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Abstract

The wave function of the Universe is a solution to the Wheeler-DeWitt equation. As

this equation permits infinitely many solutions, selecting the one that corresponds to

our Universe requires that we impose appropriate boundary conditions. It is hoped

that such boundary conditions will give rise to a classical spacetime in the late Uni-

verse and provide an initial condition for the inflationary period required to solve

the flatness and horizon problems of classical cosmology. This dissertation is mainly

concerned with the no-boundary proposal of Hartle and Hawking as a candidate for

those boundary conditions. After discussing the basic principles of quantum cosmol-

ogy, the recent criticisms of this proposal are addressed.
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Chapter 1

Introduction

The Penrose-Hawking singularity theorems of general relativity lead to the conclu-

sion of an initial singularity before the Big Bang [1]. As the laws of thermodynamics

tell us that isolated systems such as the Universe shall naturally evolve towards states

of higher disorder, the initial configuration of the Universe must have had a very high

degree of order to it. This gives rise to the thermodynamic arrow of time. An ex-

planation as to why the Universe began in a highly ordered state was put forth by

Penrose in [2] based on the predictions of general relativity that singularities have

occurred in the past and shall once again occur in the future. Future singularities

could be a result of the Big Crunch if the entire Universe is to recollapse, or at the

centre of black holes if only local regions are to collapse. Penrose proposes that the

Weyl tensor vanishes at the initial singularity so that the geometry is highly ordered

and equivalently, the gravitational entropy is small. The Weyl tensor however need

not vanish at singularities in the future which are free to be arbitrarily disordered.

It is both a cause for concern and a valid criticism of Penrose’s proposal that at this

singularity at the beginning of the Universe, the classical equations of general rela-

tivity likely no longer apply 1. This has led many to suggest that the origin of the

1Though significantly less popular, the alternative view is that there are particles whose histories did
not exist before a certain time.
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Universe must be treated using an alternative theory. As we lack a satisfactory the-

ory of quantum gravity, we shall deal with what is sometimes argued to simply be

an effective theory known as quantum cosmology.

If quantum mechanics is truly a fundamental theory, one would expect that we can

apply it to the Universe as a whole. It therefore seems wise to seek a description of

the quantum creation of the Universe. The quantum state that the Universe occu-

pies is then an object of great interest. The relevant functional, Ψ[h̃ij(x), Φ̃(x),Σ],

which shall henceforth be referred to as the wave function of the Universe, was first

introduced by DeWitt in 1967 [3] and describes the probability amplitude that the

Universe contains a three-surface Σ on which the three-metric is h̃ij(x) and the mat-

ter field configuration is Φ̃(x). Computing this object which should describe the past,

present, and future of a closed Universe is the main concern of quantum cosmology.

Unlike the familiar particle wave functions of quantum mechanics, the wave function

of the Universe is not defined on spacetime but rather, actually being a functional,

is defined on an infinite dimensional manifold known as superspace. The govern-

ing equation of such a function, and the central equation to quantum cosmology

is known as the Wheeler-DeWitt equation. This equation, which the wave function

must satisfy, takes steps towards a theory of quantum gravity as it blends ideas from

both quantum mechanics and general relativity by Dirac quantizing the Hamiltonian

constraint of a gravity plus matter system. The equation takes the form of a second

order hyperbolic functional differential equation and permits infinitely many solu-

tions. As we shall soon see, the explicit form of this equation is rather complicated

due to the fact it is defined on an infinite dimensional manifold. In an attempt to

understand properties of its solutions, we usually restrict ourselves to a finite di-

mensional manifold known as minisuperspace. Upon doing so, the Wheeler-DeWitt

equation is reduced to a wave equation which can be solved by standard techniques
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[4].

Similarly to how models from classical cosmology usually require various types of

initial conditions in order to have any kind of predictive power, the wave functions

of quantum cosmology require a choice of boundary conditions. Even then, more is

sometimes required to fully determine a wave function. We shall soon see this in the

case of the no-boundary proposal where choosing a contour of integration remains

a contentious issue [5, 6, 7, 8]. In ordinary single-particle quantum mechanics, the

Schrödinger equation is solved and boundary conditions dependent on the external

set up of the system are imposed to fully determine the particle’s wave function. As

there is nothing external to the Universe the boundary conditions cannot be derived

from quantum cosmology itself. They are to be introduced as new laws of physics in

their own right. Therefore, when proposing boundary conditions there are certain

sobriety tests that they should be able to withstand. The two most basic require-

ments are that the Universe should behave classically whilst large and that the wave

function should be consistent with quantum field theory on a fixed background for

small matter fluctuations about a homogenous Universe. The later of which implies

that a suitable wave function should take the form of a decaying gaussian in the

semiclassical approximation.

Many physicists seem to believe that the boundary conditions of the Universe are

arbitrary to an extraordinary high degree and for this reason cannot be known ex-

actly. Regardless of whether or not it is possible to know them with precision, it

seems that they certainly have large restrictions placed on them. Observations place

the density parameter Ω = ρ/ρcrit very close to one and suggest that the large scale

structure of the Universe is homogenous and isotropic. Therefore being described

by the Friedmann-Robertson-Walker (FRW) metric [9, 10]
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ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
. (1.1)

In quantum cosmology we usually study closed Universes and thus set the parameter

k equal to one. One possible route to achieving a Universe with the properties

described above is through a phenomena known as inflation where the Universe

undergoes an initial period of exponential expansion driven by the energy of a false

vacuum [11]. Models of this sort claim to provide answers to the following two

problems of classical cosmology 2, but as inflation must be a consequence of the

boundary conditions the models are incomplete without making statements about

what those boundary conditions happen to be.

1. The flatness problem: For the density parameter of the Universe to be as close

to 1 as it is in the present day, at the Planck time it must have differed from 1

by an amount smaller than 10−60.

2. The horizon problem: Regions of the Universe which appear to have never

been in causal contact with one another are in thermal equilibrium.

Numerous proposals have been put forth, the most studied of which being the pro-

posals of Hartle and Hawking who claim that the boundary condition of the Uni-

verse is that it has no boundary [13], and the tunnelling boundary condition of

Vilenkin who attempts to draw analogy between quantum tunnelling and the quan-

tum creation of the Universe from nothing [14]. Both sets of authors claim that their

boundary condition predicts sufficient inflation to explain the flatness and horizon

problems, but in the case of the no-boundary condition we shall see that this is dis-

putable as it requires a volume-weighting to first be introduced.

2Alternative solutions involving a time varying speed of light have been proposed by Albrecht and
Magueijo [12].
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In recent years the no-boundary proposal has become the subject of much contro-

versy after Neil Turok and collaborators wrote a series of papers claiming that it

cannot possibly describe the emergence of a realistic cosmology [5, 6, 7, 8]. More

specifically, the authors believe that the proposal necessarily leads to unsuppressed

matter fluctuations. In writing these papers, they were unable to convince everyone

and subsequent papers by Halliwell et al. were published in defence of the proposal

[15, 16, 17, 18]. This led to a dispute lasting multiple years which at the time of

writing remains unresolved. The two sets of authors were unable to come to an

agreement and simply published final papers reiterating their most recent positions

on the matter [8, 18]. This dispute shall be discussed in detail in chapter four after

developing the basic tools required for quantum cosmology.

5



Chapter 2

The Wheeler-DeWitt Equation

2.1 The Action Principle

It has been suggested by Sir Roger Penrose that a physically appropriate spacetime

must be globally hyperbolic [2]. Any manifold of this form admits a smooth time

function t, such that the set of points satisfying t = constant form a spacelike Cauchy

hypersurface Σ. We may split a manifoldM, of this type in terms of the orthogonal

product [19]

M = R× Σ. (2.1)

As we are mainly concerned with closed Universes in quantum cosmology we can

take the three-surface to be compact. It then becomes possible to choose coordinates

such that our line element can be written as

ds2 = gµνdx
µdxν = −

(
N2 −NiN

i
)

dt2 + 2Nidx
idt+ hijdx

idxj. (2.2)

The quantity N is known as the lapse function and is fully determined by the differ-

ence between the elapsed coordinate time t, and proper time τ on curves normal to

the hypersurfaces. Explicitly, the defining equation of this function takes the form
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2.1. THE ACTION PRINCIPLE

Figure 2.1: This is a graphical illustration of the lapse function N and the shift vector
Na. By starting at point a on Σt, moving by nµNdt leads to the point b on Σt+dt. We
then shift by Nadt to arrive at the point c, this is the time evolution of a. The graphic
has been taken from [20].

dτ = Ndt. The shift vector N i describes how the hypersurface Σt differs from the

neighbouring hypersurface Σt+dt. Consider a point a on Σt. The shift vector gives

the difference between the point one would end up at if instead of following a from

one hypersurface to the next, you instead followed a curve tangent to the normal

vector nµ, of the hypersurface Σt. For the special case in which N i = 0, the spatial

coordinates are said to be “comoving”.

We shall now derive the central equation of quantum cosmology. We start by intro-

ducing the Einstein-Hilbert action which in the presence of matter is coupled to the

corresponding matter field Φ

S =
m2
p

16π

[∫
M

d4x
√
−g(R− 2Λ) + 2

∫
∂M

d3x
√
hK

]
+ Sm (2.3)

with the term due to the matter coupling being given by

Sm = −1

2

∫
M

d4x
√
−g [gµν∂µΦ∂νΦ + 2V (Φ)] . (2.4)

The letter g is used to denote the determinant of the metric gµν while K denotes
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2.1. THE ACTION PRINCIPLE

the trace of the purely spatial part of the extrinsic curvature tensor Kij. This can

be written in terms of the three-metric as K = Kijh
ij. Explicitly, these components

satisfy the relation

Kij =
1

2N

[
−∂hij

∂t
+ 2D(iNj)

]
. (2.5)

Using our new variables, the entire action S may be rewritten as

S =
m2
p

16π

∫
d3xdtN

√
h
[
KijK

ij −K2 + 3R− 2Λ
]

+ Sm. (2.6)

We now calculate the conjugate momenta

πij =
δL
δḣij

= −
m2
p

16π

√
h
(
Kij − hijK

)
(2.7)

πΦ =
δL
δΦ̇

=
1

N

√
h
(

Φ̇−N i∂iΦ
)
. (2.8)

Using standard techniques, the Hamiltonian form of the action is found to be [21]

S =

∫
d3xdt

[
ḣijπ

ij + Φ̇πΦ −NH−N iHi

]
(2.9)

where

H =
16π

m2
p

Gijklπ
ijπkl −

m2
p

16π

√
h
(

3R− 2Λ
)

+Hm (2.10)

and

Hi = −2Djπ
ji +Hi

m. (2.11)

In this, we have introduced the Wheeler-DeWitt metric Gijkl which has signature

(-+++++) at every point on the hypersurface. It has the explicit form
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2.2. CANONICAL QUANTISATION

Gijkl =
1

2
h−1/2 (hikhjl + hilhjk − hijhkl) . (2.12)

In (2.9), the lapse function N and the shift vector N i are acting as Lagrange multipli-

ers. Recognising this leads us to the equations of motion. We have the Hamiltonian

constraint

H =
16π

m2
p

Gijklπ
ijπkl −

m2
p

16π

√
h
(

3R− 2Λ
)

+Hm = 0 (2.13)

which happens to be the (00) component of Einstein’s field equations, and also the

momentum constraints

Hi = −2Djπ
ji +Hi

m = 0. (2.14)

which are the (0i) components.

2.2 Canonical Quantisation

At this point, we shall make note of an interesting and important problem that arises

from our analysis. From equation (2.9), we may use the standard relation between

the Lagrangian and Hamiltonian density

L =
∑
i

φ̇iπi −H (2.15)

to see that the Hamiltonian of the system is just a linear combination of the con-

straints, multiplied by some Lagrange multipliers

H =

∫
d3x

(
NH +NiHi

)
. (2.16)

When our constraints are taken on-shell, the integrand and thus the Hamiltonian

vanish. This is rather suspicious as in quantum mechanics, the Hamiltonian is re-
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2.2. CANONICAL QUANTISATION

sponsible for generating translations in time which we interpret as being the flow

of time. A vanishing Hamiltonian therefore implies that there is no such flow. The

issue that has arisen is one of the main difficulties encountered when attempting to

construct theories of quantum gravity and is one aspect of the more general “Problem

of Time” [22]. At its core, this is a conflict due to the fact that quantum mechanics

and general relativity each have independent and incompatible notions of time. In

quantum mechanics time is treated as a background parameter with an absolute and

rigid flow that is external to the system itself. On the other hand, in general relativity

time is a coordinate that can flow in a malleable way depending on the motion and

position of the system under consideration. Finding a resolution to this conflict is

vital if we are to ever replace quantum theory and general relativity with a unified

framework to treat situations where the effects of both are important i.e. during the

early Universe or inside of a black hole.

From the Hamiltonian constraint (2.13), we may construct the Wheeler-DeWitt equa-

tion by using the process of Dirac quantisation [23]. We start by quantising our

operators in the standard way

πij → −i δ

δhij
(2.17)

πφ → −i
δ

δφ
. (2.18)

By making the appropriate replacements and operating on the wave function with

the quantised Hamiltonian constraint, we finally obtain the Wheeler-DeWitt equa-

tion

ĤΨ =

[
−16π

m2
p

Gijkl
δ

δhij

δ

δhkl
−
m2
p

16π

√
h
(

3R− 2Λ
)

+ Ĥm

]
Ψ = 0. (2.19)
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2.2. CANONICAL QUANTISATION

While time certainly plays a role in equations describing subsystems of the Universe

such as Schrödinger’s equation, it appears that equations describing the Universe as

a whole are stationary. One is then faced with having to explain how notions of

time come to be, this is another aspect of the problem of time known as “The Frozen

Formalism Problem”. While the Wheeler-DeWitt equation is static and seemingly

suggests that the Universe does not evolve in time (in clear contradiction with ob-

servation), if this wave function is to contain an all encompassing description of the

Universe, then time itself being part of the Universe, should be described by its wave

function. Thus we should be able to construct a monotonic functional t(hij,Φ) from

solutions of the equation [3]. Although a sensible prescription is not obvious and

has not been found, the supposed paradox seems apparent rather than actual.

In this derivation, the issues associated with the ordering of operators have been ig-

nored. Make no mistake though, the Wheeler-DeWitt equation suffers from issues of

operator ordering as is often the case in quantum theory. Although solutions to this

equation will clearly depend on how we choose to resolve these issues, it will not be

too big of a concern to us as predictions in quantum cosmology can only be trusted

to leading semiclassical order. That is to say, the operator ordering will only affect

the prefactor and not the exponential contribution to the wave function in which we

are interested.

The significance of the momentum constraint was first realised and proven by Peter

Higgs in 1958 [24]. From the quantised version of (2.14), it is found that the the-

ory is invariant under three-dimensional diffeomorphisms. To demonstrate this, we

consider a change in coordinates

xi → x′i = xi − ηi (2.20)
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2.2. CANONICAL QUANTISATION

under which our wave function transforms as

Ψ[hij +D(iηj)] = Ψ[hij] +

∫
d3xD(iξj)

δΨ

δhij
. (2.21)

As we are interested in compact geometries, we may now integrate by parts and

drop the boundary term. The above is now rewritten as

Ψ[hij +D(iηj)] = Ψ[hij]−
∫

d3xηjDi

(
δΨ

δhij

)
= Ψ[hij] +

1

2i

∫
d3xηiHiΨ. (2.22)

If the momentum constraint is satisfied, the second term on the far RHS of the above

equation vanishes, and we are simply left with

Ψ[hij +D(iηj)] = Ψ[hij] (2.23)

proving the original claim.

Similarly to the wave functions from non-relativistic particle mechanics, there is a

probability interpretation associated with our wave function. As the Wheeler-DeWitt

equation is a Klein-Gordon type equation, there is a corresponding conserved current

J =
i

2
(Ψ∇Ψ∗ −Ψ∗∇Ψ). (2.24)

Although tempting to naively interpret J as a probability flux, just as in the case of

the Klein-Gordon equation for the complex scalar it is not positive definite. For this

reason, many physicists reject probabilities constructed from the conserved current

J . Instead, many adopt Hawking’s proposal that |Ψ[h̃ij, φ̃,Σ]|2 is to be interpreted

as being proportional to the probability of the Universe containing a three-surface Σ

on which the metric is h̃ij and matter field is Φ̃. Explicitly, the probability of finding

that the Universe is in a configuration contained within a region V of our superspace
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2.3. SUPERSPACE

is then

P (V) ∝
∫
V
|Ψ|2 ? 1 (2.25)

with ?1 being the volume element [10].

In quantum field theory, solutions to the Klein-Gordon equation are quantized and

turned into field operators, thinking in a similar manner about the Wheeler-DeWitt

equation has led to proposals that Ψ should be “third quantised” and turned into

an operator Ψ̂. This operator creates and annihilates Universes in the same way

that the familiar ladder operators associated with the Klein-Gordon field create and

annihilate particles. Difficulties with this method arise due to the fact that we clearly

cannot make measurements on a statistical ensemble of Universes the same way we

can for particles. Therefore, it is not known how using this method could lead to

measurable probabilities [25, 26, 27].

2.3 Superspace

The space on which our wave function is defined is known as superspace. To con-

struct this space, we start by considering the configuration space of all Riemannian

three-metrics hij(x) and matter field configurations Φ(x) on a spatial hypersurface

Σ

Riem(Σ) = {hij(x),Φ(x) | x ∈ Σ}. (2.26)

If we can find a diffeomorphism relating a set of configurations, those configurations

must have the same intrinsic geometry and we consider them to be equivalent. We

now proceed by partitioning this space into equivalence classes such that if two

configurations are related by a diffeomorphism, they belong to the same equivalence

13



2.4. MINISUPERSPACE

class. We identify superspace as

Sup(Σ) = Riem(Σ)/Diff0(Σ) (2.27)

where the subscript zero indicates that we only consider diffeomorphisms that are

connected to the identity. The metric on our infinite dimensional superspace is the

Wheeler-DeWitt metric (2.12).

2.4 Minisuperspace

As was previously mentioned, superspace is notoriously difficult to work with due

to its infinite dimensionality. The Wheeler-DeWitt equation is in fact not a single

equation, but an infinite number of equations, one for each point x on our spatial

hypersurface Σ. It is not known how to solve the Wheeler-DeWitt equation on super-

space with modern techniques [26]. Necessity therefore dictates that we seek some

simplification. This can be done by freezing all but a finite number of degrees of

freedom of the metric and matter fields to obtain what is then known as a minisu-

perspace model. Although these models are unable to tell us what the exact solution

to the Wheeler-DeWitt equation is, they will allow us to learn about the properties it

will possess.

2.5 The Path Integral Approach

At this point, it is worth explicitly noting that the Wheeler-DeWitt equation is a sec-

ond order hyperbolic functional differential equation and therefore requires bound-

ary conditions to specify a particular solution. What those boundary conditions

could be will be discussed momentarily. Solving this equation is however not the

14



2.5. THE PATH INTEGRAL APPROACH

only path one could take to obtain the wave function of the Universe. To understand

the alternative to the canonical quantization approach, we start by thinking back to

single-particle quantum mechanics. Working in units where h̄ = 1, the propagator

taking a particle with position x′ at a time t′ to a position x at a time t is given by the

path integral

ψ = 〈x, t|x′, t′〉 = N

∫
Dx(t)eiS[x(t)]. (2.28)

In the expression above,N is a normalisation constant and S is the classical Lorentzian

action associated with a path the particle can take. Using this path integral, we can

obtain the wave function by summing over all possible paths from a point x′ at time

t′ that pass through x at time t and weighting each path by its associated classical

action.

Ground states in quantum mechanics are eigenstates associated with the smallest

eigenvalue of the system’s Hamiltonian. A system’s ground state is calculated by

Wick rotating as t → −iτ so that we now are left with the Euclidean version of the

integral

ψ0 = N

∫
Dx(τ)e−I[x(τ)] (2.29)

in which I is the Euclidean action. Here, we sum over the class of paths that have

vanishing action in the far past. In analogy with particle mechanics we may write

the wave function of the Universe in terms of a path integral. Formally,

Ψ[h̃ij, Φ̃,Σ] =
∑
M

∫
C
DgµνDΦeiS[gµν ,Φ]. (2.30)

Here, we are summing over a set of manifolds M whose boundary contains Σ, a

three-surface on which the three-metric is h̃ij(x) and the matter field configuration
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2.5. THE PATH INTEGRAL APPROACH

is Φ̃(x). It was naturally suggested by Hartle and Hawking that the ground state of

the Universe should be the cosmological analog of a quantum mechanical ground

state. However, in the case of quantum cosmology, we do not have the notion of

a ground state being the state of lowest energy. The energy of a closed Universe

isn’t even well defined. Instead, the ground state is associated with the minimum

excitation corresponding to the classical notion of a geometry of high symmetry [13].

By once again performing a Wick rotation, we are left with

Ψ[h̃ij, Φ̃,Σ] =
∑
M

∫
C
DgµνDΦe−I[gµν ,Φ] (2.31)

with I being the Euclidean action of the gravity plus matter system. One reason for

doing this is that the Euclidean version of the integral has nicer convergence prop-

erties, this is analogous to Wick rotated quantum field theory. Another reason is

that a Euclidean approach allows for the inclusion of topologically non-trivial man-

ifolds [13]. Although we have two reasons for formulating the path integral this

way, it does come with its own set of issues. Those being that the Euclidean action

is unbounded from below leading to the conformal factor problem [28], and the ac-

tion for a topologically non-trivial manifold can be unbounded from both above and

below [29].
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Chapter 3

Boundary Conditions

DeWitt, in his 1967 paper speculates that the Wheeler-DeWitt equation could permit

just a single unique solution [3]. This conjecture has never come to fruition and it

seems that as with most differential equations, when paired with our usually theo-

ries of dynamics the Wheeler-DeWitt equation permits not just one solution, but an

infinite number. Singling out just one solution to be the wave function of the Uni-

verse requires that we apply boundary conditions. There could be many different

sets of boundary conditions leading to a Universe in a similar state to our own, but

we would like to find the boundary conditions of our Universe. As to what those

boundary conditions are is not universally agreed upon. One possibility known as

the Tunnelling Proposal was introduced in 1982 by Alexander Vilenkin [14].

3.1 The Tunnelling Proposal

Vilenkin’s approach to quantum cosmology involves the Universe spontaneously nu-

cleating from nothing into de Sitter spacetime and then entering an inflationary

period. “Nothing” in this context refers to the absence of matter, space and also

time. Vilenkin originally formulated his proposal in terms of a path integral ap-

proach [30, 31] by regarding the transition amplitude between two three-geometries

17



3.1. THE TUNNELLING PROPOSAL

h1
ij and h2

ij with corresponding matter fields Φ1 and Φ2 as being given by

∑
M

(h2
ij ,Φ

2)∫
(h1
ij ,Φ

1)

DgµνDΦeiS[gµν ,Φ]. (3.1)

The wave function of the Universe can then be computed by shrinking the geometry

corresponding to h1
ij to a single point and calculating the transition amplitude be-

tween this vanishing three-geometry and the observed configuration of the Universe

(h̃ij, Φ̃), that is

Ψ[h̃ij, Φ̃,Σ] =
∑
M

(h̃ij ,Φ̃)∫
Ø

DgµνDΦeiS[gµν ,Φ]. (3.2)

Here the integration is performed over histories lying in the past of (h̃ij, Φ̃) so that the

Universe evolves from a vanishing three-geometry and not to one. There is also no

restriction to compact Euclidean geometries as there is in the Hartle-Hawking pro-

posal. We are to integrate over Lorentzian metrics. An issue that Vilenkin acknowl-

edges with defining our wave function this way is that any Lorentzian geometry that

connects our vanishing three-geometry to h̃ij is inherently singular. He suggests that

this singularity could be avoided with an adequate theory of quantum gravity or by

discretising spacetime manifolds on scales smaller than the Planck length [30]. At

present, this is purely speculative.

Several years after its inception, the proposal was reformulated in terms of a bound-

ary condition on superspace [32]. While not obviously equivalent to the original

proposal, the condition is that at singular boundaries of superspace, the wave func-

tion includes only outgoing modes (carrying flux out of superspace). Here, ingoing

and outgoing modes are playing a similar role to that of positive and negative fre-

quency modes for solutions to the Klein-Gordon equation, although they are not as

well defined outside of the semiclassical case. As an additional constraint, the wave
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3.1. THE TUNNELLING PROPOSAL

function should be bounded everywhere.

A boundary of superspace consists of singular configurations. This be can be due

to points or regions where Φ, ∂iΦ, or the three-curvature 3R is infinite, as well as

configurations with infinite three-volume. We now consider dividing the boundary

of our superspace up into two regions

1. A non-singular boundary consisting of three-geometries in which the singular-

ities are attributed to slicing of regular four-geometries.

2. A singular boundary consisting of everything not in the non-singular boundary.

A semi-classical complex wave function can be expressed in terms of a superposition

Ψ =
∑
n

Cne
iSn (3.3)

where each Sn is a solution to the Hamilton-Jacobi equation on superspace

1

2
(∇Sn)2 + U = 0. (3.4)

To each oscillatory WKB mode CneiSn, there is an associated current

Jn = −|Cn|2∇Sn. (3.5)

What the tunnelling boundary condition is telling us is that the congruence of clas-

sical paths defined by each Sn are permitted to end at the singular boundary of

superspace but are forbidden from beginning there. Equivalently, −∇Sn is required

to point out of superspace at the boundaries.

We now consider a model of a closed Universe described by the FRW metric

ds2 = −dt2 + a(t)2
(
dχ2 + sin2χ(dθ2 + sin2θdϕ2)

)
(3.6)
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3.1. THE TUNNELLING PROPOSAL

where 0 ≤ χ ≤ π, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π and an action of the form

S =

∫
d4x
√
−g
[

3a−2

8π
(1 + ȧ2 + aä) +

1

2
gµν∂µΦ∂νΦ− V (Φ)

]
. (3.7)

By restricting our metric and scalar fields to be homogenous and isotropic, our only

two remaining degrees of freedom are a(t) ≥ 0 and Φ(t) ∈ R where a(t) is the usual

scale factor from (1.1). These two variables shall define our minisuperspace. We can

easily show that

∫
d3x
√
−g = 2π2a3 (3.8)

which allows us to recast our action in the form

S =

∫
dt

(
3πa

4
(1 + ȧ2 + aä) + π2a3Φ̇2 − 2π2a3V (Φ)

)
. (3.9)

To simplify, we integrate by parts and drop the boundary term to obtain

S =

∫
dt

(
3π

4
(1− ȧ2)a+ π2a3Φ̇2 − 2π2a3V (Φ)

)
(3.10)

from which we can simply read off the Lagrangian

L =
3π

4
(1− ȧ2)a+ π2a3Φ̇2 − 2π2a3V (Φ). (3.11)

We make use of this expression to find the canonical momenta

πa =
∂L

∂ȧ
= −3π

2
aȧ (3.12)

πΦ =
∂L

∂Φ̇
= 2π2a3Φ̇ (3.13)

and apply the standard relationship between the Lagrangian and Hamiltonian to get
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3.1. THE TUNNELLING PROPOSAL

H = − 1

3πa
π2
a +

1

4π2a3
πΦ −

3π

4
a(1− 8π

3
a2V (Φ)). (3.14)

The Wheeler-DeWitt equation for this model can be obtained using standard pro-

cedure of canonical quantization where we make the replacements πa → −i ∂∂a and

πΦ → −i ∂∂Φ
. We note that there will clearly be some issue of operator ordering as the

first term will involves a factor of 1/a as well as derivatives with respect to a. Hawk-

ing and Page have argued that this issue should be resolved by requiring that the

differential operator that appears in the Wheeler-DeWitt equation is the Laplacian

operator in the natural metric on superspace [10]. This leads to a Wheeler-DeWitt

equation of the form

(
a
∂

∂a

(
a
∂

∂a

)
− 3

4π

∂2

∂Φ2
− 9π2

4
a4

(
1− 8π

3
a2V (Φ)

))
Ψ = 0. (3.15)

Instead of this approach, we shall follow Vilenkin by introducing a parameter p, to

write down a family of orderings

(
∂2

∂a2
+
p

a

∂

∂a
− 3

4πa2

∂2

∂Φ2
− 9π2

4
a2

(
1− 8π

3
a2V (Φ)

))
Ψ = 0. (3.16)

For reasons discussed in section 2.2, this alternative choice of ordering is largely ir-

relevant to the analysis as we are only interested in the lowest order semiclassical

approximation. Note that when p = 1, our equation reduces to the form that Hawk-

ing and Page have argued for. To simplify, we shall introduce a suitable rescaling of

Φ and V (Φ) as so that our equation is now in the form [32]

(
∂2

∂a2
+
p

a

∂

∂a
− 1

a2

∂2

∂Φ2
− a2

(
1− a2V (Φ)

))
Ψ = 0. (3.17)

The term U = a2 (1− a2V (Φ)) is known as the superpotential and divides our min-

isuperspace up into a Euclidean region where U > 0 and a Lorentzian region where

U < 0 which roughly coincide with the classically forbidden and classically allowed
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3.1. THE TUNNELLING PROPOSAL

regions [33]. In the classically allowed region the wave function is oscillatory and

in the classically forbidden region the wave function is exponential. The boundary

between these two regions occurs at U = 0, or equivalently V (Φ) = 1/a2.

We now make the assumption that the potential is far from this boundary and varies

slowly with Φ. We will find that the following condition is required for our approxi-

mation to be valid [34]

∣∣∣∣dV (Φ)

dΦ

∣∣∣∣� max{|V (Φ)| , 1

a2
}. (3.18)

Due our assumptions, it is reasonable to neglect derivatives with respect to Φ allow-

ing us to rewrite the Wheeler-DeWitt equation as

(
∂2

∂a2
+
p

a

∂

∂a
− a2

(
1− a2V (Φ)

))
Ψ = 0. (3.19)

It now becomes convenient to set the parameter p = −1, as the resulting equation

can be solved exactly. We introduce a new variable

κ = (−2V (Φ))−
2
3
(
1− a2V (Φ)

)
(3.20)

so that the equation to be solved now takes the form of Airy’s equation

(
∂2

∂κ2
+ κ

)
Ψ = 0. (3.21)

The general solution to this is a linear combination of Airy functions where the co-

efficients are arbitrary functions of Φ. These functions have a characteristic turning

point where the solution changes from exponential to oscillatory. Just as we expect

our wave function to have when passing between the classically forbidden and clas-

sically allowed region. We shall only be interested in the asymptotic forms of these

functions where κ→∞, in this case these are
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3.1. THE TUNNELLING PROPOSAL

Ai(κ) ≈ 1

2
√
π
κ−

1
4 e−

2
3
κ

3
2

Bi(κ) ≈ 1√
π
κ−

1
4 eκ

3
2

Ai(−κ) ≈ 1√
π
κ−

1
4 sin

(
2

3
κ

3
2 +

π

4

)
Bi(−κ) ≈ 1√

π
κ−

1
4 cos

(
κ

3
2 +

π

4

)
.

(3.22)

As the Universe is expanding, we are only interested in wave functions describing an

expanding Universe. In the classically allowed region with V (Φ) > 1/a2 we require

the constraint

i

Ψ

∂Ψ

∂a
> 0. (3.23)

To see how this arises consider

i

Ψ

∂Ψ

∂a
= − 1

Ψ
π̂aΨ =

3π

2
aȧ. (3.24)

For an expanding Universe, the right hand side of the above expression must be

greater than zero. The constraint (3.23) therefore follows.

This is now the point where we impose that condition that the wave function in-

cludes only outgoing modes in the classically allowed region where iΨ−1 ∂Ψ
∂a

> 0 for

V (Φ) > 1/a2. We find that for negative values of V (Φ)

ΨT =
Ai(|κ|)

Ai(|κ|a=0|)
. (3.25)

If we consider the classically allowed region far from the boundary, we see that

κ→∞ and κa=0 → −∞. Therefore, as an approximation for the case a2V (Φ) > 1
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3.1. THE TUNNELLING PROPOSAL

ΨT ∝ exp

(
−1 + i(a2V (Φ)− 1)

3
2

3V (Φ)
+
iπ

4

)
(3.26)

and for the classically forbidden region where a2V (Φ) < 1 we have

ΨT ∝ exp

(
(1− a2V (Φ))

3
2 − 1

3V (Φ)

)
. (3.27)

The conserved current associated with this wave function has two components

Ja =
i

2
ap (Ψ∂aΨ

∗ −Ψ∗∂aΨ)

JΦ = − i
2
ap−2 (Ψ∂ΦΨ∗ −Ψ∗∂ΦΨ) .

(3.28)

When this current was introduced in a previous section, it was mentioned that J

is not positive definite for arbitrary wave functions and issues with negative prob-

abilities can arise. Vilenkin however does not believe this to be an issue [32], his

argument being that the wave function ΨT is not arbitrary and corresponds to an

expanding de Sitter space with scale factor

a ≈ V −
1
2 cosh

(
V

1
2 t
)
. (3.29)

If we take a to be our time variable, it can be shown that the current is positive for

expanding Universes and negative for contracting ones. In our context, the Universe

is expanding so interpretations based on the current are just.

For p = −1 and sufficiently large values of awe can construct a conserved probability

measure

dPT = J · dΣ =∝ exp

(
− 2

3V (Φ)

)
dΦ (3.30)

so that
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3.2. THE NO-BOUNDARY PROPOSAL

PT (Φ2,Φ1) =

∫ Φ2

Φ1

J · dΣ (3.31)

is the probability for the scalar field to lie in the interval (Φ1,Φ2) at a given value of

the scale factor.

3.2 The No-Boundary Proposal

The singularity theorems of Hawking and Penrose show that the Universe cannot

have a classical beginning corresponding to a Lorentzian geometry. This provided

partial motivation for the idea which evolved into the no-boundary proposal. During

a conference in the Vatican in 1981, Hawking made the conjecture that the Universe

began with a regular Euclidean geometry having four spatial dimensions. Later, this

made a quantum transition to a Lorentzian geometry with three spatial dimensions

and one time dimension [35].

It was previously discussed that as an alternative to the canonical quantization pro-

cedure, one may use the path integral formalism to determine the wave function. It

is through this method that the no-boundary proposal is most naturally expressed. In

essence, the proposal is a topological statement concerning the class of histories to be

summed over. To calculate the wave function of the Universe, Hartle and Hawking

would have you restrict the sum in (2.31) strictly to compact Euclidean geometries

for which the only boundary of the geometry is Σ, a compact three-surface on which

the three-metric is h̃ij(x) and the matter field configuration is Φ̃(x). Halliwell and

Hawking have shown that this provides a boundary condition on superspace [36].

For the following, it is convenient to include the lapse function in our FRW metric so

that it now reads
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3.2. THE NO-BOUNDARY PROPOSAL

ds2 = −N(t)2dt2 + a(t)2dΩ2
3. (3.32)

In the gauge Ṅ = 0, the no-boundary wave function (NBWF) for a closed Universe

is given by

ΨNB =

∫
dN

∫
DΦDae−I[a,Φ,N ]. (3.33)

It is convenient to impose a parameterisation where the three-surface Σ corresponds

to τ = 1, that means

hij(x, 1) = h̃ij(x)

Φ(x, 1) = Φ̃(x).

a(1) = ã

(3.34)

If we also choose the initial point to correspond to τ = 0, it can be shown that the

Euclidean action for this model is

I =
1

2

∫ 1

0

dτN

[
− a

N2

(
da

dτ

)2

+
a3

N2

(
dΦ

dτ

)2

− a+ a3V (Φ)

]
. (3.35)

To obtain the two field equations for this action, we vary with respect to a and Φ, a

third equation is obtained by imposing the saddle-point condition ∂I
∂N

= 0.

1

N2

d2Φ

dτ 2
+

3

Na

da

dτ

dΦ

dτ
− 1

2

dV (Φ)

dΦ
= 0 (3.36)

1

N2a

d2a

dτ 2
+

2

N2

(
dΦ

dτ

)2

+ V (Φ) = 0 (3.37)

1

N2

(
da

dτ

)2

− a2

N2

(
dΦ

dτ

)2

− 1 + a2V (Φ) = 0 (3.38)

To obtain a wave function, we must impose a condition at the initial point of the

class of histories to sum over in (3.33). For the no-boundary proposal, we require
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3.2. THE NO-BOUNDARY PROPOSAL

the four-geometry to close off in a regular way. This means that a(τ) ≈ Nτ as

τ → 0 so that the Euclidean form of the metric approaches the metric of flat space

in spherical coordinates. We therefore must have the condition

a(0) = 0. (3.39)

This can immediately be seen to be problematic if no further conditions are imposed

since it will cause the second term of equation (3.36) to blow up. To prevent this we

also require the scalar field to satisfy

dΦ

dτ

∣∣∣
τ=0

= 0. (3.40)

The solution to (3.37) that is compatible with the above conditions is

a(τ) ≈ sin(V
1
2Nτ)

sin(V
1
2N)

. (3.41)

We now substitute this back into the saddle-point condition (3.38)

V ã2 cos2(V
1
2Nτ)

sin2(V
1
2N)

− 1 + a2V = 0 (3.42)

and evaluate at τ = 1 to obtain

ã2V
(

1 + cot2(V
1
2N)

)
= 1 (3.43)

which finally simplifies down to give us

sin2(V
1
2N) = ã2V. (3.44)

As we are only interested in real values of the potential and scale factor, we shall con-

sider the case ã2V < 1 for which there are a countably infinite number of solutions

that we shall parameterise by n ∈ Z
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N±n =
1

V
1
2

[(
n+

1

2

)
π ± cos−1(ãV

1
2 )

]
. (3.45)

If we set n = 0 and take cos−1(ãV
1
2 ) to lie in the principal range (0, π

2
), we find [37]

a(τ) ≈ 1

V
1
2

sin

[(π
2
± cos−1(ãV

1
2 )
)
τ

]
. (3.46)

We can then use this to evaluate our action, we have now obtained two possible

solutions

I± = − 1

3V (Φ̃)

[
1±

(
1− ã2V (Φ̃)

) 3
2

]
. (3.47)

Here, the (-) solution corresponds to the three-sphere being closed off by less than

half of a four-sphere while the (+) solution corresponds to it being closed off by

more than half of a four-sphere. Despite all of this work, we still find that this is not

enough to fully specify a wave function. There is still the issue of choosing a contour

that one is to perform the integration over and it has been shown that different

convergent contours are dominated by different saddle-points leading to different

wave function [38, 39, 40]. The no-boundary proposal offers no guidance in making

a choice. Although no contour stands out as being preferred above all else, some

are clearly better than others. Halliwell and Hartle argued in [41] that any sensible

contour should satisfy the following five physical constraints:

1. The integral should converge.

2. The wave function should be compatible with the diffeomorphims invariance

implemented by the momentum constraint.

3. When the Universe is large, classical spacetime should be predicted.

4. The correct theory in a curved spacetime should be reproduced in this space-

time.

28
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5. To the extent that wormholes make the cosmological constant dependent on

initial conditions the wave function should predict its vanishing.

It was shown in the same paper that contours dominated by saddle-points corre-

sponding to negative lapse functions lead to difficulties in recovering quantum field

theory in a curved space time. While this provides us with a good reason for ex-

cluding contours for which the dominating contribution is from a saddle-point with

n < 0, there does not appear to be any good reason for preferring a contour for

which the dominating contribution comes from a saddle-point associated with any

particular n ≥ 0.

When Hartle and Hawking were originally faced with this problem in [13], they

argued that the steepest-descent contour does not pass through the extremum cor-

responding to I+ and so it is I− that gives the dominant contribution. Although not

all have found this argument totally convincing [34], Hartle and Hawking obtained

a wave function

ΨNB ∝ exp

[
1− (1− a2V (Φ))

3
2

3V (Φ)

]
(3.48)

in the classically forbidden region where a2V (Φ) < 1, and

ΨNB ∝ exp

[
1

3V (Φ)

]
cos

[
(a2V (Φ)− 1)

3
2

3V (Φ)
− π

4

]
(3.49)

in the classically allowed region where a2V (Φ) > 1. Finally, in the semiclassical

approximation it is possible to construct a probability measure on a set of paths

J · dΣ, where Σ is a surface of constant a

dPNB = J · dΣ ∝ exp

(
2

3V (Φ)

)
dΦ. (3.50)

Although we have taken the standard approach found in the literature to obtain the
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NBWF of the Universe [26, 34], it is possible to specify a NBWF without relying on

a functional integral at all. The semiclassical NBWF can be defined as a collection

of appropriately regular saddle-points of the action of the dynamical theory coupled

to gravity [17]. In the following we shall keep the factors of h̄ explicit and write a

wave function in the form

Ψ[h̃ij, Ψ̃,Σ] =
∑
n

Cn exp
(
−In[h̃ij, Φ̃,Σ]/h̄

)
. (3.51)

The wave function must satisfy the Wheeler-DeWitt equation which in minisuper-

space is often written in the covariant form

ĤΨ =

(
−1

2
h̄2∇2 + U

)
Ψ = 0. (3.52)

If we now Taylor expand this in powers of h̄,

∑
n

e−In/h̄
{
Cn

[
− 1

2
(∇In)2 + U

]
+ h̄

[
∇In · ∇Cn +

1

2
Cn∇2In

]
+O(h̄2)

}
= 0 (3.53)

so that this holds true for any choice of coefficients, we can see that from the terms

of lowest order that each In is a solution to the Euclidean Hamilton-Jacobi equation

− 1

2
(∇In)2 + U = 0. (3.54)

If we demand that each In is the action Isp[h̃ij, Φ̃,Σ] of a saddle-point of the ac-

tion defining the dynamical theory, the equation is satisfied. This means our wave

function is a linear combination of saddle-points of the action associated with our

dynamical theory where the geometries have a spacelike boundary Σ on which the

three-metric and matter field match the data (h̃ij, Φ̃)
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Ψ[h̃ij, Φ̃,Σ] =
∑
sp

Csp exp
(
−Isp

[
h̃ij, Φ̃,Σ

]
/h̄
)
. (3.55)

The resulting wave function depends on the collection of saddle-points we sum over

and different sets shall lead to different wave functions and different predictions.

Admittedly this scenario is incomplete in an analogous way to the functional integral

formulation of the no-boundary proposal in that choosing that collection remains an

open problem. In the same way that Halliwell and Hartle suggested restrictions to be

placed on the contour of integration for the NBWF in [13], three similar constraints

on the collection of saddle-points are provided in [17]:

1. The wave function must satisfy the constraints of general relativity and the

matter theory.

2. The wave function must be consistent with the principles of the quantum

framework used to make predictions. For example, it must be normalisable

in an appropriate Hilbert space inner product.

3. At least at the semiclassical level, the wave function must provide predictions

that are consistent with observation.

It is important that the set only includes saddle-points with damped fluctuations so

that we do not risk the normalisation principle. Clearly, if Isp is a solution to (3.54),

−Isp and I∗sp are also solutions. One must be careful not to include both Isp and

−Isp in our sum of saddle-points as if one is associated with damped fluctuations,

the other will be associated with anti-damped fluctuations. On the other hand, if

for every Isp included in the sum we also include I∗sp and weight them with equal

coefficients, the result shall be a real wave function. Wave functions of this form

such as the NBWF originally obtained by Hartle and Hawking can be shown to be

CPT-invariant.
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3.3 CPT-Invariance of the NBWF

In 1985, Hawking published a paper on the arrow of time in cosmology [42] in

which he made what he considered to be his “greatest mistake” [43]. Previously, at

the 11th Solvay Conference on Physics, Thomas Gold had proposed that the ther-

modynamic arrow of time and the cosmological arrow of time must always point in

the same direction [44]. With this proposal in mind, Hawking concluded that if the

Universe were to eventually recollapse, the thermodynamic arrow, at the moment

of maximum expansion and entropy would reverse as to agree with the cosmolog-

ical arrow. As the psychological arrow of time is presumably a consequence of the

thermodynamic arrow, this would bizarrely imply that a conscious observer would

then remember the future but not the past. An influencing factor that led him to this

conclusion was the fact that his no-boundary quantum state was CPT-invariant. The

CPT-theorem is recognised as a property of all fundamental physical laws and states

that those laws are invariant under the combination of charge conjugation, space

inversion, and time reversal. Therefore, the fact that the no-boundary wave function

exhibits this property is an encouraging sign. To prove this feature, we will follow

Hawking in considering the Laplace transformation

ξ(h̃ij, KE, Φ̃) =

∫
dh

1
2 exp

[
−
m2
pKE

18π

∫
KEh

1
2 d3x

]
Ψ(hij, Φ̃). (3.56)

Here, h
1
2 is the square root of the determinant of the three-metric and KE is the

trace of the Euclidean extrinsic curvature tensor. The Laplace transformation ξ is

holomorphic for Re(KE) > 0 so we may analytically continue ξ to Lorentzian values

in KE by defining KL = iKE which is interpreted as the rate of expansion of the

boundary Σ. Upon doing so it is easy to show that for real values of kL and a real

wave function Ψ

ξ(h̃ij, KL, Φ̃) = ξ∗(h̃ij,−KL, Φ̃) (3.57)
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From this statement, we have recovered T -invariance for the wave function of the

Universe from the no-boundary proposal. As Hawking interprets |ξ(h̃ij, KL,Φ)|2 as

being the probability that the Universe contains a three surface Σ with conformal

metric h̃ij and rate of expansion KL he concludes that “if the wave function repre-

sents an expanding phase of the Universe, then it will also represent a contracting one”.

Next, we consider a situation in which our field Φ is complex so that it can permit

charge. As is often convenient, in this situation we shall treat Φ and Φ∗ as indepen-

dent variables instead of using an equivalent method where we treat the real and

imaginary part of our scalar field independently of one another. We now must inte-

grate over both variables in our path integral to construct our wave function, that

is

Ψ[h̃ij, Φ̃, Φ̃
∗] =

∑
M

∫
DgµνDΦDΦ∗e−I[gµν ,Φ,Φ

∗] (3.58)

Due to the fact that our scalar field is no longer real, the Euclidean action is no longer

required to be real, however as our two variables must appear in a rather symmetric

configuration within the action, it is true that

I[gµν ,Φ,Φ
∗] = I∗[gµν ,Φ

∗,Φ]. (3.59)

from which it can easily be shown

Ψ[h̃ij, Φ̃, Φ̃
∗] = Ψ∗[h̃ij, Φ̃

∗, Φ̃]. (3.60)

Using the above, one can arrive at the statement of CT-invariance

ξ(h̃ij, KL, Φ̃) = ξ∗(h̃ij,−KL, Φ̃∗) (3.61)

To finally arrive at CPT-invariance, we introduce fermion fields ψ and a set of three

33



3.4. INFLATION

co-vectors eaµ with a directed unit normal e0
µ to Σ. The wave function Ψ[eaµ, ψ̃] is a

function of the co-vectors and fermion fields evaluated on the three-surface. Using

the fact that

I[eaµ, ψ, ψ
†] = I∗[−eaµ, Ĉψ, (Ĉψ)†] (3.62)

where Ĉ is operator that implements the charge-conjugation transformation, Hawk-

ing then arrived at

Ψ[eaµ, ψ̃] = Ψ[−eaµ, Ĉψ̃] (3.63)

which is the expression for CPT-invariance for the no-boundary quantum state of

the Universe. This means that if ΨNB is a solution to the Wheeler-DeWitt equation,

then so is θ̂ΨNB where θ̂ is the anti-unitary operator that implements the CPT trans-

formation. Not long after Hawking’s paper was published, Page published a paper

correcting him [45] where he pointed out CPT-invariance of the wave function does

not imply that an individual history is also CPT-invariant. It only implies that if a

particular history is contained by the wave function, then the wave function must

also contain the CPT image of that history with the same probability. This in no

way suggests that the thermodynamic arrow of time will reverse in accordance with

the cosmological arrow during the Universe’s contracting phase. While Hawking ac-

cepted the mistake and abandoned the idea, he still believed that the no-boundary

proposal is very consequential for the thermodynamic arrow of time and argues in

[46] that it naturally arises from these boundary conditions.

3.4 Inflation

Clearly the Universe has achieved a sufficient amount of inflation so that large scale

structure and even observers can emerge. At least in the case of a minisuperspace
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model, both sets of boundary conditions previously mentioned in this chapter give

rise to a wave function predicting a period of inflation. The amount of inflation a

Universe undergoes is determined by the initial value Φ0 of our scalar field. It is the

potential energy of this field which allows the Universe to expand in an exponential

manner for a short while. If this value is too small, the model will predict that the

Universe will expand and recollapse over a period of time that is too short for the

emergence of large scale structure. Therefore, we shall make the same restriction

as Hawking and Page have done in previous work [10] and not concern ourselves

with values of Φ0 less than a given small value which we shall call Φmin. We would

like our model to predict a sufficient amount of inflation, roughly 60 e-folds [47,

48] as to provide a satisfactory explanation to the flatness and horizon problems of

classical cosmology. This motivates us to define a value Φsuff such that the Universe

experiences sufficient inflation for Φ0 > Φsuff . To find an approximate value for this

parameter we shall use that the number of e-folds Ne can be written as

Ne = 6

∫ Φ0

Φe

dΦ
V (Φ)

V ′(Φ)
(3.64)

where Φe is the value of the scalar field at the end of the inflationary period. If we

now take our potential to be a chaotic type of the form V (Φ) = m2Φ2, the integral

(3.64) evaluates to

Ne =
3

2
(Φ2

0 − Φ2
e). (3.65)

Achieving Ne > 60 requires that Φ2
0−Φ2

e > 40. We now use the slow-rolling condition

that |V (Φ)/V ′′(Φ)| < 9 to give us Φ2
e >

2
9
. This implies that Φ2

0 >
362
9

allowing us

to conclude that a sufficient amount of inflation occurs at Φsuff ≈ 6.3. Vilenkin has

pointed out [32] that for large values of Φ, the potential V (Φ), is likely to far exceed

the Planck energy density unless it is of a very special shape. As the derivation of

our probability density has been based on a semiclassical approximation, it would
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not be wise to trust the predictions of our minisuperspace model in this region. We

are therefore once again motivated to define another value Φmax which is the largest

value of Φ0 for which we shall trust our model. Given that the initial value for the

scalar field lies somewhere within the range Φmin < Φ0 < Φmax, we would like

to calculate the probability that it is greater than Φsuff . That is, we would like to

evaluate the conditional probability

P (Φ0 > Φsuff |Φmin < Φ0 < Φmax) =

∫ Φmax
Φsuff

dΦ exp
(
± 2

3V (Φ)

)
∫ Φmax

Φmin
dΦ exp

(
± 2

3V (Φ)

) (3.66)

which we rewrite in a form that shall prove to be more useful momentarily

P (Φ0 > Φsuff |Φmin < Φ0 < Φmax) = 1−

∫ Φsuff
Φmin

dΦ exp
(
± 2

3V (Φ)

)
∫ Φmax

Φmin
dΦ exp

(
± 2

3V (Φ)

) . (3.67)

Instead of evaluating this integral directly, it is useful to think about it graphically.

Figure 3.1 shows a plot of the probability distribution for both wave functions. For

the tunnelling wave function, the probability distribution is small in the region about

Φmin meaning

∫ Φmax

φmin

dΦ exp

(
2

3V (Φ)

)
>>

∫ Φsuff

Φmin

dΦ exp

(
2

3V (Φ)

)
(3.68)

and P (Φ0 > Φsuff |Φmin < Φ0 < Φmax) ≈ 1 so that sufficient inflation is overwhelm-

ingly likely. For the no-boundary wave function this is not the case. The region about

Φmin represents a peak so that

∫ Φsuff

Φmin

dΦ exp

(
− 2

3V (Φ)

)
≈
∫ Φmax

φmin

dΦ exp

(
− 2

3V (Φ)

)
(3.69)

and P (Φ0 > Φsuff |Φmin < Φ0 < Φmax) << 1. While any non-vanishing probability

means that sufficient inflation is still possible, the no-boundary wave function seems

strongly biased towards little inflation. In [10] Hawking and Page attempt to escape
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Figure 3.1: This is a graphical illustration comparing the probability distributions as-
sociated with the tunnelling and no-boundary wave functions. It has been taken from
[34].

from this by taking Φmax →∞ but as Vilenkin has pointed out, this is flawed.

A further and prehaps more realistic attempt to rescue inflation as a prediction of

the no-boundary proposal was made by Hawking and collaborators [49, 50] where

it is argued that the measure that has previously been used is in need of an amend-

ment. The measure dP corresponds to entire cosmological histories. As many of

these Universes recollapse or fail to leave the quantum regime, they do not evolve

into classical Universes such as our own. The proposal Hawking argues for is that

we should condition on the fact that the Universe contains a Hubble volume that

corresponds to our data so that the predictions made are relevant to the Universe

we exist in. The probability measure should therefore be proportional to the number

of such Hubble volumes, which in turn is proportional to e3Ne . This implies that the

probability measure should have been “volume weighted” by this factor
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Figure 3.2: This is a heuristic plot of how the argument of the probability distribution
changes upon application of volume-weighting. The graphic has been taken from [51].

dPvolume−weighted = e3NedP. (3.70)

In some crude sense, the volume-weighting is how we have accounted for the fact

that our existence and our observations are more likely to occur in a larger Universe

rather than a smaller one. While this transforms our probability distribution in a way

that the theory now favours larger amounts of inflation necessary for explaining the

Universe’s homogeneity and spatial flatness, a new issue arises. The theory now pre-

dicts that the Universe has emerged from a region of eternal inflation [50, 52, 53].

The prospect of eternal inflation is problematic for cosmological models as it pre-

dicts inflation may end locally, but never globally. This results in a picture where the

inflating regions undergo eternal exponential growth while pieces known as bubble

Universes break off ad infinitum. Eternal inflation therefore produces an infinite

fractal-like multiverse. If this is the case, anything permitted to occur by the laws

of physics does so an infinite number of times and conditioning on any observa-

tional data in such a scenario becomes trivial. Theories of such a Universe are often

severely defective as when attempting to extract a meaningful prediction one is of-

ten met with ratios of infinite quantities. Alan Guth has famously said “In a single

Universe, cows born with two heads are rarer than cows born with one head. But in an

infinitely branching multiverse, there are an infinite number of one-headed cows and
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an infinite number of two-headed cows. What happens to the ratio?” This is a typical

way in which the “Measure Problem” of cosmology arises.
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Chapter 4

Lorentzian Quantum Cosmology

Despite the success of Euclidean geometry in understanding effects of quantum grav-

ity [54], in recent years some have proposed that a Lorentzian path integral is a

better starting point for quantum cosmology than the Euclidean version [5]. Feld-

brugge, Lehners and Turok believe that if one is to formulate the wave function of

the Universe in terms of a Lorentzian path integral, causal and unitary behaviour

shall follow. They also claim that the steepest-descent contour running through the

saddle-point of the Euclidean action corresponding to Hartle and Hawking’s NBWF

bears no relation to Lorentzian path integral. Therefore, similar behaviour should

not be expected to follow from the Euclidean analog which they believe to be a

“meaningless divergent integral”.

4.1 Picard-Lefschetz Theory

Although tempting to immediately dismiss the Lorentzian path integral (2.30) on

the grounds that it is highly oscillatory and not absolutely convergent, the authors

were highly aware of this issue and employ techniques of Picard-Lefschetz theory as

a method of dealing with integrals such as
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4.1. PICARD-LEFSCHETZ THEORY

∫
D

dxeiS[x]/h̄. (4.1)

Much of this discussion shall follow [5] as we are only interested in building the

minimum tool kit necessary in order to understand the arguments of Turok et al..

However, a more complete overview of Picard-Lefschetz theory can be found in [55].

In (4.1), the integration is over a real domain D, h̄ is a small parameter, and S[x] is a

real valued function which we shall now interpret as being holomorphic in the com-

plex plane of the variable x. Keeping the end points of our contour fixed, Cauchy’s

theorem licenses us to deform D into a contour of steepest-descent passing through

the critical points of S[x], i.e. points that satisfy ∂xS[x] = 0. Taking the derivative of

S[x] with respect to x along the Re[x]-axis we have

∂S

∂x
=

1

2

(
∂Re(S)

∂Re(x)
+ i

∂Im(S))

∂Re(x)

)
(4.2)

for this to equal zero, both terms on the RHS must separately be equal to zero. By

virtue of the Cauchy-Reimann equations, it also must be the case that ∂Re(S)
∂Im(x)

= 0

from which we can conclude that a critical point of S[x] corresponds to a saddle-

point of Re[iS[x]] in the complex plane of x. This is significant as Re[iS[x]] governs

the magnitude of the integrand via the relationship |eiS[x]/h̄| = eRe(iS[x])/h̄. Thus, the

contour of steepest-descent corresponds to the path over which Re[iS[x]] decreases

most rapidly. These contours shall lead to a convergent integral and in this case are

called Lefschetz thimbles Jσ.

We now write I = iS/h̄ and split both this and x in to its real and imginary parts,

I = h + iH and x = u1 + iu2. Introducing λ to parameterise our paths, we define a

downward flow to be the one which satisfies

dui

dλ
= −gij ∂h

∂uj
(4.3)
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where gij is a Riemannian metric on the complex plane. The real part of I is known

as the Morse function h. With the exception of the trivial solution that remains at the

critical point for all λ, the Morse function is strictly decreasing along a flow which

can easily be seen under application of the chain rule

dh

dλ
=
∑
i

∂h

∂ui
dui

dλ
= −

∑
i

(
∂h

∂ui

)2

. (4.4)

We now see that the term on the RHS is negative due to the fact that we are dealing

with a Riemannian metric, our claim then follows. The path of steepest-descent is

now identified with the flow because the gradient takes the largest possible magni-

tude. Similarly, it is possible to define upward flows Kσ, from the equation

dui

dλ
= gij

∂h

∂uj
(4.5)

which we shall identify with paths of steepest-ascent. As we are now required to

choose a metric, we shall pick the obvious Kähler metric ds2 = |dx|2 so that from the

downward flow equation we obtain

dx

dλ
= −∂I

∗

dx∗
. (4.6)

Using this, we can clearly see that the imaginary part of I is conserved along the

flow

dH

dλ
=

1

2i

d(I − I∗)
dλ

=
1

2i

(
∂I

∂x

dx

dλ
− ∂I∗

∂x∗
dx∗

dλ

)
= 0. (4.7)

As we have seen that the imaginary part of the integrand eiS[x]/h̄ remains fixed along

the downward flow while the real part decreases monotonically, the integral con-

verges absolutely. Although unlikely, there is a subtlety here that shall be addressed.

That being the special case in which the steepest-descent contour for a saddle-point

Pσ matches the steepest-ascent contour for the a separate saddle-point P ′σ. While
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uncommon, this may occur as a result of a symmetry. It can be treated by adding

infinitesimal perturbations to S[x] that violate the symmetry so that the degeneracy

between the imaginary part of the exponent H, at the two saddle-points is broken.

Equation (4.7) tells us that H is conserved along the flow so that the imaginary parts

can no longer coincide. We then define the contour C in the limit that these pertur-

bations are taken to zero so that they have negligible contribution to the integral.

Upon doing this, we shall find that each saddle-point Pσ corresponds to a unique

steepest-descent contour Jσ, and steepest-ascent contour Kσ. As was our original

goal, we now deform our contour of integration from the real axis so that it becomes

a linear combination of Lefschetz thimbles

C =
∑
σ

nσJσ. (4.8)

The coefficients nσ are known as the intersection numbers and take values ±1 or 0.

Although you may expect all critical points to contribute to the integral with nσ = 1,

in general the Lefschetz thimbles do not have natural orientations so we must also

allow for the possibility nσ = −1 so to avoid pathological exponential growth. For

critical points that would make very large contributions to the integral, we set nσ = 0

[55]. From this discussion, we can rewrite the integral of interest as

∫
D

dxeiS[x]/h̄ =

∫
C

dxeiS[x]/h̄ =
∑
σ

nσ

∫
Jσ

dxeiS[x]/h̄ (4.9)

which is absolutely convergent if

∫
Jσ
|dx|eh(x) <∞ (4.10)

for all Lefschetz thimbles Jσ. Expanding the right hand side of (4.9) in powers of h̄,

we obtain our final result
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∫
D

dxeiS[x]/h̄ =
∑
σ

nσe
iH(pσ)

∫
Jσ
ehdx ≈

∑
σ

nσe
iS(pσ)/h̄[Aσ +O(h̄)]. (4.11)

In the above S(pσ) is the action associated with pσ and Aσ is the value of the leading-

order Gaussian integral about the same critical point.

4.2 The No-Boundary Dispute

We begin by considering a model of the Universe with a positive cosmological con-

stant Λ, a metric of the form of (3.32), and an Einstein-Hilbert action (2.3) with

Sm = 0. We shall work in units where mp = 1 and 8πG = 1 so that our action takes

the form

S =
1

2

∫
M

d4x
√
−g(R− 2Λ) +

∫
∂M

d3x
√
hK. (4.12)

Instead of Wick rotating as Hartle and Hawking did in [13], Turok et al. attempt to

evaluate the path integral (2.30) directly. It has long been known integrating the

lapse function over the entire real number line leads to a solution of the Wheeler-

DeWitt equation, this is what was done in section 3.2. On the other hand, if we

restrict the integration to a half-infinite contour extending from zero to infinity, we

obtain a Green’s function for the Wheeler-DeWitt equation instead [56]. This is the

approach the Turok and his collaborators have taken. Their starting point, is the

Feynman path integral

G[a1; a0] =

∫
DNDπDaDpDCDP̄ e

i
h̄

∫ 1
0 [Ṅπ+ȧp+ĊP̄−NH]dt (4.13)

where a fermionic ghost C, along with conjugate momenta p, π, and P̄ have been

introduced. Working in a minisuperspace, it then becomes possible to evaluate this

path integral analytically. The expression above reduces to
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G[a1; a0] =

∫ ∞
0

dN

∫ a1

a0

DaeiS(N,a)/h̄ (4.14)

and the action is now

S = 2π2

∫ 1

0

dtN

(
−3a

ȧ2

N2
+ 3a− a3Λ

)
. (4.15)

If we now redefine the lapse function N → N/a and introduce q ≡ a2 the action

becomes quadratic in q

S = 2π2

∫ 1

0

dt

(
− 3

4N
q̇2 +N(3− Λq)

)
. (4.16)

From the Lagrange-Euler equation d
dt
∂L
∂q̇
− ∂L

∂q
= 0, we obtain an equation of motion

q̈ =
2Λ

3
N2 (4.17)

for q(0) = q0 and q(1) = q1 the solution can easily be found to be

q̄ =
Λ

3
N2t2 +

(
−Λ

3
N2 + q1 − q0

)
t+ q0. (4.18)

We also have a Hamiltonian constraint ∂L
∂N

= 0 which gives us

3

4N2
q̇2 + 3 = Λq. (4.19)

Imposing the constraint gives us the full solution which we write in the form

q(t) = q̄(t) +Q(t) (4.20)

so that our path integral now becomes

G[q1; q0] =

∫ ∞
0

dNe2π2iS0/h̄

∫ Q[1]=0

Q[0]=0

DQe2π2iS2/h̄ (4.21)
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such that

S0 =

∫ 1

0

dt

(
− 3

4N
˙̄q2 + 3N −NΛq̄

)
. (4.22)

This is simply evaluated to be

S0 =
Λ2

36
N3 +

(
3− Λ

2
(q0 + q1)

)
N − 3

4N
(q1 − q0)2 (4.23)

and

S2 = − 3

4N

∫ 1

0

dtQ̇2. (4.24)

The saddle-points of S0 can be found by solving a quartic equation resulting from

∂S0

∂N
= 0, noticing that it happens to be quadratic in N2 allows us to solve it routinely.

Explicitly,

Λ2N4 + (36− 6Λ(q0 + q1))N2 + 9(q1 − q0)2 = 0 (4.25)

solving this yields the four solutions

Nsp = ± 3

Λ

[(
Λ

3
q0 − 1

) 1
2

±
(

Λ

3
q1 − 1

) 1
2
]
. (4.26)

From this we can see that the saddle-points need not be real for the case in which

q0 or q1 >
3
Λ

. This is an encouraging sign as complex saddle-points can lead to a

region in which the wave function behaves in an oscillatory manner, thus predicting

a classical-spacetime. The authors of [5] stray from this common understanding in

making the claim “complex saddle-points imply non-classical behaviour since the prop-

agator becomes dominated by non-Lorentzian geometries”. This seems to be confusion

between the outputs and inputs. While it is true that the propagator will be domi-

nated by non-Lorentzian geometries, this is not an issue as the geometries it predicts
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shall be Lorentzian. Just as we would like them to be.

We separately substitute each solution back into (4.23) to find the action associated

with each of these saddle-points, the result being

Ssp0 = ∓ 6

Λ

[(
Λ

3
q0 − 1

) 3
2

±
(

Λ

3
q1 − 1

) 3
2
]
. (4.27)

The path integral in (4.21) is of a Gaussian form, therefore we can use the saddle-

point approximation to find

∫ Q[1]=0

Q[0]=0

DQe2π2iS2/h̄ =

√
3πi

2Nh̄
(4.28)

so that our remaining integral is just over the lapse

G[q1; q0] =

√
3πi

2h̄

∫ ∞
0+

dN

N
1
2

e2π2iS0/h̄. (4.29)

In the semiclassical limit we may evaluate an oscillatory integral of this form by

making use of the Picard-Lefshetz theory that was previously discussed. To each

saddle-point, there is an associated Lefschetz thimble Jσ. We deform the half-infinite

contour along the positive real axis so that it is a linear combination of the Lefschetz

thimbles as in (4.8). The integral we are interested in solving now takes the form

G[q1; q0] =
∑
σ

nσ

√
3πi

2h̄

∫
Jσ

dN

N
1
2

e2π2iS0/h̄. (4.30)

We now Taylor expand S0 about the point Nsp . Note that the first order term shall

vanish as S0 is a saddle-point

S0 ≈ Ssp0 +
1

2
S0,NN(N −Nsp)

2 + . . . . (4.31)

Substituting this back into our integral,
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G[q1; q0] ≈
∑
σ

nσ

√
3πi

2h̄

e2π2iS
sp
0 /h̄

N
1/2
sp

∫
Jσ

dNe
iπ2

h̄
S0,NN (N−Nsp)2

[
1 +O

(
h̄1/2

)]
≈
∑
σ

nσ

√
3πi

2h

e2π2iSsp0 /h̄

N
1/2
sp

eiθσ
∫
Jσ

dne−
π2

h̄ |S0,NN |n2
[
1 +O

(
h̄1/2

)]
≈
∑
σ

nσ

√
3i

2Nsp |S0,NN |
eiθσe2π2iS

sp
0 /h̄
[
1 +O

(
h̄1/2

)]
.

(4.32)

Here, N − Nsp = neiθσ where n is a real number and θσ is the angle between the

Lefschetz thimble and the positive real N axis. As was mentioned previously, equa-

tion (4.27) gives rise to the possibility of complex saddle-points. In fact, the no-

boundary proposal requires complex saddle-points and is encompassed by the case

q1 > 3/Λ > q0 so that a single root is imaginary. We now set q0 = 0 so that the

Universe nucleates from a vanishing three-geometry meaning the saddle-points of

the action are at

Nsp = ± 3

Λ

[
i±
(

Λ

3
q1 − 1

) 1
2
]

(4.33)

each saddle-point has a respective action

Ssp0 = ∓ 6

Λ

[
− i±

(
Λ

3
q1 − 1

) 3
2
]
. (4.34)

In this case the dominant saddle-point for our contour of integration lies at

Nsp =
3

Λ

[
i+

(
Λ

3
q1 − 1

) 1
2
]
. (4.35)

This issue with this is that it happens to be a “wrong sign” saddle-point. As was

previously mentioned, saddle-points with negative values of N lead to difficulties in

recovering quantum field theory in a curved spacetime and lead to fluctuation wave

functions that imply unsuppressed fluctuations. More generally, these difficulties
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arise for any complex saddle-point that corresponds to Re(
√
g) < 0, which we can

show is true in our present context.

g = − 3

Λ
a6

(
i+

√
Λ

3
q1 − 1

)
(4.36)

so that

√
g =

√
3

Λ
a3

−
√√√√√Λ

3
q1 −

√
Λ
3
q1 − 1

2
+ i

√√√√√Λ
3
q1 +

√
Λ
3
q1 − 1

2

 (4.37)

Re(
√
g) = −a3

√√√√3

2

√
Λ
3
q1 −

√
Λ
3
q1 − 1

Λ
< 0. (4.38)

A contour dominated by a saddle-point with this property fails to provide a sensible

physical basis for a predictive framework. Nonetheless, continuing with this, we

obtain the no-boundary propagator

G[q1; 0] ≈ e
iπ
4

1

2
(

Λ
3
q1 − 3

) 1
4

exp

(
−12π2

h̄Λ
− 4iπ2

h̄

√
Λ

3

(
q1 −

3

Λ

) 3
2

)
. (4.39)

The semiclassical weighting obtained by Hawking and Hartle was exp
(

12π2

h̄Λ

)
, pre-

cisely the inverse of that obtained here.

Throughout their work, Turok et al. refer to this object as a wave function and even

treat it as such. A Green’s function (which they have calculated) is a completely

different type of object altogether and one has no reason to expect that the same

procedures that exist for extracting probabilities from wave functions should ap-

ply to it. Their belief that the Hamiltonian should not annihilate the object it acts

on seems to stem from the worry that one may inadvertently reverse the roles of

the initial and final geometry by using the Lie derivative to implement timelike dif-

feomorphisms [7]. To avoid this they argue it is necessary to restrict the space of
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diffeomorphisms which is done by imposing the constraint N > 0, thus motivating

their choice of contour. Therefore, as the group structure of the four-dimensional

diffeomorphisms has been disrupted [57], one should expect that the Hamiltonian

shall fail to annihilate a causal object such as the propagator. In general, a Green’s

function G[a1; a0] for the Wheeler-DeWitt equation satisfies

ĤG[a1; a0] = −iδ(a1 − a0) (4.40)

where Ĥ is the operator version of the Hamiltonian constraint (2.10). Put simply,

they believe that the delta function that arises is an artefact of maintaining causality.

It is the opinion of this author that the argument is unconvincing. While their desire

to maintain causality is understandable, the attempt seems misguided. A history of

a geometry is defined by the curve it takes in superspace, it is also unclear what it

would mean for one three-geometry to be “before” or “after” another [18]. More-

over, there is a point of much greater importance to be made. Transition amplitudes

are not wave functions. For any subsystem of the Universe, quantum mechanical pre-

dictions are derived directly from the associated wave function using a well defined

formalism. Turok et al. have exempted the Universe itself from this formalism and

have not introduced a new framework for computing probabilities with their Green’s

function. Emphasising this is not a “rhetorical flourish”, but rather a deeply impor-

tant point.

As the right hand side of (4.40) is purely imaginary, it has been pointed out that

the real part of G[a1; 0] is a genuine solution to the Wheeler-DeWitt equation and

therefore has the potential to be treated as a wave function. The contour of which

corresponds to taking the integral of the lapse over the entire real line but above the

origin along a small circle of radius ε, as to avoid the essential singularity [7].
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4.2. THE NO-BOUNDARY DISPUTE

Figure 4.1: This graphic shows the no-boundary background with varying degrees of
density fluctuations. On the left-hand side there are no fluctuations, in the middle there
are small fluctuations and on the right-hand side the fluctuations are unsuppressed. We
would like the theory to predict a homogenous universe with small density fluctuations
to allow for the emergence of large scale structure such as galaxies. The graphic has
been taken from [6].

If we are to follow Turok et al. in treating the propagator itself as a wave function,

upon extending the analysis to include perturbations, an inverse Gaussian distribu-

tion is obtained [6]

G[q1; Φ1,l; 0] ∝ e
l(l+1)(l+2)

2h̄H2 Φ2
1,l (4.41)

where l is the principal quantum number and H =
√

Λ/3. Distributions of this type

are problematic as they lead to unsuppressed fluctuations.

In response to these claims, Halliwell and collaborators set off on their own investi-

gation into Lorentzian quantum cosmology where they pushback on the new ideas of

Turok et al. [15]. Although their approaches have considerable overlap, the key dif-

ference is that they have chosen different contours of integration. While Turok and

his group are unbothered by their Green’s function solution to the Wheeler-DeWitt

equation, the same is not true of Halliwell and his group who seek genuine solutions.

For this reason the latter choose a contour of integration C = (−∞,∞), that dips be-

low the origin along a small circle of radius ε as to avoid the essential singularity

at that point. This contour is referred to this as a “Lorentzian contour” throughout,

but as Turok et al. have made clear the inclusion of this small circle means that it is

incorrect to describe it as such. Halliwell et al. responded to this by arguing that the
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4.2. THE NO-BOUNDARY DISPUTE

Figure 4.2: The black line is a visual representation of the contour that Halliwell et al.
integrate over. The graphic has been taken from [15].

terms “Lorentzian” and “Euclidean” are only roughly indicative and the integration

is generally over complex contours. The contour can also be made arbitrarily close

to an actual Lorenztian contour as we may choose any ε > 0. The path of integration

is shown in figure 4.2. Although this contour is complex, the authors claim it is the

two saddle-points in the lower half plane that contribute and lead to the real wave

function

Ψ(q1)NB =
e12π2/h̄Λ(
Λq1

3
− 1
) 1

4

cos

[
12π2

h̄Λ

(
Λq1

3
− 1

) 3
2

+
3π

4

]
×
[
1 +O(h̄)

]
(4.42)

which has a semiclassical weighting in agreement with the Euclidean formulation of

Hartle and Hawking. We now check that the fluctuations are suppressed. Halliwell

et al. consider a model with a scalar field Φ coupled to gravity under the standard

Einstein-Hilbert action
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4.2. THE NO-BOUNDARY DISPUTE

S =
1

2

∫
d4x
√
−g (R− gµν∂µΦ∂νΦ− 2V (Φ)) +

∫
d3x
√
hK (4.43)

where V (Φ) = Λ cosh
(√

2
3
Φ
)

. In the case of the no-boundary proposal, the wave

function corresponds to the integral

ΨNB(q1,Φ1) =
2π

h̄

∫
C

dN

N
e2π2iS0/h̄. (4.44)

Once again, both relevant saddle-points lie in the lower half of the complex plane at

N± =
1

H2

(
±
√
λ+ F − i

√
λ− F

)
(4.45)

where F (q1,Φ1) = H2q1
2

cosh
(√

2
3
Φ1

)
−1 and λ (q1) = H2q1

2
. This leads to an on-shell

action

S̄0 (q1,Φ1) = ± 2

H2

[
(F − λ)

3
2 ± (F + λ)

3
2

]
(4.46)

and finally, in the classical λ� 1, Φ1 � 1√
λ

domain the wave function takes the form

ΨNB (q1, φ1) ∝ exp

[
4π2

h̄H2

(
1− H2q1

4
φ2

1 +O
((√

λφ1

)4
))]

×

cos

[
4π2

h̄H2

(
H2q1 − 1

)3/2
(

1 +
H2q1

4 (H2q1 − 1)
φ2

1 +O
(
φ4

1

))
+
α

2

]
× [1 +O(h̄)].

(4.47)

The above shows that small homogenous perturbations around the de Sitter saddle-

points are suppressed. If we are now to include spatially varying scalar perturbations

in a similar manner to [6], one can show [15]

ΨNB(q1,Φl,1) ∝ e−π
2l(l+1)(l+2)Φ2

l,1/h̄H
2

. (4.48)

Once again, due to the Gaussian like behaviour of ΨNB, perturbations are also sup-
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4.2. THE NO-BOUNDARY DISPUTE

Figure 4.3: Each black line represents the Picard-Lefschetz thimble associated with one
of the four saddle-points. The jagged gray lines on the real-axis represent branch cuts
introduced by the no-boundary perturbations. This graphic has been taken from [7].

pressed here. The authors have seemingly recovered the predictions of the Euclidean

no-boundary proposal. This work failed to convince Turok et al. who claim to have

proven in [7] that there is no contour of integration that avoids the contributions of

the saddle-points in the upper half-plane which lead to unsuppressed perturbations.

A sketch of their argument is provided below.

Proof. To maintain the reparameterisation invariance of time, it is necessary for the

contour C, for which N is integrated over, to start and end on a point where the

Morse function h approaches minus infinity. As we also require our integral to con-

verge, C must approach the singularities at its ends in such a way that it can be

deformed into paths of steepest-descent. Using Picard-Lefschetz theory, it is possible

to write any contour that satisfies these two conditions as a sum of Lefschetz thim-

bles. After introducing small perturbations to break degeneracies between thimbles,

in the limit that the perturbations are taken to zero, J1 and J4 are equivalent along

the path connecting saddle-point 1 to the origin. As the same argument holds true

for J2 and J3, every thimble includes contributions from the saddle-points in the

upper half-plane, both of which lead to unsuppressed perturbations. If we include
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4.2. THE NO-BOUNDARY DISPUTE

branch cuts on the real-axis, any contour that includes contributions from a saddle-

point in the lower half-planes includes contributions from at least one of the branch

cuts which once again, leads to unsuppressed perturbations.

Halliwell et al. pointed out in [18] that the proof appears to be flawed due to an

error made by Turok et al. in their application of perturbation theory. To arrive at

their conclusion, the trio have considered a de Sitter minisuperspace filled with a

massless scalar field. The action for such a space is of the form

Sscalar[Q, {ϕn};N ] = Sisotropic[Q;N ] +
∑
n

∫ 1

0

dτN

(
Q2

2N2
ϕ̇n

2 − n (n+ 2)

2
ϕn

2

)
(4.49)

where

Sisotropic[Q;N ] =

∫ 1

0

dτN

(
− 3

4N2
Q̇2 + 3−Q

)
. (4.50)

To quadratic order, the associated equations of motion are

Q̈− 2N2

3
= −2

3

∑
n

Qϕ̇n
2 (4.51)

ϕ̈n + 2
Q̇

Q
ϕ̇n +N2n (n+ 2)

ϕn
Q2

= 0. (4.52)

We must require that ϕn � 1 for all values of τ so that the effective field theory

approximation that we are using remains vaild. Once again, we are only interested

in the leading semiclassical order and so

Ψ(N) ≈
∫
C

dNPeiS(N)/h̄ (4.53)

where P is simply a prefactor. Turok et al. attempt to proceed analytically by solving
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4.2. THE NO-BOUNDARY DISPUTE

the equations of motion for arbitrary N ∈ C with the Dirichlet boundary conditions

B : Q(0) = 0, ϕn (0) = 0 (4.54)

at the centre of the B4, and

B : Q(1) = Q, ϕn (1) = ϕn,1 (4.55)

on the three-surface (an S3) on which the wave-function is evaluated on. To do

this, they make the assumption that it is consistent to neglect the term on the RHS

of equation (4.51). This however turns out not to be a valid assumption as it is

possible for the term to diverge for certain values of N ∈ C while the other terms

remain finite. Therefore unless a very special contour has been chosen where all

values of N are consistent with the effective field theory approximation, Turok et

al. will obtain an erroneous on-shell action for many values of N ∈ C. Figure 4.4

is a graphical illustration showing where their application of perturbation theory is

consistent (green regions) and where it is inconsistent (orange and red regions). As

much of their analysis is done in the orange and red regions the calculation itself

must be inconsistent. The work is therefore insufficient to conclude that any NBWF

constructed from a minisuperspace is ill-defined.

Halliwell et al. made their own attempt to repeat the calculation of Turok et al. and

correct for the invalid analysis but found themselves unable to solve the equations

of motion in the entire complex plane of N . This meant that they were unable to

determine the contour of steepest-descent due to a lack of knowledge of S (N). They

were subsequently unable to find a contour on which the phase of exp (iS (N) /h̄) is

constant. If one does not have a good knowledge of S (N), the calculation cannot be

performed.
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4.3. BIAXIAL BIANCHI IX MINISUPERSPACE

Figure 4.4: Halliwell et al. provide this graphic of the complex N-plane in [18]. The
orange and red regions of this plane are the regions which correspond to singular so-
lutions where the effective field theory approximation is not valid and/or where one is
unable to neglect the term on the RHS of (4.51) . The green region is the region where
the analysis of Turok et al. is valid and the correct on-shell action has been obtained.
The graphic was generated with numerical values n = 3, Q = 100 and Λ = 1.

After this “proof” was published, Halliwell et al. succeeded in constructing a well

defined no-boundary state for a biaxial Bianchi IX minisuperspace model [16], thus

providing an explicit counter-example to the claims of Turok et al..

4.3 Biaxial Bianchi IX Minisuperspace

A biaxial Bianchi IX (BB9) minisuperspace model is a homogenous but generally

anisotropic spacetime containing a spacelike section with a squashed three-sphere

geometry. The wave function Ψ(p, q) of such a space is a function of two coordinates

p, q ≥ 0, which appear in the homogeneous metric as

2π2ds2 = −N(t)2

q(t)
dt2 +

p(t)

4
(σ2

1 + σ2
2) +

q(t)

4
σ2

3. (4.56)
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Here, we have introduced σ1,2,3 which are the left-invariant one-forms 1

σ1 = − sinψdθ + cosψ sin θdφ, σ2 = cosψdθ + sinψ sin θdφ, σ3 = dψ + cos θdφ

(4.57)

with 0 ≤ θ ≤ π, 0 ≤ φ < 2π and 0 ≤ ψ < 4π, ψ ∼= ψ + 4π. Note that for the special

case p(t) = q(t) the three-metric is proportional to δijσiσj/4 which is the metric of

the unit three-sphere. The amount of squashing can be expressed by the quantity

α =
p

q
− 1, (4.58)

where α = 0 corresponds to the three-sphere geometry, α > 0 to an oblate spheroid

and α < 0 to a prolate spheroid.

To compute our wave function on this anisotropic space in the gauge Ṅ = 0, we are

to evaluate the integral

Ψ(p, q) =
∑
M

∫
C

dN

x(1)=(p,q)∫
B

DxαDΠαe
iS[x,Π;N ]/h̄ (4.59)

with B denoting our boundary conditions. We first need to deal with the sum of

manifolds M. As we are considering the no-boundary proposal we are summing

over a set of four-manifolds with a single boundary which admit everywhere a regu-

lar saddle-point solution to the Einstein equations. In this case there are three such

manifolds, CP2\B4,RP4\B4 and the one which provides the dominant contribution,

B4. Halliwell et al. focus on the latter of these claiming “including the other topolo-

gies does not significantly change our results”.

Clearly, to have any hope of evaluating this path integral we must figure out how

1Let G be a Lie group and Lg : G→ G denote the function of left multiplication by an element g ∈ G.
A differential from σ is said to be left-invariant on G if for any choice of g ∈ G, it is invariant under
the pullback of Lg. That is, (Lg)

∗
σ = σ ∀ g ∈ G.
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we can implement the no-boundary proposal on this space. So that the boundary

conditions are consistent with quantum mechanics, it is not possible to specify the

value of both a coordinate and its conjugate momentum at τ = 0. Instead the

following boundary conditions are given which they claim are the only possible ones

that lead to a “well-defined and normalisable NBWF in Bianchi IX minisuperspace”

B : p(0) = 0, Πq(0) = −i. (4.60)

Using these boundary conditions, it can be shown that

x(1)=(p,q)∫
B

DxαDΠαe
iS|x,Π;N |/h̄ ∝

√
P

N2
eiS0/h̄ (4.61)

where

S0 = −iΛ
3
N2 +

(
4− Λp

3

)
N + iq − pq

N
. (4.62)

To obtain the wave function of this Bianchi IX minisuperspace, we must decide on

a contour C to integrate the lapse over for the manifold with topology B4. The au-

thors advocate a complex circular contour enclosing the origin, so that the remaining

integral is now

Ψ(p, q;B4) =
√
p

∮
dN

1

N2
exp

{
i

h̄

[
− iΛ

3
N2 +

(
4− Λp

3

)
N + iq − pq

N

]}
(4.63)

which satisfies the Wheeler-DeWitt equation. The action S0 has three saddle-points

in the complex plane, which are solutions of

2Λ

3
iN3 +

(
Λp

3
− 4

)
N2 − pq = 0. (4.64)

So that we have a chance of predicting that the Universe behaves classically whilst
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Figure 4.5: The leading order probability distribution obtained from the NBWF shows
that it is heavily biased towards isotropic Universes. The values h̄ = 1,Λ = 3 were used
in this plot. The plot itself has been taken from [16].

large, we need complex saddle-point solutions. Making a substitution M = iN ,

allows us to rewrite (4.64) so that the coefficients are real

M3 +

(
p

2
− 6

Λ

)
M2 +

3pq

2Λ
= 0. (4.65)

The sign of the discriminant ∆, for a cubic equation with real coefficients determines

the nature of its solutions. If ∆ > 0, the equation has three real solutions. For ∆ < 0,

two of the solutions form a complex conjugate pair whilst the third solution is purely

real. For reasons mentioned above, we shall restrict to the latter case which reduces

to the condition −4
(
p
2
− 6

Λ

)3 − 81pq
2Λ

< 0. Or equivalently

Λq >
(Λp)2

81

(
12

Λp
− 1

)3

. (4.66)

If the third solution is purely real in M , then it is purely imaginary in N . It is

for this reason that we must choose a contour of integration for which this is not

the dominant saddle-point. From (4.63) we can see that in such a situation, the

semiclassical exponential factor would be real so that we would fail to predict that
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the Universe will evolve to behave classically. In the regime where the Universe is

large p� 1/Λ, and α is finite

Ψ
(
p, α,B4

)
∝
√
h̄Λ

(
1 + α

Λp

) 3
4

exp

[
6 (1 + 2α)

h̄Λ (1 + α)2

]
cos

[
6

h̄Λ
√

1 + α

(
Λp

3

) 3
2

− 3π

4

]
(4.67)

to leading order in 1/Λp. To its credit, the no-boundary wave function predicts

that deviations from isotropy are suppressed. The probability distribution is peaked

around the three-sphere geometry where α = 0, and quickly decays for any devia-

tion from this. Thus, it seems that the no-boundary wave function is able to account

for the observed isotropy of the Universe to a high probability.

Turok et al. responded to this paper by once again attacking the choice of contour

that was used, stating “it has no geometrical interpretation as it involves metrics with

complex proper time” [8]. Halliwell et al. however do not believe that one should as-

cribe a physical meaning to the contour itself in a particular minisuperspace model.

They believe that since it has been shown in [58] that the same contour can lead to

different results depending on which variables are retained and how the metric is

parameterised, the physical motivation for a choice should simply be that it is com-

patible with the criteria outlined in [13].

Clearly, much of the discussion in this section has revolved around contours of in-

tegration. While I believe that the arguments of Halliwell et al. that have been

presented so far in this chapter are adequate responses to the claims of Turok et

al., in my opinion the most convincing and simplest argument was made in [17].

When the no-boundary wave function was first discussed in section 3.2, a recently

developed method for specifying its semiclassical approximation from a collection

of appropriate saddle-points was given. This method is logically independent of any
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functional integral representation, so to legitimately refute the wave function you

cannot rely on properties of the associated functional integral [17]. This extremely

consequential claim makes no attempt to dispute the claims of Turok et al., it sim-

ply evades them altogether. There is no longer a contour of integration that can

be subject to criticism as the choice of contour has been replaced with a choice of

saddle-points. In my view, this paper is in some sense the final word. While the

no-boundary proposal was originally cast in terms of a functional integral, it would

be a mistake to think of this representation as being somehow fundamental. It is

simply a method for computing a wave function. A response to these claims was

never made and an explicit example of this new method in action was provided in

[18]. Encouragingly, other authors were also able to arrive at similar conclusions

independently [59]. It seems to me that Hartle and Hawking’s proposal remains a

viable candidate for the boundary conditions we are in search of. Perhaps the no-

boundary wave function is the quantum state necessary for the final theory of our

Universe.
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Chapter 5

Conclusion

We began by introducing the basic principles of quantum cosmology. The Wheeler-

DeWitt equation was obtained by Dirac quantising the Hamiltonian constraint of

an Einstein-Hilbert action coupled to matter. Several issues such as those associ-

ated with operator ordering and time were briefly discussed along the way. As it

is not known how to solve the Wheeler-DeWitt equation using modern techniques,

we introduced simplification in the form of a minisuperspace approximation. The

tunnelling proposal of Vilenkin and no-boundary proposal of Hartle and Hawking

were discussed as possible candidates for the boundary conditions of the Universe.

It was shown that while the tunnelling proposal leads to a Universe that undergoes

sufficient inflation in a direct manner, the no-boundary proposal requires that we

first introduce a volume-weighting. Introducing such a volume-weighting leads to

eternal inflation resulting in an infinite fractal-like multiverse. One is then faced

with the well known Measure Problem of cosmology.

The literature concerning the recent criticisms of the no-boundary proposal from

Turok et al. and the subsequent defence from Halliwell et al. was reviewed. In an

attempt to maintain causality, Turok et al. do not compute solutions to the Wheeler-

DeWitt equations, but rather Green’s functions. Quantum mechanical predictions
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are derived directly from a wave function using a well-defined formalism. As these

Green’s functions do not satisfy the Wheeler-DeWitt equation, they cannot be con-

sidered to be valid wave functions and should not be treated as such. Many of their

criticisms of the no-boundary proposal are based on the functional integral repre-

sentation of the NBWF. During the course of the dispute Halliwell et al. were able

to advance a method for obtaining the NBWF of the Universe directly in terms of a

collection of saddle-points of the dynamical theory. This method is logically inde-

pendent of the NBWF’s integral representation so that properties of the associated

functional integral cannot be used to refute it. The arguments of Turok et al. rely on

these properties and are therefore insufficient. It is my opinion that the defence of

Hartle and Hawking’s NBWF was successful.
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