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Abstract

We investigate the propagation of metric and electromagnetic fluctuations on a

perturbed Reissner-Nördstorm background in an low energy effective field theory

of gravity and electromagnetism. We derive a modified Zerilli equation for metric

perturbations for this theory.
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Notation and Conventions

The following conventions shall be used throughout this work unless explicitly oth-

erwise stated:

Spacetime is 4-dimensional with a metric signature {−,+,+,+}.
The units used are h̄ = c = ke = 1

The reduced Planck mass is defined as M2
pl = 1

8πG

We use the Einstein summation convention for repeated indices

We indicate partial differentiation by ∂
∂µ

or ∂µ and covariant differentiation by ∇µ
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Chapter 1

Introduction

In classical General Relativity, massless particles travel on null geodesics. It is said

they are travelling at the speed of light. This often taught in a tautological way-

each defining the other. We shall try to be precise and define the speed of a via

the lightcone of the effective metric that our fields propagate. In General Relativity,

the effective metric of massless particles coincide with the actual metric1. This

is essentially a result of the strong equivalence principle. The strong equivalence

principle can split into two statements [16]. The statement that at each point in

spacetime there exists a local Minkowski frame (Local Inertial Frame), known as the

weak equivalence principle. We like to think of spacetime as a Lorentzian manifold

so this is essentially a differential geometry statement. The second statement is that

the laws of physics are equivalent in Local Inertial Frames established at different

points in spacetime. The effect of this is to exclude all explicit curvature couplings.

i.e all matter terms are minimally coupled and higher derivative curvature terms

are omitted. General Relativity is such a theory and explicitly it can be shown that

the two derivative nature of General Relativity and the weak equivalence principle

cause luminality [12, 14]. In cases where the the strong equivalence principle does

not hold the physical light cone can differ from the geometric null cone. We are

particularly interested how this might occur from a quantum theory perspective. It

is well known that in QED the speed of the photon may be modified in a background

gravitational field [10, 17–26]. This remarkable effect deserves some explanation.

During propagation, the photon can produce short-lived virtual electron-positron

1By this, we mean the metric providing the geometry

5



pairs. The result of these is to give a ’size’ to the photon on the order of the

Compton wavelength of the electron. The photon is now sensitive to curvature of the

background gravitational field. It is these tidal effects which lead to a modification

of the photon speed.

To investigate these sort of effects we shall work in the framework of low energy

effective theories. We would like to briefly motivate the use of this framework.

You may have heard what has become a popular phrase that general relativity

and quantum mechanics are not compatible. Specifically we cannot treat general

relativity as a quantum theory because it is non-renormalizable as a field theory.

This is not necessarily true. In the low energy limit, non-renormalizable theories

can be predictive if we can use some perturbative expansion to only consider a finite

amount of terms in the Lagrangian. Therefore in this framework it is consistent

to consider a quantum theory of gravity. Of course this is no longer acceptable at

high energies such as at the singularity of a black hole, but this problem is due to a

lack of a theory of everything. There is a huge amount of work devoted to finding

such a theory, the most famous example being String Theory. One of the beauties

of effective field theory is that we can stay agnostic about the high energy theory.

In the case a of low energy QED, it is the explicit curvature-Maxwell couplings

which can lead to a subluminal or superluminal photon propagation. This has also

more recently been done for the graviton in the low energy EFT of gravity for differ-

ent backgrounds [11,12]. I should stress that it is not believed that the superluminal

velocities violate causality [13]. Additionally [14] discusses why spacelike propaga-

tion might be allowed in backgrounds that spontaneously break Lorentz invariance

even though the theory itself is Lorentz invariant.

In the framework of low energy effective field theories, I will investigate the

speed of gravitational waves propagating on a Reissner-Nördstrom like background.

This has been done for a the Schwarzchild-like background [11] and I shall extend to

Reissner-Nördstrom-like backgrounds. The main difference is the inclusion of matter

in the form of the electromagnetic field. The low energy effective field theory will

contain a host of higher derivative curvature terms, curvature-matter couplings, etc.

which could potentially lead to changes in the speed of both photons and gravitons.

We will consider the low energy effective action of gravity and electromagnetism
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including operators which have up to four derivatives in the light fields gµν and

Aµ. We find that the leading order corrections to the action coming from these

four derivative operators can be reduced to only three terms via a perturbative

redefinition of the metric. Additionally, we decide to omit operators which break

the minimal coupling of photons to keep the speed of photons luminal (as compared

to GR). With this effective action, we do not find a departure of the radial speed of

gravitational waves from unity as compared to the speed of the photon.

The work is organized as follows. In chapter 2, I shall give a brief introduction to

low energy effective field theories and construct the low energy effective field theory

of gravity and electromagnetism. In chapter 3, I shall study the slight deviations

that the low energy effective field theory has on the classical Reissner-Nordstrom

solution. In chapter 4, I shall derive a modified Zerilli equation for the propagation of

metric perturbations on top of the perturbed EFT-Reissner-Nordstrom background

solution.
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Chapter 2

Effective Field Theory of Gravity

and Electromagnetism

2.1 The Low Energy Effective Action Basics

In this section, I will formally define the low energy effective field theory. Much of

this section follows chapter 2 of an An Introduction to Effective Field Theories by

Cliff Burgess [7].

We start by considering a field theory for N real scalar fields with a classical

action S(φ). We then can define the generating functional Z[J ] for these fields

where Ja(x) are currents sourcing the fields:

Z[J ] =

∫
Dφ eiS(φ)+i

∫
d4xJa(x)φa(x). (2.1)

Using the Gell-Mann and Low theorem, we can calculate the vacuum expectation

values of all correlation functions from the quantity.

1

Z[0]

(−i)nδn
δJa1(x1) . . . δJan(xn)

Z[J ] = 〈Ω|T̂ φ̂a1(x1) . . . φ̂an(xn)|Ω〉. (2.2)

Correlation functions are required to compute the S-matrix or scattering am-

plitudes and therefore, from a practical point of view, determining the generating

functional gives us the essential information of a theory. It is also convenient to

define another generating functional W [J ].
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Z[J ]

Z[0]
= eiW [J ]. (2.3)

The simplest way to distinguish between these two quantities is in perturbation

theory. We can expand the generating functionals as a series of Feynman diagrams.

In this language Z[J ]
Z[0]

can be described by all possible Feynman excluding vacuum

bubbles. W [J ] can be described by all connected Feynman diagrams also excluding

vacuum bubbles. However there is still another simpler quantity that describes our

system. First we define a quantity φ̄a which we can think as the vacuum expectation

value of the field in the presence of the current.

φ̄a = 〈Ω|T̂ φ̂a(x)|Ω〉c =
δW [J ]

δJa
. (2.4)

We define the 1 particle irreducible effective action (or quantum effective action)

by performing a Legendre transform. In the same way as Z[J ] and W [J ] we can

think of this quantity being determined by a class of Feynman diagrams. In this

case is it generated by connected diagrams that cannot be separated into two valid

diagrams by splitting an internal line. (Also excluding vacuum bubbles).

Γ[φ̄] = W [J ]−
∫
d4x Ja(x)φ̄a(x). (2.5)

At this point it is easy to do some algebraic gymnastics in order to give the path

integral definition of Γ[φ̄], reinstating factors of h̄ into the answer.

e
iΓ[φ̄]
h̄ = N

∫
Dφ e

i
h̄

[S(φ)+
∫
d4x Ja(x)(φa−φ̄a)]. (2.6)

With these quantities defined, it is possible to adjust this formalism for the

low energy effective theory case. For simplicity take a theory which contains two

different mass/energy scales: ml � mh. We can then split the quantum field into a

low energy and high energy part by choosing a cut-off Λ such that ml � Λ � ml.

We can divide the low and high energy fields by projecting on the states with E < Λ

using the projection operator denoted by PΛ
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la = PΛφ
aPΛ, (2.7)

ha = (1− PΛ)φa(1− PΛ). (2.8)

We now may define the low-energy generating functional Zle[J ]. One may be

tempted to define this by just replacing φ with l, however this would not be correct

because it would ignore the effects of the high energy fields. What we want to do

is to find a generating functional that will reproduce the correlation functions we

would calculate in low energy limit of the full theory. The way to do this is to

restrict the currents in the generating functional to be slowly varying (as set by the

cutoff). Since these slowly varying currents only couple to the low energy fields,

we have found a theory which only produces correlation functions of the low energy

fields yet is still able to capture the influence of the high energy fields.

Zle[j] = Z[j, J = 0], (2.9)

Zle[j] =

∫
Dφ eiS(φ)+i

∫
d4xj(x)φ(x) =

∫
Dφ eiS(φ)+i

∫
d4xj(x)l(x), (2.10)

=

∫
DhDl eiS(l+h)+i

∫
d4xj(x)l(x). (2.11)

We then can follow the same steps as before in order to define the connected low

energy generating functional Wle[j] and the 1 light particle irreducible action Γle[l̄].

We first define a quantity l̄ which we can think of as the vacuum expectation value

of the light field:

l̄ =
δWle[j]

δj
. (2.12)

Then the low energy forms of eq(3) and eq(5)

Zle[j]

Zle[0]
= eiWle[j], (2.13)

Γle[l̄] = Wle[j]−
∫
d4x j(x)l̄a(x). (2.14)
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Finally, we can give the path integral definition for Γle[l̄], again reinstating the

factors of h̄.

e
i
h̄

Γle[l̄] = N

∫
DlDh e

i
h̄

(S(l+h)+
∫
d4xj(x)(l(x)−l̄(x)) (2.15)

= N

∫
Dl e

i
h̄

(Sw(l)+
∫
d4xj(x)(l(x)−l̄(x)), (2.16)

where:

e
i
h̄
Sw(l) =

∫
Dh e

i
h̄
S(l+h). (2.17)

The quantity Sw(l) is what we call the Wilson action or low energy effective

action. This is the main result of this section which is essential for the rest of this

paper, therefore is worth a few additional comments.

Firstly, this quantity captures the full low energy influence of the heavy fields

on the light fields: the heavy fields appear nowhere else. The functional integration

of the heavy fields, resulting in a quantity only dependant on the light degrees of

freedom, is known as integrating out the heavy degrees of freedom. A consequence

of this that I would like to highlight is that the Wilson action defined in this way

is not an approximation: it is an alternative description of the dynamics of the low

energy fields which is valid only up to a certain energy scale.1

Secondly, we see that the Wilson action appears in the 1LPI action in exactly

the same way in which the classical action appears in the 1PI irreducible action of

the ’full’ theory. This suggests that our full theory may actually appear as a low

energy effective theory of an even higher energy theory [7]. Indeed it is now thought

that the Standard Model and General Relativity are just low energy approximations

for some high energy theory such as String theory.

A fair question which could be asked at this point is whether this is practically

useful. Even if we know some low energy effective action exists, how do we find it

and how do we know that we can perform useful calculations with it? In general

the process of integrating out will result in a non-local and non-renormalizable ac-

tion [15]. However this is not actually a huge problem. We can replace the non-local

interactions by a series of local interactions which give the same physics at low en-

ergy. The essential point is in doing this we have modified the high-energy behaviour
1However, for practical applications we always take a approximation of this quantity
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of the theory, and hence it is non-sensical to use this theory as a description of high

energy behaviour. An upper bound on the breakdown of the theory is given by the

cutoff Λ.

Returning to the problem of replacing the non-local interaction with a series of

local interactions. This can be done formally using the operator product expansion

[15]. Since we are not doing this explicitly, a more intuitive picture given by [30]

suffices. Consider a scattering process between two light particles at low energy.

We can produce a virtual heavy particle, however by the uncertainty principle its

range is only 1
m
, where m is the mass of the heavy particle. If we are working a

low energy (i.e much less than M), we cannot probe distances smaller than this and

hence interactions will look local. Another way to look at this is to consider this

process if we did the full theory calculation and then took the low energy limit. For

simplicity, suppose our virtual particle is a heavy boson with a propagator ∝ 1
p2−m2 .

We then do a Taylor expansion of this propagator:

1

p2 −m2
= − 1

m2
− p2

m4
− p4

m6
+ . . . (2.18)

In position space, we can identify the 1
m2 terms with a delta function and the pi

terms as being generated by derivatives (of the low energy fields). Hence we expect

to be able to replace its effects in the Lagrangian as a series of local terms. This

example is actually illustrative in a few other ways. Firstly, it indicates that each

derivative will appear with a 1/m in a expansion of our low energy Lagrangian, where

m is the mass of the heavy particle that is integrated out. Secondly, suppose we have

a hierarchy of particles that have been integrated out.Each derivative will appear

with a 1/mi where i indexes the particle type. Therefore, the biggest contribution

will always be from the lightest particle that has been integrated out.

With this intuitive picture in mind, how can we construct our low energy ef-

fective Lagrangian? The essential idea is to write down the most general possible

Lagrangian consistent with symmetries and then perform dimensional analysis on it.

I will briefly explain how to do this for a scalar field in flat space, before presenting

a much more thorough version for the effective field theory of gravity and photons.

Suppose our low energy theory field content is a light scalar field. We know that we

can write our action as a power series over some heavy mass scale. We write our
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action as follows:

S = f 4

∫
d4xcnOn(

φ

v
,
∂φ

Mv
). (2.19)

Where we suppose that the scales f, v,M are much greater than the energy of

our light particles and this makes our dimensionless couplings ci ∼ O(1)2. To stay

general, these do not have to depend on each other, however we expect them to

be related the mass scales integrated out in the problem. As a nod to the above

paragraphs, we have labelled the scale controlling the derivative by M , which we

would expect to be the lightest mass scale integrated out. We therefore have a

Lagrangian whose higher dimensional operators are suppressed. Additionally, we

do not have to worry about renormalizability because we have a manifestly finite

theory, since all loop integrals have a momentum cutoff. However, one must be

careful with these arguments. Consider Feynman diagrams with loops. We have

high energy virtual particles (up to the cutoff) running through these loops. When

we evaluate the diagram, the loop integrals may cause the answer to be multiplied by

factors Λ. Indeed, we may have the situation in which more complicated diagrams

with more loops enhance the answer. Although each diagram is finite, we cannot

actually calculate anything with this Lagrangian because we have an infinite amount

of diagrams to deal with. For some theories, the solution to this problem is to prove

that more complicated diagrams will also be suppressed. This technique was first

used by Weinberg in the context of chiral perturbation theory [3]. In the next

section we will construct the Lagrangian for gravity and photons and then prove its

applicability in this way.

2.2 The Effective Action for Gravity and Electro-

magnetism

In this section, we consider the the low energy effective field theory of gravity and

electromagnetism. The low energy degrees of freedom are the metric gµν and the

Maxwell field Aµ. We require the action to be both U(1) gauge invariant and diffeo-

2In the next section, we will show that we can relax this assumption for the field energy.
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morphism invariant. This is a statement that physics should not depend on gauge

or coordinate system chosen. Because of these requirements, it is simpler to con-

sider a Lagrangian made out of scalar combinations of gµν , R,Rµν , Rαβµν , Fµν and

their covariant derivatives. This will capture all the possible terms along with con-

cisely maintaining gauge and diffeomorphism invariance. We write our Lagrangian

as a derivative expansion, up to 4 derivatives acting on our fields. Before doing this

explicitly I will mention types of terms which we need not include in our Lagrangian.

2.2.1 Cosmological Constant Term

This is the constant term in our Lagrangian. Theoretically this term should be

included, however its calculated size is massive compared to the observed value,

which is almost zero. This is known as the cosmological constant problem. For an

interesting discussion on this topic see [9]. For the purpose of this analysis I shall

set it to zero.

2.2.2 Terms Forbidden by Symmetries

I have already mentioned that our Lagrangian must be both diffeomorphism and

gauge invariant. This means that we can ignore terms which break this such as

ΓµαβAµg
αβ. Other terms ignored are those which are zero because of the symmetry

properties of tensor. For example FµνRµν since Fµν and Rµν are antisymmetric and

symmetric respectively in the (µν) indices.

2.2.3 Total Derivatives

Another type of operator which can be omitted are total derivatives. By Stokes’s

theorem, these will lead to boundary terms when integrated. In this paper, I shall

work in a space-time manifold that has no boundary, thus surface terms vanish.

If one were to work on a manifold with a boundary, it would not be possible to

disregard these terms. To four derivatives, the only covariant terms containing a

covariant derivative acting on a curvature term are:

2R. (2.20)
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Since this is a total derivatives, it can be omitted. Up to four derivatives, the only

relevant terms containing a covariant derivative acting on the field strength tensor

must be of the form (∇F )(∇F ). To see this, note that any term containing just one

field strength tensor will necessarily be a total derivative. No terms containing two

or three field strength tensors with just one covariant derivative will have an even

number of indices. Therefore the only allowed terms must have two field strength

tensors and two covariant derivatives. Suppose we had a term of the form F (∇∇F ).

This can be written in the form ∇(F∇F )− (∇F )(∇F ). Since total derivatives are

omitted, all terms can be written in the form (∇F )(∇F ).

Putting in the explicit indices, the possible terms of this form are:

∇αF
µν∇αFµν (2.21)

∇αF
αβ∇µF

µ
β (2.22)

∇αF
βγ∇βF

α
γ (2.23)

However, these are not yet independant. Using the Ricci identities and the

Maxwell equations, these terms may be recast into non-derivative form and the

combination ∇αF
µν∇αFµν [4].

2.2.4 Field Redefinition

Another way to remove redundant operators is via a perturbative redefinition of the

field. A nice description of how this is generally done for a real scalar field is given

in section 2.5 of [7]. For gravity, this is done via a perturbative redefinition of the

metric

gµν → gµν + εYµν , (2.24)

where Yµν is expressed in terms of combinations of the same quantities used to

build the Lagrangian (gµν , R,Rµν , Rαβµν , Fµν) and ε is a small parameter governing

the expansion in the Lagrangian. It is simpler to perform this redefinition after first

removing other redundant operators, so I shall wait to perform this until explicitly

defining the action in section 2.2.6.
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2.2.5 Gauss-Bonnet Term

Starting with the well known equation

R2
GB = R2

µναβ − 4R2
µν +R2, (2.25)

where R2
GB is the Gauss-Bonnet term. In four dimensions, the Gauss-Bonnet

terms is topological and therefore does not contribute to the equations of motion.

This allows us to omit the R2
µναβ term.

2.2.6 Explicit Form of Action

The most general action of the theory up to four derivatives in the light fields can

be written explicitly as

S =

∫
d4x
√−g

[
M2

pl

2
R− 1

4
FµνF

µν + c1R
2 + c2RµνR

µν +
c4

M2
pl

FµνF
µνR

+
c5

M2
pl

F µρF ν
ρRµν +

c6

M2
pl

RµναβF
µνF ρσ +

c7

M4
pl

FµνF
µνFαβF

αβ

+
c8

M4
pl

FµνF
ναFαβF

αµ +
c9

M2
pl

∇αF
αβ∇µF

µ
β

]
. (2.26)

Here the role of M2
pl is to make the coupling constants dimensionless, rather

than setting their scale to be of similar order. I will justify why I choose to expand

to the Lagrangian in the number of derivatives in section 2.3. We now perform a

field redefinition of the metric to remove further redundant operators. Suppose we

redefine gµν → gµν + 2
M2
pl
Yµν . Yµν will contain at least two derivatives so up to four

derivatives, it will modify the action by

δS =
2

M2
pl

∫
d4x

(
M2

pl

2
(Rµν − 1

2
Rgµν)− T µν

)
Yµν (2.27)

=

∫
d4x

(
Rµν − 1

2
Rgµν − 2

M2
pl

(F µρF ν
ρ −

1

4
gµνFαβF

αβ)

)
Yµν (2.28)

If we choose Yµν = (d1Rµν + d2Rgµν + d3
1

2M2
pl
FαβF

αβgµν + d4
1

2M2
pl
F ρ
µ Fνρ)

Then the coefficients in our initial action change as follows:
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c1 → c1 − 1
2
d1 − d2 c6 → c6

c2 → c2 + d1 c7 → c7 + 1
4
d4

c4 → c4 + 1
2
d1 − 1

2
d3 − 1

4
d4 c8 → c8 − d4

c5 → c5 + 1
2
d4 − 2d1 c9 → c9

By specifying the di coefficients we can remove some of these higher-dimensional

operators. It is important to note that performing a field redefinition, which is just a

reparameterization of field variables, should not change any physical observables. It

is a method of putting our initial action in the most convenient form, or alternatively

choosing the simplest basis of higher-dimensional operators (to a certain order) for

the task ahead. A corollary of this point is there is no single right basis to use. For

example, we could use the whole effective action in (2.26), or any redefinition using

any combination of d′is that one wants. The basis that we have chosen:

d1 = 2c5 + c8 (2.29)

d2 =
1

8
(8c1 − 2c5 − c8) (2.30)

d3 =
1

4
(8c4 + 2c5 − c8) (2.31)

d4 = c8 (2.32)

With these choices, the effective action becomes:

S =

∫
d4x
√−g

[
M2

pl

2
R− 1

4
FµνF

µν + c′2RµνR
µν +

c′6
M2

pl

RµναβF
µνF ρσ (2.33)

+
c′7
M4

pl

FµνF
µνFαβF

αβ +
c′9
M2

pl

∇αF
αβ∇µF

µ
β

]

This is still not the effective action that I shall be working with for the rest of my

analysis. In [10] it is shown that the effect of ∇αF
αβ∇µF

µ
β is actually suppressed

compared to the RµναβF
µνF ρσ term and therefore can be omitted. For simplicity,

I shall also set c′6 = c′7 = 0. Generally this will not be the case, however there are

some good reasons to do this. Firstly, we would expect these terms will affect the

effective metric seen by the photon. Ideally we would like the speed of photons to

stay at unity as comparison to the speed of gravitational waves. Secondly, the F 4

term, although it will perturb the background metric, will not affect the propagation
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of gravitational waves and hence is not important for determining changes in their

speed. Unfortunately this will not also be true for the RF 2 term. The third reason

is that despite adding computational complexity and technical difficulty of both the

photon and graviton departing from unity, using these terms does not change the

approach or the analysis much.

Therefore the effective action that I shall be using is:

S =

∫
d4x
√−g

[
M2

pl

2
R− 1

4
FµνF

µν + cRµνR
µν

]
. (2.34)

2.3 Power Counting

In this section, I will give a power counting argument which is used to see how the

energy scales present in the effective action will enter into observables e.g scattering

amplitudes. I will use it to justify the use of the effective action (2.26), and in

particular the use of a derivative rather than dimensional expansion of the effective

Lagrangian. The arguments I shall give are based on those in [7, 8] adapted to this

specific scenario.

The low energy degrees of freedom, as before, are the metric gµν and the Maxwell

field Aµ. Since we are interested in observables involving gravitons it is sensible to

expand the metric into a background metric and fluctuations3.

gµν = ḡµν +
hµν
vh

, (2.35)

where vh has dimensions of mass and sets the scale of the metric fluctuations. We

are interested in the case where the background metric is the Reissner-Nordstrom

metric. However, for simplicity I shall expand around flat space instead. Because

the arguments are essentially dimensional, they can be adapted to a positional space

argument in a non flat background. We may then suppose that the low energy action

of this theory comes as a functional of the fields hµν , Aµ and their derivatives. Our

action can written in the form:
3We could also expand in the Maxwell field into a background and fluctuations however it is

not necessary
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Sw =

∫
d4xf 4

∑

n

cnOn(
∂µ
M
,
Aµ
vA
,
hµν
vh

), (2.36)

where f, vA, vh,M are all energy scales to ensure that the constants ci are di-

mensionless and of order ≤ 1. We want to determine how the function AEgEp(p),

representing Feynman graphs with Eg external gravitons and Ep external photons,

all with energy ∼ p, depends on these parameters. We denote Eg and Ep to be

external graviton and photon lines respectively. Ig and Ip to be the number of in-

ternal graviton and photon lines respectively, with propagators ∝ 1
p2 where p is the

4-momentum running through the line. Vn counts the number of vertices coming

from a specific interaction in On. For each interaction term indexed by n, we have

fn,g and fn,p graviton and photon fields converging at the corresponding vertex, and

dn denotes the number of derivatives. We state the identities which we shall need

later.

2Ig + Eg =
∑

n

fn,gVn, (2.37)

2Ip + Ep =
∑

n

fn,pVn. (2.38)

We also define the number of loops L

L = 1 + Ig + Ip −
∑

n

Vn. (2.39)

We then use the Feynman rules to construct the graphs. One thing to be careful

about is the fact that our Lagrangian is not canonically normalized.

(Vertices) =
∏

n

[
i(2π)4δ4(p)f 4

( p
M

)dn ( 1

vA

)fn,p ( 1

vh

)fn,g]Vn
(2.40)

(Internal Graviton Line) =

[
−i
∫

d4p

(2π)4

(
M2v2

h

f 4

)
1

p2

]Ig
(2.41)

(Internal Photon Line) =

[
−i
∫

d4p

(2π)4

(
M2v2

p

f 4

)
1

p2

]Ip
(2.42)
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To proceed, we would like to give a dimensional estimate for the following integral

where we associate p with the momenta through a loop

∫
· · ·
∫ [

d4p

(2π)4

]A
pB

((p+ q)2)C
. (2.43)

To be clear, this is meaningless as an exact expression. Since we are only looking

for a dimensionless estimate it is sufficient to label each loop momenta generically

by p, much in the same way that we label all the external momentum generically

by q, and essentially count powers of p in this integral. Of course this cannot

capture all the intricacies of the full integral in a Feynman graph, such as potential

singularities, IR divergences and non-analytic terms [7], however it is acceptable

when considering the effect of the high energy behaviour. The most intuitive way

to regularize this expression is by using a cutoff Λ as defined in section 2.1, which

puts an upper limit on the energy running in loops. However, one drawback of this

method is that Λ will appear in our final answer, even though it is not a physical

quantity. In practise dimensional regularization is normally used because it does

not introduce this artificial cutoff. In addition it also preserves symmetries such as

Lorentz and gauge invariance. However, I will stick with using the cutoff because of

its conceptual simplicity.

In the evaluation of the integral, the first thing we do is decompose d4p into an

angular and radial part. The angular part equals the volume of a 3-sphere, 2π2,

therefore:
∫
· · ·
∫ [

d4p

(2π)4

]A
pB

(p+ q)2C
(2.44)

=

∫
· · ·
∫ [

dpp3 2π2

(2π)4

]A
pB

(p+ q)2C
(2.45)

=

(
1

2(2π)2

)A ∫
· · ·
∫
dpA

p3A+B

(p+ q)2C
(2.46)

We get another pA factors from the integrals and evaluating at the cut off gives

a dimensional estimate for this integral as:

∼
(

1

2(2π)2

)A
Λ4A+B−2C . (2.47)
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I have ignored any infrared divergences and dependence on q, because we are

only interested in the highest energy behaviour. We now calculate the Feynman

graphs for any process. We are interested in amputated graphs which are relevant to

scattering amplitudes (via LSZ reduction etc). We can factor out one delta function

which conserves external momentum. We then define AEgEp(q) = i(2π)4δ(q)AEgEp(q).
The effect of the remaining momentum conserving delta functions is to remove one

momentum integral each. Therefore the total integration remaining is I −∑n Vn +

1 = L. Instead of calculatingAEgEp(q) directly we wish to expand it as a power series:

AEgEp(q) = AEgEpDqD. If we think about about the functional form of AEgEp(q), the
external momentum are all present in the internal propagators (caused by the delta

functions) 1
(p+q)2 . This shows that each power of q will be divided by a p. Therefore

our estimate for AEgEpDqD is:

∝
∫
· · ·
∫ [

d4p

(2π)4

]L(
1

p2

)Ig+Ip (q
p

)D (
M2v2h
f4

)Ig (M2v2p
f4

)Ip ∏

n

[
f4
( p
M

)dn ( 1

vA

)fn,p
(

1

vh

)fn,g
]Vn

(2.48)

∼
(

1

2(2π)

2)2L

Λ4L−2(Ig+Ip)+
∑

n dnVn

( q
Λ

)D (M2v2h
f4

)Ig (M2v2p
f4

)Ip ∏

n

[
f4
(

1

vA

)fn,p
(

1

vh

)fn,g
]Vn

(2.49)

This can be simplified greatly using the identities (2.37),(2.38) and (2.39). The

following result is:

AEgEpDqD ∝
(

1

2(2π)2

)2L ( q
Λ

)D ( 1

vh

)Eg ( 1

vp

)Ep ( Λ

M

)2L+
∑
n(dn−2)Vn+2(

MΛ

4πf 2

)2L

(2.50)

There is much to say about this formula. Consider a process with fixed external

momenta. As long as f 2 ≥ MΛ, then the answer is suppressed for more compli-

cated graphs. In each term the numerator is bigger (or equal the denominator).

Therefore the only possible term which could cause enhancement of the answer for

more complicated diagrams is
(

Λ
M

)2L+
∑
n(dn−2)Vn+2, if we could choose vertices with

0 derivatives. However this is not possible. The minimum amount of derivatives
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in gravity interaction is 2 coming from the Einstein-Hilbert term. Likewise, due to

gauge invariance each photon field comes with a derivative. Interaction terms must

have 3 derivatives of more (the usual kinetic term has 2). Another interesting point

is that for graviton scattering the least suppressed terms correspond to the diagrams

with L = 2 and
∑

n(dn− 2)Vn + 2 = 0. This corresponds to tree diagrams with any

number of interaction vertices coming from the Einstein-Hilbert term. This is what

we would expect as these are the diagrams coming from normal GR.

For photon-photon scattering diagrams, it is not possible to choose
∑

n(dn −
2)Vn + 2 = 0, as a argued above. Therefore those processes are suppressed at least

by some powers of M. Again this is exactly what we expect. In QED photons do

not self interact. Therefore the photon scattering that we see in the low energy

limit comes from diagrams mediated by heavy particles (e.g the electron) and is

suppressed.

Finally, suppose we are looking at a specific process with Eg external gravitons

and Ep external photons with the number of loops and vertices unconstrained. We

see that scale which appears in the fields does not appear in any terms apart from

those governed by the number of external lines. Thus it is consistent to have the

field value take a large value without ruining our expansion. Specific to this case,

we may take the scale vA ∼ O(1) without ruining our expansion. This is not

unreasonable if we consider the photon field for a Reissner-Nordstrom Black hole:

Aµ = (0,−MplrQ
r

, 0, 0). For an extremal black hole at the horizon, r = rs = |rQ| and
therefore Ar ∼Mpl

4.

2.3.1 Applicability to Black Holes

Since black holes are some of the most bizarre and non-intuitive objects we encounter

in physics it is worth spending some time discussing whether the effective field theory

framework is still valid. It is clear that our framework cannot be used to describe

behaviour near the singularity. We are instead particularly interested in behaviour

near the horizon. It is argued in [8] that for large black holes, i.e MBH � Mpl, we

expect this framework to remain valid. For large black holes, the curvature at the

horizon is small so there is no reason to believe that the effective field theory regime

4rs, rQ are defined in section 3.1. The normalisation of Aµ in this convention is also given there
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breaks down there.

Concerns have also been raised whether it is possible to have a fully consistent

low energy effective near the horizon. For example static observers near the horizon

will see extremely high energy modes. It is again argued in [8] that this is not a

problem. Consider a low-energy scattering process in flat space. By performing

a Lorentz transformation, it is certainly possible to choose a frame in which the

scattering process no longer appears to be low-energy. However, we know that

physics doesn’t depend on the frame. The essential point is that the frame invariant

quantities entering the calculation need to be describable using a low energy theory.

Another way to look at this is that if there exists a frame such that the process

can be described by low energy physics, then it can validly be described by a low

energy effective field theory. Indeed this is true for black holes: we can choose a nice

foliation of spacetime, in which we only encounter low energy behaviour. There are

some additional technicalities involving Hawking radiation and I would encourage

the reader to look at [8, 27] if interested.
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Chapter 3

Classical Reissner-Nordstrom Black

Hole

In this chapter I shall examine the solutions to electrically charged black holes. I

shall begin by considering the Einstein-Maxwell action in regular General Relativity

and show a derivation of the Reissner-Nordstrom solution from this action. Then,

I will consider the effective action (2.38) and look for slight deviations to Reissner-

Nordstrom solution caused by the addition of the suppressed RµνR
µν term.

3.1 Reissner-Nordstrom Metric

The classical action for a charged black hole is given by

S =

∫
d4x
√−g

[
M2

pl

2
R− 1

4
FµνF

µν

]
, (3.1)

where Fµν is the field strength tensor defined by Fµν = ∂µAν − ∂νAµ from the

Maxwell field and the R is the Ricci scalar. We can vary this action with respect to

the metric to find Einstein’s equations for the charged black hole:

Gµν = 8πGTµν Tµν = FµρF
ρ

ν −
1

4
gµνFρσF

ρσ (3.2)

We have used the convention M2
pl = 1

8πG
to put in typical form. Tµν is traceless

and thus R = 0 so we can simplify this equation

Rµν = 8πGTµν . (3.3)
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We have two further conditions coming fromMaxwell’s equations in curved space-

time

∇µF
µν = 0 ∂λFµν + ∂µFνλ + ∂νFλµ = 0 (3.4)

There are a few different methods that can be used to derive the Reissner-

Nordström metric from this action. The classic way is to first vary the action to

derive Einstein’s field equations as I have done above. Then we can substitute an

ansatz for spherically symmetric solutions into the field equations and then solve the

resulting equations to find the exact form of the metric. This is perfectly acceptable,

however it is rather algebraically complicated. Instead I will use a method initially

discovered by Weyl [5] and extended by Deser and Franklin [6]. The general idea is

to first restrict our field variables to their most general form allowed by symmetries,

which is in our case spherical symmetry, then re-insert these into the action and

then vary these variables and solve the resulting equations.

There is some question whether this method gets all the solutions however for

the purpose of this work it is sufficient. One advantage of using this method is that

it is similar to the method that I will use to calculate the perturbed metric when I

include the effect of higher dimensional operators.

We now proceed to the calculation. Due to spherical symmetry we can restrict

the form of the metric and the 4-potential to:

ds2 = a(r, t)dt2 + b(r, t)dr2 + c(r, t)dtdr + e(r, t)r2dΩ2 (3.5)

A0 = A0(r, t) Ar = Ar(r, t) Aθ = Aφ = 0 (3.6)

We can then use coordinate freedom r → r − c
b
t to set the drdt term to zero.

Likewise we can use U(1) gauge invariance in order to set Ar = 0. (The Coloumb

gauge. Finally, we scale r to set e = 1 to put the metric in the form.

ds2 = ab2dt2 +
1

a
dr2 + r2dΩ2 (3.7)
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In [6] the drdt term is not gauged away and is necessary to prove Birkhoff’s

theorem. We then calculate the Ricci Scalar and Field Strength tensor and insert

back into the action

R =
1

r2b
(2b− 2ab− 4rba′ − 4rab′ − 3r2a′b′ − r2ba′′ − 2r2ab′′), (3.8)

FµνF
µν =

2

b2
A′0

2, (3.9)

Sred = 4π

∫
drdt

M2
pl

2
(2b− 2ab− 4rba′ − 4rab′ − 3r2a′b′ − r2ba′′ − 2r2ab′′) +

1

2b
r2A′20 ,

(3.10)

where the primes indicate differentiation with respect to r. After integrating by

parts and removing the boundary terms this can be put in the rather more simple

form

Sred = 4π

∫
drdt

M2
pl

2
(−2b(ar − r)′) +

1

2b
r2(A0)′2 (3.11)

Varying the action with respect to these variables and setting its result equal

zero

δSred
δA0

= 0→ ∂r(
r2A′0
b

) = 0 (3.12)

δSred
δa

= 0→ ∂rb = 0 (3.13)

δSred
δb

= 0→
M2

pl

2
(1− a− a′r) +

1

4b2
r2(A′0)2 = 0 (3.14)

The solution of these equations can be simply solved as follows:

b = constant (3.15)

A0 = −
√

2Mpl
rQ
r

(3.16)

a = 1− rs
r

+
r2
Q

b2r2
(3.17)
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where rs is the Schwarzchild radius and rQ is the characteristic length scale

associated to the charge. We can perform one final coordinate redefinition t → t′

where bdt = dt′ in order to set b → 1. Therefore we find the familiar form of the

Reissner-Nordstrom metric:

ds2 = −(1− rs
r

+
r2
Q

r2
)dt2 + (1− rs

r
+
r2
Q

r2
)−1dr2 + r2dθ2 + r2sin2θdφ2 (3.18)

It is also useful to determine the location of any event horizons and singularities.

There are coordinate singularities, which can be associated to event horizons with

a bit more work, at

r+ =
1

2

(
rs +

√
r2
s − 4r2

Q

)
, (3.19)

r− =
1

2

(
rs −

√
r2
s − 4r2

Q

)
, (3.20)

(3.21)

and a curvature singularity at

r = 0 (3.22)

We can distinguish between the geometry in three parametric ranges: rs <

|2rQ|, rs = |2rQ|, rs > |2rQ|.

rs < |2rQ|

In this range r± are both imaginary and therefore there is no event horizon. The

singularity at r = 0 is known as a naked singularity.

rs = |2rQ|

In this range r± = 1
2
rs, therefore there is a single event horizon. This type of black

hole is known as an extremal black hole.

rs > |2rQ|

In this range, r± are both real and different, therefore there are two event horizons.
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Causal structure

Because we now have only axial symmetry we really need a 3-dim
spacetime diagram to encode the causal structure, but the θ = 0, π/2
submanifolds are totally-geodesic, i.e. a geodesic that is initially tan-
gent to the submanifold remains tangent to it, so we can draw 2-dim
CP diagrams for them.
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naked
singularity
at r = 0
(boundary of disk)

i+

i−

i0

ℑ+

ℑ−

θ = 0

r < 0 r > 0

r = 0

θ = π/2

For θ = π/2 each point in the diagram represents a circle (0 ≤ φ < 2π).
Each ingoing radial geodesic hits the ring singularity at r = 0, which
is clearly naked. For θ = 0 we are considering only geodesics on the
axis of symmetry. Ingoing radial null geodesics pass through the disc
at r = 0 into the other region with r < 0. We can summarize both
diagrams by the single one.
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3.4.1 Nature of Internal ∞ in Extreme RN

The asymptotic metric as r → ∞ is Minkowski. To determine the
asymptotic metric as r → M we introduce the new coordinate λ by
r = M(1 + λ) and keep only the leading terms in λ, to get

F ∼ dλ ∧ dt (3.51)

ds2 ∼
(
−λ2dt2 + M2λ−2dλ2

)
︸ ︷︷ ︸

adS2

+ M2dΩ2
︸ ︷︷ ︸
2-sphere

of radius M

(3.52)

This is the Robinson-Bertotti metric. It is a kind of ‘Kaluza-Klein’
vacuum in which two directions are compactified and the ‘effective’

74

(b) rs = 2rQ

Figure 3.1: The maximally extended Penrose Diagram for two different geometries.

The diagrams are taken from [28]

Figure 3.2: The maximally extended Penrose Diagram for rs > 2rQ. Diagram taken

from [29]
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3.2 Higher Dimension Operators

In this section, we extend the method developed in section 3.1 to look for deviations

of the Reissner-Nordstrom metric coming from the higher dimensional operators in

the Lagrangian. The leading order corrections are caused by the RµνR
µν term and

therefore deviations from the Reissner-Nordstrom geometry should be suppressed

by the dimensionless parameter1

ε =
1

M2
plr

2
+

(3.23)

Since our interest is in static and spherically symmetric solutions we make the

following ansatz for the metric and Maxwell field:

ds2 = −A(r)dt2 +
1

B(r)2
dr2 + C(r)r2(dθ2 + sin2θ) (3.24)

A0 = A0(r) Ar = Ar(r) Aθ = Aφ = 0 (3.25)

We can then do a coordinate redefinition r → 1√
C(r)

r, in order to set C(r) = 1.

We can also gauge away the Ar term as in the previous section. We substitute this

ansatz into the Lagrangian and vary with respect to A(r), B(r) and A0(r), setting

each variation to zero, resulting in three equations EA, EB and EA0 . Our aim is to

then use these three equations in order to solve A,B and A0 perturbatively to first

order in ε. Since we expect deviations from the Reissner-Nordström geometry to be

suppressed by ε, we can make the following ansatz for A,B and A0

A(r) = 1− rs
r

+
r2
Q

r2
+ εa(r) (3.26)

B(r) = 1− rs
r

+
r2
Q

r2
+ εb(r) (3.27)

A0(r) = −
√

2Mpl(
rQ
r

+ εa0(r)) (3.28)

(3.29)

1The use of r+ as the length scale is because we shall be generally interested in behaviour on

the outer event horizon. This is because the inner event horizon is plagued by instabilities.
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The resulting equations can be solved using Mathematica to obtain solutions.

A(r) = 1− rs
r

+
r2
Q

r2
+ ε

[
cr2

+r
2
Q(−2r2

Q + 5r(rs − 2r)

5r6

]
, (3.30)

B(r) = 1− rs
r

+
r2
Q

r2
+ ε

[
cr2

+r
2
Q(−12r2

Q + 5r(3rs − 4r))

5r6

]
, (3.31)

A0(r) = −
√

2M2
pl

(
q

r
+ ε

[
cr2

+r
3
Q

5r5

])
. (3.32)

Higher dimensional operators cannot lead to any physical singularity within in

the region of validity of the EFT. Since our higher dimensional operators are sup-

pressed by a small constant, we expect departures from the Reissner-Nordstrom

geometry to also be small. The creation of a physical singularity is a radical change

in geometry, associated with high energy processes, and would likely indicate that

the effective field theory is no longer valid. In order to enforce this A and B must

vanish simultaneously A(r = rh) = B(r = rh) = 0 + O(ε2) at the same point defin-

ing an event horizon. It is possible that neither of these functions vanish at any

point and thus the theory has no event horizon. Alternatively, it is possible that

they vanish simultaneously at multiple points defining multiple horizons. The classic

way to find a singularity is by evaluating a scalar quantity and seeing if it diverges.

Evaluating the Kretchmann scalar RµναβR
µναβ, we see that if A(r) and B(r) do not

vanish at the same point then there is a physical singularity which is not allowed.

Again, the geometry of the black hole will depend on the ratio of rs to rQ. These

will approximately follow the same parametric ranges as the classical case, but we

expect deviations to these of O(ε). The condition for a black hole to be extremal is

found to be

r2
s = 4r2

Q − ε
8

5
cr2

+. (3.33)

I shall now give the location of the perturbed horizons, if any exist, in the three

parametric ranges:
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r2s < 4r2Q − ε85cr2+

There is no event horizon, as we would expect from the classical result

r2s = 4r2Q − ε85cr2+

There is an event horizon at r = 1
2
rs.

r2s > 4r2Q − ε85cr2+

There are two event horizons at

rp,+ = r+ + ε
cr2
Q(5r2

+ − 3r2
Q)

5r+(r2
+ − r2

Q)
, (3.34)

rp,− = r− + ε
cr2

+r
2
Q(5r2

− − 3r2
Q)

5r3
−(r2
− − r2

Q)
, (3.35)

where r± are the classical event horizons defined earlier
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Chapter 4

Fluctuations on a EFT-RN

background

In this chapter, I will analyse metric and electromagnetic perturbations on top of

Reissner-Nordstrom background solutions. I shall do this first for perturbations on

top of a classical Reissner-Nordstrom background in pure GR and then on top of the

perturbed background solution found in section 3.2 for the EFT. The strategy is to

firstly find the form of metric and electromagnetic perturbations in a suitable gauge.

Then plug these into the linearized equations of motions to find the dynamics of the

physical modes.

4.1 EFT equations of motion

The equations of motion coming from the variation of metric in the action (2.34)

can be written as:

Rµν −
1

2
gµνR−

1

M2
pl

(FµρF
ρ

ν −
1

4
gµνFρσF

ρσ) +
2

M2
pl

Eµν = 0, (4.1)

where Eµν are the terms coming from the higher dimensional operators. Even

though the Ricci scalar is zero for Reissner-Nordstrom solution, there is no reason

that the perturbations of it will also be zero, therefore we should keep it in our

equations of motion. The form of Eµν is derived in appendix and is given by:
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Eµν = c(2R σ
µ Rνσ −

1

2
RαβR

αβgµν − 2∇α∇νR
α
µ +

1

2
gµν2R + 2Rµν). (4.2)

Since there are no higher dimensional operators containing Fµν in the Lagrangian

we are considering, Maxwell’s equations remain unchanged.

4.2 Metric and Electromagnetic perturbations

We expand the metric g and Maxwell field A around background solutions ḡ and Ā

such that:

gµν = ḡµν + hµν , (4.3)

Aµ = Āµ + aµ. (4.4)

Having done this we may define the perturbed Maxwell tensor fµν by ∂µaν−∂νaµ.
We can then expand the Maxwell tensor around it background solution

Fµν = F̄µν + fµν . (4.5)

The specific form of the background solution depends on which theory we are

considering- GR or the EFT. For both cases, the perturbations take the same form.

The spherical symmetry of the background allows us to simplify this problem greatly:

we can split the hµν and fµν into a part which depends on angular variables (θ, φ)

and a part which depends on (t, r). Additionally, we may only consider axisymmetric

modes, m = 0, because non-axisymmetric modes can be deduced via rotations due

to spherical symmetry.

Similarly to the analysis of metric perturbations in flat space, we have a redun-

dancy in our description of hµν . Infinitesimal coordinate transformations present

themselves as gauge transformations, and using these we can remove redundancies.

In flat space we impose the de Donder and then the transverse traceless gauge in

order to reduce hµν to two degrees of freedom. In this case, the most convenient
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gauge choice is the Regge-Wheeler gauge condition [1] in which perturbations are

written as hµν = hoµν + heµν where:

hoµν =




0 0 0 h0

0 0 0 h1

0 0 0 0

h0 h1 0 0



sin(θ)Y

′

l (θ), (4.6)

and

heµν =




AH0 H1 0 0

H1 H2/B 0 0

0 0 r2K 0

0 0 0 r2sin2(θ)K



Yl(θ), (4.7)

where h0, h1, H0, H1, H2, K are all functions of t and r. Yl(θ) = Yl0(θ, φ) is the

usual spherical harmonic and the prime denotes differentiation by θ. We are only

interested in modes with l ≥ 2 because the others do correspond to radiative modes1.

A and B are both functions of r corresponding to (3.17) for GR and (3.26),(3.27)

for the EFT respectively.

The reason that we distinguish between hoµν , called axial or odd perturbations,

and heµν , called polar or even perturbations, is because they transform differently

under a parity transformation: (θ, φ) → (π − θ, φ + π). The reason this is relevant

is that Reissner-Nordstrom metric is parity invariant and therefore to linear order

the even and odd perturbations do not couple and can be treated separately.

In Regge-Wheeler gauge we have 6 independant degrees of freedom rather than

the 2 derived in the transverse traceless gauge in flat space. The number of degrees

of freedom certainly has not changed. Rather, we still have additional gauge free-

dom after choosing the Regge-Wheeler gauge. This additional gauge freedom will

manifest in an overdetermined system of equations and we should only be left with

two independant equations for an odd and even mode.

The electromagnetic perturbations fµν can be deduced from vector spherical

harmonics. We could also do by noticing that an anti-symmetric tensor, which

is an irreducible representation of the Lorentz group, decomposes into two vector
1From now on everything I say is for l ≥ 2
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representations under the rotation group, as long as we are careful about maintaining

U(1) gauge invariance. Similarly to the metric case, these perturbations can be split

into their odd and even part. We use the basis given by Zerilli [2] where:

f oµν = Mpl




0 0 0 −f̃02sinθY
′

l (θ)

0 0 0 −f̃12sinθY
′

l (θ)

0 0 0 f̃23sinθYl(θ)

f̃02sinθY
′

l (θ) f̃12sinθY
′

l (θ) −f̃23sinθYl(θ) 0



,

(4.8)

and

f eµν = Mpl




0 f̃ ′01Yl(θ) f̃ ′02Y
′

l (θ) 0

−f̃ ′01Yl(θ) 0 f̃ ′12Y
′

1 (θ) 0

−f̃ ′02Y
′

l (θ) −f̃ ′12Y
′

1 (θ) 0 0

0 0 0 0



, (4.9)

w,here f̃µν2 are functions of t and r and as before Yl(θ) = Yl0(θ, φ) are the

spherical harmonics with m=0. Again this is important because to linear order,

only odd/even electromagnetic perturbations will couple with odd/even gravita-

tional perturbations. These components given are actually not all independant:

Maxwell’s equations (1.64) can be used to write the following relations:

f̄12 =
1

l(l + 1)

∂f̄23

∂r
(4.10)

f̄02 =
1

l(l + 1)

∂f̄23

∂t
(4.11)

f̄ ′01 =
∂f̄ ′02

∂r
− ∂f̄ ′12

∂t
(4.12)

4.3 Linearized Einstein-Maxwell equations

We would like to proceed to determining the dynamics of these modes. The typical

way this is done is by first linearizing the equations of motion. By which I mean
2The Mpl factor in this definition is rather unconventional, however we have chosen it to be

in line with the normalisation of the background (3.28). This stops there from being Mpl dotted

around our zeroth order equations. Also note that the f̃µν do not all have the mass dimension. i.e

[f̃23] = 1 but [f̃12] = 0
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write them to first order in the fluctuation around the background. We may plug

in the form of the perturbations to find the dynamics of the modes.

4.3.1 Linearized Equations in General Relativity

The linearized Einstein-Maxwell equations in General Relativity are given by:

G(1)
µν = 8πG

(
T (1,h)
µν + T (1,f)

µν

)
, (4.13)

where

G(1)
µν = −1

2

[
2hµν + ∇̄µ∇̄νh+ 2Rλ α

µ νh
λα − ∇̄µ∇̄αh

α
ν − ∇̄ν∇̄αh

α
µ (4.14)

− R̄λ
µhνλ − R̄λ

νhµλ −
1

2
ḡµν(∇̄α∇̄βhαβ − 2̄h− R̄αβhαβ)

]
,

T (1,h)
µν = −

[
ḡασḡργ(F̄µρF̄να −

1

2
ḡµν ḡ

βλF̄αβF̄ρλ)hσγ +
1

4
F̄αβF̄

αβhµν

]
, (4.15)

T (1,f)
µν = ḡαρ(F̄µρfνα + F̄νρfµα)− 1

2
ḡµν ḡ

γαḡβδfαβF̄γδ, (4.16)

and

∂

∂µ
(
1

2
hḡµαḡνβFαβ + ḡµαḡνβfαβ − ḡµαhνβFαβ − ḡνβhµαFαβ) = 0, (4.17)

where h = gµνhµν

4.3.2 Linearized Equations in the EFT

We could also linearize the additional terms in the equations coming from the higher

dimensional operator in the EFT (4.2). However deriving these by hand is quite

tedious. In fact, we can skip this step entirely by plugging the background solution

and perturbations into the full equations of motion and only looking at the terms

linear in perturbations. This is easiest done using a symbolic manipulator program

such as Mathematica.
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4.4 Master Equations for Odd Modes

In this section, I will give the master equations for the dynamics of the odd modes.

As I mentioned previously, although the Regge-Wheeler gauge has 6 degrees of free-

dom, additional gauge freedom means there is only actually only 2 degrees of freedom

which appear as one odd and one even mode. In General Relativity, the equations

determining the dynamics of these modes on a Reissner Nordstrom background, are

known as the Zerilli equations.

4.4.1 Zerilli Equations

In the odd sector we obtain three equations from the Einstein’s equations

h0(−2 + J + 2A+ 2rA′ + r2A′′) + rA(−r∂2
rh0 + 2∂th1 + r∂t∂rh1) =

2rQ(rQh0 +
√

2r2Af̄12)

r2
,

(4.18)

Ah1(−2 + J + 2rA′ + r2A′′) + r(2∂th0 + r(−∂t∂rh0 + ∂2
t h1)) =

2rQ(rQAh1 +
√

2r2f̄02)

r2
,

(4.19)

AA′h1 + A2∂rh1 − ∂th0 = 0, (4.20)

and one equation from Maxwell’s equation

A∂rf12 +
2
√

2rQh0 + r(f̄23 − r2f̄12A
′ −
√

2rQ∂rh0 +
√

2rQ∂th1)

r3
+
∂tf̄02

A
= 0,

(4.21)

where primes denote differentiation by r and J = l(l+ 1). I shall also perform a

Fourier transform of hi(r, t) and f̄µν(r, t) with respect to the time variable

hi(t, r) =

∫ ∞

∞

dw

2π
h̃i(w, r)e

−iwt. (4.22)

Then we can use (4.20) to write h̃0 in terms of h̃1. Inserting this back into (4.19),

we can write as a Schrodinger type equation:
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∂2
∗ψ

o + w2ψo − Aψo

r2
(J − 3rs

r
+

4r2
Q

r2
) =
−2
√

2iwArQ
r3

fLM (4.23)

Where we have defined:

ψo(w, r) =
A ˜h1(w, r)

r
, (4.24)

fLM =
1

J
f23, (4.25)

∂∗ = A∂r. (4.26)

We can also put the Maxwell equation into a similar form. Again, we use (4.20)

to substitute h̃0 for h̃1. We also need to use (4.23) to finally put in the form:

∂2
∗fLM + w2fLM −

AfLM
r2

(J +
4r2

Q

r2
) =
−i
√

2ArQ(J − 2)

wr3
ψo (4.27)

These are two coupled differential equation however it is not too hard to uncouple

them. We can write in matrix form as:

(∂2
∗ + w2 − A

r2
(J +

4r2
Q

r2
))


 ψo

wfLM


+

√
2A

r3


 3rs 2irQ

irQ(J − 2) 0




 ψo

wfLM


 = 0

(4.28)

It is a simple task to find the eigenvectors of this matrix, which then is used to

perform a redefinition of ψo and fLM which decouple these equations.

4.5 Modified Zerilli Equations in EFT

In this section we now include the effects from the higher dimensional operators. We

again get three equations from Einsteins equations and one from Maxwell’s equation.

Unsurprisingly the higher dimensional operators leads to higher derivative terms,

however these are not a problem and can be perturbatively removed using the lower

order of equations using the procedure outlined in [12]. Similarly to GR case, this

leads to a pair of coupled differential equations involving the two modes, h1, flm, of

the form:
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a1
∂2h1
∂2r

+ a2
∂h1
∂r

+ a3w
2h1 + ε(a4h1 + a5

∂h1
∂r

+ a6wflm + a7w
∂flm
∂r

) = a8wflm, (4.29)

b1
∂2flm
∂2r

+ b2
∂flm
∂r

+ b3w
2flm + ε(

b4
w
h1 +

b5
w

∂h1
∂r

+ b6flm + b7
∂flm
∂r

) = b8
h1
w
, (4.30)

where the ai and bi are functions of r. These are such that they return the

Zerilli equation to zeroth order in ε. We have also fourier transformed hi as in

(4.22) The steps used to derive these equations are discussed in detail in appendix.

Unfortunately, it is not clear how to proceed from this point, specifically how to

decouple these two equations and remove both the ∂flm
∂r

and ∂h1

∂r
. Presumably they

may be removed via some redefinition flm and h1 however is immediately obvious

how this may be done. However, all is not lost. We may make the simplification of

setting electromagnetic perturbations to zero. In this limit, we may only consider a

reduced form of (4.29)

a1
∂2h1

∂2
r

+ a2
∂h1

∂r
+ a3w

2h1 + ε(a4h1) + a5
∂h1

∂r
= 0. (4.31)

We can put this is a more convenient form

∂2
∗ψ

o + w2ψo −
√
ABψo

r2
(VGR + εVHDO) = 0, (4.32)

where we use the definitions ∂∗ =
√
AB∂r and ψo =

√
ABh1

r
[1 + εfh1 ]. The details

of the potential are left for the appendix. Looking at this equation it is clear to see

that there is no correction to the low-energy radial speed. I shall comment more on

this in the conclusion.
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Chapter 5

Conclusion and Further Development

In this paper we have investigated the propagation of gravitational waves on a

Reissner-Nordstrom black hole background in low energy EFT of gravity and elec-

tromagnetism. The motivation for this was provided by work which showed that

the low energy speed of photons may deviate from unity in a background gravita-

tional field [10,17–26] and particularly [11], which showed that speed of low energy

gravitational waves propagating on a Schwarzchild background in an EFT of gravity

deviated from unity.

We have considered a low energy EFT of gravity and electromagnetism includ-

ing operators which have up to four derivatives in the light fields gµν and Aµ. We

find that the leading order corrections to action coming from these four derivative

operators can be reduced to only three terms. Out of these three terms, we have

chosen to disregard two which would cause the Maxwell field to no longer be mini-

mally coupled. This is to make sure that the speed of photon is unity (as compared

to its value in GR). Therefore the leading order correction comes from a RµνR
µν

term. In the limit in which electromagnetic perturbations are zero, we have derived

a modified Zerilli equation for the odd gravitational modes in the EFT. We do not

find a departure of the radial speed of gravitational waves from unity as compared

to the speed of photon.

More analysis is required to understand why this is the case. Perhaps there is

some unforeseen identity involving RµνR
µν that makes it irrelevant. Additionally,

it is seen that the speed of photons propagating radially on a classical Reissner

Nordstrom background in a low energy effective field theory of Electromagnetism
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is not modified. [24]. Perhaps the coupling of these two modes in the perturbation

equations ensure their speeds stay equal.

We would like to briefly connect with phenomenology. Obviously, we find no

modification to the speed of gravitational waves compared to General Relativity for

this particular Lagrangian. However it is worthwhile to look at the scale of deviations

we would expected if there were any. The suppression for the derivative four terms

(near the outer event horizon) is given by ε = 1
M2
plr

2
+
. This is approximately 1:

ε ∼
M2

pl

M2
BH

, (5.1)

For astrophysical black holes, this is observationally tiny so we should not expect

analysis like these to be used for physical predictions.

There a few avenues for further development. The most obvious is to re-include

the effects from the RF 2 and F 4 type operators. It would be interesting to see

whether these operators would have an effect on the speed of the gravitational waves.

Another interesting extension would be to explore the propagation of gravitational

waves on a background Kerr metric. Further afield, it would be interesting to repeat

the power counting arguments on the the background of the black hole rather than

flat space.

1Astrophysical black holes have very little net charge so r+ ∼ rs. This only changes the result

by at most a factor of 2 anyway which turns out to be unimportant
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Appendix A

Appendix

A.1 Linearized Einstein-Maxwell in General Rela-

tivity

Here we present a derivation of the Einstein-Maxwell equations to linear order in

perturbations. We shall first consider the Einstein equation

Rµν −
1

2
R = 8πGTµν (A.1)

We shall first look at the curvature terms on the left hand side of this. We begin

with the form linearized Ricci Tensor derived in [31]

R(1)
µν =

1

2
(∇̄α∇̄µhνα + ∇̄α∇̄νhµα − ∇̄α∇̄αhµν − ∇̄ν∇̄µh) (A.2)

Contracting with the metric, we obtain the linearized Ricci Scalar.

R = gµνRµν = (ḡµν − hµν)(R̄µν +R(1)
µν ) = −hµνR̄µν + ∇̄α∇̄βhαβ − 2̄h (A.3)

We can use an identity relating the commutation of covariant derivatives to the

Riemann tensor

(∇̄α∇̄µ − ∇̄µ∇̄α)h α
ν = Rλµh

λ
ν −Rλ

ναµhλα, (A.4)

to write R(1)
µν in a different form.
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R(1)
µν = −1

2
(2hµν + ∇̄µ∇̄νh+ 2Rλ α

µ νh
λα − ∇̄µ∇̄αh

α
ν − ∇̄ν∇̄αh

α
µ − R̄λ

µhνλ − R̄λ
νhµλ).

(A.5)

The Einstein tensor can then be simplify calculated.

G(1)
µν =− 1

2
(2hµν + ∇̄µ∇̄νh+ 2Rλ α

µ νh
λα − ∇̄µ∇̄αh

α
ν − ∇̄ν∇̄αh

α
µ (A.6)

− R̄λ
µhνλ − R̄λ

νhµλ −
1

2
ḡµν(∇̄α∇̄βhαβ − 2̄h− R̄αβhαβ))

We shall now look at the matter part of Einstein’s equation. We have:

Tµν = FµρF
ρ

ν −
1

4
gµνFαβF

αβ (A.7)

= gαρFµρFνα −
1

4
gµνg

αγgβδFαβFγδ (A.8)

= (ḡαρ − hαρ)(F̄µρ + fµρ)(F̄να + fνα) (A.9)

− 1

4
(ḡµν + hµν)(ḡ

αγ − hαγ)(ḡβδ − hβδ)(F̄αβ + fαβ)(F̄γδ + fγδ))

= T̄µν + T (1,h)
µν + T (1,f)

µν (A.10)

where T̄µν denotes the zeroth order (background) stress energy tensor and

T (1,h)
µν = −F̄µρF̄ναgασgργhσγ −

1

4
F̄αβF̄

αβhµν +
1

2
ḡµν ḡ

αγ ḡβσḡδλhσλF̄αβF̄γδ

(A.11)

= −[ḡασḡργ(F̄µρF̄να −
1

2
ḡµν ḡ

βλF̄αβF̄ρλ)hσγ +
1

4
F̄αβF̄

αβhµν ] (A.12)

and

T (1,f)
µν = F̄µρfναḡ

αρ + F̄ναfµρḡ
αρ − 1

4
(ḡµν ḡ

γαḡβδfαβF̄γδ + ḡµν ḡ
γαḡβδfγδF̄αβ)

(A.13)

= ḡαρ(F̄µρfνα + F̄νρfµα)− 1

2
ḡµν ḡ

γαḡβδfαβF̄γδ (A.14)

We shall now consider Maxwell’s equation:

∇µF
µν =

1√−g
∂

∂µ
(
√−gF µν) = 0 (A.15)
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Using the identity that
√−g =

√−ḡ(1 + 1
2
h), where h = gµνhµν , we can expand:

∂

∂µ
(
√−ggµαgνβF̄αβ) (A.16)

=
∂

∂µ
(
√−ḡ(1 +

1

2
h)(ḡµα − hµα)(ḡνβ − hνβ)(F̄αβ + fαβ)) (A.17)

=
∂

∂µ
(
√−ḡF̄ µν) +

∂

∂µ
(
1

2
hḡµαḡνβF̄αβ + ḡµαḡνβfαβ − ḡµαhνβF̄αβ − ḡνβhµαF̄αβ)

(A.18)

The first term equals zero to because the Maxwell equation is satisfied to zeroth

order therefore

∂

∂µ
(
1

2
hḡµαḡνβFαβ + ḡµαḡνβfαβ − ḡµαhνβFαβ − ḡνβhµαFαβ) = 0 (A.19)

A.2 EFT equations of Motion

In this section I will calculate the additional contribution to the equations of motion

coming from the RµνR
µν term in the action (2.35).

Starting with the well known Palatini Identity:

δRµν = ∇γδΓ
γ
µν −∇νδΓ

γ
µγ (A.20)

The variation of the Christoffel connection δΓ, unlike the Christoffel connection,

is a tensor because the inhomogenous parts of the transformation cancel eachother.

It is then convenient to work in a local inertial frame, in which

δΓγµν =
1

2
δ(gγα(∂νgαµ + ∂µgαν − ∂αgµν))

=
1

2
δgγα(∂νgαµ + ∂µgαν − ∂αgµν) +

1

2
gγα(∂νδgαµ + ∂µδgαν − ∂αδgµν)

Since we are working in a local inertial frame, all partial derivatives can now

be replaced by covariant derivatives. The covariant derivative of the metric is zero

therefore the first term disappears. Hence we are left we only the term:
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δΓγµν =
1

2
gγα(∇νδgαµ +∇µδgαν −∇αδgµν) (A.21)

Re-inserting this into equation(A.20), we get:

δRµν =
1

2
∇γg

γα(∇νδgαµ +∇µδgαν −∇αδgµν)−
1

2
∇νg

γα(∇γδgαµ +∇µδgαγ −∇αδgµγ)

=
1

2
gγα(∇γ∇νδgαµ +∇γ∇µδgαν −∇γ∇αδgµν −∇ν∇γδgαµ −∇ν∇µδgαγ +∇ν∇αδgµγ)

The 4th and 6th terms cancel leaving

δRµν =
1

2
gγα(∇γ∇νδgαµ +∇γ∇µδgαν −∇γ∇αδgµν −∇ν∇µδgαγ) (A.22)

We can now calculate the modification to the equations of motion coming from

the RµνR
µν term.

δ(
√−gRµνR

µν) =
√−g(δRµνR

µν +Rµνδ(g
µρgσνRρσ)− 1

2
RαβR

αβgµνδg
µν)

(A.23)

=
√−g(2RµνδRµν + 2R σ

µ Rνσδg
µν − 1

2
RαβR

αβgµνδg
µν)

(A.24)

Substituting (A.22) into 2RµνδRµν we get:

2RµνδRµν = Rµνgγα(∇γ∇νδgαµ +∇γ∇µδgαν −∇ν∇µδgγα −∇γ∇αδgµν)

(A.25)

= Rµν(2∇α∇νδgαµ − gγα∇ν∇µδgγα −2δgµν) (A.26)

Remembering that we are doing this variation inside an integral, we can re-insert

(A.27) into the integral and integrate by parts discarding the boundary terms as we

have done previously.

∫
d4x
√−g 2gαβ∇ν∇βR

µνδgαµ − gγα∇µ∇νR
µνδgγα −2Rµνδgµν (A.27)
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Using the identities δgµνgµν + gµνδgµν = 0 and δgµαgµν + gµαδgµν = 0, we can

put in the form:

=

∫
d4x
√−g − 2gαµ∇ν∇βR

µνδgαβ + gγα∇µ∇νR
µνδgγα + 2Rµνδg

µν

(A.28)

=

∫
d4x
√−g − 2∇α∇νR

α
µ δgµν + gµν∇α∇βR

αβδgµν + 2Rµνδg
µν (A.29)

Using the contracted Bianchi Identities

∇νR
ν
µ =

1

2
∇µR (A.30)

We can simplify ∇α∇βR
αβ as

∇α∇βR
αβ =

1

2
2R (A.31)

Therefore the final result for

δ

∫
d4x
√−g RµνR

µν

=

∫
d4x
√−g (2R σ

µ Rνσ −
1

2
RαβR

αβgµν − 2∇α∇νR
α
µ +

1

2
gµν2R + 2Rµν)δg

µν

(A.32)

A.3 Modified Zerilli Equations

In this appendix, I will roughly give the steps used to put the electromagnetic and
metric perturbations in the form (4.29, 4.30). Similarly to GR case, we get three
equations from Einstein’s equations and one from Maxwell’s equations. The three
Einsteins equations can be written compactly as:

a1h0 + a2h
(0,1)
0 + a3h

(0,2)
0 + a4h

(1,0)
1 + a5h

(1,1)
1 + ε


∑

ij

(a0ijh
(i,j)
0 + a1ijh

(i,j)
1


 = a6f12,

(A.33)

b1h1 + b2h
(2,0)
1 + b3h

(1,0)
0 + b4h

(1,1)
0 + ε


∑

ij

(b0ijh
(i,j)
0 + b1ijh

(i,j)
1


 = b5f02, (A.34)
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c1h1 + c2h
(0,1)
1 + c3h

(1,0)
0 + ε


∑

ij

(c0ijh
(i,j)
0 + c1ijh

(i,j)
1


 = 0, (A.35)

where the coefficients, a′ij, b′ij and c′ij are all functions of r. I have also denoted

∂n1
t ∂

n2
r h

(n1.n2)
i as h(n1,n2)

i . Maxwell’s equation is only modified by the change in

background so it form is very similar to that of (4.21). I will focus on showing how

to derive (4.29) - the basic procedure is essentially the same for (4.30). As in GR,

the first equation is satisfied if both the second and the third are (by conservation

of energy momentum tensor), so we only need to focus on the second and third

equations. Again the third equation can be used to constrain h0 in terms of h1.

This is not immediately obvious: the O(ε) part of this equation is rather complicated

containing a mixture of the functions h1 and h0 and their derivatives. Fortunately it

only actually contains h0 with at least one time derivative i.e c00j = 0. Remembering

that we only working to O(ε) in the expansion, we can substitute the zeroth order

form of h(1,0)
0 into all higher derivative in order to get h(1,0)

0 purely as a function of

h1 and its derivatives.

c3h
(1,0
0 = −c1h1 − c2h

(0,1)
1 − ε

∑

ij

c′1ijh
(i,j)
1 (A.36)

Similarly (A.35) only contains h0 with at least one time derivative, i.e b00j = 0.

Therefore (A.36), can be substituted into (A.34) in order to get an equation just

in terms of h1 and its derivatives only. The O(ε) part of this equation will contain

higher order derivatives of h1 however these can be removed by substituting the

lower order equations of motion. When this is all said and done we get an equation

of the form:

d1h1 + d2h
(0,1)
1 + d3h

(2,0)
1 + d4h

(0,2)
1 + ε(d5h1 + d6h

(0,1)
1 + d7h

(2,0)
2 + d8flm + d9f

(2,0)
lm ) = 0,

(A.37)

which we can then Fourier transform as in (4.22). The final task is then to

subsitute the the zereoth order Maxwell equations into f (2,0)
lm to get our equation

into the form shown
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A.4 Explicit Expressions fromModified Zerilli Equa-

tion

fh1 = −c3r2
Qr

2
+

r4
(A.38)

VGR = J − 3rs
r

+
4r2

Q

r2
(A.39)

VHDO = c
r2

+(r2
Q + r(−rs + r))(44r2

Q + r2
Qr(−48rs + (68− 11J + 3J2)r))

r8

(A.40)
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