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1 Introduction

The intertwining relationship between brane dynamics and non-Abelian gauge

theories has long been an intuitive approach to understanding supersymmetric

gauge theories in several dimensions. A substantial amount of work has been

done in the past decade in realizing supersymmetric field theories, in [9] three

dimensional theories were formulated using D3 branes stretched between NS5

branes. Four dimensional theories were discussed in [10,11,12], the most rele-

vant to this review being N = 4 [7], where brane configurations are realized in

terms of M theory. In this dissertation we study brane configurations leading

to N = 1 supersymmetric theories in five dimensions with gauge group SU(Nc)

and Nf hyper multiplets, the M theory realization is then described along with

its relationship with N = 4 theory in five dimensions.

In section 2 we review the basic properties of five dimensional , N = 1 super-

symmertic gauge theories with results established mainly by [1] and [2]. The

general prepotential for an N = 1 supersymmertic gauge theory in 5d with

Nc vector multiplets and Nf hypermultiplets is given[], along with the form it

takes when the gauge group is chosen to be SU(Nc) and the Nf hypermulti-

plets transform in the fundamental representation of SU(Nc). The conditions

on Nf , Nc and ccl are shown along with the BPS spectrum of the theory.

In section 3 we introduce the concept of (p, q) webs in Type IIB string theory

[3], starting with how a vertex can be formed from a D5 brane ending on NS5

by bending it into a (1, 1) five brane and a general equation is demonstrated

for the bending of an NS5 when multiple D5 ending on it . We then move

on to (p, q) webs, describing how they can be built to represent SU(Nc) gauge
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theories. SU(2) is used as an example to demonstrate how field theoretical re-

sults can be obtained from brane configurations. The concept of grid diagrams

which are dual to the webs is also explained and how it is used to characterize

different theories.

Section 4 starts with a brief description of how Type IIB string theory can

be reduced from M theory compactified on a 2-torus [13].In this context (p, q)

branes are M theory five branes wrapped around (p, q) cycles on the torus and

brane configurations correspond to an M5 on R1,3 × Σ ,where Σ is a 2 dimen-

sional surface described by a holomorphic curve [5]. We describe how curves

for a simple vertex and the SU(2) web are obtained. Grid diagrams are then

used to write down curves for pure SU(Nc) theories. At the end of the section

we follow [6] in deriving a general curve for SU(Nc) theories with Nf flavors,

it is then put into a form where the 4d limit can be taken, and the resulting

curve is in analogy with curves given in [8].
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2 Field Theory content

We start by giving a brief discerption of the field theory, with results mainly

established in [1],[2]. We consider N = 1 supersymmetry in five dimensions,

which has eight supercharges. The shortest representations are the vector

multiplet containing a vector field, a real scalar and fermions, plus a hyper

multiplet containing four scalars and fermions.

The Lorentz group is broken to,

SO(1, 9) → SO(1, 4) × SO(3) ' SO(1, 4) × SU(2)R (2.0.1)

with SU(2)R acting as the global R-symmetry group.

Consider a configuration consisting a vector multiplet transforming in the ad-

joint representation of the gauge group G, and Nf hypermultiplets transforming

in a representation Rf . The Coulomb branch is parameterized by the Cartan

sub algebra of the scalars in the vector multiplet. Low energy dynamics are

governed by the prepotential F which is restricted to be at most cubic[1], and

is given buy [2],

F(φ) =
1

2g2
0

φiφi +
ccl

2
dijkφ

iφjφk +
1

12
(
∑

α

|αiφ
i|3−

∑

f

∑

w∈Rf

|wiφ
i +mf | (2.0.2)

with φ = φiTi ,Ti are the generators of G in the representation Rf , and dijk =

tr(Ti{Tj , Tk}). The first sum is over the roots of G while the second is over the

weights of Rf . The bare coupling is g0 and the effective coupling which is the

metric on the Coloumb branch is given by,

(
1

g2
eff

)ij =
∂2F(φ)

∂φi∂φ
(2.0.3)
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ccl is a quantized parameter related to the 5 dimensional Chern-Simons term

which characterizes the theory. If we specialize to G = SU(Nc) with Nf

hypermultiplet in the fundamental representation of G, the moduli space is

given by φ = diag(a1, a2 . . . aNc) with
∑

i ai = 0, modulo the Weyl group which

allows us to set a1 ≥ a2 ≥ a3 . . . ≥ aN . In this case the prepotential simplifies

to[3],

F =
1

2g2
0

Nc∑

i

a2
i +

1

12
(2

Nc∑

i>j

|ai−aj|
3+2ccl

Nc∑

i

a3
i −Nf

f∑

f

Nc∑

i

|ai+mf |
3) (2.0.4)

In order to have non trivial fixed points for Nc > 2, Nc, Nf , and ccl have to

satisfy the following constraints [2],

1

2
Nf + ccl ∈ Z (2.0.5)

Nf + 2|ccl| ≤ 2Nc (2.0.6)

A special case is when Nc = 2 where we have two pure gauge theories labeled

by their Z theta angle, dijk = 0 and the number of flavors allowed is extended

to Nf < 7. Along with electrically particles, Instanton are present In the BPS

spectrum which is charged under the U(1)I global symmetries with instanton

number I. The central charge is given by,

Z = (ne + I)φ + mI (2.0.7)

masses of BPS states are equal to their central charge, strings are magnetic

monopoles with tensions,

Tm = (nm)i
∂F
∂φi

(2.0.8)
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3 Type IIB setup

We consider Five brane configurations of Type IIB in the context of SL(2,Z),

with D5 branes being a (1,0) multiplet , charged under the RR sector 2-form

a nd NS5 branes being a (0,1) multiplet, charged under the NS sector 2-form.

The D5 branes have world volumes[4],

Brane World volume Tension

D5 (x0,x1,x2,x3,x4,x6) 1/gsl
6
s

NS5 (x0,x1,x2,x3,x4,x5) 1/g2
s l

6
s

gs being the Type IIB string coupling, and ls the string length scale. Dimen-

sions (x0,x1,x2,x3,x4) are shared my both NS5 and D5, interesting geometry

lies in the (x6, x5) plane, where the branes appear as straight lines. The last

three dimensions (x7,x8,x8 ) represent the SO(3) R-symmetry and play no role

in the Coulomb branch and correspond to deformations in the Higgs branch.

(p, q) branes are formed as bound states of D5 and NS5 branes, their ten-

sion being[4],

Tp,q = |p + τq|TD5 (3.0.9)
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3.1 Vertices

A D5 brane ending on an NS5 brane looks like a point charge in one dimension

which causes the NS5 brane to bend in to the location,

x6 =
gs

2
(
∣
∣x5
∣
∣+ x5) (3.1.1)

We compose Vertices as our building blocks for the webs to come, by charge

conservation they satisfy,
∑

i

pi =
∑

i

qi = 0 (3.1.2)

Following [], a quarter or the supersymmetries are preserved if the branes are

constrained to obey a the slope condition,

Δx6 + iΔx5‖p + τq (3.1.3)

are horizontal while NS5 branes are vertical, the simplest vertex (figure) can

be viewed as a D5 ending on an NS5 brane,thus forming a (1,1) brane.

Figure[], vertex extended in the (x6, x5) plane.

8



3.2 Webs

To generalize (3.1.1) we consider an infinite NS5 brane stretched in x5 with nL

D5 branes ending on the left with positions ( in x5) ai, i = 1, 2 . . . nL and nR

branes ending on the right at bi, i = 1, 2 . . . nR , the five brane formed is bent

according to [4],

x6 =
gs

2
(

nL∑

i=1

|y − ai| −
nR∑

i=1

|y − bi| + (nL − nR) (3.2.1)

some simple examples are shown below,

nL = 1, nR = 1
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nL = 2, nR = 1

3.3 Gauge theories

To construct 5 dimensional gauge theories, in this case U(Nc), we stretch Nc

parallel D5 branes (in x6)between two NS5 branes. Say we sperate the NS5

branes by L6 in x6 and position the D5 branes in x5 at ai, i = 1, 2 . . . Nc,, we

now have Nc − 1 internal legs between each D5 brane there bending condition

can be found by utilizing (3.0.1).

we let the left and right lower external legs to be (pL, qL) and (pR, qR)

respectively, by the condition (3.1.2) the left and right internal legs between
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the i’th and i + 1’th D5 branes have charges,

(pL − i, qL) (3.3.1)

(pR + i, qR) (3.3.2)

and the upper external legs have charges,

(pL − Nc, qL) (3.3.3)

(pR + Nc, qR) (3.3.4)

To study gauge theory we need to decouple gravity and massive string modes

by considering the limits,

Lmax, gs, ls → 0 (3.3.5)

if the gauge coupling is at distance scale L such that,

L � ls � Lmax (3.3.6)

gravity decouples and massive modes can be integrated out,at low energy this

yields a U(Nc) gauge theory in 1+4 dimensions, with a coulomb branch pa-

rameterized by ai, i = 1, 2 . . . Nc and coupling,

1

g2
0

=
L6

gsl2s
(3.3.7)

As above, quantum effects bend the branes which restricts the locations of the

branes,
Nc∑

i=1

ai = 0

hence one of the classical positions is fixed and a U(1) factor is frozen, breaking

the gauge group to SU(Nc).
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figure [3], pure SU(2) web.

figure [4], pure SU(3) web.
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One can add matter hypermultiplets by having NL semi infinite D5 branes

to the left of the NS5 branes, and NR to the right with,

NL + NR = Nf (3.3.8)

their locations mi, i = 1 . . . f in x5 parameterize the quark masses, the charges

of the uppermost left and right five branes are now changed to (pL−Nc+NL, qL)

and (pR + Nc − NR, qR) respectively.

figure [5], SU(2) with Nf = 1
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figure [6], SU(3) with Nf = 2

An intuitive example that can demonstrate the properties of (p, q) webs is that

of pure SU(2) gauge theory (figure). We can immediately read off two field

theory parameter, one being the mass of the W boson due to a fundamental

string stretched between the two D5 branes,

mW = Δx5Ts (3.3.9)

with Ts being the string tension and Δx5 the distance between the two D5

branes, which we normalize so that mW = φ , the scalar in our vector multiplet.

We also have an instanton due to a D1 string stretched between the two NS5

branes, it has mass ,

mI = Δx6 |τ |Ts (3.3.10)

If we deform the web to a point where the D5 branes ar coincident (φ = 0) we
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see that

mI = m0 =
1

g2
0

(3.3.11)

At this point (the origin of the moduli space) the W bosons massless and the

gauge group is enhanced to SU(2)., however at a generic point of the moduli

space (φ 6= 0) the W bosons gain mass,

mW = φ (3.3.12)

and,

mI =
1

g2
0

+ φ (3.3.13)

the global guage group is now just U(1). The effective coupling is,

(
1

g2
)eff =

1

2
(2m0 + 4φ) = m0 + 2φ (3.3.14)

A monopole corresponding to a D3 brane wrapping the face of the web its

tension s given by the area of the face.

Tm = area of face = φ(φ + m0) (3.3.15)

We know from field theory results that Tm = ∂F
∂φ

and as,

∂Tm

∂φ
= (

1

g2
)eff (3.3.16)

the prepotential takes the form,

F(φ) =
1

2
m0φ

2 +
1

3
φ3 (3.3.17)
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figure [7], particle states in SU(2).

figure[8], length of dotted red line corresponds to 1/g2
0
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3.4 Deformations

Deformations of the web play an important role in gauge theory. A local

deformation is one that does not change the locations of the external legs

and hence can be realized by giving VEVs to the scalar fields in the vector

multiplet , and hence parameterized by φ. The number of local deformations

is given by the number of internal faces [3].

nG = ](local deformations) = rank(local gauge group) = ](internal face)

(3.4.1)

and by Euler’s formula,

nG = E − V + 1 (3.4.2)

where E is the number of internal edges and V is the number of verticies. The

metric on the Coulomb branch (effective coupling) is given by the sum of the

masses of the edges moved by the deformation, weighted by there displacements

squared,

(
1

g2
)eff = 2

∑

edges

miδ
2
i (3.4.3)

figure [9], a local deformation
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Global deformations are ones which do change the asymptotic location of

the external legs and there is one deformation associated with each leg. We are

only interested in deformations which give new webs so we discard translations

in the (x6, x5) plane and an additional deformation constrained by the web.

We are left with,

nG = nX − 3 (3.4.4)

with nG being the number of global deformations and nX the number of ex-

ternal legs.The bare coupling 1
g2
0

can obtained geometrically by deforming the

web locally so that the D5 are coincident ( ie. φ = 0) , 1
g2
0

is then given by ()

for the SU(2) case [3],

figure [10], a global deformation
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3.5 Grid diagrams

Grids diagrams are an important tool in the classification of five dimensional

theories, a thorough description on how to construct grids diagrams is given in

[3], here I give a brief description of the concepts and results involved.

A grid diagram is a convex set of points, lines and polygons that lie in a

2-dimensional integer lattice and are labeled by (a, b) ∈ Z2. Grid diagrams are

dual to (p,q) webs in the following way,

• A (p,q) edge in the web is mapped to a vector (−q, p) (line).

• vertices in the web are mapped to polygons.

• Faces are mapped points on the diagram.

By charge conservation at each vertex we have,

∑

edges∈vertex

(p, q) =
∑

lines∈polygon

[−q, p] (3.5.1)

Using a grid diagram one can calculate the dimension of the Coloumb branch

by,

dim(Coulomb branch) = ](internal points) (3.5.2)

The residual SL(2,Z) symmetry of the web is carried through by the grid

diagram description.

19



figure[11], a single vertex in the (x6, x5) plane, along with its dual grid

diagram in (a, b).

Grid diagrams provide an important insight into the special case of G = SU(2).

For an SU(2) we need two parallel D branes which correspond to a column

of three points in the grid diagram. The Coulomb branch in one dimensional

so we need one internal point and four external points. The left point is fixed

by SL(2,Z) and we are left with 3 possible choices for the point on the left,

possible webs are shown below,

figure[12],possible webs for SU(2).

(a) and (b) correspond to theories with theta angles Θ = 0 (mod 2) and Θ = 1

(mod 2) respectively. The web (c) contains paralell external legs which leads
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to 6d particles which are charged under global symmetry, if such particles de-

couple from the low-energy theory (c) will give to a new theory with the same

Coulomb branch, but conservatively we assume such theories don’t exist.

Pure SU(Nc) gauge theories can be classified using the concept of grid dia-

grams, from section (3.3) we need Nc horizontal D5 branes, which corresponds

to a column of Nc + 1 points on the grid. Two additional points are required

on both sides of the column, one of which can be fixed by the residual SL(2,Z)

symmetry. There are now 2Nc+1 locations one the grid where the point can be

placed without breaking convexity, these locations correspond to the possible

values of ccl for Nf = 0. Charge conjugation (ccl → −ccl) can be viewed as a

Z2 symmetry constructed by an SL(2,Z) combined with a rotation.

figure[13], possible configurations of SU(3), (*) point on the left is fixed by

SL(2,Z), (a) ccl = 0, (b) ccl = Nc, (c) ccl = −Nc
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4 Curves

4.1 M theory

To interpret the brane configurations in M theory, we first consider Type IIA

string theory in 9+1 dimensions as M theory compactified on a circle in the

x10 direction[13]. By comparing brane tensions in Type IIA and M theory, the

parameters of the two theories can be mapped to each other by,

R10 = gsls (4.1.1)

R10

l3p
=

1

l2s
(4.1.2)

where R10 is the radius of the circle on which x10 is compactified, lpbeing the

plank length. In the strong coupling limit gs → ∞ , R10 → ∞ and the theory

is described by 10+1 dimensional super gravity. The limit gs, R10 → 0 takes

us to 9+1 dimensional Type IIA string theory.

We further compactify Type IIA on a direction x4 on circle with radius RA

by T duality this is equivalent to Type IIB string theory compactified on a

radius,

RB =
l2s
RA

(4.1.3)

and string coupling,

g′
s =

gsls
RA

(4.1.4)

This is equivalent to m theory compactified on a 2-torus with sizes R10, RA,

By (4.1.3) taking the limit R10, RA → 0 implies,

RB =
l3p

RAR10

→ ∞ (4.1.5)
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hence Type IIB is recovered from M theory and the wrapping modes of the M2

brane become light and an extra dimension xi is created.

In the M theory picture D5 and NS5 branes are interpreted as M5 wrapped

around a (1, 0) and (0, 1) cycles on the torus respectively, (p, q) branes corre-

spond to (p, q) cycles.

4.2 Complex coordinates

SL(2,Z) acts the complex structure of the 2-torus, hence on the winding num-

bers (p, q) related to the x4 and x10 directions. The fact that the orientation

of the Type IIB five branes in the (x6, x5) plane means that [5],

Δx6 : Δx5 = Δx4 : Δx10 (4.2.1)

This enables us to define complex coordinates,

w = x6 + ix10 (4.2.2)

v = x4 + ix5 (4.2.3)

as x10 and x6 are compact it is convenient to define,

s = exp(w/R10) (4.2.4)

t = exp(−iv/RA) (4.2.5)

Thus in the M theory picture, our brane configuration is described by an M5

brane on R1,3 × Σ, where Σ is a 2-dimensional surface embedded in T2 × R2
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which is parameterized by s and v. The curve can be written in the form of a

holomorphic function F (s, t) such that,

F (s, t) = 0 (4.2.6)

clearly s = constant and t = constant correspond to NS5 and D5 branes

respectively. A simple example would be the curve described by a single vertex,

the curve can be computed by considering the asymptotics of s and t [5] ,

• s → 0, x6 → −∞ so F (s, t) = w − 1

• t → 0, x5 → −∞ so F (s, t) = t − 1

• s, t → ∞, s ∼ t

hence we have [5],

F (s, t) = t + s − 1 (4.2.7)

(4.2.7) represents a smoothed out vertex in the (x6, x5) plane figure [13] , in the

5 dimensional limit (RB → ∞) the vertex and their singularities are retrieved.

24



figure[13], a simple vertex as a smoothed out M theory curve.

Similarly the curve for SU(2) is given by,

F (s, t) = As + t + ABst + Ast2 + ts2 (4.2.8)

with

A ∼ 2 exp(L4/2g2
0) B ∼ 2 exp(mW L4/2) (4.2.9)
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4.3 Curves from grids

As was demonstrated in [3], Curves representing a brane configuration can be

obtained simply from the grid diagram. Take a (p, q) brane described by the

equation,

m + (−qx6 + px5)Ts = 0 (4.3.1)

with m being the transverse position of the brane. Changing variables to (s, t)

we have,

As−qtp = 1 (4.3.2)

where |A| = exp(mR4
A), this can be rearranged to give,

A1s
a1tb1 + A2s

a2tb2 = 0 (4.3.3)

where,

(a1, b1) − (a2, b2) = (−q, p), |A1/A2| = exp(mR4
A) (4.3.4)

So every point (a, b) in the grid diagram can be associated with a monomial

Asatb, for a general grid we have,

F (s, t) =
∑

i∈points on grid

Ais
aitbi

(4.3.5)

coefficients are obtained by exhausting (4.2.11) to a loop of points in the di-

agram , consider a loop of n points with coefficients A1 . . . An. We assign A1

arbitrarily and determine A2 by,

|A1/A2| = exp(m1,2RA) (4.3.6)
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with m12 being the transverse position of the brane we cross to get from A1 to

A2, similarly,

|Ai/Ai+1| = exp(mi,i+1R
4
A) (4.3.7)

Tackling the pure SU(Nc) grid with the same approach, we have a sum of

Nc + 1 monomials corresponding to the column of points,

(
Nc∑

i=0

uit
i)s (4.3.8)

the vertical position of the point to the right of the column (2 , ccl) charac-

terizes the theory and translate in the curve as the monomial

As2tccl (4.3.9)

using the residual SL(2,Z) symmetry the point to the left of the column can

be placed at (0, ccl) , putting these results together we have the curve,

As2tccl + (
Nc∑

i=0

uit
i)s + Btccl = 0 (4.3.10)

for constants A, ui, C, after some rearrangement and re scaling of s we have,

s2 + P (t)s + 1 = 0 (4.3.11)

where

P (t) = tccl(
Nc∑

i=0

uit
i) (4.3.12)

4.4 General SU(Nc)

Now we move on to a more general construction given in [6],which will allow

us to give restrictions on the possible gauge theories. We study curves that
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describe SU(N) configurations with Nf flavors, following []we focus on config-

urations with two NS5 branes, hence the polynomial will be as most quadratic

in t. For convenience we redefine s = exp(−w), the general form of the curve

should be

A(t)s2 + B(t)s + C(t) = 0 (4.4.1)

for values of t where C(t) = 0, a solution of the curve is s = 0 (x6 → ∞),

hence the zeros of C correspond to semi infinite D5 branes to the right, simi-

larly the zero of A correspond to semi infinite branes to the right and zeros of

B correspond the ”color” D5 branes.

To normalize the coefficient of t2 to 1, we move all semi infinite D5 to the

left of the NS5, which corresponds to the transformatio+??n s → C
s

giving,

s2 + B(t)s + C(t) = 0 (4.4.2)

with

B(t) = c1t
n

Nc∏

k=1

(t − ak) (4.4.3)

and

C(t) = c2t
m

Nf∏

k=1

(t − bk) (4.4.4)

m and n are integers that we will impose conditions on, resealing and taking t

to be large (x5 → ∞) we have the leading order polynomial,

s2 + tNc+ns + tNf+m = 0 (4.4.5)

with solution,

s =
1

2
(−tNc+n ±

√
t2(Nc+n) − 4tNf +m) (4.4.6)

asymptotically we have the following roots for different n,m,Nc ,and Nf ,
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• 2(Nc + n) > Nf + m , s ∼ tNc+n, t−Nc−n+Nf+m

• 2(Nc + n) < Nf + m , s ∼ t(Nf+m)/2

• 2(Nc + n) = Nf + m , s ∼ tNc+n

The case 2(Nc +n) < Nf +m corresponds to NS5 branes crossing, which leads

to new massive states being created. This case should be discarded as accord-

ing to [6] an SU(Nc) theory with Nf > 2Nc leads to non trivial fixed points ,

hence we focus on theories with 2(Nc + n) ≥ Nf + m.

Taking the limit t → 0 , (4.4.2) reduces to,

s2 + tns + tm = 0 (4.4.7)

with solution,

s =
1

2
(−tn ±

√
t2n − 4tm)

again asymptotically we have,

• 2n > m, s ∼ tm/2

• 2n < m, s ∼ tn, tm−n

• 2n = m, s ∼ tn

Taking 2n > m will lead to semi infinite ”flavor” D5 branes crossing, so we

only consider 2n 6 m. We still have an SL(2,Z) transformation which acts as

t → twl taking m → m + 2l and n → n + l, this allows us to set n = 0, hence,

m ≥ 0 (4.4.8)
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which leaves us with the constraint,

2Nc ≥ Nf + m

rearranging we get

m ≤ 2Nc − Nf (4.4.9)

under parity (t → 1/t),

m → 2Nc − Nf − m

hence we are left with (2Nc−Nf −1)/2 different values for m which correspond

to the different values of ccl found in[2]. The parity operator translates to charge

conjugation ccl → −ccl, hence we identify,

ccl = N − m − Nf/2 (4.4.10)

4.5 Four dimensions

We now turn to reducing our curve to four dimensions, this requires putting

(4.4.2) in a form where we can take RA→ 0. Consider,

sin(
v − ak

2RA

) =
1

2
(exp i(

v − ak

2RA

) − exp−i(
v − ak

2RA

)) (4.5.1)

substituting t = exp(−iv/RA ) and multiplying through by − exp i( v
2RA

) we

have,

− exp i(
v − ak

2RA

) sin(
v − ak

2RA

) =
1

2
(t1/2 − t−1/2 exp(−i(

ak

RA

))) (4.5.2)

multiplying by t1/2 and letting ãk = exp−i( ak

RA
) gives,

−2t1/2 exp i(
v

2RA

) sin(
v − ak

2RA

) = (t − ãk) (4.5.3)
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letting c1 = − exp i( v
2RA

)/RA in (4.4.3) we can write B(t) as,

B(t) = 2RAtN/2

Nc∏

k=1

sin(
v − ak

2RA

) (4.5.4)

similarly for C(t)we have,

C(t) = tN/2+mRA

Nc∏

k=1

sin(
v − bk

2RA

) (4.5.5)

putting the results together, we can write (4.4.2) as

s2 + 2sRAtNc/2

Nc∏

k=1

sin(
v − ak

2RA

) + tN/2+mRA

Nf∏

k=1

sin(
v − bk

2RA

) = 0 (4.5.6)

ak = e−iãk/RA are know the position of the D5 branes and bk = e−ib̃k/RA the

positions of the NS5 . Taking the 4d limit (RA → ∞, RB → 0), this reduces

to,

s2 + 2s
Nc∏

k=1

(v − ak) +

Nf∏

k=1

(v − bk) = 0 (4.5.7)

which is analogous to the curves describing N = 2 SQCD in 4 dimensions[8].
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5 Conclusion

In this dissertation (p, q) webs were introduced, and how they are used to for-

mulate N = 1 supersymmetric gauge theories. We focus on the case G =

SU(Nc) although concepts could be easily generalized to symplectic and or-

thogonal groups by the insertion of orientfolds. Grid diagrams are then used

to classify different theories, giving the same restrictions that arise in the field

theory picture. The M theory description of the brane configurations are then

introduced through holomorphic curves which,in the 4d limit, were shown to

be analogous to the curves given in[8].

(p, q) webs have provided a very rich venue for studying supersymmetric field

theories in five dimensions, it allows us to visualize field theories from a geomet-

rical perspective which paves the way for future work. The interplay between

webs, grids and curves is quite enlightening, as it relates three mathematical

concepts in the context of field theory.
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