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Abstract

With the discovery of the Higgs boson, and recent measurements from the BI-
CEP2 collaboration indicating a tensor-to-scalar ratio of r = 0.20+0.07

−0.05[1], par-
ticle physics is now in an interesting position. The most precise measurements
of the Higgs boson and top quark masses appear to show that the Electroweak
vacuum is unstable under the fluctuations produced by inflation at the energy
scale the BICEP results imply[2][3]. In this report we review the physics of
electroweak vacuum stability, with particular emphasis on methods for solving
the Fokker-Planck equation. We also present numerical results for a method of
solving the Fokker-Planck eigenvalue problem, by means of a harmonic oscillator
basis.

September 18, 2014



Acknowledgements

I would like to thank Professor Arttu Rajantie, who supervised my work on
this project, for invaluable conversations, thoughtful suggestions, and insight.
I would also like to thank Sofia Qvarfort for acting as a useful sounding board
and for providing all round encouragement. Finally, I would like to thank my
family, for supporting me through the many years it took to get here.

1



Contents

1 Introduction 4
1.1 A lay person’s introduction to inflation and the question of vac-

uum stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Technical introduction . . . . . . . . . . . . . . . . . . . . . . . . 14

2 The Effective Action and Effective Potential 17
2.1 Introduction to the Effective Action Formalism . . . . . . . . . . 17
2.2 Computing the Effective Action - Loop Expansion . . . . . . . . 22

2.2.1 Example: Scalar Field Effective Potential . . . . . . . . . 30
2.3 Example: Yukawa Theory . . . . . . . . . . . . . . . . . . . . . . 33

3 Stability of the Electroweak Vacuum 36
3.1 The Standard Model Effective Potential . . . . . . . . . . . . . . 36
3.2 Meta-stability and Bubble-Nucleation . . . . . . . . . . . . . . . 41
3.3 Studies of Electro-weak vacuum stability . . . . . . . . . . . . . . 42
3.4 Stability of the Electroweak Vacuum during inflation . . . . . . . 43

4 Correlation Functions in de Sitter Space-time 46
4.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . 46
4.2 Quantum Field Theory in de Sitter Space-time . . . . . . . . . . 47
4.3 Stochastic Formalism . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 The Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . 57
4.5 Fokker-Planck Equation in De Sitter Space . . . . . . . . . . . . 62
4.6 Calculation of Arbitrary Correlation Functions . . . . . . . . . . 65

4.6.1 Temporal Correlation Function: Static Case . . . . . . . . 66
4.6.2 Extension to Arbitrary Correlators . . . . . . . . . . . . . 67
4.6.3 Non-Static Case . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Inflationary Fluctuations and Electroweak Vacuum Stability . . . 74

5 Numerical Study - The Harmonic Oscillator Method 78
5.1 Solving the Fokker-Planck Equation . . . . . . . . . . . . . . . . 78
5.2 Solving the Schroedinger Equation in a Harmonic Oscillator Basis 82

5.2.1 Expressing Differential Equations in a Harmonic Oscilla-
tor basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2



5.3 Massless Theory: V = λ
4φ

4 . . . . . . . . . . . . . . . . . . . . . 85
5.3.1 Correlation Functions . . . . . . . . . . . . . . . . . . . . 87

5.4 Massive Theory: V (φ) = 1
2m

2φ2 + λ
4φ

4 . . . . . . . . . . . . . . . 95
5.4.1 Massive Non-interacting Case: V = 1

2m
2φ2 . . . . . . . . 100

6 Conclusions 102

7 Appendices 105
7.1 Sturm Liouville Equations . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Equation of Motion in de Sitter Space . . . . . . . . . . . . . . . 106
7.3 Stokes Parameters for Polarised Light . . . . . . . . . . . . . . . 108

3



Chapter 1

Introduction

The aim of this report is to introduce some of the main tools and concepts
needed to study the behaviour of the Higgs field during inflation, with an eye
to understanding the implications of recent measurements of the Higgs mass for
the stability of the Standard Model vacuum. This is a question of profound
importance, since if the vacuum of the standard model is truly unstable or
metastable, it raises questions as to why it has persisted for so long. Assuming
that its survival is not just an extreme accident, then the instability hints at the
existence of new physics, including the possibility of previously unseen particles
that would be required to stabilise the vacuum. To summarise, the goals of the
report are:

• To constitute a literature review for further research into the field of par-
ticle dynamics and their affect on cosmological models.

• To bring together a collection of tools and concepts useful to research in
this field.

• To explore the question of vacuum stability, both for its own sake and for
its potential consequences for particle physics and cosmology.

• To describe how to compute correlation functions in an inflationary (de-
Sitter) background.

• To evaluate the usefulness of a numerical technique - namely the use of a
harmonic oscillator basis - for solving the Fokker-Planck equation govern-
ing stochastic inflation.

Before beginning this, however, the introduction will provide a lay person’s ex-
planation of the concepts that the report explains in more technical detail. It
is the duty of anyone engaged in scientific endeavours to try and explain their
work to the general public. This is not only because the public supports scien-
tific research, and thus has a right to know what scientists are doing: research,
especially in theoretical physics, is not only done for the extensive technologi-
cal benefits it provides, but also for the advancement of human knowledge as
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a whole. Scientific research is rarely undertaken simply as a job, but because
those who perform it genuinely enjoy the prospect of learning about the secrets
of the universe. This excitement is not unique to scientists, however, for science
is a human endeavour. Therefore, those with the privilege to spend their time
uncovering the unknown are surely obliged to share their excitement with all
those who wish to listen. I hope that this short introduction can at least begin
to explain to non-physicists why it is so interesting to obtain increasingly precise
measurements of, say, the top-quark mass, while at the same time remaining in
the spirit of Einstein’s words: “Everything should be made as simple as possible
- but no simpler.”
The report consists of six sections. The introduction is split into two parts -
the first is a non-technical introduction to the subject of the report, aimed at
non-physicists, while the second is a slightly more technical explanation, aimed
at students of physics or physicists from other fields. Section 2 develops the
technique of the effective potential formalism, originally devised by Coleman
and Weinberg[4]. Section 3 uses this formalism to discuss the question of the
stability of the electro-weak vacuum of the Standard Model, both against quan-
tum tunnelling, and disturbances: especially those originating from inflationary
fluctuations. Section 4 collates several tools for the computation of correlation
functions - fundamental to any observation - in an inflationary background. It
covers quantum field theory in de-Sitter space, the stochastic formulation of
inflation, and the Fokker-Planck equation. Section 5 then details a numerical
approach to solving the Fokker-Planck equation by using a harmonic oscillator
basis to extract the eigenfunctions and eigenvalues of the ordinary differential
equation appearing after separation of variables. It studies this method for a
variety of potentials that occur in the study of scalar fields like the Higgs field.
Finally, the conclusions of the report are discussed in section 6.
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1.1 A lay person’s introduction to inflation and
the question of vacuum stability

“How wonderful that we have met with a paradox. Now we have
some hope of making progress.”

- Niels Bohr

With the discovery of a particle which appears to be the Higgs boson, the
Standard Model of particle physics is complete. However, no model in physics
is ever expected to be the end of the story. There are several reasons that the
Standard Model is less than ideal:

• It is not known why the parameters of the Standard Model - such as the
masses of the various particles - take on the values they do.

• In some senses, the Standard Model seems to be a collection of theories
stitched together and forced to meet observation. However, most physi-
cists expect a more correct theory to be unified, with all the forces it
describes turning out to be aspects of the same thing. This has both
historical precedent in the form of electromagnetism (electric and mag-
netic forces turn out to be the same thing approached from a different
perspective), and aesthetic appeal.

• Some parameters of the Standard Model require finely tuned values to
describe anything like the universe we observe. Although there is no reason
they cannot take on these values, this seems like an un-natural solution.

These reasons are somewhat heuristic, appealing mostly to aesthetics, rather
than data. No experiment to date has contradicted the Standard Model. How-
ever, to properly understand the universe requires us to do better. The experi-
ence of scientists over centuries has taught that the best way to proceed is by
attempting to find phenomena that do not match current theory. A great deal
of effort has gone into doing this, all confirming the Standard Model, in some
cases to very high degrees of precision. This tells us that if there is a better
theory than the Standard Model, the new physics it describes only appears in
exotic situations not yet studied by experiment. Searching for this new physics
has two basic avenues:

• Re-creating these exotic physical scenarios in the laboratory, for example
in particle accelerators such as the Large Hadron Collider (LHC).

• Searching for these exotic scenarios in nature.

The subject of this report is the latter. In the case of particle physics, we
are searching for scenarios involving highly energetic particles, the likes of which
are rarely seen in nature, outside of the occasional detection of cosmic rays from
outside the solar system. However, cosmological theory tells us that the universe
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was once much hotter - the so called ‘Big Bang’. Thus, if we can observe sig-
nals from the time of the Big Bang, it is possible to gain some insight into the
behaviour of physics at high temperatures, where energetic particles abound.
Thus, we will be concerned in this report with what we can learn about high
energy physics by studying the very early universe.

Most of our knowledge of the big bang theory comes from the study of the
‘Cosmic Microwave Background’ (or CMB). This is a microwave signal which ap-
pears to come from all directions of the sky, with very close to equal strength no
matter what direction one chooses to look. It was first discovered (by accident)
by Penzias and Wilson in 1964. The CMB is special partly because it possesses
a thermal distribution (see figure 1.1), that is, the it emits microwaves in exactly
the same pattern as a metal tool heated in a fire emits visible (red) light. This
seems to imply that the entire universe has a temperature, albeit a very low
one of 2.72548±0.00057 K[5] (approximately -270°C). However, another feature
revealed by cosmological theory is that light and microwaves lose energy over
time: a process called red-shift. Because of this effect, extrapolating the CMB
thermal distribution backwards in time seems to imply that approximately 13.8
billion years ago, the universe would have had an infinite temperature. This
is clearly not a physically meaningful prediction and constitutes evidence that
current cosmological theory ceases to be reliable at very high temperatures1.
Thus, like the Standard Model, another theory must eventually replace it.
The conventional model of the early universe is known as the ΛCDM model2.

The ΛCDM model states that the universe is expanding. This does not mean
that everything in it is moving apart. The usual analogy is to picture space as a
balloon, and draw dots on it. The dots (representing objects, such as galaxies)
are fixed, but they still appear to move apart when the balloon (representing
space) in blown up. This model is not without problems of its own, in addition
to the aforementioned ‘infinite temperature singularity’. Although it is very
predictive, it requires two major components of the universe - so called dark
energy and dark matter - that are essentially unknown material.

Another curious feature is that the CMB is the same in all directions. This
is surprising, because the microwaves detected on opposite sides of the Earth
must come from opposite sides of the universe. Since the signals are still arriv-
ing to this day, and we know that nothing can travel faster than light, then we
know that the two regions on opposite sides of the universe cannot have been
in contact with each other (as light from one has only now travelled half the
distance between them, and nothing travels faster than light). It is a puzzle
then why they should be the same. What process caused the universe in op-

1It is sometimes said that the Big Bang theory is a theory of how the universe began. This
is misleading: it is a theory of what happened shortly afterwards. What happened before if
the subject of much speculation.

2Λ represents the cosmological constant - a proposed explanation for the observed acceler-
ation of the universe’s expansion. CDM stands for cold dark matter, believed to be a major
component of the matter making up the universe, but is poorly understood.
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Figure 1.1: This plot shows the frequency of radiation emitted by the Cos-
mic Microwave Background (CMB). The peak, around 200 GHz, corresponds
to microwave radiation (for comparison, visible light corresponds to 400, 000−
770, 000 GHz). Hotter objects emit increasingly higher frequency light: for ex-
ample, human bodies emit mostly invisible infra-red light, but heated metal can
emit visible red light.

posite directions to have the same temperature? To give an analogy - imagine
putting a very precise thermometer into the sea and measuring the temperature
to be 23.00001°C exactly, and then calling a friend on the other side of the
world, who did the same and also found the sea there to be 23.00001°C. This
would be an astounding coincidence, as you would expect the temperatures to
be slightly different even if you knew in advance that they were similar. Not
least because sea temperature usually fluctuates by much more than 0.00001°C.
However, in the case of the CMB, the entire universe appears to be the same, to
within about the same precision (one part in 100, 000). This apparent paradox
is called the horizon problem, because opposite sides of the universe are beyond
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Figure 1.2: Temperature of the CMB, distributed over the sky. The red areas
are slightly hotter than the average, while the blue areas are slightly cooler, but
the temperature variation is only around a 10−5 fraction of the average tem-
perature. These very slight variations from an otherwise uniform distribution
reveal important properties of the early universe. In the context of inflationary
cosmology, they are believed to be the result of quantum fluctuations amplified
by the rapid expansion. Image credit: ESA and the Planck Collaboration[6].

each others ‘horizons’3

One mechanism proposed to solve this, and other similar paradoxes, is called
inflation. The basic idea of inflation is that the universe underwent a period of
accelerated expansion very early on. However, we said earlier that the ΛCDM
model also predicts expansion, so this difference demands some explanation.
The key is to realise that cosmology is dominated by gravity, which is an attrac-
tive force. Thus, if the universe contains normal matter, then expansion should
slow down because gravity pulls it together4. However, in the 1990s it was
observed that the universe’s expansion is actually speeding up. This is counter-
intuitive, since it would be the everyday equivalent of objects falling upwards.
The ΛCDM model posits the existence of a material - called ‘dark energy’ - that
repels under gravity rather than attracts. In the ΛCDM model, this substance
is proposed to originate from ‘vacuum energy’ - an energy associated to empty
space. This is plausible, because particle physics has mechanisms for giving
(seemingly) empty space an energy. We will discuss the technicalities of this in
section 1.2. Now, if the energy is associated to empty space, then it follows that

3In this context, ‘horizon’ means the region of space-time with which something can interact
4If it isn’t clear how a universe dominated by gravity can expand at all, think about a ball

thrown in the air - it keeps moving upwards but gradually slows down and then falls back.
The same happens with the universe - it keeps expanding, but the expansion slows and in
theory the universe should eventually collapse again. The surprising thing is that this doesn’t
appear to be happening.
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the more space there is, the more dark energy there will be. Thus, the total
amount of dark energy should increase as the universe expands. This appears
to fit what we see - for a long time, the universe’s expansion was slowing down,
but relatively recently (on the scale of billions of years), it began to accelerate
again. This is consistent with what you would expect if the amount of dark
energy was small when the universe was small (so attractive gravity dominated,
and expansion slowed down) and increased as the universe increased in size.
However, the prospect of vacuum energy introduces a possible explanation for
the paradox that different parts of the universe have the same temperature.
If the vacuum energy dominates over matter in the universe then it promotes
run-away expansion at an exponential rate (e.g, there is a time period T after
which the universe doubles in size, at 2T it is 4 times larger, at 3T 8 times
larger, etc...). This would allow the universe to grow to a very large size very
quickly. If the vacuum energy were to be suddenly switched off, the universe
would return to normal - it would keep expanding, but this expansion would
gradually slow down due to gravity pulling everything together. Furthermore,
in ‘switching off’ the vacuum energy would have to go somewhere. The most
likely place for it to go is into the matter in the universe, which would then heat
up tremendously as a result. This is the theory of inflation. It has the following
attractive features:

• Switching off the vacuum places the universe at a high temperature, ex-
plaining the thermal distribution we observe in the CMB. This process is
called ‘Re-heating’.

• Because the universe only gained this temperature at the end of inflation
(when the vacuum energy was switched off), the ‘infinite temperature
singularity’ problem is avoided. This is because extrapolating back in
time always assumes conditions did not change, which they clearly did if
there was a large vacuum energy very early on which suddenly switched
off.

• Inflation fixes the horizon problem, because widely separated parts of the
universe were once very close together - and thus able to interact and
share conditions that would give them the same temperature later on.
They were then forced apart faster than the speed of light5

In this discussion, it may not be entirely clear how a vacuum can possess energy.
The colloquial definition of a vacuum is empty space, with no air. If it is by def-
inition empty, then how can it possess energy? To clear up this potential source
of confusion, it is important to understand first how physicists describe matter.
The basic building block of matter is a particle, and the study of these is par-
ticle physics. Particles are localised clumps of matter with specific properties.
Now, Einstein’s theory of relativity states that energy and mass are equivalent.

5Note that the speed of light restriction only prevents objects in space from moving faster
than the speed of light. It does not prevent space itself from expanding faster than the speed
of light, which is what happens in both inflation and the Big Bang theory.
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So particles are also localised clumps of energy. We describe this in terms of
quantum field theory.
A field is an abstract device, first introduced by Michael Faraday (who was a
farmer). His analogy was that a farmer goes to a field and plants seeds at each
point in the field. However, in physics, instead of planting seeds, numbers are
planted. This gives a way of describing how something varies throughout space.
For example, we might plot a temperature field on a weather map, indicating
the temperature at different points across the country. In principle, we could
do this for every point, even points infinitely close together. In the example
of temperature, however, it doesn’t make sense to talk about the temperature
of individual atoms, because temperature is a measure of the average random
motion of atoms in a substance, such as water or air. Thus, we naturally accept
that the ‘temperature field’ is only an abstraction that applies on scales much
larger than individual atoms.
The same is true with any other kind of field in physics. Fields are a way of
describing the behaviour of some physical system. Fundamentally, a magnetic
field, for example, is not some mysterious substance filling space, but the state-
ment that objects placed near a magnet move in a certain way. The ‘magnetic
field’ is really just a way of describing that motion in a manner independent of
the object moving, and depending only on the properties of the object causing
the motion (in this case, the magnet).
This, of course, means that we don’t actually have to understand the mecha-
nism behind the motion. We have always understood that things are hot and
cold, and could have measured this with a thermometer, and plotted a tem-
perature field, without ever needing to understand that temperature is due to
the random motion of atoms. So it is with particle physics - although we do
not really understand what particles are, we can represent their behaviour as a
field throughout space-time. A ’quantum field’ then, is just one of these fields
obeying the laws of quantum mechanics6.
Now, the intuitive definition of a vacuum is: that which we are left with if we
take away all of the particles (matter). However, since particles are just clumps
of matter described by the field, the vacuum is just what we get if the field
lies in the state of minimum energy (if it were not the minimum, we could take
particles away until it is, so it wouldn’t be what we understand by ‘vacuum’).
However, what if there is energy present which isn’t in the form of particles?
That is, the field has a bulk energy associated to it which we can’t remove. It
is, after all, quite an assumption to think that all energy is found in the form of
particles. In fact, one of the cornerstones of quantum theory is that quantities
such as energy and position cannot be measured with infinite precision. All par-
ticles have a fundamental ‘fuzziness’ which cannot be removed. This is called
the uncertainty principle. An object with no energy would violate this principle
because it would not be moving, so its position could be known exactly. Quan-
tum theory predicts, therefore, that if you remove everything possible, there
should still be energy left. In a sense, this means the intuitive notion of a vac-

6A proper discussion of quantum mechanics is beyond the scope of this report, however.
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Figure 1.3: An example of an absolutely stable vacuum. The ‘height’ cannot
be inferred from the shape of the potential. This is further complicated by
quantum effects, since it isn’t possible to have states of exactly zero energy.

uum does not exist. However the next best thing - a state of minimal, non-zero
energy - does.
Figure 1.3 illustrates this. The ‘potential’ V (φ), is a function which describes

how the field can interact. It is helpful to think of this as a valley. From our
everyday experience of gravity, we know that objects will roll to the bottom of
the valley and this is no different for fields. However, consider what happens in
figure 1.4, where we now have two valleys. So long as a ball in the upper valley
doesn’t roll around too much, there is no way to tell the difference between the
upper and lower valleys. However, if the ball is given sufficient energy, it will
roll over the barrier into the lower potential, gaining a lot of energy as it does
so.
If a valley floor is the lowest possible point, it is said to be an‘ absolutely stable

vacuum’, because given time, everything ends up there. Other valleys which are
higher up, but still locally valleys, are called ‘meta-stable vacua’ because if the
field is given enough energy, it will roll further down. Peaks (or actually, any
point that isn’t a valley) are called ‘unstable vacua’ because the slightest knock
will send the field rolling to the nearest vacuum. Just as valleys and peaks exist
for hills, so do they exist for particle fields, only this time the ‘hill’ is to be
understood as an abstraction, describing the physics of the field.
Naturally then, it is reasonable to ask whether the vacuum state of the universe
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Figure 1.4: Three different types of vacua. (a) is metastable. Under small
fluctuations, it behaves similarly to the true vacuum, (c), but large fluctuations
can trigger a collapse to the true vacuum. (b) is said to be unstable, since even
the smallest fluctuation will cause the system to collapse to (a) or (c).

is stable or only meta-stable. Answering this question requires a detailed un-
derstanding of the way matter in the universe interacts. This is described by
the standard model, whose vacuum structure is controlled by the Higgs field7.
It has been shown [7], that the stability of the Higgs vacuum depends strongly
on the precise mass of two particles - the Higgs boson itself, and another par-
ticle called the top quark. The precision with which these masses are known,
however, makes the status of the vacuum unclear, as the higgs boson and top
quark masses are very close to the boundary between absolute stability and
meta-stability.
The aim of this report then, is to first discuss how the stability of the Higgs
vacuum is assessed. Secondly, it discusses what sort of phenomena can push
the vacuum into a more stable state, should it be meta-stable. Particularly, we
focus on inflation, since this run-away expansion tends to cause the Higgs field
(actually any field) to fluctuate. These fluctuations could potentially destabilise
the vacuum if it were only meta-stable. We devote a large section of the report
to discussing how these fluctuations are generated (see section 4).
Although a collapse of the vacuum to a lower state would unquestionably be very
bad for the universe, the real question here is not whether this would actually
happen, but what the prediction would say about our current understanding
of physics. The prediction rests entirely on the assumption that the Standard
model is correct, however, this is not necessarily the case. The fact that the
universe as we know it still exists, apparently in the same vacuum that it always
has been, after billions of years, is good evidence that it is at least very long

7The Higgs boson is the particle - clump of matter - associated to the Higgs field
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lived, if not absolutely stable. Thus, if our prediction contradicted this (by say-
ing that it should have collapsed, when it clearly hasn’t), then that would imply
that the Standard model is not correct. From a scientific perspective, that is a
good thing - because it means there is something left to learn.

1.2 Technical introduction

The main subject of this report is the behaviour of a scalar quantum field in
an inflating universe. It is assumed that the reader is familiar with quantum
field theory and general relativity. The simplest model of the universe starts
from the assumption that it is flat and homogeneous. This leads to the FLRW
metric:

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
. (1.1)

The scale factor, a(t), carries dimensions of length, while r is a ‘co-moving
distance’ and is dimensionless. In this co-ordinate system, ‘stationary’ objects,
which remain at fixed co-moving distance from each other, appear to move
apart, since the physical distance between them grows with the scale factor
(such objects are called ‘co-moving observers’). The scale factor is determined
by requiring the metric to satisfy Einstein’s Field equations. However, the
subject of this report is an exponentially expanding universe:

a(t) = a(t0)eH(t−t0), (1.2)

where H is a constant, the Hubble constant (for general a(t), H is defined as
H ≡ ȧ

a and is not constant). Such a space-time is known as de Sitter space-time
(though for reasons we will discuss in section 4.2, this co-ordinate system only
covers half of the de Sitter manifold).
However, the universe cannot have been a pure de Sitter space, otherwise infla-
tion would not have ended. To understand how it can be generated, we consider
a scalar field, whose action in de Sitter space is:

S =

∫
d4x
√
−det(g)

[
R

16πGN
− 1

2
∇µφ∇µφ− V (φ)

]
, (1.3)

where GN is Newton’s gravitational constant. If it is assumed that the scalar
field respects the homogeneity of the FLRW universe, then it can only be a
function of time, φ = φ(t). Variation with respect to the metric implies that
the resulting stress-energy tensor is:

Tµν = ∇µφ∇νφ−
1

2
gµν∇ρφ∇ρφ− gµνV (φ). (1.4)

This can be interpreted as the stress tensor of a perfect fluid:

Tµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 , (1.5)
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where ρ = 1
2 φ̇

2 +V (φ) is the energy density, and p = 1
2 φ̇

2−V (φ) is the pressure.

This has the interesting property that if the field varies slowly, φ̇ ∼ 0, then
the pressure is negative. Thus, the fluid has the equation of state p = −ρ.
This means that is behaves like a cosmological constant term in Einstein’s field
equations:

Rµν −
1

2
gµνR+ Λgµν = 0, (1.6)

where Λ = 8πGNV (φ). For a flat universe, Einstein’s field equations reduce to
the Friedmann equation:

H2 =
8πGN

3
ρ =⇒ ȧ

a
=

√
8πGNV (φ)

3
. (1.7)

Thus, a slowly varying scalar field will cause space-time to behave approximately
like de Sitter space.
One goal of this paper is to understand how fluctuations in the Higgs field during
inflation can destabilise metastable vacua. First, this will require a discussion of
how the vacuum of a quantum field theory is determined. Although the classical
Higgs potential is well known, this determines only the equations of motion.
Quantum theories, however, are concerned with the behaviour of observable
quantities such as the vacuum expectation value of the field, 〈φ〉. In particular,
it is the behaviour of vacuum expectation value that determines the structure of
the vacuum, not the classical potential. This will receive quantum corrections
in the form of loop corrections which will modify the potential into an ‘effective
potential’. For example, the 1-loop correction to the potential for the scalar
field in Yukawa theory is:

V (φ0) =
1

2
m2φ2

0 +
λ

4!
φ4

0

+
M4

64π2

(
ln

(
M2

µ2

)
− 3

2

)
− m̃4

16π2

(
ln

(
m̃2

µ2

)
− 3

2

)
, (1.8)

where the first line gives the classical (0-loop) potential, and the second the
1-loop correction, at renormalisation scale µ. Here, M2 = m2

φ + λ
2φ

2
0 and

m̃ = mΨ + gφ0. We will discuss the implications of this in the case of the
Standard Model, where the vacuum structure is determined largely by the top
quark and Higgs boson masses, (due to the strong quartic dependence on mass
in the quantum corrections). We will discuss current data which appears to
show that the electroweak vacuum is only meta-stable, and thus seemingly at
risk of destabilisation by inflationarity fluctuations.
In section 4 we will discuss the quantisation of scalar fields in de Sitter space-
time. We will find that the conventional perturbation theory approach encoun-
ters infra-red divergence problems, leading to a break-down of perturbation
theory in cases where the mass, m, is light compared to the Hubble rate, H, or
to be specific, when the condition:

m2 ≤
(

27

16
− 12ξ2

)
H2, (1.9)
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is satisfied, where ξ is a coupling describing a possible non-minimal coupling
of the scalar field to gravity. This will lead on to the stochastic formulation
of inflation, to which we will devote the latter half of the report. The basic
idea is that the long wavelength part, φ̄, of a scalar field in de Sitter spacetime
behaves classically and is governed by a stochastic differential equation known
as a Langevin equation:

dφ̄

dt
= − 1

3H
V ′(φ̄) + f(x, t), (1.10)

where f(x, t) is a stochastic term resulting from the quantum behaviour of
the short wavelength field. Thus, behaviour can only be characterised by a
probability distribution, ρ(ϕ, t) for the field to take on values between ϕ and
ϕ+ dϕ. This, as we will derive, is determined by a partial differential equation
known as the Fokker-Planck equation, which for the field at a single point is
given by:

∂ρ(ϕ, t)

∂t
=

1

3H

∂

∂ϕ
(V (ϕ)ρ(ϕ, t)) +

H3

8π2

∂2ρ(ϕ, t)

∂ϕ2
. (1.11)

Solving this by the method of separation of variables leads to a Sturm-Liouville
eigenvalue problem. The final part of the report will discuss how this can be
solved numerically: in particular, by means of a harmonic oscillator basis. That
is, by treating the Sturm-Liouville equation as an effective Hamiltonian and
expressing the position and derivative (momentum) operators in terms of the
basis function of a harmonic potential. This can always be done (for arbitrary
potentials) since the harmonic oscillator basis functions form a complete set.
By truncating the (infinite) set of basis functions to some large value, N , we
obtain a matrix form of the Sturm-Liouville equation, whose eigenvectors (in the
harmonic oscillator basis) and eigenvalues approximately correspond to those of
the Sturm Liouville problem. This provides an alternative to methods such
as the Numerov method for discretising a differential operator, which has the
advantage of being exact for harmonic potentials, and a good approximation for
some non-harmonic potentials, in particular the quartic potential, V (φ) = λ

4φ
4.

We will present our analysis of this method in section 5.
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Chapter 2

The Effective Action and
Effective Potential

The vacuum structure of the Standard model is determined by the Higgs field,
since Lorentz invariance requires that only scalar fields can possess a vacuum
expectation value. However, in a quantum theory the vacuum structure is de-
termined not by the classical potential, but an effective potential which received
quantum corrections. This section discusses the effective potential formalism.

2.1 Introduction to the Effective Action Formal-
ism

The Higgs field in the standard model is a complex doublet, ϕ =

(
ϕ+

ϕ0

)
, with

Lagrangian terms (not including Yukawa interactions):

Dµϕ
†Dµϕ− λ

(
ϕ†ϕ− µ2

2λ

)2

+ LYukawa, (2.1)

where λ is the Higgs quartic coupling, m2
H = 2λv2 is the Higgs mass, defined

in terms of the vacuum expectation value, v2 of the electro-weak vacuum, and
µ2 = λv2. The covariant derivative is:

Dµϕ = ∂µϕ+ i
g1

2
Bµϕ+ i

g2

2
σiW i

µϕ, (2.2)

where g1 and g2 are gauge couplings for the weak hypercharge and weak isospin
forces respectively, Bµ and W i

µ their associated gauge bosons. σi are Pauli
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matrices. After symmetry breaking, this can be written as:

S[H] =
1

2
∂µH∂

µH − 1

2
m2
HH

2 − λvH3 − λ

4
H4 + ...

+ Gauge-Boson Higgs interactions + Fermion-Higgs interactions,
(2.3)

where H is a real scalar field. Note that this is the Lagrangian that is used
to compute the quantum behaviour of the Higgs field. In classical field theory,
the potential terms here would be sufficient, but if we wish to compute the
bulk behaviour of the quantum field, H, we in fact have to ask how 〈H〉, the
expectation value of the Higgs field, behaves, subject not only to the classical
potential but also the net effect of quantum fluctuations.
In quantum field theory, this question can be answered using the effective action,
Γ[φ]. To understand how this comes about, consider that a generic quantum
field theory for a scalar field can be expressed in terms of a generating functional,
Z[J ]:

Z[J ] =

∫
Dφ exp

[
i

∫
d4x(L[φ] + Jφ)

]
, (2.4)

where Dφ indicates a path integral and J is an auxiliary ‘external field’. In
the path integral formulation, observables are computed in terms of correlation
functions, which can be computed via the formula:

〈0|φ(x1)φ(x2) . . . φ(xN ) |0〉 =

∫
Dφφ(x1)φ(x2) . . . φ(xN )ei

∫
d4xL[φ]∫

Dφei
∫

d4xL[φ]
(2.5)

=
(−i)N

Z[0]

δ

δJ(x1)
. . .

δ

δJ(xN )
Z[J ]

∣∣∣∣
J=0

(2.6)

(2.7)

where δ
δJ(xi)

are functional derivatives. The classical field is defined by:

φcl(x) ≡ 〈0|φ(x) |0〉J , (2.8)

where the subscript J indicates that this expectation value is to be computed
in the presence of a non-zero external field, J . At J = 0, this is the quantity we
are interested in (the expected value of the field).
Now, defining L0 to be the quadratic (‘free’) part of the Lagrangian, and LI
the interacting part, it is possible to re-write Z perturbatively as:

Z[J ] =

∫
Dφei

∫
d4xL0[φ]

∫
Dφ exp

[
i
∫

d4x(L0[φ] + LI [φ] + Jφ)
]∫

Dφei
∫

d4xL0[φ]

=

∫
Dφei

∫
d4xL0[φ]

∑
(All diagrams including J as vertices)

=

∫
Dφei

∫
d4xL0[φ] exp

(∑
[All Connected diagrams]

)
,

18



Figure 2.1: Example Feynman diagrams contributing to the generating func-
tional. Notice that interacting theory also has one-point vertices giving a con-
tribution i

∫
d4xJ(x).

(for an example, see figure 2.1). The sum becomes an exponential over
connected diagrams in the usual way, since products of n copies of some diagram
are divided by appropriate symmetry factors (n!) and exponentiating a sum just
gives a sum over all possible products of diagrams with precisely these symmetry
factors. We can then define:

W [J ] ≡ −i lnZ[J ], (2.9)

as per Weinberg’s convention [8]. Diagrammatically, this is:

W [J ] = −i ln

(∫
DφeiS0

)
− i
∑

(All Connected Diagrams) . (2.10)

The classical field can then be expressed as:

φcl(x) =
−i
Z[J ]

δ

δJ(x)
Z[J ] =

δ

δJ(x)
W [J ]. (2.11)

This relation implies that we can perform a Legendre transformation to elimi-
nate J as the variable:

Γ[φcl] = W [J ]−
∫

d4xφcl(x)J(x). (2.12)

Using the definition of φcl, it is clear that taking the functional derivative with
respect to J(x) will give zero. On the other hand, the functional derivative with
respect to φcl gives:

δΓ[φcl]

δφcl(x)
= −J(x). (2.13)

It is interesting to note then, that if J(x) is zero, the classical field satisfies:

δΓ[φcl]

δφcl
= 0, (2.14)

that is, the effective action is stationary with respect to variations in the classical
field. This is why it is known as the ‘effective action’. It plays the same role for
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the expectation value of the field as the original action plays for a classical field.
In this sense, we can treat the behaviour of the field φcl classically, so long as
we use the effective action, Γ, rather than the original action, S.
To see how we should interpret Γ in terms of Feynman diagrams, consider the
following argument based on S. Weinberg[8], though the use of the effective
action in this way was first discussed in a PhD thesis by E. Weinberg [9]:
Any action, S[φ] can be expanded as a functional Taylor series:

S[φ] = S[0]+

∫
d4x1φ(x1)

δS[φ]

δφ(x1)
+

1

2

∫
d4x1d4x2φ(x1)

δ2S[φ]

δφ(x1)δφ(x2)
φ(x2)+ . . .

(2.15)
Counting the number of fields in each term, we see that the first term is a
constant, the second is a one-point interaction, and the third gives the inverse of
the propagator (since the propagator is by definition the inverse of the quadratic
term, up to factors of i). Higher order terms give vertices. For example if:

S[φ] =

∫
d4x

[
1

2
∂µφ∂

µφ− 1

2
m2φ2

]
, (2.16)

then1:

δS[φ]

δφ(x1)
= −∂µ∂µφ(x1)−m2φ(x1) (2.17)

δ2S[φ]

δφ(x1)δφ(x2)
= −δ(x1 − x2)(∂µ∂

µ +m2). (2.18)

Weinberg argued that we can consider the quantum field theory associated to a
new action:

Z[J, g] = eiWS [J,g] =

∫
D exp

(
ig−1

[
S[φ] +

∫
d4xJ(x)φ(x)

])
, (2.19)

which reduces to the original theory if g = 1. Now, it is an important fact about
Feynman diagrams that each independent2 loop gives rise to an undetermined
momentum. The independent loops in a Feynman diagram are in one-to-one
correspondence with the number of faces of the diagram, interpreted in the
graph theory sense (an empty region bounded by lines of the graph). Euler’s
formula for planar graphs states:

V − E + F = 2, (2.20)

where V is the number of vertices of the graph, E the number of edges and
F the number of faces. Note that in graph theory, the infinite exterior region
of the graph counts as a face, but obviously this is not a loop, so F = L + 1
where L is the number of loops. See figure 2.2 for examples. Internal lines (I)

1Note - a function can be regarded as a functional since f(x) =
∫

dyδ(x−y)f(y). That is, in
the same sense that a constant can be regarded as a function for the purposes of differentiation.

2Independent in the sense that it cannot be decomposed into other loops already accounted
for. E.g., we can devise three ways of going round the loops in the sunset diagram of figure 2.1
but the outer circle contains the two semi-circles, so is not independent of them. The sunset
diagrams thus has two loops.
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Figure 2.2: Three planar graphs. The rectangle, (a), has 4 vertices, 4 edges and
2 faces (including the infinite exterior region), where 4-4+2 = 2. The second
shape, (b), is similar, with 4 vertices, 5 edges and 3 faces, giving 4 -5 + 3 = 2.
Finally, the more complicated shape (c) has 24 vertices, 30 edges and 8 faces:
24-30+8 = 2. This result can be proven to hold for any planar graph, including
Feynman diagrams.

correspond to edges and vertices to vertices, so this implies:

L = I − V + 1. (2.21)

Now, the factor g−1 in the action will be included as a factor in every vertex.
Also, every propagator will carry a factor of g (since propagators are the inverse
of the quadratic term, so multiplying the quadratic term by g−1 multiplies the
propagator by g). Thus, each diagram changes from the original by a factor
gI−V . But Euler’s formula then implies this is just gL−1, so diagrams are re-
scaled depending on their number of loops. We can therefore choose to order
the diagrams by their loop count, L:

WS [J, g] =

∞∑
L=0

gL−1W
(L)
S [J ]. (2.22)

Now, take the limit as g → 0. In this limit, the sum is dominated by the L = 0
contribution, going as g−1. Because this ensures the action becomes large, it
becomes possible to approximate the path integral by the method of stationary
phase[8]:

eiWS [J,g] → f(g, J, S) exp

(
ig−1

[
S[φ] +

∫
d4xJ(x)φ(x)

])
, (2.23)

where f is some proportionality function whose form is irrelevant here. The
action, however, takes on its stationary value, and taking the logarithm of both
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sides, one finds that:

W
(0)
S [J ] = S[φJ ] +

∫
d4xJ(x)φJ(x), (2.24)

by comparing the coefficients of g−1 on each side. Here, φJ is the distribution of
the field that makes the action S[φJ ]+

∫
d4xJ(x)φJ(x) stationary. The original

action, S, can then be represented diagrammatically by considering J = 0:

S[φ] = W
(0)
S [0] =

∑
(All connected tree level diagrams, no external legs) ,

(2.25)
since that is what is meant by W 0

S [J = 0]. In particular, we could choose Γ[φ]
in place of S, in which case:

W 0
Γ [J ] = Γ[φ] +

∫
d4xJ(x)φ(x) = W [J ]. (2.26)

The significance of this is that it shows that the sum of tree level diagrams with
Γ as the action is the same as the sum of all diagrams (to all orders) with S
as the action. However, the inverse of the propagator, with Γ as the action, is
given by:

−i δ2Γ

δφ(x)δφ(y)
(2.27)

and this must equal the full propagator with S as the action (see figure 2.3).
Likewise, the n-leg vertices, and thus the sum of all n-leg 1PI diagrams3, are
given by the nth functional derivative of Γ. For this reason, Γ is sometimes
referred to as the generating functional of 1PI diagrams. Using Eq. (2.15) then,
the effective action can be written:

Γ[φ] =Γ[0] +
∑

(All 1PI diagrams). (2.28)

This is represented diagrammatically in figure 2.4. To see how this expansion
helps, consider terms order by order in the number of loops. For example, at zero
loop order, there is only one diagram that contributes to the four external-field
set (see figure 2.5).

2.2 Computing the Effective Action - Loop Ex-
pansion

The results of the previous section indicate that the effective action indeed in-
cludes the original action at lowest order, and higher loop terms are the quantum
corrections. It is in fact much more convenient to compute the effective action

3This isn’t so obvious for the two point diagram elements, where we compare inverses, but
it is true there as well, since, for example, the full scalar field propagator is i

p2−m2−i
∑

(1PI)
,

the denominator of which is actually the sum of all 1PI diagrams, including the lowest order
term p2 −m2.
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Figure 2.3: Comparison of a diagram calculated to all loop order with W [J ] and

S[φ] as the action (left) and to zero loop order with W
(0)
Γ [J ] and Γ[φ] as the

action (right). Since W [J ] = W
(0)
Γ [J ], these must give the same result. We can

always draw this one to one equivalence, since the sum of all loop diagrams can
be re-written in terms of a tree level diagram with 1PI vertices (open circles)
and full propagators (shaded circles).

Figure 2.4: Feynman diagram representation of the effective action. The solid
cicle represents the classical field (given by the sum of all connected tadpole
diagrams plus a propagator). Note that this diagram excludes a factor of i,
which is implied.
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Figure 2.5: Four external field contribution to effective action at zero-loop order.
Note that the external field constitutes a vertex, so there is a 1

4! symmetry factor
included here. The factor of −i at the front is the usual factor appearing in the
path integral (ultimately a consequence of the Minkowski nature of space-time),

and finally there is a contribution −iλ from the vertex of λφ
4

4! theory. The result

is precisely that the effective action contains the −λφ
4
cl

4! term at lowest order.

by loop order. One way to do this was first derived by Jackiw[10] and involves
simplifying the generating functional using functional analysis. We will follow a
similar approach based on [8] and [11], and write the generating functional as:

Z[Ji] =

∫
Dηi exp

(
i

∫
d4x

[
LR[φcli + ηi] + δL[φcli + ηi]

+ Jcliφcli + Jcliηi + δJφcli + δJηi

])
, (2.29)

where Ji = Jcli+δJi and φi = φcli+ηi. For generality, we consider an unspecified
number of fields, φi, which may be either bosonic or fermionic, or a mixture.
We have also split the Lagrangian into the renormalised part, L and counter
terms, δL. Jcli is chosen to satisfy:

δLR
δφi

∣∣∣∣
φi=φcli

+ Jcli = 0. (2.30)

This is just the renormalised equation of motion. In other words, Jcli fulfils the
same roll for LR as Ji did for L. Thus, we can interpret Jcli as a ‘renormalised’
Ji, with δJi the associated counter term.
We now expand in powers of η. Notice that this is exactly the process involved in
computing the fluctuations of the Higgs field, H, about the vacuum expectation
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value. Z[Ji] becomes:

Z[J ] =

∫
Dηi exp

(
i

∫
d4x [LR[φcli] + δL[φcli] + Jcliφcli + δJφcli]

+i

∫
d4x

[
δ(δL)

δφi

∣∣∣∣
φcli

ηi(x) + δJiηi(x)

]

+
i

2!

∫
d4xd4yηi(x)

[
δ2δL

δφi(x)δφj(y)

∣∣∣∣
φcli

+
δ2LR

δφi(x)δφj(y)

∣∣∣∣
φcli

]
ηj(y) + . . .

)
.

(2.31)

Note that here we have used Eq. (2.30) to simplify the terms first order in
ηi. The remaining two terms first order in ηi (second row) might be a problem,
however, since they will correspond to non-zero tadpole interactions, which shift
the vacuum expectation value of ηi. This is not what we want. However, we
are free to choose δJi such that this term always vanishes. This is essentially
imposing a renormalisation condition that φcli is the expectation value of the
field to all orders4. Thus, we can ignore the second row here completely.
The higher order terms in ηi correspond to loop corrections, while the zeroth or-
der terms have been extracted as the renormalised Lagrangian. We can compute
the energy functional:

W [Ji] =

∫
d4x [LR[φcli] + δL[φcli] + Jφcli]

− i ln

(∫
Dηi exp

(
i

2!

∫
d4xd4yηi(x)

[
δ2δL

δφ(x)δφj(y)

∣∣∣∣
φcli

+
δ2LR

δφi(x)δφj(y)

∣∣∣∣
φcli

]
ηj(y)

+
i

3!

∫
d4xd4yd4zηi(x)ηj(y)ηk(z)

[
δ3δL

δφi(x)δφj(y)δφk(z)

∣∣∣∣
φcli

+

+
δ3LR

δφi(x)δφj(y)δφk(z)

∣∣∣∣
φcli

]
+ . . .

))
. (2.32)

4As with most renormalisation conditions, we don’t have to choose this particular condition,
but it will simplify matters considerably.
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Moving to Γ[φcli], by subtracting: −
∫

d4xJiφcli gives:

Γ[φcli] =

∫
d4x [LR[φcli] + δL[φcli]]

− i ln

(∫
Dη exp

(
i

2!

∫
d4xd4yηi(x)

[
δ2δL

δφi(x)δφj(y)

∣∣∣∣
φcli

+
δ2LR

δφi(x)δφj(y)

∣∣∣∣
φcli

]
ηj(y)

))
− i ln

(∫
Dη exp (iI0[ηi] + Iint[ηi])∫

Dη exp (iI0[ηi])

)
,

(2.33)

where:

I0[ηi] =
i

2!

∫
d4xd4yηi(x)

[
δ2δL

δφi(x)δφj(y)

∣∣∣∣
φcli

+
δ2LR

δφi(x)δφj(y)

∣∣∣∣
φcli

]
ηj(y)

(2.34)

Iint[ηi] =
i

3!

∫
d4xd4yd4zηi(x)ηj(y)ηk(z)

[
δ3δL

δφi(x)δφj(y)δφk(z)

∣∣∣∣
φcli

+
δ3LR

δφi(x)δφj(y)δφk(z)

∣∣∣∣
φcli

]
+ . . . (2.35)

That is, we have multiplied by
∫
Dηi exp(iI0[ηi])∫
Dηi exp(iI0[ηi])

in order to write the third order

and higher terms as a fraction which can be evaluated using Feynman diagrams,
interpreting I0 as a ‘free’ action. In reality, I0 is a quantum correction, but it
is a Gaussian one so we can compute it exactly. The logarithm only serves to
ensure we sum over connected diagrams, so this becomes:

Γ[φcli] =S[φcli]− i
∑

(Connected third order η diagrams and higher)

− i ln

(∫
Dηi exp

(
i

2!

∫
d4xd4yηi(x)

[
δ2δL

δφi(x)δφj(y)

∣∣∣∣
φcli

+
δ2LR

δφi(x)δφj(y)

∣∣∣∣
φcli

]
ηj(y)

))
. (2.36)

Now, the second line here involves a Gaussian integral which we can perform
by a discrete analogue:∫

dNx exp

(
−1

2
xiMijxj

)
=

(
(2π)N

detM

) 1
2

=

(
det

M

2π

)− 1
2

, (2.37)

since det(λM) = λN detM . Thus:

−i ln

(∫
dNx exp

(
−1

2
xiMijxj

))
= +

i

2
ln

(
det

M

2π

)
. (2.38)

26



However, detM =
∏
imi where mi are the eigenvalues of M . Thus, the loga-

rithm gives:

ln

(
det

M

2π

)
= ln

(∏
i

mi

2π

)
=
∑
i

ln
(mi

2π

)
= Tr

(
ln

(
M

2π

))
, (2.39)

since the trace is the sum of the eigenvalues, and if M is a matrix with eigen-
values mi, f(M) has eigenvalues f(mi). Generically, we can write the second
order terms as:

Mij(x, y) = −i

[
δ2δL

δφi(x)δφj(y)

∣∣∣∣
φcli

+
δ2LR

δφi(x)δφj(y)

∣∣∣∣
φcli

]
. (2.40)

It is convenient to change the basis by means of a similarity transform, in this
case a Fourier transform5:

Mij(k, q) =

∫
d4x

∫
d4ye−ip·xMij(x, y)eiq·y. (2.41)

Mij(x, y)eiq·y will generically be of the formMqijδ
(4)(x−y)eiq·y (in the similarity

transform analogy, eiq·y is an eigenvector of this operator), in which case this
Fourier transform gives:

Mij(k, q) =

∫
d4xe−ip·xMqije

iq·x = (2π)4Mqijδ
(4)(p− q). (2.42)

This is why the momentum space basis is useful - it diagonalises differential
operators. Because it is (block) diagonal in this basis, we can take the logarithm
easily since it is found by taking the logarithm of each diagonal element:

ln

(
M

2π

)
p,q,ij

= ln((2π)4Mq)ijδ
(4)(p− q). (2.43)

The trace comes from summing over all diagonal elements:6

Tr

(
ln

(
M

2π

))
=

∫
d4k

(2π)4
ln
(
(2π)4Mk

)
ii
δ(4)(k − k)

=
V4

(2π)4

∫
d4k

(2π)4
ln
(
(2π)4Mk

)
ii
, (2.44)

where V4 =
∫

d4x is the volume of Minkowski space-time. Leaving aside the
infinite volume, the integral part will usually diverge. However, that can be

5We choose different signs for e−ip·x and eiq·y in order to make the analogy with a similarity
transform clearer, as the change of basis goes like SMS† in this case.

6Note that if the trace is obtained by a sum
∫

d4xM(x, x) in position space then the

momentum space sum must include a factor 1
(2π)4

in order to give the right result (this is to

be consistent with the usual properties of a Fourier transform - essentially it is just a scale
factor).
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dealt with by the renormalisation terms.
Note, the logarithm of Mk may not be trivial, especially if there are numerous
fields. Diagonalising Mkij will not really help, because this may mix fermion
and boson fields, which is undesirable as their Gaussian integrals are different.
In fact, it is convenient to simply evaluate the Gaussian integrals for each field
one at a time, each time using the fact that we have a linear term:∫

dNx exp

(
−1

2
xiMijxj + Jixi

)
=

(
det

(
M

2π

))− 1
2

exp

(
1

2
JiM

−1
ijJj

)
.

(2.45)
We can then perform the Gaussian path integrals one at a time:

I =

∫ N∏
i=1

(Dηi) exp

−1

2

N∑
i,j=1

∫
d4xd4yηi(x)Mij(x, y)ηj(y)


=

∫
Dη1

∫ N∏
i=2

(Dηi) exp

(
− 1

2

∫
d4xd4yη1(x)M11(x, y)η1(y)

−1

2

∫
d4xd4yη1(x)

N∑
i=2

M1i(x, y)ηi(y)− 1

2
d4xd4y

N∑
i=2

ηi(x)Mi1(x, y)η1(y)

−1

2

∫
d4xd4y

N∑
i,j=2

ηi(x)Mij(x, y)ηj(y)


= det

(
M11

2π

)− 1
2
∫ N∏

i=2

(Dηi) exp

−1

2

∫
d4xd4y

N∑
i,j=2

[ηi(x)Mij(x, y)ηj(y)]


× exp

(
1

2

∫
d4xd4yN1(x)M−1

11 (x, y)N1(y)

)
, (2.46)

where N1(x) ≡ − 1
2

∫
d4y

∑N
i=2M1i(x, y)ηi(y). Thus, the entire integral can be

computed iteratively and the logarithm also computed. In practice, however, we
can generally arrange for Ni = 0 to hold at one the loop level, since for this not
to be the case, we would require a term in the Lagrangian corresponding to one
particle propagating, then turning into another type at a 2-point vertex. This
can happen, but in gauge theories it can usually be avoided by an appropriate
choice of gauge.
An important point, however, is that if we have any Grassman variables, then
the Gaussian integrals must be evaluated as:∫ N∏

i=1

(dη∗i dηi) exp (−η∗iMijηj + η∗i Ji + J∗i ηi) = det (M) exp
(
J∗iM

−1
ijJj

)
.

(2.47)
The differing position of the determinant makes an important difference. When
we compute the logarithm, instead of a factor of − 1

2 we obtain a factor of 1.
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Thus, fermions give the opposite contribution to the effective potential. In terms
of perturbation theory, this can be understood to be a consequence of the fact
that fermion loops always give an extra minus sign.
It is not entirely obvious that this approach does in fact split terms order by or-
der in loops. In fact, the Gaussian integral we have just computed is equivalent
to summing all of the 1-loop diagrams that would contribute to the effective ac-
tion. To see this, note that we can regard it as a sum of two-point interactions,
since it only involves powers of η up to second order. However, it is topologically
impossible to construct diagrams with more than one loop using only two point
interactions (see figure 2.6), and since the only end points of propagators are
the classical field vertices (Which are strictly speaking not external lines, but
vertices), all the diagrams contributing to this Gaussian integral must have at
least one loop.
Once we start computing the third order and higher terms in η, however, the

Figure 2.6: Some possible 1 loop corrections to the effective action. Note that to
have more than one loop would require higher order interaction vertices, which
don’t appear in the computation of the Gaussian integral.

third line of Eq. (2.33) shows that we can easily compute these terms via Feyn-
man diagrams, where we are allowed 3rd and higher order vertices, which can
mix in the same diagram. Note that we couldn’t mix higher order vertices into
the computation of the second line of Eq. (2.33) since as a perturbation series,
that would be performed using the S[φcl] as the action in the denominator, while
the third line is performed using I0[η] as the action in the denominator (so they
are technically different sorts of perturbation series). Since Iint contains all the
higher order terms, however, then we are allowed to mix them for higher loops.
Furthermore, it is also impossible to construct 1-loop diagrams if we have any
third order or higher vertices and no external legs. This is illustrated in figure
2.7
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Figure 2.7: All possible diagrams with no external legs, involving a three point
vertex. Each grey ellipse in (a) must contain at least one loop because no
external legs or one-point vertices are allowed (excluding the classical field,
which is suppressed here for simplicity, but is attached to the three point vertex).
In (b), one loop is visible, and the upper grey ellipse must contain at least one
loop. In (c), the ellipse need not contain a loop, but two loops are already
visible.

2.2.1 Example: Scalar Field Effective Potential

To see how this works in practice, it is useful to consider an example. Consider
a scalar field with the action:

S[φ] =

∫
d4x

[
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4

]
. (2.48)

Expanding as φ = φ0 + η gives:

S[φ0 + η] =

∫
d4x

[
1

2
∂µφ0∂

µφ0 −
1

2
m2φ2

0 −
λ

4!
φ4

0

]
+

∫
d4x

[
∂µφ0∂

µη −m2φ0η −
λ

6
φ3

0η

]
+

∫
d4x

[
1

2
∂µη∂

µη − 1

2
m2η2 − λ

4
φ2

0η
2

]
+

∫
d4x

[
−λ

6
φ0η

3

]
+

∫
d4x

[
− λ

4!
η4

]
. (2.49)

The first row gives the classical action, the second is the first order correction
which we arrange to vanish, while the third is the second order correction. The

30



fourth row contains the higher order terms. Thus the effective action is:

Γ[φ0] =

∫
d4x

[
1

2
∂µφ0∂

µφ0 −
1

2
m2φ2

0 −
λ

4!
φ4

0

]
− i ln

(∫
Dη exp

(
i

∫
d4x

[
1

2
∂µη∂

µη − 1

2
m2η2 − λ

4
φ2

0η
2

]))
+ h.o.t.

=

∫
d4x

[
1

2
∂µφ0∂

µφ0 −
1

2
m2φ2

0 −
λ

4!
φ4

0

]
− i ln

(∫
Dη exp

(
−1

2

∫
d4x

∫
d4yη(x)iδ(4)(x− y)×

×
[
∂µ∂

µ +m2 +
λ

2
φ2

0

]
η(y)

))
+ h.o.t. (2.50)

Thus:

M(k, q) =

∫
d4x

∫
d4ye−ik·xiδ(4)(x− y)[−q2 +m2 +

λ

2
φ2

0]eiq·y

=i(2π)4δ(4)(k − q)[−q2 +m2 +
λ

2
φ2

0]. (2.51)

Hence:

Γ[φ0] =

∫
d4x

[
1

2
∂µφ0∂

µφ0 −
1

2
m2φ2

0 −
λ

4!
φ4

0

]
+
i

2

∫
d4k

(2π)4
ln

(
(2π)4i[−k2 +m2 +

λ

2
φ2

0]

)
+ h.o.t. (2.52)

Note that the integral over k actually diverges. However, writingM2 = m2+λ
2φ

2
0

we can differentiate to obtain a different integral:

I(M2) =

∫
d4k

(2π)4
ln
(
(2π)4i[−k2 +M2]

)
,

I ′(M2) =

∫
d4k

(2π)4

1

−k2 +M2
.

This is still divergent, but can be dealt with using the standard techniques of
dimensional regularisation. In d− ε dimensions, we can show that:

In(M) ≡
∫

ddk

(2π)d
1

(k2 −M2)n
= lim
ε→0

(−1)niMd−ε−2n

(4π)
d−ε

2

Γ
(
n− d

2 + ε
2

)
Γ(n)

, (2.53)
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where d = 4 here and Γ(n) is the Gamma function. Consequently:

I ′(M2) =
iµ−εM2

(4π)2

(
M2

4πµ2

)− ε2
Γ
(
−1 +

ε

2

)
=
iµ−εM2

16π2
e
− ε2 ln

(
M2

4πµ2

)
Γ(−1 +

ε

2
)

=− iµ−εM2

16π2

(
2

ε
− γ + 1− ln

(
M2

4πµ2

)
+O(ε)

)
. (2.54)

where γ is the Euler-Mascheroni constant, appearing from the Taylor expansion
of Γ(−l + ε

2 ). Note that we were forced to introduce an arbitrary energy scale,
µ, so that the exponential of a dimensional quantity like M2 makes sense. In
the MS renormalisation scheme, we introduce counter terms which subtract the
2
ε − γ + ln 4π part. After renormalisation and taking ε→ 0 we have:

I ′(M2) =
iM2

16π2

(
ln

(
M2

µ2

)
− 1

)
. (2.55)

To integrate this, use the fact that
∫
x lnxdx = x2

2 lnx− x2

4 , to give:

I(M2) =
i

16π2

(
M4

2
lnM2 − M4

4
− M4

2
lnµ2 − M4

2

)
+ C

=
iM4

32π2

(
ln

(
M2

µ2

)
− 3

2

)
+ C. (2.56)

The integration constant only renormalises the vacuum energy, so we will neglect
it here. Thus, the final contribution to the effective action is:

Γ[φ0] =

∫
d4x

[
1

2
∂µφ0∂

µφ0 −
1

2
m2φ2

0 −
λ

4!
φ4

0

− 1

64π2
(m2 +

λ

2
φ2

0)2

(
ln

(
m2 + λ

2φ
2
0

µ2

)
− 3

2

)]
+ h.o.t. (2.57)

However, the effective action will not actually depend on µ2, due to the varia-
tion of the coupling constants. There is one problem with this, however. The

diagrams at each loop order will give rise to terms of order λ(λ ln
(
m2+λ

2 φ
2
0

µ2

)
)n

for order n [4]. The perturbation series is valid only if these are small, which
will fail to be the case when the logarithm becomes large, as it does for either
small or large arguments. Thus, this formula can only be trusted for a limited
range of φ0.
However, it is possible to get around this problem by requiring that the effective
action satisfy the Callan-Symanzik equation[4]:[

µ
∂

∂µ
+ βλ

∂

∂λ
+ βm2

∂

∂m2
+ γ

∫
d4xφ0(x)

δ

δφ0(x)

]
Γ[φ0] = 0 (2.58)
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After deducing the approximate form of the beta functions, solving this equa-
tion can give a potential valid for a much wider range of φ0. Thus, all that
is needed to compute the effective potential is an accurate computation of the
beta functions of the theory.

2.3 Example: Yukawa Theory

For the standard model, the situation is more complicated, since there is more
than one field. We can begin to understand this by considering Yukawa theory
for a real scalar interacting with a fermion:

SYuk =

∫
d4x

[
1

2
∂µφ∂

µφ− 1

2
m2
φφ

2 − λ

4!
φ4

+iΨ̄aγ
µ
ab∂µΨb −mΨΨ̄aΨa − gΨ̄aΨaφ

]
. (2.59)

We will choose to expand this around φ = φ0 and Ψ = 0, since we are only
interested in the contribution to the scalar potential, derived from the action
where all fermions are set to zero. One finds by applying the Euler-Lagrange
equations:

Mφφ(x, y) = −i δ2L
δφ(x)δφ(y)

∣∣∣∣
φ=φ0,Ψ=0

= i∂µ∂
µ
(
δ(4)(x− y)

)
+ im2

φδ
(4)(x− y) + i

λ

2
φ2

0 (2.60)

MφΨ = −i δ2L
δφ(x)Ψa(y)

∣∣∣∣
φ=φ0,Ψ=0

= 0 (2.61)

MΨφ = −i δ2L
δΨ̄a(x)δφ(y)

∣∣∣∣
φ=φ0,Ψ=0

= 0 (2.62)

MΨΨ = −i δ2L
δΨ̄a(x)δΨb(y)

∣∣∣∣
φ=φ0,Ψ=0

= γµab∂µ

(
δ(4)(x− y)

)
+ i(mΨ + gφ0)δabδ

(4)(x− y). (2.63)

The mixed derivatives vanish because the only interaction is cubic, so there is
always one Ψ or Ψ̄ left over which is set to zero. Consequently, the second line
of Eq. (2.36) factorises as:∫

DΨ̄DΨDφ exp

(
−1

2

∫
d4xd4y [φ(x)Mφφ(x, y)φ(y)]

−
∫

d4xd4y
[
Ψ̄(x)MΨΨΨ(y)

])
= det

(
Mφφ

2π

)− 1
2

det (MΨΨ) . (2.64)
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We therefore conclude that the 1-loop contribution to the effective potential is:

i

2
ln det

(
Mφφ

2π

)
− i ln det (MΨΨ) .

(2.65)

The first term is identical to Eq. (2.57), while the second can be computed
in the following manner:

−i ln det (MΨΨ) =− iTr ln
(
γµab∂µ

(
δ(4)(x− y)

)
+ i(mΨ + gφ0)δabδ

(4)(x− y)
)
.

(2.66)

In momentum space, we have:

Mab(k, q) =

∫
d4xd4yeip·x

(
γµab∂µ

(
δ(4)(x− y)

)
+ i(mΨ + gφ0)δabδ

(4)(x− y)
)
e−iq·y

=

∫
d4xd4y

(
eip·xγµabiqµδ

(4)(x− y) + i(mΨ + gφ0)δabδ
(4)(x− y)

)
e−iq·y

=

∫
d4xeix·(p−q)i(γµabqµ + (mΨ + gφ0)δab)

=(2π)4δ(4)(p− q)i(γµabqµ + (mΨ + gφ0)δab). (2.67)

Taking the momentum space trace then gives:

I ≡ −i ln det (MΨΨ) = −i
∫

d4k

(2π)4
Tr ln

(
i(2π)4(γµkµ + (mΨ + gφ0)

)
I)δ(4)(k−k).

(2.68)
Let m̃ = mΨ + gφ0 and differentiate:

dI

dm̃
= − iV4

(2π)4

∫
d4kTr

(
(γµkµ + m̃I)−1

)
. (2.69)

Where V4 is the volume of space-time. This last step is valid because7:

d

dm̃
ln(γµkµ + m̃) = lim

δm̃→0

ln(γµkµ + m̃+ δm̃)− ln(γµkµ + m̃)

δm̃

= lim
δm̃→0

ln(γµkµ + m̃) + ln(I + (γµkµ + m̃)−1δm̃)− ln(γµkµ + m̃)

δm̃

=(γµkµ + m̃)−1. (2.70)

This inverse is well known:

dI

dm̃
=− iV4

(2π)4

∫
d4kTr

(
γµkµ − m̃
k2 − m̃2

)
=− iV4

(2π)4

∫
d4k

−4m̃

k2 − m̃2

=4im̃V4I1(m̃), (2.71)

7This derivation is not entirely trivial, because ln(AB) 6= lnA + lnB for generic non-
commuting A,B, however in this case (γµkµ − m̃) commutes with I + δm̃(γµkµ + m̃)−1, so
this operation is valid. A generic function, ln f(m̃) would not have this property.
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since Trγµ = 0 and TrI = 4. The integral I1(m̃) is divergent and can be
computed using Eq. (2.53). The answer is:

I1(m̃) =
im̃2

16π2

(
2

ε
− ln

(
m̃2

4πµ2

)
+ 1− γ

)
. (2.72)

We renormalise this using MS to give:

dI

dm̃
=4im̃V4

im̃2

16π2

(
1− ln

(
m̃2

µ2

))
=− 4V4

16π2

(
m̃3 − 2m̃3 ln(m̃) + m̃3 ln(µ2)

)
=⇒ I(m̃) =

−4V4

16π2

(
m̃4

4
− 2

m̃4

4
ln (m̃) + 2

m̃2

16
+
m̃4

4
ln(µ2)

)
+ C

=
4V4m̃

4

64π2

(
ln

(
m̃2

µ2

)
− 3

2

)
+ C. (2.73)

The constant C only serves to renormalise the vacuum. We conclude, therefore,
that the one loop effective action is8:

Γ[φ0,Ψ = 0] =

∫
d4x

[
−1

2
m2φ2

0 −
λ

4!
φ4

0

− M4

64π2

(
ln

(
M2

µ2

)
− 3

2

)
+

4m̃4

64π2

(
ln

(
m̃2

µ2

)
− 3

2

)]
. (2.74)

Where M2 = m2
φ+ λ

2φ
2
0 and m̃ = mΨ +gφ0. Notice that the fermions contribute

a term of opposite sign to the bosons (due to their anti-commuting nature and
thus different determinant in the path integral), with a multiplicity of 4 which
ultimately originates from the trace of the I matrix (and thus can be traced
back to the fact that there are four fermionic degrees of freedom but only one
bosonic degree of freedom). Furthermore, notice that the logarithm depends
on the fourth power of the mass of the particle9. Consequently, only the very
heaviest mass particles contribute significantly to the effective potential.

8The kinetic term is missing, because φ0 is assumed to be constant in space-time.
9In the standard, model, m̃ is the mass, since all fermions have mΨ = 0
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Chapter 3

Stability of the Electroweak
Vacuum

3.1 The Standard Model Effective Potential

The classical Higgs potential is stable in the sense that once a system reaches the
minimum, there is no other minimum into which it can decay, as the potential
grows monotonically for large φ. From our discussion of the Yukawa theory,
however, it can be seen that if the scalar field couples to fermions (as the Higgs
field does, in order to give rise to fermion masses) then the potential receives
negative contributions:

V (φ0) =
1

2
m2φ2

0 +
λ

4!
φ4

0 +

(
m2
φ + λ

2φ
2
0

)2

64π2

(
ln

(
m2
φ + λ

2φ
2
0

µ2

)
− 3

2

)

− (mΨ + gφ0)4

16π2

(
ln

(
(mΨ + gφ0)2

µ2

)
− 3

2

)
. (3.1)

Consequently, if the theory contains sufficiently massive fermions, then for large
values of φ0 the potential can be forced downwards again. This results in the
minimum being a ‘false vacuum’ - sufficiently large fluctuations in the field can
push it over the potential barrier and into a region containing either another,
lower energy, minimum, or potentially a region unbounded below. Equally, in
quantum theories, it is possible for a system in the false vacuum to decay to a
lower minimum via quantum tunnelling. This essentially gives the universe a
half-life as such a decay occurs spontaneously.
In the standard model, the two most important parameters for determining the
vacuum structure of the theory are the mass of the top quark and the mass of
the Higgs field itself. The top quark contribution dominates over other fermions,
because its mass (∼ 173.1 GeV) is so much larger, and as we can see from Eq.
(3.1), the negative contributions depend on the fourth power of the mass of the
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fermion. In order to answer the question in the Standard model, it is necessary
to perform very precise calculations of the Higgs effective potential, including
higher loop order corrections.

To illustrate this, we used the beta-functions of the standard model to two

Figure 3.1: Standard model gauge couplings, αi =
g2
i

4π running with the energy

scale µ in MS, to two loops. Note that these fail to meet, however, the energy
scale where these cross is in reality higher than the diagram indicates, due to
not taking into account quantum corrections to the relationship between the
Yukawa coupling and the mass.

loops, which can be found in [7] and [12]. As an illustrative example, we use the

initial conditions λ = 0.13 (for the λφ4

4 normalisation), g1 = 0.4617, g2 = 0.6502,
g3 = 1.2198 and h = 1.0017 (these are taken from [13]), all in M̄S where g1, g2, g3

are the gauge couplings for U(1)Y , SU(2) and SU(3)c respectively, λ is the Higgs
quartic coupling, and h is the Yukawa coupling for the top quark to the Higgs
field. We consider only the top quark as it has a mass significantly larger than
the other quarks and leptons in the Standard model. The results for the gauge
couplings are given in figure 3.1 and for the Higgs quartic coupling in figure 3.2.
To one loop, the Higgs effective potential in MS can be written[14]:
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Figure 3.2: Higgs field quartic coupling running with energy in MS. This ap-
pears to become negative around 106GeV however this is without taking into
account quantum corrections to the Yukawa-coupling/top-quark mass relation.

V (φ) =
1

2
m2
hφ

2 +
λ

4
φ4 +

H2

64π2

(
ln

(
H

µ2

)
− 3

2

)
+

3G2

64π2

(
ln

(
G

µ2

)
− 3

2

)
− 3T 2

16π2

(
ln

(
T

µ2

)
− 5

6

)
+

3W 2

32π2

(
ln

(
W

µ2

)
− 5

6

)
+

3Z2

4

(
ln

(
Z

µ2

)
− 5

6

)
,

(3.2)

where:

H =m2
h + 3λφ2 (3.3)

T =
h2

2
φ2 (3.4)

G =m2
h + λφ2 (3.5)

W =
g2

1

4
φ2 (3.6)

Z =
(g2

1 + g2
2)

4
φ2 (3.7)

and µ is the energy scale. Here, H arises from the Higgs self interaction, G from
the interaction of the Higgs field with the Goldstone bosons (by Higgs field here
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we mean the left over real scalar part of Φ, the other three components of which
are the Goldstone bosons), T corresponds to the interaction with the top quark
(note that this is negative), and W , Z arise from interaction with the W and
Z bosons respectively. No term for photons appears because photons do not
interact with the Higgs field.
The natural scale, µ, to choose is µ = φ, since this will ensure that the logarithms
remain small for most ranges of φ (which is required for the loop expansion to
remain perturbative). This choice is shown plotted in figure 3.3. Some caveats

Figure 3.3: 1-loop Higgs potential, using µ = φ. Note that the apparent diver-
gence for small φ is due to the logarithmic terms becoming small there. Since
this means perturbation theory breaks down, this behaviour is not physically
meaningful. However, we note that there is a minimum at large φ, around
108 GeV. This could cause the electroweak vacuum to become unstable.

apply when interpreting this, however:

• In setting up the initial conditions, we have ignored the fact that in the
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MS scheme, relations like m2
h = 2λv2 where v is the vacuum expectation

value, are only valid at tree level (this is in contrast to the off-shell scheme,
or ‘physical’ scheme, where these relations are valid to all orders). So to
obtain the initial parameters at Mz in terms of experimentally determined
quantities requires computing higher order quantum corrections to these
relations (this is done, for example, in [15]). Such computations are beyond
the scope of this report.

• Independence of the scale, µ should be true non-perturbatively, but may
not be manifest in perturbation theory. We can improve the effective
potential by making use of the renormalisation group, by requiring it to
satisfy the Callan-Symanzik equation. This procedure would lead to a
‘renormalisation group improved’ effective potential [9].

• We have only considered the top quark, however, due to the large mass of
this fermion, this is still a good approximation.

• Generally speaking, we should interpret only the minima of the effective
potential as being physically meaningful (see a discussion in [8] - this is
related to the fact that perturbation theory has to take place in a stable
minimum to be meaningful and so regions where the second derivative
of the effective potential are negative cannot be trusted as perturbative
calculations).

• The effective potential appears to diverge at small φ. However, the loop
expansion requires that the logarithmic terms appearing in the potential
are small (otherwise, perturbation theory fails). Since the apparent diver-
gence occurs in a regime where this is not the case, we cannot trust the
prediction for small φ. So, figure 3.3 says nothing about the electro-weak
minimum. More sophisticated techniques are required to analyse that .
The minimum we have found, however, is at large φ (around 108 GeV).
Interpreted literally, if this minimum is at a lower value of the potential
than the electroweak minimum at v = 246.22 GeV, it would mean that
the electroweak minimum is only meta-stable.

This running of the standard model couplings has been studied in depth and
requiring the non-existence of the second minimum up to the Planck scale was
used, for example, to give bounds on the allowed mass of the Higgs boson, before
its discovery (see [7] for example).
However, with the detection of a particle consistent with the standard model
Higgs boson [16][17], we are now in a better position to make predictions about
the stability of the standard model vacuum. The current estimate of the Higgs
boson mass is mh = 125.7± 0.4 GeV[13].
In principle this is sufficient, however, the location of the Higgs mass compli-
cates matters. It places the Higgs potential close (in parameter space) to the
boundary between instability (Veff (φ) turns down at large φ, so nothing can
stop the field rolling to infinite φ), and stability (the second minimum is at a
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higher potential than the electroweak minimum, which is therefore the abso-
lutely stable global minimum). In fact this boundary is not a ‘hard’ boundary,
but consists of a third region of parameter space where the electroweak mini-
mum is meta-stable (that is, there is a second minimum, but as in figure 3.3 the
potential does not turn down at large φ, so the second minimum is absolutely
stable).

3.2 Meta-stability and Bubble-Nucleation

In the metastability scenario, the electro-weak vacuum would be a long-lived
state which could collapse to the global minimum at any time, via quantum
tunnelling. Not all regions of the universe are causally connected, however. The
transition from the electroweak vacuum to the global minimum would occur
via bubble nucleation, a process in which local ‘bubbles’ of the lower-potential
Higgs-field form. Note that because the Hamiltonian-density for a scalar field
is given by:

H =
φ̇2

2
+

1

2
(∇φ)2 + V (φ), (3.8)

spatial gradients in the Higgs field always increase the local energy. To un-
derstand how the bubble will behave, it is useful to consider the close analogy
of a phase change in a thermodynamic system. Let forming a bubble change
the Gibbs free energy by ∆Gbubble per unit volume. This always decreases the
Gibbs free energy if the tunnelling is to a lower value of the potential. However,
the bubble has a surface tension, T per unit area which tends to increase the
free energy (because the bubble must sustain itself against pressure from the
external region of a different phase, which costs energy). Assuming a spherical
bubble, the change in Gibbs free energy for a bubble of radius r is:

∆G =
4πr3

3
∆Gbubble + 4πr2T. (3.9)

Thus:
d∆G

dr
= 4πr2∆Gbubble + 8πrT. (3.10)

If ∆Gbubble is positive (so that creating bubbles costs energy - this only happens
for bubbles of a higher potential) then bubbles will tend to shrink. However,
for negative ∆Gbubble, then there is a critical radius Rc = − 2T

∆Gbubble
> 0 above

which the bubble expands, despite the surface tension. Similarly, bubbles of the
lower potential phase in the Higgs potential tend to expand if they are large
enough. Thus eventually, the entire universe will be converted to the lower
potential phase1.

1Note that this may not happen if the universe is expanding fast enough, so that the rate
of increase of the universes volume exceeds the rate at which that volume is converted to the
lower phase. This becomes relevant in an inflationary scenario.
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Figure 3.4: Regions of mh - mt parameter space and their associated electro-
weak vacuum stability. Circles give 1-3 σ uncertainty for mh and mt, while
the uncertainty in the stability region boundaries is given by the dashed line,
and is principally due to the uncertainty in αs(Mz) [19]. The red dotted lines
indicate the scale at which the Higgs quartic coupling crosses zero, which gives
the energy scale at which the global minimum occurs. This figure is by Buttazzo
et al. [3].

3.3 Studies of Electro-weak vacuum stability

It turns out that two main quantities most significantly affect the stability of
the electro-weak vacuum: The Higgs mass, and the top-quark mass. The mean
values of mh = 125.7± 0.4 GeV and mt = 173.21± 0.51± 0.71 GeV (first error
statistical, second error systematic) [13], place the electroweak vacuum in the
meta-stability region[18], as can be seen in figure 3.4, from Buttazzo et al. [3].
Thus, it would appear, to 2σ confidence, that the standard model electroweak
vacuum is only metastable. There are several things to note about this:

• The uncertainties still allow for stability at 3σ, so there is a need for more
precise measurements of the top-quark and higgs boson masses to narrow
down precisely the state of the electroweak vacuum.

• The fact that the current region of the universe has not yet decayed to
the lower energy state is certainly evidence in favour of the life-time being
very long, at least of order the age of the universe.

• Being close to the instability region constrains the possibility of new par-
ticles at higher energies. For example, an undiscovered massive fermion
might easily destabilise the vacuum if it coupled to the Higgs field, unless
some undiscovered mechanism prevents this, for example by balancing it
out with another boson (we will discuss this possibility in section 6).
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• If the electro-weak vacuum is metastable, then collapse to the global min-
imum could also be precipitated by disturbing the Higgs field with suffi-
ciently large amounts of energy. While this is unlikely in the context of
the current universe, in an inflating universe, quantum fluctuations can
potentially be sufficient to push the Higgs field over the potential bar-
rier into the global minimum. Thus, if inflation occurred at a sufficiently
high energy scale, it would strongly indicate the presence of new physics
changing the structure of the Higgs potential at large field values.

The results from Buttazzo et al.[3] and Degrassi et al.[19] indicate that to three
sigma confidence, the electroweak vacuum is metastable, developing an insta-
bility between φ ∼ 109 − 1015 GeV.
This leads to the question of whether the vacuum could spontaneously collapse
to the lower minimum via quantum tunnelling. This process would proceed
via the bubble nucleation discussed in section 3.2. To compute the expected
life-time of the vacuum, it is necessary to compute the probability that a suffi-
ciently large2 bubble of the lower vacuum nucleated at some point in the past
life-cone of the visible universe. This calculation was performed in [3], where
it was found that the expected life-time, while very uncertain, is much longer
than the present age of the universe (see figure 3.5). As can be seen, the uncer-
tainty strongly affects the life-time, however, the current data seems to suggest
a life-time much longer than the current age of the universe - consistent with
the observation that our current vacuum has not yet decayed.

3.4 Stability of the Electroweak Vacuum during
inflation

There are actually two cosmological issues caused by the electroweak vacuum
being meta-stable:

• Is the high temperature in the early universe sufficient to push the Higgs
field over the potential barrier into the global minimum? This is a poten-
tial problem even in the absence of inflation, and if the Higgs potential is
not modified by new physics at higher energies, it would place a bound on
the highest temperature reached. In an inflationary context, it constrains
the allowed reheating temperature.

• Are the quantum fluctuations of a scalar field in an inflationary (de Sitter)
background sufficient to push the Higgs field into the global minimum?

The first question can be answered by thermal field theory - the theory of quan-
tum fields in a non-zero temperature background. At finite temperature, instead
of quantum effects being accounted for by pure states, the best representation is
in terms of a mixed state with a probability distribution associated to the energy
of each state, drawn from the Boltzmann distribution, 1

Z e
−βEn where β = 1

kBT

2In order to over-come the suppression due to surface tension.
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Figure 3.5: Expected life-time of the universe as a function of the top quark
and Higgs masses. The uncertainty in the top mass is indicated by the green
bar, while the uncertainty in the higgs mass and strong coupling are indicated
by the grey and red lines respectively. The computation is performed for two
separate assumptions about cosmology - a future universe dominated by cold
dark matter (CDM) and cosmological constant (ΛCDM). The life-time varies
considerably with the uncertainty, however, it appears that a life-time greater
than 10100 years is favoured at the 1σ level. Figure credit: Buttazzo et al. [3]

and Z is the (statistical) partition function. Thus, one finds that expectation
values are to be computed using a density matrix:

〈Ô〉T = Tr(ρÔ). (3.11)

Where the density matrix ρ is given by:

ρ =
1

Z

∑
n

e−βEn |n〉 〈n| = 1

Z

∑
n

e−βĤ |n〉 〈n| = e−βĤ

Z
, (3.12)

since |n〉 are orthonormal states. It is worth noting, in fact, that:

Z =
∑
n

e−βEn = Tr(e−βĤ). (3.13)

Thus:

〈Ô〉T =
Tr(e−βĤÔ)

Tr(e−βĤ)
. (3.14)
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This bears more than a passing resemblance to the field theory expression
〈0| ÔeiS |0〉
〈0| eiS |0〉

, and in fact, by using a position basis it is possible to re-write

this expression in terms of path integrals[20].
Espinosa, Giudice and Riotto[7] applied the methods of thermal field theory to
the issue of electroweak vacuum stability, and computed the maximum allowed
temperature as a function of Higgs and top quark masses. Their argument was
to compute the energy, Ec of the smallest possible nucleation bubble (see sec-
tion 3.2) (ie, a bubble of the critical radius, Rc that just overcomes the free
energy increasing effect of surface tension that would otherwise suppress the
bubble). Since this energy gain is suppressed in probability by a Boltzmann
factor, e−βEc , then the smallest allowed energy dominates the nucleation is the
source is thermal. They used this result to compute the decay rate per unit vol-
ume, and thus the probability of the universe surviving, taking into account the
time spent at each temperature in an expanding universe, assuming radiation
dominance.
The matter is complicated by the fact that thermal corrections change the shape
of the Higgs effective potential (actually in a thermal context, we should exam-
ine the Helmholtz free energy). However, taking this into account, they found
that for mh exceeding:

mh > 117.4 GeV+4.2 GeV

(
mt − 170.9 GeV

1.8 GeV

)
−1.6 GeV

(
αs(Mz)− 0.1176

0.0020

)
±3 GeV,

(3.15)
then the electroweak vacuum can survive even up to Planckian temperatures.
Using the central values of mt = 173.21 ± 0.51 ± 0.71 and αs(Mz) = 0.1185 ±
0.0006[13] and combining errors in quadrature, this implies we need:

mh > 122.1± 3.7 GeV. (3.16)

It is interesting to note that while the measured Higgs mass of mh = 125.7 ±
0.4 GeV is at the edge of this range, there is significant overlap, so it is not
clear whether some temperature below the Planckian scale will destabilise the
vacuum. However, it would appear that a very high temperature would be
needed to achieve this.
The second issue - whether inflation itself can destabilise the vacuum via the
quantum fluctuations it generates - is more complicated. To discuss this, we need
to understand how these fluctuations are produced. This will be the topic of the
next major section of this report. The main focus will be on the computation of
two point functions in an inflationary (de Sitter) background, but once we have
the necessary machinery, we will return to the question of inflation promoting
decay of the electroweak vacuum.
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Chapter 4

Correlation Functions in de
Sitter Space-time

This section discuses the computation of correlation functions for scalar fields in
a de Sitter background, with particular focus on long wave-length fluctuations
and the ‘stochastic approach’ to inflation.

4.1 Introduction and Motivation

Since the Hubble rate, H, is slowly varying during inflation, the space-time is
approximately de Sitter. As a first approximation then, it is useful to study the
behaviour of quantum fields in de Sitter space-times, particularly with regards
calculating observable quantities like the correlation function:

G(x1,x2, t1, t2) = 〈φ(x1, t1)φ(x2, t2)〉. (4.1)

This will be simplified by the fact that de Sitter space is a space-time of maximal
symmetry, much like Minkowski space-time, although the curvature does ensure
the computation is much more complicated. The action for a scalar field in de
Sitter space-time is, assuming a minimal coupling to gravity:

S =

∫
d4x
√
|det(g)|

(
−1

2
∇µφ∇µφ− V (φ)

)
. (4.2)

Variation gives rise to the Euler-Lagrange equations:

φ̈(x, t) + 3Hφ̇(x, t)− 1

a2
δij∂i∂jφ(x, t) + V ′(φ) = 0. (4.3)
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4.2 Quantum Field Theory in de Sitter Space-
time

The first element required for setting up a quantum field theory is an under-
standing of the behaviour of a massive, non-interacting scalar field. The follow-
ing argument is based on that by Bunch and Davies [21]. In their paper, they
also include a term in the Lagrangian for non-minimal coupling of the scalar
field to gravity. This has the effect of creating a scalar-tensor theory of gravity,
which breaks the equivalence principle, but is a useful model (for example, it
can be used for an inflationary model using the Higgs field alone as the inflaton,
[22]). The Lagrangian for this situation is:

S =

∫
d4x
√
|det(g)|

(
M2

2
R− 1

2
∇µφ∇µφ−

1

2
m2φ2 − ξ

2
φ2R

)
, (4.4)

where M is some mass scale (if ξ = 0, then M is the Planck scale[22]). ξ is the
non-minimal coupling constant between gravity and the scalar field. The field
equation for the scalar field is1:

(∇µ∇µ −m2 − ξR)φ = 0. (4.5)

The (flat2) de Sitter metric as it derives from the FRLW metric can be written
in the form:

ds2 = −dt2 + a2
0e

2Ht(dx2 + dy2 + dz2). (4.6)

Following Bunch and Davies[21], it is convenient to write this in a manner
conformally related to the Minkowski metric by choosing instead the time co-
ordinate:

η = − 1

Ha0eHt
, (4.7)

which ranges from η → −∞ as t → −∞ and η → 0 as t → 0. Note that this
demonstrates that the FLRW derived de Sitter metric does not cover all of de
Sitter spacetime - it is possible to analytically extend the η co-ordinate to the
range −∞ < η < ∞. For this reason, we say that the FLRW form only covers
half of de Sitter space-time3. Using this time co-ordinate, the metric can be
written:

ds2 =

(
1

Hη

)2

(−dη2 + dx2 − dy2 − dz2). (4.8)

Quantisation can be achieved by moving to the Fourier space representation:

φ(t,x) =

∫
d3k

(2π)
3
2

(âkφk(t)eik·x + â†kφ
∗
k(t)e−ik·x), (4.9)

1Note that here we are using the −+ ++ metric convention, while Bunch and Davies use
the +−−− convention.

2After some length of time for a de Sitter phase any curvature is negligible
3In much the same way that Schwarzschild Co-ordinates to not cover the interior of a Black

Hole’s event horizon.
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where:

φ̈k + 3Hφ̇k +

(
k2

a2
+m2 + ξR

)
φk = 0. (4.10)

At this point, it is convenient to change variables to a, since we know this is a
monotonic function of time. Thus:

d

dt
=

da

dt

d

da
= aH

d

da
,

d2

dt2
= a2H2 d2

da2
+ aH2 d

da
,

which gives the equation:

d2φk
da2

+
4

a

dφk
da

+

(
k2

a4H2
+
m2 + ξR

a2H2

)
φk = 0. (4.11)

The solution to this equation can be written in terms of Bessel functions (see
appendix 7.2):

φk(a(t)) = a−
3
2Zp

(
k

aH

)
= A1(−ηH)

3
2H(1)

p (−kη) +A2(−ηH)
3
2H(2)

p (−ηH),

(4.12)
where Zp is an arbitrary sum of Bessel functions of type p and p is given by:

p =

√
9

4
− (m2 + ξR)

H2
. (4.13)

There is an issue here, however, which is not present in Minkowski space. Curved
space-times do not in fact have unique vacuum states, âk |0〉 = 0, so the notion of
whether a state contains particles or not is ambiguous and depends on the choice
of vacuum4. However, for inflationary purposes, there is a distinguished choice
of vacuum. In the far past, as η → −∞, all length scales, k, are much smaller
than the de Sitter horizon and indeed than the curvature scale. Consequently,
they do not ‘see’ the curvature, so the space-time should behave like Minkowski
space-time, which does have a unique vacuum state. This choice - the ‘Bunch
Davies’ vacuum, is natural because it makes contact with the flat space definition
of particles. The coefficients A1 and A2 are fixed then by adopting the boundary
condition that the field should reduce to the flat space case in the limit as η → 0.
This is where using Hankel functions is the most natural way to proceed. In the
limit as η → −∞, the Hankel functions are asymptotically[23]:

H(1)
p (−kη) =

√
2

−πkη
e−ikη−i(2p+1)π4 +O((−kη)−

3
2 ), (4.14)

H(2)
p (−kη) =

√
2

−πkη
e+ikη+i(2p+1)π4 +O((−kη)−

3
2 ). (4.15)

4It is for this reason, for example, that black holes can emit Hawking radiation, as a state
starting as a vacuum in the far past contains particles in a thermal distribution in the far
future.
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In Minkowski space, the field would decompose as:

φ(x, t) =

∫
d3k

(2π)
3
2

(
âke
−iEkte+ik·x + â†ke

iEkte−ik·x
)
. (4.16)

This immediately fixes A2 = 0 since H
(2)
p has the wrong sign in the exponential

for the time dependent term. A1, however, is fixed by requiring the field to
satisfy the equal time commutation relations in the η → −∞ limit:

[φ(t,x), π(t,y)] = iδ(3)(x− y), (4.17)

or equivalently5:
[âk, â

†
k′ ] = δ(3)(k− k′). (4.18)

Note that π(t,y) = a3φ̇(t,y) (the factor of a3 comes from the
√
|det(g)| in the

Lagrangian). Computing this commutator, we find:

a3

∫
d3k

(2π)3
(φkφ̇

∗
k − φ∗kφ̇k)e−ik·(x−y) = iδ(3)(x− y). (4.19)

Now, use φ̇k = η̇ dφk

dη = 1
a

dφk

dη = −ηH dφk

dη . It is convenient to use the asymptotic

expansion of H
(1)
p to evaluate this derivative:

φk = A1(−ηH)
3
2H(1)

p (−kη) ∼ A1H
3
2 (−η)

√
2

πk
e−ikηe−i(2p+1)π4 +O(1),

(4.20)

dφk
dη
∼ −ikA1H

3
2 (−η)

√
2

πk
e−ikηe−i(2p+1)π4 +O(1). (4.21)

Only the exponential part contributes to the derivative at leading order. Thus:

φkφ̇
∗
k = −ηHikA2

1H
3η2 2

πk
+O(η). (4.22)

The k factors cancel, so φkφ̇
∗
k − φ∗kφ̇k = − 4i

π A
2
1H

4η3. Consequently:

−4i

π
A2

1H
4η3a3

∫
d3k

(2π)3
e−ik·(x−y) = −4i

π
A2

1H
4η3a3δ(3)(x− y) = iδ(3)(x− y),

(4.23)
in the limit as η → −∞. This therefore fixes the constant A1 as:

A1 =

√
− π

4H4η3a3
=

√
π

4H
, (4.24)

5The lack of a factor (2π)3 here is due to choosing a factor 1

(2π)
3
2

in the Fourier expansion

of the field, rather than 1
(2π)3

.
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so:

φk(η) = H(−η)
3
2

√
π

4
H(1)
p (−kη). (4.25)

Using this, and the definition âk |0〉 = 0 in the Bunch Davies vacuum, |0〉, it is
possible to compute the correlation function:

G(x1,x2, t1, t2) =

∫
d3k

(2π)3
eik·(x1−x2)φk(t1)φ∗k(t2)

=
1

(2π)2

∫ π

0

dθ

∫ ∞
0

dkk2 sin θeik|x1−x2| cos θφk(t1)φ∗k(t2)

=
1

(2π)2

∫ ∞
0

dk
k

−i|x1 − x2|

[
eik|x1−x2| cos θ

]π
0
φk(t1)φ∗k(t2)

=
1

2π2

∫ ∞
0

dk
k

|x1 − x2|
sin(k|x1 − x2|)φk(t1)φ∗k(t2)

=
H2

8π|x1 − x2|
(η1η2)

3
2

∫ ∞
0

dkk sin(k|x1 − x2|)H(1)
p (−kη1)H(2)

p (−kη2).

Integrals like this can be performed using the hypergeometric function[21]. We
are most interested in the Feynman propagator, for which the final answer is[24]:

DF (x1, x2) =θ(− 1

η2
+

1

η1
)
H2(c− 1)(c− 2)

16π sin[(c− 1)π]
F (c, 3− c, 2;Z(x1, x2))

+ θ(− 1

η1
+

1

η2
)
H2(c− 1)(c− 2)

16π sin[(c− 1)π]
F (c, 2− c, 2;Z(x2, x1)), (4.26)

where:

Z(xi, yj) = 1 +
(η2 − η1 − iε)2 − (x2 − x1)2

4η1η2
(4.27)

and:

c =
3

2
− p. (4.28)

This covers the free case. If, however, we are interested in the interacting
case, the situation is somewhat different. In fact, a divergence occurs for light
fields. Sasaki et al[24] computed the four point correlation function for the φ4

interaction, and found the connected part to be:

Gc(4)(x1, x2, x3, x4; η) =2λIm

[
4∏
i=1

(∫
d3ki

(2π)3

)
(2π)3δ(3)(

4∑
i=1

ki) exp

(
i

4∑
i=1

ki · xi

)
4∏
i=1

(φki(η))

(∫ η

−∞
dη′ +

∫ ∞
0

dη′
)

1

(Hη′)4

4∏
i=1

(φ∗ki(η
′))

]
.

(4.29)

The η′ integral potentially diverges at η′ → 0. To analyse this, consider the limit

as η′ → 0. We know already that φk ∼ η
3
2H

(1)
p (−ηk). Note also that as η′ → 0,
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the Hankel function H
(1)
p is dominated6 by η′−p. Thus, φk(η′) ∼ |η′| 32−p = |η′|c

as η′ → 0. The asymptotic behaviour of the Hankel functions for large η′ is
∼ ηeikη′ +η

3
2O(η−

3
2 ) which does not diverge, so any divergence must arise from

the area around η′ = 0. Power law integrals of this form:∫ ε

0

xqdx =
εq+1

q + 1
− 0q+1

q + 1
, (4.30)

converge so long as q > −1 and diverge if q ≤ −1. In this case, there are four
Hankel functions (each giving a factor η′c) and a factor of η′−4 which originates
from

√
|det(g)| (in the conformal co-ordinates where det(g) = − 1

(Hη)8 ). Thus,

the divergence condition is −4 + 4c ≤ −1, or c ≤ 3
4 . Consequently, the four

point function diverges if the mass obeys the inequality:

3

2
−
√

9

4
− (m2 + ξR)

H2
≤ 3

4
. (4.31)

It is straightforward to derive the Ricci scalar in (four-dimensional) de Sitter
space. The result is: R = 12H2. Consequently, if:

m2 ≤
(

27

16
− 12ξ

)
H2, (4.32)

then the four point function diverges. Sasaki et al[24] showed that this di-
vergence is in fact completely general, and not just present in the four point
function.
The origin of the divergence is at small η, which corresponds to t → ∞. Note
that for positive m and ξ, c > 0 so the divergence is only present as a con-
sequence of the determinant factors, 1

(ηH)4 . This indicates that physically, it

should be interpreted as a result of the unbounded growth of the de Sitter
space-time, and thus an unbounded volume of intermediate positions for the
vertices of Feynman diagrams to be found. This identifies it as an infra-red
divergence, rather than a UV divergence. This does not mean that the theory
breaks down, only that the structure for m2 in this range is not amenable to
perturbation theory.

4.3 Stochastic Formalism

Infra-red divergences like that encountered in section 4.2 are closely connected
to the behaviour of long wave-length modes in the scalar field. One method to
approach this then, is to introduce an infra red cut-off and deal with the long
wavelength modes separately. Starobinsky [25] showed that in fact the long

6This can be seen from the power series for J−p(x), whose lowest power is x−p, while the

lowest power of Jp(x) is xp. Since H
(1)
p is just a linear sum of these, it is also dominated by

x−p as x→ 0
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wavelength modes can be treated as c-numbers, rather than operators.
More precisely, the scalar field is split as:

φ(x, t) = φ̄(x, t) +

∫
d3k

(2π)
3
2

θ(k − εa(t)H)
[
âkφk(t)e−ik·x + â†kφ

∗
k(t)eik·x

]
.

(4.33)
The Heaviside step function, θ(k − εa(t)H) ensures that only those short-
wavelength modes with wavenumber k > εa(t)H are quantised (long wavelength
modes with k < εa(t)H are included in φ̄). φ̄ can be interpreted as the field
average over a length scale7 1

εH . It is assumed that ε < 1, in which case, this
length scale is larger than the de Sitter Horizon, R = 1

H .
The basic idea of the stochastic formulation is that the long wave-length be-
haviour can be treated classically, and the quantised short wavelength modes
provide an effective stochastic term to the equation of motion for φ̄. To do this,
we also have to compute, instead of φ, the average of φ over a volume associated
to the length scale 1

εH . Space-time is then split into these ‘fundamental averag-
ing volumes’ and we say that any two points closer than 1

εH are considered to be
the ‘same point’ (in the sense that they have the same average). This procedure
is called coarse graining and is used frequently in statistical mechanics.
We can see how this works by writing φ = φ̄+ δφshort. The equation of motion
for φ in a generic potential can be written:

φ̈+ 3Hφ̇− 1

a2
δij∂i∂jφ+ V ′(φ) = 0, (4.34)

which decomposes as:

¨̄φ+ 3H ˙̄φ+ δ̈φshort + 3H ˙δφshort −
1

a2
δij∂i∂j φ̄−

1

a2
δij∂i∂jδφshort

+ V ′(φ̄) + δφshortV
′′(φ̄) +O(δφ2

short) = 0. (4.35)

The short wavelength corrections δφshort can be regarded as small, so we ignore
the second order terms. Note that this equation applies for each φk separately
in Fourier space, so for k > εa(t)H we have:

φ̈k + 3Hφ̇k +
k2

a2
φk + V ′′(φ̄)φk = 0. (4.36)

Note that k2 > ε2a2H2 for the short wavelength modes. Now, the scalar field
may contributes little to the de Sitter expansion, in which case it is possible to
choose ε to be small, but not too small, so that ε2H2 � V ′′(φ). If however,
the scalar field contributes significantly then it can be assumed that it satisfies
the slow roll conditions (if it does not, then the space-time is not de Sitter), in
which case:

ε2H2 ∼ ε2 8πGN
3

(
φ̇2

2
+ V (φ)

)
, (4.37)

7x is a co-moving co-ordinate, so the wave-number k and thus wavelength 1
εa(t)H

is also

co-moving. Multiplying by a(t) gives the physical averaging scale, 1
εH

, which is constant in
time.
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where φ̇2

2 � V (φ) for slow-roll inflation, and the slow roll conditions also require

V ′′(φ)� V (φ)GN , so it follows that V ′′(φ)� k2

a2 . In both cases then, the field
equation for the short wavelength modes can be written:

φ̈k + 3Hφ̇k +
k2

a2
φk = 0. (4.38)

The solution for an equation like this was already discussed in section 4.2. As-
suming a Bunch-Davies vacuum, it is:

φk(η) = H(−η)
3
2

√
π

4
H

(1)
3
2

(−kη) =
H√
2k

(
η − i

k

)
e−ikη. (4.39)

Now, to proceed further, note that the last two terms in Eq. (4.35) can be
neglected - the last because δφ2

short is small, and the penultimate by the slow-
roll discussion above. The spatial derivative of the long wavelength modes can
also be neglected[25]. This is also easier to see in momentum space, where we
can compare it to the 3Hφ̇k term:

3H2 ∂φk
∂(Ht)

+
k2

a2
φk, (4.40)

where we use the dimensionless time scale Ht. Observe that k2 < ε2a2H2 �
a2H2 for the long wavelength part of φ. Thus, the 3Hφ̇k term dominates over
the second derivative.
Neglecting these terms, the equation for φ̄ is:

¨̄φ+ 3H ˙̄φ+ V ′(φ̄) +

[
δ̈φshort + 3H ˙δφshort −

1

a2
δij∂i∂jδφshort

]
= 0. (4.41)

At this point, it is useful to note that the terms with second derivatives in
time can be neglected. Physically speaking, this is because the 3Hφ̇ terms act
as damping terms, which erode any initial inertia of the field (more precisely,
the expansion red-shifts away momenta, so acts like a damping term). A nice
analogy is an object sliding down a quadratic potential well (h = 1

2ω
2x2) under

gravity, but with a high friction surface:

m
d2x

dt2
+ γ

dx

dt
+mgω2x = 0. (4.42)

Assuming significant over-damping, ie,
(
γ
m

)2 � gω2, then the solution is:

x(t) '−
[
mv0

γ
+ (x0 +

2mv0

γ
)
gω2m2

γ2

]
e
−
(
γ
m−

gω2m
γ

)
t

+

[
(x0 +

v0m

γ
) +

gω2m2

γ2
(x0 +

2v0m

γ
)

]
e−

gω2m
γ t. (4.43)
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The overdamping means that the first term decays exponentially faster than the
second. Physically speaking, this corresponds to the friction eroding the initial
velocity. The solution quickly decays towards an attractor solution:

x(t) =

[
(x0 +

v0m

γ
) +

gω2m2

γ2
(x0 +

2v0m

γ
)

]
e−

gω2m
γ t. (4.44)

However, this attractor solution is, up to initial conditions, what we would
obtain by neglecting the inertia term:

γ

m

dx

dt
+ gω2x = 0 =⇒ x(t) = x0e

− gω
2m
γ t. (4.45)

The same is true of Eq. (4.41) - the kinetic terms will rapidly die away and the
solution tends towards an attractor solution, satisfying:

3H ˙̄φ+ V ′(φ̄) +

[
3H ˙δφshort −

1

a2
δij∂i∂jδφshort

]
= 0, (4.46)

where:

δφshort =

∫
d3k

(2π)
3
2

θ(k − εa(t)H)(âkφk(t)e−ik·x + h.c.). (4.47)

Taking time derivatives of δφshort is complicated by the time dependence of
εa(t)H. For slowly varying H, it is possible to assume that ε also varies in
time in such a way that εH is constant, so we need only worry about the time
dependence of a(t). In fact, any time derivative acting on the Heaviside step
function will behave the following way:

∂

∂t
θ(k − εa(t)H) =

d(k − εa(t)H)

dt

dθ(s)

ds

∣∣∣∣
s=k−εa(t)H

= −εȧHδ(k − εa(t)H) = −εa(t)H2δ(k − εa(t)H). (4.48)

The equation thus becomes:

3H ˙̄φ+ V ′(φ̄) +

∫
d3k

(2π)
3
2

θ(k − εa(t)H)(âk

[
3Hφ̇k +

k2

a2
δijφk

]
e−ik·x + h.c. )

− 3Hεa(t)H2

∫
d3k

(2π)
3
2

δ(k − εa(t)H)
(
âkφke

−ik·x + h.c.
)

= 0.

(4.49)

Eq. (4.38) with neglected φ̈ term implies that the third term here vanishes.
Consequently, we can write the equation for φ̄ as:

˙̄φ = −V
′(φ)

3H
+ f(x, t), (4.50)

where:

f(x, t) = εa(t)H2

∫
d3k

(2π)
3
2

δ(k − εa(t)H)
(
âkφke

−ik·x + h.c.
)
. (4.51)
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The crucial step now is to interpret Eq. (4.50) as a Langevin equation - a
stochastic differential equation where f(x, t) constitutes a noise term. In this
sense, it is equivalent to Brownian motion. In some small time step, ∆t, φ̄

receives a classical drift, −V
′(φ̄)
3H and a large number of random ‘kicks’, the

source of which is the random behaviour of the short wave-length quantum
field. Note - although the distribution of kicks from f(x, t) is not necessarily
a Gaussian distribution - the total effect on φ̄ in some time ∆t is Gaussian by
the Central Limit Theorem, because of the coarse graining procedure discussed
at the beginning of this section. We took φ̄ to be the average8 of the long
wavelength part of φ over a volume defined by the physical length scale 1

εH .
Consequently, f in Eq. (4.50) is the arithmetic mean of the quantum ‘kicks’
over this same region. But the Central Limit theorem says that the arithmetic
mean of a set of independent random variables drawn from the same distribution
is approximately normally distributed with the same mean and variance as the
original distribution (whatever that may be). Thus, we can take f(x, t) to
be normally distributed and it is now a true random number, rather than a
quantum operator.
However, f is clearly a multivariate normal distribution since it covers many
different points. In fact, an infinite number of them. To obtain the precise
distribution, it is necessary to compute the 2-point correlation function of f .
This is because a generic, N -point multi-variate distribution with mean µi and
variance matrix gij has the following form:

p(x1, x2, . . . , xN ) =

√
det(g)

(2π)N
exp

(
−1

2
(xi − µi)gij(xj − µj)

)
(4.52)

and the two-point correlation function is given by:

〈xixj〉 = g−1
ij . (4.53)

8Specifically the arithmetic mean
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In this case, there are a continuous infinite number of variables, f(x, t). We can
compute the correlation function:

〈f(x1, t1)f(x2, t2)〉 =

∫
d3k1d3k2

(2π)3

[
ε2a(t1)a(t2)H4δ(k1 − εa(t1)H)

× δ(k2 − εa(t2)H) 〈0| [âk1
, â†k2

] |0〉 e−ik1·x1eik2·x2φk1
(t1)φ∗k2

(t2)

]
=

∫
d3k1

(2π)3

[
ε2a(t1)a(t2)H4δ(k1 − εa(t1)H)δ(k1 − εa(t2)H)

× e−ik1·(x1−x2)φk1(t1)φ∗k1
(t2)

]
=

1

(2π)2

∫ ∞
0

[
k2

1dk1

∫ π

0

dθ sin θe−ik1|x1−x2| cos θ

× ε2a(t1)a(t2)H4δ(k1 − εa(t1)H)δ(k1 − εa(t2)H)φk1
(t1)φ∗k1

(t2)

]
=

1

4π2

∫ ∞
0

[
dk1

k1

i|x1 − x2|

∫ π

0

dθ
d

dθ

[
e−ik1|x1−x2| cos θ

]
× ε2a(t1)a(t2)H4δ(k1 − εa(t1)H)δ(k1 − εa(t2)H)φk1

(t1)φ∗k1
(t2)

]
=

1

2π2

∫ ∞
0

dk1

[
k1 sin(k1|x1 − x2|)

|x1 − x2|
ε2a(t1)a(t2)H4

× δ(k1 − εa(t1)H)δ(εa(t2)H − εa(t2)H)φk1
(t1)φ∗k1

(t2)

]
=

1

2π2

[
k1 sin(k1|x1 − x2|)

|x1 − x2|
ε2a(t1)a(t2)H4 δ(t1 − t2)

|εa(t1)H2|
φk1

(t1)φ∗k1
(t2)

]
k1=εa(t1)H

=
1

2π2
ε2a(t1)2H3δ(t1 − t2)|φεa(t1)H(t1)|2 sin(εa(t1)H|x1 − x2|)

|x1 − x2|

=
H3

4π2
a(t1)2ε2δ(t1 − t2)

H2

εa(t1)H

(
1

a(t1)2H2
+

1

ε2a(t1)2H2

)
× sin(εa(t1)H|x1 − x2|)

|x1 − x2|

=
H3

4π2
δ(t1 − t2)(1 + ε2)

sin(εa(t1)H|x1 − x2|)
εa(t1)H|x1 − x2|

.

The first step uses [âk1 , â
†
k2

] = δ(3)(k1 − k2). The second step moves to polar
co-ordinates with the z axis chosen along the x1 − x2 direction. The third can
be shown using integration by parts, but it is faster to observe that θ integrand
is proportional to g′(θ)eg(θ) and write this in terms of d

dθ (eg(θ)). The fourth step
then evaluates the θ integral and uses the δ(x− y)f(x) = δ(x− y)f(y) property
of delta functions. The fifth collapses the k1 integral and uses δ(f(x)− f(y)) =
δ(x−y)
|f ′(x)| , while the sixth step involve substituting in Eq. (4.39) and the seventh
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performs some algebraic re-arrangements. We now define the sinc function as:

sinc(x) =
sinx

x
(4.54)

and neglect ε2 to obtain the final result:

〈f(x1, t1)f(x2, t2)〉 =
H3

4π2
δ(t1 − t2)sinc(εa(t1)H|x1 − x2|). (4.55)

Solving the Langevin equation (4.50) is evidently not unique, since the random
element will lead to a different result each time, but it should give rise to a
probability density distribution, ρ(φ̄(x, t) = ϕ) ≡ ρ(ϕ(x, t)), for the field to take
on the value ϕ at (x, t). In principle, it is possible to find this via a Monte-Carlo
simulation, running the system many times to estimate the probability of the
field taking on the value ϕ, but there is another technique to extract the exact
distribution. This will form the subject of the next section.

4.4 The Fokker-Planck Equation

The Fokker-Planck equation is a partial differential equation describing the time
evolution of the probability density distribution, ρ(ϕ, t) for a field to take on
some value, ϕ. The advantage of this equation is that it is easier to interpret
than the equivalent Langevin equation.
The derivation we will give here is based on [26] and [27]. The derivation in
[26] is slightly heuristic, although correct in its approach, since it does not take
proper account of the non-commutation of the operators involved (and thus the
need for a time ordered exponential, as opposed to a conventional exponential).
However, we base our derivation on it because it is both elegant and simple.
Consider a generic set of Langevin equations:

dai
dt

= vi(a) + ξi(t), (4.56)

where ξi(t) are a set of stochastic variables (possibly correlated) and vi(a) are
deterministic ‘velocity’ terms. This gives the time evolution of a number of
degrees of a freedom, ai, arranged in the vector a. Note that we can consider
second order equations (for example, as is the case for Brownian motion) by
choosing one variable, a1 to be position and another, a2, to be velocity. In the
Brownian motion example, we would have:

dx

dt
= v (4.57)

dv

dt
= − γ

m
v︸︷︷︸

damping term

− 1

m
V ′(x)︸ ︷︷ ︸

Potential term

+
1

m
ξ(t)︸ ︷︷ ︸

Random ‘kicks’

. (4.58)

Thus, higher order equations can always be written as as set of coupled Langevin
equations, just like ordinary differential equations. ai need not be positions -
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they are simply any dynamic variable used to describe the system.
It is assumed that the stochastic variables ξi obey the correlation properties:

〈ξi(t1)ξi(t2)〉 = gijδ(t1 − t2) (4.59)

〈ξi(t)〉 = 0. (4.60)

Now, consider a large ensemble: an infinite number of independent copies of
the system. The phase space trajectory of the vector a will be different for
each copy, resulting in a phase space distribution, ρ(a, t) over the ensemble. It
is a basic principle of statistical mechanics (the Liouville Theorem) that this
distribution is conserved in time:

dρ

dt
=
∂ρ

∂t
+
∑
i

[
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

]
= 0. (4.61)

Note that the Liouville theorem is really a special case of the continuity equation:

∂ρ

∂t
+
∑
i

[
∂(ρq̇i)

∂qi
+
∂(ρṗi)

∂pi

]
=
∂ρ

∂t
+
∑
i

[
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

]
+ ρ

∑
i

[
∂q̇i
∂qi

+
∂ṗi
∂pi

]
=
∂ρ

∂t
+
∑
i

[
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

]
+ ρ

∑
i

[
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

]
=
∂ρ

∂t
+
∑
i

[
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

]
,

where we have used Hamilton’s equations, q̇i = ∂H
∂pi

and ṗi = −∂H∂qi . This form
will prove the most useful, in fact. First note that momenta, pi are actually
assumed to be included in the set of dynamical variables, ai (or else they are
not included because the Hamiltonian has no dependence on them). Thus, we
can write the Liouville theorem in this case:

∂ρ(a, t)

∂t
+
∑
i

∂(ρ(a, t)ȧi)

∂ai
= 0. (4.62)

Physically speaking, this says that probability is conserved in the sense that
the total probability in some region V ,

∫
V

ddaρ(a, t) can only change via a
probability current ρȧi leaving the surface ∂V . Using the Langevin equations,
we can write this as:

∂ρ

∂t
= − ∂

∂ai
(vi(a)ρ)− ∂

∂ai
(ξi(t)ρ)

= −L0ρ−
∑
i

ξi(t)L1iρ, (4.63)
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where the operators L0 and L1i are defined by:

L0 ≡
∑
i

(
∂vi(a)

∂ai
+ vi(a)

∂

∂ai

)
, (4.64)

L1i ≡
∂

∂ai
. (4.65)

Now, let us find σ(a, t) such that:

ρ = e−tL0σ. (4.66)

The Liouville theorem implies:

−e−tL0L0σ + e−tL0
∂σ

∂t
= −

∑
i

ξiL1i(e
−tL0σ)− e−tL0L0σ, (4.67)

so, σ must satisfy:

∂σ

∂t
= −etL0

∑
i

ξi(t)L1ie
−tL0σ ≡

∑
i

ξi(t)Mi(t)σ. (4.68)

This is analogous to the time evolution equation for a state in the interaction
picture, in quantum field theory. σ can thus be found via a Dyson series:

σ(t) = T exp

(
−
∫ t

0

dt′
∑
i

ξi(t
′)Mi(t

′)

)
σ(0), (4.69)

where T exp denotes the time ordered exponential. Now, this evidently depends
on the stochastic function ξi, so we take an average over ξi:

〈σ(t)〉 =

∫
ddξP (ξ)T exp

(
−
∫ t

0

dt′
∑
i

ξi(t
′)Mi(t

′)

)
σ(0), (4.70)

where P (ξ) is a multivariate Gaussian distribution. This is tricky to express
since there are a continuous infinity of ξi(t). Consider the discrete form with N
variables9, ξµ. We would then have:

P (ξ) =

√
|det(g)|
(2π)N

exp

(
−1

2
ξµgµνξν

)
, (4.71)

where gµν is the correlation matrix for this distribution. Note that the time
ordering symbol, T can be taken outside the integral as all it really does is
impose a re-ordering of the matrices:

〈σ(t)〉 = T

(√
|det(g)|
(2π)N

∫
dNξ exp

(
−ξµMµ −

1

2
ξµgµνξν

))
σ(0). (4.72)

9we will use Greek indices to distinguish between ξi, the discrete set of functions, and
ξµ, a discrete approximation to ξ(t) - note that µ includes the discrete ξi degrees of freedom
implicitly - essentially we have made time discrete and gathered the resulting 2D array ξi(ta)
into a single index, µ
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We have to be careful, however, because Mµ is a matrix. Seemingly, we have
the integral of the exponential of a matrix, which is hard to define. The most
reasonable definition would be a matrix of the integral of each component, but
computing the components and then integrating them is not easy to do. How-
ever, we can use the shift invariance of Gaussian integrals. Recall the simpler
case of a constant k and a single dimension:∫ ∞

−∞
dxekx−

x2

2 = e
k2

2

∫ ∞
−∞

dxe−
1
2 (x−k)2

= e
k2

2

∫ ∞
−∞

dx′e−
1
2x
′2

=
√

2πe
k2

2 , (4.73)

where x′ = x − k. It is not entirely obvious that the same holds if k is a
matrix, because it doesn’t really make sense to shift x by a matrix k and then
integrate with respect to x− k. We can, however, put this calculation on firmer
grounds for matrices by proving it using a different method. Simply expand the
exponential: ∫ ∞

∞
dxekxe−

x2

2 =

∞∑
i=0

kn

n!

∫ ∞
−∞

dxxne−
x2

2

=

∞∑
i=0

k2n

(2n)!

∫ ∞
−∞

x2ne−
x2

2

=

∞∑
i=0

k2n

(2n)!

√
2π

(2n)!

n!

(
1√
2

)2n

=
√

2π

∞∑
i=0

(k
2

2 )n

n!

=
√

2πe
k2

2 .

In the second line we used the fact that this integral vanishes for odd n, and in

the third we used the well known result for
∫∞
−∞ x2ne−

x2

2 . This shows that the
result holds even if k is a matrix. The multi-dimensional generalisation of this
result is:

〈σ(t)〉 = T

(√
|det(g)|
(2π)N

∫
dNξ exp

(
−ξµMµ −

1

2
ξµgµνξν

))
σ(0)

= T

( ∞∑
n=0

(−1)nMµ1 . . .Mµn

n!
〈ξµ1

. . . ξµn〉

)
σ(0)

= T

( ∞∑
n=0

Mµ1
. . .Mµ2n

(2n)!
〈ξµ1 . . . ξµ2n〉

)
σ(0),
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since again the odd n terms vanish. Now, 〈ξµ1 . . . ξµ2n〉 is given by Wick’s
Theorem to be a sum of products of all possible pairs 〈ξµξν〉. For 2n terms,
some careful combinatorics reveals that there are:

# of Pairs =
(2n)!

n!2n
(4.74)

such possible pairings, each a product of n factors ∼ 〈ξµξν〉. Now, it can be
shown that this gives 〈ξµξν〉 = g−1

µν (see any text on Gaussian integrals or
Path integral quantum field theory). Also, the time ordering, T ensures that
the precise order of Mµi is irrelevant, since they will be re-ordered anyway, so
in each term of the Wick decomposition, we can re-order the Mµi :

Mµ1
. . .Mµ2n

g−1
µiµj . . . g

−1
µlµk

→ (Mµg
−1

µνMν)n. (4.75)

Because we sum over all µi, this will actually be the same thing for each term
in the Wick expansion, so we pick up a factor of the number of possible Wick
pairings:

〈σ(t)〉 = T

( ∞∑
n=0

(Mµg
−1

µνMν)n

(2n)!
× (2n)!

n!2n

)
σ(0) = T exp

(
1

2
Mµg

−1
µνMν

)
σ(0).

(4.76)
Note that we would have obtained exactly the same result by writing:

−ξµMµ −
1

2
ξµgµνξν =

1

2
Mµg

−1
µνMν −

1

2
(ξµ +Mρg

−1
ρµ)gµν(ξν +Mσg

−1
σν)

(4.77)
and asserting shift invariance of the Gaussian integral, despite the fact that ξµ
was shifted by a matrix.
Now all that remains is to make time continuous again. Thus, the result be-
comes:

〈σ(t)〉 = T exp

(
1

2

∫ t

0

dt1

∫ t

0

dt2Mi(t1)〈ξi(t1)ξj(t2)〉Mj(t2)

)
σ(0)

= T exp

(
1

2

∫ t

0

dt1

∫ t

0

dt2gijδ(t1 − t2)et1L0L1ie
−t1L0et2L0L1je

−t2L0

)
σ(0)

= T exp

(
1

2

∫ t

0

dt1gije
t1L0L1iL1je

−t1L0

)
σ(0)

= T exp

(
1

2

∫ t

0

dt1gije
t1L0

∂2

∂ai∂aj
e−t1L0

)
σ(0). (4.78)

(4.79)

From this, it follows that10:

∂〈σ(t)〉
∂t

=
gij
2
etL0

∂2

∂ai∂aj

(
e−tL0〈σ(t)〉

)
, (4.80)

10The time ordered exponential actually satisfies this equation by definition.
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so:

∂〈ρ(a, t)〉
∂t

=
∂(e−tL0〈σ(t)〉)

∂t

= −L0(e−tL0〈σ(t)〉) + e−tL0
gij
2
etL0

∂2

∂ai∂aj

(
e−tL0〈σ(t)〉

)
. (4.81)

Defining P (a, t) ≡ 〈ρ(a, t)〉, which is the expectation value of the phase space
distribution, we have the Fokker-Planck equation:

∂P (a, t)

∂t
= −

∑
i

∂

∂ai
(vi(a)P (a, t)) +

∑
i,j

gij
2

∂2P (a, t)

∂ai∂aj
, (4.82)

where vi is the deterministic velocity term from the Langevin equation, 4.50.

4.5 Fokker-Planck Equation in De Sitter Space

In section 4.3 we derived the Langevin equations for a scalar field in de Sitter
space, which we repeat here for convenience:

˙̄φ = −V
′(φ̄)

3H
+ f(x, t), (4.83)

where:

〈f(x1, t1)f(x2, t2)〉 =
H3

4π2
δ(t1 − t2)sinc(εa(t1)H|x1 − x2|). (4.84)

Consider the correlation function for f at a single point, x. Then:

〈f(x, t1)f(x, t2)〉 =
H3

4π2
δ(t1 − t2). (4.85)

Let us define ρ1(ϕ, t) as the expectation value of the phase space distribution
for the field ϕ at time t. This satisfies the Fokker-Planck equation for a single

dynamical variable, ϕ, with g11 = H3

4π2 and v1(ϕ) = −V
′(ϕ)
3H . Thus:

∂ρ1(ϕ, t)

∂t
=

1

3H

∂

∂ϕ
(V ′(ϕ)ρ1(ϕ, t)) +

H3

8π2

∂2ρ1(ϕ, t)

∂ϕ2
. (4.86)

This partial differential equation is essentially a diffusion equation for the prob-
ability density. Assuming we know the initial distribution, (e.g, if the field starts
at ϕ0 for this point, then ρ(ϕ, t0) = δ(ϕ− ϕ0)) then we can compute the prob-
ability distribution for the fields value at any other point in the future. More
generally, we can define r = |x1 − x2| and obtain:

gij =
H3

4π2

(
1 sinc(εa(t1)Hr)

sinc(εa(t1)Hr) 1

)
. (4.87)
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This time, there are two dynamical variables, ϕ1, ϕ2 for the field at the two
space-time points, and the Fokker-Planck equation is:

∂ρ2(ϕ1, ϕ2, t)

∂t
=

1

3H

∂

∂ϕ1
(V ′(ϕ1)ρ2) +

1

3H

∂

∂ϕ2
(V ′(ϕ2)ρ2)

+
H3

8π2

∂2ρ2

∂ϕ2
1

+
H3

8π2

∂2ρ2

∂ϕ2
2

+ sinc(εa(t1)Hr)
H3

4π2

∂2ρ2

∂ϕ1∂ϕ2
. (4.88)

Starobinsky and Yokoyama studied the properties of Eq. (4.86) in detail in [28].
They found that the general solution was:

ρ1(ϕ, t) = exp (−ν(ϕ))

∞∑
n=0

anΦn(ϕ)e−Λn(t−t0), (4.89)

where Φn(ϕ) are eigenfunctions and Λn eigenvalues of the following Schroedinger-
like equation:

−1

2

dΦn
dϕ2

+
1

2

[
v′(ϕ)2 − ν′′(ϕ)

]
Φn =

4π2Λn
H3

Φn (4.90)

and ν(ϕ) is defined by:

ν(ϕ) ≡ 4π2V (ϕ)

3H4
. (4.91)

To show that this is the general solution, first note that Eq. (4.86) is a separable
partial differential equation. Applying the method of separation of variables
implies:

1

T

dT (t)

dt
= −Λ (4.92)

ΓϕΦ̃(ϕ) ≡ 1

3H

∂

∂ϕ
(V ′(ϕ)Φ̃(ϕ)) +

H3

8π2

∂2Φ̃(ϕ)

∂ϕ2
= −ΛΦ̃(ϕ). (4.93)

We choose −Λ on the right hand side for later convenience (we will later show
that this ensures Λ is positive). Eq. (4.92) is trivial to solve, but (4.93) requires
some thought - it contains a term with a single ∂

∂ϕ derivative, but is otherwise
very similar to the time independent Schroedinger equation. Consider making
the substitution Φ̃(ϕ) = f(ϕ)Φ(ϕ). Then Eq. (4.93) becomes:[

V ′′(ϕ)

3H
f(ϕ) +

H3

8π2

d2f

dϕ2
+
V ′(ϕ)

3H

df

dϕ

]
Φ +

[
V ′(ϕ)

3H
f(ϕ) +

H3

4π2

df

dϕ

]
dΦ

dϕ

+
H3

8π2
f(ϕ)

d2Φ

dϕ2
= −Λf(ϕ)Φ(ϕ). (4.94)

The first derivative term can be made to vanish if f is chosen to satisfy:

df

dϕ
= −4π2V ′(ϕ)

3H4
f, (4.95)
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which has the solution:

f(ϕ) = exp

(
−4π2V (ϕ)

3H4

)
≡ exp (−ν(ϕ)) , (4.96)

up to constants, which will cancel. Now, making this substitution gives:[
V ′′(ϕ)

6H
− 2π2V ′(ϕ)2

9H5

]
f(ϕ)Φ +

H3

8π2

d2Φ

dϕ2
f(ϕ) = −Λf(ϕ)Φ. (4.97)

Cancelling f and multiplying by− 4π2

H3 , we see that this gives rise to the Schroedinger
equation:

−1

2

d2Φn
dϕ2

+
1

2

[
4π2

3H4
V ′′(ϕ)−

(
4π2

3H4

)2

V ′(ϕ)2

]
Φn =

4π2Λn
H3

Φn, (4.98)

where we know that only discrete sets of Λn,Φn satisfy this, since the Schroedinger
equation is a Sturm-Liouville equation. The general solution to equation 4.86
can thus be written as in Eq. (4.89). The coefficients an are chosen so as to
match the initial condition at t = t0, i.e., ρ1(ϕ, t0). The orthogonality relation
for the Schroedinger equation means that:∫

dϕΦn(ϕ)Φm(ϕ) = δnm (4.99)

and using this, the an coefficients can be expressed as:

an =

∫
dϕeν(ϕ)Φn(ϕ)ρ1(ϕ, t0). (4.100)

A useful observation about Eq. (4.90) is that it can be written in the form:

1

2

(
− ∂

∂ϕ
+ ν′(ϕ)

)(
∂

∂ϕ
+ ν′(ϕ)

)
Φn =

4π2Λn
H3

Φn (4.101)

and given that ∂
∂ϕ

†
= − ∂

∂ϕ (this follows from integration by parts), then this is

in the form 1
2AA

†Φn = EnΦn. Again, the orthogonality here will help because,
taking (y, z·) =

∫
dϕy(ϕ)z(ϕ) as the inner product allows us to write:

En =

(
Φn,

1

2
AA†Φn

)
=

1

2

(
A†Φn, A

†Φn
)
≥ 0, (4.102)

by the definition of the hermitian conjugate and exploiting the positive-definiteness
of this inner product. Thus, we can conclude that Λn ≥ 0.
One final property that Starobinsky and Yokoyama pointed out was the exis-
tence of a Λ0 = 0 eigenvalue for certain cases:

−1

2

d2

dϕ2
e−ν(ϕ) +

1

2
[ν′(ϕ)2 − ν′′(ϕ)]e−ν(ϕ) = 0. (4.103)
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However, this is only a valid eigenfunction if it is normalisable:

N ≡
∫

dϕe−2ν(ϕ) <∞. (4.104)

Provided this condition holds, then there exists a static solution of the Fokker-
Planck equation:

ρeq(ϕ) = N−
1
2 e−ν(ϕ), (4.105)

which usefully reveals the zeroth eigenfunction. This is significant, because after
a long period of time, all the components of ρ(ϕ, t0) with non-zero Λn decay
exponentially, leaving Φ0 as the solution. Thus, Φ0 is said to be an ‘attractor
solution’ - all other solutions of the partial differential equation ultimately end
up as this solution. For this reason, we refer to Φ0 as the equilibrium solution.
A consequence of this is that the quantity N tell us whether or not a given
system has an equilibrium solution. If N is finite, then Φ0 exists, but if it
diverges, then no such equilibrium solution exists. One reason this could happen
is if V (ϕ)→ −∞ at ±∞, in which case, N diverges because e−2ν(ϕ) → +∞ as
ϕ→ ±∞. Physically, this corresponds to the fact that the classical behaviour of
an object in this potential is to roll away to negative infinity. Since this motion
will carry on forever, then there is no way the system can come to equilibrium.

4.6 Calculation of Arbitrary Correlation Func-
tions

In quantum field theory, a quantity frequently of interest is the two point cor-
relation function. The one point function, 〈φ(t, x)〉 tells us about the behaviour
of the average value of the field, but the two-point function can give informa-
tion which can actually be observed, by measuring the statistical correlation
between different parts of the cosmic microwave background, for example. In
the stochastic approach to inflation, the two point correlation function between
the auxiliary ϕ at times separated by t and both at the same point x is given
by:

G(t) ≡ 〈ϕ(t, x)ϕ(0, x)〉 =

∫
dϕ1ϕ2ϕ1(t)ϕ2(0)ρ2(ϕ1(t), ϕ2(0)). (4.106)

Here, ρ2 is the joint probability density of ϕ1 and ϕ2 simultaneously taking on
the values that they do. In this section, we will detail a way of calculating G(t)
described by Starobinsky and Yokoyama[28]. If ϕ1 and ϕ2 are correlated in
some way, then evidently they are not independent. In particular, ρ2 is given
by:

ρ2(ϕ1(t1), ϕ2(t2)) =Π(ϕ1(t1)|ϕ2(t2))ρ1(ϕ2(t2))θ(t1 − t2)

+Π(ϕ2(t2)|ϕ1(t1))ρ1(ϕ1(t1))θ(t2 − t1), (4.107)

where ρ1(ϕ1(t1)) is the probability density for ϕ = ϕ1(t1) at time t2, and
Π(ϕ2(t2)|ϕ1(t1)) is the conditional probability density that ϕ takes on the value
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ϕ2(t2) at time t2 > t1, given that ϕ = ϕ1(t1) at t1. The Heaviside step func-
tion11, θ(t2 − t1) ensures that t2 > t1. Both of these are one-point probability
distributions, so satisfy the Fokker-Planck equation. Π in particular has the
initial condition:

Π(ϕ1(t)|ϕ2(t)) = δ(ϕ1 − ϕ2). (4.108)

This is because ϕ must (obviously) be single valued at t so has zero probability
density of being anything except ϕ2.
We must have:

G(t) =

∫
dϕ1dϕ2ϕ1ϕ2Π(ϕ1(t0 + t)|ϕ2(t0))ρ1(ϕ2, t0) (4.109)

=

∫
dϕ1ϕ1Ξ((ϕ1, t),

(4.110)

where:

Ξ(ϕ1, t) ≡
∫

dϕ2ϕ2ρ1(ϕ2, t0)Π(ϕ1(t0 + t)|ϕ2(t0)) (4.111)

=⇒ Ξ(ϕ1, 0) = ϕ1ρ1(ϕ1, t0). (4.112)

Consequently:

∂Ξ(ϕ1, t)

∂t
=

∫
dϕ2ϕ2ρ1(ϕ2, t0)

∂Π(ϕ1(t0 + t)|ϕ2(t0)))

∂t

=

∫
dϕ2ϕ2ρ1(ϕ2, t0)Γϕ1Π(ϕ1(t0 + t)|ϕ2(t0))

= Γϕ1Ξ(ϕ1, t),

so, Ξ satisfies the same Fokker-Planck equation as the one-point probability
distribution, for which we know the analytic solution.

4.6.1 Temporal Correlation Function: Static Case

Consider first the case where there exists a static solution, ρeq(ϕ). After a long
time, ρ1(ϕ2, t0) will settle down to it.

Ξ(ϕ, t) = e−ν(ϕ)
∑
n

AnΦn(ϕ)e−Λnt, (4.113)

11θ(t) = 0 if t < 0, 1 if t > 0
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where An is determined by the initial condition, Ξ(ϕ, 0) = ϕρeq(ϕ):

An =

∫
dϕ2Ξ(ϕ2, 0)eν(ϕ2)Φn(ϕ2)

=

∫
dϕ2ϕ2ρeq(ϕ2)eν(ϕ2)Φn(ϕ2)

= N−1

∫
dϕ2e

−ν(ϕ2)ϕ2Φn(ϕ2). (4.114)

N is as defined by Eq. (4.104). We can thus write:

G(t) =

∫
dϕ1Ξ(ϕ1, t)ϕ1

=

∫
dϕ1

∫
dϕ2N

−1
∑
n

e−ν(ϕ1)e−ν(ϕ2)Φn(ϕ2)Φn(ϕ1)ϕ1ϕ2e
−Λnt

= N
∑
n

A2
ne
−Λnt. (4.115)

This gives a very convenient way of computing the correlation function. All we
need to do it numerically calculate the integral in Eq. (4.114) for each n, to
give An and then sum up the results with the eigenvalues, Λn (Eq. (4.115)) to
give the full correlation function.

4.6.2 Extension to Arbitrary Correlators

G(t) gives only the behaviour for temporally separated fields at the same spacial
position. In general, it is necessary to compute:

G(t1, t2, |x1 − x2|) = 〈ϕ(x1, t1)ϕ(x2, t2)〉. (4.116)

First consider the points at the same time, t1 = t2 = t. The Fokker-Planck
equation obeyed by the joint probability density ρ(ϕ1, ϕ2) for this situation is
Eq. (4.88):

∂ρ

∂t
= Γϕ1

ρ+ Γϕ2
ρ+

sin(εa(t)H|x1 − x2|)
εa(t)H|x1 − x2|

H3

4π2

∂2ρ

∂ϕ1ϕ2
. (4.117)

The sinc function here is non-trivial to handle, but can be approximated, fol-
lowing Starobinsky and Yokoyama[28] by the Heaviside step function θ(1 −
εa(t)H|x1 − x2|). In this approximation, it is assumed that any points closer
together than the infra-red cut-off a(t)|x1 − x2| < 1

εH are completely cor-
related (θ = 1) while those further apart are completely uncorrelated. For
a(t)|x1 − x2| < 1

εH then, the equation is:

∂ρ

∂t
= Γϕ1ρ+ Γϕ2ρ+

H3

4π2

∂2ρ

∂ϕ1ϕ2
. (4.118)
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This can be solved by first integrating with respect to one of the fields:

∂

∂t

(∫
dϕ2ρ(ϕ1, ϕ2)

)
= Γϕ1

(∫
dϕ2ρ(ϕ1, ϕ2)

)
+

1

3H

∫
dϕ2

∂

∂ϕ2
[V ′(ϕ2)ρ(ϕ1, ϕ2)]

+
H3

8π2

∫
dϕ2

∂2ρ(ϕ1, ϕ2)

∂ϕ2
2

+
H3

4π2

∫
dϕ2

∂

∂ϕ2

[
∂ρ(ϕ1, ϕ2)

∂ϕ1

]
= Γϕ1

(∫
dϕ2ρ(ϕ1, ϕ2)

)
+

1

3H
[V ′(ϕ2)ρ(ϕ1, ϕ2)]

ϕ2=∞
ϕ2=−∞

+
H3

8π2

[
∂ρ(ϕ1, ϕ2)

∂ϕ2

]ϕ2=∞

ϕ2=−∞
+
H3

4π2

[
∂ρ(ϕ1, ϕ2)

∂ϕ1

]ϕ2=∞

ϕ2=−∞
.

If we impose vanishing boundary conditions on ρ and its derivatives at ϕ1, ϕ2 →
±∞ then all that is left is:

∂

∂t

(∫
dϕ2ρ(ϕ1, ϕ2)

)
= Γϕ1

(∫
dϕ2ρ(ϕ1, ϕ2)

)
. (4.119)

This is the one-point Fokker-Planck equation, which was already solved to give
the equilibrium distribution (assuming that such a state exists). If the integral
with respect to ϕ2 satisfies this, then:∫

dϕ2ρ(ϕ1, ϕ2) = ρeq(ϕ1), (4.120)

which implies:
ρ(ϕ1, ϕ2) = ρeq(ϕ1)δ(ϕ1 − ϕ2). (4.121)

This is to be expected - it says that there is zero probability of the fields differing,
which is exactly what we would expect as they are completely correlated in this
regime.
For a general separation, it is necessary to first find the time, tr when the points
at co-moving separation r = |x1−x2| were just leaving the completely correlated
region, that is, a(t)r = 1

εH . This occurs when a0e
Htrr = 1

εH , or:

tr = − 1

H
ln(ra0εH). (4.122)

By the solution, Eq. (4.121), to the equal time correlation function above, we
know that both fields had the equilibrium distribution at time tr. Assuming
t1, t2 > tr (to be discussed below) the distribution at the later times t1 and t2
is given by the conditional probability:

ρ(ϕ1, ϕ2) =

∫
dϕrρeq(ϕr)Π(ϕ1(x1, t2)|ϕr(x1, tr))Π(ϕ2(x2, t2)|ϕr(x2, tr)).

(4.123)
This equation is really just a statement of probability - we sum (integrate)
over all possible values of ϕr the probability that ϕ(x1, t2) takes on the value
ϕ1(x1, t1) given ϕ(x1, tr) = ϕr, multiplying by the probability that ϕ(x2, t2)
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takes on the value ϕ2(x2, t2) given ϕr(x2, t2). Note that this assumes t1 and t2
both exceed t1, t2 > tr because multiplying Π(ϕ1|ϕr) and Π(ϕ2|ϕr) to obtain
the joint probability is only valid if these two events are independent, which is
only true if |x1 − x2| > 1

εH (recall that we required events further apart than
this to be completely uncorrelated). Since tr is the last time that this is true,
then we need both t1, t2 > tr for this to apply. If this is not the case, then
|x1 − x2| < 1

εH at either t1, t2 or both (whichever are less then tr), in which
case, the two points at that time lie inside the volume over which we averaged
to form an infra-red cut-off. From the point of view of stochastic inflation then,
they are completely correlated and behave as if they were the same point. In
that case, the correlation function is just the temporal correlation function,
G(|t1 − t2|) as derived previously.
The correlation function is thus given by:

G(r, t1, t2) ≡
∫

dϕ1dϕ2ϕ1ϕ2ρ(ϕ1, ϕ2)

=

∫
dϕ1dϕ2dϕrϕ1ϕ2

[
Π(ϕ1(x1, t1)|ϕr(x1, tr))×

×Π(ϕ2(x2, t2)|ϕr(x2, tr))ρeq(ϕr)

]
. (4.124)

The conditional probability densities both satisfy the Fokker-Planck equation
for a single point, subject to the initial condition Π(ϕ1(x1, tr)|ϕr(x1, tr)) =
δ(ϕ1 − ϕr). The solution is:

Π(ϕ1(x1, t1)|ϕr(x1, tr)) = e−ν(ϕ1)
∑
n

anΦn(ϕ1)e−Λn(t1−tr), (4.125)

where an are determined by the initial condition:

an =

∫
dϕ̃eν(ϕ̃)δ(ϕ̃− ϕr)Φn(ϕ̃) = eν(ϕr)Φn(ϕr). (4.126)

Thus12:

Π(ϕ1(x1, t1)|ϕr(x1, tr)) = eν(ϕr)−ν(ϕ1)
∑
n

Φn(ϕr)Φn(ϕ1)e−Λn(t1−tr). (4.127)

Substituting this in, we find:

G(r, t1, t2) =

∫
dϕ1dϕ2dϕrϕ1ϕ2ρeq(ϕr)e

2ν(ϕr)−ν(ϕ1)−ν(ϕ2)×

×
∑
n,m

Φn(ϕr)Φm(ϕr)Φn(ϕ1)Φm(ϕ2)e−Λn(t1−tr)−Λm(t2−tr)

12Note that this does recover the initial condition at t1 = tr because
∑
n Φn(ϕr)Φn(ϕ1) =

δ(ϕr − ϕ1). This follows from the completeness relation for the eigenstates of a hermi-
tian operator,

∑
n |Φn〉 〈Φn| = I, so 〈ϕr| I |ϕ1〉 ≡ δ(ϕr − ϕ1) =

∑
n〈ϕr|Φn〉〈Φn|ϕ1〉 =∑

n Φn(ϕr)Φ∗n(ϕ1) (recalling that in this case, Φn is real).
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Now, use the definition of the coefficients An (equation 4.114) to simplify this:

G(r, t1, t2) = N2

∫
dϕrρeq(ϕr)e

2ν(ϕr)
∑
n,m

Φn(ϕr)Φm(ϕr)AnAme
−Λn(t1−tr)−Λm(t2−tr).

(4.128)
But, ρeq(ϕr) = N−1e−2ν(ϕr), so this gives:

G(r, t1, t2) = N

∫
dϕr

∑
n,m

Φn(ϕr)Φm(ϕr)AnAme
−Λn(t1−tr)−Λm(t2−tr)

= N
∑
n

A2
ne
−Λn(t1+t2−2tr).

Since
∫

dϕrΦn(ϕr)Φm(ϕr) = δnm by the basis function orthonormality. Com-
paring to Eq. (4.115), gives:

G(r, t1, t2) = G(t1 + t2 − 2tr). (4.129)

Consequently, any correlation function can be expressed in terms of the tempo-
ral correlation function for a single point. Notice that this result depended on
special properties of the equilibrium solution, and would have to be modified in
the case of the non-existence of such an equilibrium solution.
This result also depends on the arbitrary small constant ε, however, this depen-

dence can be removed13 by requiring that ε−2 Λn
H ∼ 1[28]. If this is the case, then

e+2Λntr = e−
2Λn
H ln(a0rεH) = e−

2Λn
H ln(a0rH)e−

2Λn
H ln(ε) = ε−

2Λn
H e−

2Λn
H ln(a0rH) ∼

e−
2Λn
H ln(a0rH). This means we can write the correlation function in the more

useful form:

G(r, t1, t2) = G

(
t1 + t2 +

2

H
ln(ra0H)

)
. (4.130)

4.6.3 Non-Static Case

If there is no static solution for the one-point probability distribution, then the
situation is more complicated. The absence of static solutions is a consequence
of the fact that

N =

∫
dϕe−2ν(ϕ) (4.131)

diverges. In this situation, it is not actually valid to assume that ΓϕΦ̃n =

−ΛnΦ̃n has solutions of the form Φ̃n = e−ν(ϕ)Φn(ϕ) because such solutions
cannot be made to satisfy the boundary conditions in this case14. Instead, it is
necessary to abandon this analytic simplification and simply try to solve:

H3

8π2

d2Φ̃n(ϕ)

dϕ2
+
V ′(ϕ)

3H

dΦ̃n
dϕ

+
V ′′(ϕ)

3H
Φ̃n = −ΛnΦ̃n, (4.132)

13Or at least made very weak.
14Φn cannot decrease fast enough to cancel out the divergence of e−ν(ϕ)
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numerically. This equation is not, however, in Sturm-Liouville form. A Sturm-
Liouville equation can be placed in the form:

−p(ϕ)
d2Φ̃n
dϕ2

− p′(ϕ)
dΦ̃n
dϕ

+ q(ϕ)Φ̃n = λnw(ϕ)Φ̃n(ϕ). (4.133)

Observe that multiplying throughout by 4π2

H3 would make the coefficient of the
first-order derivative term precisely ν′(ϕ). Analogously to solving a first order
equation by means of an integrating factor then, one can place Eq. (4.132) in

Sturm-Liouville form by multiplying throughout by − 4π2

H3 e
2ν(ϕ):

−1

2
e2ν(ϕ) d2Φ̃n

dϕ2
− 1

2
2ν′(ϕ)e2ν(ϕ) dΦ̃n

dϕ
− ν′′(ϕ)e2ν(ϕ)Φ̃n =

4π2Λn
H3

e2ν(ϕ)Φ̃n.

(4.134)
By inspection, this is indeed Sturm-Liouville form with the functions:

p(ϕ) =
1

2
e2ν(ϕ), (4.135)

q(ϕ) = −v′′(ϕ)e2ν(ϕ), (4.136)

w(ϕ) = e2ν(ϕ). (4.137)

The factor of 1
2 in p(ϕ) is chosen so that the familiar 4π2Λn

H3 appears as the
eigenvalue on the right hand side, but more importantly because it ensures that
the Sturm-Liouville orthonormality condition is just15:∫

dϕΦ̃n(ϕ)Φ̃m(ϕ)e2ν(ϕ) = δnm (4.138)

In the case that the static solution exists, one can thus just define Φ̃n =
e−ν(ϕ)Φn, which was already shown to eliminate the first order term leaving
the differential equation found before. Furthermore, that orthonormality con-
dition now agrees with this one:∫

dϕΦn(ϕ)Φm(ϕ) = δnm. (4.139)

Assuming that such eigenfunctions can be found, the full solution is:

ρ1(ϕ, t0) =
∑
n

anΦ̃n(ϕ)e−Λnt0 , (4.140)

where an are determined from the initial distribution at t = 0 in by means of
the following integral, this time exploiting orthonormality. The absence of a
static solution is signalled by the absence of a (normalisable) eigenfunction to
Eq. (4.134) with eigenvalue Λ0 = 0. In this case, the solution is asymptotically

15In general, the eigenfunctions of a regular Sturm-Liouville equation satisfy∫
dϕΦn(ϕ)Φm(ϕ)w(ϕ) = δnm
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dominated by the smallest non-zero eigenvalue, Λ1. After a long period of time
then, we can write:

ρ1(ϕ, t0) ∼ a1Φ̃1(ϕ)e−Λ1t0 . (4.141)

The auxiliary function Ξ(ϕ, t) is then given by:

Ξ(ϕ, t) =
∑
n

a1e
−Λ1t0BnΦ̃n(ϕ)e−Λnt, (4.142)

where we have extracted the factor a1e
−Λ1t0 from the coefficient Bn for numer-

ical convenience:

a1e
−Λ1t0Bn =

∫
dϕ2Ξ(ϕ2, 0)e2ν(ϕ2)Φ̃n(ϕ2)

=

∫
dϕ2ϕ2ρ1(ϕ2, t0)e2ν(ϕ2)Φ̃n(ϕ2)

=

∫
dϕ2ϕ2a1Φ̃1(ϕ2)Φ̃n(ϕ2)e2ν(ϕ2)−Λ1t0

= a1e
−Λ1t0

∫
dϕΦ̃1(ϕ)Φ̃n(ϕ)ϕe2ν(ϕ). (4.143)

Thus:

Bn =

∫
dϕΦ̃1(ϕ)Φ̃n(ϕ)ϕe2ν(ϕ). (4.144)

With this computed, it is possible to compute the temporal correlation function:

G(t) =

∫
dϕ1ϕ1Ξ(ϕ1, t) (4.145)

= a1e
−Λ1t0

∫
dϕ1ϕ1

∑
n

BnΦ̃n(ϕ1)e−Λnt (4.146)

= a1e
−Λ1t0

∑
n

BnCne
−Λnt, (4.147)

where:

Cn ≡
∫

dϕ1ϕ1Φ̃n(ϕ1). (4.148)

The Bn coefficient may be slightly problematic, as a1, a coefficient from the
initial condition on ρ1(ϕ, t) is needed. However, since the over-all scale set by
e−Λ1t0 is also largely unknown, this isn’t the most pressing difficulty. The issue
here is that ϕ can roll to very large values because of the shape of the potential.
The simplest example of a potential where Eq. (4.131) is infinite is when the
potential is negative, for example, V (ϕ) = −λ4ϕ

4. No static solution exists
because the field just keeps moving to larger and larger values and never comes
to rest. The entire solution decays, because the probability density distribution
becomes stretched over an infinite range of ϕ (so eventually vanishes everywhere,
even if the total integral remains 1).
For the general case, the expression is again more complicated. The derivation
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of G(r, t1, t2) in the static case relied on special properties of the static solution,
Φ0 which are not replicated here. Starting from Eq. (4.124), the conditional
probability distribution now evolves as:

Π(ϕ1(x1, t1)|ϕr(x1, tr)) =
∑
n

anΦ̃n(ϕ1)e−Λn(t1−tr), (4.149)

where an is determined using the orthogonality relation, Eq. (4.138)

an =

∫
dϕ1δ(ϕ1 − ϕr)Φ̃n(ϕ1)e2ν(ϕr) = Φ̃n(ϕr)e

2ν(ϕr). (4.150)

Thus, the general correlation function for t1, t2 > tr is given by:

G(r, t1, t2) =

∫
dϕ1dϕ2dϕrϕ1ϕ2Π(ϕ1(x1, t1)|ϕr(x1, tr))Π(ϕ2(x2, t2)|ϕr(x2, tr))a1e

−Λ1tr Φ̃1(ϕr)

= a1e
−Λ1tr

∫
dϕ1dϕ2dϕrϕ1ϕ2e

4ν(ϕr)×

×
∑
n,m

Φ̃n(ϕr)Φ̃m(ϕr)Φ̃n(ϕ1)Φ̃m(ϕ2)Φ̃1(ϕr)e
−Λn(t1−tr)e−Λm(t2−tr)

= a1e
−Λ1tr

∑
n,m

BnmCnCme
−Λnt1e−Λmt2e(Λn+Λm)tr , (4.151)

where Cn was defined in Eq. (4.148) and the set of coefficients Bnm are defined
by:

Bnm ≡
∫

dϕrΦ̃1(ϕr)Φ̃n(ϕr)Φ̃m(ϕr)e
4ν(ϕr). (4.152)

It is prudent to check that this agrees with the single-point result in the limit
as r → 0. In that limit, set tr = t0 and t1 = tr = t0, while t2 − t1 = t =⇒
t2 − tr = t. Thus,

G(0, t0, t0 + t) = a1e
−Λ1t0

∑
n,m

BnmCnCme
−Λmt, (4.153)

but:∑
n

BnmCn =
∑
n

∫
dϕrΦ̃1(ϕr)Φ̃n(ϕr)Φ̃m(ϕr)e

4ν(ϕr)

∫
dϕ1Φ̃n(ϕ1)ϕ1.

(4.154)
Now, use Eq. (7.7) is appendix 7.1 to write:∑

n

Φ̃n(ϕr)Φ̃n(ϕ1) = e−2ν(ϕr)δ(ϕr − ϕ1), (4.155)

giving: ∑
n

BnmCn =

∫
dϕrdϕ1Φ̃1(ϕr)Φ̃m(ϕr)e

2ν(ϕr)ϕ1δ(ϕr − ϕ1)

=

∫
dϕrΦ̃1(ϕr)Φ̃m(ϕr)e

2ν(ϕr)ϕr ≡ Bm. (4.156)
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Thus,

G(0, t0, t0 + t) = a1e
−Λ1t0

∑
m

BmCme
−Λmt ≡ G(t). (4.157)

This confirms that we can recover the temporal correlation function from the
more general one.

4.7 Inflationary Fluctuations and Electroweak
Vacuum Stability

We now have the necessary machinery to analyse how inflationary fluctuations
affect the stability of the Higgs vacuum. We want to know how the mean square
expected field value, 〈φ̄2(t)〉 evolves with time. To analyse this problem, consider
the Fokker-Planck Eq. (4.88) for two points at equal times:

∂ρ2(ϕ1, ϕ2, t)

∂t
= Γϕ1

ρ2 + Γϕ2
ρ2 +

H3

4π2

∂2ρ2

∂ϕ1∂ϕ2
, (4.158)

with Γϕ defined as in Eq. (4.93). Note that we have approximated the sinc
function as in Eq. (4.118), because points closer than a(t)|x1 − x2| < 1

εH are
assumed to be completely correlated (in fact, we will take the limit as x1 → x2,
where this becomes exact). Now, the two point correlation function is given by:

〈φ̄(x1, t)φ̄(x2, t)〉 =

∫
dϕ1

∫
dϕ2ϕ1ϕ2ρ2(ϕ1, ϕ2, t). (4.159)

Multiply by Eq. (4.158) by ϕ1ϕ2 and integrate over ϕ1, ϕ2 to obtain:

d〈φ̄(x1, t)φ̄(x2, t)〉
dt

=

∫
dϕ1dϕ2ϕ1ϕ2

[
Γϕ1

ρ2 + Γϕ2
ρ2 +

H3

4π2

∂2ρ2

∂ϕ1∂ϕ2

]
.

(4.160)
However:∫

dϕ1dϕ2ϕ1ϕ2Γϕ1ρ2 =

∫
dϕ1dϕ1ϕ1ϕ2

[
1

3H

∂

∂ϕ1
(V ′(ϕ1)ρ2) +

H3

8π2

∂2ρ2

∂ϕ2
1

]
= −

∫
dϕ1dϕ2ϕ2

[
1

3H
V ′(ϕ1)ρ2 +

H3

8π2

∂ρ2

∂ϕ1

]
. (4.161)

The boundary terms vanish due to the boundary conditions on ρ2 at ϕ1 → ±∞.
We also find that ∫

dϕ1
∂ρ2

∂ϕ1
= [ρ2]

ϕ1=∞
ϕ1=−∞ = 0, (4.162)

by the same boundary conditions. Therefore:∫
dϕ1dϕ1ϕ1ϕ2Γϕ1

ρ2 = − 1

3H

∫
dϕ1dϕ2V

′(ϕ1)ϕ2ρ2 = − 1

3H
〈V ′(φ̄(x1, t))φ̄(x2, t)〉.

(4.163)
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The final term is the mixed derivative, however, this, it transpires, is consider-
ably simpler to handle:∫

dϕ1dϕ2ϕ1ϕ2
H3

4π2

∂2ρ2

∂ϕ1∂ϕ2
= (−1)2 H

3

4π2

∫
dϕ1dϕ2ρ2(ϕ1, ϕ2, t) =

H3

4π2
.

(4.164)

This follows again by integration by parts. Now, in the limit as x1 → x2, the
first and second terms on the RHS of Eq. (4.160) are identical under exchange
of ϕ1 and ϕ2. Thus they add to give a factor of two and we obtain:

d〈φ̄2(t)〉
dt

= − 2

3H
〈φ̄(t)V ′(φ̄(t))〉+

H3

4π2
. (4.165)

This is an extremely useful equation. For potentials like 1
2m

2φ2 + λ
4!φ

4, the
expectation value 〈φ̄V ′(φ̄)〉 is positive and the first term on the RHS acts to
damp oscillations. The second term, however, tends to increase them with
time. Nothing in our derivation prevents H being time dependent (except for
the derivation of the Fokker-Planck equation where we took time derivatives
of a(t)εH, however, extra terms can be avoided by allowing the arbitrary ε
parameter to be time dependent in such a way that ε(t)H(t) is constant in
time).
We see, therefore, that in an inflationary scenario, the expansion, characterised
by H, causes the mean square of φ̄ to increase with time, creating larger and
larger fluctuations (however, the first term will keep these from growing too
much). Assuming that φ̄ starts near to 0, then for small t (until φ̄ is comparable
to H) we have the solution:

〈φ̄2(t)〉 =
H3t

4π2
(4.166)

This is diffusive behaviour. A standard deviation proportional to
√
t is typical

of Brownian motion (to which stochastic inflation is equivalent). Examining the
first term - if the mass is light, so that m� H, we have V ′(φ̄) = m2φ̄+ h.o.t..
This will not be of similar magnitude to the second term (and thus, the fluctu-
ations will not stop growing) until φ̄ ∼ H.
Generally speaking then, inflationary fluctuations will tend to push φ̄ up to the
scale of H. If H is large, then this may push φ̄ into the global minimum. So
there are two questions that need to be answered - at what scale does the second
minimum arise, if at all, and what is the scale of H? Our discussion in section
3 is not precise enough to answer the first question. However, this issue has
been studied in detail, for example in [3] and [19], which we discussed in section
3.3. The central values of the top mass and Higgs mass seem to indicate an
instability around 1010 GeV[2].
The value of the Hubble rate, H, is trickier to pin down. We have seen that
H characterises the fluctuations in quantum fields during inflation. These fluc-
tuations should in principle leave a trace in the cosmic microwave background.
In particular, inflation will create fluctuations in the metric (a tensor field) as
well as scalar fields like the Higgs field. These fluctuations take the form of
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gravitational waves. It has been shown that the ratio, r, of tensor fluctuations
to scalar fluctuations is directly determined by the inflationary energy scale, in

other words, the Hubble constant H =
√

8πGNV (φ)
3 . We follow the notation and

definitions of [29], which gives the relationship between r and V as:

V (φ)
1
4 ∼

( r

0.01

) 1
4

1016 GeV. (4.167)

To be more precise about this, the ratio r is defined by:

r ≡ ∆2
t (k)

∆2
s(k)

(4.168)

Where ∆2
t (k) and ∆2

s(k) are the power spectra for tensor and scalar fluctuations
respectively, derived from the two point correlation functions in momentum
space. For example:

〈RkRk′〉 = (2π)3δ(3)(k + k′)
(2π2)∆2

s(k)

k3
, (4.169)

where R characterises scalar perturbations16. The dependence on k here indi-
cates that we are interested in H at the time when the scale k leaves the de Sitter
horizon. Consequently, a measurement of r is all that is needed to measure H.
However, to do this it is necessary to distinguish between fluctuations in the
CMB related to tensor field, and those related to scalar fields. The polarisation
of light from the CMB provides a way to do this.
The CMB is generated when the universe cools sufficiently that neutral atoms
formed, and Thompson scattering of photons becomes insufficient to sustain
photons in thermal equilibrium with matter. This is known as the time of
‘last scattering’. However, in addition to fluctuations in the temperature, there
are also fluctuations in the pattern of polarisation of scattered photons, since
Thompson scattering tends to polarise light.
This means that the light of the CMB contains patterns of polarisation. These
patterns can be decomposed into two orthogonal patterns, known as E-modes
and B-modes, in analogy to electric and magnetic fields, which are derived from
the gradient and curl of a vector potential, respectively. To understand where
these come from, we need to use some machinery for the description of polari-
sation, in particular, Stokes parameters. These are described in appendix 7.3.
The parameters I and V are not the most relevant to the CMB, since I describes
only the intensity (when we are more interested in the pattern, not its overall
scale) and V described circular polarisation. However, Thompson scattering is
an electromagnetic process which respects parity, so there is no way of generat-
ing a net circular polarisation[30]. The two relevant parameters are therefore Q
and U . These correspond to linear polarisation along axis rotated with respect

16Note that these are not just from scalar fields, but from scalar degrees of freedom in the
decomposition of the metric
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to each other by π
4 . However, these axis are arbitrary. Examining figure 7.2 of

appendix 7.3 one can see that a rotation of θ must transform Q and U as:

Q′ =Q cos 2θ + U sin 2θ

U ′ =−Q sin 2θ + U cos 2θ. (4.170)

The factor of 2 is due to the fact that a rotation of π
4 should swap Q and U

(up to a sign), rather than a factor of π
2 . Note that this transformation rule is

the same as a that for the second rank tensor representation of SO(2), which in
matrix notation transforms as:(

U ′ Q′

Q′ −U ′
)

=

(
cos θ − sin θ
sin θ cos θ

)(
U Q
Q −U

)(
cos θ sin θ
− sin θ cos θ

)
. (4.171)

Thus, the relevant polarisation information consists of a symmetric, traceless
second rank tensor field over a 2-sphere consisting of the surface of last scat-
tering. Now, a scalar field (for example, the temperature distribution) on a
2-sphere can be decomposed into spherical harmonics. The same is true of ten-
sor fields. This was studied by [30].In analogy to the fact that any vector field
can be decomposed into a gradient and a curl part, this tensor field can be
decomposed into E-modes and B-modes. The technical details require a study
of the differential geometry of a 2-sphere, given in [30], the details of which are
beyond the scope of this report. However, the essential physics here is that B
mode polarisation fields can only be produced by tensor fluctuations (such as
gravitational waves), and not scalar fluctuations (such as density or temperature
fluctuation). Consequently, if the B-mode fluctuations can be extracted, they
give a measure of r, and thus the energy scale of inflation.
This was done recently by BICEP2 collaboration[1], who measured r = 0.20+0.07

−0.05.
This result requires confirmation, however, and there is still active discussion
regarding the degree to which dust in space may have impacted the results. In
principle, however, this measurement (if confirmed) implies that the inflationary
energy scale is around the GUT scale, which coupled with central values of the
Higgs bosons and top quark masses implies that inflationary fluctuations should
have pushed the universe into the new minimum with a very large probability[2].
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Chapter 5

Numerical Study - The
Harmonic Oscillator
Method

In this section, we discuss solutions to the Fokker-Planck equation in various
quadratic and quartic potentials, with particular focus on numerical methods.
We present numerical results for a method of solving the Sturm-Lioville problem
associated to the Fokker-Planck equation, by expressing the resulting ordinary
differential equation in a harmonic oscillator basis.

5.1 Solving the Fokker-Planck Equation

The Fokker-Planck equation:

∂ρ(t, ϕ)

∂t
=

1

3H

∂

∂ϕ
(V ′(ϕ)ρ(t, ϕ)) +

H3

8π2

∂2ρ(t, ϕ)

∂ϕ2
, (5.1)

can in principle be solved explicitly since it is a separable equation. In section 4.5
We found the Sturm-Liouville problem associated to the Fokker-Planck equation
in the equilibrium case to be:

1

2

(
− d

dϕ
+ ν′(ϕ)

)(
− d

dϕ
+ ν′(ϕ)

)†
Φn =

4π2Λn
H3

Φn, (5.2)

(Recall that d
dϕ

†
= − d

dϕ , which follows from the product rule). This equation

is equivalent to the Schroedinger equation for the effective potential W (ϕ) =
1
2 (ν′(ϕ)2− ν′′(ϕ)) (its physical interpretation is different, however, since ρ(t, ϕ)
is a probability distribution, not a wave-function). Once the Φn are known, the
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general solution can be written:

ρ(t, ϕ) = exp

(
−4π2V (ϕ)

3H4

) ∞∑
n=0

anΦne
−Λn(t−t0), (5.3)

where the coefficients an can be determined by exploiting the orthonormality of
the Φn and using the initial state of ρ:

an =

∫
dϕ exp

(
4π2V (ϕ)

3H4

)
ρ(t0, ϕ)Φn(ϕ). (5.4)

While it would be possible to solve the Fokker-Planck equation simply by dis-
cretising Eq. (5.1), another approach is to solve Eq. (5.2) for the eigenfunctions
Φn and eigenvalues Λn, and evaluate the coefficients using Eq. (5.4). This re-
duces a partial differential equation problem to an eigenvalue problem for an
ordinary differential equation. There are two main numerical challenges here:

• Solving Eq. (5.2)

• Evaluating the coefficients an (a numerical integration problem, as it is
unlikely that a closed form solution can be found).

One approach to the first problem is to express the ‘matrix’ left hand side of
Eq. (5.2) in a different basis. A convenient basis to pick is the set of harmonic
oscillator basis functions. This method is described in [31]. See also section 5.2.
Using the definition p = −i d

dϕ one can write:(
p2

2
+W (ϕ)

)
Φn = EnΦn, (5.5)

where we consider ~ = 1 and m = 1. Now, in a basis of harmonic oscillator
function, it is easy to evaluate both ϕ and p:

ϕ =
1√
2ω

(â+ â†), (5.6)

p = i

√
ω

2
(â† − â). (5.7)

Using â |n〉 =
√
n |n− 1〉 and â† |n〉 =

√
n+ 1 |n+ 1〉, the matrix elements are:

ϕnm = 〈n|ϕ |m〉 =
1√
2ω

(〈n|
√
m |m− 1〉+ 〈n|

√
m+ 1 |m+ 1〉)

=
1√
2ω

(
√
mδn,m−1 +

√
m+ 1δn,m+1),

pnm = i

√
ω

2
(
√
m+ 1δn,m+1 −

√
mδn,m−1).
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In matrix form, these are:

p = i

√
ω

2



0 −
√

1 0 0 . . .√
1 0 −

√
2 0 . . .

0
√

2 0
. . . 0

0 0
. . .

. . .
...

...
... . . .

. . .
. . .


, ϕ =

√
1

2ω



0
√

1 0 0 . . .√
1 0

√
2 0 . . .

0
√

2 0
. . . 0

0 0
. . .

. . .
...

...
... . . .

. . .
. . .


.

(5.8)
The size of these matrices is infinite, since there are an infinite number of har-
monic oscillator basis functions. However, if we are mostly interested in the
low energy states of some potential, then truncating the matrices to some large
N provides a good approximation for bound states, as these will not differ too
much from the low energy states of the harmonic oscillator. Choosing some large
N , the Hamiltonian can thus be written as an N ×N matrix and diagonalised
to find the eigenfunctions and eigenvalues. The eigenfunctions will be expressed
in the form of a discrete vector, however, the components of this vector will be
the approximate components of the decomposition of the eigenfunction Φn into
harmonic oscillator basis states. i.e.,

Φn =
∑
m

cnmψm, (5.9)

where:

ψm(ϕ) =
1√

2mm!

(ω
π

) 1
4

Hm(
√
ωϕ) exp

(
−ω

2
ϕ2
)
. (5.10)

Hm being the m Hermite polynomial. The coefficients cnm are given by the
mth component of the nth eigenvector of Eq. (5.5). These are estimated by
truncating the matrix representation of Eq. (5.5) at size N × N , and numeri-
cally evaluating the eigenvalues. We chose to use the MATLAB ‘Eig’ function,
to diagonalise the N × N matrices, choosing N = 700 for reasons that will be
discussed below.
In fact, computing the eigenvectors and eigenfunctions of the large matrix ap-
proximation to the Hamiltonian is not the main numerical challenge of this
method. The limiting factor is the ability to (numerically) evaluate the in-
tegrals like Eq. (5.4), since for large n, the harmonic oscillator functions ψn
become highly oscillatory. Another related problem is that directly evaluating
Eq. (5.10) is difficult using numbers stored under IEEE Standard 754. It will
inevitably result in products of numbers which are very large or very small, even
if the result is not (for example - choosing n = 700 would require evaluating

2700 × 700! which is of order 101.9×103

, significantly higher than can be stored
by most double precision systems). One way around this problem is to use log-
arithms, but in this case we were able to devise a better approach, exploiting
the properties of Hermite polynomials. One of these is that they obey[32]:

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x). (5.11)
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It is then convenient to define a modified Hermite polynomial by combining the
n-dependent part of Eq. (5.10) as:

H̃n(x) =
1√

2nn!
Hn(x). (5.12)

These modified polynomials can easily be shown to obey the recursion relation:

H̃n(x) = x

√
2

n
H̃n−1(x)−

√
n− 1

n
H̃n−2(x). (5.13)

The advantage of this is that the increasingly large coefficients of the Hermite
polynomials to some degree cancel out the increasingly large factors from the

1√
2nn!

, with each step not involving numbers too large to be handled. Eventually,

however, even this approach will suffer from numerical errors. To test the range
over which this approach is viable, it is useful to compute, numerically, the
integral:

I =

∫ ∞
−∞
|ψn(x)|2dx. (5.14)

For the normalised simple harmonic oscillator states, Eq. (5.10), this should
always give I = 1, so any numerical errors will most readily show up in a de-
viation from this. The Hermite polynomials were generated using the recursion
relation, Eq. (5.13), in MATLAB, and the MATLAB numerical integration
function ‘integral’ used to compute I. The results for the recursive method are
compared to the logarithm method in figures 5.1 and 5.2 respectively.

As can be seen, the recursive method is reliable out to n ∼ 700 while the
logarithmic approach fails much earlier. This constrains the maximum size of
the matrices that can be used to give an approximation for the operators p
and ϕ. Cutting off the matrices this way, however, can lead to inaccuracies in
the computed eigenvalues and eigenfunctions. A way to test for the presence
of inaccuracies is to compute the coefficients cnm in Eq. (5.9) (which are just
the eigenvectors of Eq. (5.5) - in other words, cnm is the matrix diagonalising
this ‘Hamiltonian’). For a given n, we then plot them against m. Generically,
this will give rise to a discrete sequence and physically speaking, so long as the
energy levels of the potential under consideration are similar to those of the har-
monic oscillator (whose energy scale can be set using the frequency parameter,
ω), this sequence will converge to zero for large n. The physical reason for this is
that any dependence on large n leads to very high gradients, associated to high
momentum of the wave-function, and thus high energy, so this is only likely to
occur if the scale of the harmonic oscillator is poorly chosen for the potential
of interest. Examples of this are given in the next few sections. If the sequence
cnm for a given n is shown to converge to zero, this means that the behaviour of
the eigenfunction has been accurately captured using low n harmonic oscillator
states only and these is no contribution from high n states, so neglecting these
is justified. This is completely analogous to truncating a Fourier transform to
small frequencies for functions without large frequency components.
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Figure 5.1: Integral of the modulus square of the generated harmonic oscillator
basis function, with ω = 0.005H, against basis label, n, when using the recursive
method. The basis functions remain accurate out to about n = 700. Note
that the failure of the numerical integration can also be caused by the highly
oscillatory nature of the basis functions for large n, but as we need to compute
numerical integrals using these basis functions, this graph allows us to select a
range which is reliable.

This approach will work for computing the lowest eigenfunctions of a given
potential. For our purposes, this is usually all that is necessary because Eq.
(5.3) indicates that the eigenfunctions with larger eigenvalues, Λn, decay very
quickly compared to the smallest eigenvalues. We note that Eq. (5.2) is a Sturm-
Liouville problem, so the eigenvalues Λn are ordered (and thus non-degenerate).
This problem is thus readily solved by a method most reliable for the smallest
eigenvalues, as this method is.

5.2 Solving the Schroedinger Equation in a Har-
monic Oscillator Basis

The solution to the Schroedinger equation in a harmonic potential can be found
in any text on quantum mechanics. The first part of this section will simply
review these properties for convenience. The time independent Schroedinger
equation for a harmonic oscillator of frequency ω and m = 1 is:

−1

2

d2Ψn

dx2
+

1

2
ω2x2Ψn = EnΨn. (5.15)
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Figure 5.2: Integral of the modulus square of the generated harmonic oscillator
basis function, with ω = 0.005 H, against basis label, n, when using logarithms
to reduce floating point number size over-flow. The method fails at around
n = 60. The total numerical integral quickly becomes very large and the fact
that this happens much sooner than the recursive method demonstrates that
this is due to the computation of the basis functions, not the oscillatory nature
of the integrals.

This can be solved analytically, with the eigenfunctions:

Ψn(x) =
1√

2nn!

(ω
π

) 1
4

e−
ω
2 x

2

Hn(
√
ωx), (5.16)

where Hn is a Hermite polynomial. These polynomials can be defined via the
recursion relation:

Hn+1(x) = 2xHn(x)− 2nHn−1(x), (5.17)

where H0 = 1 and H1 = 2x are the first pair of polynomials. The eigenvalues
are given by:

En =

(
n+

1

2

)
ω (5.18)

An important property of the functions Ψn(x) is that they form a complete
basis set for the vector space of square integrable functions. This means that
any square integrable function, f(x) can be written in the form:

f(x) =
∑
n

cnΨn(x). (5.19)

In addition, these states are orthogonal and normalised:∫ ∞
−∞

dxΨn(x)Ψm(x) = δnm. (5.20)
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Thus, the coefficients cn are easily computed:

cn =

∫ ∞
−∞

dxΨn(x)f(x). (5.21)

Another useful property of these functions is that we can express the position
and momentum operators in terms of ladder operators:

x̂ =

√
1

2ω
(â+ â†), (5.22)

p̂ =i

√
ω

2
(â† − â). (5.23)

If |n〉 represents the Hilbert space vector for which Ψn(x) ≡ 〈x|n〉, then the
ladder operators satisfy:

â† |n〉 =
√
n+ 1 |n+ 1〉 , (5.24)

â |n〉 =
√
n |n− 1〉 . (5.25)

The factors
√
n+ 1 and

√
n being chosen to ensure the states remain normalised.

5.2.1 Expressing Differential Equations in a Harmonic Os-
cillator basis

Now, if we choose |n〉 to be the basis for our Hilbert space for square integrable
functions, it is clear that the position and momentum operators can both be
written in terms of the matrix elements:

〈n| x̂ |m〉 =

√
1

2ω
(
√
mδn,m−1 +

√
m+ 1δn,m+1) (5.26)

〈n| p̂ |m〉 =i

√
ω

2
(
√
m+ 1δn,m+1 −

√
mδn,m−1) (5.27)

These can be seen in matrix form in equation 5.8. Next, it is useful to observe
that a derivative with respect to x can be written:

d

dx
= ip̂ (5.28)

Thus, a generic Schroedinger equation can be written:

p̂2

2
Φn + V (x̂)Φn = EnΦn (5.29)

The advantage of using a simple harmonic oscillator basis is that we can truncate
the (infinite) set Ψn at some large N , to give an N ×N matrix approximation
of the Schroedinger equation:

HN×NΦn = EnΦn (5.30)
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Now, if the Φn we are interested in do not differ much from Ψn, which will often
be the case for polynomial potentials, then for the ‘infinite matrix’ form of H
in the harmonic basis, the eigenvectors Φn will have their non-zero components
mostly confined to the first N rows, with the rest being approximately zero.
Schematically, the eigenvalue equation will look like:(

HN×N ( infinite piece )
( infinite piece ) ( infinite piece )

)(
Φn,N
∼ 0

)
= En

(
ΦnN
∼ 0

)
(5.31)

Where ΦnN is an N dimensional vector. But this implies that the relation
HN×NΦnN = EnΦnN is approximately true, so long as the majority of the
non-zero components of the infinite Φn are found among the first N compo-
nents. This will most often be the case for the lowest eigenfunctions of a given
Hamiltonian. It should also be noted that using a harmonic oscillator basis for
H assumes that the boundary conditions are chosen so that the wave functions
vanishes at ±∞. For most equations that we wish to solve, this will be the case.
Once the eigenvectors of HN×N are found, it is then clear that they actually
give the coefficients cnm in:

Φn(x) =
∑
m

cnmΨm(x) (5.32)

Because

|ΦnN 〉 =


cn1

cn2

...
cnN

 =

N∑
m=1

cnm |Ψm〉 =⇒ 〈x|Φn〉 ≡ Φn(x) =

N∑
m=1

cnmΨm(x)

(5.33)
Thus, we can clearly see that the truncation gives a good approximation if the
eigenfunctions have most of their non-zero cnm in the first N components.
Another observation is that this method will be exact in the case of a harmonic
potential, because in a harmonic oscillator basis, H = p̂2

2 + 1
2ω

2x̂2 is by definition

diagonal. Thus, the eigenvectors will be


1
0
0
...

 ,


0
1
0
...

 . . . so Φn(x) = Ψn(x) as

expected, with no numerical error.

5.3 Massless Theory: V = λ
4φ

4

One of the simplest scalar theories that we can test is the interacting, massless
field with Lagrangian:

L =
1

2
∇µϕ∇µϕ−

λ

4
ϕ4. (5.34)
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We use a normalisation of 1
4 here for the interaction term, rather than the more

field-theoretically convenient 1
4! for better comparison with the Higgs mecha-

nism, in which we are ultimately interested. The potential here is:

V (ϕ) =
λ

4
ϕ4, (5.35)

so the solution to the Fokker-Planck equation can be written:

ρ(t, ϕ) = exp

(
−π

2ϕ4

3H4

) ∞∑
n=0

anΦne
−Λn(t−t0). (5.36)

Φn and Λn are determined from the solution to:

−1

2

d2Φn
dϕ2

+
1

2

((
4π2ϕ3

3H4

)2

− 4π2ϕ2

H4

)
Φn =

4π2Λn
H3

Φn. (5.37)

However, the field ϕ is not dimensionless. To process this numerically, and
following Starobinsky and Yokoyama [28], it is convenient to define the dimen-
sionless field:

ϕ̃ =

(
8π2λ

3

) 1
4 ϕ

H
. (5.38)

Note that in general, if the field is re-defined as ϕ̃ = Qϕ then the probability
densities must scale in the opposite direction: ρ̃(t, ϕ̃) = Q−1ρ(t, ϕ(ϕ̃)). This
scaling is actually carried by the wave-function Φn and coefficient an, so these
too must-rescale. In fact, from the definition of an it is easy to see that it must
scale exactly the same way as Φn:

ãn =

∫
dϕ̃ρ̃(t, ϕ̃)eν̃(ϕ̃)Φ̃n(ϕ̃). (5.39)

Thus if Φ̃n(ϕ̃) = kΦn(ϕ(ϕ̃)) then ãn = kan. In this case then, to obtain
the correct probability density, obeying ρ̃ = Q−1ρ then it is necessary that
Φ̃n = Q−

1
2 Φn

1. Substituting this re-scaling into Eq. (5.37) gives rise to:

−1

2

d2Φ̃n
dϕ̃2

+ (
1

8
ϕ̃6 − 3

4
ϕ̃2)Φ̃n =

Λn
2H

(
24π2

λ

) 1
2

Φ̃n. (5.40)

The left hand side is in a dimensionless form that is much easier to deal with
computationally. ϕ̃ ∼ 1 roughly corresponds to a field of the energy scale
of H (but not exactly, depending on the interaction strength, λ). Doing this
eliminates the unknown constant λ, and so the dependence of the eigenvalues

1This should be no surprise, since the solutions are those of the Schroedinger equation and
should thus have dimensions of the square root of the probability density. Another way to
look at this is to remember that Φn obeys

∫
dϕΦn(ϕ)∗Φm(ϕ) = δnm, so if we re-scale ϕ by

Q, Φn has to re-scale by Q−
1
2 in order to maintain the normalisation when integrating over

ϕ̃ instead.
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Λn on λ is known explicitly if the eigenvalues of this Sturm-Liouville problem
can be determined. In particular, they are:

Λn = 2H

(
λ

24π2

) 1
2

En, (5.41)

where the constants En must be determined numerically, but do not depend
on λ. Numerically solving this problem using the method described in section
5.1 is plausible. We computed the eigenvectors of Eq. (5.40), and these were
checked by plotting the sequences cnm as discussed in the last section. For the
example of ω = H, see figures 5.3 and 5.4.

5.3.1 Correlation Functions

In section 4.6 it we found an expression for the generic correlation function. For
our case, this is easy to compute:

G(t) = N
∑
n

A2
ne
−Λnt, (5.42)

where:

An = N−1

∫
dϕ2e

−ν(ϕ2)ϕ2Φn(ϕ2). (5.43)

Using the harmonic oscillator basis, the eigenvalues Λn and their associated
eigenfunctions, Φn(ϕ) were computed. The eigenfunctions, Φn were evaluated
numerically by means of the coefficient sequences, cnm (see figures 5.3 and 5.4
for example) and the harmonic oscillator expansion:

Φn(ϕ) =
∑
m

cnmψm(ϕ). (5.44)

The sequence cnm thus entirely characterises Φn. Only Φn out to n ∼ 80 were
considered, since beyond this the eigenfunctions depend on ψm higher than
m = 700, which was the highest harmonic oscillator basis function computed
(see figure 5.4). For the purposes of computing An, however, this was more than
enough, as figure 5.6 demonstrates. These coefficients were computed using the
standard MATLAB numerical integration routine. Consequently, the correla-
tion function for a massless φ4 theory in de Sitter Space was computed. First a
note on units: re-scaling ϕ as per Eq. (5.38) also changes g(t) = 〈ϕ(t)ϕ(t)〉, so
that the non-dimensionless correlation function acquires a factor of:

H2

√
3

8π2λ
. (5.45)

It is also convenient for numerical computations to use a dimensionless time.
Starobinsky and Yokoyama use[28]:

τ = Ht

√
λ

24π2
, (5.46)
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Figure 5.3: Coefficient sequences, cnm, for n = 5 and n = 50 (note that like the
simple harmonic oscillator, it is convenient to start at n = 0), for a harmonic
oscillator basis using ω = H.
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Figure 5.4: Coefficient sequences, cnm for n = 80 and n = 100. These indicate,
for example, that the computed eigenfunctions and eigenvalues are accurate
out to around n ∼ 80. The n = 100 case, however, does not appear to con-
verge within this range so is unlikely to be an accurate representation of the
eigenfunction.

89



Label, n Raw Eigenvalue, En Label, n Raw Eigenvalue, En
0 2.9363e-10 10 25.307
1 0.6843 11 29.1999
2 2.2269 12 33.2739
3 4.1298 13 37.5213
4 6.379 14 41.9353
5 8.9289 15 46.5098
6 11.7472 16 51.2393
7 14.8107 17 56.119
8 18.1012 18 61.1444
9 21.604 19 66.3113

Figure 5.5: First twenty raw eigenvalues, En for equation 5.40, where the physi-
cal eigenvalues Λn are computed via equation 5.41. Note that Λ0 is analytically
known to be zero, which is consistent with the very low value found numerically.

which is equivalent to choosing
√

( 24π2

H2λ ) as a unit of time. Taking these dimen-
sions into account, the correlation function can be computed - see figure 5.7.

G(t) = H2

√
3

8π2λ
N
∑
n

A2
ne
−2En

t√
24π2

H2λ . (5.47)

In quantum field theory, however, we are usually more interested in the equal-
time correlator at different points. This is also more of interest when studying
the CMB since we are looking at fluctuations a sphere all created at the same
point in time. Recall Eq. (4.130) which said that for potentials possessing an
equilibrium solution, we have:

G(r, t1, t2) = G

(
t1 + t2 +

2

H
ln(ra0H)

)
. (5.48)
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Figure 5.6: Correlation function coefficients as a function of quartic oscillator
basis label. The correlation function is dominated by the smallest non-zero
eigenvalue, Λ1. This function decays rapidly with n, so the approach provides
a very good numerical approximation.

Where r = |x1 − x2|. For equal times, we can consider t1 = t2 = t. Thus:

G(r, t, t) =H2

√
3

8π2λ
N
∑
n

A2
n exp

−2
En√
24π2

H2λ

[
2t+

2

H
ln(ra0H)

]

=H2

√
3

8π2λ
N
∑
n

A2
n exp

− 4Ent√
24π2

H2λ

 (R0H)
− 4En

H

√
24π2

H2λ

=H2

√
3

8π2λ
N
∑
n

A2
n

[
R0He

Ht
]− 4En

H

√
24π2

H2λ

=H2

√
3

8π2λ
N
∑
n

A2
n [RH]

−2En
√

λ
6π2 , (5.49)
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where R0 = a0|x1 − x2| and R = a(t)|x1 − x2|. This result was first pointed
out by Starobinsky and Yokoyama[28]. It has the interesting property that it
depends on the physical distance, R, not the co-moving distance. In otherwords,
despite any expansion, the physical distance to a nearby point with some given
degree of correlation does not change in time. In an inflating universe, this
means that the physical size of a ‘bubble’ of highly correlated space remains fixed
(because this is given by the correlation length associated to this correlation
function, the physical length of which does not change). The significance of
this is that the number of ‘Hubble-Volumes’ (regions of high correlation) in an
inflating universe rapidly proliferates, since the physical volume of the universe
increases but that of the Hubble volumes does not.
This can lead to interesting effects - if the exit from inflation is random, then
unless the rate of exit per hubble volume exceeds the rate at which Hubble
volumes are created, inflation will persist forever in at least some regions of the
universe. This is the so called ‘eternal inflation’ scenario. Most of the Hubble
volumes would exit, so the fraction that have exited always decreases, but the
physical number of still-inflating Hubble volumes increases.
Additionally, we might consider what happens at weak coupling, as λ→ 0. To
do this, we should evaluate N . It is important to bear in mind, however, than
the N appearing in Eq. (5.47) is that associated to the dimensionless field, ϕ̃,
so does not depend on λ:

N =

∫ ∞
−∞

dϕ̃e−2ν̃(ϕ̃)

=2

∫ ∞
0

dϕ̃ exp

(
− ϕ̃

4

8

)
=2−

1
2

∫ ∞
0

dzz
1
4−1e−z

=
1√
2

Γ

(
1

4

)
. (5.50)

In the third line, we have made the substitution z = ϕ̃4

8 , in order to express
the result in terms of Gamma functions. We see then that the dependence on
λ in G(r, t, t) end up with a λ−

1
2 factor in front, while the exponential terms

approach 1, since all powers tend to zero. Thus, in the λ→ 0 limit we have:

G(r, t, t) = H2

√
3

16π2λ
Γ

(
1

4

)∑
n

A2
n. (5.51)

This appears to diverge everywhere, implying that the universe becomes highly
correlated at very long distances, for weak coupling.
We can also compute the correlation length. To do this, define Rcorr as the phys-
ical distance at which the correlation drops to 1

e of its initial value. Numerically,
the easiest way to do this is to find the correlation length of the dimensionless
correlation function:

G(τ) = N
∑
n

A2
ne
−2Enτ , (5.52)
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since the quantities N,An, En do not depend on λ. This is ultimately a problem
of finding the zero of G(τ) − G(0)/e. This can be done using a variety of
techniques, such as the Newton-Raphson method. The result is τcorr = 0.719296.
Note that this is close to 1

2E1
, which would be the correlation time for pure

exponential decay: this is because the A1 coefficient dominates the expansion

of G(τ) into exponentials. The correlation time is therefore tcorr = τcorr

H

√
24π2

λ .

This can be converted to an equal time correlation length using Eq. (5.48),
which asserts:

tcorr = 2t+
2

H
ln(rcorra0H). (5.53)

Multiplying by H, exponentiating, and defining the physical distance as R ≡
ra(t) gives:

eHtcorr =a2
0e

2Htr2
corrH

2

=⇒ Rcorr =
1

H
exp

(
τcorr

2

√
24π2

λ

)
. (5.54)

This confirms our prior result, namely that the correlation length diverges as
λ→ 0. For an example of a non-zero λ, we could näıvely take the value of the

Higgs quartic coupling at theMz scale, λ = 0.13 to obtainRcorr ' 4.65×106

H . This
is 6 orders of magnitude larger than the Hubble Horizon scale of 1

H . However,
here we should take into account that H during inflation is very much larger
than the present H. This means that 1

H is much smaller. In natural units, the
present Hubble rate is of order H0 ' 1.4×10−42 GeV, while the BICEP2 results
imply that H during inflation is around the GUT scale, 1015 GeV. Therefore,
we find:

Rcorr ' 10−51 1

H0
. (5.55)

This is significantly smaller than we might have expected, given that the Higgs
field is correlated across the CMB. However, this ignores that λ is likely much
smaller (perhaps exponentially close to zero) at large field values, and also that
the actual Higgs potential has degenerate minima. For exactly the same reason
that a potential with multiple wells in a solid-state lattice forms band structures
of very close eigenvalues, we would expect that the lowest non-zero eigenvalue of
a degenerate-vacuum potential is exponentially close to the analytically known
zero eigenvalue. This is indeed what Starobinsky and Yokoyama found in their
paper[28].
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Figure 5.7: Correlation function for the massless φ4 theory. Note that this
theory appears to break down at λ = 0 where the units diverge. This can
be traced to the non-existence of an equilibrium state for the massless non-
interacting theory (V (φ) = 0) where Eq. (4.104) diverges.
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5.4 Massive Theory: V (φ) = 1
2m

2φ2 + λ
4φ

4

Next, we investigate the behaviour of a massive φ4 theory in de Sitter spacetime,
with potential:

V (ϕ) =
1

2
m2ϕ2 +

λ

4
ϕ4

=
λ

4

(
ϕ2 +

m2

λ

)2

− m4

4λ
. (5.56)

Ignoring constant, and defining ϕ̃ as in Eq. (5.38) gives:

ν̃(ϕ̃) =
4π2

3H4
V (ϕ(ϕ̃)) =

1

8

(
ϕ̃2 + γ

)2
, (5.57)

where the qualitative departure of the theory from the massless case is governed
by the dimensionless constant γ:

γ =
m2

H2

√
8π2

3λ
. (5.58)

If γ is negative, then the theory has a double well potential and allows sponta-
neous symmetry breaking.
The equation we wish to solve is therefore:

−1

2

d2Φn
dϕ̃2

+
1

2

[
1

4
(ϕ̃2 + γ)2ϕ̃2 − 1

2
(3ϕ̃2 + γ)

]
Φn = EnΦn, (5.59)

where as before, En = Λn
H

√
6π2

λ . To study this problem, we need to consider

the two qualitatively different cases:

• m2 > 0, where the potential is still qualitatively similar to λϕ4

• m2 < 0, where the potential develops double wells.

Applying the harmonic oscillator method to the m2 < 0 case for γ = −4, we
find the lowest eigenfunction, Φ0. This is given in figure 5.8. There are several
reasons to immediately conclude that the method has failed here:

• Φ0 is proportional to the equilibrium solution, which is a probability den-
sity. However, this computation predicts negative probability densities!

• Φ0 is the lowest eigenfunction of a Sturm-Liouville problem. It is a prop-
erty of Sturm-Liouville problems that the nth eigenfunction, Φn has pre-
cisely n zeros, however, this function Φ0 appears to have a single zero,
when it should have none.

• Φ0 should respect parity under φ→ −φ (as either an odd or even function)
since the potential does. However, the computed Φ0 is clearly asymmetric.
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Figure 5.8: Lowest eigenfunction for γ = −4, computed using the harmonic
oscillator basis. The double well potential is plotted as a dashed line to an
arbitrary scale for visual convenience.
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• We would expect the equilibrium distribution not to favour one minima
over the other, but this distribution clearly does not do this.

It transpires, therefore, that the simple harmonic oscillator basis is not sufficient
for the m2 < 0 case. Part of the reason is that for m2 < 0, the potential has a
double well, and this means that the lowest energy eigenstate also has two peaks
(however, by the fact that it originates from a Sturm-Liouville equation, we know
that it cannot cross zero since for any Sturm-Liouville equation, eigenfunction
Φn has precisely n zeros). Although a simple harmonic oscillator basis can
be used to construct this, it requires very large n harmonic oscillator basis
functions, which are not feasible.
However, the method also appears to fail in the m2 > 0 case. The failure is in
fact similar to figure 5.8 and is shown in figure 5.9. To examine why this failure

Figure 5.9: Φ0 computed for γ = +4. Despite the positive mass, this also fails.
The potential is given to an arbitrary scale.

occurs, it is useful to consider a second approach. There is a method which is
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feasible for this sort of problem, namely the Numerov method [33]. The basic
idea of this approach is to discretise an equation of the form:

−1

2

d2Ψ

dx2
+ V (x)Ψ = EΨ, (5.60)

with boundary conditions Ψ(A) = a, Ψ(B) = b, into N discrete points. I.e.

Ψi = Ψ(A+ i (B−A)
N ). By Taylor expansion:

Ψi+1 =yi + hΨ′i +
h2

2
Ψ′′i +

h3

6
Ψ′′′i +

h4

24
Ψ′′′′i +

h5

120
Ψ′′′′′i +O(h6)

Ψi−1 =Ψi − hΨ′i +
h2

2
Ψ′′i −

h3

6
Ψ′′′i +

h4

24
Ψ′′′′i −

h5

120
Ψ′′′′′i +O(h6), (5.61)

where h = B−A
N , leading to the well known second-order accurate approximation

of the second derivative:

Ψ′′i '
Ψi+1 + Ψi−1 − 2Ψi

h2
+
h2

12
Ψ′′′′i +O(h4). (5.62)

However, this is then improved by exploiting the fact that the fourth-derivative,
y′′′′i can be approximated in terms of the second derivative:

Ψ′′′′(x) =
d2

dx2
((2V (x)− 2E)Ψ(x)) (5.63)

=⇒ y′′′′i '
2(Vi+1 − E)Ψi+1 + 2(Vi−1 − E)Ψi−1 − 4(Vi − E)Ψi

h2
+O(h2).

(5.64)

This gives rise to the fourth order approximation:

Ψ′′i '
Ψi+1 + Ψi−1 − 2Ψi

h2
+

2(Vi+1 − E)Ψi+1 + 2(Vi−1 − E)Ψi−1 − 4(Vi − E)Ψi

12
+O(h4).

(5.65)
Thus, a fourth order accurate approximation for this equation is:

Ψi+1 + Ψi−1 − 2Ψi

h2
+

(Vi+1 − E)Ψi+1 + (Vi−1 − E)Ψi−1 − 14(Vi − E)Ψi

6
+O(h4) = 0.

(5.66)
Given initial conditions at two close-by points, y(A) and y(A+h) this is enough
to solve the equation. For the widely separated y0 and yN , one can also re-write
this as:[

1

h2
+
Vi+1

6

]
Ψi+1+

[
−2

h2
− 7

3
Vi

]
Ψi+

[
1

h2
+
Vi−1

6

]
Ψi−1 = E

[
1

6
Ψi+1 −

7

3
Ψi +

1

6
Ψi−1

]
.

(5.67)
This is the component form of a generalised eigenvalue problem:

AΨ = EBΨ, (5.68)
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where A and B are matrices. If B is invertible (which in this case is guaranteed
by Gershgorin’s Circle Theorem2), then this just reduces to the conventional
eigenvalue problem, B−1AΨ = EΨ. The precise form of A and B will depend
on the boundary conditions.
Applying this technique, one can compute the lowest eigenvalue of Eq. (5.59)
for various values of γ. For example, the lowest energy eigenstate (to which the
equilibrium solution is proportional) is shown in figure 5.10

Figure 5.10: The lowest energy eigenstate (n = 0) for γ = −4, computed using
the Numerov method. The potential is given by the dashed line, to a scale
chosen for visual convenience. Notice that the solution clusters evenly around
the two minima.

2This states that each eigenvalue of a matrix B lies within one of the disks Di of radius
Ri =

∑
j 6=i |Bij | centred on Bii. Thus here, the sum of the off diagonals of B is 1

3
, so the

eigenvalues of B must lie within 1
3

of − 7
3

. Consequently, there are no zero eigenvalues, so B
is invertible.
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5.4.1 Massive Non-interacting Case: V = 1
2
m2φ2

In the case of λ = 0, the potential for the scalar field is simply V (φ) = 1
2m

2φ2.
For this scenario, an exact solution to the Fokker-Planck exists, however, we will
mention it here to complete the discussion, and because this case is frequently
considered in models of inflation. Starobinsky and Yokoyama[28] showed that
we can go directly from the Fokker-Planck equation to an ordinary differential
equation for the correlation function, G(t), however, we will take their more
generic approach here of computing:

G(t) = N
∑
n

A2
ne
−Λnt, (5.69)

where:

N =

∫ ∞
−∞

exp

(
− 8π2

3H4
× 1

2
m2ϕ2

)
dϕ

=

√
2π × 3H4

8π2m2
=
H2

2m

√
3

π
, (5.70)

and:

An = N−1

∫ ∞
−∞

dϕ exp

(
−2π2m2

3H4
ϕ2

)
ϕΦn(ϕ). (5.71)

Here, Φn(ϕ) and Λn satisfy:

−1

2

d2Φn(ϕ)

dϕ2
+

1

2

[(
4π2

3H4

)2

m4ϕ2 − 4π2m2

3H4

]
Φn(ϕ) =

4π2Λn
H3

Φn(ϕ). (5.72)

This can be re-written as:

−1

2

d2Φn(ϕ)

dϕ2
+

1

2
ω2ϕ2Φn(ϕ) = EnΦn(ϕ), (5.73)

where:

ω =
4π2m2

3H4

En =
4π2Λn
H3

+
2π2m2

3H4
. (5.74)

Eq. (5.73) is just the Schroedinger equation for the harmonic oscillator, whose
eigenfunctions are Φn(ϕ) = Ψn(ϕ) (see section 5.2) and eigenvalues En = ω(n+
1
2 ). Hence:

Λn =
m2n

3H
. (5.75)

This means that Φ0(ϕ) obeys:

Φ0(ϕ) = N−
1
2 exp

(
−2π2m2

3H4
ϕ2

)
. (5.76)
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Now, to analytically determine An, first note that H1(
√
ωϕ) = 2

√
ωϕ, thus

Ψ1(ϕ) =
√

2

π
1
4
ω

3
4 e−

ω
2 ϕ

2

ϕ. It follows that we can re-write An as:

An =
N−1π

1
4

√
2

ω−
3
4

∫ ∞
−∞

dϕΨ1(ϕ)Ψn(ϕ) =
N−1π

1
4

√
2

ω−
3
4 δn,1. (5.77)

Consequently, only the first non-zero eigenvalue contributes to the correlation
function. Plugging in the values of ω and N we find:

A1 =
1√
6

(
3

π

) 3
4

√
H2

2m
(5.78)

NA2
1 =

3H4

8π2m2
. (5.79)

Therefore:

G(t) =
3H4

8π2m2
exp

(
−m

2t

3H

)
, (5.80)

is the correlation function in this case. We finish this section by noting that the
harmonic oscillator approach will yield the exact result in this case. The proof
of this is given in section 5.2.
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Chapter 6

Conclusions

In this report we have reviewed series of techniques for studying the behaviour
of Higgs field during inflation. In section 2, we discussed Coleman and Wein-
berg’s derivation of the effective action and effective potential and computed
the one-loop corrections in the case of λφ4 theory and Yukawa theory.
In section 3 we reviewed the literature regarding the stability of the Higgs vac-
uum. We computed the running couplings in the case of the standard model, to
1-loop, discounting the higher order loop corrections to the relationship between
observables at the electroweak scale and MS couplings. There were two main
ways this computation could be improved:

• Extending the accuracy by computing the Standard Model beta functions
to higher loop order. These have, for example, been computed to three
loops [34][35].

• Taking proper account of the relationship between the MS parameters and
physical observables. This requires computing the loop corrections to the
tree level relationships, for example between the Yukawa couplings and
fermion pole masses.

We discussed the precise calculations of this kind performed in [3] and [2]. This
implied that the electroweak vacuum is meta-stable, with stability seemingly
ruled out a 2σ, given the measured Higgs boson and top quark masses. This
seems to imply that the Higgs effective potential has a second minimum at large
field values, around 1010 GeV. This opens the possibility of the vacuum decay-
ing, however, referring to the calculation by [3], it appears that the expected
life-time of the universe is greater than 10100 years at the 1σ level in the uncer-
tainty of the known standard model couplings.
In section 4, we first studied quantum field theory in de-Sitter space-time, since
this is the approximate space-time during inflation. We explained why this
leads to an infra-red ‘super-expansionary divergence’, which was caused by the
unbounded increase of the space-time volume. The conclusion was that the long
wave-length structure of quantum field theory in de-Sitter space is beyond any
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order of perturbation theory to compute. However, Starobinsky and Yokoyama
solved this[28] by proposing that the long wave-length field could be separated
from the short wavelength part and treated classically. In particular, it satisfied
a stochastic Langevin equation, where the short-wavelength quantum behaviour
acted as a stochastic ‘Brownian motion’ term. To approach this, we reviewed
the derivation of the Fokker-Planck equation, describing the time evolution of
the probability distribution for the evolution of the long-wavelength field. The
derivation we gave improves upon the elegant derivation in [26] by taking proper
account of the non-commutation of the differential operators involved.
Having derived the Fokker-Planck equation, we proceeded to the main topic of
the second half of the report - its solution. Starobinsky and Yokoyama[28] de-
rived an expression for the long wavelength correlation function of a scalar field
in de-Sitter space, and proved its de-Sitter invariance, for the case of a certain
class of potentials. Their results apply to potentials satisfying:

N =

∫ ∞
−∞

dϕ exp

(
−8π2V (ϕ)

3H4

)
<∞. (6.1)

However, in the event of an unstable Higgs potential, where λ becomes nega-
tive for high energies, potentials not satisfying this condition are possible. For
physical purposes, if the potential diverges to −∞, it would lead to a local break-
down of the de-Sitter space approximation, creating a bubble of Anti-de-Sitter
space, which rapidly collapses (see [7] for example, where they use this effect to
compute the survival probability of the electroweak vacuum during inflation).
However, it is interesting to study what the Fokker-Planck equation predicts in
this scenario, and we derived an equivalent expression for the correlation func-
tion in the case where N diverges.
Towards the end of section 4, we used the Fokker-Planck equation to derive
the ordinary differential equation satisfied by the variance, 〈φ2(t)〉 of a scalar
field during inflation. We then used this to explain qualitatively how inflation
causes fluctuations in light scalar fields of order φ ∼ H. There is scope to build
on this qualitative explanation by solving this equation and performing a more
quantitative analysis.
Section 5 dealt with numerical solutions of the Fokker-Planck equation. We de-
scribed how a method detailed in [31] and also used by Bender, Boettcher and
Meisinger [36] to study PT-symmetric Hamiltonians, can be adapted to solve
the Schroedinger equation that results by applying separation of variables to the
Fokker-Planck equation. This method consisted of expressing the ‘Hamiltonian’
in a harmonic oscillator eigenfunction basis, where it has a particularly simple
form. The eigenvalues and eigenfunctions could then be computed numerically.
We presented the results of this method applied to a variety of potentials and
found:

• The method works well for the quartic potential without a mass term. We
were able to compute the eigenvalues and also the correlation function.

• The method does not perform well when a mass term is added. This is par-
ticularly noticeable in the case of a double well potential (m2 < 0) where
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the eigenfunctions are significantly different from those of the harmonic
oscillator (compare figures 5.8 computed using the method and 5.10 using
Runge -Kutta, both applied to the same potential, for example). This
suggests the method is most efficient for potentials which qualitatively
resemble the harmonic oscillator, such as the φ4 potential.

• The method produces exact results for the V = 1
2m

2φ2 potential, for
which an analytic solution was found by Starobinsky and Yokoyama[28].

In summary, it seems that the method may be a useful way to extract correlation
functions for quartic potentials. Although this may seem very limited, in the
context of vacuum stability, we are principally interested in the behaviour of the
field at large field values, where the quartic term dominates. It may however be
possible to improve the method’s performance. The most straightforward way
to achieve this would be to compute more harmonic oscillator basis functions.
The downside is that this increases the size of the matrix whose eigenvalues
need to be computed - a memory and computationally intensive task. How-
ever, our numerical results for the quartic potential indicated that the size of
matrices required is generally smaller for the harmonic oscillator approach than
with equivalent discretisation method (Runge-Kutta or Numerov methods, for
example). The difficulty in extending it, however, as discussed in section 5.1, is
the ability to reliably compute the harmonic oscillator functions Ψn for large n.
This runs into numerical difficulties, however, one approach that might improve
the method would be to investigate symbolic approaches to the computing the
basis functions. Since the functions are known exactly, this should eliminate a
major source of numerical error.
The recent results on the measurement of the Higgs mass, combined with those
from the BICEP2 collaboration, puts particle physics in an interesting position.
Should the BICEP2 result be confirmed, it would appear to indicate a conflict
between inflation and the Standard Model. Assuming inflation to be correct,
this constitutes strong indirect evidence of physics beyond the standard model
which modifies the Higgs potential. An example would be super-symmetry.
Since super-symmetry requires both bosons and fermions with similar masses
(above the super-symmetry breaking scale, that is), then the contributions of
new particles would be expected to change the Higgs potential very little. This
is because, as we demonstrated in section 2, bosons and fermions tend to give op-
posite contributions to the effective potential. Consequently, any new particles
would change the effective potential at high energies, while producing minimal
change at lower energies.
This doesn’t have to be the case, however, super-symmetry appears to offer a
way of fixing this problem without drastically affecting low-energy physics. If
the LHC discovers new physics, then this calculation will change. However,
whatever is discovered, it is clear that more precise measurements of the Higgs
and top quark masses, coupled with new measurements of the CMB B-modes,
are needed if we are to better understand the position of the Standard Model.
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Chapter 7

Appendices

7.1 Sturm Liouville Equations

A Sturm-Liouville equation is one that can be placed in the form:

− d

dϕ

(
p(ϕ)

dy

dx

)
+ q(ϕ)y = λw(ϕ)y, (7.1)

where w(ϕ) > 0. Such an equation is said to be regular if it satisfies the following
conditions:

• p(ϕ), w(ϕ) > 0 everywhere in some interval [a, b].

• p(ϕ), p′(ϕ), q(ϕ) and w(ϕ) are continuous on [a, b].

• The boundary functions at a and b are of the form: α1y(a) + α2y
′(a) =

0, β1y(b) + β2y
′(b) = 0 where α2

1 + α2
2 > 0 and β2

1 + β2
2 > 0.

For regular Sturm-Liouville problems, the eigenvalues Λn that allow the bound-
ary conditions to be satisfied are real and ordered (ie, Λ0 < Λ1 < Λ2 < . . .,
which also means they are non-degenerate). The associated eigenfunctions,
Φn(ϕ) obey the orthogonality relationship:∫

dϕΦ∗n(ϕ)Φm(ϕ)w(ϕ) = δnm. (7.2)

Crucially, they also form an orthonormal basis of a Hilbert space (known for-
mally as L2([a, b], w(ϕ)dϕ), w is known as a the ‘weight function’). Another
(non-normalisable) basis for this space is the position basis, {|ϕ〉}, however,
this basis is not normalised (although it is orthogonal). Consequently, while:∑

n

|Φn〉 〈Φn| = I, (7.3)
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is the completeness relation for the solutions Φn, |ϕ〉 obey:∫
dϕw(ϕ) |ϕ〉 〈ϕ| = I. (7.4)

Defining Φn(ϕ) = 〈ϕ|Φn〉, it is easy to see this this gives rise to the orthogonality
relationship above, 〈Φn|Φm〉 = δnm.
The inner product 〈ϕ|ϕ′〉 can also be determined, starting from the assumption
that it is orthogonal, with some function f(ϕ) taking into account the non-
normalisation:

〈ϕ|ϕ′〉 = f(ϕ)δ(ϕ− ϕ′)
= 〈ϕ| I |ϕ′〉

=

∫
dϕ̃w(ϕ̃)〈ϕ|ϕ̃〉〈ϕ̃|ϕ′〉

=

∫
dϕ̃w(ϕ̃)f(ϕ)δ(ϕ− ϕ̃)f(ϕ̃)δ(ϕ− ϕ′)

= w(ϕ)f(ϕ)(f(ϕ)δ(ϕ− ϕ′)). (7.5)

This is only consistent then, if:

〈ϕ|ϕ′〉 =
1

w(ϕ)
δ(ϕ− ϕ′), (7.6)

which is valid as w > 0. Given the resolution of the identity for Φn then, we
have: ∑

n

Φ∗n(ϕ)Φn(ϕ′) =
∑
n

〈ϕ| |Φn〉 〈Φn| |ϕ′〉 =
1

w(ϕ)
δ(ϕ− ϕ′). (7.7)

7.2 Equation of Motion in de Sitter Space

The momentum space scalar field obeys:

d2φk
da2

+
4

a

dφk
da

+

(
k2

a4H2
+
m2 + ξR

a2H2

)
φk = 0. (7.8)

This equation can be solved using Bessel functions. A simple technique for
solving this kind of equation is to consider equations of the form[23]:

d2y

dx2
+

1− 2α

x

dy

dx
+

[
(βγxγ−1)2 +

α2 − p2γ2

x2

]
y = 0. (7.9)
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By making the substitution y = xαu and z = βxγ one finds that:

d2

dx2
(xαu) = α(α− 1)xα−2u+ 2αxα−1 du

dx
+ xα

d2u

dx2

d

dx
(xαu) = αxα−1u+ xα

du

dx
d

dx
=

dz

dx

d

dz
= γβxγ−1 d

dz
d2

dx2
= (γβxγ−1)2 d2

dz2
+ γβ(γ − 1)xγ−2 d

dz
.

And after some cancellations the equation becomes:

γ2xα−2z2 d2u

dz2
+ γ2zxα−2 du

dz
+ γ2(z2 − p2)xα−2u = 0

=⇒ z2 d2u

dz2
+ z

du

dz
+ (z2 − p2)u = 0. (7.10)

This is Bessel’s equation, the general solution to which can be written:

u(z) = Zp(z) = A1H
(1)
p (z) +A2H

(2)
p (z). (7.11)

Where H
(1)
p (x) = Jp(x) + iNp(x), H

(2)
p (x) = Jp(x) − iNp(x) are the Hankel

functions, defined in terms of Jp(x) and Np(x), the Bessel functions of the first
kind. Note that we could equally write this as a sum of Jp and Np, but the
complex nature of φk means the Hankel functions are a more natural choice (in
much the same way that complex exponentials are a more natural choice than
sin and cos for expanding the field in momentum space).
Comparing equation 7.8 and 7.9, we see that the coefficients α, β, γ, p are given
by:

α = −3

2
, (7.12)

β =
k

H
, (7.13)

γ = −1, (7.14)

p =

√
9

4
− (m2 + ξR)

H2
. (7.15)

Thus, the general solution is:

φk(t) = a(t)−
3
2Zp

(
k

a(t)H

)
. (7.16)
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Figure 7.1: Elliptically polarised electromagnetic radiation propagating in the
z directio. θ is determined by the ratio tan θ = Ex0

Ey0
and φ by the difference

in phase, φ = φ1 − φ2. Note that φ ranges from −π4 ≤ φ ≤ π
4 because any

difference in phase outside this range can be incorporated into a sign change
for Ex0 and or Ey0. φ = 0 corresponds to linear polarisation, while φ = ±π4
correspond to left and right circular polarisation respectively.

7.3 Stokes Parameters for Polarised Light

The most general polarised light is elliptical polarisation. For the generic electric
field written as a Jones vector:

|E〉 =

(
Ex0e

iφ1

Ey0e
iφ2

)
ei(kx−ωt), (7.17)

the polarisation can be characterised by two angles, θ and φ, as plotted in 7.1.
There is an alternative way to encapsulate this information, however, in the

form of Stokes parameters. Instead of presenting the information on an ellipse,
it is plotted onto a sphere. This allows us to take into account the polarisation
of light with a mixture of frequencies, since this will in general consist of a
combination of some unpolarised light with intensity Iup and some with net
polarisation, intensity Ip. Defining the degree of polarisation as:

p =
Ip

Ip + Iup
, (7.18)
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Figure 7.2: Polarisations for different stokes parameters. Note that Q and U
both correspond to forms of linear polarisation, only in different axis. However,
since these axis are essentially arbitrary, Q and U can be rotated into each other.

then any given combination can be plotted as a radial vector, with the net
polarisation given by θ and φ (interpreted as polar co-ordinates for the sphere)
and the radius of the vector the degree of polarisation, p (see figure ??). The
stokes parameters are then given by the Cartesian co-ordinates of these points:

I =Itotal

Q =pI cos 2φ cos 2θ

U =pI cos 2φ sin 2θ

V =pI sin 2φ (7.19)

Note these are defined differently to the usual polar co-ordinates, with the polar
angle, 2φ measured from the equator rather than the north pole (positive chosen
to be a northern latitude), and a factor of 2 accounting for the fact that −π4 ≤
φ ≤ π

4 and 0 ≤ π ≤ π, half the usual ranges required to cover a sphere. These
definitions allow us to interpret the Cartesian co-ordinates:

• I is the intensity of the light.

• Q is associated to the portion of light linearly polarised in the Ex axis or
Ey axis, since cos 2φ is extremised when φ → 0 (linear polarisation) and
cos 2θ is extremised when θ = 0 (Ex) or θ = π

2 (Ey).

• U is associated with the portion linearly polarised (since it contains cos 2φ,
as withQ) about the axis Ey = ±Ex (since sin 2θ is extremised when θ = π

4
(Ey = Ex) or θ = 3π

4 (Ey = −Ex).

• V is associated to circularly polarised light, since it is zero for linear po-
larisation and extremised when φ = ±π4 .

These are plotted in figure 7.2.
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