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Abstract

In 1983 Stephen Hawking proposed a mechanism involving a rank-3 gauge �eld implying

that �the cosmological constant is probably zero�. This paper examines the theory through

the Einstein-Cartan formalism, casting the �eld as a 3-form, appearing in the action via a

F ∧ ∗F term where F = dA. The equations of motion from A yield an integration constant

∗F = c that if substituted back into the Euclidean action produces what can be interpreted as

a probability distribution via the e�ective action. The peak is of course found as the e�ective

cosmological constant λeff (c) → 0+. First, from a review of the associated literature, it is

found that the original proposal had an important hole in the argument, caused by substituting

a solution into the action before obtaining all the equations of motion. However, this was later

shown to not disprove the method in its entirety: a closer look into the correct boundary terms

�xed the sign problem caused by the premature substitution. Furthermore, some new variants

of this mechanism were found to provide alternate ways to �x the issue, and to generalise the

process. An interesting result is a link found between this and Unimodular Gravity, which

may yet breathe some new motivation into one or the other theory. Some background and

illustrations to the cosmological constant problem are presented �rst, such as an introduction

to Quantum Cosmology, the Sequester and of course Unimodular Gravity. Doubts are also

raised about the use of a Euclidean action for a gravitational theory and its probabilistic

interpretation, along with possible ways around them.
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1 Introduction

The cosmological constant problem may be one of the greatest discrepancies between experiment
and theory in modern Physics. Weinberg's famous review of the issue [1] states a �ne-tuning
problem of roughly 120 orders of magnitude based on currently known particle physics and upper
bounds on the cosmological constant. It is then quite obvious why this topic is of great interest,
potentially leading the way to new physics, whether looked at from an observational, experimental
or theoretical view. The fact that this discrepancy still remains unsolved is a testament as to how
deep-rooted the problem is, potentially requiring some modi�cation or addition to the Standard
Model or General Relativity. The �rst published discussions of the contributions of quantum
�uctuations to cosmology were generated by astronomical observations of an accelerating expansion
rate of the universe [1]. Authors such as Petrosian, Salpeter, Szekeres, Sklovsky, and Zeldovich
began the �rst discussions of positively curved models with non-zero cosmological constants in
the 1960s [2][?][3], revived from previous decades. Even further back, Pauli is believed to have
considered the e�ects of ground state energies on gravity [4], stating that a rough estimate of their
e�ect would place the cosmic horizon closer than the moon! [5] However, Padilla strongly highlights
that the problem may be much deeper, centred around radiative instability. Simply considering
loop diagrams of a single scalar �eld gives contributions to the total energy as:

−Vvac
∫
d4x

Vvac ∼ ΣparticlesO(1)m4
particles

(1)

where schemes such as dimensional regularisation are performed, and only �nite terms are taken
into account. Now modifying the measure for general covariance

∫
d4x→

∫
d4x
√
−g, one obtains

a contribution to the stress-energy tensor of the form:

Tµν(vac) = −Vvacgµν . (2)

Such a term would lead to a late time de Sitter expansion - as our universe appears to be heading
towards - but much earlier than in reality, as previously stated with Dirac. The idea then (naively)
is to absorb these �uctuations into the bare cosmological constant term Λ �rst introduced by
Einstein, appearing in the Einstein-Hilbert (E-H) action as [6]:

S = κ

∫
d4x
√
−g (R− 2Λ) + SM [gµν , φ] (3)

where κ = 1/(16πG) with G the gravitational constant, R is the Ricci scalar, and SM [gµν , φ] is
the matter action, which will contribute to Tµν . However, as Padilla points out [4], Λ must be
readjusted at every order in the loop diagrams: their contributions do not converge, but in fact
lead to an in�nite number of �ne-tuning! Short of being able to calculate the contribution of each
diagram in the in�nite expansion, some additional mechanism is needed to �naturally� modulate
these contributions. Not to mention the fact that these must not be entirely cancelled, since some
residual cosmological constant is clearly present. A point of caution here: many experts on topic
have di�ering views on which presentation of the cosmological constant problem is �the true one�
or the more �fundamental� one. What they can all agree on is that something is clearly missing,
and I hope the discussion here will contribute in some way to whichever view the reader subscribes
to.

Various mechanisms have been proposed in the 60 years since these observations, which are
already deftly covered in the 2 reviews mentioned here. Some will be picked out and discussed
brie�y to give the reader an idea of the landscape of possibilities and their challenges. Quantum
Cosmology (QC) is a vast topic, a starting point of which will be covered �rst, followed by an
example of long-distance modi�cations of gravity. Unimodular Gravity will then be studied, being
an interesting theory which is pertinent to the main focus of this paper: Hawking's proposed 3-
form A. A brief review of some of the work on this 3-form will be presented, followed by the study
of new thoughts and modi�cations not seen in the literature. First however, some background
information will be covered in the the remainder of the Introduction to ensure the reader is up to
speed and to lay down any conventions.
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1.1 Hamiltonian Constraints and Canonical Quantization

The Hamiltonian dynamics and canonical quantization methods employed in this paper are based
on Dirac's famous work on topic. His 1964 Lectures on Quantum Mechanics [7] are treated as the
gold standard, and reading through at least the �rst few lectures is highly recommended. Here I
cover some of the relevant points and interesting notes that come up repeatedly in the literature
around the topic of quantum cosmology/gravity, but are rarely explained. We start with an action
and a Lagrangian S =

∫
dtL(q, q̇) de�ned in con�guration space, giving the Euler-Lagrange (E-L)

equations d
dt

(
∂L
∂q̇n

)
= ∂L

∂qn
through variation of the action δS subject to endpoints being �xed

(δS|ti/tf = 0). We now de�ne the conjugate momenta as pn = ∂L
∂q̇n

and perform a Legendre

transform so that the Hamiltonian H = pnq̇n − L is de�ned entirely in phase space (qn, pn) where
summation of repeated indices is always assumed. The equations of motion (EoM) of a quantity g
are then given by its Poisson bracket (PB) with the Hamiltonian H:

ġ = {g,H} ≡ ∂g

∂qn

∂H

∂pn
− ∂H

∂qn

∂g

∂pn
(4)

1.1.1 Constraints

Now, the momenta may not be independent of the coordinates; they may be related by some
equations called constraints:

φ(q, p)m = 0 , m = 1, ...,M. (5)

These are called the primary constraints, as opposed to the secondary constraints that emerge
from consistency conditions later. The distinction is not particularly fundamental however. The
important thing to note here is that these constraints may be added to the Hamiltonian, since
they are by de�nition equal to zero, but will a�ect the EoM derived from it. This is ok since
these constraints are simply allowing for a more general motion, one that includes motion between
physically equivalent states. This is like a gauge freedom in a sense, and should be included
for the most general motion, since the Hamiltonian is not uniquely determined. The constraints
should only be imposed after the Poisson brackets (PB) have been computed, which is denoted
as φm ≈ 0 and is called a �weak equation� under Dirac's terminology. This is just a book-
keeping device. Now one must check the consistency conditions given by the constraints being
maintained in time through their EoM φ̇m ≈ 0, which may well lead to secondary constraints. A
more important distinction is between �First class� objects, whose PB with all constraints vanish
({R,φj} ≈ 0 → R is �rst class), and �second class� objects, which do not. A �rst class object
must then obey {R,φj} = rjj′φj′ , where rjj′ are unde�ned coe�cients, since constraints are the
only independent functions of (q, p) that vanish, by de�nition. Note that the PB of 2 �rst class
quantities is also �rst class, which will be an important consistency condition in the quantization.
Now one de�nes the �Extended Hamiltonian� HE composed of the non-constrained Hamiltonian
(which is �rst class) and the �rst class constraints:

HE = H + vjφj

→ ġ ≈ {g,HE}
(6)

which is just a linear combination of �rst class objects, with functions vj that are either arbitrary,
or have been determined by a consistency condition. The second class constraints must be dealt
with separately, as is laid out in appendix A. An interesting point to note is that the constraints
generate in�nitesimal symmetry transformations:

∆g(δt) = εj{g, φj} (7)

where εj = δt(vj − v′j′) is in�nitesimal. Now �nally, the action may be rewritten as a sum of

�rst class constraints H̃j , canonical conjugate variables (q, p) and the non-constrained part of the
Hamiltonian H, if it is non-zero:

S =

∫
dt
(
q̇npn − vjH̃j −H

)
(8)

where the H̃j will generate some in�nitesimal symmetry transformation (i.e. remaining in the same
physical state), and the vj are arbitrary (unless they are constrained by a consistency condition). Of
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course this can be recast as a spacetime integral over the Lagrangian density and the coordinates
promoted to �elds: qn → φ(x), pn → π(x) = δS

δφ(x) ,
∑
n →

∫
d4x and {qn, pm} = δnm →

{φ(x), π(x′)} = δ(x − x′). One �nal note before passing to quantization: the link between a
relativistic theory and the constraint H ≈ 0. If the Lagrangian is homogeneous of the �rst degree
in the velocities (i.e. L(αq̇, q) = αL(q̇, q)), then by Euler's theorem:

q̇n
∂L

∂q̇n
= L

→ H = 0.

(9)

Meaning our original Hamiltonian also becomes a �rst-class constraint. Note that foliating space-
time into spacelike surfaces and expressing the Lagrangian as the amount of action δS between
two such neighbouring surfaces, divided by some measure of distance δτ , necessarily yields a La-
grangian homogeneous to the �rst order. This is essentially the procedure of the ADM formalism.
Now the crux of the argument is that since HE is made up entirely of �rst class constraints, the
EoM are given by:

ġ ≈ vj{g, φj} (10)

where the vj are arbitrary, so that the time scale is obviously also arbitrary. Any variable increasing
monotonically with t could be used as a measure of time, we say the theory is �time reparametriza-
tion invariant�. This is a desired feature of any relativistic theory, since no one coordinate system
is absolute, and so any manifestly relativistic theory should exhibit HE ≈ 0. Furthermore, one
may force this behaviour onto any theory through the following procedure: take the time variable
as an extra coordinate q0, and re-express everything in terms of a new time coordinate τ so that:

L∗ =
dq0

dτ
L

(
qn,

dqn/dτ

dq0/dτ

)
= L∗

(
qk,

dqk
dτ

)
, k = 0, ..., N. (11)

The action is invariant under this change due to the corresponding change in the integration
measure, but the Lagrangians are not in general equivalent. L∗ will always yield a Hamiltonian
which is weakly zero. Lastly note that the measure of distance between two spacelike surfaces δτ
is generally taken to be orthogonal to these so that any quantity may be divided into tangential
and orthogonal components to the surfaces more easily. If the Hamiltonian is de�ned at a speci�c
time on one such surface, the orthogonal components drop out.

1.1.2 Dirac's Quantization Prescription

If there are no second class constraints, the procedure at this point is rather straight forward:
promote the coordinates to operators (q, p) → (q̂, p̂), and the Poisson brackets to commutator
brackets {·, ·} → [·, ·]. Then set up a Schrödinger equation of the non-constrained Hamiltonian

i~dΨ
dt = ĤΨ, and impose further conditions as operator equations from the constraints φ̂jψ = 0.

Now we know from above that the PB of two �rst class constraints is also a �rst class constraint,

so the following consistency condition must be satis�ed:
[
φ̂j , φ̂j′

]
Ψ = 0. However, we want this

relation to be implied by the previous constraint equations, meaning this commutator must yield
a linear combination of known constraints of the form:[

φ̂j , φ̂j′
]

= ĉjj′j′′ φ̂j′′ (12)

and note that all the coe�cients ĉjj′j′′ must appear on the left. To achieve this, one should
rearrange the operators in the theory if possible. If this is not possible, then one cannot accurately
quantize the theory from the classical one (i.e. it is only accurate to order O(~) and not O(~2)
for example). Finally, the constraints must also be consistent with the Schrödinger equation as[
φ̂j , Ĥ

]
Ψ = 0, which likewise implies: [

φ̂j , Ĥ
]

= b̂jj′ φ̂j′ (13)

where again the correct ordering must be achieved.

5



1.2 The Einstein-Cartan Action and First-Order Formalism

1.2.1 The Tetrad Basis

At this point the tetrad basis must be introduced, de�ned using the vierbein eaµ and co-veirbein eµa
which are local transformations between the general spacetime coordinates given by a metric gµν
and �at spacetime with ηab [8][9][10][11]:

gµν = eaµe
b
νηab

ηab = eµae
ν
b gµν .

(14)

This is sometimes called a �non-coordinate basis� since they do not de�ne coordinate transforma-
tions (for instance the commutator [ea, eb] 6= 0 in general ,with ea = eµa∂µ = ∂a a vector). This
ends up creating 2 sets of indices: one with Greek letters labelling the coordinates, and one with
Latin letters labelling an internal SO(3, 1) symmetry. One can switch between these indices by
using the tetrad basis matrices eµa , e

a
µ, so long as the indices are those of a tensor. Objects may

then be de�ned in terms of the 1-forms ea = eaµdx
µ, which is the basis for the Einstein-Cartan

formalism. Note that unless otherwise stated, the product between two forms is the wedge product,
so this will generally be omitted. From this and the connection one-form Γab, one can de�ne the
torsion 2-form T a via Cartan's �rst equation:

T a ≡ Dea = dea + Γabe
b (15)

where D is the covariant exterior derivative with the connection 1-form as the gauge �eld. In the
de�ning representationDV a = dV a+Γab∧V b, whilst in the adjoint repDV a = dV a+[Γ, V ]

a
, where

V a is an r-form and [v, w] = v ∧ w − (−1)pqw ∧ v is the graded commutator for v and w a p- and
q-form respectively. A good analogy is Yang-Mills theory where F = DA = dA+ [A,A] so that A
is the gauge 1-form and [A,A] vanishes if the symmetry generators commute (i.e. U(1)). Also note
there may be some coupling constant before the second term in the covariant derivative, though
this will never meaningfully enter any of the considerations in this paper, and so will be ignored.
The precise relation between the tetrad basis and connections is determined by the EoM as well as
the equation above. This is a big departure from the E-H method (second order formalism) into
what is known as �rst order formalism, given by the Einstein-Cartan action:

S =
κ

2

∫
εabcde

aeb
(
Rcd − 1

6
ecedΛ

)
+ SM [ea, φ] (16)

where εµναβ is the fully antisymmetric Levi-Civita tensor, with εabcd its tetrad counterpart.

1.2.2 The Spin Connection

Now, we may de�ne the spin connection, which is the connection needed for the covariant derivative
of a spinor �eld in a general spacetime. First recall the Cli�ord algebra of the gamma matrices
from the Dirac equation in �at spacetime {γµ, γν} = 2ηµν , where {·, ·} de�nes an anticommutator
bracket here. One can de�ne their curved spacetime counterparts as γµ ≡ eµaγ

a [11], so that
the original matrices are now labelled by the internal indices, and the anticommutator may be
expressed as:

{γa, γb} = 2ηab. (17)

Ignoring any other local symmetries (such as U(1) which couples the Dirac �eld ψ to electromag-
netism), the kinetic term appearing in the action is of the form ψ̄γa∇aψ, where ψ̄ = ψ†γ0 and ∇a
is a form of covariant derivative so far unde�ned. Note that under a local Lorentz transformation
Λab(x), the Dirac spinors transform as ψA → S[Λ(x)]ABψB , where S[Λ(x)]AB is the spinor repre-
sentation of Λ(x), with capital Latin letters denoting spinor SO(4) indices (and their position is
irrelevant). Thus, for the kinetic term to be invariant, the covariant derivative term must trans-
form as ∇aψA → S[Λ]ABΛ b

a∇bψB . This yields a covariant derivative de�ned in terms of the spin
connection wABa [11][12][13][14]:

∇aψA = ∂aψA + wABa ψB

wABa ≡ i

2
Γb ca S

AB
bc

(18)

6



where SABab = i
4 [γa, γb]

AB
is the generator of the S[Λ]AB transformations, and Γb ca are the com-

ponents of the connection one-form Γbc. See Geometry Topology and Physics by Nakahara [11] for
an explicit derivation. As a result, it appears to be common practice to refer to the connection
1-form Γbc directly as the spin connection (though that is not the case in this paper). Finally the
convention ��∇ ≡ γa∇a is used. For completeness, I will rede�ne the covariant exterior derivative
more generally on an r-form with tetrad and spinor indices V aA , that is also coupled to a gauge
1-form A as DV aA . In the de�ning representation of the 1-form connection and the gauge 1-form,
this gives:

DV aA = dV aA + ΓabV
b
A + wABV

a
B +AV aA (19)

with w ≡ waea, and a similar equation for the adjoint representation. Of course, if the r-form has
no tetrad indices, then the corresponding connection term drops out, and similarly for the spinor
indices. Likewise if it is not coupled to A the last term drops out. This is simply a de�nition to
save time. In this paper, the quantities will generally not be coupled to a gauge �eld A, so for a
simple scalar �eld Dφ = dφ. The �non-form� covariant derivative associated with this would be of
course (Assuming V aA is a 1-form for simplicity):

DµV
a
νA = ∇µV aνA + ΓabV

b
νA + wABV

a
νB +AV aνA (20)

with ∇µ the standard covariant derivative from GR with the Levi-Civita connection (with again
di�erences for adjoints reps).

It is interesting to note that as a consequence of this, spinors imply the need to for non-zero
torsion. To see this, �rst the recovery of the E-H action from the E-C one without a spinor �eld
must be seen:

SEC =
κ

2

∫
εabcde

aeb
(
Rcd − 1

6
ecedΛ

)
+ SM [ea, φ, dφ]

→ SEH = κ

∫
d4x
√
−g (R− 2Λ) + S′M [gµν , φ, ∂µφ]

(21)

where Rab = dΓab + ΓacΓ
c
b is the curvature 2-form given by Cartan's second equation, Λ is the

cosmological constant, and any derivatives of scalar �elds are simply given by the exterior derivative
d (possibly coupled to some gauge �eld A) so that the matter action is not dependent on the
curvature one-form. Now noting that δRab = DδΓab = dδΓab + [Γ, δΓ]

a
b, and using Cartan's �rst

equation and Stoke's theorem (with
∫
D(· · · ) being a boundary term and so not entering the EoM),

the variation of the E-C action w.r.t the connection one-form is:

δΓS = −κ
∫
εabcdT

aebδΓcd

→ T a = 0.

(22)

The torsion is thus forced to zero. Variation w.r.t the tetrad one-form ea then gives the E-C
version of the Einstein equations (see Appendix B). Now with this condition (or assuming T a = 0
to begin with) as well as det(eaµ) 6= 0, Cartan's theorem states that one may relate the E-H and
E-C quantities as:

Γaµb = eaν∇µeνb
Rαβµν = eαae

b
βR

a
bµν .

(23)

It can then easily be shown that SEC reduces to SEH . However if the matter action contains any
dynamical spinor �elds, it will necessarily depend on the one-form connection SM = SM [ψ, ∂aψ,Γ

a
b]

from a ��∇ψ term so that instead of a vanishing Torsion, the EoM from the connection are:

T a ∧ eb = −δSM
δΓab

. (24)

This suggests that any full theory of Quantum Cosmology (or even gravity) should likely be
formulated in the �rst order formalism, or some other theory including tetrads (such as Loop
Quantum Gravity). Allowing for non-zero torsion may also enable theories of gravity not normally
admissible [15][16][17][18][19].
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2 Past and Current Attempts at a Solution

2.1 Quantum Cosmology

One of the favoured avenues of research to solve this problem is to look at the quantum behaviour
of gravity over the evolution of the universe. Short of a full theory of veri�able Quantum Gravity,
di�erent tricks, guesses and approximations are used. Last year's MSc dissertation by Mateo
Pascual Quantum Time for Quantum Cosmology, supervised by João Magueijo already covered
the ADM formalism and Ashtekar variables in great detail. It is well worth a read, and I will only
provide a summary of these topics here for completeness, followed by a �simpler� example of QC
which I believe is more illustrative of its characteristics.

2.1.1 ADM Formalism

A good start is generally the ADM formalism, whereby one foliates the 4-dimensional manifold of
spacetime along cosmic time into spacelike hypersurfaces M(y) = R(t) ⊗ Σ(~x) [20][21] according
to a deformation vector Tµ(y) = ẏµ = N(y)nµ(y) + Nµ(y), where {yµ} is a coordinate patch on
M, while t and {xi} ((i, j, k) being spacial indices) are de�ned on the embedded submanifolds. nµ

is the unit normal to the surfaces Σ, while N and Nµ can be recognised as the lapse function and
shift vector respectively. Pictorially, this is:

Figure 1: 3+1 foliation asM = R⊗ Σ

The following can then be de�ned:

γµν = gµν + nµnν , Kµν = γµαγνβ∇αnβ (25)

so that γµν gives the 3-metric on the hypersurface (for example if nµ = (1,~0) → γ00 = 0 and γij
is the spacial metric on the surface), and Kµν is the extrinsic curvature in the surfaces. Note that
this is all equivalent to splitting the metric into di�erent components as:

ds2 =
(
−N2 + γijN

iN j
)
dt2 + 2Nidx

idt+ γijdx
idxj . (26)

Now de�ning all these quantities according to the new 3-metric (i.e. pulling back these quantities
onto the surfaces Σ, see last year's dissertation for the details), the E-H action may be written:

S = κ

∫
R
dt

∫
Σ

d3~x
√
γN

(
R(3) +KijK

ij −K2
)

(27)

which is the full ADM action, K = γijKij , and R(3) = R(3)(γij) is the 3-D Ricci scalar on
the hypersurfaces Σ. Performing a Legendre transform, the canonical conjugate to γij is πij =
κ
√
γ
(
Kγij −Kij

)
. So that now the action can be rewritten in terms of constraints, as described

in the introduction:

S =

∫
R
dt

∫
Σ

d3~x
(
γ̇ijπij −NiH̃i −NH̃

)
H̃i = −2∇jπji

H̃ =
1

κ
√
γ

(
πijπij −

1

2
π2

)
− κ√γR(3)

(28)
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where H̃i ≈ 0 and H̃ ≈ 0 are the generators of spacial di�eomorphisms and the Hamiltonian
constraint respectively, so that the full (extended) Hamiltonian density is H = NiH̃i + NH̃. ∇j
is the covariant derivative de�ned on the spacelike surfaces Σ. This is the starting point for many
treatments of QC, such will be seen in the Unimodular Gravity section.

2.1.2 Ashtekar Variables

At last we come to one of the most important steps in the development of quantum gravities: the
Ashtekar variables. In 1986, Ashtekar introduced his new variables [22] de�ned on the spacelike
hypersurfaces Σ, which vastly simpli�ed the constraint equations. Although this is an intricate
topic, I only cover it brie�y as most of it does not pertain directly to the rest of the paper (and again,
this was already covered extensively last year). However, quantities such as the Chern-Simons
invariant will come up later, so I wish to at least illustrate in what context they emerge. Using
the tetrad technology from the introduction, the densitised inverse triad Eia can be introduced
[22][23]:

Eia ≡
1

2
εijkεabce

b
je
c
k =
√
γeia

γij =
1

γ
EiaE

j
bδ
ab

(29)

and what turns out to be its dual Ka
i as:

Kij ≡ Ka
(iK

a
j). (30)

The (i, j, k) are spacial indices, while the (a, b, c) are internal (tetrad) SO(3) indices, which are
generally treated as SU(2) indices in the literature (and by Ashtekar himself) due to the Lie algebra
isomorphism so(3) ≈ su(2). �Curved� brackets around indices such as (ij) denote symmetrisation,
while �square� brackets [ij] encode antisymmetrisation. Now recalling that the extrinsic curvature
is symmetric, another constraint must be added: Ka

[iK
a
j] = 0→ Gab ≡ Ki[aE

i
b] = 0, which is better

expressed in terms of a new connection as:

Ga =
1

γIm
DiEia

DiEia ≡ ∂iEia + εabcA
b
iE

i
c

Aai ≡ Γai + γImK
a
i

(31)

with γIm the Imirzi parameter, which is a free complex parameter derived from the scale invariance
of the {E,A} PB [22][24][25], and with Γai ≡ 1

2ε
abcΓibc the dualised connection one-form. This

new connection Aai then is treated as the conjugate momentum instead, and the ADM action can
therefore be rewritten in terms of these new Ashtekar variables as:

S =

∫
R
dt

∫
Σ

d3~x
(

2EiaȦ
a
i −

[
ΛaGa +NiH̃i +NH̃

])
H̃i = EjaF

a
ij − (1− γ2

Im)Ka
i Ga

H̃ =
EiaE

j
b√

det(Eia)

(
εabcF cij − 2(1− γ2

Im)Ka
[iK

b
j]

)
Ga =

1

γIm
DiEia

(32)

where F aij ≡ 2∂[iA
a
j] + εabcAbiA

c
j is the curvature of the connection. In fact this action can be used

as the starting point for constructing gravity as a gauge theory, where structures such as a metric
are merely secondary products, as was done in this excellent introductory review of the basis of
Loop Quantum Gravity (LQG) [26]. From this starting point, the Imirzi parameter takes the value
γIm = 1, which simpli�es the constraints yet further, so that the constraint Ga = DiEia is analogous
to Gauss' law for an electric �eld Eia, H̃i = EjaF

a
ij generates spacial di�eomorphisms on the

conjugate �elds, and the Hamiltonian constraint takes the form H̃ = εabcE
iaEjb

(
F cij + Λ

3 εijkE
kc
)

(Λ is so far arbitrary). This admits so called self-dual solutions that satisfy F aij = −Λ
3 εijkE

ka,

and can be solved with Aia = i
√

Λ
3 f(t)δia. Now the electric �eld must be the gradient of the
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Hamilton-Jacobi function Eia = − δS(A)
δAia

that can be solved to yield the Cherns-Simons state [27]:

S =
2

3Λ

∫
YCS

YCS =
1

2
Tr

(
A ∧ dA+

2

3
A3

) (33)

where YCS is the famous Chern-Simons invariant [26]. Hideo Kodama then showed in 1990 that
the Kodama state is an exact quantum state solution in Lorentzian deSitter spacetime [28]:

ΨK(A) = N eSCS . (34)

2.1.3 A Simpler Example: The Kodama State from FLRW Spacetime

For simplicity, one may work in mini-superspace (MSS), meaning a homogeneous and isotropic
space of 3-metrics. In this context I present an explicit attempt at quantizing gravity, keeping in
mind the results here can be obtained from those in the section above. This reduces the ADM
metric (26) to the Friedmann-Lemaître-Robertson-Walker (FLRW) metric:

ds2 = −N2dt2 + a(t)2γij(~x)dxidxj (35)

so that a(t) is the expansion factor of the universe. Now, employing the E-H formalism, one de�nes
the curvature k according to the spacial Ricci scalar as R(3) ≡ 6k, so that k = 0,±1 as usual. The
full 4-D Ricci scalar can then be computed as:

R = 6

(
1

N2

ä

a
+

k

a2
+

1

N2

(
ȧ

a

)2
)

(36)

which can be put into the massless E-H action as:

S =
3Vc
8πG

∫
dt

(
ḃa2 +Na

[
k + b2 − Λ

3
a2

])
→ S =

3Vc
8πG

∫
dt

(
−b ˙(a2) +Na

[
k + b2 − Λ

3
a2

]) (37)

by using
√
−g = a3√γ,

∫
d3x
√
γ ≡ Vc (the comoving volume), and de�ning the new coordinate

b = ȧ
N , as described by Floris Harmanni in their analysis of Higher order Langrangians [29]. The

speci�c choice of b is taken from [18]. Now we wish to �nd the Hamiltonian of the system, via a
Legendre transform. So the following coordinates are picked, with their conjugate momenta and
associated Poisson brackets:

q1 = N → p1 = 0 (38)

q2 = a2 → p2 = − 3Vc
8πG

b (39)

q3 = b→ p3 = 0 (40)

So now we have the Hamiltonian:

H = − 3Vc
8πG

Na

[
k + b2 − Λ

3
a2

]
. (41)

So from the two �rst Poisson brackets, the massless Friedmann equations appear (in order):(
ȧ

a

)2

+N2 k

a2
= N2 Λ

3

ä

a
= N2 Λ

3

(42)

However, the �rst equation above forces the Hamiltonian to simply vanish H ≈ 0, becoming a
constraint as expected. However this is very troublesome for quantizing the theory any further,
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and any QG theory must attempt to deal with the rami�cations of this. For instance, how can there
be time evolution without a Hamiltonian? This issue notwithstanding, H ≈ 0 is generally realised
at the quantum level by the Wheeler-de-Witt (WdW) equation [30][31], a constraint equation as
prescribed in the introduction:

ĤΨ = 0 (43)

where Ψ is the wavefunction of the universe - if such a thing can be de�ned. Now generally
this theory is quantized by promoting a(t) to an operator â (converting b back in terms of a),
diagonalising w.r.t to this and obtaining the more common version of the Wheeler-de-Witt equation
[18]: (

∂2

∂a2
+
α

a

∂

∂a
− U(a)

)
Ψ(a) = 0 (44)

where the α term contains e�ects of operator ordering. However, Magueijo's prescription will be
followed instead [18], where he keeps the choice of coordinates a2 and b (which also implies a choice
of ordering):

{b, a2} =
4πGN

3Vc

→
[
b̂, â2

]
=

il2p
3Vc

(45)

from Dirac's canonical quantization, with lp =
√

8πGN~. Now in the Ψ(b) representation, this

commutator may be realised through â2 = − il2p
3Vc

∂
∂b :

ĤΨ(b) =

(
iΛl2p
9Vc

∂

∂b
+ k + b2

)
Ψ(b) = 0 (46)

which can be easily solved for:

Ψ(b) = N exp
(
i
9Vc
Λl2p

[
kb+

b3

3

])
(47)

which is just the Fourier dual of the better known Kodama state (34) with a particular ordering
(for more details see [18]). This particular variant may in fact dispell some of the criticisms heaped
onto the CS state stemming from it not being purely imaginary. Furthermore, it in fact gener-
alises the Kodama state by working from the E-C action to allow for torsion and a dynamical Λ.
Explicitly, b = ȧ + aT , where T (t) is the parity-even part of the torsion, and a new variable c is
the parity-odd part of the torsion. In this way, Magueijo is also able to turn Λ into a dynamical
variable while keeping a well-behaved theory [17] [18]. Among other things, the hope is to shed
some light on the value of the cosmological constant on shell.

Furthermore, one may split the Hamiltonian into a kintetic component K(a) ∝ b2 = (ȧ)2 and
a potential one U(a) ∝ k − Λ

3 a
2. For k = 1, Λ > 0 (as may be consistent with current measure-

ments [32][33]), the potential has the following form:

Figure 2: Potential of the Expansion Factor in the E-H MSS Hamiltonian

which raises the possibility of the wavefunction of the Universe �quantum tunnelling out of
nothing� from the classically forbidden region to the allowed region. A more general version of this
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is known as the Vilenkin wavefunction, from Alexander Vilenkin's original paper [34] that used
a WdW equation of the form

(
a−p ∂

∂aa
p ∂
∂a − U(a)

)
Ψ(a) = 0, where U(a) = a2

(
1− C2a2

)
and

C = 2
√

2
3lp

GΛ. p encodes the ordering of the operators, and the WKB solutions for the classically

allowed (a ≥ C−1) and classically forbidden (a < C−1) regions are respectively [34][35]:

Ψ
(1)
± (a) = exp

(
±i
∫ a

C−1

√
−U(a′)da′ ∓ iπ

4

)
Ψ

(2)
± (a) = exp

(
±
∫ C−1

a

|
√
−U(a′)|da′

) (48)

The tunnelling condition corresponds to the choice of the outgoing wave as ΨT (a > C−1) = Ψ
(1)
− (a).

2.2 Long-distance modi�cations of gravity - The Sequester

At the other end of the scale, many have tried to make long distance modi�cations to GR
[36][37][38][39]; one may think of the cosmological constant as �the gravitational source of longest
wavelength� [4]. As such, many long but �nite distance attempts have been made, such as massive
gravity or the �Fab Four� action (see Padilla's review for a brief explanation of the latter [4]).
However these all run into di�culties when implementing some form of screening mechanism to
recover the incredibly accurate measurements of gravitational e�ects, at the Solar system scale
for instance. Indeed, such departures from GR should disappear to one part in 105 by that point
[4][40]. Furthermore, these theories also have a tendency to struggle to maintain causality, or
simply break it [41]. This can be seen from the simple question: how can the theory �know� which
contributions to the energy momentum tensor from a source are long wavelength before they have
travelled the threshold distance to be classi�ed as long-ranged? This creates an issue for sources
of vacuum energy just after the Big-Bang, since the theory does seem to have to �know�, to cancel
out these long-wavelength modes early on (and almost nothing else), in order to comply with early
time observational evidence such as nucleosynthesis. So for a local theory, causality appears to
have to be thrown out. However Padilla does mention that causality could only be violated globally
by a future boundary condition (just as with a black hole event horizon), which excludes closed
timelike curves and so could be consistent with current GR. One should note that to measure the
vacuum energy to be cancelled out in this way, contributions over all of spacetime would need to
be scanned � in other words we are looking at a global modi�cation of gravity, the �ultimate long
distance modi�cation�.

In this vein, a proposal for a global modi�cation of gravity known as the Sequester is taken
from Padialla's review [4] and summarised here. Here the comological constant Λ is promoted to
a dynamical variable (not a spacetime �eld, but a constant that can be varied over in the action),
which we then want to �talk� to the matter �elds using another dynamical variable λ. Note that
this somewhat parallels to the �coupling �eld� λ(x) introduced in our own proposals below, but
the two are di�erent and should not be confused. The action in E-H form is then [4][2][42]:

S =
1

2

∫
d4x
√
−g
(
R− 2

[
Λ− λ4Lm(λ−2gµν ,Ψ)

])
+ σ

(
Λ

λ4µ4

)
(49)

where Lm is the matter Lagrangian and σ is the sequestering function (not integrated over) that
should be determined by phenomenology, but must be odd and di�erentiable. Any factors of κ
have been absorbed into σ. Note that λ acts as a scaling factor, and can be absorbed by a change
of frame as g̃µν = λ2gµν →

√
−gλ4Lm(λ−2gµν ,Ψ) =

√
−g̃Lm(g̃µν ,Ψ). Now varying Λ, λ and gµν

respectively gives the EoM:

1

λ4µ4
σ′
(

Λ

λ4µ4

)
=

∫
d4x
√
−g

4Λ

λ4µ4
σ′
(

Λ

λ4µ4

)
=

∫
d4x
√
−gλ4T̃

Gµν = −gµνΛ + λ4T̃µν

(50)

where T̃µν = 2√
−g̃

∫
d4x
√
−g̃Lm(g̃µν ,Ψ). Now de�ning the spacetime average as 〈Q〉 =

∫
d4x
√
−gQ∫

d4x
√
−g ,
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the �rst two equations of motion yield:

Λ =
1

4
〈λ4T̃ 〉 (51)

and the last equation is simply Einstein's equations, if one identi�es Tµν = λ4T̃µν . Now (120) may
be substituted in, yielding:

Gµν = Tµν −
1

4
gµν〈T 〉. (52)

This is reminiscent of the traceless energy momentum tensor discussed in Unimodular Gravity
below. Speci�cally, only the trace of the spacetime average is cancelled here, which happens to
contain all the vacuum contributions since 〈Vvac〉 = Vvac, and Tµν(vac) = gµνVvac. This is a very

elegant mechanism and avoids having to deal with replacing the cosmological constant with an
integration constant as in Unimodular Gravity (see below). Furthermore, matter coupling globally
to the metric via g̃µν = λ2gµν ensures that the vacuum energy scales as λ4 at every order in loop
expansions, so that this cancellation of the vacuum energy works at every order. We are only left
with the spacetime average of the local matter is left as a cosmological constant Λeff = 1

4 〈T(local)〉,
since the vacuum energy cancels out � i.e. only the troublesome part has been removed. For more
detail on the implications and restrictions of this model, such as requiring a �nite spacetime (Big
Crunch!), see [4][2][42].

2.3 Unimodular Gravity

What has become known as Unimodular Gravity is a simple trick to make the vacuum energy
drop out of the dynamics by performing a restricted variation of the metric so that |g| = 1.
However, as Padilla points out in his review [4], upon closer inspection it should not help the
cosmological problem: |g| = 1 is simply a gauge choice for the fully di�eomorphism invariant
General Relativity. Explicitly, it changes the symmetry group from the di�eomorphism group
δgµν = ∇(µζν) to the transverse di�eomorphism group, where additionally ∇µζµ = 0[4][43]. So
how to reconcile these two observations? There are a few ways of showing this explicitly, depending
on how one implements the constraint on g. Padilla presents the use of a Lagrange multiplier λ
in a term λ(

√
−g − 1), in which case this new λ's boundary value acts as a cosmological constant,

which as a variable becomes radiatively unstable. Another method he shows is Weyl-Transverse
Gravity, where one de�nes gµν =

fµν

|fµν |
1
4
and varies fµν instead. This is my preferred method since

it leads directly to the traceless Einstein equations. One can easily check this forces |g| = 1. So
that the action and EoM read:

S = κ

∫
d4x(R− 2Λ(x)) + Sm

→ Rµν −
1

4
gµνR = 8πT (traceless)

µν

(53)

where |g| = 1 was used, with R = gµνRµν = |f |1/4fµνRµν , and any �trace� contributions of the
matter action (i.e. anything proportional to

√
−g but not gµν) along with the cosmological constant

Λ were lumped into the scalar Λ(x), which drops out of the EoM. Variation of Sm then only gives
the traceless part of the full energy momentum tensor, and it is straight-forward to check the trace
of the LHS is zero too. Another way to view this result is to de�ne 1

4R = λ(x), so that the EoM
becomes:

Gµν = −gµνλ(x) + 8πT (traceless)
µν (54)

with λ(x) so far an unknown scalar �eld. This is in fact the initial result from using the Lagrange
multiplier method mentioned above. Now these obey the Bianchi identity ∇µGµν = ∇µTµν = 0,
and therefore so must λ(x): ∂µλ(x) = 0→ λ(x) = Λ. The �eld is thus forced to be a constant and
Einstein's equations are recovered, but with Λ an unconstrained constant of integration, similar
to those obtained in Hawking's 3-form method which is the focus of this paper. However Λ was
de�ned using the �eld R appearing in the action so su�ers from the same radiative instability as
in the previous method, with no apparent mechanism to force it to zero at every order.

Still, it would appear the vacuum contributions have been traded for the extra freedom of a
constant of integration (despite it's �aws). So out for interest of its dynamics and in an e�ort to
recast this theory in a manifestly covariant form, Henneaux and Teitelboim's The Cosmological
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Constant and General Covariance [44] instead provides an elegant Hamiltonian analysis of the
theory, for which an overview is presented here. Note however that some extra details are added
which are my own best attempts at �lling in the gaps of certain steps. Here again the starting
point is the ADM formalism, so that in the paper's language the action is:

S =

∫
d4x

(
πij γ̇ij −N iH̃i − ÑH̃0

)
H̃i = −2∇jπji

H̃0 = γ−1

[
πijπ

ij − 1

2
(πii)

2

]
−R(3)

(55)

where Ñ =
√
−g = N

√
γ and H̃i and H̃0 are called the generators of spacial reparametrizations

and normal deformations respectively (H̃0 = H̃√
γ from (28), and the paper ignores the factor −κ

for simplicity). Henneaux and Teitelboim then note the following Poisson brackets:

{H̃0(x), H̃0(x′)} =

[(
1
√
γ
Hi
)

(x) +

(
1
√
γ
Hi
)

(x′)

]
∂iδ(x− x′)

{H̃0(x),Hi(x′)} = ∂i(H̃0(x))δ(x− x′)
{Hi(x),Hj(x′)} = Hi(x′)∂jδ(x− x′) +Hj(x)∂jδ(x− x′).

(56)

Now the way of implementing |g| = 1 here is to vary γij , π
ij and Ni but not Ñ . This yields the

Hamiltonian and the secondary constraint:

H =

∫
d3xÑH̃0 +

∫
d3xN iHi

{pi, H} = − ∂H
∂Ni

≈ 0 → Hi ≈ 0

(57)

for pi the conjugate momentum to Ni. At this point one may recover the Hamiltonian version of
the traceless Einstein equations from π̇ij = {πij , H} and γ̇ij = {γij , H} and the above constraint.
The point the paper emphasizes is that this Hamiltonian has further tertiary constraints � i.e. de-
manding that the secondary constraints be maintained in time � one must impose before analysing
the dynamics:

Ḣi = {Hi, H} ≈ 0

→ N j∂jHi +Hj∂iN j + Ñ∂iH̃0 ≈ 0
(58)

which follows from (56). For arbitrary N j and �xed Ñ �di�erent from zero at all points�, this
expression vanishes only if:

∂iH̃0 = 0. (59)

There are no quaternary constraints, and one may solve (59) as H̃0 + 2Λ(t) = 0, with Λ(t) a
spacial constant. This constraint then corresponds to the Bianchi identity condition ∂µλ(x) = 0

from Weyl-Transverse Gravity above, for µ = i (i.e. identifying H̃0 with λ(x)). For the time
component, one can make the additional requirement that the Hamiltonian describes a relativistic
theory (and so is time-reparametrization invariant):

{H,H} ≈ 0 → ∂tH ≈ 0

→ ∂tH̃0 ≈ 0

→ H̃0 + 2Λ ≈ 0

(60)

where use was made of the constraint (57) and the fact that δÑ = 0 → ∂tÑ = 0 here, and so Λ
is now a full spacetime constant. Note how the restricted variation has promoted the Hamiltonian
from being a mere constraint H ≈ 0 to something marginally less restricted H ≈ Λ. Also notice
the similarity of this free integration constant, and those that will be seen in the next section.
As an interesting aside, Henneaux and Teitelboim make the astute observation even when �not
written in a manifestly gauge invariant form, theories have a way of telling us that they possess a
hidden gauge invariance�. In a Hamiltonian method, this is signalled by the appearance of higher
generations of constraints. For details on how to know when there are such additional constraints
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and thus how to properly count degrees of freedom, see [44].

The paper now turns to making the theory manifestly covariant �without changing its physical
content�. The �rst step is to incorporate the tertiary constraint into the Hamiltonian, but there
remains an issue: the theory is not explicitly invariant under time reparametrizations t → f(t).
Another way of seeing this is that ∂tH = −2∂t(Λ(t))

∫
d3xÑ = 0 does not appear to be true in

this form, even though it should be from (60). The way to make a non-vanishing Hamiltonian
time-reparametrization invariant is to promote the original time t as an additional variable, and
re-express everything in terms of a new label t′, as described in the introduction. Explicitly, we
must return to the action and change dt = dt′ṫ (assuming t and t′ are �in the same direction�), and
making sure this map is invertible ∂

∂t = 1
ṫ
∂
∂t′ . So now the action reads:

S =

∫
d4x

(
πij γ̇ij − ṫ

[
N iHi + ÑH̃0

])
(61)

where now we have the conjugate variables and Hamiltonian are:

t→ pt = −
[
N iHi + ÑH̃0

]
→ pt = 2Λ(t′)Ñ

H′ = ṫpt + ṫ
[
N iHi + ÑH̃0

]
→ H′ = 2ṫpt + 2ṫΛ(t′)Ñ

→ H′ = 0,

(62)

Henneaux and Teitelboim write this as an additional constraint in terms of the original Hamiltonian
density pt +H = 0. We have now introduced Λ(t′) as a dynamical variable conjugate to �cosmic
time� t [44], so the theory has one global degree of freedom on top of those from gij and π

ij . It is
clear to see from the now vanishing Hamiltonian that if one assumes that the wavefuntion of the
universe is in an eigenstate of Λ, one recovers the Wheeler-de-Witt equation:

Ĥ′Ψ(Λ) = 0. (63)

The next step is to deal with the global variables t(t′), Λ(t′)'s breaking of manifest locality. this is
best achieved by introducing a time �eld T 0(x, t′) and its conjugate momentum π0(x, t′) so that
the parametrization and the constraint ∂iH̃0 = 0 can be can be introduced by writing:

π0 = −H̃0

∂iπ0 = 0.
(64)

The action can then be written:

S =

∫
d4x

(
πij γ̇ij + π0Ṫ 0 − Ñ

[
π0 + H̃0

]
−N iHi − T i∂iπ0

)
. (65)

so that one varies πij , gij , T 0, T i and Ñ to obtain the same results. The T i are a set of Lagrange
multipliers to enforce the constraints above. Now one may de�ne T µ =

(
T 0, T i

)
and π0 = 2Λ,

write πij in terms of ġij , to obtain the manifestly covariant action:

S =

∫
d4x

(√
−g(R− 2Λ) + 2Λ∂µT µ

)
. (66)

which is varied w.r.t. gµν(x, t), Λ(x, t) and T µ(x, t) so that the EoM are:

Gµν = −gµνΛ

∂µΛ = 0

∂µT µ −
√
−g = 0.

(67)

Which are Einstein's equations with the cosmological constant as a constant of integrations, and one
extra EoM. This merely says that the time evolution of the spacial components T i is unconstrained,
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while the time component obeys Ṫ 0 = ∂iT i +
√
−g. De�ning T (t′) =

∫
d3xT 0, this may be

rewritten as:

T (t′) =

∫
d3x

(
���∂iT i +

√
−g
)

→
∫
dt′T (t′) =

∫
d4x
√
−g

→ ∆T (t′) = V

(68)

where V =
∫
d4x is the invariant 4-D volume. Therefore only the spacial components T i are

pure gauge, but all of the components are needed to preserve general covariance and locality
simultaneously. The overall gauge transformation is obviously:

T µ → T µ + εµ (69)

with the condition ∂µε
µ = 0. This all may be recast in terms of a 3-form as Aµνρ = εµνρσT σ,

which is thus dual to the time �eld:

S =

∫
d4x
√
−g(R− 2Λ)− 2

∫
A ∧ dΛ

A→ A+ dη

(70)

with A = 1
3!Aµνσdx

µdxνdxσ, η = 1
2ηµνdx

µdxν and consequently εµ = 1
2ε
µνλσ∂νηλσ. The last term

has the form of the characteristic Chern-Simons term. Note that this term can be rewritten as
+2
∫

ΛF for F = dA, which is similar to the term appearing in one of the original proposals further
down. It will become clear how this term has inherited the role of the free integration constant Λ.

3 Hawking's 3-form

3.1 The Original Proposal

In Hawking's 1983 paper [45], he proposes a mechanism whereby the cosmological constant �is
probably zero�, meaning it can take any value but has a large probability of vanishing. This makes
use of two tools, or assumptions: the presence of a 3-form gauge �eld A = 1

3!Aµνλdx
µdxνdxλ, and

the interpretation of the resulting Euclidean e�ective action from the path integral as a measure
of probability P (λeff ) ∝ e−Seff [λeff ]. The Euclidean E-C action is thus:

S =
κ

2

∫
εabcde

aeb
(
Rcd +

1

6
ecedΛ

)
+ SM [ea, φ]. (71)

and from now on the Euclidean action will always be used, unless otherwise stated. However, for
this particular section, parallels with the E-H version will be frequently drawn for clarity. It is
well known by now that an antisymmetric abelian gauge �eld Aµνλ can appear in certain models
of supergravity [46]. The most apparently relevant to this discussion is N=8 supergravity: Aµνλ
can appear naturally in 11 dimensions, which when reduced to 4 dimensions is present in the
Lagrangian only in terms of its �eld strength tensor Fµνρλ. Now, following Hawking's method, the
following term is added to the E-C action: ∫

F ∧ ∗F (72)

where ∗ is the spacetime Hodge dual and F = 1
4!Fµνρλdx

µdxνdxρdxλ is related to the gauge �eld
as F = DA = dA+ [A,A]. In this paper, it will assume that Aµνλ is the gauge �eld of an abelian
(i.e. U(1)) symmetry (as is consistent with N=8 supergravity), so that simply F = dA. The E-H
equivalent to this term would be 1

4!

∫
d4x
√
gFµνρλF

µνρλ, with Fµνρλ = 4∂[µAνρλ]. The equation
of motion (EoM) of A is then:

d ∗ F = 0 (73)

and since Fµνρλ is a a fully antisymmetric rank 4 tensor on a 4-dimensional manifold, it must
be proportional to the Levi-Civita tensor Fµνρλ = c(x)εµνρλ, where c(x) is a scalar function.
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Therefore ∂µc(x) = 0, or in other words c(x) = c - a constant, and using F = 1
4!Fabcde

aebeced with
Fabcd = c(x)εabcd: ∫

F ∧ ∗F =
c2

4!

∫
εabcde

aebeced (74)

or c2
∫
d4x
√
g in E-H. Hawking then uses this directly in his action to get (ignoring matter):

S =
κ

2

∫
εabcde

aeb
(
Rcd +

1

6
eced

(
Λ +

c2

2κ

))
. (75)

The e�ective cosmological constant would then be λeff (c) = Λ + c2

2κ , formed of the �bare� cos-
mological constant Λ containing all the contributions from all the matter �elds and anything else
that plays a similar role, and an as yet undetermined integration constant c. Solving the Einstein
equations in the usual way would then yield Rcd = − 1

3e
cedλeff (c), so that the e�ective action

reads:

Seff = −κλeff (c)

12

∫
εabcde

aebeced. (76)

Now
∫
εabcde

aebeced =
∫
∗1 = 4!

∫
d4x
√
g = 4!Vc, with Vc the comoving volume. If the S4 solution

of a closed universe with λeff (c) > 0 is picked, then Vc = 24π2

λeff (c)2 [47], so that �nally:

Seff = − 3π

Gλeff (c)

P (c) ∝ e−Seff [λeff (c)].

(77)

In other words, there is a sharp probability peak as λeff (c)→ 0+ !

Furthermore, Raphael Bousso's paper Quantization of Four-form Fluxes and Dynamical Neu-
tralization of the Cosmological Constant [48] provides an analysis from the view of compacti�ed
string theory. It states that ∗F may be integrated over a zero-dimensional manifold (a point), so
that the generalized Dirac quantization condition becomes:

∗ F =
en

Z
(78)

where n ε Z. Rapahel found that compacti�cation of certain M-theory con�gurations leads to
�vacua with discrete but closely spaced values for the cosmological constant�, so that λ ≈ 0, but
λ 6= 0. This would agree rather well with observations.

So is that it? Well no, there are 2 issues that need addressing here. The �rst is a rather subtle
question over whether the path integral of the universe can be interpreted in such a probabilistic
sense, or even whether a Euclidean action is well posed in this context [1]. The second is more
de�nite, in that results of an EoM should not be substituted back into the action before all the
EoM are obtained [47]. I will now cover existing discussions on these topics.

3.2 The Equations of Motion are King - Du�'s Rebuttal

A strong argument against Hawking's proposed mechanism came in the form of Du�'s paper The
Cosmological Constant is Probably Zero, but the Proof is Probably Wrong [47], where he correctly
argues that one should not substitute a solution into the action before obtaining all the EoM.
Although this appears to only change a sign, it is an all important sign: it can be seen from
Appendix B (E-C variation) that

∫
F ∧ ∗F enters Einstein's equations with a �ipped sign. Note

that this change is only apparent in E-H once one substitutes Fµναβ → c(x)εµναβ . Thus:

S =
κ

2

∫
εabcde

aeb
(
Rcd +

1

6
ecedΛ

)
+

∫
F ∧ ∗F

→ εabcde
b

(
Rcd +

1

3
eced

(
Λ− c2

2κ

))
= 0

(79)

so that this is the e�ective cosmological constant that is measurable λeff (c) = Λ− c2

2κ , and should

have the highest probability of being 0, as opposed to the previous Λ + c2

2κ . Unfortunately if
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substituted back into the action and using the same solutions, the sign change yields:

Seff = − 3π

Gλeff (c)
+

6πΛ

Gλeff (c)2
. (80)

So for Λ > 0, this gives the opposite conclusion, since the Λ term will dominate for small λeff and
bring the probability to zero. Furthermore, as seen in Appendix B, the sign �ip is independent of
the signature, so this still holds in a Lorentzian action - if it could be used for such an interpretation
to begin with.

Du� does mention one way of cancelling the sign change, referencing the work of Aurelia,
Nicolai and Townsend [46] who supplemented the action with:

− 2c

∫
F (81)

where c is the integration constant obtained from the
∫
F ∧ ∗F term. This is a boundary term, so

does not enter the EoM, which are thus the same as above. The di�erence arises when the results

are substituted back into the action which contains Λ + c2

2κ − 2 c
2

2κ = Λ− c2

2κ , e�ectively cancelling
the sign change and recovering Hawking's result. However as Du� points out, c is no longer an
arbitrary integration constant since it enters the action explicitly, defeating the whole purpose of
the mechanism.

Nevertheless, this rebuttal is not as airtight as it �rst seems, as was pointed out in papers by
Wu [49] and Duncan and Jensen [50]. Additionally, small modi�cations can be made that appear
to be absent from the literature, and will be presented in section 4.

3.3 Still a Valid Mechanism

These two papers cover a very similar topic and have essentially the same conclusions, but go about
showing them in slightly di�erent ways. Duncan and Jensen take a more general approach [50],
going through the di�erent possible 4-form terms that can be included in the action, while Wu's
paper is more straightforward [49] and focused around the terms that work. The preference is up
to personal taste, and I will be mainly following Duncan and Jensen's methodology, with some
input from Wu for added detail. On a suitable (smooth, orientable) manifold M with boundary
∂M, there are 3 possible 4-form terms that can enter the action:

S1 =

∫
M
F ∧ ∗F

S2 =

∫
M
F ∧ ∗F − 2c

∫
∂M

A

S3 =

∫
M
F ∧ ∗F − 2

∫
∂M

A ∧ ∗F.

(82)

S1 is Hawking's unaltered proposal, and so does not work as was seen, and S2 is the modi�cation
discussed by Du� [47] which reverses the sign problem, but �xes the integration constant. S3 is
the new one proposed by the two papers and seems quite promising. Before looking into how it
a�ects the EoM and the e�ective action, is there a preliminary argument as to which one should
be chosen? It turn out that yes, and this can be seen by looking at the boundary conditions. First,
looking at the variation of S2 and S3:

δS2 = 2

∫
M
δA ∧ d ∗ F + 2

∫
∂M

δA ∧ (∗F − c)

δS3 = 2

∫
M
δA ∧ d ∗ F − 2

∫
∂M

A ∧ δ(∗F ).

(83)

Implicitly in the derivations of the equations of motion, it was assumed that the boundary terms
vanish. This is normally achieved by �xing A (or whichever �eld one is varying) to some constant
value on the boundary, but is that justi�ed? When deriving an instanton (Euclidean action around
its classical solution), one determines the con�guration of the wavefuntion and any �elds on the
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equator of the instanton, by joining together the South hemisphere of the instanton and its time
reversal, the North hemisphere. One cannot set a global value for A, but can do so for F (Recall
the Dirac monopole) [49]. In the ADM formalism with spacelike foliation, the 3-metric is set on
the equator, so pictorially:

Figure 3: On the left: γij and F|| de�ned on a timelike foliation of the manifold M, with F||
the component of F tangent to the spacial hypersurface. On the right: the North and South
hemispheres of the instanton, joined at the equator.

A is only de�ned locally, on each of the hemispheres above, and so should not be used as
boundary data since it is not globally well de�ned if ∗F 6= 0. Furthermore, the objective is to
compare di�erent geometries with di�erent c = ∗F , so ∗F is starting to appear as a natural
replacement. Indeed, looking back at the variations (83), notice that the boundary terms can
vanish through other means: for S2, having ∗F = c on the boundary eliminates the term, whereas
for S3, ∗F can simply be set to any constant value on the boundary to get δ(∗F )|∂M = 0. Now here
I have to depart from Duncan and Jensen's view that ∗F in S2 �is constrained to equal the coupling
[c] in the Lagrangian�: it appears to me that selecting this boundary term and then demanding it
vanishes is simply a more elaborate way of manually setting the value of c in the Lagrangian. This
merely changes the way this arises, which can nevertheless be an interesting mechanism in its own
right. S3 then appears to be the natural choice for the action, and it will now be explicitly shown
how this enables Hawking's mechanism to work. The full Euclidean action is then:

S =
κ

2

∫
εabcde

aeb
(
Rcd +

1

6
ecedΛ

)
+

∫
F ∧ ∗F − 2

∫
d(A ∧ ∗F ) (84)

with ∗F set on the boundary, exactly the same EoM as before are recovered:

εabcde
b

(
Rcd +

1

3
eced

(
Λ− c2

2κ

))
= 0

d ∗ F = 0

(85)

so that again λeff (c) = Λ− c2

2κ . Now using the second EoM:

− 2

∫
d(A ∧ ∗F ) = −2

∫
F ∧ ∗F (86)

which e�ectively �ips the sign of
∫
F ∧ ∗F just like the −2c

∫
F term Du� mentioned, returning

Hawking's original result with c an undetermined constant free to vary!

Seff = − 3π

Gλeff (c)

P (c)→∞, as λeff (c)→ 0+.

(87)

There are no obvious pathologies here, except the question of what happens in the �no boundary�
scenario.

Here the boundary terms lose their relevance, so the 4-form term must reduce to
∫
F ∧ ∗F , but
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the way to treat this is not as straight forward as one would initially think. Duncan and Jensen
remind us of the Dirac monopole where 2 coordinate charts are needed to cover the manifold so
that A cannot be globally de�ned, but is de�ned locally on each chart such that that the 3-forms
are related by a gauge transformation A → A + dλ. the rigorous way to go about this is to take
advantage of the manifold being closed and compact to use the Hodge decomposition theorem [50]:

F = dA+ η. (88)

There is no co-exact form since F is a top form, and η = c ∗ 1 is a harmonic form which has to be
a constant to satisfy d†η = 0 (and being a top form must therefore be proportional to the volume
form). The 4-form term then becomes:

SF =

∫
F ∧ ∗F =

∫
F̃ ∧ ∗F̃ + 2c

∫
F̃ + c2

∫
∗1 (89)

with the de�nition F̃ ≡ dA. Only the �rst term enters the EoM, giving the usual d ∗ F̃ = 0, with
the solution ∗F̃ = c̃. However this would imply dA = η̃, a di�erent harmonic form, and so by
the uniqueness of the Hodge decomposition it must be zero ∗F̃ = F̃ = 0. The action then simply
reads:

SF = c2
∫
∗1 (90)

which enters both the EoM and the e�ective action with no sign change, giving λeff (c) = Λ + c2

2κ
and again:

Seff = − 3π

Gλeff (c)

P (c)→∞, as λeff (c)→ 0+.

(91)

To avoid any confusion, the result of the EoM was not put into the action before obtaining the other
EoM. However, this could equally well be done since the result simply removes any F̃ dependence
from both the EoM and the action. The action (90) is simply illustrative. So to paraphrase Wu,
�The cosmological constant is probably zero, and a proof is possibly right�.

3.4 Euclidean Action - Analytic Continuation

It is well known that time ordered vacuum expectation values in a Lorentzian theory can be
naturally obtained by analytic continuation from Euclidean correlation functions. Such a Euclidean
path integral may have probabilistic interpretations, such as a Boltzmann average. However,
can such an argument really be applied to the boundary conditions of the Universe? While the
probabilistic interpretation of a path integral over 3-metrics is so far rather up in the air - and
perhaps even bordering on philosophy unless and until a rigorous theory for it is uncovered - the
literature has some interesting discussions on the use of a Euclidean action in this context. The
di�culty here is that analytic continuation over non-trivial topologies is ill-de�ned at best [50] [51].
At the very least, the process must be treated with care so as to maintain the properties of the
path integral from one signature to the other. Duncan and Jensen [50] lay out a way of doing just
that for a speci�c action in a spacetime with closed, homogeneous spacial hypersurfaces, so that
the line element is:

ds2 = −N(t)2dt2 + γij(t)e
i ⊗ ej (92)

and the volume element of the 3-sphere Ω3 = e1e2e3 integrates to
∫
S3

Ω3 = 2π2, and as before

d4x
√
−g = N

√
γdtΩ3. The Lorentzian action taken is:

SL = −1

2

∫
F ∧ ∗F. (93)

They then argue that since the spacetime boundaries are slices at constant time, F = dA|| where

A|| = 1
3!Aijke

iejek (i.e. the objects have been split into orthogonal and tangent components to
the hypersurfaces Σ as described in the introduction) and Aijk = Aijk(t) due to homogeneity.
Therefore:

F =
1

3!
Ȧijkdte

iejek

SL =
1

2
(2π2)

∫ tf

ti

dt

√
γ

N

1

3!
ȦijkȦ

ijk.
(94)
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The idea now is to perform a Legendre transform, and analytically continue the action in phase-

space. The conjugate momentum is πijk = 2π2
√
γ

N Ȧijk, which is conserved so that πijk = 2π2pεijk
with p a constant (this is just the EoM d ∗ F = 0). So now the phase-space action is:

SpL = SL −
1

3!
πijkA

ijk|tf +
1

3!
πijkA

ijk|ti

SpL = −1

2

∫
F ∧ ∗F +

∫
d
(
A|| ∧ ∗F

) (95)

using π̇ijk = 0 → πijkȦ
ijk = ∂t

(
πijkA

ijk
)
. This is just the Lorentzian version of the action

suggested in the section above by Duncan and Jensen. They also note the that the action is

invariant under Aijk → Aijk +αεijk, which gives a conserved current j = −p
(
N√
γ

)
and conserved

charge:
Q = 2π2p (96)

which is a ��xed charge for the vacuum�.

A more consistent and rigorous approach to analytic continuation is laid out formally in this
review [52], whereby Picard-Lefschetz theory is used to deform the integration contour from the
real axis into the complex plane such that the path integral is absolutely convergent: the contour
of steepest descent. However, this approach creates new problems such as the metric signature not
being respected in the path integral, and of course at certain places in the contour the metric is nei-
ther Lorentzian nor Euclidean [53]. For our purposes, this simply replaces certain interpretational
di�culties with new ones. Although this only scratches the surface of the vast �eld, there is an
interesting way to potentially sidestep these issues in obtaining a probability argument. Vilenkin
[34] identi�ed the WdW equation (97) with the Klein Gordon (KG) equation (�−m2)φ = 0 (with
� = gµν∂

µ∂ν the d'Alembert operator), by writing it in the form:(
∇2 − U

)
Ψ = 0 (97)

The conserved current can easily be obtained from the KG Lagrangian as jµ = 1
2i (φ∗∂µφ− φ∂µφ∗).

Similarly, Vilenkin de�nes the conserved a current:

j(a) =
i

2
ap
(

Ψ∗(a)
∂

∂a
Ψ(a)−Ψ(a)

∂

∂a
Ψ∗(a)

)
. (98)

with Ψ(a) the Vilenkin wavefunction (48). For �standard� KG theory, this corresponds to con-
served particle number, but Vilenkin interprets it in this case as the probability �ux in superspace,
which we are reminded may take on negative values under non-classical conditions. This appears to
give the conserved current for the classically allowed and classically forbidden regions respectively:

j
(1)
± (a) = ∓ap

√
−U(a)

j
(2)
± (a) = 0

(99)

At least in the classically allowed region, this shows an interesting result that is dependent on the
details of the potential U(a). This could well be applied to the Hawking's 3-form mechanism, as
will be seen in section 4.3.2 further down.

4 New Proposals

In case the mechanisms described above do not sit right with the reader, this paper presents 2 other
ways to obtain a Hawking-like result. For those that are already satis�ed, these represent a rather
di�erent approach, which could arise from distinct processes or motivations, and are therefore of
interest in their own right. They both revolve around �coupling� an extra 4-form term to the
cosmological constant using a dynamical λ(x) �eld and some general function of this σ(λ(x)).

4.1 How To Avoid Boundary Term: Λ-F Coupling

In a discussion with professor Antonio Padilla about his review mentioned at the start [4], he
proposed an action related to the Hawking's, but with some important di�erences that were later
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found to highlight a link between Hawking's 3-form and Unimodular Gravity. The E-C version of
this action is:

S =
κ

2

∫
εabcde

aeb
(
Rcd +

1

6
eced(Λ + λ(x))

)
+

∫
σ(λ(x))F. (100)

In E-H the last term is
∫
dx
√
gσ(λ(x))εµναβF

µναβ . Notice the similarity with Heinneaux and
Teitelboim's covariant Unimodular Gravity action above (70), for which this appears to be a
generalisation. The idea here is for the last term to �talk� to the cosmological constant through
λ(x), forcing it to a constant value. Using the variation tools from Appendix B, its equations of
motion are:

εabcde
b

(
Rcd +

1

3
eced(Λ + λ)

)
− 2

κ

2

4!
σ(λ)Fabcde

beced = 0

dσ(λ) = 0

1

6
εabcde

aebeced +
2

κ
σ′(λ)F = 0

(101)

remembering there are 3 EoM now due to λ(x) (and σ′(λ) ≡ dσ
dλ ). The second one forces λ(x) = c to

be constant, and so σ(λ) = σ(c) ≡ σ. The last EoM gives F = − κ
12σ′ εabcde

aebeced, with σ′ ≡ σ′(c),
setting the 4-form to a constant as before. Putting this together, the Einstein equations become:

εabcde
b

(
Rcd +

1

3
ecedλeff (c)

)
= 0

λeff (c) = Λ + c+
σ

σ′
.

(102)

Now substituting this back into the action, it is only σ
σ′ that �ips sign, so if c and Λ are absorbed

into λeff (c) and the usual S4 solution with
∫
∗1 = 4!Vc is picked, where Vc = 24π2

λeff
:

Seff = − 3π

Gλeff (c)
− 6π

Gλeff (c)2

σ

σ′
. (103)

No matter the value of c or the form of σ and σ′, as long as σ
σ′ > 0, this gives a probability peak

P (c) → ∞ as λeff (c) → 0+! There is no need to �ip a sign here, and so no need for boundary
terms. The mechanism is beautifully simple. An obvious way of insuring σ

σ′ > 0 would be to have
a positive power of λ(x), or a positive exponential.

Now a very interesting point to notice is that for Unimodular Gravity σ(λ(x)) ∝ λ(x) (and Λ
is lumped into λ(x)), so that λeff (c) = 2c, which leads to:

Seff = − 6π

Gλeff (c)
. (104)

So this does indeed appear to be a generalisation of Unimodular Gravity, and shows a link with
Hawking's 3-form through a further generalisation in next section.

4.2 Generalisation: Λ-F 2 Coupling

Taking inspiration from the previous action, a generalisation can be made to the
∫
F ∧ ∗F term,

by �coupling� it to the cosmological constant in the same way. This exhibits some interesting
properties, such as reviving the −2c

∫
F boundary term as a viable option, but also has some

limitations as will be shown. Explicitly, the Euclidean action without any boundary terms is:

S =
κ

2

∫
εabcde

aeb
(
Rcd +

1

6
eced(Λ + λ(x))

)
+

∫
σ(λ(x))F ∧ ∗F (105)

giving the following equations of motion:

εabcde
b

(
Rcd − 1

3
eced(Λ + λ)

)
− 2

κ

2

4!
σ(λ)Fabcde

b ∧ eced ∗ F = 0

d (σ(λ) ∗ F ) = 0

1

6
εabcde

aebeced +
2

κ
σ′(λ)F ∧ ∗F = 0.

(106)
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These are very similar to the those of the previous action, with an additional ∗F in each case.
Solving the last 2 for ∗F = c(x) gives, respectively:

c(x) =
b

σ(λ)

→ σ(λ) =
1

4κ
b2 λ+ a

(107)

with a, b constants. When put into the �rst EoM, this produces λeff (a, b) = Λ− ab2

2κ . This is very
similar to the �uncoupled� case, and the resemblance extends to the sign problem when putting
these results back into the action

Seff =

∫
εabcde

aebeced
[
−1

3
λeff (a, b) +

1

6

(
Λ + 2λ(x) +

ab2

2κ

)]
→ Seff = − 3π

Gλeff (a, b)
+

1

4π

(∫
d4x
√
gλ(x) + Λ

∫
d4x
√
g

)
.

(108)

This looks to have the same issues as without the coupling, so why bother? Well aside from gener-
alising, there are two extra free parameters to tweak: λ(x) left over in Seff and c from the previous
actions is split into 2 independent parameters a and b.

The �rst point could be useful if:
− 〈λ(x)〉 > Λ (109)

reusing the spacetime average de�nition from (120). This would force the second term in Seff to
be negative, thus recovering the desired result. However, contriving some function to �t this would
appear to just be recasting the assumption that the cosmological constant is zero. This may be
useful if some motivation for the form of λ(x) could be found, but otherwise advances us no further.

Now the second point does make a di�erence, in that it allows the use of a boundary term
previously discarded. Recall that adding −2c

∫
F to the action of

∫
F ∧ ∗F �ipped the sign in the

e�ective action in the right way to recover Hawking's result, but in so doing �xed c. In this new
case, one need only �x b from c(x) = b

σ(λ(x)) to achieve the same e�ect, leaving a free to vary! Even

better, a is not squared, so can take on positive or negative values as needed. The total action and
results are:

S =
κ

2

∫
εabcde

aeb
(
Rcd +

1

6
eced(Λ + λ(x))

)
+

∫
σ(λ(x))F ∧ ∗F − 2b

∫
F

→ Seff = − 3π

Gλeff (a)
, λeff (a) = Λ− ab2

2κ
.

(110)

So this provides an option if one insist on �xing A on the boundary and using this boundary term,
despite the concerns raised by Wu [49] and Duncan and Jensen [50] about this only being de�ned
locally. Note that the boundary term preferred by these two can also be adapted for this case, as:

− 2

∫
d (σ(λ)A ∧ ∗F ) =on shell −2

∫
σ(λ)F ∧ ∗F (111)

from d (σ(λ) ∗ F ) = 0, and the same result as (110) is recovered but with b not �xed. No other
variations on these terms have been found to work, but these two cases already give adequate
options for a bounded manifold.

This generalisation appears to even work on a closed manifold. Following the same prescription as
previously, with a Hodge decomposition:

F = dA+ c ∗ 1

→
∫
σ(λ(x))F ∧ ∗F =

∫
σ(λ(x))F̃ ∧ ∗F̃ + 2c

∫
σ(λ(x))F̃ + c2

∫
σ(λ(x)) ∗ 1

(112)
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with F̃ = dA. As opposed to the previous use of the Hodge decomposition, here the changes in
the equations of motion must be treated more carefully:

εabcde
b

(
Rcd − 1

3
eced [Λ + λ]

)
− 4

4!κ
σ(λ)

(
F̃abcd ∗ F̃ + 2cF̃abcd − c2εabcd

)
ebeced = 0 (113)

σ′(λ)
(
F̃ ∧ ∗F̃ + 2cF̃ + c2 ∗ 1

)
= −κ

2

4!

6
∗ 1 (114)

d
(
σ(λ)

[
∗F̃ + c

])
= 0

→ ∗F̃ =
b

σ(λ)
− c.

(115)

This means that F̃ can be split into 2 pieces, of which one c ∗ 1 is a harmonic form. However,
from the uniqueness of the Hodge decomposition, F̃ cannot contain a harmonic form, and must
therefore be zero F̃ = ∗F̃ = 0. Unless of course c = 0 instead, in which case the trivial result of
the EoM is ∗F = 0 (this case will be ignored). The other 2 EoM now become

σ′(λ)c2 = −2κ

→ σ(λ) = −2κ

c2
λ+ a

(116)

εabcde
b

(
Rcd − 1

3
eced

[
Λ + λ+

c2

2κ
σ(λ)

])
= 0

→ εabcde
b

(
Rcd − 1

3
eced

[
Λ + �λ− �λ+

ac2

2κ

])
= 0

(117)

with a an integration constant. Therefore λeff (a, c) = Λ + ac2

2κ , and putting all these back into the
action, the result on a closed manifold is:

S =
κ

2

∫
εabcde

aeb
(
Rcd +

1

6
eced(Λ + λ(x))

)
+

∫
σ(λ(x))F ∧ ∗F

→ Seff = − 3π

Gλeff (a)
, λeff (a, c) = Λ− ac2

2κ

(118)

which is exactly the same result as the boundary case above, but with no constant �xed - unless
one counts the harmonic form c ∗ 1 as a �xed value, in which case only a is free to vary as above.
In fact, if one re-examines the result ∗F̃ = 0, this leads to b

σ(λ) = c. λ(x) must therefore be a

constant, just as in the
∫
σ(λ(x))F case! Although this does not appear to matter here, it does

add some robustness to the results under tweaking of the theory.

4.3 Hamiltonian Analysis of the 3-form

Most quantization schemes found in the literature appear to be of the 4-form or its dual ∗F , in
the framework of string theory, or some such overarching theory. Here I will �rst brie�y review the
gauge �xing process for the Maxwell �eld in the framework of di�erential forms, to then propose a
new gauge for the 3-form. The results are however di�cult to interpret at best, so the next section
gives an unconstrained Hamiltonian analysis of this action. The results here can then be tied
together with QC presented at the start of this paper, and a new probability argument obtained
using Vilenkin's method and the WdW equation. Note for this whole section, the Lorentzian action
is used.

4.3.1 Gauging the 3-form

First a reminder on the analogous Maxwell �eld is needed, with the 2-form �eld strength tensor
and 1-form gauge �eld having the usual EoM d ∗ F = 0. Now the gauge �eld is invariant under
A→ A+dλ(x), so one may pick a gauge to �x this (or partly �x it). The Lorenz gauge is a common
choice for its manifest Lorentz invariance: d†A = 0. This choice may always be reached from an
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arbitrary �eld A′ where d†A′ = f(x) with f(x) some function. This can be seen by choosing a λ
such that:

A′ = A+ dλ

→ d†dλ = f

→ ∆λ = f

→ λ = ∆−1f

(119)

where d† = ∗d∗ is the adjoint exterior derivative, ∆ = dd† + d†d is the Laplacian operator, and
use was made in the third line of the fact that d†f(x) = 0 for any function. The point is that
the Laplacian is always locally invertible, since in �at spacetime it is equivalent to the d'Alembert
operator which is always invertible [54]: ∆w = − 1

r!�wµ1...µrdx
µ1 ∧ ... ∧ dxµr for w an r-form in

�at spacetime. This then reduces the EoM to a solvable form as

d ∗ F = d ∗ dA ∝ ∗d†dA = 0

→ ∗
(

∆A−�
��dd†A
)

= 0

→ ∆A = 0.

(120)

The wish is then to do a similar thing with the 3-form, but the Lorenz gauge's applicability relied
on the gauge changing term λ being a function (0-form). In this case the gauge transformation is
A → A+ dη where η is any 2-form. Following the same prescription as above would simply yield
d†dη =

(
∆− dd†

)
η = B with B some other 2-form. This is not solvable in general, so the Lorenz

gauge cannot always be taken. The gauge found to be generally applicable, while making the EoM
solvable and leaving the ∗F = c (c - constant) unchanged is:

dd†A = 0 (121)

so that for a 3-form A′ that obeys dd†A′ = B, a gauge transformation may be chosen so as to
return to the gauge condition above:

A′ = A+ dη

→ dd†dη = B

→
(

∆−��d
†d
)
dη = B

→ dη = ∆−1B

→ d∆−1B = 0

(122)

which always has a solution locally (and globally for trivial topologies). Note how this gauge is
less restrictive than the Lorenz gauge, which in fact would force ∗F = 0. Now the gauge choice
may be rewritten simply as d†dÃ = 0 with Ã = ∗A a 1-form, to make things simpler. In the same
vein, the EoM may be rewritten in terms of Ã and simpli�ed to a solvable form

d ∗ F = d ∗ dA ∝ dd†Ã = 0

→
(

∆−��d
†d
)
Ã = 0

→ ∆Ã = 0.

(123)

This is exactly the same EoM as for the Maxwell �eld! Before solving this however, note that

on-shell ∆Ã = dd†Ã+ ���d†dÃ = dd†Ã = 0, so that d†Ã = c is a constant. Now also notice that:

∗F = d†Ã

→ ∗F = c
(124)

as one would expect. Moving now to �at Minkowski spacetime, the usual plane wave solution for

Ã can be taken, with pµ = (E(~p), ~p), p2 = 0 and E(~p) = +|~p|:

Ãµ =

∫
d3~p

(2π)2E(~p)

3∑
λ=0

εµ(λ)(~p)
(
aλ(~p)e−ipµx

µ

+ a†λ(~p)eipµx
µ
)

(125)
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with εµ(λ)(~p) polarisation vectors. Now, it is the rank 3 tensor from the 3-form that must be

quantized, using Ãµ ∝ εµναβAναβ . De�ning εµνα(λ) (~p) = εµναβεβ(λ)(~p), we �nally have:

Âµνα =

∫
d3~p

(2π)2E(~p)

3∑
λ=0

εµνα(λ) (~p)
(
âλ(~p)e−ipµx

µ

+ â†λ(~p)eipµx
µ
)

(126)

with the gauge constraint forcing
∑3
λ=0 pµp

[νε
αβ]µ
(λ) (~p) = 0, for which the interpretation in unclear,

so plane wave solution appears to not be a good ansatz in this case. Quantizing the theory does not
then appear to be possible until a solution is found, though quantizing higher spin states famously
leads to di�culty and inconsistencies [55][56].

4.3.2 Hamiltonian in Flat Spacetime

First a Hamiltonian (on shell) in �at spacetime is sought, starting from the corresponding La-
grangian LF = −qFµναβFµναβ = −44q∂[0Aijk]∂

[0Aijk] (with q > 0, but otherwise arbitrary).
Explicitly:

LF = −4q
(
ȦijkȦ

ijk + 3∂iAjk0∂
iAjk0 − 6Ȧijk∂

iAjk0 − 6∂iAjk0∂
jAik0

)
. (127)

From this, the conjugate momenta are πijk = −8q
(
Ȧijk − 3∂iAjk0

)
and π0ij = 0, so the second

is a constraint π̇0ij ≈ 0. The Lagrangian and Hamiltonian therefore take the form:

LF = − 1

16q
πijkπ

ijk + 24q
(
∂iAjk0∂

iAjk0 + ∂iAjk0∂
jAik0

)
HF = − 1

16q
πijkπ

ijk + 3πijk∂
iAjk0 − 24q

(
∂iAjk0∂

iAjk0 + ∂iAjk0∂
jAik0

) (128)

and the Equation of motion is then π̇ijk = 0, with the constraint becoming:

π̇jk0 = 3∂iπijk − 48q
(
∂i∂iAjk0 + ∂i∂jAik0

)
= 0 (129)

using integration by parts. Performing integration by parts again, the Hamiltonian can be re-
expressed as:

HF = − 1

16q
πijkπ

ijk +
3

2
πijk∂

iAjk0 +
1

2
π̇jk0A

jk0

→ HF = − 1

16q
πijkπ

ijk +
3

2
πijk∂

iAjk0
(130)

where the constraint was applied in the second equation. The Lagrangian under this classical
solution is then:

LF = − 1

16q
πijkπ

ijk +
3

2
πijk∂

iAjk0. (131)

Notice the useful result LF = HF , which is expected since the Lagrangian only has a kinetic term.
Now the Euler-Lagrange equations give the result Fµναβ = cεµναβ , as seen previously, where c is
an integration constant. The Lagrangian on shell is thus L = 24qc2, so naturally:

HF = 24qc2. (132)

Additionally one can determine that Ȧjk0 = 0 and Äijk = 0, though a general solution to these
remains elusive.

4.3.3 FLRW Approximation

The generalisation of the preceding result to curved spacetime appears straightforward: q → q
√
−g,

since no derivatives or integrals were actually performed in this derivation. Therefore with an
FLRW metric this is:

HF = 24N
√
γa(t)3qc2. (133)

However, does this result hold when performing the Hamiltonian analysis on an action coupled to
gravity - i.e. L = LG + LF , where LG is the gravity Lagrangian from the E-H action in FLRW
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spacetime (118)? As seen previously, all the EoM (and Legendre transform obviously) must be
obtained (or performed) before any solutions are substituted. To see this, the full Lagrangian is
�rst written out explicitly (with the gravitational sector written in terms of the expansion factor
a only, and not b):

L = LG + LF

LG = 6κ
√
γ

(
− 1

N
(ȧ)2a+Nka− N

3
Λa3

)
LF = −4qN

√
γa3

(
ȦijkȦ

ijk + 3∂iAjk0∂
iAjk0 − 6Ȧijk∂

iAjk0 − 6∂iAjk0∂
jAik0

)
.

(134)

Previously when deriving theWdW equation, the spacial 3-metric and its conjugate momentum(γij , Pij)
were ignored, since they imposed the same constraint as the lapse function N in a matter free
FLRW theory. Here, more care must be taken. The conjugate pairs that must be considered are
(N, pN = 0), (γij , Pij = 0), (A0ij , π0ij = 0), (a, pa), (Aijk, πijk), so that the �rst 3 are constraints,

and pa = − 12κ
√
γ

N ȧa and πijk = −8qN
√
γa3

(
Ȧijk − 3∂iAjk0

)
. The Legendre transform is exactly

the same as the previous cases for the gravity and F sectors:

H = HG +HF

HG = − N

24κ
√
γ

p2
a

a
− 6κN

√
γa

[
k − Λ

3
a2

]
HF = − 1

16qN
√
γa3

πijkπ
ijk + 3πijk∂

iAjk0 − 24qN
√
γa3

(
∂iAjk0∂

iAjk0 − 24∂iAjk0∂
jAik0

)
.

(135)
Now the π̇0ij ≈ 0 constraint produces the result HF = LF just as before, so that classically
HF = 24qN

√
γa3c2, with c an integration constant. Combining this result with ṗN ≈ 0 yields

HG = HF (see Appendix C for details), meaning H 6= 0. Therefore the Hamiltonian is a constraint,
but is not in the correct form to be applied as the WdW equation (i.e. ĤΨ = 0). For this purpose,
one should use:

H′ ≡ HG −HF (136)

so that H′ ≈ 0 as required. Meanwhile Ṗij ≈ 0 and the EoM of ṗa may be solved to recover the
Friedmann equations, with a modi�ed cosmological constant (see Appendix C). Now the following
semi-classical Hamiltonian may thus be written:

H ′ = −2πGNVc
3

(p′a)2

a
− 3NVc

8πG
a

[
k − a2

3

(
Λ− 192πGqc2

)]
(137)

where H ′ =
∫
d3xH′, p′a = pa√

γ and the usual substitutions were made. Quantizing with respect

to the conjugate pair (a, p′a) yields the WdW equation with an e�ective cosmological constant
λeff (c) = Λ − 192πqGc2 - exactly the one the Einstein equations for this action would produce,
and the same as obtained in the path integral method above (whether in Euclidean or Lorentzian

signature, and for a particular value of q). Using Vc = 24π2

λeff (c)2 as before, this new Hamilto-

nian yields a potential term U(a) ∝ − 1
λeff (c)2 a

[
k − a2

3 λeff (c)
]
, according to the KG style WdW

equation (97). Now, using the probability �ux formula for the classically allowed region (98):

j
(1)
± (a, c) ∝ ∓ap+1/2

√
1

λeff (c)2

[
k − a2

3
λeff (c)

]
(138)

resulting in |j(1)
± (c)| → ∞, λeff (c)→ 0+, agreeing with the results from the path integral method

(at least for k > 0. For the negative case, one should re-perform the derivation of this probability
�ux).

5 Conclusions

The ADM formalism was shown to be a useful framework for many theories of Quantum Cosmology
or even cosmology in general, such as Unimodular Gravity. In particular the introduction of
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Ashtekar variables produced the only accurate quantum state of gravity: the Kodama state [26],
describing pure gravity in a deSitter universe. Carrying on down this line, with the use of Wilson
loops, one begins to enter the domain of Loop Quantum Gravity [57] [58], which may yet yield
some interesting results. At the very least a full theory of quantum gravity will likely make use of
some tool equivalent to the tetrad basis, in order to quantize spinors correctly [11]. Returning to
the focus of this paper, the hope is that the details of such theories will provide a reason for the
vanishing cosmological constant Λ, though as was seen this is a rather di�cult endeavour. The
global modi�cation of the Sequester appears to achieve the desired result of making Λ drop out of
the equations of motion without any obvious pathologies or leaps in logic [4]. It would be interesting
to look at any possible motivation for this theory and to look at the details of quantum (or at least
semi-classical) behaviour. Perhaps reasons for a vanishing but not quite zero Λ could be found,
but this is likely to run into the same di�culties as when quantizing unmodi�ed GR. One theory
that I believe has been discarded too readily is Unimodular Gravity: Its na ive initial motivation
falls apart quickly [44], but it exhibits some interesting links with Hawking's 3-form mechanism.
Perhaps a di�erent motivation for some modi�ed Unimodular Gravity can be attempted. In fact
even without this link, it would be enlightening to delve into the behaviour of this theory in the
presence of a matter action, and perhaps from the view of �rst order formalism with a non-zero
torsion. In what ways can an invariant volume form be implemented in a tetrad basis, and what
would the rami�cations be?
Hawking's 3-form mechanism [45] was explored more thoroughly, having gone through apparent
disproving [47] to revival [50] [49]. The method does appear to be well founded in both boundary
and no-boundary cases, and can easily be modi�ed to avoid the subtleties involved in boundary
terms, as was shown in this paper (not to mention the surprising and encouraging link with
Unimodular Gravity). It does indeed appear that using a 3-form A in the action as an F 2 or
σF term implies a sharp probability peak of �nding a vanishing e�ective cosmological constant
λeff → 0+. Modi�cations and generalisations such as σF 2 seem to maintain this result. However,
the question of the interpretation of the Euclidean action must of course be faced before such a
mechanism can go much further. Perhaps these concerns could be sidestepped through a canonical
quantization and extraction of some probability density function from the solution, such as Vilenkin
performed [34]; the initial results obtained in an FLRW universe appear promising, and a more
rigorous treatment of this mechanism - perhaps in the full ADM formalism - would be of great
interest. It is a work in progress however, so unless and until a full theory of quantum gravity
appears, shortfalls in rigour and interpretational leaps are nigh unavoidable. Nevertheless, the
mechanism itself is intriguing, and I believe further investigation is warranted as to why �the
cosmological constant is probably zero�.
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6 Apendices

6.1 Appendix A - Canonical Quantization

Here I present certain steps and interesting points that did not make it into the introduction of
the paper. There will be some repetition and overlap with it, and of course this is still only an
overview of Dirac's notes.

6.1.1 From the Lagrangian to the Extended Hamiltonian

Notice how the variation of the Hamiltonian only depends on the variation of pn and qn:

δH = δpnq̇n + pnδq̇n −
(
∂L

∂qn

)
δqn −

(
∂L

∂q̇n

)
δq̇n

= δpnq̇n −
(
∂L

∂qn

)
δqn

(139)

using the the E-L equations. So one should convert all the q̇'s into p's and q's in the Hamiltonian
before attempting to derive any EoM from it (i.e. convert everything to phase space representation).
After adding the primary constraints φm to the Hamiltonian (see introduction), the EoM are given
by:

ġ = {g, (H + umφm)} (140)

where um are arbitrary functions. Now the constraints should only be imposed after the PB have
been computed, as noted in the introduction. Now one must check the consistency conditions given
by the constraints being maintained in time through their EoM φ̇m ≈ 0. This can either lead to
no new information (i.e. reduce to something of the form 0 = 0), a contradiction (such as 1 = 0,
in which case the Lagrangian is inconsistent), impose a condition on the um functions, or reduce
to a new constraint equation, independent of the um. In the latter case repeat the process until
no information can be obtained. These new constraints are referred to as �secondary constraints�,
but again this distinction is not particularly meaningful. A more important distinction is between
�First class� objects, whose PB with all constraints vanish ({R,φj} ≈ 0 → R is �rst class), and
�second class� objects, which do not. A �rst class object must then obey {R,φj} = rjj′φj′ , where
rjj′ are unde�ned coe�cients, since constraints are the only independent functions of (q, p) that
vanish, by de�nition. Note that the PB of 2 �rst class quantities is also �rst class, which will be an
important consistency condition in the quantization. Now we recover the �Extended Hamiltonian�
HE from the introduction, composed of the non-constrained Hamiltonian (which is �rst class) and
the �rst class constraints:

HE = H + vaφa

→ ġ ≈ {g,HE}.
(141)

6.1.2 Symmetry Generators

If one takes the di�erence of 2 in�nitesimally time-evolved quantities with di�erent coe�cients va
and va′ , this turns out to be:

∆g(δt) = εa{g, φa} (142)

where εa = δt(va − v′a′) is in�nitesimal. The constraints φa are therefore the generating functions
of the in�nitesimal transformation ∆g! Additionally, the di�erence between a transformation
generated by vaφa and one by γa′φa′ is ∆g = vaγa′{g, {φa, φa′}}, so that {φa, φa′} is also a
generating function (and �rst class, from above).

6.1.3 Second Class Constraints

First notice that 1st and 2nd class constraints can be replaced by any linear combination of them-
selves, so one must try to arrange them in such a way as to bring as many constraints as possible
into the 1st class. Any left over 2nd class constraints will likely have the e�ect of bringing one or
more degrees of freedom out of physical signi�cance, where these should simply be dropped (for
example if the constraints are q1 ≈ 0, p1 ≈ 0, then one should rede�ned the PB as only running
over the coordinates n = 2, ..., N , and set q1 = p1 = 0. In e�ect writing the �rst dof out of the
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theory entirely). Now the way to do this in general is de�ne a matrix of the PB's of all the surviving
2nd class constraints χs , s = 1, ..., S:

∆ =


0 {χ1, χ2} · · · {χ1, χS}

{χ2, χ1} 0 · · · {χ2, χS}
...

...
. . .

...
{χS , χ1} {χS , χ2} · · · 0

 (143)

Dirac then proved that det∆ 6= 0 (even weakly. and in fact this proof implies that the number of
χ's that could not be brought into the �rst class must be even), see Dirac's notes for the full elegant
proof [7]. This allows us to de�ne the inverse matrix css′ = (∆−1)ss′ such that css′{χs′ , χs′′} = δss′′ ,
to then de�ne a new Poisson bracket:

{f, g}∗ = {f, g} − {f, χs}css′{χs′ , g} (144)

which is still antisymmetric, bilinear and obeys the Jacobi identity. The EoM are still valid under
this {g,HE}∗ ≈ {g,HE} → ġ ≈ {g,HE}∗, and a PB involving any second class constraint is always
zero {g, χs}∗ = 0. One can therefore simply set all the χ's to zero strongly χs = 0, and quantize
using this new PB exactly as before {·, ·}∗ → [·, ·].

6.2 Appendix B - Variations

Equations of motion (EoM) are derived many times in this paper, so to avoid clutter, and help any
reader new to the topic, the details of the variation of many terms in the action is laid out here.

6.2.1 The Einstein-Hilbert action

First some useful identities are noted, where g ≡ det(gµν):

δg

g
= gµνδgµν = −gµνδgµν →

δ
√
|g|

δgµν
= −1

2

√
|g|gµν

δ

δgµν
(
FαβρλF

αβρλ
)

= 4FµβρλF
βρλ
ν

∇µFµνρλ =
1√
|g|
∂µ

(√
|g|Fµνρλ

)
.

(145)

Note that these results are independent of the signature of the metric, and Fαβρλ here is any fully
antisymmetric rank-4 tensor (could be of any rank in the last equation). Further noting that the
Ricci scalar is R = gµνRµν , and letting Rµν = Rµν [Γ], all that is needed to derive the EoM from
the Einstein-Hilbert action (plus any extra terms added) is present. The EoM of Γ will be ignored
in this paper, which only a�ects the Ricci tensor to produce the Gibbons-Hawking-York term,
which is irrelevant to the discussion herein. Without further ado, the Lorentzian E-H action and
its EoM are:

S = κ

∫
d4x
√
g (R− 2Λ) + SM [gµν , φ]

δS

δgµν
= −κ1

2

√
ggµν (R− 2Λ) + κ

√
gRµν +

δSM
δgµν

= 0

→ Rµν −
1

2
gµνR = −gµνΛ− 1

κ

δSM
δgµν

→ Gµν = −gµνΛ + Tµν .

(146)

Now in the next example, the matter action SM [gµν , φ] will contain only the F 2 term for clarity,
since this is the case for most of the paper. Any extra terms in the action will end up being
proportional to gµν , and so will be absorbed into Λ in the EoM, to create the e�ective cosmological
constant λeff as discussed. Therefore terms produced from the F 2 will not be lumped into the
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stress-energy tensor, so that Tµν = 0.

S = κ

∫
d4x
√
g (R− Λ) +

∫
d4x
√
gFµνρλF

µνρλ

δS

δgµν
= −κ1

2

√
ggµν

(
R− 2Λ +

1

κ
FαβρλF

αβρλ

)
+ κ
√
g

(
Rµν + 4

1

κ
FµβρλF

βρλ
ν

)
= 0

→ Gµν = −gµνΛ +
1

2κ

(
gµνFαβρλF

αβρλ − 8FµβρλF
βρλ
ν

)
δS

δAνρλ
δAνρλ = 2

√
g∂[µ(δAνρλ])F

µνρλ

→ δS

δAνρλ
= 6∂µ(

√
gFµνρλ) = 0

→ ∇µFµνρλ = 0.

(147)

Any further steps are explained in the relevant sections, making use of ( +/−on a Rieman-
nian/Lorentzian manifold):

εαβρλε
αβρλ = ±4!

εµβρλε
βρλ
ν = ±3!gµν .

(148)

6.2.2 The Einstein-Cartan action

Here the derivation of the Einstein equations is more straightforward, one simply needs to vary
the action with respect to the co-tetrads ea, as follows:

gµν = eaµe
b
νηab

eaµe
µ
b = δab , eaνe

µ
a = δµν

ea = eaµdx
µ.

(149)

The Einstein-Cartan (E-C) action and equations of motion are (recalling Rab = dΓab + Γac ∧ Γcb,
and so does not depend on the tetrad):

S =
κ

2

∫
εabcde

aeb
(
Rcd − 1

6
ecedΛ

)
δS

δea
= 2εabcde

b

(
Rcd − 2

6
ecedΛ

)
= 0

→ εabcde
b

(
Rcd − 1

3
ecedΛ

)
= 0.

(150)

Now for terms containing F the situation is a little more subtle: F = dA and so has no spacetime
dependence δF = 0. However ∗F is a spacetime dual, and so does have such a dependence. It's
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variation is computed thus:

δ

∫
F ∧ ∗F =

∫
F ∧ δ(∗F ) =

1

4!

∫
F ∧ δ(εµναβFµναβ)

=
1

4!

∫
FεabcdF

µναβδ(eaµe
b
νe
c
αe
d
β)

=
1

4!
FεabcdF

efghδ(eaµe
b
νe
c
αe
d
β)eµe e

ν
fe
α
g e
β
h

= − 1

4!

∫
FεabcdF

efgheaµe
b
νe
c
αe
d
βδ(e

µ
e e
ν
fe
α
g e
β
h)

= − 1

4!

∫
FF efgh

1

4!
εµναβδ(eeefegeh)µναβ

= − 1

4!

∫
F efghF ∗ δ(eeefegeh)

= − 1

4!

∫
F efghδ(eeefegeh) ∗ F

→ δ

δea

(∫
F ∧ ∗F

)
= − 4

4!
Fabcde

beced ∗ F

(151)

where use was made of the fact that for an r-form ω = 1
r!ωµναβdx

µdxνdxαdxβ , its Hodge dual
is ∗ω = 1

r!ωµναβε
µναβ . Note that due to the added antisymmetrisation of the wedge product an

additional 4! was added for the correct combinatorics δ(eµe e
ν
fe
α
g e
β
h) = 1

4!δ(ee ∧ ef ∧ eg ∧ eh)µναβ .
The result has an overall minus sign compared to if one naively varies F instead of ∗F , and is as
yet independent of the signature of the metric.

A term in the action that is simply
∫
F is a boundary term and drops out of the EoM. However

if it contains a function σ(λ(x)), this is no longer the case and must contribute to the EoM. But
when varying w.r.t ea, δF = 0 and δσ(λ(x)) = 0 follow naturally, so how can this be? The trick is
to note that one can de�ne the 4-form σ = 1

4!σ(λ(x))εµναβdx
µdxνdxαdxβ such that ∗σ = σ(λ(x)),

and so: ∫
σ(λ(x))F =

∫
F ∧ ∗σ =

∫
σ ∧ ∗F. (152)

The exact same derivation as (151) can be followed, but with F → σ:

δ

δea

(∫
σ(λ(x))F

)
= − 4

4!
σ(λ(x))Fabcde

beced. (153)

Notice again that this result is independent of the signature of the metric.

6.3 Appendix C - 3-form Hamiltonian Analysis in FLRW Spacetime

Notes

Here a few extra steps are provided, which were not covered explicitly in the main body of the
paper. The constraint π̇jk0 ≈ 0 leads to:

π̇jk0 = 3∂iπijk − 48qNa3∂i [
√
γ (∂iAjk0 + ∂jAik0)]

→ HF = − 1

16qN
√
γa3

πijkπ
ijk +

3

2
πijk∂

iAjk0 − 1

2
π̇jk0A

jk0

→ LF = − 1

16qN
√
γa3

πijkπ
ijk +

3

2
πijk∂

iAjk0 +
1

2
π̇jk0A

jk0

(154)

where integration by parts was used to obtain each result. Thus under the constraint this produces
the stated result HF = LF . Next, computing ṗN ≈ 0 yields HG + H̃F = 0 where:

H̃F = N
∂HF
∂N

=
1

16qN
√
γa3

πijkπ
ijk − 24qN

√
γa3

(
∂iAjk0∂

iAjk0 − 24∂iAjk0∂
jAik0

)
(155)

where one can recognise H̃F = −LF , and thus using the previous result HF = HG, so that the
total Hamiltonian is not classically zero. Furthermore HG = LF leads directly to the �rst massless
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Friedmann equation (42):

HG = −
6κ
√
γ

N
(ȧ)2a− 6κ

√
γa

(
k − Λ

3
a2

)
LF = 24qN

√
γa3c2

→
(
ȧ

a

)2

+N2 k

a2
=
N2

3
λeff (c)

(156)

where λeff (c) = Λ− 192πGqc2, as stated in the relevant section.

Now, for Ṗij ≈ 0, note the following results:

∂H
∂γij

=
∂HG
∂γij

+
∂HF
∂γij

= 0

∂HG
∂γij

=
1

2
γijHG + γij6κN

√
γa

(
k − Λ

3
a2

)
∂HF
∂γij

= −1

2
γijH̃F + H̃ij

(157)

where H̃ij ≡ ∂HF
∂γij

∣∣∣√
γ held constant

is de�ned. This is explicitly:

H̃ij = − 1

16qN
√
γa3

πiklπ
kl
j + 3πikl∂jA

kl0 − 24qN
√
γa3

(
∂iAkl0∂jA

kl0 − 24∂iAkl0∂
kA l0

j

)
− 1

16qN
√
γa3

πkilπ
k l
j + 3πkil∂

kA l0
j − 24qN

√
γa3

(
∂kAil0∂

kA l0
j − 24∂kAil0∂jA

kl0
)

− 1

16qN
√
γa3

πkliπ
kl
j + 3πkli∂

kAl 0
j − 24qN

√
γa3

(
∂kAli0∂

kAl 0
j − 24∂kAli0∂

lAk 0
j

)
.

(158)

Notice that γijH̃ij = 3HF . So taking the trace of (157), and using the result H̃F = −HF :

HG + 3HF + 12κN
√
γa

(
k − Λ

3
a2

)
= 0. (159)

The EoM of ṗa on the other hand is (using H̃F = −HF again):

ṗa =
1

a
(HG − 3HF ) + 12κN

√
γ
(
k − Λa2

)
. (160)

Using these results, equation (156) and H = 2HG = 2HF , the second massless Friedmann should
also emerge:

ä

a
=
N2

3
λeff (c). (161)

However, I have not been able to show this explicitly before �nishing this paper.
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