] model in 3+1 dimensions. Section 2 contains

a brief description of the Georgi-Glashow model and how it can give rise to

magnetic monopoles. Then section 3 introduces Metropolis, a simple but very

successful general purpose algorithm that we use in our computer simulations.
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The theoretical approach to the calculation of the magnetic monopole mass

is described in section 4 while the actual calculation, which in practice is

done numerically by discretising the theory on a lattice is explained in sec-

tion 5. Finally the results of the simulations are presented in section 6 and

suggestions for further investigation in section 7. The appendices contain

a trimmed version of the code that was used in the simulation with some

comments on the implementation.

For the interested reader, [7] provides an excellent theoretical and histor-

ical review of magnetic monopoles. Another accessible review worth looking

at is provided in [8].

8



Chapter 2

The Georgi-Glashow model

As we have seen in the introduction there are many different theories which

lead to magnetic monopoles. We will focus our interest in the ’t Hooft-

Polyakov monopole, which appears as the monopole solutions in Grand Uni-

fied Theories (GUTs). And in particular, one of the simplest theories in

which we get these type of monopole solutions is the one based on the Georgi-

Glashow model [6].

The Georgi-Glashow model in 3+1 dimensions consists of an SU(2) gauge

field Aµ and a scalar Higgs field φ in the adjoint representation. The la-

grangian of this theory can be written as:

L = −1
2 TrFµνF µν + Tr[Dµ, φ][Dµ, φ]−m2 Trφ2 − λ(Trφ2 − ν2)2,

where

Dµ = ∂µ + igAµ

Fµν = [Dµ, Dν ]/ig = ∂µAν − ∂νAµ + ig[Aµ, Aν ].

The adjoint scalar field φ in SU(2) is a 3-component field. That means

that we can represent φ as a 3-component vector, obviously not in real space
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but in some internal vector space, which we can visualise as an arrow in this

internal space.

Figure 2.1: The possible vacuum states of the Higgs field have equal length (within an
internal three dimensional space), forming an S2 topological space. Each vacuum state on
the surface is equally probable, but once one particular vacuum state is chosen the SU(2)
symmetry of the system is broken by the Higgs mechanism and only the U(1) symmetry
corresponding to electromagnetism survives.
Image Source: [7]

In the vacuum, the Higgs field φ has a non-zero value with length |φ| = ν

and using the 3-component representation this looks like a sphere of possible

vacuum solutions (Figure 2.1). The actual vacuum however needs to choose

one of these solutions and when this occurs the SU(2) symmetry of the sys-

tem is spontaneously broken to an U(1) symmetry which corresponds to the

familiar one in electromagnetism. This occurs when m2 is negative and in

that case we have

Trφ2 = ν2 ≡ −m
2

2λ .

Although the vacuum expectation value of the Higgs field fixes its length

to ν = |φ|, its direction can vary from point to point. The ’t Hooft-Polyakov

solution corresponds to the case where, at every point, φ points away from

the origin and, as this configuration looks like spikes coming out of the origin

(Figure 2.2), for this reason it is also called the hedgehog solution [7].
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Figure 2.2: The hedgehog configuration of the ’t Hooft-Polyakov monopole solution.
Image Source: [7]

What we find is that the ’t Hooft-Polyakov solution has finite energy, it

is smooth at the origin and its energy density falls off exponentially so if we

integrate over space it has finite energy and appears localised at the origin.

As it carries finite energy and is localised in a small volume around a point,

we can think of it as a point-like particle. In addition, as in the broken

phase we have U(1) electrodynamics symmetry, we find that the magnetic

charge of the hedgehog solution is not zero and hence the point-like particle

corresponds to a magnetic monopole.

It is worth mentioning that the SU(2) theory we are considering is the sim-

plest where we obtain these ’t Hooft-Polyakov monopole solutions. However

one can show by topological arguments that any GUT will always have these

monopole solutions and therefore these are a generic prediction of Grand Uni-

fication. This is one reason why many scientists expect magnetic monopoles

to exist. The problem is that the energy of the solution is at the GUT
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scale (around 1016 GeV) and so the magnetic monopoles are predicted to be

extremely heavy and we would not expect to find them in current particle

accelerator experiments. Still, as we do here, it is possible to study some of

its properties from a theoretical point of view, for example its mass.
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Chapter 3

The Metropolis method

The Metropolis algorithm [9, 10, 11] is a Monte Carlo based method that is

very popular and successful when solving simulation problems where there

are no exact analytic or numerical solutions available.

Roughly speaking, the Metropolis algorithm generates a sequence of ran-

dom field configurations with a desired probability distribution. To generate

this sequence, it starts from an initial configuration φ(x) which we are free to

choose. For example this initial configuration could be the vacuum or some

random field configuration. It then changes φ(x) by some arbitrary amount

∆φ(x) in order to obtain a new candidate configuration φ′(x). This process

is called a Metropolis update,

φ→ φ′ = φ+ ∆φ.

The amount ∆φ(x) needs to be generated in such a way that the trans-

formation is reversible and symmetric, in the sense that the probability of

going from configuration φ(x) to φ′(x) should be the same as the probability

of going from φ′(x) to φ(x).
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We refer to the new configuration as a candidate configuration as it still

needs to be accepted or rejected. In the case that it is accepted the candidate

configuration becomes the next configuration in the sequence, otherwise the

new configuration is rejected and the next configuration in the sequence is

set to be equal to the previous configuration.

As we move from one configuration to the next the action of the system

changes by an amount ∆S[φ] which we need to calculate as part of the sim-

ulation as this value will determine whether the new candidate configuration

is accepted or rejected:

∆S[φ] = S[φ′]− S[φ].

If the amount e−∆S[φ] is greater than an uniformly generated random

number between zero and one then the candidate configuration is accepted,

otherwise rejected. This implies that if the action decreases, that is, ∆S[φ]

is negative, then the candidate configuration will always be accepted as the

exponential will in this case be greater than one and so greater than the

random number.

In practice, we want the sequence of configurations to explore as much

of the phase space as possible. Hence we need to strike a balance. If ∆φ(x)

is too small then the sequence of configurations are very close to each other

and we may not explore enough of the phase space. On the other hand if

∆φ(x) is too large then chances are that the probability of acceptance is low

and many of the configurations will be rejected, wasting computer resources.

Heuristically we tune ∆φ(x) in such a way that the probability of acceptance

is around 60–70%.

Repeatedly using the above algorithm leads to a sequence of field con-
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figurations whose probability distribution, in the limit, is an attractive fixed

point. This implies that after enough updates have been carried out the dis-

tribution would have converged to this fixed point and then if φ(x) has this

probability distribution so will φ′(x). In essence, this means that we need to

perform a number of updates, Ntherm, before we can start taking measure-

ments, in order to ensure that the system has reached an equilibrium. This

procedure of updating the system until we reach the desired probability dis-

tribution is called the thermalisation process. How long the thermalisation

process takes will depend on the parameters of the algorithm and needs to

be estimated by performing some test runs.

Once the system has been thermalised we can start taking measurements.

However, it is not convenient to take measurements on every single configu-

ration update as consecutive configurations will be too close together and so

highly correlated. Hence we want to leave a number of updates, Ncor, between

measurements so that each measurement is independent of the previous one.

In general, the thermalisation process is much longer than the number of

updates between measurements, for example, Ntherm ≈ 5Ncor–10Ncor.

At each measurement, we calculate the value of the observable we are

interested in. This could be the value of the field at any given point in the

lattice or more typically an average. In our case, and because the system is

translation invariant, we are never interested in the value of the field at a

given point but instead in some kind of volume average on the whole lattice.

Given the standard expression for the expectation value of some operator

Θ which depends on the fields φ(x) and U(x)

〈Θ[φ, U ]〉 =
∫
DφDU Θ[φ, U ]e−SE∫
DφDU e−SE

,

we can estimate the path integrals by following the Metropolis algorithm [12]
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whose basic steps are shown below:

1. Choose an arbitrary initial configuration for the fields φ and U .

2. Update the configurations Ntherm times to thermalise the system.

3. Update the configurations Ncor times and measure Θ[φ, U ].

4. Repeat step 3 N times.

5. Calculate the average of the N measurements to obtain an estimate

for 〈Θ〉.

The algorithm to update the field φ(x) and obtain a new configuration

φ′(x) is as follows:

1. Choose a lattice site xi and update φ(xi) by a random number δ to

obtain φ′(xi).

2. Metropolis step:

Calculate the change in the action, ∆S, due to the change in step 1.

If ∆S < 0, accept the new value φ′(xi).

If ∆S > 0, accept φ′(xi) with probability e−∆S, that is, generate a

random number ε between 0 and 1 and accept if e−∆S > ε.

Otherwise, reject the change and make φ′(xi) = φ(xi).

3. Repeat steps 1 and 2 for every site in the lattice (Metropolis sweep).

At the end of the sweep we have a new configuration φ′(x).

We would update U(x) following a similar algorithm, although note that,

as we will see, U ∈ SU(2), then we would need to ensure that the new

configuration U ′ remains an element of the SU(2) group.
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3.1 Error estimation - the bootstrap method

The Metropolis algorithm described in the previous section gives us a se-

quence of configurations φ(k)(x) with, k = 1 . . . N . On each of those config-

urations (and ignoring the field U for now) we take a measurement Θ(k) ≡

Θ[φ(k)(x)]. And finally we calculate the mean of those N measurement values

as an approximation to the expectation value 〈Θ〉.

What we would like next is to have an estimate of the error, i.e. an

estimate of the variability (standard deviation) in 〈Θ〉. One way to do this

would be to repeat the whole Metropolis algorithm above multiple times,

say M. With each one we obtain a value for the expectation 〈Θ〉 so that

at the end of the process we end up with a sequence of values 〈Θ〉(b), with

b = 1 . . .M . Then, to estimate the error in 〈Θ〉, we could just calculate the

usual statistical standard deviation:

∆〈Θ〉 =

√√√√ 1
M − 1

M∑
b=1

(
〈Θ〉(b) − 〈Θ〉

)2
,

where

〈Θ〉 = 1
M

M∑
b=1
〈Θ〉(b)

is the mean value of the M Metropolis results.

The problem with this approach is that each iteration of the Metropolis

algorithm to calculate 〈Θ〉 is computationally very expensive and we would

need to repeat it M times with M typically large, in the order of hundreds

or thousands.

An alternative to this is the Bootstrap method [13], which is the one we

have used in our calculations.
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The Bootstrap method is very useful in situations where either the under-

lying distribution is unknown or is such that it is difficult to extract samples

from. It is based on the idea that the statistics of the unknown (or real

distribution) is the same or close to the statistics in a sample of it and one

of its main strengths is its simplicity. It is known as a resampling method as

in order to infer those statistics it uses new sample datasets that it creates

by re-sampling the original sample dataset (allowing repetition).

In our particular case, rather than repeating the costly Metropolis al-

gorithm over and over to generate new samples, we can use the bootstrap

method to create new sets of measurements Θ(k,b) by re-sampling the origi-

nal set Θ(k), k = 1 . . . N . In this way we could cheaply create M datasets,

calculate the average of each one of them to obtain 〈Θ〉(b), b = 1 . . .M and

then calculate the standard deviation of these in the same way as above.

In summary, the bootstrap method consists of the following steps:

1. Start from an original set of measurements {m1, . . . ,mN}.

2. Re-sample the original set, with repetition, to obtain a

new set {m(1)
1 , . . . ,m

(1)
N }.

3. Calculate the average of the new set as

〈m〉(1) = 1
N

N∑
i=1

m
(1)
i .

4. Repeat steps 2 and 3 M times to obtain a series of

averages 〈m〉(1), . . . , 〈m〉(M).

5. Compute the standard error of the set in step 4 as

∆〈m〉 =

√√√√ 1
M − 1

M∑
b=1

(
〈m〉(b) − 〈m〉

)2
,
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where

〈m〉 = 1
M

M∑
b=1
〈m〉(b).

Appendix B contains the implementation of the bootstrap algorithm used

in the error analysis calculations.
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Chapter 4

The monopole mass

When calculating the mass associated to particles of a scalar field we tradi-

tionally use the two point correlation function in momentum space which,

for a free field, is given by the propagator, for example:

1
k2 −m2 .

In the free theory, the field operator creates a particle. In an interacting

theory however the field operator not only creates the particle but also a

superposition of states. Therefore, to calculate the mass we look at the two

point correlator at long distances, as then the lowest state corresponding to

the particle dominates and the two point correlation function in Euclidean

space goes like e−mx. Hence the way we would measure the mass of the

particle would be to start from the correlation function at long distances and

look at the exponent in the exponential decay.

The above method works well for the scalar field, QED, etc. However we

can not use this method for the magnetic monopole theory as we do not have

any local creation operator that carry magnetic charge and hence we can not
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construct a correlator for it1.

Therefore here we use an alternative approach to calculate the mass of

the magnetic monopole based on the free energy difference between sectors

with one magnetic monopole and zero magnetic monopoles.

Because the magnetic charge is a conserved quantity, the Hilbert space

factorises in sectors corresponding to states with zero, one, two, . . . magnetic

charges. This means that if we start with a state which has n magnetic

monopoles then the system can only evolve to other states with n magnetic

charges, i.e. it can only remain within the same sector. Consequently, we can

just concentrate on the partition functions Zn for the individual topological

sectors as the Hilbert space is then just given by the product of those sectors.

We can write the partition function, Zn, of the sector with magnetic

charge n in Euclidean space as:

Zn =
∫
Dφ e−SE [φ], (4.1)

where the integral is only over the states with magnetic charge n, and the

Euclidean action SE is given by

SE =
∫
d4x

{1
2 TrFijF ij + Tr[Di, φ][Di, φ] +m2 Trφ2 + λ(Trφ2 − ν2)2

}
.

The case n = 0 corresponds then to the vacuum state, with zero magnetic

charge, while n = 1 is the vacuum state plus one monopole particle.

The only difference between Z1 and Z0 is that in Z1 we have a monopole

in all of the system configurations. Hence in the path integral for Z1 we

therefore have a monopole worldline going through the lattice.

1This is not entirely accurate. There has been attempts [14, 15, 16] at building a
creation operator for magnetic monopoles but hey have other complications and hence we
do not consider them here.

21



Figure 4.1: Example lattice configuration in the zero and one sectors.

Taking the ratio of the partition functions Z1 and Z0 will then give us

just the contribution from the one magnetic monopole worldline.

When we put our system on the lattice we need to make it finite not only

in spatial directions but also in the time direction. In that case one can write

the partition function as the trace of the time evolution operator Û(T ) and

expand in some complete set of energy eigenstates

Z = Tr Û(T ) =
∑
n

〈n|Û(T )|n〉,

where Û(t) = e−iĤt in Minkowski spacetime but becomes Û(t) = e−Ĥt un-

der Euclidean time (after a Wick’s rotation, t → −it). Then the partition

function becomes

Z =
∑
n

〈n|e−ĤT |n〉 =
∑
n

e−EnT

and En is the eigenvalue associated to the orthonormal state |n〉.

When T is large, T � L, then Z ≈ e−E0T . In the topological sector

one, the ground state is when the monopole is stationary and has energy

E0 = M , while for the sector zero, which corresponds to the vacuum, the

energy is zero. Hence we can write the ratio of these partition functions to
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leading order as
Z1

Z0
= e−MT ,

where M is the monopole mass and T is the length of the system in the time

direction.

Note however that the above expression is valid when T → ∞, but in

practice, in the lattice T is usually similar to L so the derivation is a bit

more complicated. In this case (see [17]) there is an adjustment factor K at

leading order so that the expression is instead

Z1

Z0
= Ke−MT where K = 2

(
mL2

2πT

)3/2

.

The main idea is then to calculate the ratio of these partition functions

using the computer simulations and then once this ratio is known we can

work out M as

M = K ′ − 1
T

ln Z1

Z0
where K ′ = 1

T
lnK. (4.2)

4.1 The mass calculation method

The problem with the calculation of M in expression (4.2) however is that in

a Monte Carlo simulation we are not able to calculate partition functions like

Z but only expectation values. Hence we need to find a way to transform this

formula into a function of some expectation values so that we can calculate

it in our simulations.

Going back to the partition function in (4.1), we can work out its deriva-

tive with respect to the parameter m2:

∂Z

∂m2 = −Z〈Trφ2〉.
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And this can be related toM by similarly differentiating (4.2) with respect

to the same parameter m2:

∂M

∂m2 = − 1
T

(
1
Z1

∂Z1

∂m2 −
1
Z0

∂Z0

∂m2

)
= 1
T

(
〈Trφ2〉1 − 〈Trφ2〉0

)
, (4.3)

where 〈·〉1 and 〈·〉0 denote expectation values in topological sectors one and

zero respectively.

The expression in (4.3) is now a quantity that is expressed in terms of

expectation values so it can be calculated using Monte Carlo simulations.

For this, we need to calculate the expectation value of the trace of the scalar

field squared twice, once for configurations with a single monopole (sector 1)

and another for vacuum configurations (sector 0), and subtracting one from

the other.

Finally to calculate M we need to integrate (4.3). We can do this by

repeating the whole calculation for different values of m2 and, by collecting

enough data in this way, we can then integrate by expressing the derivative

as a finite difference.

Therefore in practice, we measure both sets of data (sector 1 and sector

0) for different values of m2. For large values of m2, in the symmetric phase

of the theory, the monopole does not exist and so in this phase both sets of

data coincide and are quite small and consequently we have that the mass of

the monopole is M = 0.

Then, there is a critical value, m2
c , below which the symmetry is sponta-

neously broken and Trφ2 starts to increase. This is when we get a magnetic

monopole. In this broken phase there is a slight difference between the ex-

pectation values in sectors one and zero. What the integration of (4.3) does

is calculate the area between the sector 1 and sector 0 curves, and this is the
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value of M we are trying to calculate.
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Chapter 5

On the lattice

The objective of our simulations will be to calculate the mass of the ’t Hooft-

Polyakov monopole under the Georgi-Glashow theory introduced in previ-

ous sections. Typically, observables of the system are expressed as expecta-

tion values of some function of the fields in the theory, for instance, 〈φ(x)〉,

〈φ(x)φ(y)〉, etc. and hence we would like to end up with an expression for

the mass in terms of expectation values.

In general, for an operator Θ[φ] which is a function of the field φ, its

expectation value is given by the path integral:

〈Θ[φ]〉 =
∫
DφΘ[φ]e−iS[φ]∫
Dφ e−iS[φ] , (5.1)

where the integrals are over all possible field configurations and S[φ] is the

action of the theory.

Under weak coupling we can use perturbation methods to calculate the

above expression by expanding around the (small) coupling constants of the

theory. In this document however we will use a non-perturbative method

based on discretising the theory on a lattice and using a Monte Carlo based

algorithm, Metropolis, to calculate the integrals. This would allow us to
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continue to use the same method even for the case in which the coupling g

increases and the theory becomes strongly coupled. Another advantage of

this method is that it lends itself nicely to computer simulations as we are

replacing the continuous theory with a discrete one.

It is useful when working on lattice simulations to perform a Wick’s rota-

tion on the action, i.e. take t→ −it . This results in replacing the Minkowski

path integrals with Euclidean path integrals which are better suited to nu-

merical work as the integrands do not oscillate wildly in sign and have better

convergence. Hence the expectation values in (5.1) are calculated instead as:

〈Θ[φ]〉 =
∫
DφΘ[φ]e−SE [φ]∫
Dφ e−SE [φ] , (5.2)

where SE[φ] is the Euclidean action.

We notice now that by defining Z =
∫
Dφ e−SE [φ], the above path integral

for the expectation value has the same form as the mean value of the operator

under a probability density function given by

P [φ] = e−SE [φ]

Z
.

Using this fact, a typical Monte Carlo simulation that aims to calculate

the expectation value 〈Θ[φ]〉 would consist of two steps. In the first one

a series of field configurations are generated with the correct probability

distribution P [φ]. In the second step the observables are calculated by taking

measurements of the operator in those configurations and averaging these

measurements. In this way we can approximate the expectation value by the

average or mean of the measurements, that is

〈Θ[φ]〉 ≈ Θ[φ] = lim
N→∞

1
N

N∑
i=1

Θ[φ].
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Each configuration consists of a value of the field at each point in the

lattice. The question is then how to generate these field configurations such

that they have the correct probability distribution P [φ]. The algorithm we

use here, one of the most general and simplest, is called Metropolis [9] and

was described in chapter 3.

5.1 Lattice implementation

In order to perform the simulations on the computer we can only have a

finite number of points on which to evaluate our theory so therefore we have

to transform our continuous theory to an equivalent discrete theory.

We achieve this by considering a 4-dimensional Euclidean space-time hy-

percube of finite volume V = TL3 where T and L are the lengths of the

hypercube in the time and spatial dimensions respectively. In addition, we

make the 4-coordinate x discrete by allowing only those values that fall on a

lattice with nodes separated by a distance a, that is, the points on the lattice

have coordinates xµ = anµ, with nµ ∈ Z4. The continuum physics can then

be recovered by taking the limits V →∞ and a→ 0.

Next, we need to define our action on this lattice and this involves evalu-

ating the gauge and Higgs fields on the nodes of the lattice. However, in doing

so, we have to be very careful not to break any of the symmetries which are

fundamental to our theory, in particular we want to keep the action locally

gauge invariant.

When we discretise the field φ(x) on a lattice we define values for the

field at each node of the lattice, φ(anµ). However the case of the gauge field

Aµ(x) is more complicated. In principle we could try to consider the gauge
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field as four scalar fields that we define at each node. The problem with

this approach is that expressions written in terms of the gauge field are not

gauge invariant. This is because the gauge field transforms under an SU(2)

transformation Λ(x) as

Aµ → ΛAµΛ† − i

g
Λ∂µΛ†,

which depends on derivatives of the gauge transformation Λ(x). On the

lattice, this derivative would be converted to a finite difference involving the

values of Λ at two neighbouring nodes, which do not necessarily obey all

properties of derivatives. This suggests that we should not define the gauge

field at each point in the lattice but instead we should think of it as living in

the links between two nodes.

s s s s
s s s s
s s s s
s s s s

-
x y

Figure 5.1: The way the gauge field trans-
forms at point x depends on how it is trans-
forming at point y. This means we should
think of the gauge field as living between the
two points.

In practice what this means is that instead of using Aµ(x) at each site,

we represent the gauge field by link variables Uµ(x) defined as a path-ordered

integral:

U(x, y) ≡ Uµ(x) ≡ eig
∫ y
x
dx·A = eig

∫ x+aµ̂
x

dx·A,

where µ̂ is a unit vector in the direction from x to y and y = x+ aµ̂.

The link variables Uµ(x) now transforms in a much simpler way under a

29



gauge transformation Λ

Uµ(x)→ Λ(x)Uµ(x)Λ†(x+ aµ̂).

However, this expression means that it does not transform like a local

field but instead gets contributions from two points. Nevertheless, we will

soon see how we can still use these link variables to discretise our action.

Graphically, we can depict [12] the link variable Uµ(x) by a directed line

from node x to node x + aµ̂ representing the integration path in the line

integral in the exponent of Uµ(x)

u u-
x x+ aµ̂Uµ(x)

-
µ̂

Figure 5.2: We write our theory in terms of
the link variables U , which live at the links
between two points in the lattice, rather than
in terms of the variables Aµ which would live
at the nodes.

A more geometrical view of the link variable U is as a parallel transporter.

In order to compare the value of the fields at two different points x and y (for

instance when calculating a derivative or finite difference) we need to parallel

transport one of them to the location of the other. In our case, Uµ(x) is a

matrix, living at the link between x and x+aµ̂, which can be used to parallel

transport φ(x + aµ̂) to x. Similarly, we can use its hermitian conjugate to

parallel transport φ(x) to node x+ aµ̂. That is:

Uµ(x)φ(x+ aµ̂) lives at x,
U †µ(x)φ(x) lives at x+ aµ̂.

Ken Wilson [18] came up, in 1974, with the idea of using these link

variables to rewrite the action and hence making it suitable for lattice calcu-

lations.
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In our case, the continuous action has the form

S =
∫
d4x

{
−1

2 TrFµνF µν + Tr(DµφD
µφ) + V (φ)

}
,

and so we need to find an alternative expression that is written in terms of

link variables in such a way that preserves the gauge invariance and is local.

5.2 Discretising the Georgi-Glashow model

If we multiply two consecutive link variables U(x, y) and U(y, z) together

and take the trace then the result will now depend on the two end nodes x

and z.

u u

u u

-

6

x y

z

U(x, y)

U(y, z)
Figure 5.3: The trace of the product
U(x, y)U(y, z) depends on x and z but is not
gauge invariant or local.

If we continue in this way and take the product of consecutive link vari-

ables that form a loop (called a Wilson loop) then the final expression is not

only local, i.e. depends only on x, but in addition, after taking the trace, it

will also be gauge invariant. The simplest loop we can form in this way is

what is called the Wilson plaquette and expands a single lattice cell.

u u

u u

-

6

�

?x y

zs

Figure 5.4: The Wilson plaquette,
U(x, y)U(y, z)U(z, s)U(s, x) now depends
just on x and its trace is gauge invariant.
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If we denote by µ̂ the unit vector in the direction from point x to point

y and by ν̂ the unit vector in the direction from point y to z then we can

write the Wilson plaquette Pµν in its more traditional form:

Pµν = TrUµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν(x),

where Uµ(x) ≡ U(x, x+ aµ̂).

u u

u u

-

6

�

?x x+ aµ̂

x+ aν̂

Pµν = TrUµ(x)Uν(x+ aµ̂)U†
µ(x+ aν̂)U†

ν (x)

-

6

µ̂

ν̂

-� a

Figure 5.5: The Wilson plaquette.

Note that in this case we denote a link pointing in the opposite direction

by U †µ(x) ≡ U(x+ aµ̂, x).

For smooth and slowly varying gauge fields we can approximate the link

variable as

Uµ(x) ≈ eiagAµ(x) ≈ 1 + iagAµ(x) +O(a2).

With this approximation we can Taylor expand the Wilson plaquette in

powers of a and it turns out that for the case of SU(2) it is related to the

continuous gauge field Aµ(x) in the following way:

Pµν ≈ 2− a4g2

2 TrFµνF µν +O(a6),

where a is the lattice spacing.
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We can now replace the kinetic term of the action with an expression in

terms of the link variables, in particular the plaquette, i.e.

1
2 TrFµνF µν ≈ 1

a4g2 (2− Pµν).

Note that instead of the Wilson plaquette we could have chosen any other

closed loop as these are also gauge invariant, however, this is the simplest

choice. In fact, by a careful choice of the loop we can obtain expressions where

the order a4 term cancels out and therefore achieving greater accuracy.

Making explicit the sum over the µ and ν indices, and noticing that the

term is anti-symmetric in those indices the corresponding Lagrangian term

is:
1
2 TrFµνF µν ≈

∑
µ,ν

1
a4g2 (2− Pµν) =

∑
µ<ν

2
a4g2 (2− Pµν),

where the extra factor of 2 in the last term comes from replacing µ, ν in the

sum with µ < ν.

In a similar way as above, we can discretise the gradient term of the

action in terms of the link variables by writing the covariant derivative of the

scalar field as:

Dµφ =
Uµφ(x+ aµ̂)U †µ − φ(x)

a
.

This expression parallel transports φ(x+ aµ̂) to position x and subtracts

φ(x) to calculate the derivative in the µ direction.

Using this expression the gradient term in the lagrangian can then be

written as

Tr(DµφD
µφ) ≈

∑
µ

Trφ2(x+ aµ̂) + Trφ2(x)− 2 Trφ(x)Uµφ(x+ aµ̂)U †µ
a2 .
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The potential term in the action does not need any special treatment as

it is already correctly defined at the sites, so we have

V (φ) = λ(Trφ2 − ν2)2 = λ(Trφ2)2 + λν4 − 2λ(Trφ2)ν2,

and as ν2 ≡ −m2

2λ , the potential terms result in the following contribution to

the lagrangian

V (φ) = λ(Trφ2)2 + (m2)2

4λ +m2 Trφ2.

Putting all the terms together we end up with the following discretised

Euclidean lagrangian:

LE = 4
a4g2

∑
µ<ν

(1− 1
2Pµν)

+ 1
a2

∑
µ

(
Trφ2(x+ aµ̂) + Trφ2(x)− 2 Trφ(x)Uµ(x)φ(x+ aµ̂)U †µ(x)

)

+ λ(Trφ2)2 + (m2)2

4λ +m2 Trφ2.

Finally, to obtain the action we need to integrate over space-time

SE =
∫
d4xLE,

and this gets transformed on the lattice to

SE =
∑
x

a4 LE

=
∑
x

β∑
µ<ν

(
1− 1

2Pµν
)

+ a2∑
µ

(
2 Trφ2(x)− 2 Trφ(x)Uµ(x)φ(x+ aµ̂)U †µ(x)

)

+ λa4(Trφ2)2 + a4 (m2)2

4λ + a4m2 Trφ2

,
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where as it is conventional in Lattice Field Theory, following an analogy with

statistical physics, we have defined the coefficient β for the case of SU(2) as

β = 4
g2 ,

and means that with this relation, weak coupling implies large β.

As it stands however, the parameter m and field φ in the above action

are dimensionful quantities. We can make them dimensionless by absorbing

an ‘a’ term into them so that we can re-write the action in terms of aφ(x)

and am instead.

That is, with the following transformation

φ(x) → aφ(x)

m → am

the lattice action becomes

SE =
∑
x

 β
∑
µ<ν

(
1− 1

2Pµν
)

+
∑
µ

(
2 Trφ2(x)− 2 Trφ(x)Uµ(x)φ(x+ aµ̂)U †µ(x)

)
(5.3)

+ λ(Trφ2)2 + (m2)2

4λ +m2 Trφ2

,
where now all the parameters are dimensionless.

5.3 Boundary conditions

In previous sections we have argued that we can calculate the mass of the

magnetic monopole by Monte Carlo methods by generating configurations in

the vacuum and configurations that contain one magnetic monopole (sector
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zero and sector one respectively). The question remains as to how we can

actually generate those configurations in such a way that the existence or

not of a magnetic monopole is guaranteed.

The way this is achieved is by a clever use of the boundary conditions on

the lattice. Here, we just briefly summarise what the boundary conditions

are in each case. Further details can be obtained from references [19], [20]and

[17].

The following C-periodic boundary conditions are chosen to generate vac-

uum configurations (sector zero):

Uµ(x+N̂) = σ2 Uµ(x) σ2 = U∗µ(x)

φ(x+N̂) = −σ2 φ(x) σ2 = φ∗(x)

while the twisted boundary conditions below generate configurations with

one magnetic monopole (sector one)

Uµ(x+N̂) = σj Uµ(x) σj

φ(x+N̂) = −σj φ(x) σj.
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Chapter 6

Results

The simulations were based on the following discretised Euclidean action as

derived in chapter 5:

SE =
∑
x

 β
∑
µ<ν

(
1− 1

2 TrUµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x)
)

− 2
∑
µ

(
Trφ(x)Uµ(x)φ(x+ µ̂)U †µ(x)

)

+ (8 +m2) Trφ2(x) + λ
(
Trφ2(x)

)2
+ (m2)2

4λ

,
where all parameters are on lattice units with lattice distance a = 1. This

expression is obtained from (5.3) by substituting

∑
µ

2 Trφ2(x) = 8 Trφ2(x)

and regrouping terms.

The dimensionless Lagrangian parameters λ and β were set to the follow-

ing values through all simulations:

λ = 0.1

β = 20 (corresponding to g = 1/
√

5).
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The calculation of the monopole mass was repeated for lattice sizes (TL3)

of 164, 244, 324, 484 and 644.

For each lattice size the parameter m2 was varied from around a value of

−0.200 to a value of −1.800. This was repeated twice, once for C-periodic

boundary conditions corresponding to configurations in the vacuum, and

another for twisted boundary conditions corresponding to configurations with

one magnetic monopole. These two sets of values can be plotted against m2

to obtain two graphs (see fig. 6.1).
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Figure 6.1: 〈Trφ2〉 vs. m2 for lattice sizes 164 (left) and 244 (right) near the critical
mass m2

c . The gap between the curves continues to reduce as we increase the lattice size,
becoming almost undistinguishable for bigger lattices. It is the area between these two
graphs that gives us the magnetic monopole mass M .

Each Metropolis simulation consisted of a total of 150,000 updates. The

first Ntherm = 20, 000 updates were part of the initial thermalisation pro-

cess. After this, measurements were then taken every Ncor = 1, 000 updates,

making a total of 130 measurements per simulation.

The acceptance/rejection rate, which is part of the Metropolis step, was

tuned by the input parameters rangeA and rangePhi. These two parame-

ters control how much the fields U and φ change between consecutive field
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configurations. The following values were used for all simulations

rangeA = 0.3

rangePhi = 0.2,

which resulted in an acceptance rate of approximately 64% and 58% for U

and φ respectively.

Therefore, for each combination of lattice size, mass m2 and boundary

conditions (c-periodic or twisted) we obtained an estimate for the expectation

value density of the trace of φ2, that is, 〈Trφ2(x)〉/V where V = TL3 is the

volume of the lattice.

As the values calculated in the simulation are volume density quantities

we need to adjust the expression for M obtained in (4.3) by multiplying by

the volume V of the lattice, that is:
∂M

∂m2 = 1
T

(
〈Trφ2〉1 − 〈Trφ2〉0

)
= L3

(
〈Trφ2〉tw − 〈Trφ2〉per

)
, (6.1)

where tw and per stand for twisted or periodic boundary conditions and are

the quantities obtained in the simulation (volume densities), as opposed to

the corresponding 1 and 0 values which are pure expectation values (not

densities).

The integration of (6.1) is solved in terms of finite differences by approx-

imating the above expression by
∆M
∆m2 (m2) = L3

(
〈Trφ2〉tw(m2)− 〈Trφ2〉per(m2)

)
and hence if m2 takes values m2 = m2

0 . . .m
2
max we then calculate M as

follows:

M =
max∑
k=1

∆M(m2
k)

∆M(m2
k) = L3

(
〈Trφ2〉tw(m2

k)− 〈Trφ2〉per(m2
k)
) [
m2
k −m2

k−1

]
,
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where ∆M(m2
0) = 0 , and for this to be the case we need to take m2

0 > m2
c so

that the system is in the unbroken phase and accordingly there is no magnetic

monopole.

Figure 6.2 shows the value of the derivative of M with respect to m2 for

the different lattice sizes we have used in the simulations. This corresponds

to the difference between the two curves in fig. 6.1 adjusted by a volume

factor. Similarly to what we saw there, the lattice size has a big impact

in the shape and size of the area between the curves, particularly for small

latices.
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− ∂M
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Figure 6.2: ∂M
∂m2 vs. m2 for several lattice sizes.

The graph suggests a critical value of the mass parameter in lattice units

of around m2
c ≈ 26.6. It also shows how the peak of the graph moves to the

right, i.e. to increasing values of m2 as the lattice size increases.

The corresponding graph for M is shown in figure 6.3. We can observe
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that the larger the lattice size, the greater the initial slope off the critical

point m2
c . This is due to the earlier contribution to M from the peak in the

previous graph.
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Figure 6.3: M vs. m2 near the critical mass for several lattice sizes.

This can be appreciated better in the next graph, fig. 6.4, which provides

a close up near the critical point.

At the same time, in general, at lower values of m2, i.e. more negative, the

slope tends to fall off quicker the larger the lattice, so that as we move further

into the broken phase the curves seem to settle down to lower values of M

the larger the lattice (see fig. 6.4). An exception to this is the case for lattice

size 164 which has similar final values to 644 although this is probably due to

the slow initial slope perhaps because of larger distortion of the monopole in

smaller lattices. Lattice 164, 484 and 644 settle around a value of M = 80−81

while lattices 244 and 324 to a value around M = 85− 87
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Figure 6.4: M vs. m2 near the critical point (left) and deep in the broken phase (right).

Finally fig. 6.5 provides a full view of the calculated graph for M for all

latice sizes.
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Figure 6.5: M vs. m2. Zoom out view.

6.1 Error calculations

Each computer simulation (which took from 10 minutes for a 164 lattice to

over two days for the 644 case) provided us with a point in the graph of figure

6.1 that was obtained by averaging a set of 130 measurements of Trφ2 on
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the lattice. This set of measurements was used as input to the bootstrap

algorithm, for it to re-sample from, and produce an estimate of the error in

the result, i.e. the standard deviation in the value of 〈Trφ2〉.

The error obtained in this way had a maximum value of under 0.10% for

C-periodic boundary conditions and 0.22% for twisted boundary conditions.

These errors were then propagated to the calculation of ∂M
∂m2 and M .

Figure 6.6 shows the curve for M with the corresponding error bars for

lattice sizes 164 and 644.
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Figure 6.6: M vs. m2 with error bars for a 164 (left) and 644 (right) lattice.

It is observed that the errors increase the further away from the critical

mass point. This is probably largely due to the propagation of errors in the

formulas as the number of terms in the sum increases in the calculation of M .

Maybe, an alternative error calculation method could have been to use the

additional data sets produced by the bootstrap method to not only calculate

additional values of 〈Trφ2〉 but also to calculate the corresponding values of
∂M
∂m2 and M and then combine these additional values of M to calculate its

standard deviation.

The errors also increased with the lattice size.
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Figure 6.7: ∂M
∂m2 vs. m2 with error bars. Some lattice sizes have been removed from the

graph to avoid cluttering.

6.2 Other simulations

All the simulations in previous sections were carried out with a Lagrangian

parameter value of β = 20. Here, we repeat the same simulations but instead

using β = 4, which corresponds to a coupling constant of g = 1. This no

longer corresponds to weak coupling.

Due to time constraints we limited the simulations to a lattice size of 164.

The results are shown in figures 6.8 and 6.9.

We initially run simulations for widely separated values of m2 in order to

determine the location of the critical mass m2
c as this could potentially be

different than for the weak coupling case, and indeed it was, with a value of

m2
c ≈ 1. Then we slowly increased the number of intermediate points around

this value to achieve better accuracy.
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Figure 6.8: ∂M
∂m2 vs. m2 for β = 4 and lattice size 164.

We see that the critical point has shifted considerably to the left compared

to the weakly coupled case from earlier. Also the slope of the curves have

become much more sharper. It would maybe be interesting to expand on this

and study the behaviour of the critical point as we vary β.

Apart from the variation in β we also carried out simulations where we

kept L fixed while we increased T , in order to investigate the effect of having

a lattice that was longer in time than in the spatial dimensions. We collected

results for the case of L = 24 while T took values 24, 48, 96 and 192, however

we did not find major differences in the results, in particular close to the

critical point. Further away, the value of M again seemed to take lower

values the larger the size of the lattice, T in this case. However all results

were within error tolerance of each other.
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Figure 6.9: M vs. m2 for β = 4 and lattice size 164.
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Chapter 7

Conclusions and further study

In this document we have seen how to calculate the mass of the ’t Hooft-

Polyakov monopole for the Georgi-Glashow model in 3+1 dimensions. The

calculations were carried out non-perturbatively by using a lattice on which

to discretise the theory. The values obtained for different lattice sizes agree

with the results observed in [20].

The Georgi-Glashow theory we have investigated has two coupling con-

stants, λ and g. In this document we have looked at the case where these

are weak (λ = 0.1 and g = 1/
√

5 ) but it would be interesting to understand

how things work when we go to strong couplings.

The reason for using a weak λ is because in this case the theory is closer

to classical monopoles, and then we know what to expect, so we can compare

results. But now that we know that the method we have used works at weak

coupling it would be interesting to look at the behaviour of the theory when

we increase λ and its effects on the magnetic monopole mass.

As regards to the coupling g, if we think of the gauge field Aµ as in

electromagnetism, i.e. under U(1) symmetry, then g would correspond to
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the elementary electric charge e which we know to be small and hence in real

physics we know that the coupling is weak in this case.

However, in the non-abelian case, g corresponds to the GUT scale cou-

pling and in this case we do not know whether this is strong or weak. There-

fore, it would be interesting to study what happens when g becomes large.

Apart from some numerical constant (which depends on the gauge group)

g gives us roughly the electric charge, g ≈ e, and Dirac showed [1] that if e

is the elementary electric charge then in order for quantum mechanics to be

consistent we must have that the elementary magnetic charge q satisfies the

relation

q = 2π
e
≈ 2π

g
. (Dirac condition)

This means that as we increase g we make the magnetic charge q weaker

and eventually we get to the regime where the magnetic monopoles are weakly

coupled (q small) while the electric charge is strongly coupled. In this regime

we can not do normal perturbation theory as the coupling e is strong, how-

ever, we can explore the possibility that there might be an approximate

duality between electric and magnetic charges.

In supersymmetric theories, there are arguments that show a duality

which allows to swap electric and magnetic charges and hence allows to re-

formulate the theory in terms of the weakly coupled magnetic charges degrees

of freedom (instead of the strongly coupled electric ones). This then allows

the use of the standard perturbation methods for the calculations. Strictly

speaking though, this duality is only true in supersymmetric theories and the

theory we are considering in this document is not supersymmetric. However,

even though no exact duality then exists, we could still ask whether some

element of duality is still present if we go to the strong coupling limit in g.
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That is, we could check whether the behaviour of the system in that limit still

actually looks the same as in weak coupling but with electric and magnetic

fields interchanged. If this was the case then it would suggest that actually

the physics that we would find would be very simple as it should then be

similar to the weak coupling case except that it would be described in terms

of magnetic degrees of freedom instead of electric ones.

A further piece of study that could be carried out is to compare how the

masses of the electrically and magnetically charged particles behave. In the

broken phase of the theory, there remains an unbroken U(1) symmetry, so

there is a massless photon associated to it. In addition, there are another

two components of the gauge field, which obtain a mass through the Higgs

mechanism. These correspond to two charged bosons which we can call W±.

Finally, and apart from the magnetic monopole, there is a neutral massive

Higgs scalar H.

At weak coupling, where the semi-classical picture works, the mass of

these particles are given, to leading order, by

mW± = gν

mH =
√

2λν.

The mass of the classical magnetic monopole is, again to leading order,

mµ = ν

g
.

Looking at the masses mW± and mµ we see that under weak coupling, as

g is small, the electrically charged particles W± are much lighter than the

magnetically charged particles, that is, mW± < mµ.
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weak coupling strong coupling

mW±

mµ

When we go to strong coupling though, they swap places and the mag-

netically charged particles become the lighter ones. Of course, at the same

time, the theory becomes non-perturbative and hence we can not trust the

above formulas for the mass any more. But qualitatively we see that, at

least initially, the magnetic monopoles become important degrees of freedom

because they are the light particles while the electrically charged particles

become heavy and therefore irrelevant. So an interesting study would be to

monitor the masses of these particles as we increase g and check whether, as

the formulas predict, their masses meet and cross at a point.
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Appendix A

The simulation code

A.1 Compilation and execution

The simulation code1 is written in Fortran and has been compiled and run

using the facilities at Imperial HPC services [21].

The code is parameterised in order to generate several executables from

the same code base. For the simulations two executables were created for

each lattice size, one with C-periodic and another with twisted boundary

conditions.

Four external variables can be defined at compile time with the following

meaning:

tsize number of lattice nodes in the time direction.

size number of lattice nodes in each of the three spatial dimensions.

twist use twisted boundary conditions.

1The simulation code was generously provided by my supervisor, Prof. Arttu Rajantie.
This was then customised to the task at hand by: deleting unused execution paths, adding
input parameters to increase flexibility and avoid the need for multiple executables, mod-
ifying program output to aid in post-processing of results through linux shell scripts and
Excel spreadsheets and annotating the code.
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Cper use C-periodic boundary conditions.

Note though that only one of twist or Cper should be defined for any

given compilation.

For example, for a 244 lattice size with twisted boundary conditions the
following instructions were used:

ifort -Dtsize="24" -Dsize="24" -Dtwist -openmp -ip -O3
-auto -Isource -fpp source/monopole.F
-o bin/mono_tw24 -mkl=parallel -lmkl_core

When the program is executed it asks for six input parameters:

beta, m2, lambda lagrangian parameters in lattice units.

nMax total number of updates for the Metropolis algorithm. Measure-

ments are taken every 1000 updates.

rangeA, rangePhi control by how much U and φ are changed at each

Metropolis update. These can be used to tune the acceptance/rejection

rate.

The output of the simulation code consists of a table with a measurement

of Trφ2(x) taken every 1000 Metropolis updates. These measurements can

then be averaged to produce an estimate for 〈Trφ2(x)〉, although the first

20 entries from the table are ignored as these are part of the thermalisation

process, corresponding to the first 2000 updates.

A.2 Field representation

The simulation code mainly revolves around the logic to update the scalar

field φ(x) and the link variables U(x).

The scalar field φ(x) is declared in code as a 3-component vector (1:3)
for each space-time lattice node:
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DOUBLE PRECISION, DIMENSION(:,:,:,:,:), ALLOCATABLE :: phi
ALLOCATE(phi(1:3,1:hx,1:hy,1:hz,1:ht))

This vector encodes a 2× 2 traceless hermitian matrix as follows:

φ = [φ1, φ2, φ3]→
[

φ1 φ3 + iφ2
φ3 − iφ2 −φ1

]
.

Similarly the link variable U is declared in code as a 4-component vector

(0:3) in each of the four directions (1:4) per space-time point in the lattice:

DOUBLE PRECISION, DIMENSION(:,:,:,:,:,:), ALLOCATABLE :: u
ALLOCATE(u(0:3,1:4,1:hx,1:hy,1:hz,1:ht))

The link variable U is a member of the SU(2) group and its four compo-

nents are encoded in a vector (0:3) as

U ∈ SU(2) = [u0, u1, u2, u3]→
[
u0 + iu1 −u2 + iu3
u2 + iu3 u0 − iu1

]
=
[
α −β̄
β ᾱ

]
.

All code subroutines that manipulate matrices (e.g. trmul, matmul3, . . . )

assume this same representation for any SU(2) matrix.

A.3 Annotated code

The Fortran code used for the simulation is included below. The version

included here has been trimmed down and simplified to avoid unnecessary

cluttering while maintaining the core of the simulation algorithm.

In particular, the code does not include:

• code for logging of errors.
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• code to save status files with information on input parameters, ratio of

success of the Metropolis update (which was needed for the adjustment

of input parameters rangeA and rangePhi), number of updates, . . .

• routines for post-processing of results.

i n c l ude ’ mkl vs l . f i ’

USE mkl vs l
USE mkl v s l type
IMPLICIT NONE

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−−−−−−−−−−−−− Data Dec l a ra t i on s −−−−−−−−−−−−−−−−−−−
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! t s i z e and s i z e de f ined e x t e r n a l l y
INTEGER ht , hx , hy , hz
PARAMETER( ht=t s i z e , hx=s i z e , hy=s i z e , hz=s i z e )

INTEGER dum,mx(−hx :2∗ hx ) ,my(−hy :2∗ hy ) ,mz(−hz :2∗ hz ) ,mt(−ht :2∗ ht )
PARAMETER(mx= (/ (MOD(dum+2∗hx−1,hx ) +1,dum=−hx ,2∗ hx ) /) )
PARAMETER(my= (/ (MOD(dum+2∗hy−1,hy ) +1,dum=−hy ,2∗ hy ) /) )
PARAMETER(mz= (/ (MOD(dum+2∗hz−1,hz ) +1,dum=−hz ,2∗ hz ) /) )
PARAMETER(mt= (/ (MOD(dum+2∗ht−1,ht ) +1,dum=−ht ,2∗ ht ) /) )

DOUBLE PRECISION beta ,m2, lambda
DOUBLE PRECISION, DIMENSION ( : , : , : , : , : , : ) , ALLOCATABLE : : u
DOUBLE PRECISION, DIMENSION ( : , : , : , : , : ) , ALLOCATABLE : : phi
REAL, DIMENSION ( : , : , : , : , : , : ) , ALLOCATABLE : : rnd
REAL, DIMENSION ( : , : , : , : , : , : , : ) , ALLOCATABLE : : rndu

INTEGER n , t , i , j , k ,m, dir , nMax

DOUBLE PRECISION r
INTEGER seed , s (2 )

TYPE (VSL STREAM STATE) : : stream ( ht )
DOUBLE PRECISION rangeA , rangephi
DOUBLE PRECISION act i on
CHARACTER(100) datadir , execName
INTEGER count0 , count rate , count max
INTEGER errcode

CALL getarg (0 , execName )
CALL getarg (1 , datad i r )
datad i r = TRIM( datad i r ) // ’ /XXX ’

ALLOCATE(u ( 0 : 3 , 1 : 4 , 1 : hx , 1 : hy , 1 : hz , 1 : ht ) )
ALLOCATE( phi ( 1 : 3 , 1 : hx , 1 : hy , 1 : hz , 1 : ht ) )
ALLOCATE( rnd (4 ,10 , hx , hy , hz , ht ) )
ALLOCATE( rndu (2 , 6 , 4 , hx , hy , hz , ht ) )

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−−−−−−−−−−−−− Main Code −−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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! I n i t i a l i s e random number seed
CALL SYSTEM CLOCK( count0 , count rate , count max )
seed=count0
s (1 )=seed /65536
s (2 )=seed −65536∗ s (1 )

CALL RANDOM SEED (PUT = S)

! I n i t i a l i s e random number streams
DO t =1,ht

CALL random number ( r )
seed=NINT(65536∗ r )
e r r code=vslnewstream ( stream ( t ) , VSL BRNG MCG31, seed )
WRITE(∗ ,∗ ) e r r code

ENDDO

! Read input parameters
WRITE(∗ ,∗ ) ’m2, lambda , beta ? ( l a t t i c e un i t s ) ’
READ(∗ ,∗ )m2, lambda , beta

WRITE(∗ ,∗ ) ’nMax , rangeA , rangephi ? ’
READ(∗ ,∗ )nMax , rangeA , rangephi

WRITE(∗ ,∗ ) ’m2=’ ,m2, ’ lambda=’ , lambda , ’ beta=’ , beta
WRITE(∗ ,∗ ) ’nMax=’ ,nMax , ’ rangeA=’ , rangeA , ’ rangephi=’ , rangephi

CALL i n i t i a l i s e (SQRT(−m2) ,SQRT(−m2/lambda ) )

OPEN(10 , f i l e=datad i r // ’ conf ’ , form=’ unformatted ’ , e r r =10,
+ s t a t u s=’ o ld ’ )

READ(10) u
READ(10) phi
CLOSE(10)

10

! Generate f u l l s e t o f random numbers but throw them away
! to avoid problem with f i r s t va lue s

DO t =1,ht
e r r code=vsrnguni form (0 , stream ( t ) , 2∗6∗4∗hx∗hy∗hz ,

+ rndu ( : , : , : , : , : , : , t ) , 0 . 0 , 1 . 0 )
e r r code=vsrnguni form (0 , stream ( t ) , 4∗10∗hx∗hy∗hz ,

+ rnd ( : , : , : , : , : , t ) , 0 . 0 , 1 . 0 )
ENDDO

! Perform time evo lu t i on ( Metropo l i s updates )
! and take measurements every 100 updates

DO n=1,nMax

!$OMP PARALLEL DO

! Generate f u l l s e t o f random numbers
! These w i l l be used to update c o n f i g u r a t i o n s

DO t =1,ht
e r r code=vsrnguni form (0 , stream ( t ) , 2∗6∗4∗hx∗hy∗hz ,

+ rndu ( : , : , : , : , : , : , t ) , 0 . 0 , 1 . 0 )
e r r code=vsrnguni form (0 , stream ( t ) , 4∗10∗hx∗hy∗hz ,

+ rnd ( : , : , : , : , : , t ) , 0 . 0 , 1 . 0 )
ENDDO
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! Update l i n k v a r i a b l e s U
! f i r s t odd l a t t i c e nodes then the even ones

CALL update (0 , beta ,m2, lambda , rangeA )
CALL update (1 , beta ,m2, lambda , rangeA )

! S i m i l a r l y update f i e l d phi ( odd and even )
CALL updatephi (0 ,m2, lambda , rangephi )
CALL updatephi (1 ,m2, lambda , rangephi )

! Take measurement o f ob s e rvab l e s every 100 updates
IF (MOD(n , 1 0 0 ) .EQ. 0 ) THEN

CALL measure ( datadir ,m2)
ENDIF

ENDDO

CONTAINS

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−−−−−−−−−−−−− Subrout ines −−−−−−−−−−−−−−−−−−−−−−−−−
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! I n i t i a l i s e phi depending on boundary c o n d i t i o n s

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SUBROUTINE i n i t i a l i s e ( mass , vev )
IMPLICIT NONE
DOUBLE PRECISION mass , vev
INTEGER i , j , k , t
DOUBLE PRECISION r , dx , dy , dz

!$OMP PARALLEL DO
!$OMP+PRIVATE( i , j , k , dx , dy , dz , r )

DO t =1,ht
DO k=1,hz

DO j =1,hy
DO i =1,hx

#i f d e f tw i s t
dx=REAL(2∗ i−hx−1) /2 .0
dy=REAL(2∗ j−hy−1) /2 .0
dz=REAL(2∗k−hz−1) /2 .0
r=SQRT( dx∗∗2+dy∗∗2+dz ∗∗2)

phi ( : , i , j , k , t )=vev ∗(1.0−EXP(−mass∗ r ) ) / r ∗(/dx , dy , dz /)
#e l s e

phi ( : , i , j , k , t ) =(/ vev , 0 d0 , 0 d0 /)
#e n d i f

ENDDO
ENDDO

ENDDO
ENDDO
END SUBROUTINE i n i t i a l i s e

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Update l i n k v a r i a b l e U by

! per forming 6 sweeps o f the met ropo l i s a lgor i thm
! Updates only odd/even l a t t i c e nodes
! Node i s odd i f coords i+j+k+t odd ( otherwi se even )
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBROUTINE update ( odd , beta , mass2 , lambda , rangeA )
IMPLICIT NONE

INTEGER odd
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DOUBLE PRECISION beta , mass2 , lambda
DOUBLE PRECISION rangeA

INTEGER t , i , j , k , d i r , d2 , n , pos (4 )
INTEGER posp (4 ) , posp2 (4 ) , posm2 (4) , pospm2 (4)
DOUBLE PRECISION ,DIMENSION(3) : : phi1 , phi2
DOUBLE PRECISION ,DIMENSION( 0 : 3 ) : : o l d l i n k
DOUBLE PRECISION ,DIMENSION( 0 : 3 ) : : surr , newlink
DOUBLE PRECISION oldact , r , datot
DOUBLE PRECISION d e l a c t
INTEGER accept , maxAccept
REAL acceptRate

accept=0
datot =0.0
DO d i r =1,4

!$OMP PARALLEL DO
!$OMP+PRIVATE( i , j , k , d2 , n , o ld l i nk , newlink , de lact , surr , r )
!$OMP+PRIVATE( oldact , phi1 , phi2 )
!$OMP+PRIVATE( pos , posp , posp2 , pospm2 , posm2 )
!$OMP+REDUCTION(+: accept , datot )

DO t =1,ht
DO k=1,hz

DO j =1,hy
DO i=1+MOD( odd+j+k+t , 2 ) , hx , 2

pos=(/ i , j , k , t /)
posp=posp lus ( d i r , pos )
o l d l i n k=readu4 ( dir , pos )
su r r =(/ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 /)
DO d2=1,4

IF ( d2 .NE. d i r ) THEN
posp2=posp lus ( d2 , pos )
pospm2=posminus ( d2 , posp )
posm2=posminus ( d2 , pos )
su r r=sur r+matmul3nhh ( readu4 ( d2 , posp ) ,

+ readu4 ( dir , posp2 ) , readu4 ( d2 , pos ) )
su r r=sur r+matmul3hhn ( readu4 ( d2 , pospm2 ) ,

+ readu4 ( dir , posm2 ) , readu4 ( d2 , posm2 ) )
ENDIF

ENDDO

! Ca lcu la te OldAction
phi1=readphi ( pos )
phi2=readphi ( posp )
o ldac t=−beta /2d0∗ trmul ( o ld l i nk , su r r )

+ −4d0∗dotprod ( phi1 , mrot ( o ld l i nk , phi2 ) )

! Update 6 times , each combination o f d i r e c t i o n s
! mu, nu with mu < nu

DO n=1,6
newlink=gennewlink (n , o ld l i nk , rangeA ,

+ rndu (1 , n , d i r , i , j , k , t ) )

! Ca l cu la t e DeltaAction = NewAction −
OldAction

d e l a c t=−beta /2d0∗ trmul ( newlink , su r r )
+ −4d0∗dotprod ( phi1 , mrot ( newlink , phi2 ) )
+ −o ldac t

! Metropo l i s s tep : accept / r e j e c t
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IF ( d e l a c t .GT. 0 . 0 ) THEN
r=rndu (2 , n , d i r , i , j , k , t )
IF ( r .LT.EXP(−d e l a c t ) ) THEN

o l d l i n k=newlink
o ldac t=o ldac t+d e l a c t
accept=accept+1
datot=datot+d e l a c t

ENDIF
ENDIF

IF ( d e l a c t .LE . 0 . 0 ) THEN
o l d l i n k=newlink
o ldac t=o ldac t+d e l a c t
accept=accept+1
datot=datot+d e l a c t

ENDIF
ENDDO

! Update U with new value
u ( : , d i r , i , j , k , t )=o l d l i n k

ENDDO
ENDDO

ENDDO
ENDDO

ENDDO

! Ca lcu la te acceptance ra t e
maxAccept = 6∗2∗hx∗hy∗hz∗ht

acceptRate = REAL( accept ) /REAL( maxAccept )

c WRITE(∗ ,∗ ) ’U: Accepted ’ , accept , ’ / ’ , maxAccept , ’= ’ , acceptRate

END SUBROUTINE update

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Generate next c o n f i g u r a t i o n o f f i e l d phi by
! per forming 10 sweeps o f the met ropo l i s a lgor i thm
! Updates only odd/even l a t t i c e nodes
! Node i s odd i f coords i+j+k+t odd ( otherwi se even )
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBROUTINE updatephi ( odd ,m2, lambda , rangephi )
IMPLICIT NONE

INTEGER odd
DOUBLE PRECISION m2, lambda
DOUBLE PRECISION rangephi
INTEGER i , j , k , t , d i r
DOUBLE PRECISION newphi (3 ) , chphi (3 ) , o ldph i (3 ) , su r r (3 )
DOUBLE PRECISION r , de lact , o ldact , op2 , np2 , datot
INTEGER pos (4 ) , posp (4 ) ,posm (4)
INTEGER n
INTEGER accept , maxAccept
REAL acceptRate

datot =0.0
accept=0

!$OMP PARALLEL DO PRIVATE( i , j , k , d i r , surr , chphi , newphi , o ldphi , n )
!$OMP+PRIVATE( de lact , o ldact , r )
!$OMP+PRIVATE( op2 , np2 )
!$OMP+PRIVATE( pos , posp , posm)
!$OMP+REDUCTION(+: accept , datot )
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DO t =1,ht
DO k=1,hz

DO j =1,hy
DO i=1+MOD( odd+j+k+t , 2 ) , hx , 2

su r r =(/ 0 . 0 , 0 . 0 , 0 . 0 /)
pos=(/ i , j , k , t /)

! For each po int x=pos and d i r e c t i o n mu=d i r
! c a l c u l a t e −2∗[U( x ) ∗phi ( x+mu) ∗U+(x ) +

U+(x−mu) ∗phi (x−mu) ∗U(x−mu) ]
! i . e . c o n t r i b u t i o n to the ac t i on o f phi ( x )
! To s i m p l i f y t h i s task we separa te the updates o f odd

and even
! l a t t i c e nodes .

DO d i r =1,4
posp=posp lus ( d i r , pos )
su r r=surr −2.0∗mrot ( readu4 ( dir , pos ) , readphi ( posp ) )
posm=posminus ( d ir , pos )
su r r=surr −2.0∗mroth ( readu4 ( dir , posm) , readphi (posm) )

ENDDO
oldph i=readphi ( pos )

! Ca l cu la te o ld ac t i on
op2=2.0∗ squared ( o ldph i )
o ldac t =2.0∗ dotprod ( oldphi , su r r )

+ +(8.0+m2) ∗op2+lambda∗op2∗∗2

! Repeat update 10 t imes
DO n=1,10

! Ca l cu la te new phi ( x )
chphi =2.0∗ rangephi ∗( rnd ( 1 : 3 , n , i , j , k , t ) −.5)
newphi=o ldph i+chphi

! Ca l cu la te DeltaAction = NewAction − OldAction
np2=2.0∗ squared ( newphi )
d e l a c t =2.0∗ dotprod ( newphi , su r r )

+ +(8.0+m2) ∗np2+lambda∗np2∗∗2
+ −o ldac t

! Metropo l i s s tep : accept / r e j e c t
IF ( d e l a c t .GT. 0 . 0 ) THEN

IF (LOG( rnd (4 , n , i , j , k , t ) ) .LT.− d e l a c t ) THEN
accept=accept+1
o ldac t=o ldac t+d e l a c t
o ldph i=newphi
datot=datot+d e l a c t

ENDIF
ENDIF

IF ( d e l a c t .LE . 0 . 0 ) THEN
accept=accept+1
o ldac t=o ldac t+d e l a c t
o ldph i=newphi
datot=datot+d e l a c t

ENDIF
ENDDO

! Update phi
phi ( : , i , j , k , t )=o ldph i

ENDDO
ENDDO

ENDDO
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ENDDO

! Ca lcu la te acceptance ra t e
maxAccept = 10∗hx∗hy∗hz∗ht /2
acceptRate = REAL( accept ) /REAL( maxAccept )

c WRITE(∗ ,∗ ) ’ Phi : Accepted ’ , accept , ’ / ’ , maxAccept , ’= ’ , acceptRate

END SUBROUTINE updatephi

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Ca l cu la t e <Tr phiˆ2>/Volume and append to
! output f i l e ” t race2 ”
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBROUTINE measure ( path ,m2)
IMPLICIT NONE

CHARACTER(100) path
DOUBLE PRECISION m2
INTEGER i , j , k , t , pos (4 )
DOUBLE PRECISION phi2 , avgphi2

avgphi2 =0.0

!$OMP PARALLEL DO
!$OMP+PRIVATE( i , j , k , pos , phi2 )
!$OMP+REDUCTION(+: , avgphi2 )

DO t =1,ht
DO k=1,hz

DO j =1,hy
DO i =1,hx

pos=(/ i , j , k , t /)
! phi2 = Tr phi ( x ) ˆ2

phi2 =2.0∗ squared ( readphi ( pos ) )
avgphi2=avgphi2+phi2

ENDDO
ENDDO

ENDDO
ENDDO

! Output t o t a l Tr phi ˆ2 d iv ided by volume o f l a t t i c e
OPEN(10 , f i l e=TRIM( path ) // ’ t r ac e2 ’ , p o s i t i o n=’APPEND’ )
WRITE(10 , ” ( F10 . 4 ,A1 , F10 . 4 ) ” ) REAL( avgphi2 /hx/hy/hz/ht ) , ’ ’ ,m2
CLOSE(10)

END SUBROUTINE measure

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! p laq2 (mu, nu , x ) =(1/2)∗Trace [Umu( x )Unu( x+mu)Umu+(x+nu)Unu+(x ) ]
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

DOUBLE PRECISION FUNCTION plaq2 ( dir , d2 , pos )
IMPLICIT NONE
INTEGER dir , d2 , pos (4 )
DOUBLE PRECISION ,DIMENSION( 0 : 3 ) : : m1,m2, u1 , u2 , u3 , u4

u1=readu4 ( dir , pos )
u3=readu4 ( d2 , pos )
u2=readu4 ( d2 , posp lus ( d ir , pos ) )
u4=readu4 ( dir , posp lus ( d2 , pos ) )
m1=matmul ( u1 , u2 )
m2=matmul ( u3 , u4 )
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plaq2=trmulnh (m1,m2) /2 .0
END FUNCTION plaq2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! l i n k 2 (mu, x ) = Trace [ phi ( x )U( x ) phi ( x+mu)U+(x ) ]
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

DOUBLE PRECISION FUNCTION l i n k 2 ( dir , pos )
IMPLICIT NONE
INTEGER dir , pos (4 )
DOUBLE PRECISION, DIMENSION(3) : : ph1 , ph2
DOUBLE PRECISION, DIMENSION( 0 : 3 ) : : u1

ph1=readphi ( pos )
u1=readu4 ( dir , pos )
ph2=readphi ( posp lus ( d i r , pos ) )
l i n k 2 =2.0∗ dotprod ( ph1 , mrot ( u1 , ph2 ) )

END FUNCTION l i n k 2

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Returns the value o f the SU(2) l i n k v a r i a b l e U
! at p o s i t i o n pos and d i r e c t i o n d i r .
! Enforces boundary c o n d i t i o n s when pos out s id e
! bounds o f l a t t i c e
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FUNCTION readu4 ( dir , pos )
IMPLICIT NONE
DOUBLE PRECISION readu4 ( 0 : 3 ) , u1 ( 0 : 3 )
INTEGER dir , i , j , k , t , pos (4 )
INTEGER i0 , j0 , k0 , t0
i 0=mx( pos (1 ) )
j 0=my( pos (2 ) )
k0=mz( pos (3 ) )
t0=mt( pos (4 ) )
u1=u ( : , d i r , i0 , j0 , k0 , t0 )

#i f d e f Cper
IF ( pos (1 ) .NE. i 0 ) THEN

u1 (1)=−u1 (1)
u1 (3 )=−u1 (3)

ENDIF
IF ( pos (2 ) .NE. j 0 ) THEN

u1 (1)=−u1 (1)
u1 (3 )=−u1 (3)

ENDIF
IF ( pos (3 ) .NE. k0 ) THEN

u1 (1)=−u1 (1)
u1 (3 )=−u1 (3)

ENDIF
#e n d i f Cper
#i f d e f tw i s t

IF ( pos (1 ) .NE. i 0 ) THEN
u1 (2)=−u1 (2)
u1 (3 )=−u1 (3)

ENDIF
IF ( pos (2 ) .NE. j 0 ) THEN

u1 (1)=−u1 (1)
u1 (3 )=−u1 (3)

ENDIF
IF ( pos (3 ) .NE. k0 ) THEN

u1 (1)=−u1 (1)
u1 (2 )=−u1 (2)

ENDIF
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#e n d i f tw i s t
readu4=u1
END FUNCTION readu4

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Returns the value o f the 3−component vec to r phi
! at p o s i t i o n pos .
! Enforces boundary c o n d i t i o n s when pos out s id e
! bounds o f l a t t i c e
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FUNCTION readphi ( pos )
IMPLICIT NONE

DOUBLE PRECISION readphi (3 ) , p1 (3 )
INTEGER i , j , k , t , pos (4 )
INTEGER i0 , j0 , k0 , t0

i 0=mx( pos (1 ) )
j 0=my( pos (2 ) )
k0=mz( pos (3 ) )
t0=mt( pos (4 ) )
p1=phi ( : , i0 , j0 , k0 , t0 )

#i f d e f Cper
IF ( pos (1 ) .NE. i 0 ) p1 (2 )=−p1 (2)
IF ( pos (2 ) .NE. j 0 ) p1 (2 )=−p1 (2)
IF ( pos (3 ) .NE. k0 ) p1 (2 )=−p1 (2)

#e n d i f Cper

#i f d e f tw i s t
IF ( pos (1 ) .NE. i 0 ) p1 (1 )=−p1 (1)
IF ( pos (2 ) .NE. j 0 ) p1 (2 )=−p1 (2)
IF ( pos (3 ) .NE. k0 ) p1 (3 )=−p1 (3)

#e n d i f tw i s t
readphi=p1
END FUNCTION readphi

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! herm ( a ) = a+, i . e . hermit ian o f matrix a
! a element o f SU(2)
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FUNCTION herm ( a )
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION( 0 : 3 ) : : herm , a
herm (0)=a (0)
herm (1)=−a (1 )
herm (2)=−a (2 )
herm (3)=−a (3 )
END FUNCTION herm

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! matmul ( a , b ) = a∗b
! a , b e lements o f SU(2)
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FUNCTION matmul ( a , b )
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION( 0 : 3 ) : : matmul , a , b
matmul (0 )=a (0) ∗b (0) − a (1 ) ∗b (1) − a (2 ) ∗b (2) − a (3 ) ∗b (3)
matmul (1 )=a (1) ∗b (0) + a (0) ∗b (1) + a (3) ∗b (2) − a (2 ) ∗b (3)
matmul (2 )=a (2) ∗b (0) − a (3 ) ∗b (1) + a (0) ∗b (2) + a (1) ∗b (3)
matmul (3 )=a (3) ∗b (0) + a (2) ∗b (1) − a (1 ) ∗b (2) + a (0) ∗b (3)
END FUNCTION matmul
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! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! dotprod ( phi1 , phi2 ) = (1/2) ∗Trace ( phi1 ∗phi2 )
! phi1 , phi2 t r a c e l e s s hermit ian 2x2 matr i ce s
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

DOUBLE PRECISION FUNCTION dotprod ( p1 , p2 )
IMPLICIT NONE
DOUBLE PRECISION p1 (3) , p2 (3 )
dotprod=p1 (1) ∗p2 (1)+p1 (2 ) ∗p2 (2)+p1 (3 ) ∗p2 (3)
END FUNCTION dotprod

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! squared ( phi ) = (1/2) ∗Trace ( phi ˆ2)
! phi t r a c e l e s s hermit ian 2x2 matrix
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

DOUBLE PRECISION FUNCTION squared (p)
IMPLICIT NONE
DOUBLE PRECISION p (3)
squared=dotprod (p , p)
END FUNCTION squared

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Generates a new l i n k from an old one
! ensur ing new l i n k s t i l l i s a member o f SU(2)
! rangeA c o n t r o l s the s i z e o f the change
! r i s a random number
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FUNCTION gennewlink (n , o ld l i nk , rangeA , r )
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION( 0 : 3 ) : : gennewlink , o l d l i n k
REAL r
TYPE (VSL STREAM STATE) : : stream
DOUBLE PRECISION rangeA , sr , cr , x2
INTEGER n , i , j , e r r code
INTEGER pa i r1 (6 ) , pa i r2 (6 )
PARAMETER( pa i r1 =(/0 ,0 ,0 ,1 ,1 ,2/) )
PARAMETER( pa i r2 =(/1 ,2 ,3 ,2 ,3 ,3/) )

gennewlink=o l d l i n k
i=pa i r1 (n)
j=pa i r2 (n)
s r =(2.0∗ r−1.0)∗rangeA
cr=SQRT(1.0− s r ∗∗2)

! Matrix C = [ cr s r ; −s r c r ]
! gennewlink = C ∗ o l d l i n k

gennewlink ( i )=o l d l i n k ( i ) ∗ cr+o l d l i n k ( j ) ∗ s r
gennewlink ( j )=−o l d l i n k ( i ) ∗ s r+o l d l i n k ( j ) ∗ cr

! x2 = 1 / | gennewlink |
x2=0.0
DO i =0,3

x2=x2+gennewlink ( i ) ∗∗2
ENDDO

! normal i se new l i n k
! gennewlink = gennewlink / | gennewlink |

x2=1.0/SQRT( x2 )
DO i =0,3

gennewlink ( i )=gennewlink ( i ) ∗x2
ENDDO
END FUNCTION
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! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! posp lus (mu, x ) r e tu rn s next node to x in the
! mu d i r e c t i o n
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FUNCTION posp lus ( d i r , pos )
IMPLICIT NONE
INTEGER dir , pos (4 ) , posp lus (4 )
posp lus=pos
posp lus ( d i r )=posp lus ( d i r )+1
END FUNCTION posp lus

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! posminus (mu, x ) r e tu rn s prev ious node to x in the

! mu d i r e c t i o n
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FUNCTION posminus ( d ir , pos )
IMPLICIT NONE
INTEGER dir , pos (4 ) , posminus (4 )
posminus=pos
posminus ( d i r )=posminus ( d i r )−1
END FUNCTION posminus

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! mrot ( a , phi ) = a∗phi ∗( a+)

! a element o f SU(2)
! phi hermit ian t r a c e l e s s 2x2 matrix
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FUNCTION mrot (a , p )
IMPLICIT NONE
DOUBLE PRECISION mrot (3 )
DOUBLE PRECISION a ( 0 : 3 ) ,p (3 )
mrot (1 )= a (0) ∗∗2∗p (1) + a (1) ∗∗2∗p (1) − a (2 ) ∗∗2∗p (1) −
− a (3 ) ∗∗2∗p (1) + 2∗a (1 ) ∗a (2 ) ∗p (2) +
− 2∗a (0 ) ∗a (3 ) ∗p (2) − 2∗a (0 ) ∗a (2 ) ∗p (3) +
− 2∗a (1 ) ∗a (3 ) ∗p (3)

mrot (2 )= 2∗a (1 ) ∗a (2 ) ∗p (1) − 2∗a (0 ) ∗a (3 ) ∗p (1) +
− a (0 ) ∗∗2∗p (2) − a (1 ) ∗∗2∗p (2) + a (2) ∗∗2∗p (2) −
− a (3 ) ∗∗2∗p (2) + 2∗a (0 ) ∗a (1 ) ∗p (3) +
− 2∗a (2 ) ∗a (3 ) ∗p (3)

mrot (3 )= 2∗a (0 ) ∗a (2 ) ∗p (1) + 2∗a (1 ) ∗a (3 ) ∗p (1) −
− 2∗a (0 ) ∗a (1 ) ∗p (2) + 2∗a (2 ) ∗a (3 ) ∗p (2) +
− a (0 ) ∗∗2∗p (3) − a (1 ) ∗∗2∗p (3) − a (2 ) ∗∗2∗p (3) +
− a (3 ) ∗∗2∗p (3)

END FUNCTION mrot

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! mroth ( a , phi ) = ( a+)∗phi ∗a

! a element o f SU(2)
! phi hermit ian t r a c e l e s s 2x2 matrix
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FUNCTION mroth (a , p)
IMPLICIT NONE
DOUBLE PRECISION mroth (3 )
DOUBLE PRECISION a ( 0 : 3 ) ,p (3 )
mroth (1 )= a (0) ∗∗2∗p (1) + a (1) ∗∗2∗p (1) − a (2 ) ∗∗2∗p (1) −
− a (3 ) ∗∗2∗p (1) + 2∗a (1 ) ∗a (2 ) ∗p (2) −
− 2∗a (0 ) ∗a (3 ) ∗p (2) + 2∗a (0 ) ∗a (2 ) ∗p (3) +
− 2∗a (1 ) ∗a (3 ) ∗p (3)

mroth (2 )= 2∗a (1 ) ∗a (2 ) ∗p (1) + 2∗a (0 ) ∗a (3 ) ∗p (1) +
− a (0 ) ∗∗2∗p (2) − a (1 ) ∗∗2∗p (2) + a (2) ∗∗2∗p (2) −
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− a (3 ) ∗∗2∗p (2) − 2∗a (0 ) ∗a (1 ) ∗p (3) +
− 2∗a (2 ) ∗a (3 ) ∗p (3)

mroth (3 )= −2∗a (0 ) ∗a (2 ) ∗p (1) + 2∗a (1 ) ∗a (3 ) ∗p (1) +
− 2∗a (0 ) ∗a (1 ) ∗p (2) + 2∗a (2 ) ∗a (3 ) ∗p (2) +
− a (0 ) ∗∗2∗p (3) − a (1 ) ∗∗2∗p (3) − a (2 ) ∗∗2∗p (3) +
− a (3 ) ∗∗2∗p (3)

END FUNCTION mroth

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! matmul3nhh ( a , b , c ) = a ∗(b+)∗( c+)

! a , b , c e lements o f SU(2)
! a+ i s the hermit ian conjugate o f a
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FUNCTION matmul3nhh (a , b , c )
DOUBLE PRECISION ,DIMENSION( 0 : 3 ) : : matmul3nhh , out , a , b , c
out (0 )=

+ a (0) ∗b (0) ∗c (0 ) + a (1) ∗b (1) ∗c (0 ) +
− a (2 ) ∗b (2) ∗c (0 ) + a (3) ∗b (3) ∗c (0 ) +
− a (1 ) ∗b (0) ∗c (1 ) − a (0 ) ∗b (1) ∗c (1 ) −
− a (3 ) ∗b (2) ∗c (1 ) + a (2) ∗b (3) ∗c (1 ) +
− a (2 ) ∗b (0) ∗c (2 ) + a (3) ∗b (1) ∗c (2 ) −
− a (0 ) ∗b (2) ∗c (2 ) − a (1 ) ∗b (3) ∗c (2 ) +
− a (3 ) ∗b (0) ∗c (3 ) − a (2 ) ∗b (1) ∗c (3 ) +
− a (1 ) ∗b (2) ∗c (3 ) − a (0 ) ∗b (3) ∗c (3 )

out (1 )=
+ a (1) ∗b (0) ∗c (0 ) − a (0 ) ∗b (1) ∗c (0 ) −
− a (3 ) ∗b (2) ∗c (0 ) + a (2) ∗b (3) ∗c (0 ) −
− a (0 ) ∗b (0) ∗c (1 ) − a (1 ) ∗b (1) ∗c (1 ) −
− a (2 ) ∗b (2) ∗c (1 ) − a (3 ) ∗b (3) ∗c (1 ) −
− a (3 ) ∗b (0) ∗c (2 ) + a (2) ∗b (1) ∗c (2 ) −
− a (1 ) ∗b (2) ∗c (2 ) + a (0) ∗b (3) ∗c (2 ) +
− a (2 ) ∗b (0) ∗c (3 ) + a (3) ∗b (1) ∗c (3 ) −
− a (0 ) ∗b (2) ∗c (3 ) − a (1 ) ∗b (3) ∗c (3 )

out (2 )=
+ a (2) ∗b (0) ∗c (0 ) + a (3) ∗b (1) ∗c (0 ) −
− a (0 ) ∗b (2) ∗c (0 ) − a (1 ) ∗b (3) ∗c (0 ) +
− a (3 ) ∗b (0) ∗c (1 ) − a (2 ) ∗b (1) ∗c (1 ) +
− a (1 ) ∗b (2) ∗c (1 ) − a (0 ) ∗b (3) ∗c (1 ) −
− a (0 ) ∗b (0) ∗c (2 ) − a (1 ) ∗b (1) ∗c (2 ) −
− a (2 ) ∗b (2) ∗c (2 ) − a (3 ) ∗b (3) ∗c (2 ) −
− a (1 ) ∗b (0) ∗c (3 ) + a (0) ∗b (1) ∗c (3 ) +
− a (3 ) ∗b (2) ∗c (3 ) − a (2 ) ∗b (3) ∗c (3 )

out (3 )=
+ a (3) ∗b (0) ∗c (0 ) − a (2 ) ∗b (1) ∗c (0 ) +
− a (1 ) ∗b (2) ∗c (0 ) − a (0 ) ∗b (3) ∗c (0 ) −
− a (2 ) ∗b (0) ∗c (1 ) − a (3 ) ∗b (1) ∗c (1 ) +
− a (0 ) ∗b (2) ∗c (1 ) + a (1) ∗b (3) ∗c (1 ) +
− a (1 ) ∗b (0) ∗c (2 ) − a (0 ) ∗b (1) ∗c (2 ) −
− a (3 ) ∗b (2) ∗c (2 ) + a (2) ∗b (3) ∗c (2 ) −
− a (0 ) ∗b (0) ∗c (3 ) − a (1 ) ∗b (1) ∗c (3 ) −
− a (2 ) ∗b (2) ∗c (3 ) − a (3 ) ∗b (3) ∗c (3 )

matmul3nhh=out
END FUNCTION matmul3nhh

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! matmul3hhn ( a , b , c ) = ( a+)∗(b+)∗c

! a , b , c e lements o f SU(2)
! a+ i s the hermit ian conjugate o f a
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FUNCTION matmul3hhn (a , b , c )
DOUBLE PRECISION ,DIMENSION( 0 : 3 ) : : matmul3hhn , out , a , b , c
out (0 )=
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+ a (0) ∗b (0) ∗c (0 ) − a (1 ) ∗b (1) ∗c (0 ) −
− a (2 ) ∗b (2) ∗c (0 ) − a (3 ) ∗b (3) ∗c (0 ) +
− a (1 ) ∗b (0) ∗c (1 ) + a (0) ∗b (1) ∗c (1 ) −
− a (3 ) ∗b (2) ∗c (1 ) + a (2) ∗b (3) ∗c (1 ) +
− a (2 ) ∗b (0) ∗c (2 ) + a (3) ∗b (1) ∗c (2 ) +
− a (0 ) ∗b (2) ∗c (2 ) − a (1 ) ∗b (3) ∗c (2 ) +
− a (3 ) ∗b (0) ∗c (3 ) − a (2 ) ∗b (1) ∗c (3 ) +
− a (1 ) ∗b (2) ∗c (3 ) + a (0) ∗b (3) ∗c (3 )

out (1 )=
+ −(a (1 ) ∗b (0) ∗c (0 ) ) − a (0 ) ∗b (1) ∗c (0 ) +
− a (3 ) ∗b (2) ∗c (0 ) − a (2 ) ∗b (3) ∗c (0 ) +
− a (0 ) ∗b (0) ∗c (1 ) − a (1 ) ∗b (1) ∗c (1 ) −
− a (2 ) ∗b (2) ∗c (1 ) − a (3 ) ∗b (3) ∗c (1 ) −
− a (3 ) ∗b (0) ∗c (2 ) + a (2) ∗b (1) ∗c (2 ) −
− a (1 ) ∗b (2) ∗c (2 ) − a (0 ) ∗b (3) ∗c (2 ) +
− a (2 ) ∗b (0) ∗c (3 ) + a (3) ∗b (1) ∗c (3 ) +
− a (0 ) ∗b (2) ∗c (3 ) − a (1 ) ∗b (3) ∗c (3 )

out (2 )=
+ −(a (2 ) ∗b (0) ∗c (0 ) ) − a (3 ) ∗b (1) ∗c (0 ) −
− a (0 ) ∗b (2) ∗c (0 ) + a (1) ∗b (3) ∗c (0 ) +
− a (3 ) ∗b (0) ∗c (1 ) − a (2 ) ∗b (1) ∗c (1 ) +
− a (1 ) ∗b (2) ∗c (1 ) + a (0) ∗b (3) ∗c (1 ) +
− a (0 ) ∗b (0) ∗c (2 ) − a (1 ) ∗b (1) ∗c (2 ) −
− a (2 ) ∗b (2) ∗c (2 ) − a (3 ) ∗b (3) ∗c (2 ) −
− a (1 ) ∗b (0) ∗c (3 ) − a (0 ) ∗b (1) ∗c (3 ) +
− a (3 ) ∗b (2) ∗c (3 ) − a (2 ) ∗b (3) ∗c (3 )

out (3 )=
+ −(a (3 ) ∗b (0) ∗c (0 ) ) + a (2) ∗b (1) ∗c (0 ) −
− a (1 ) ∗b (2) ∗c (0 ) − a (0 ) ∗b (3) ∗c (0 ) −
− a (2 ) ∗b (0) ∗c (1 ) − a (3 ) ∗b (1) ∗c (1 ) −
− a (0 ) ∗b (2) ∗c (1 ) + a (1) ∗b (3) ∗c (1 ) +
− a (1 ) ∗b (0) ∗c (2 ) + a (0) ∗b (1) ∗c (2 ) −
− a (3 ) ∗b (2) ∗c (2 ) + a (2) ∗b (3) ∗c (2 ) +
− a (0 ) ∗b (0) ∗c (3 ) − a (1 ) ∗b (1) ∗c (3 ) −
− a (2 ) ∗b (2) ∗c (3 ) − a (3 ) ∗b (3) ∗c (3 )

matmul3hhn=out
END FUNCTION matmul3hhn

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! trmul ( a , b) = t ra c e ( a∗b)

! a , b e lements o f SU(2)
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

DOUBLE PRECISION FUNCTION trmul ( a , b)
DOUBLE PRECISION a ( 0 : 3 ) ,b ( 0 : 3 )
trmul =2.0∗( a (0 ) ∗b (0) − a (1 ) ∗b (1) − a (2 ) ∗b (2) − a (3 ) ∗b (3) )
END FUNCTION trmul

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! trmulnh (a , b) = t ra c e ( a∗b+)

! a , b e lements o f SU(2)
! b+ i s the hermit ian conjugate o f b
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

DOUBLE PRECISION FUNCTION trmulnh (a , b)
IMPLICIT NONE
DOUBLE PRECISION a ( 0 : 3 ) ,b ( 0 : 3 )
trmulnh =2.0∗( a (0 ) ∗b (0) + a (1) ∗b (1) + a (2) ∗b (2) + a (3) ∗b (3) )
END FUNCTION trmulnh

END
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Appendix B

Bootstrap code

PROGRAM bootst rap
IMPLICIT NONE

INTEGER,PARAMETER: :MAXSAMPLE=500
CHARACTER(200) i n p u t f i l e
REAL, DIMENSION(200) : : avgdata
INTEGER N
REAL avgphiN ,m2, s t d e r r

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−−−−−−−−−−−−− Main Code −−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

! Read input f i l e name
CALL getarg (1 , i n p u t f i l e )

! Extract avg data from input f i l e
N = ReadAvgPhi ( i n p u t f i l e , avgdata ,m2)

! Ca l cu la te average
avgphiN = sum( avgdata ( 1 :N) ) /N

! Ca l cu la te standard dev i a t i on us ing boots t rap
s t d e r r = CalcStdError ( avgdata ( 1 :N) ,MAXSAMPLE)

! Output to f i l e
OPEN( uni t =11, f i l e=TRIM( i n p u t f i l e ) // ’ boot ’ , a c t i on=’WRITE’ , s t a t u s=’REPLACE’ )

WRITE(11 , ” ( I4 , A1 , F10 . 4 ,A1 , F12 . 6 ,A1 , F12 . 6 ,A1 , F12 . 6 ) ” ) &
N, ’ ’ ,m2, ’ ’ , avgphiN , ’ ’ , s tde r r , ’ ’ , s t d e r r /avgphiN∗100

CLOSE(11)

CONTAINS

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−−−−−−−−−−−−− Read input f i l e −−−−−−−−−−−−−−−−−−−−−
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

INTEGER FUNCTION ReadAvgPhi ( f i l ename , avgdata ,m2)
IMPLICIT NONE
CHARACTER(∗ ) ,INTENT( in ) : : f i l ename
REAL,DIMENSION( : ) ,INTENT( out ) : : avgdata
REAL,INTENT(OUT) : : m2
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INTEGER l i n e c o u n t
REAL tmp , avgphi

avgdata=0
OPEN( uni t =10, f i l e=TRIM( f i l ename ) , a c t i on=’READ’ , s t a t u s=’OLD’ )

l i n e c o u n t=0
DO

READ(10 ,∗ , end=100 , e r r =90) tmp , avgphi ,m2
l i n e c o u n t=l i n e c o u n t+1
avgdata ( l i n e c o u n t )=avgphi

END DO

90 WRITE(∗ ,∗ ) ”ERROR”
100 CLOSE( un i t =10)

ReadAvgPhi=l i n e c o u n t
END FUNCTION ReadAvgPhi

! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! −−−−−−−−−−−−−− Bootstrap method −−−−−−−−−−−−−−−−−−−−
! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

REAL FUNCTION CalcStdError ( indata , maxsample )
IMPLICIT NONE
REAL,DIMENSION( : ) ,INTENT( in ) : : indata
INTEGER,INTENT( in ) : : maxsample

INTEGER : : N, i , j
REAL r , bootmean
REAL,DIMENSION( s i z e ( indata ) ) : : newdata
REAL,DIMENSION( maxsample ) : : newavgs

N=s i z e ( indata )

! I n i t i a l i s e random numbers
CALL RANDOM SEED

! Generate maxsample s e t s o f data
DO i =1,maxsample

! Create new s e t o f data by sampling o ld one with r e p e t i t i o n
DO j =1,N

CALL RANDOMNUMBER( r )
newdata ( j )=indata (INT( r ∗N) +1)

ENDDO

! Ca lcu la te average o f new data and s t o r e i t
newavgs ( i ) = sum( newdata ) /N

ENDDO

! Ca lcu la te mean o f averages
bootmean = sum( newavgs ) /maxsample

! Ca l cu la te standard dev i a t i on o f boot samples
CalcStdError = s q r t (sum ( ( newavgs−bootmean ) ∗∗2) /( maxsample−1) )

END FUNCTION CalcStdError

END PROGRAM bootst rap
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