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Abstract

By considering Hitchin’s generalised geometry, we discuss the construction of the necessary struc-

ture on the weighted generalised tangent bundle to induce a generalised metric parameterised by

the ordinary metric, a two-form field and a scalar. It is shown that, under a combined diffeo-

morphism of the manifold and a gauge transformation of the two-form field, the variation of the

generalised metric fields are given by the Dorfman derivative and reduce to the symmetry variations

of the bosonic fields of type II supergravity: the graviton, B-field and dilaton respectively. Using

this structure, the generalised Levi-Civita connection is derived and found to be non-unique, but

a uniquely defined generalised Ricci tensor allows for the construction of a generalised Einstein-

Hilbert action. It is shown that this action exactly coincides with that of the bosonic sector of

type II supergravity.
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Chapter 1

Introduction

Differential geometry is the study of calculus on manifolds and provides the most accurate known

mathematical description for gravitational physics through Einstein’s general theory of relativity.

Einstein’s famous field equations are the statement that spacetime, as a manifold, is dynamical

and its curvature is determined by its energy content and distribution. The fact that such a simple

statement so successfully describes large-scale physics that, one hundred years after its discovery,

general relativity continues to make correct predictions makes it particularly elegant.

So, the potential to build upon these ideas using a generalisation of differential geometry is

appealing from the outset. While ordinary differential geometry is the study of differential struc-

tures relating to the tangent bundle [1], Hitchin’s generalised geometry [2] extends this bundle and

studies analogous objects. Aside from interesting mathematical discoveries that may occur, the

possibility of unifying other physical phenomena into generalised geometry motivates its study.

Of course, unification is ubiquitous in fundamental physics and the key unsolved problem the-

oretical physicists face is the unification of the classical theory of Einstein gravity with quantum

field theory – the framework describing all other observed forces and interactions in the Standard

Model of Particle Physics. The latter assumes a non-dynamical background in front of which quan-

tised scalar, vector and spinor fields interact without disturbing the underlying spacetime. This is

an extraordinarily good approximation for the energy scales attainable in collider experiments at

which various interactions are measured, but clearly fundamentally at odds with Einstein gravity.

Unfortunately, any attempt to introduce a dynamical spacetime with which the standard model

fields can interact inevitably fails. The divergent loops in Feynman diagrams require an infinite

number of counter-terms to tame, giving rise to a non-renormalisable theory with no predictive

power as a so-called theory of everything.

String theory is the study of one-dimensional quantum objects with no internal structure and

aims to evade the non-renormalisability of gravity. Arising from the study of strong interactions

but subsequently superseded by quantum chromodynamics, the quantised string spectrum consists

of an infinite tower of spin states of increasing mass classified by highest-weight representations of
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the Virasoro algebra. At spin-two, the state decomposes into an antisymmetric field Bµν , a scalar

field φ and a traceless symmetric field, g, identified with the graviton – the quantum of spacetime

disturbances. For these massless states to transform in representations of the Poincaré group,

they must form massless representations of the little group SO(d− 2) of the Lorentz group, which

requires the dimensionality of spacetime to be twenty-six – the critical dimension of the bosonic

string [3]. Since the mass increases with spin in the bosonic string spectrum, there is a tachyonic

state at spin-one which causes yet more doubt that the theory is realised in nature. This latter

issue is evaded in the theory of quantum superstrings whose world-sheet theory is supersymmetric

and whose critical dimension is ten.

Supersymmetry is the unique additional symmetry in nature that evades the Coleman-Mandula

theorem [4]. In a certain sense, any bosonic charges other than scalar quantum numbers, energy-

momentum and the Lorentz generator would restrict the scattering angle in an interacting quantum

field theory to be non-analytic. Fermionic charges satisfying anticommutation relations are allowed,

but since the anticommutator of a conserved spin-n/2 fermionic charge is a conserved spin-n bosonic

charge subject to the restrictions of Coleman-Mandula, there is only one possibility: n = 1. These

spin-1/2 supercharges form a supersymmetry algebra whose representations are the supermultiplets

of fermions and bosons, giving the well-known symmetry between two superpartners.

Initially, there is no restriction on the number of copies of this supersymmetry. If there are

any more than thirty-two supersymmetry generators, however, massless supermultiplets necessarily

contain fields with spin greater than two, which pose difficulties in interacting theories [5].

Supergravity is a theory of local supersymmetry. As with any local symmetry, supergravity gives

rise to a “gauge” field called the gravitino whose superpartner is the vielbein: the field which makes

manifest the local diffeomorphism invariance of general relativity. Of the various supergravity

theories, eleven-dimensional maximal supergravity is notable. All higher dimensional supergravity

theories contain massless fields with spin greater than two and in all lower dimensional theories,

one cannot obtain all the standard model gauge fields via Kaluza-Klein dimensional reduction [6].

The inclusion of fermionic worldsheet modes is not unique and leads to distinct superstring the-

ories [3]. The theories of most relevance to this thesis are the two type II superstring theories which

describe quantised closed superstrings with left- and right-moving fermions [7]. The worldsheet

fermionic theory has a Z2 symmetry allowing a choice of boundary conditions for the fermions on

the cylinder. These are the Neveu-Schwarz (NS) and Ramond (R) conditions and must be consis-

tent among left- and right-moving fermions giving four possible sectors of type II theories. The

NS-NS sector, in which both left- and right-moving fermionic modes have NS boundary conditions,

contains the bosons of the theory, transforming in tensor representations of the Lorentz group. In

particular, the lowest energy state decomposes into the graviton, the antisymmetric B-field, and
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the dilaton. The absence of tachyons from the type II spectrum and the inclusion of spinors in the

other sectors makes type II superstring theory attractive to study.

The various superstring theories were found to correspond to Kaluza-Klein compactifications

of a theory in eleven dimensions whose low-energy effective field theory is maximal supergravity.

This is M-theory and describes supersymmetric, extended, two- and five-dimensional objects called

branes [8]. As such, the low-energy limit of ten-dimensional type IIA superstring theory is a ten-

dimensional supergravity, also labelled type IIA [9]. Type IIB supergravity isn’t obtained this way,

however for our purposes there will be no need to distinguish between the two type II theories

which differ only in their fermionic content.

The NS-NS sector of type II supergravity describes the dynamics of the low-energy, type II,

NS-NS superstring excitations. The action is given by

SNS ∝
∫
d10x
√
−ge−2φ

[
R+ 4(∂φ)2 − 1

12
H2
]

(1.1)

whereR is the Ricci curvature scalar corresponding to the Levi-Civita connection for g andH = dB

is the field strength tensor for the B-field [9].

In what follows, in the setting of generalised geometry, we review the construction of a gen-

eralised Einstein-Hilbert action – the central object in Einstein gravity whose stationary point

satisfies the field equations of general relativity – which is equal to the action for the NS-NS sector

of type II supergravity. The fact that simple, geometric objects can neatly encode the physics of

supergravity is attractive for the same reasons that general relativity is attractive as a theory of

gravity. The equations of motion for the NS-NS fields, found by extremising Eq. 1.1, elegantly

reduce to the statement of vanishing generalised Ricci curvature on the generalised tangent bundle,

which is also found to encode the diffeomorphism and gauge symmetries of supergravity.

We first revisit some concepts in differential geometry whose generalisation will play an im-

portant role throughout. In Chapter 3, generalised geometry is introduced in it original O(d, d)

form and some of its subtleties and central objects are discussed. Consideration of generalised

G-structures and connections then lead to an explicit construction of a generalised Riemannian

metric, which contains the ordinary metric g and the B-field. In order to include the dilaton, in

Chapter 4 we review the extension [10] to generalised geometry, in which the tangent bundle be-

comes weighted. The additional degree of freedom can be included as a conformal factor in classes

of generalised frames and the subsequent generalised structures are shown to induce a generalised

“metric” encoding all NS-NS fields. In order to construct curvature quantities in analogy to Ein-

stein gravity, the torsion-free, generalised connection compatible with these structures is derived

and shown to be non-unique. The generalised Ricci tensor is then shown to evade this ambiguity
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and, in Chapter 5, we show this leads to a uniquely defined, generalised Einstein-Hilbert action

equal to the NS-NS action in Eq. 1.1. In the final Chapter, we conclude and discuss various other

areas of application for this type of generalised geometric construction.
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Chapter 2

Differential Geometry and General

Relativity

In this Chapter, we introduce some key definitions in the geometric description of gravity that will

feature throughout this thesis.

2.1 Fibre bundles and frames

Following [1], we define a smooth fibre bundle (E,M,F, π,G), often simply denoted E. E, M

and F are all smooth manifolds – the total space, base space and fibre respectively. For an open

neighbourhood (and element of an open cover Ui ofM) Ui ⊂M of x, its preimage under the smooth,

surjective projection π : E → M must be diffeomorphic to the local product space Ui × F . The

corresponding diffeomorphism φi : Ui × F → π−1(Ui) ⊂ E is called the trivialisation. Restricted

to each point x ∈ Ui, the map φi(x, ) : F → π−1(x) is a diffeomorphism called the fibre at x. In

the non-empty intersection of two open neighbourhoods of x, Ui ∩ Uj , the transition function

gij := φ−1
j (x, ) ◦ φi(x, ) (2.1)

must be an element of the groupG, called the structure group. For consistency with differentiability,

the group elements gij must satisfy

gii = e (2.2a)

gij = g−1
ji ∀x ∈ Ui ∩ Uj (2.2b)

gijgjk = gik ∀x ∈ Ui ∩ Uj ∩ Uj (2.2c)
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If G = e, i.e. all transition functions are identity elements, then the bundle is globally a product

E = M × F and known as the trivial bundle. A vector bundle is a bundle with fibres that form

vector spaces [1]. Two important examples are the tangent bundle and cotangent bundle of a smooth

manifold M , respectively defined as the disjoint unions of the tangent and cotangent spaces of M

TM =
⊔
x∈M

TxM and T ∗M =
⊔
x∈M

T ∗xM (2.3)

Elements of TM can be thought of as pairs of vectors and points (X,x), the projection map π

takes (X,x)→ x and the structure group G ' GL(d,R) where d is the dimension of M . If F ' G

for some group G, then E is called a principal G-bundle [1].

A frame {e} at a point x ∈ M for real vector bundle (E,M,F, π,G) is an ordered basis for

F at x and an element of the set of frames Fr(TxM) for the tangent space at x. A choice of

frame for each point x induces a bundle called the structure bundle F , with points (x, {e}) where

{e} ∈ Fr(TxM) is a particular frame, and projection π : (x, {e}) 7→ x. It can be shown that F is

a principal GL(d,R)-bundle due to the action of GL(d,R) giving the transformation between two

frames [1]. The structure bundle is an example of a frame bundle, FG which has fibre G ∈ GL(d,R).

For (x, {ea}) and (x̃, {ẽa}) ∈ FG, the bases are related by a transformation in G

ẽa = M b
a eb : M ∈ G (2.4)

A coordinate basis for TM at x ∈ M is given by {∂/∂xµ} and is motivated by the equivalence of

vectors and directional derivatives [11]. The dual basis for T ∗M at x is denoted {dxµ}.

A section of a bundle is a map s : M → E such that

s(x) ∈ π−1(x) ∀x ∈M (2.5)

The set Γ(Ui, E) of sections over some neighbourhood Ui represent elements of the fibres at each

point x ∈M and, if global sections are admitted by E, they are denoted Γ(E). The global sections

of the tangent and cotangent bundles, Γ(TM) and Γ(T ∗M), are identified with the sets of vector

fields and covector fields respectively.

Tensor fields can be defined as smoothly assigned linear maps on sections of the tangent and

cotangent bundles at a point x ∈ M [11], or as representations of the structure group: GL(d,R)

in the case of TM [10].
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2.2 Lie derivatives and the Lie bracket

We require a derivative operator that allows us to compare geometric objects along integral curves

in manifolds so that we can construct curvature tensors. Any differentiable manifold admits such

an operator and we follow the conventions of [1] and [11].

The Lie derivative of a vector field Y ∈ Γ(TM) with respect to another, X at x ∈M is defined

as

LXY |x := lim
ε→0

[σX(−ε)∗Y |x′ − Y |x
ε

]
(2.6)

where x′ = σX(ε, x) is given by the infinitesimal flow diffeomorphism along the integral curve

defined by X, and σX(−ε)∗ is its push-forward if thought of as a function on the manifold. In a

coordinate basis, the Lie derivative has components

(LXY )ν = Xµ ∂

∂xµ
Y ν − Y µ ∂

∂xµ
Xν (2.7)

Imposing the following action on a smooth function f

LXf = X[f ] (2.8)

gives the components of the Lie derivative of any tensor field via the inner product

〈
· , ·

〉
: Γ(TM)

(X, ξ)

Γ(T ∗M)

ξ(X) = Xµξµ (2.9)

The variation of a tensor field T under an infinitesimal flow diffeomorphism is given by the Lie

derivative

xµ 7→ xµ + εXµ +O(ε2) ⇒ T 7→ T + εLXT +O(ε2) (2.10)

The Lie bracket of two vector fields is given by the Lie derivative

[X,Y ] = LXY (2.11)

It gives the closure of two infinitesimal flows along the vector fields X and Y .
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2.3 Differential forms

A differential r-form field is a tensor field ω ∈ ∧rΓ(T ∗M) = Ωr(M) and has components given by

ω =
1

r!
ωµ1...µrdx

µ1 ∧ ... ∧ dxµr (2.12)

in a coordinate basis. The exterior derivative is a nilpotent, differential operator

d : Ωr(M)

ω

Ωr+1(M)

dω (2.13)

which, in a coordinate basis, is given by

dω = ∂µων1...νrdx
µ ∧ dxν1 ∧ ... ∧ dxνr (2.14)

Given a vector field X ∈ Γ(TM), the interior product is a nilpotent, linear map

iX : Ωr(M)

ω

Ωr−1(M)

iXω (2.15)

such that for Vi ∈ Γ(TM)

iXω(V1, ..., Vr−1) = ω(X,V1, ..., Vr−1) (2.16)

Cartan’s magic formula [1] relates the Lie derivative of an r-form ω to d and iX

LXω = {d, iX}ω (2.17)

An r-form ω is closed if dω = 0 and exact if ω = dξ for any (r − 1)-form ξ. We denote the space

of closed r-forms as Ωr(M) and exact r-forms as Zr(M). Two closed r-forms are cohomologous if

they differ by an exact r-form.

2.4 Connections, covariant derivatives and torsion

In order to correctly take directional derivatives of tensor fields, one needs to introduce a notion of

parallel transport in the manifold M so that vectors in different vector spaces can be meaningfully
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compared. This is achieved by defining a connection: a linear differential operator [1]

∇ : Γ(TM)× Γ(TM)

(X,Y )

Γ(TM)

∇XY (2.18)

which, for all vector fields X and Y and all smooth functions f , satisfies

∇fXY = f∇XY (2.19a)

∇X(fY ) = X[f ]Y + f∇XY (2.19b)

In a coordinate basis {eµ} for TM at x ∈M , the connection acts as

∇XY = Xµ(∂µY
ν + ω ν

µ ρY
ρ)eν (2.20)

where the connection coefficients are defined by

ω ν
µ ρeν = ∇eµeρ =: ∇µeρ (2.21)

The generalisation to a directional derivative of a tensor field is given by the covariant derivative.

It is defined [11] by it action on a smooth function f

∇Xf = X[f ] (2.22)

and the Leibniz property

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2) (2.23)

Given a connection ∇, the torsion map is an antisymmetric, linear map

T : Γ(TM)× Γ(TM)

(X,Y )

Γ(TM)

T (X,Y ) (2.24)

with

T (X,Y ) = ∇XY −∇YX − [X,Y ] (2.25)
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The torsion is a (1,2)-tensor given, in a general basis, by

T abc := T (ea, eb)[e
a] = ω a

b c − ω a
a b + [eb, ec]

a (2.26)

Alternatively, and more conveniently, the torsion can be neatly defined using the interior product

[10]. Contracting with the first index defines a (1,1)-tensor with the following components in a

coordinate basis

(iXT )νρ = XµT νµρ (2.27)

Its action on a tensor α is given by

(iXT )α = L∇Xα− LXα (2.28)

where we have defined L∇ as the Lie derivative with ∂µ replaced with ∇µ.

2.5 Riemannian metrics and G-structures

A pseudo-Riemannian metric on a manifold M is a (0,2)-tensor field g that is symmetric and

non-vanishing [1]. Equivalently, it is the smooth assignment of an inner product to each tangent

space in the manifold, with 〈
X,Y

〉
= g(X,Y ) =: gµνX

µY ν (2.29)

The signature of the metric is a pair (p, q) with p + q = d such that the matrix gµν in any basis

has p negative and q positive eigenvalues.

Einstein gravity is the study of a manifold M equipped with a metric g and the corresponding

Levi-Civita connection ∇ – the unique torsion-free connection compatible with the metric. This

means that, for all vector fields X and Y

∇g = 0 and T (X,Y ) = 0 (2.30)

The requirement that g is smooth means it is locally flat. That is, it is possible to define a frame

{ê} for M related to the coordinate frame eµ by

êa = e µ
a eµ (2.31)

and such that

g(êa, êb) = ηab (2.32)
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where ηab is the flat O(p, q) metric [11]. In particular, two such frames {ê} and {ˆ̃e} are related to

one another by an O(p, q) transformation

ˆ̃ea = M b
a êb : M ∈ O(p, q) (2.33)

In some sense, it is more general and more useful in the generalised geometry setting to work in

reverse. That is to say, a pseudo-Riemannian metric of signature (p, q) is defined by a so-called

O(p, q)-structure on M .

A G-structure on a manifold M is a sub-bundle of the structure bundle with fibre G [10].

Topological obstructions may prevent a G-structure being defined. For an orientable manifold M ,

a GL+(d,R)-structure defines an orientation and an SL(d,R)-structure defines a volume form. If

G is the trivial group, the G-structure defines a global frame on M called a parallelisation [12].

As alluded to above, a particular O(p, q)-structure with points (x, {ê}) defines a symmetric,

non-vanishing (0,2)-tensor field g by

g(êa, êb) = ηab (2.34)

since, for M ∈ O(p, q)

g(M c
a êc,M

d
b êd) = M c

a M d
b ηcd = ηab (2.35)

g is called a pseudo-Riemannian metric on M .

As mentioned above, a connection ∇ is compatible with a metric g if

∇µg = 0 (2.36)

Equivalently, using the frame {ê} which defines the O(p, q)-structure, the connection coefficients

are antisymmetric in their final two indices

ωµ(ab) = 0 (2.37)

where ωµab = ηacω
a
µ b . In fact, given a connection ∇ compatible with a G-structure, the connection

form ω a
b defined by

ω a
b = ω a

µ bdx
µ (2.38)

transforms in the adjoint representation of G [1]

ω 7→MωM−1 +MdM−1 (2.39)

and so ω a
b takes values in g. For o(p, q)-valued connection forms, we arrive at the antisymmetry

13



condition 2.37.

2.6 Riemannian geometry and general relativity

Equipped with a connection, we can construct the following curvature quantities for which we

follow [11]. The curvature map

R : Γ(TM)3

(X,Y, Z)

Γ(TM)

R(X,Y, Z) (2.40)

is defined by commuting connections along closed integral curves defined by vector fields X and

Y ∈ Γ(TM):

R(X,Y, Z) = [∇X ,∇Y ]Z −∇[X,Y ]Z (2.41)

In some basis {ea}, the Riemann tensor has components

Rabcd =
〈
ea,R(eb, ec, ed)

〉
(2.42)

or, in terms of the torsion

RabcdZd = [∇b,∇c]Za − T dbc Za (2.43)

The Ricci tensor is a (0,2)-tensor field given by the unique, non-trivial contraction

Rbd := Rabad (2.44)

and can also be defined by the following action on a vector:

RabZa = [∇a,∇b]Za (2.45)

The vacuum field equations of general gelativity, or the condition of Ricci flatness

Rab = 0 (2.46)

is the equation of motion obtained by extremising the Einstein-Hilbert action

S ∝
∫

ΩgR =

∫
ddx
√
−gR (2.47)

with respect to variations of the metric gab. In Eq. 2.47, the Ricci Scalar R is the following unique
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scalar curvature quantity

R := gabRab (2.48)

Ωg is the canonical volume form for the metric and g = det gab.
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Chapter 3

Generalised Geometry

In this Chapter, we introduce the formalism of generalised geometry, which incorporates the dif-

feomorphism invariance of the manifold and gauge symmetries of the B-field in the NS-NS action

3.2. We largely follow the original ideas of Hitchin [2] and Gualtieri [13] in what follows.

Since the B-field is a gauge field, it only defined up to cohomology, so on the intersection Ui∩Uj

on M , it is patched as

B(i) = B(j) − dΛ(ij) (3.1)

for some patching one-form Λ(ij) ∈ Ω1(M). To correctly capture the following diffeomorphism (see

2.10) and gauge variation of B on Ui parameterised by vector X and one-form ξ

δX+ξB(i) = LXB(i) + dξ(i) (3.2)

we require

δX+ξB(i) = δX+ξB(j) ⇒ dξ(i) = dξ(j) + LXdΛ(ij) (3.3)

Using 2.17, we see that for vectors and one-forms to correctly parameterise the variation 3.2, they

must be patched as

X(i) + ξ(i) = X(j) + ξ(j) − iX(j)
dΛ(ij) (3.4)

It is these objects we attempt to repackage into one mathematical formalism in this Chapter.
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3.1 The generalised tangent bundle, frames and G-structures

A natural first step in unifying these concepts is to extend the tangent bundle TM of a manifold

M to a generalised tangent bundle E given by [2]

E := TM ⊕ T ∗M (3.5)

where T ∗M is the usual cotangent bundle. Sections of E are generalised vector fields V , denoted

either by a sum or a pair of ordinary vectors and one-forms, depending on which is notationally

neater

V = X + ξ =

X
ξ

 (3.6)

In either case, we will use Latin characters for the vector part and Greek characters for the one-

form part of generalised vectors. Given a generalised frame {EA} ∈ Fr(E) for M that splits into

a frame {ea} for TM and {ea} for T ∗M , a generalised vector has components

V A =


Xa : A = a

ξa : A = a+ d

(3.7)

For example, we could use the generalised coordinate basis defined as

{EM} = {∂M} ∪ {dxµ} (3.8)

A generalised frame bundle F is defined exactly analogously to the ordinary geometry case

F =
{

(x, {EA}) : x ∈M and {EA} is a basis for E at x
}

(3.9)

Also analogously, a generalised frame bundle is a principal GL(2d,R)-bundle. We then define a

generalised G-structure as a principal G-bundle given by a sub-bundle of F .

There is a natural inner product for generalised vectors [14] given by

〈
X + ξ, Y + η

〉
= η(V,U) :=

1

2
(iXη + iY ξ) (3.10)

which, in the basis 3.7, evidently corresponds to a metric with components

ηAB =
1

2

0 1

1 0

 (3.11)

17



This is a signature (d, d) metric and thus equivalently an O(d, d)-structure defined by the choice

of frame {ÊA} which gives a basis of the form 3.7 at each point

η(ÊA, ÊB) = ηAB (3.12)

The corresponding frame bundle is called the generalised structure bundle, since the inner product

is defined very naturally [10].

It is worth noticing the fact that η defines an isomorphism between E and E∗ [10], mean-

ing generalised cotangent vectors can be equivalently thought of as generalised tangent vectors.

Generalised indices A,B, . . . are raised and lowered with η.

The Lie algebra so(d, d) of the generalised structure group O(d, d) consists of elements m which

generate matrices that leave η invariant. This property is equivalent to

mT η = −ηm (3.13)

Thus, a general element takes the form

m =

A β

B −AT

 (3.14)

A is an arbitrary d× d matrix generating the GL(d,R) subgroup containing matrices of the form

M 0

0 M−T

 : M ∈ GL(d,R) (3.15)

Note that, as expected, this correctly embeds the action of the structure group GL(d,R) on the

vector and one-form components of a generalised vector into the O(d, d) generalised structure

group. Bµν are the components of a two-form and generate the group of matrices of the form [15]

exp(B) =

1 0

B 1

 (3.16)

which act on generalised vectors to give the so-called B-field transformation

X + ξ 7→ X + ξ + iXB (3.17)

The bivector β ∈ ∧2(TM) generates an action that does not play a significant role in our discussion.
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3.2 The Dorfman derivative and Courant bracket

In order to construct differential operators on the generalised tangent bundle, we define an object

which generalises the Lie derivative, or so-called Dorfman derivative. Defined as

L : Γ(E)× Γ(E)

(V,U)

Γ(E)

LV U (3.18)

with

LV U = LX+ξ(Y + η) = LXY + LY η − iY dξ (3.19)

it appears to encapsulate the combined action of diffeomorphisms and gauge transformations 3.2

[16].

By defining the generalised partial derivative in a coordinate basis {EM} as

∂M =


∂µ : M = µ

0 : M = µ+ d

(3.20)

we can rewrite the Dorfman derivative of a generalised vector U = Y +η with respect to V = X+ξ

in an explicitly O(d, d)-covariant form [10]

(LV U)M = V N∂NU
M + (∂MV N − ∂NVM )UN (3.21)

On a function, the Dorfman derivative is defined to act as [16]

LV f = LXf (3.22)

and a Leibniz property defines its action on any generalised, rank-n tensor field T

(LV T )M1...Mn =V N∂NT
M1...Mn + (∂M1V N − ∂NVM1)T M2...Mn

N + ...

+ (∂MnV N − ∂NVMn)T
M1...Mn−1

N (3.23)

The generalisation of the Lie bracket to generalised geometry, which is most natural in the

sense that it commutes with diffeomorphisms and B-field transformations, is called the Courant

bracket. It is an antisymmetric, bilinear on generalised vector fields [2]

[[ . , . ]] : Γ(E)× Γ(E)

(V,U)

Γ(E)

[[V,U ]] (3.24)
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and can be defined as the antisymmetrisation of the Dorfman derivative [10]

[[V,U ]] =
1

2
(LV U − LUV )

= [X,Y ] + LY η − LXξ −
1

2
(diXη − diY ξ) (3.25)

We can see that, given the constituent parts of the Courant bracket, it commutes with diffeo-

morphisms [1]. Specifically, given a diffeomorphism f : M → M , the action of the “generalised

pushforward”, f∗ ⊕ f∗ : Ex → Ef(x) commutes with the Lie derivative, exterior derivative and

interior product. The Courant bracket also commutes with a closed B-field transformation. To see

this, let B ∈ Z2(M) be a closed two-form with action on a generalised vector given by 3.17. The

claim is that

[[X + ξ + iXB, Y + η + iYB]] = [[X + ξ, Y + η]] + i[X,Y ]B (3.26)

First note that the left-hand side of 3.26 gives

[[X + ξ, Y + η]] + LX iYB − LY iXB −
1

2
d(iX iYB − iY iXB) (3.27)

Now, using the antisymmetry of the inner product and Eq. 2.17, one finds

− 1

2
d(iX iYB − iY iXB) = d(iY iXB) = LY iXB − iY d(iXB) (3.28)

With this, Eqn. 3.26 becomes

[[X + ξ, Y + η]] + [LX , iY ]B + iY iXdB (3.29)

Finally, using the fact that B is closed and the identity [1]

[LX , iY ]B = i[X,Y ]B (3.30)

we arrive at the result [14].

We have seen that both the inner product η and the Courant bracket are preserved by the

action of the following semi-direct product group

Diff(M) n Z2(M) (3.31)

It can be shown that this is the full group that preserves the Courant bracket [13]. So, these are

appropriate objects with which to build generalised curvature quantities that correctly encode the
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combined diffeomorphism and gauge invariance 3.2.

3.3 Generalised connections and generalised torsion

In this Section, we define a generalisation of the connection: a directional derivative of one gener-

alised vector field with respect to another or, equivalently, a notion of parallel transport of gener-

alised vectors in the manifold. It is this additional structure that is needed to define differential

operators and discuss the notion of generalised curvature.

A generalised connection is a linear, differential map [10]

D : Γ(E)× Γ(E)

(V,U)

Γ(E)

DV U (3.32)

which, for generalised vectors V and U ∈ Γ(E) and smooth function f , satisfies

DfV U = fDV U (3.33a)

DV (fU) = U [f ] + fDV U (3.33b)

Since the action of a generalised vector on a function is given by the generalised directional deriva-

tive 3.20, in a frame {EA}, with generalised connection coefficients

DMEA = Ω B
M AEB (3.34)

we have following action of DM on a generalised vector

(DMU)A = ∂MU
A + Ω A

M BU
B (3.35)

The generalised covariant derivative is defined by the Liebniz requirement

DV (U ⊗W ) = (DV U)⊗W + U ⊗ (DVW ) (3.36)

Its action on a rank-n tensor field has components [10]

(DMT )A1...An = ∂MT
A1...An + Ω B

M A1
TBA2...An + ...+ Ω B

M AnT
A1...An−1B (3.37)

The generalised tangent space naturally admits an O(d, d)-structure meaning it is natural to

impose compatibility of the generalised connection with this structure. Since the metric ηAB is

21



used to raise and lower indices, we see immediately that

DMη = 0 ⇔ ΩM(AB) = 0 (3.38)

Given a dual basis {EA}, the generalised torsion map is defined to act on generalised basis

vectors as

T (EB , EC)[EA] = TABC (3.39)

Here, the generalised torsion tensor is given by contracting with a generalised vector in analogy

to 2.28

V NTMNP U
P = (LDV U)M − (LV U)M (3.40)

where LD is the Dorfman derivative 3.18 with ∂M replaced with DM [10]. This gives the following

form for the generalised torsion tensor

TMNP = Ω M
N P + ΩMPN − Ω M

P N + Ω Q
Q Nδ

M
P (3.41)

Lowering the indices with η, we find the decomposition

TMNP = (T1)MNP − (T2)Nδ
M
P ∈ Γ(∧3E ⊕ E) (3.42)

with [10]

(T1)MNP = −3Ω[MNP ] (3.43a)

(T2)M = −Ω Q
Q M (3.43b)

Equipped with the generalised connection and torsion, we could define a torsion-free gener-

alised connection that is compatible with the O(d, d)-structure and use it to construct curvature

quantities. However, we need to introduce further structure that defines a (pseudo-)Riemannian

metric g on the manifold and, ideally, the other NS-NS fields too so that they are contained in

generalised curvature quantities.

3.4 The generalised Riemannian metric

As mentioned in Section 2.5, a Riemannian metric on a manifold is defined by an O(d)-structure

[12]. O(d) is also the maximal subgroup of GL(d,R) that is compact with respect to the subspace

topology. According to the Cartan-Iwasawa-Malcev theorem, such a maximal compact subgroup is

admitted by every locally compact Lie group [17]. For the structure group O(d, d) of the generalised
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tangent bundle, the maximal compact subgroup is O(d) × O(d) [18]. So naturally, defining a

generalised Riemannian metric G is equivalent to defining an O(d)×O(d) structure on E.

Following [16] we construct a generalised Riemannian metric G explicitly. Consider a manifold

M equipped with a Riemannian metric g. Notice that g can be defined by the sub-bundle containing

vectors X + gξ for X ∈ Γ(TM) and ξ ∈ Γ(T ∗M) since g maps vector fields to one-form fields.

Also note that E can be split into two sub-bundles that contain generalised vectors of positive and

negative norms with respect to the O(d, d) metric η respectively, each of dimension d

E = C+ ⊕ C− (3.44)

Define the generalised Riemannian metric as a linear map

G : Γ(E)× Γ(E)

(V,U)

R

G(V,U) (3.45)

with

G(V,U) = η(V,U)|C+
− η(V,U)|C− (3.46)

which is clearly symmetric and positive definite by definition. Also note that the structure that

separately preserves the O(d, d) metric on each sub-bundle is an O(d)×O(d) structure, as required.

Since η(V, V ) = 0, if V is either pure vector or pure one-form

C± ∩ TM = C± ∩ T ∗M = 0 (3.47)

A generic section of C+ is then given by X +MX for some d× d matrix M . Decomposing M into

a symmetric matrix g and an antisymmetric matrix B, notice the patching condition 3.4 implies

that

g(i) = g(j) and B(i) = B(j) − dΛ(ij) (3.48)

Thus, g and B can be identified with the Riemannian metric and a B-field since they have the

correct patching.

Now, following [19] we construct the explicit matrix form of G. First set B = 0 and note that

a generic generalised vector in the C± eigenspaces is written

Xg± = X ± gX (3.49)
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Then, notice that

2X = Xg+ +Xg− and 2gX = Xg+ −Xg− (3.50)

These imply that, in a basis 3.7, the generalised Riemannian metric with B = 0, which we denote

Gg, satisfies

Gg

X
0

 =

 0

gX

 and Gg

 0

gX

 =

g−1gX

0

 (3.51)

This gives the general form of Gg in this basis

Gg =

0 g−1

g 0

 = G−1
g (3.52)

To reintroduce the B-field, we recall the form of the B-field transformation 3.17. Its action on

Xg± is

X± := exp(B)Xg± = X ± gX ±BX (3.53)

Using the fact thatX± are elements of the ± eigenspace of the Riemannian metric G (now including

the B-field), or

G(X±) = ±X± (3.54)

we see that

X± = ± exp(B)Gg exp(−B)(X±) (3.55)

Along with the two-component form of the B-field transformation, this gives the following form of

G [19]

G =

 −g−1B g−1

g −Bg−1B Bg−1

 (3.56)

We have successfully generalised the notion of a Riemannian metric and it contains the ordi-

nary Riemannian metric g and the B-field. One could now impose compatibility with G on the

generalised connection D defined in Section 3.3, use the form of the generalised torsion to define a

generalised Levi-Civita connection and consider the resulting generalised curvature. However, to

introduce the dilaton φ, we must extend the generalised tangent bundle further to account for the

extra degree of freedom.
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Chapter 4

Extended Generalised Geometry

In this Chapter, we show that by extending the generalised tangent bundle E introduced in Section

3.1, the resulting O(d) × O(d) structure induces an additional object with one degree of freedom

which can be identified with the dilaton.

4.1 Extended generalised bundles

The correct way to extend the tangent bundle was discovered by the authors of [10] and we follow

their construction below. Define the extended generalised tangent bundle as

Ẽ = L̃⊕ E (4.1)

where E is the generalised tangent bundle defined in Section 3.1 and L̃ is an R+-bundle. Under

this construction, sections of Ẽ are weighted generalised tensors of rank-1 (or weighted generalised

vectors). That is, we define L̃ such that, for generalised vector V = X + ξ ∈ Γ(E), the patching

conditions 3.4 are modified to

X(i) + ξ(i) = (detM)−1(X(j) − iX(j)
dΛ(ij)) (4.2)

where M is the GL(d,R) transformation matrix. This implies that, as required

L̃ ' detT ∗M = ∧d(T ∗M) (4.3)

There is a natural structure on Ẽ given the natural O(d, d)-structure induced by the metric η called

the (extended) generalised structure bundle [10], defined by

F̃ =
{

(x, {EA}) : x ∈M and η(EA, EB) = Φ2ηAB
}

(4.4)
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where Φ ∈ Γ(L̃) and the O(d, d)-invariant metric is given by 3.11. The basis {EA} is called a

conformal basis. Analogously to ordinary structure bundles introduced in 3.1, the generalised

structure bundle forms a principal O(d, d) × R+-bundle [10]. Extended generalised tensors now

form representations of the structure group O(d, d)×R+, that is, they are representations of O(d, d)

with some weight p and are sections of the bundle

E⊗n(p) = L̃p ⊗ E ⊗ ...⊗ E (4.5)

We want to construct a generalised Riemannian metric in this extended generalised geometry

setting which contains the dilaton field φ. To do this, we first investigate an additional structure

on Ẽ induced by so-called split frames. Given a generic basis {êa} for TM and its dual {ea} for

T ∗M , a split frame is defined by [10]

ÊA =


Êa = (det e)(êa + iêaB) : A = a

Ea = (det e)ea : A = a+ d

(4.6)

where e is the vielbein 2.31. This is a subset of the set of conformal frames since, using the

antisymmetry of the interior product, we find

η(ÊA, ÊB) = (det e)2ηAB (4.7)

and so, the corresponding split frame bundle is a sub-bundle of the generalised structure bundle.

The structure group of the split frame bundle, which we denote Gsplit, is found by noting the

transformation properties of split frames

Ê′A =


Ê′a = (det e′)(ê′a + iê′aB

′) : A = a

E′a = (det e′)e′a : A = a+ d

=


(det e′)M b

a (êb + iêb(B + ω)) : A = a

(det e′)(M−1) a
b )eb : A = a+ d

(4.8)

We see that a generic element of Gsplit is

(detM)−1

1 0

ω 1


M 0

0 (M−1)T

 (4.9)

where ω is a closed two-form and M ∈ GL(d,R) are elements of the ordinary structure group.
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From this, we see that [15]

Gsplit ' GL(d,R) nRd(d−1)/2 ⊂ O(d, d)× R+ (4.10)

that is, a choice of split frame induces a Gsplit-structure on Ẽ. In addition, we can define a

Gsplit × R+-structure by introducing a conformal split frame, which is defined as

ÊA =


Êa = e−2φ(det e)(êa + iêaB) : A = a

Ea = e−φ(det e)ea : A = a+ d

(4.11)

The R+ factor acts on the conformal factor between fibres of the frame bundle defined by the

conformal split frame [10]. We anticipate that this form can now be used to specify a frame bundle

such that φ and B give the dilaton and B-fields of supergravity.

4.2 O(p, q)×O(q, p)-structures and the NS-NS fields

Since supergravity motivates this whole construction, the metric g we aim for is pseudo-Riemannian.

As such, we now consider an additional O(p, q)× O(q, p)-structure on E (with p+ q = d) [12] in-

duced by a smaller sub-bundle of the extended generalised structure bundle 4.4. Analogously to

the construction of an O(d)×O(d) structure in Section 3.4, this is equivalent to defining a splitting

of E as in 3.44 and additionally fixing a particular weight Φ ∈ Γ(L̃). We therefore anticipate that,

while the splitting will define the metric G as in Section 3.4, this additional freedom will define a

dilaton φ.

Rather than explicitly constructing these objects as we did in Section 3.4, we will construct the

particular conformal split frame {ÊA} which induces the O(p, q) × O(q, p)-structure. The metric

G is defined from this frame in the usual way

G = Φ−2ηABÊA ⊗ ÊB (4.12)

where Φ is the conformal factor associated to {ÊA} which also defines the dilaton [10].

The particular conformal split frame {ÊA} must split into

{ÊA} = {Ê+
a } ∪ {Ê−ā } (4.13)

with a, ā = 1, ..., d such that {Ê+
a } and {Ê−ā } form a conformal basis for C+ and C− respectively,

that is

η(Ê+
a , Ê

+
b ) = Φ2ηAB (4.14a)
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η(Ê−ā , Ê
−
b̄

) = −Φ2ηAB (4.14b)

η(Ê+
a , Ê

−
ā ) = 0 (4.14c)

for fixed density Φ. Note that we change basis, so now the O(d, d) metric η has components which

differ from 3.11, given by

ηAB =

ηab 0

0 −ηāb̄

 (4.15)

where ηab and ηāb̄ are flat metrics of signature (p, q) [10].

Explicitly, we choose the conformal split frame to take the form

ÊA =


Ê+
a = e−2φ√−g(ê+

a + e+
a + iê+aB) : A = a

Ê−ā = e−2φ√−g(ê−ā − e−ā + iê−ā B) : A = ā+ d

(4.16)

where Φ = e−2φ√−g is the fixed weight, ê+
a and ê−ā are independent orthonormal ordinary frames

with duals e+a and e−ā, that is

g(ê+
a , ê

+
b ) = ηab and g(ê−ā , ê

−
b̄

) = ηāb̄ (4.17)

g is the ordinary Riemannian metric, given by

g = ηabe
+a ⊗ e+b = ηāb̄e

−ā ⊗ e−b̄ (4.18)

Note that now we have fixed the conformal factor Φ and built the frame from ordinary orthonormal

frames, the structure group of the frame bundle defined by 4.16 is clearly O(p, q)×O(q, p), giving

the required structure.

Finally, from 4.16 we see that the two objects G and Φ induced by the O(p, q)×O(q, p) structure

contain all the NS-NS fields: g, B and φ. In the next Section, we will construct a connection

compatible with this O(p, q)×O(q, p)-structure in addition to the original O(d, d)×R+-structure.

The torsion-free such compatible connection will be the generalised Levi-Civita connection from

which we can construct curvature quantities.

4.3 Generalised Levi-Civita connection

In this Section, we use the O(p, q)×O(q, p)-structures to construct a family of compatible, gener-

alised connections. The simplest way to do this is to lift the ordinary Levi-Civita connection ∇ on

TM to Ẽ [10]. Despite ∇ being torsion-free, we will find that the corresponding lifted connection
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is not by finding the components explicitly. Finally, we will define the Levi-Civita connection by

removing the torsion, but we will find it is not unique.

First, let the (extended) generalised connection act on a weighted generalised vector U ∈ Γ(Ẽ)

as

DMU
A = ∂MU

A + Ω̃ A
M BU

B (4.19)

where M is a coordinate basis index 3.8 and {A,B} are conformal split frame indices

U = UAÊA = uaÊa + ζaE
a (4.20)

Compatibility with the O(d, d)×R+-structure implies that the generalised connection forms Ω̃AB ∈

Γ(E∗) are o(d, d)⊕ R-valued [1]

Ω̃ A
M B = Ω A

M B − ΛMδ
A
B (4.21)

where ΩAB are the o(d, d)-valued connection forms as in Eq. 3.38 and ΛM ∈ Γ(E∗) are real-valued

forms.

The action on a generalised weighted rank-n tensor α ∈ Γ(Ẽ⊗n(p) ) is

DMα
A1...An =∂Mα

A1...An + Ω A1

M Bα
BA2...An + ...+ Ω An

M Bα
A1...An−1B

− pΛMαA1...An (4.22)

where p is the weight of α or equivalently the charge labelling its representation of R+ [10].

To explicitly construct the connection, we use the conformal split frame 4.11 and lift the

ordinary connection ∇, defined on weighted vectors and one-forms, to a generalised connection

D∇ with components

(D∇MU
A)ÊA =


(∇µua)Êa + (∇µζa)Ea : M = µ

0 : M = µ+ d

(4.23)

Exactly analogously to the construction of the generalised torsion in Section 3.3, we use the slightly

modified form of the Dorfman derivative for a weighted tensor α ∈ Γ(Ẽ⊗n(p) ) given by

(LV α)M1...Mn =V N∂Nα
M1...Mn + (∂M1V N − ∂NVM1)α M2...Mn

N + ...

+ (∂MnV N − ∂NVMn)α
M1...Mn−1

N + p(∂NV
N )αM1...Mn (4.24)

together with an analogous quantity LDV to construct the (extended) generalised torsion tensor as
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in 3.40. Using the antisymmetry properties of Ω, we find that [10]

TABC = −3Ω̃[ABC] + Ω̃ D
D BηAC − Φ−2η(ÊA, LΦ−1ÊB

ÊC) (4.25)

Once again, the torsion tensor decomposes as T ∈ Γ(∧3E ⊕ E). Explicitly, in a coordinate basis,

Eq. 4.25 implies that

TMNP = (T1)MNP − (T2)P δ
M
N (4.26)

with

(T1)MNP = −3Ω̃[MNP ] = −3Ω[MNP ] (4.27a)

(T2)M = −Ω̃ Q
Q M = ΛM − Ω Q

Q M (4.27b)

Now, using the conformal split frame 4.11, we calculate T1 and T2 for the generalised connection

D∇ in Eq. 4.23. First, we utilise the Leibniz rule for the Dorfman derivative

LΦ−1ÊA
ÊB = LΦ−1ÊA

(ΦΦ−1ÊB) = (LΦ−1ÊA
Φ)Φ−1ÊB + ΦLΦ−1ÊA

(Φ−1ÊB) (4.28)

For Φ = e−2φ(det e) we have

LΦ−1ÊA
Φ =


Lêa+iêaB

(e−2φ det e) : A = a

Lea(e−2φ det e) : A = a+ d

=


Lêa(e−2φ det e) : A = a

0 : A = a+ d

(4.29)

where we also used property 3.22. Using 2.17 we see that the A = a components are

− e−2φ(det e)(2iêadφ+ iêaiêbde
b) (4.30)

Next, we calculate the second Dorfman derivative on the right-hand side of Eq. 4.28 in two-

component blocks. For A,B = a, b we have

LΦ−1ÊA
Φ−1ÊB = Lêa êb + Lêa(iêbB)− iêb(diêbB) (4.31)

using the definition 3.18. Now, using 3.30 and defining the B-field strength

H := dB (4.32)

Eq. 4.31 becomes

[êa, êb] + i[êa,êb]B − iêaiêbH (4.33)

30



For A,B = a, b+d and a+d, b we simply find that the Dorfman derivative gives the Lie derivative

of the dual basis vectors eb and ea respectively, and for A,B = a+d, b+d, the Dorfman derivative

vanishes as it is zero on two pure one-forms. Overall, we have [10]

LΦ−1ÊA
Φ−1ÊB =

[êa, êb] + i[êa,êb]B − iêaiêbH Lêaeb

−Lêbea 0

 (4.34)

To simplify the calculation, we will assume that the ordinary connection ∇ is torsion-free.

Equivalently, we see from Eq. 2.26 that the coefficients of ∇ satisfy

ω a
[µ b] = 0 (4.35)

This implies that

Ω̃[ABC] = Ω[ABC] =
1

6
(ηDBΩ̃ D

[A C] + ηDAΩ̃ D
[C B] + ηDCΩ̃ D

[A B]) = 0 (4.36)

and, using symmetry properties, we also find

Ω̃ D
D A = Ω̃ D

[D A] = 0 (4.37)

This simplifies the generalised torsion tensor 4.25 to

TABC = −Φ−2η
(
ÊA, (LΦ−1ÊB

Φ)Φ−1ÊC
)
− Φ−2η

(
ÊA,ΦLΦ−1ÊB

(Φ−1ÊC)
)

(4.38)

The first term on the right-hand side can be calculated using the result 4.30

− Φ−2η
(
ÊA, (LΦ−1ÊB

Φ)Φ−1ÊC
)

=


(iêbiêdde

d + 2iêbdφ)ηAC : B = b

0 : B = b+ d

(4.39)

This clearly forms the Γ(E∗) part of the decomposition, yielding

(T2)B =


−(iêbiêdde

d + 2iêbdφ) : B = b

0 : B = b+ d

(4.40)

The generalised covector T2 can be evaluated in a generalised coordinate basis 3.8, simplifying the

above expression considerably:

T2 = (T2)ME
M = −2(iEMdφ)EM = −4dφ (4.41)

31



where the factor of 1/2 in the metric ηAB , which is used to raise and lower indices, gives the extra

factor of 2 [10].

Next, the second term in the right-hand side of Eq. 4.38 is calculated using 4.34 which, in the

coordinate basis, simplifies significantly. The only non-zero component is in the A,B = a, b block,

and the Lie brackets of coordinate basis vectors vanish. Taking the inner product with ÊM , we

find the tensor T1 takes the simple form [10]

T1 = −4H (4.42)

Importantly, we have found that although the ordinary connection ∇ is torsion free, the corre-

sponding connection lifted to Ẽ 4.23 is not free of generalised torsion.

The connection we wish to use in building generalised curvature quantities is the generalisation

of the Levi-Civita connection. As such, we must further restrict D∇ to be compatible with the

O(p, q)×O(q, p)-structure. We defined this structure via the splitting of the conformal split frame

ÊA into two conformal frames on C± as in Eq. 4.16. Under this split, a weighted generalised vector

U ∈ Γ(Ẽ) takes the form

U = ua+Ê
+
a + uā−Ê

−
ā (4.43)

and the (extended) generalised connection becomes

DMU
A =


∂Mu

a
+ + Ω̃ a

M b : A = a

∂Mu
ā
− + Ω̃ ā

M b̄
: A = ā

(4.44)

Compatibility with the the O(p, q)×O(q, p)-structure implies that Ω̃AB splits into an o(p, q)-valued

connection form on the a, b indices and a o(q, p)-valued connection form on the ā, b̄ indices:

Ω̃M(bc) = Ω̃M(b̄c̄) = 0 (4.45)

Now we explicitly construct such a connection. Consider an ordinary Levi-Civita connection ∇

for g. In terms of the two independent orthonormal frames {ê+
a } and {ê−ā }, this has the action

∇µua+ = ∂µu
a
+ + (ω+) a

µ bu
b
+ (4.46a)

∇µuā− = ∂µu
ā
− + (ω−) ā

µ b̄u
b̄
− (4.46b)
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which we can straightforwardly lift to connections on Ẽ [10]

D∇MU
a =


∇µua+ : M = µ

0 : M = µ+ d

(4.47a)

D∇MU
ā =


∇µuā− : M = µ

0 : M = µ+ d

(4.47b)

The fact that ∇ is a Levi-Civita connection implies that (ω±)µ(bc) = 0. Therefore Eq. 4.45 is

satisfied meaning D∇ is compatible with the O(p, q)×O(q, p)-structure.

As anticipated, despite the Levi-Civita connection ∇ being torsion-free, its lift D∇ to E is

not free of generalised torsion. This is most easily seen in the case where the two independent

orthogonal bases align

ê+
a = ê−a =: êa (4.48)

Now, comparing the conformal split frame 4.11, with which we calculated the generalised torsion

4.41 and 4.42, with the particular splitting frame 4.16 that defined the O(p, q)×O(q, p) structure,

we see that

U = ua+Ê
+
a + uā−Ê

−
ā = (ua+ + ua−)Ê+

a + (u+a − u−a)Êa (4.49)

In this case, the lift of the Levi-Civita connection 4.47 and the explicit O(d, d) × R+-compatible

generalised connection 4.23 are the same [10]. The decomposed generalised torsion quantities 4.41

and 4.42 are frame-independent, so the generalised torsion associated to the lift of the Levi-Civita

connection D∇ is the same. Therefore, D∇ is not the generalised Levi-Civita connection as it is

not generalised torsion-free.

We may add to this particular generalised connection 4.47, the components a generic O(p, q)×

O(q, p)-compatible generalised connection

DMU
A = ∂MU

A + Σ A
M BU

B (4.50)

to obtain another

DMUA = D∇MU
A + Σ A

M BU
B = ∂MU

A + (Ω̃ A
M B + Σ A

M B)UB (4.51)

The compatibility of this generic connection D places the following restriction on its components

ΣM(ab) = ΣM(āb̄) = 0 (4.52)
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Evidently, Eq. 4.27 implies that the addition of this generic generalised connection modifies the

torsion as follows [10]

(T1)ABC = −4HABC − 3Σ[ABC] (4.53a)

(T2)A = −4dφA − Σ C
C A (4.53b)

The generalised Levi-Civita connection should be free of generalised torsion, requiring the following

assignments to the coefficients

Σ[abc] = −1

6
H[abc] Σ a

a b = −2∂bφ

Σ[ābc] = −1

2
H[ābc] Σ ā

ā b̄ = −2∂b̄φ

Σ[ab̄c̄] =
1

2
H[ab̄c̄]

Σ[āb̄c̄] =
1

6
H[āb̄c̄] (4.54)

Putting everything together, the generalised Levi-Civita connection has the following action in

the frame 4.16

Daub+ =∇aub+ −
1

6
H b
a cu

c
+ −

2

9
(δ b
a ∂cφ− ηac∂bφ)uc+ + (A+) b

a cu
c
+

Dāub+ =∇āub+ −
1

2
H b
ā cu

c
+

Daub̄− =∇aub̄− +
1

2
H b̄ c̄
a c̄ −

Dāub̄− =∇āub̄− +
1

6
H b̄
ā c̄u

c̄
− −

2

9
(δ b̄
ā ∂c̄φ− ηāc̄∂ b̄φ)uc̄− + (A−) b̄

ā c̄u
c̄
− (4.55)

where, unlike the ordinary Levi-Civita connection, D is not unique as the tensors A± can be added

without affecting compatibility. [10]. They must satisfy the following properties in order not to

contribute to the generalised torsion

(A+)a(bc) = (A+)[abc] = (A+) a
a b = 0 (4.56a)

(A−)ā(b̄c̄) = (A−)[āb̄c̄] = (A−) ā
ā b̄ = 0 (4.56b)

4.4 Generalised curvature quantities

Equipped with the generalised Levi-Civita connection, we now attempt to form generalised curva-

ture expressions needed to study generalised Einstein gravity. These quantities should be unique

which requires evading the ambiguity introduced to the generalised Levi-Civita connection 4.55 by

the A± terms.
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The construction of generalised curvature appears to fall at the first hurdle: there is no gen-

eralised Riemann tensor. This is due to the non-linearity of the naturally defined generalised

curvature map for a generalised connection D

R(V,U,W ) = [DV , DU ]W −D[[V,U ]]W (4.57)

To see this, consider the smooth functions f , g and h and let V = X + ξ and U = Y + η. Then

using

[[fV, gU ]] = fg
(

[X,Y ] + LXη − LY ξ −
1

2
d(iXη − iY ξ)

)
− 1

2
d(fg)(iXη − iY ξ) (4.58)

we find non-linearity [10]

R(fV, gU, hW ) = fghR(V,U,W )− 1

2
hη(V,U)Dfdg−gdfW (4.59)

However, restricted to act on V and U in different orthogonal subspaces C±, the generalised

curvature map is linear since η(V,U) = 0. So, given the O(p, q) × O(q, p)-structure, there is a

natural generalised Riemann tensor, non-zero only if its index structure is one of the following

{R c
ab̄ d, R

c̄
ab̄ d̄, R

c
āb c, R

c̄
āb d̄} (4.60)

Unfortunately, it is precisely these components of the generalised Riemann tensor that cannot

be uniquely defined for the generalised Levi-Civita connection D. The first two indices always

correspond to mixed commutators, for example [Da,Db̄], and so there can be no cancellation of

A± tensors in the curvature map.

It is not the Riemann tensor that appears in the ordinary field equations though, so we attempt

to construct a generalised Ricci tensor using the index structures for which the generalised Levi-

Civita connection is uniquely defined, namely

Dāub+ =∇āub+ −
1

2
H b
ā cu

c
+

Daub̄− =∇aub̄− +
1

2
H b̄
a c̄u

c̄
−

Daua+ =∇aua+ − 2(∂aφ)ua+

Dāuā− =∇āuā− − 2(∂āφ)uā− (4.61)
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In analogy to Eq. 2.45, we define the generalised Ricci tensor via

Rab̄u
a
+ = [Da,Db̄]ua+ or Rābu

ā
− = [Dā,Db]uā− (4.62)

To calculate the tensor explicitly, note that

DaDb̄ua+ = ∇a∇b̄ua+ +
[
− 1

2
∇aH a

b̄ c −
1

2
H a
b̄ c∇a +

1

4
H c̄
ab̄ H

a
c̄ c + (∂aφ)H a

b̄ c

− 1

2
H c̄
cb̄ ∇c̄ − 2(∂cφ)∇b̄

]
uc+ (4.63a)

Db̄Daua = ∇b̄∇aua+ +
[
− 2∇b̄(∂cφ)− 2(∂cφ)∇)b̄+

1

2
H a
b̄c ∇a − (∂aφ)H a

b̄c

− 1

2
H a
b̄ c∇a + (∂aφ)H a

b̄ c

]
uc+ (4.63b)

Using the total antisymmetry of the field strength H, we find

Rab̄u
a
+ = [∇a,∇b̄]ua+ +

[
− 1

2
∇aH a

b̄ c + (∂aφ)H a
b̄c +

1

4
H c̄
ab̄ H

a
c̄ c + 2∇b̄(∂cφ)

]
uc+ (4.64)

Now, using the fact that ∇aφ = ∂aφ, it is straightforward to verify that the second and fifth terms

in Eq. 4.64 can be combined as
1

2
e2φ∇c(Hb̄cae

−2φ) (4.65)

Finally, we see that the generalised Ricci tensor is given by [10]

Rab̄ = Rab̄ −
1

4
Hacc̄H

cc̄
b̄ + 2∇a∇b̄φ+

1

2
e2φ∇c(Hcab̄e

−2φ) (4.66)

where Rab̄ is the ordinary Ricci tensor for the Levi-Civita connection ∇. If the two distinct

orthonormal frames {ê+
a } and {ê−ā } are chosen to coincide, the generalised Ricci tensor has the

index structure Rab.

Importantly, since Rab̄ is the matrix representation of a linear map on C+ ⊗ C− only, at first

glance there is no way to infer the off-diagonal components of the full generalised Ricci tensor,

RAB in the full frame 4.13. However, if we demand that the generalised Ricci scalar R is defined

in analogy to 2.48

R = GABRAB (4.67)

36



and recall the form of the generalised metric 4.12 in this frame

GAB =

ηab 0

0 ηāb̄

 (4.68)

we can naturally define the full generalised Ricci tensor as [20]

RAB =

Rab Rab̄

Rāb Rāb̄

 =

 1
2dRδab Rab̄

Rāb
1
2dRδāb̄

 (4.69)

The generalised Ricci scalar is thus given by [10]

R = R+ 4∇2φ− 4(∂φ)2 − 1

12
H2 (4.70)

where R is the ordinary Ricci scalar in Eq. 2.48. This is a unique, tensorial expression for the

generalised Ricci scalar curvature for a generalised Levi-Civita connection, which should appear in

the generalisation of the Einstein-Hilbert action.
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Chapter 5

The Generalised Einstein-Hilbert

Action and the NS-NS Sector

We now have all the ingredients to form a generalised Einstein-Hilbert action whose stationary

condition is that of vanishing generalised Ricci curvature. In this short Chapter, we construct this

action and find it is exactly equivalent to the NS-NS action of type II supergravity in Eq. 1.1.

5.1 The generalised Einstein-Hilbert action

LetM be a ten-dimensional manifold and Ẽ be the extended generalised tangent bundle, admitting

a natural O(10, 10)×R+-structure. The generalised Riemannian metric is defined by an O(9, 1)×

O(1, 9)-structure 4.16 and parameterised by an ordinary metric g of signature (9,1), a two-form

field B patched as in 3.48 and a scalar φ. Respectively, these correspond exactly to the graviton,

B-field and dilaton in the NS-NS sector of type II supergravity.

Under combined diffeomorphisms of M and gauge transformations of B (parameterised by a

generalised vector U = X + ξ ∈ Γ(Ẽ)), the invariant tensors of the O(9, 1)×O(1, 9)-structure: G

and Φ, transform via the Dorfman derivative [10]

δUG = LUG and δUΦ = LUΦ (5.1)

Reformulating this in terms of g, B and φ, we see that these fields possess the correct variational

properties for two ordinary tensors 2.10 and one gauge tensor field

δX+ξg = LXg (5.2a)

δX+ξφ = LXφ (5.2b)

38



δX+ξB(i) = LXB(i) − dξ(i) (5.2c)

In a coordinate basis, the canonical volume form for the pair (G,Φ) is given by [10]

ΩG,Φ =
√
−ge−2φdx0 ∧ ... ∧ dx9 (5.3)

So, using the generalised Ricci scalar in Eq. 4.70, the generalised Einstein-Hilbert action is

SEH ∝
∫
M

ΩG,ΦR =

∫
d10x
√
−ge−2φ

[
R+ 4∇2φ− 4(∂φ)2 − 1

12
H2
]

(5.4)

Integrating by parts on the second term above yields

SEH ∝
∫
d10x
√
−ge−2φ

[
R+ 4(∂φ)2 − 1

12
H2
]

(5.5)

We see that the generalised Einstein-Hilbert action in Eq. 5.5 agrees with the action for the NS-

NS sector fields of ten-dimensional, type II supergravity 1.1. We have successfully reformulated

the dynamics of the bosonic fields of type II supergravity as the vanishing of Ricci curvature in

generalised geometry.
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Chapter 6

Conclusion, Discussion and Further

Research

In this work, the generalised geometry formalism, which extends the tangent bundle by the cotan-

gent bundle, was introduced. A naturalO(d, d)-structure, induced by the inner product between the

vector and one-form parts of generalised vectors, was shown to exist on the generalised tangent bun-

dle. The Dorfman derivative was defined as a natural generalisation of the Lie derivative and shown

to correctly encapsulate the parameters of a diffeomorphism of the manifold and a gauge trans-

formation of a two-form field, motivating the reformulation of type II supergravity as generalised

geometry. The generalised connection was introduced and an additional O(d) × O(d)-structure

was shown to induce a generalised metric incorporating the ordinary metric and a two-form field

identified with the B-field of type II supergravity.

To further incorporate the final bosonic supergravity field, the dilaton, we introduced extended

generalised geometry which studies the weighted generalised tangent bundle. The natural structure

bundle was shown to be a principal O(d, d)×R+-bundle and, motivated by the generalised metric

in O(d, d) generalised geometry, an O(p, q) × O(q, p)-structure was defined by a splitting of the

generalised tangent bundle into positive and negative eigenspaces of the O(d, d) metric. The

generalised connection compatible with both the O(d, d) × R+- and O(p, q) × O(q, p)-structures

was defined by a lifting of the ordinary Levi-Civita connection and its generalised torsion was

found. The generalised Levi-Civita connection was derived by counteracting this torsion by adding

coefficients of a different compatible generalised connection, but it was shown to be non-unique.

The generalised curvature map, which is non-linear unless restricted to act on different eigenspaces

of the O(d, d) metric, is subsequently not uniquely defined. However, a natural generalised Ricci

tensor was given, allowing for the construction of a generalised Einstein-Hilbert action. Finally,

it was shown that this action exactly coincides with the action for the NS-NS sector of type II
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supergravity, validating the use of extended generalised geometry to describe this physics.

An obvious further issue to address is the inclusion of the fermionic sector fields of type II su-

pergravity. The authors of [10] included the R-R field strengths F as representations of Spin(d, d)

and used the generalised Levi-Civita connection to write the spinor equations of motion and su-

persymmetry variations in a Spin(p, q)× Spin(q, p)-covariant form. The question of whether other

supergravity theories could be reformulated using generalised geometry was subsequently addressed

in [21]. In particular, the authors consider the further extension to the generalised tangent bun-

dle [15] which admits a natural Ed(d) ×R+-structure. The analogue of the Levi-Civita connection

compatible with the Hd maximally compact subgroup of Ed(d) and the construction of correspond-

ing curvature quantities gives a geometric description of bosonic, eleven-dimensional supergravity

restricted to a d-dimensional manifold for d < 7. In a follow-up paper [22], the full eleven-

dimensional supergravity action, restricted to a warped product R(10−d),d ×M for d-dimensional

spin manifold M and d < 7, was derived.

More generally, generalised geometry and, in particular, the O(d, d) action and T-duality has

been used to describe non-geometric string backgrounds [16,23] which is an indication of the wider

applicability the formalism has in theoretical physics.

Finally, as standard differential geometry is a rich field of mathematics in its own right, with

many branches and areas of active research, the exploration of analogous concepts in a generalised

geometry setting could lead to many interesting mathematical discoveries.
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