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Abstract

We begin by exploring black hole type solutions to vacuum Einstein equations in

higher dimensions and we study the implications of the large D limit, i.e. assuming

the number of space dimensions is infinitely large. We study the metric fluctuations

of these solutions, their stability and how the perturbations classify in the large D

limit. We then expand the metric tensor in powers of 1/D and we solve Einstein

equations up to its first higher order to obtain effective theories that describe linear

and non linear dynamics of black holes in the large D limit. Numerical solving

of the effective equations provides us with important results regarding black hole

collisions, violation of Cosmic Censorship and the evolution of Gregory-Laflamme

unstable black strings. We see that the final outcome of two black hole collisions

depends only on the initial angular momentum per unit mass, giving a final outcome

of either a single black hole, a black bar or more the one black hole violating Cosmic

Censorship in the process. We also obtain that compactified black strings evolve

into a stable non uniform configuration for some values of its length, despite having

an initial uniform state with an infinitesimal perturbation. We’ve been able to

reproduce these results from the effective equations in our own numerical calculations

to confirm the conclusions that are already in the literature.



Acknowledgements

I would like to express my most sincere gratitude to Prof. Toby Wiseman for giving

me the opportunity to develop this Dissertation under his supervision. His dedicated

help, advice, perspective and corrections have been decisive for the improvement of

both the outcome of the project and my personal knowledge in physics and the

world of research.

I would also like to deeply thank Prof. Roberto Emparan from Institut de Ciències

del Cosmos (Universitat de Barcelona) for his help, suggestions and discussions

about the topic of this project. His contribution has also been crucial to the project

and the field in general. I would also like to thank Prof. Ryotaku Suzuki from Osaka

City University for his attention and dedication on answering my doubts about his

work.

Finally, I have to thank my family: father, mother, sister and goddaughter. Be-

yond financial support, each of them has been a sufficient reason for always keeping

moving forward during these weird and sometimes harsh days. I wouldn’t have made

it to be here without them.



Contents

1 Introduction 5

1.1 The ingredient: black holes in higher D . . . . . . . . . . . . . . . . . 5

1.2 The tool: the large D limit . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The objective: an effective theory . . . . . . . . . . . . . . . . . . . . 7

1.4 The outcome: this project . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Black holes in higher dimensions 10

2.1 The large D limit of gravity . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Schwarzschild-Tangherlini black holes . . . . . . . . . . . . . . . . . . 11

2.2.1 Small horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Curvature and surface gravity . . . . . . . . . . . . . . . . . . 13

2.2.3 Mass and gravitational constant . . . . . . . . . . . . . . . . . 13

2.2.4 Absence of interactions . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Myers-Perry black hole . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Flat rotation in D dimensions . . . . . . . . . . . . . . . . . . 16

2.3.2 Angular momentum tensor and coordinate charts . . . . . . . 17

1



2.3.3 Myers-Perry metric . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.5 Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.6 Large D limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Black branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Other solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Static charged black holes . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Anti de Sitter black holes . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Black rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Fluctuations of black holes 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Quasinormal modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Qualitative features . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Tensor decomposition of fluctuations . . . . . . . . . . . . . . 28

3.2.3 Master variables and master equations . . . . . . . . . . . . . 34

3.2.4 QNM of static black holes . . . . . . . . . . . . . . . . . . . . 36

3.3 The Gregory-Laflamme instability . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Mechanical justification . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



4 Effective theories of large D black holes 44

4.1 Motivation and generalities . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Membrane effective theory . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Ansatz and motion equations . . . . . . . . . . . . . . . . . . 45

4.2.2 Black brane and membrane solutions . . . . . . . . . . . . . . 48

4.2.3 Equivalent metrics . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.4 First order correction . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.5 Effective equations . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Effective theory for black branes . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 (D-1)+1 decomposition . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Ansatz and dynamic equations . . . . . . . . . . . . . . . . . . 55

4.3.4 Gauge fixing and radial solutions . . . . . . . . . . . . . . . . 56

4.3.5 Extrinsic curvature . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.6 Higher order correction . . . . . . . . . . . . . . . . . . . . . . 59

4.3.7 Effective equations . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Applications 63

5.1 Black holes as blobs on the membrane . . . . . . . . . . . . . . . . . 63

5.1.1 Gaussian solutions . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.2 Equivalence with Myers-Perry black holes . . . . . . . . . . . 65

5.1.3 Quasinormal modes . . . . . . . . . . . . . . . . . . . . . . . . 66

3



5.1.4 Black bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Black hole collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Initial configuration . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.3 Violation of Cosmic Censorship . . . . . . . . . . . . . . . . . 72

5.3 The black string instability . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Equations and initial state . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusion 79

A Black hole collision code 82

B Black string instability code 84

4



Chapter 1

Introduction

1.1 The ingredient: black holes in higher D

This Dissertation will exclusively deal with classical gravity in the vacuum. And

yet, thousands more dissertations could be done without any need of quantising

magnitudes or adding matter. Even then, classical gravity wouldn’t be completed

yet because the field is still fully present in current research. That’s the vast power of

Einstein Gravitation or General Relativity, arguably one of the finest achievements

in physics of all time.

One of the most thrilling phenomena that arises from the theory is the existence

of black holes. In classical gravity, spacetime is postulated to have four dimensions.

Enormously powerful theorems have been proven in this case: according to the

uniqueness theorem[1], in D = 4 all stationary axisymmetric black hole solutions of

both Einstein in vacuum and Einstein-Maxwell (gravity coupled with electromag-

netism) that satisfy regular boundary conditions at the horizon and asymptotically

flat structure at infinity must be a member of the Kerr-Newman family of solutions,

dependent only on four parameters correspondent to physical mass M , angular mo-

mentum J and electric and magnetic charges Q, P . Other deep conjectures such

as Cosmic Censorship, which in short forbids the existence of naked singularities in

D = 4[2], seem to be fully satisfied.
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What happens, though, if we try to investigate the problem in higher dimensions?

Fortunately, we are not the first (nor the last) to do it. Indeed, black holes in

arbitrary D becomes much more difficult and hostile: none of the previous theorems

and conjectures seem to prevail, and the spectrum of solutions enhances greatly as

we’ll see later on. Nevertheless, extra care will have to be taken regarding which

of those solutions are stable (hence physically possible): many instabilities, most

notably the Gregory-Laflamme instability, have been found for some of the higher

D geometries.

Motivations for getting into the field are important and diverse. On one hand[3],

string theories for quantum gravity are postulated in dimension D > 4. Closely

related, AdS-CFT correspondence is built over relations between a D dimensional

black hole and a D−1 quantum field theory[4]. Besides these two main applications,

the intrinsic interest of the field seems to be already motivating enough. Black holes

in higher D is, so, a fully and rich active area of research nowadays.

1.2 The tool: the large D limit

In D = 4, the study of black hole dynamics such as fluctuations or interactions is

already impossible to evaluate analytically due to the vast non linearity of General

Relativity. It comes as no surprise, then, that in the more complicated case of black

holes in higher D analytical results will be close to non existent without any other

assumption.

This is the reason behind why the large D limit was first suggested. Under this

assumption of letting the number of space dimensions to be infinitely large, many

drastic simplifications are achieved[5, 6]. Most importantly, all the gravitational

effects of a mass distribution get localised on thin layer which width decreases as

1/D in the limit D →∞. In other words, all spacetime outside the matter content

and its surrounding thin layer will be flat.
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Some of its consequences are extreme. As examples, in the limit, collisions between

two black holes will preserve both total entropy, hence they’ll be reversible, and total

energy, hence gravitational radiation will not exist.

1.3 The objective: an effective theory

As the title suggests, the final goal of this Dissertation is the construction of an

effective theory so that, in the large D limit, it is capable to describe the dynamics

of black holes beyond linear perturbations in a sufficiently simplified formalism that

encapsulates within itself all the complexity of the problem.

Indeed, we will see that astonishingly short and simplified effective equations in

terms of appropriate effective variables, very straightforward to treat numerically in

contrast with many numerical GR problems, are able to evaluate non linear dynamics

of large D black holes in its near region around the horizon.

Summarized, the effective equations emerge after solving vacuum Einstein equa-

tions on an appropriate metric ansatz at leading order in 1/D and up to its first

higher order, so that non linear effects are taken in consideration. One of the main

difficulties will be the construction of the initial ansatz, especially the choice of a

good coordinate chart with the correct dependence on D in order to study the non

linear dynamics.

1.4 The outcome: this project

Here we briefly describe the structure of this Dissertation and the basic topics one

can find in each part:
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• In chapter 2 we define and describe the large D limit of vacuum General Rela-

tivity and we explain its deep implications on, by simplicity, the Schwarzschild-

Tangherlini black hole metric, a straightforward generalization of Schwarzschild

black hole for D = 4. We then move forward to describe Myers-Perry metrics,

which describe a rotating black hole in higher dimensions, its parameters and

basic properties (horizons and singularities), and we finish their discussion by

applying the large D limit on them. Next, we introduce and discuss the notion

of black branes, a solution without any analogous at D = 4 where additional

flat degrees of freedom are added to known black hole solutions. Finally, we

very briefly describe how static black holes generalize to higher D with the

presence of non vanishing electric charge or a negative cosmological constant

(making the background geometry Anti de Sitter instead of flat); we also talk

about other possible asymptotic topologies, the concept behind the black ring

solutions.

• In chapter 3 we explain how linear black hole perturbations in arbitrary D are

described in terms of quasinormal modes : what they are, their mathematical

treatment and structure, the building of master variables and master equa-

tions that simplify and give them an intuitive meaning and the classification

they follow once we assume the large D limit. We end up the section by fol-

lowing the calculation of the quasinormal modes, in concrete their frequencies,

in the simplest case of Schwarzschild-Tangherlini black holes in the large D

limit. Finally, in the last section we introduce the Gregory-Laflamme instabil-

ity, which states that black branes solutions are unstable at D ≥ 5; we follow

the original mathematical derivation and the thermodynamical justification

that comes along with it[7].

• In chapter 4 we move forward to introduce the concept of an effective theory:

what it is, its usefulness and the key concepts from which it can be built to

study black hole dynamics under the large D limit assumption. We then move

to the mathematical derivation of the two effective theories that exist in the

large D limit: the membrane theory and the effective theory for black branes.

8



We give some physical intuition to the final effective equations and effective

variables of both theories.

• In chapter 5 we describe some of the main applications of the effective theory of

black branes: how concrete solutions can be interpreted as Myers-Perry black

holes in the largeD limit and other possible solutions to the effective equations.

Thanks to this correspondence, we then use the effective theory to numerically

study phenomena such as collisions between black holes, violation of Cosmic

Censorship and the evolution of the Gregory-Laflamme instability in black

strings. Since the effective equations are reasonably easy to solve numerically,

we have developed a code in Mathematica to solve them by ourselves and

compare our results to those from published papers and verify them.

As a quick remark on notation, this Dissertation will always use the natural units

c = ~ = kB = 1 and the East Coast or mostly positive convention (−,+, ...,+) for

Lorentzian metric signatures. The Newtonian constant G will be omitted in some

results, always after explicit indications.
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Chapter 2

Black holes in higher dimensions

2.1 The large D limit of gravity

According to General Relativity, spacetime is described as a D = 4 Lorentzian

manifold (M, g) with Levi-Civita connection and the condition given by Einstein

equations

Rµν = 0 (2.1)

as long as there’s no matter content. Obviously, this apparently short and sim-

ple equation is highly non linear, impossible to solve in general and with only a

few analytical solutions, all of them after making considerable assumptions on the

symmetries of the geometry.

Furthermore, in many other physical theories the equation of motion itself con-

tains parameters: masses, coupling constants... Their presence allows us to simplify

the equations by making assumptions on the parameter values that give rise to ap-

proximate solutions of the theory thanks to perturbative expansions. It’s not the

case of 2.1, since it lacks in any explicit parameter.

However, a natural parameter arises by considering the number of spacetime di-

mensions D to be arbitrary, eventually very large D → ∞. We may then use the
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quantity 1/D as an infinitesimal parameter for our theory and work analytically at

leading order in its power expansion.[5, 6] This is the key idea behind the large D

limit of General Relativity.

Ironically, arguably the most drastic simplification of the large D limit can already

be discussed in Newtonian gravitation, which satisfies

∇2Φ ∝ Gρ (2.2)

For a single point mass or outside a spherically symmetric mass distribution, the

solution of 2.2 is

Φ ∝ − 1

rD−2
⇒ g = −dΦ ∝ −D − 2

rD−1
∂r (2.3)

being r the Euclidean distance to the center of mass and D the number of space

dimensions, excluding time. We immediately see that increasing the number of

dimensions D will make both the Newtonian potential and the gravitational field to

decrease faster and more abruptly outside the mass distribution.

Hence, gravitational effects will become extremely localised around massive ob-

jects: in theD →∞ limit, there will be no gravitational interaction between massive

objects as long as they don’t collide.

2.2 Schwarzschild-Tangherlini black holes

We study now how the large D limit simplifies black hole solutions. For this

aim we start by introducing the simplest higher D black hole solution of 2.1: the

Schwarzschild-Tangherlini metric [8]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩn+1 (2.4)

with f(r) = 1−( r0
r

)n, n = D−3. Being a generalization of the Schwarzschild metric

[9] for an arbitrary dimensionality, the horizon of the black hole still lies at r = r0.

We are going to discuss the large D limit of this solution assuming r0 is fixed and

independent of D. The main feature of 2.4 is that its metric components gtt and
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grr directly depend on the dimensionality in the same way the Newtonian potential

does, not a coincidence given than 2.2 is the non relativistic limit of 2.4 outside a

SO(D − 1) symmetric mass distribution.

As long as we consider D to be fixed and finite, the solution has only one char-

acteristic length, given by the horizon r0, which will be the length scale of all the

highly non linear black hole dynamics. It is only when we allow ourselves to modify

the dimensionality that a new length scale emerges. As in [5], we may evaluate the

gravitational acceleration in an outside neighbourhood of the horizon:

g|r0 = −dΦ|r0 ≈
D

r0

(2.5)

when D >> 1. Since in natural units c = 1 acceleration has dimensions of inverse

length, we may infer that gravitational interactions outside the horizon are governed

by the length scale r0
D

i.e. objects with coordinate position r such that

r − r0 >>
r0

D
(2.6)

will perceive no gravitational pull: spacetime will be flat wherever 2.6 holds. In the

limit D →∞, all spacetime outside the horizon will be entirely flat, and the horizon

will have infinite curvature. [6]

2.2.1 Small horizon

The area of a unit D − 2 sphere SD−2 is

ΩD−2 =
2π

D−1
2

Γ(D−1
2

)
(2.7)

Since the gamma function can be approximated as Γ(x) →
√

2π
x

(x
e
)x for x → ∞,

the Stirling approximation, then the unit sphere simplifies in the large D limit into

ΩD−2 ∼ D

(
2πe

D

)D/2
→ 0 (2.8)

As consequence, keeping the r0 fixed, the horizon of a black hole becomes infinitely

small in the large D limit, since its area will be A = rD−2
0 ΩD−2, a magnitude which

provides us with another characteristic length scale: the area length

`A ≡ A1/(D−2) ∼ r0D
1−D/2
D−2 → r0√

D
(2.9)
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2.2.2 Curvature and surface gravity

From the Schwarschild-Tangherlini metric one may compute several magnitudes for

all D and evaluate their behaviour in the large D limit. The value of the surface

gravity is [6]

κ =
D − 3

r0

→∞ (2.10)

and its divergent behaviour in the large D limit is coherent with the gravitational

pull on the horizon at D → ∞, being both governed by the length scale κ1 = r0
D
.

This length scale also characterises the intrinsic curvature of the black hole; we may

check it by evaluating Kretschmann scalar for the Schwarzschild-Tangherlini metric

[6]

K = RµνρσRµνρσ =
(D − 1)(D − 2)2(D − 3)

r4

(
r0

r

)2(D−3)

→
(
D

r0

)4

= κ4 (2.11)

on the horizon r → r0 for D →∞. Hence, the characteristic curvature radius of the

horizon at large D decreases with the same characteristic length scale as the surface

gravity and the sphere of influence: r0
D
.

2.2.3 Mass and gravitational constant

Since we will be always working in vacuum gravity, as 2.1, the gravitational constant

does not appear in the fundamental equation. As it appears on the right hand side

of the full Einstein equations (or in its Newtonian limit, in the source of Poisson’s

law), for D = 4 its value has been measured from experiments involving matter. In

our large D treatment of gravity, the absence of G leads to some ambiguities:

• The constant G itself is ill defined, since we can’t assume it has the same value

as D = 4 for any dimensionality, simply because the dimension of G depends

directly on D: from 2.3 we have

[G] = LD−1T−2M−1 =c=1 L
D−3M−1 (2.12)

so the value of G should be measured for each D in experiments involving

matter content, something beyond our discussion.
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• Vacuum equations 2.1 are purely geometrical, so its solutions will also ex-

clusively depend or geometrical magnitudes such as length, time and power

combinations of them. In both Einstein and Newtonian gravity, geometri-

cal quantities are related to masses only thanks to the gravitational constant

G. Hence, for an arbitrary D in vacuum the ill definition of G leads to an

ambiguity in quantifying masses, mainly the mass of a black hole.

• Since the physical mass of a black hole may be defined using the Newtonian

limit of its metric and Einstein equations with matter, we must make the

assumption that Einstein equations with matter hold for all D, including the

expression its proportionality constant which carries the constant G:

Rµν −
1

2
Rgµν = 8πGTµν ∀D (2.13)

Then, the Newtonian limit of this equation may be computed [10] assuming a co-

ordinate system for which the center of mass is fixed at the origin, gµν = ηµν + hµν

and

M =

∫
dD−1xT 00 (2.14)

in terms of an integral over all spacelike coordinates. Its evaluation for the metric

in 2.4 gives us a relation between the mass of the black hole and its horizon radius:

GM =
(D − 2)ΩD−2

16π
rD−3

0 (2.15)

which reduces to 2GM = r0 for D = 4, the known Schwarzschild radius expression.

As a recall, this result arises after assuming 2.13 holds for any D. Its relevance

lies on the dependence between the mass of the black hole and its horizon length,

M ∝ ΩD−2r
D−3
0 , independent of our choice for the constant. In the large D limit,

for fixed r0, the smallness of the horizon leads to GM → 0.

2.2.4 Absence of interactions

As stated previously, in the large D limit spacetime outside a thin neighbourhood of

the horizon i.e. satisfying 2.6 is flat, so there’s not gravitational attraction between

massive objects. This has a direct implication on the Hawking entropy variation for
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a mixing of two black holes. Using natural units G = 1, the Bekenstein-Hawking

entropy is defined as

S =
1

4
A (2.16)

being A the area of the event horizon in squared Planck length units. The Planck

length depends on D

`P =

(
~G
c3

) 1
D−2

(2.17)

because of the D dependence of the dimension of G. Hence, absolute values of

entropy are also ill defined, but we may still evaluate its dependence on other mag-

nitudes. From 2.15, we can express the entropy of a black hole in terms of its mass;

using again G = 1:

S(M) =
1

4
ΩD−2r

D−2
0 =

1

4Ω
1

D−3

D−2

(
16πM

D − 2

)D−2
D−3

∼M
D−2
D−3 (2.18)

which becomes linear with M in the large D limit, with direct consequences. Con-

sider an initial set of ni Schwarzschild-Tangherlini black holes with masses Mj,

Mi =
∑ni

j Mj, that interact and evolve into a final state of nf black holes with

masses M ′
j, Mf =

∑nf
j M ′

j. According to black hole mechanics, a possible defect of

mass may be emitted via gravitational radiation, so Mf ≤Mi. However, the second

law implies dS ≥ 0. At finite D, it is possible to recombine several black holes in

an irreversible process with emission of gravitational waves. However, in the large

D limit we have S ∝M , which implies

dS ≥ 0⇒Mf ≥Mi

dM ≤ 0⇒Mf ≤Mi

with unique solution for Mf = Mi. In conclusion, in the large D limit, black hole

merging or splitting will never emit gravitational radiation, entropy will never be

gained so the process will be always reversible and the total mass will be conserved.

We can interpret this important result as a consequence of the absence of interactions

between the black holes in the large D limit; a consequence of spacetime being flat

outside their event horizons.
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2.3 Myers-Perry black hole

As far as 2.4 is the generalization of the Schwarzschild black hole for any D, the

Myers-Perry black hole generalizes the Kerr or rotating black hole to any D.

2.3.1 Flat rotation in D dimensions

Consider a Euclidean space in D − 1 dimensions. An infinitesimal spatial rotation

of the coordinates will be characterized by an antisymmetric D− 1×D− 1 matrix,

which is the property of any element of SO(D − 1) Lie algebra.

From linear algebra, we know that any non singular 2n×2n antisymmetric matrix

R satisfies

O = ΛTRΛ (2.19)

where Λ ∈ SO(D − 1) and O is a block diagonal matrix with the following shape:

O =



0 −J1 ... 0 0

J1 0 ... 0 0

... ... ... ... ...

0 0 ... 0 −Jn
0 0 ... Jn 0


(2.20)

being ±iJi the eigenvalues of R. The result holds for 2n+ 1× 2n+ 1 antisymmetric

matrices; then, O will have an extra row and column with only zeros. The relevance

of 2.19 lies on the fact that, given a general rotation linear with time such as that

of a stationary rotating black hole, we can always choose an appropriate coordinate

chart for which the general rotation decomposes into several plane rotations, each

affecting only a pair of coordinates and parametrised by the eigenvalues of O, which

physically correspond to angular momentum.
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2.3.2 Angular momentum tensor and coordinate charts

As discussed, a general rotation in D−1 spatial dimensions will be characterised by

individual rotations over 2-planes defined by pairs of spacelike coordinates. We’ll

treat separately the cases where D is even or odd [10]. Starting from a flat D

dimensional metric, assuming odd D,

ds2 = −dt2 + dxidxi, i = 1, ..., D − 1

ds2 = −dt2 + dxidxi + dyidyi, i = 1, ...,
D − 1

2

We may insert flat polar coordinates to each pair:

xi = rµi cosφi

yi = rµi sinφi

so that r2 = xixi + yiyi, i.e. µiµi = 1 [10]. The metric becomes

ds2 = −dt2 + dr2 + r2

(D−1)/2∑
i=1

(dµ2
i + µ2

i dφ
2
i ) (2.21)

where one of the coordinates is constrained by the others. For the case where D is

even we just need to add an extra cartesian coordinate z = rα with α ∈ [−1,+1],

adding a r2dα2 term to the flat metric in polar coordinates. Then, the constraint

becomes µiµi + α2 = 1.

The metric in this chart directly shows a set of D−2
2

(even D) or D−1
2

(odd D)

commuting Killing vectors, ξi = ∂φi . Those vectors mark the direction of each plane

rotation. Each parameter will be related to angular momentum. Given the shape of

2.20, we’ll define angular momentum in D dimensions as an antisymmetric 2-tensor,

with D−2
2

(even D) or D−1
2

(odd D) degrees of freedom.
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2.3.3 Myers-Perry metric

Using an appropriate chart for the spacelike coordinates, the metric of a Myers-Perry

black hole is the following[10]:

ds2 = −dt2 +
rrD−3

0

ΠF

(
dt+aiµ

2
i dϕi

)2
+

ΠF

Π− rrD−3
0

dr2 +
(
r2 +a2

i

)(
dµ2

i +µ2
i dϕ

2
i

)
+r2dα2

(2.22)

F = 1− a2
iµ

2
i

r2 + a2
i

Π =

(D−2)/2∏
i=1

(
r2 + a2

i

)
for even D, assuming summation for i ∈ 1, ..., D−2

2
, and

ds2 = −dt2+
r2rD−3

0

ΠF

(
dt+aiµ

2
i dϕi

)2
+

ΠF

Π− r2rD−3
0

dr2+
(
r2+a2

i

)(
dµ2

i+µ
2
i dϕ

2
i

)
(2.23)

for odd D, with the same expressions for Π, F and assuming summation now for

i ∈ 1, ..., D−1
2

.

As expectable, the set of parameters (ai, r0) encode the physical mass of the black

hole and the angular momentum over each direction by examining the asymptotic

behaviour in the non relativistic limit. The result for the mass is the same as that

for Schwarzschild-Tangherlini, 2.15. In parallel with 2.14, we define the physical

angular momentum tensor as[10]

Jµν =

∫
dD−1x

(
xµT 0ν − xνT 0µ

)
(2.24)

which is related to the parameters as

Jyi,xi =
ΩD−2

8πG
rD−3

0 ai =
2

D − 2
Mai (2.25)

in the current coordinate basis. All other components vanish. For all D, ai corre-

sponds to an angular momentum per unit mass up to a constant factor. Because

of the horizon smallness property, for fixed r0, all components of J ij vanish in the

large D limit.
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The Myers-Perry metrics 2.22 and 2.23 have, respectively, D
2
and D+1

2
symmetries:

time translation k = ∂t and all the n polar phase shifts mi = ∂ϕi ; all Killing

vectors commute, so the symmetry is <×U(1)n. Particular cases where some of the

parameters ai are zero or coincide increase the symmetries of Myers-Perry metric.

Concretely, if a1 = a2 = ... = am, its corresponding symmetry grows from U(1)m,

with dimension m, to U(m), dimension m2 ≥ m, with respect to the coordinates

zi = µie
iϕi [10].

The Kerr metric is the particular case of 2.22 for D = 4; as in Kerr spacetime,

all Myers-Perry black holes are stationary, since no metric components depend on

the timelike coordinate; nevertheless they are not static, since non vanishing gtϕi
components break time reversal symmetry.

2.3.4 Singularities

Let’s briefly discuss some physical features of Myers-Perry black holes. Again, we’ll

treat by separate the even and odd D cases.

From 2.22 and 2.23, some component of the Myers-Perry metric diverges for

ΠF

rγ
= 0 (2.26)

whose solutions lead to physical singularities [10], and

rγ =
Π

rD−3
0

(2.27)

whose solutions lead to coordinate singularities on event horizons. In both equations

and from now on, we use

γ = 1 +D mod 2 (2.28)

For even D, as long as all ai 6= 0, the most general rotation, physical singularities

will show a topology of SD−3 since they lie at r = 0 ∩ α = 0, the only solution of

2.26 and a generalization of Kerr’s ring singularity, its D = 4 case. If some ai = 0

the physical singularity arises at r = 0 with no further requirements.
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For odd D, if all ai 6= 0, there’s no singularity since ΠF
r2

= 0 remains finite for

r → 0, existing no solutions of 2.26 for γ = 2. If only one ai = 0, say a1 = 0, for

r → 0 then Π ∼ r2 and F ∼ µ1 +r2, so the singularity corresponds to r = 0∩µ1 = 0,

with topology of SD−3. Moreover, r = 0 without further restrictions corresponds to

a conical singularity [10]. If more than one rotation eigenvalue vanishes, then r = 0

always solves 2.26 and hence always leads to a curvature singularity.

2.3.5 Horizons

Regarding the horizons, always assuming r0 > 0, the horizon condition 2.27 is a

polynomial equation of order D − 3 + γ, being the horizons its non zero solutions.

Hence, they have no analytical expression in general. Since they are constraints only

affecting r, all of them have a topology of SD−2.

For even D, however, there will never be more than two horizons: studying the

extremes of the horizon equation

P (r) = Π(r)− rrD−3
0 (2.29)

being P (rH) = 0 the condition of the horizons, we have

P ′(r) = Π′(r)− rD−3
0 (2.30)

Π(r) ∼ rD−2 for r → ∞, and both Π(r) and Π′(r) are monotonically increasing.

Hence, there’s only up to one value that satisfies P ′(r) = 0 for r > 0, which will

correspond to a minimum of P by continuity. As consequence, no more than two

solutions can emerge from P (r) = 0, leading to no more than two event horizons for

all even values of D, just as in Kerr spacetime. If some ai = 0, then one solution

is always r = 0, already a physical singularity, leaving one and only one alternative

r > 0 horizon, regardless of the amount of spin in the other orthogonal planes,

setting a key difference with Kerr black hole, where large spin leads to a naked

singularity. These cases are known as ultra-spinning black holes.[10]
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For odd D, proceeding as in the previous case, horizons lie at P (r) = 0 being

P (r) = Π(r)− r2rD−3
0 (2.31)

Analysing its extremes, we have

P ′(r) = Π′(r)− 2rrD−3
0 (2.32)

Since Π′(r)
r

is monotonically increasing with r2, no more than one solution for r2 can

emerge. By continuity, we’ll have either a single minimum of 2.31 at r = 0 and

no horizons whatsoever since Π(0) ≥ 0, or a maximum at r = 0 and minimums

at r = ±r∗ 6= 0, allowing possible r > 0 horizon solutions. The condition for a

maximum at r = 0, necessary but not sufficient for the existence of horizons, is

rD−3
0 >

∑
i

∏
j 6=i

a2
j (2.33)

If the condition holds, we may find again up to two different horizons at r > 0, which

will have topology of SD−2 since they only constrain r. Note that a key behaviour is

different between odd and evenD: we see from 2.33 that for oddD, a single vanishing

ai = 0 doesn’t guarantee the presence of an event horizon regardless of the value of

the remaining aj, in opposition with the already discussed ultra-spinning black holes

at even D. It will be only when at least two different ai = 0 vanish simultaneously

that r = 0 will be a solution and, for r0 > 0, a single event horizon at r > 0 is

guaranteed for all values of the remaining aj. In conclusion, for odd D, at least two

different plane rotations must vanish in order to have ultra-spinning black holes.

The surface gravity has the following value[10]:

κ =
Π′(r)− γrD−3

0 rγ−1

2rD−3
0 rγ

|rH (2.34)

still using 2.28 for the value of γ.

2.3.6 Large D limit

Consider, for simplicity, the particular case a1 = a2 = ... = ak ≡ a, ak+1 = ... =

a(D−3+γ)/2 = 0, and let D →∞ [6]. We’ll have to analyse separately the cases where

the number of rotating planes remains fixed, i.e. constant k, and where the number

of rotating planes grows infinitely, i.e. k →∞.
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From its definition, we have Π(r) = rD−3+γ
(

1 +
(
a
r

)2
)k

. Hence, for both odd and

even D the horizon equation 2.27 becomes

r0

rH
=

(
1 +

( a

rH

)2
)k/(D−3)

(2.35)

which in the large D limit simplifies to rH → r0 as long as the limit is applied to

the number of non rotating planes, i.e. leaving k fixed.

In the alternative case where k grows linearly with D, assume the number of non

rotating planes m = D−3+γ
2
− k remains fixed when D → ∞ [6]. Then we may

rewrite the 2.35 as
r0

rH
=

(
1 +

( a

rH

)2
) 1

2

(
1−m−γ

D−3

)
(2.36)

which in the large D limit with constant m is solved by rH =
√
r2

0 − a2.

2.4 Black branes

2.4.1 Definition

Black p-branes are solutions of vacuum Einstein equations 2.1 in higher dimensions

of the form

ds2 = gµνdx
µdxν = −

(
1−

(r0

r

)n)
dt2 +

dr2

1−
(
r0
r

)n + r2dΩn+1 +

p∑
i=1

dxi
2 (2.37)

where n = D − p − 3. Intuitively, a black brane is a higher dimensional extension

of the known Schwarzschild-Tangherlini black hole where the new coordinates don’t

increase the spherical symmetry but, instead, they add a simple extra flat dimension

to spacetime.

The metric of a black brane can also be written as a covariant expression with

respect to boosts along the flat directions:

ds2 =
[
ηab +

(
1−

(r0

r

)n)
uaub

]
dxadxb +

dr2

1−
(
r0
r

)n + r2dΩn+1 (2.38)

22



where ua is a p + 1-velocity vector along the worldvolume of the brane, i.e. its free

directions plus time, and a, b indices run over t, 1, ..., p.

Black 1-branes, i.e. p = 1, are also called black strings.

2.4.2 Stress tensor

Despite being solutions to vacuum Einstein equations, we can associate a non van-

ishing stress-energy tensor to a black brane by studying its asymptotic behaviour.

As extensions of black holes, the stress tensor of a brane extends the notion of the

mass of the black hole. The extended expression is the following[11]:

Tab =
1

16πG

∫
r→∞

dΩn+1r
D−p−2ni

[
ηab
(
∂ih

c
c + ∂ih

j
j − ∂jh

j
i

)
− ∂ihab

]
(2.39)

where hµν = gµν − ηµν is the asymptotic deviation from the flat metric, a, b, c... run

over the brane worldvolume and i, j, ... run over the transverse directions (radial and

angles). ni is a unit vector on the direction of ∂i. The following extension has been

developed so that, as expected, the component 00 will return the known mass of the

black hole.

The notion of a stress tensor associated to the brane gives raise to an equation of

state for the brane itself. For a neutral and asymptotically flat brane like 2.37, one

may calculate the energy density ε = T00 and pressure Tab = Pηab and prove that

they are related via the following equation of state[12]:

P = − ε

D − p− 2
= − ε

n+ 1
(2.40)

For any equation of state, one may compute the speed of sound[13]

v =

√
dP

dε
=

√
−1

n+ 1
(2.41)

which is imaginary due to Gregory-Laflamme instabilities[12] as we’ll see in the next

chapter. In module, in the large D limit v ∼ 1/
√
D → 0, so the characteristic length

scale of fluctuations along the worldvolume will be of order 1/
√
D and, thus, the

latter may be studied in a non relativistic framework.
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2.5 Other solutions

2.5.1 Static charged black holes

Just like the Reissner-Nordström solution easily generalises the Schwarzschild black

hole when coupling gravity to static electromagnetism, in higher dimensions the

Schwarzschild-Tangherlini metric can be easily extended for charged static and

spherically symmetric black holes[6, 14, 15]:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩD−2, f(r) = 1−

(r0

r

)D−3

+
(rQ
r

)2(D−3)

(2.42)

where rD−3
Q = Q

√
8πG

(D−2)(D−3)
, being Q the electromagnetic charge of the black hole.

2.5.2 Anti de Sitter black holes

Almost the entirety of this Dissertation could be discussed again assuming that

the background space geometry, and so also the asymptotic topology, is Anti de

Sitter (constant curvature R and constant cosmological constant Λ < 0) instead of

asymptotically flat. I’ll leave that for a future student. Here we will only discuss the

static solution with non vanishing negative cosmological constant. Just like charged

black holes, the solution quickly generalises[16]. The metric is [6]

ds2 = ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩD−2, f(r) = 1−

(r0

r

)D−3

+
r2

L2
(2.43)

where L2 =
√

(D−1)(D−2)
2|Λ| . L has dimensions of length, so it defines a new length

scale without any analogous in asymptotically flat spaces: L ∼ D/
√
|Λ|. Hence, as

long as Λ remains fixed when we take the large D limit, all effects of the background

curvature will disappear since L → ∞, making the Anti de Sitter space flat in the

limit. Hence, to study AdS spaces in the large D, Λ must diverge proportional to

D2 so that the length scale of AdS effects L remains finite.
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2.5.3 Black rings

Black rings[17, 18] are solutions that, as a key property, present a different asymp-

totic topology than the usual flat D-dimensional Minkowski space. Their metric

is

ds2 = −dt2 +
R2

(R + r cos θ)2

[ R2dr2

R2 − r2
+ (R2− r2)dΦ2 + r2(dθ2 + sin2 θdΩn)

]
(2.44)

where D = n+ 4 and the domain of the coordinates is Φ ∈ (0, 2π), r ∈ (0, R), being

R the radius of the ring. At constant r, the spatial topology is S1 × Sn+1, radically

different from any of the metrics previously described.
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Chapter 3

Fluctuations of black holes

3.1 Introduction

After a general review and presentation of the many different black hole solutions

that exist in higher dimensions and their properties once we apply the large D

limit, we aim now to explain the behaviour of black hole fluctuations, i.e. small

perturbations from a known black hole metric.

Two key concepts arise from the following perturbation analysis: the fluctuations

in terms of quasinormal modes and the stability of those modes, which will lead to

fundamental results regarding whether some known black hole solutions are actually

stable or not against small time dependent fluctuations. The most important result

is what we call the Gregory-Laflamme instability, which states that certain black

branes and black strings are unstable. In the further development of effective theories

to describe black hole dynamics, we expect them to be able to predict both of

this phenomena, which will represent a major test on the utility of the mentioned

theories.
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3.2 Quasinormal modes

3.2.1 Qualitative features

We call quasinormal modes (often abbreviated as QNM in the upcoming of this

paper) to each of the oscillations in a characteristic time frequency in which a given

metric fluctuation can be decomposed[5]. For stationary black hole configurations,

the discrete or continuous set of frequencies in which one may decompose a metric

fluctuation is named as the quasinormal spectrum.

The reason behind this nomenclature is intuitive: in many aspects quasinormal

modes remind of a typical Fourier decomposition of a fluctuation into a linear com-

bination of eigenfunctions, the normal modes, of a given self-adjoint differential

operator (in the Fourier case, the harmonic or Laplacian operator). In our case,

we’re not allowed to talk about normal modes because of boundary issues: since

their domain is the region outside the black hole, their boundaries are the horizon

and asymptotically flat infinity. While in the latter case homogeneous boundary

constraints hold, we can’t state the same on the horizon[5], since the nature of the

black hole will absorb part of the fluctuating energy distribution of the mode. Their

dissipative properties are manifested by their frequencies becoming complex in a

∝ e−iωt expression.

This lack of a homogeneous boundary condition on the horizon is also the reason

behind the quasinormal spectrum doesn’t form a complete basis of modes in which

any fluctuation may be completely decomposed. Nevertheless, their importance

remains crucial since QNM still fully describe the final stages of the fluctuation

after the black hole has been perturbed before their final turn back to equilibrium.

The mathematical calculation of quasinormal modes and spectrum is far from

trivial; here we will follow the relevant steps and points of the procedure but we

will skip the most solely algebraic part. In summary, the final and most important
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prediction is that quasinormal modes can be classified into one of two families of

modes that differ from each other on how their spectrum frequencies depend on the

dimensionality of spacetime in the large D limit[5, 19, 20]:

• Non decoupled modes: their defining property is that their frequencies are

dependent on the dimensionality D by ω ∼ D/r0 at leading order. For this

reason, in the large D limit framework they are also called fast modes. Their

location is spread, since they extend from the near region up to the asymptotic

zone[20], and they carry little further information, since they are universal in

all solutions of asymptotically flat black holes and their single parametric de-

pendence is on the event horizon r0 and D.

• Decoupled modes: their defining property is that their frequencies are inde-

pendent of the dimensionality D by ω ∼ 1/r0 at leading order for all values of

D, being called slow modes by contrast in the large D limit. Contrary to the

fast modes, they are strongly localized in the near region, quickly decoupling

and vanishing in the far zone, hence the name of their class. There are much

less that non decoupled modes, and they hide many more physically interest-

ing features: they encode horizon instabilities and are unique for each type of

black hole[5]. Effective theories mostly emphasize on trying to predict their

dynamics.

3.2.2 Tensor decomposition of fluctuations

Consider a spacetime of dimension m + n which is the result of a product of two

manifolds of dimensions m and n, respectively. Assume that the latter is a n-

dimensional Riemannian Einstein manifold with constant intrinsic curvature K =

−1, 0,+1[21, 22, 23]. Then, the metric can be written as

ds2 = gµνdx
µdxν = gab(y)dyadyb + r2(y)γijdx

idxj (3.1)

where ya are coordinates on the m-manifold and xi on the n-manifold and γij is the

metric of a constant curvature Riemannian space: either Sn, Hn or En. From now
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on, covariant derivatives and curvature tensors labeled with Latin (i, j, k...) indices

will refer to these objects defined on the n-manifold, not the whole spacetime. Same

for (a, b, c...) indices on the m-manifold. Because of Einstein equations, the stress-

energy tensor Θµν carries, as expected, an additional symmetry: Θia = 0, Θi
j = Pδij.

In order to analyze perturbations, it is fundamental to avoid any unphysical free-

dom: we will be only interested in gauge invariant quantities. Consider a perturba-

tion hµν from spacetime 3.1, which may carry an associated energy distribution δΘµν

so that Einstein equations hold. Apply, then, an infinitesimal gauge transformation

xµ → xµ + ξµ. Objects will transform proportional to Lie derivatives[21]:

δhµν = −£ξgµν = −(∇µξν +∇νξµ) (3.2)

δhab = −∇aξb −∇bξa (3.3)

δhia = −r2∇a

( ξi
r2

)
−∇iξa (3.4)

δhij = −∇iξj −∇jξi − 2rγijξ
a∇ar (3.5)

δ(δΘµν) = −£ξΘµν (3.6)

δ(δΘab) = ξc∇cΘab −Θac∇bξ
c −Θbc∇aξ

c (3.7)

δ(δΘia) = −Θab∇iξ
b − r2P∇a

( ξi
r2

)
(3.8)

δ(δΘij) = −γijξa∇a(Pr
2)− P (∇iξj +∇jξi) (3.9)

We’ve specified separately the (ab), (ai) and (ij) expressions, only in terms of tensor

objects on the original manifolds because we will decompose the fluctuation in its

scalar, vector, and 2-tensor part according to its transformation properties on the

constant curvature n-manifold. Each of these three sectors will have their own set of

eigenfunctions and eigenvalues. Regarding notation, we’ll repeatedly use ∆ = ∇i∇i,

the Laplacian on the n-manifold.

First, we need to state the defining equation and properties of eigenscalars, vectors

and tensors.[21] Then, we need to find all the possible ways they can appear in the

metric and stress tensor fluctuations, and finally keep only quantities that remain

gauge invariant according to 3.2, 3.6. Applying Einstein equations to these gauge
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invariant quantities will give us the equations of motion for the fluctuations.[22, 23]

Throughout the whole section we’ll assume vanishing cosmological constant Λ = 0.

Tensor sector

The tensor eigenfunctions of the harmonic operator must obey[21]

(∆ + k2)Tij = 0, T ii = ∇jT
j
i = 0 (3.10)

The first equation is the expected definition of the eigenfunction, while extra prop-

erties are required because non traceless or non vanishing divergence tensors will

emerge from other sectors. The Laplace operator with a boundary condition has

only positive eigenvalues, with the addition of k = 0 (constant tensors) only if the

space is flat K = 0[21]. The spectrum is continuous for K ≤ 0 and discrete for

K = +1, with eigenvalues[22]

k2 = `(`+ n− 1)− 2; ` = 1, 2, ... (3.11)

Since no contraction is allowed by construction, only tensor components of the metric

and stress tensor can be built from eigenfunctions of the tensor sector. Hence,

hab = hai = 0, hij = 2r2HTTij (3.12)

δΘab = δΘai = 0, δΘij = τTTij (3.13)

where summation over all eigenvalues is assumed. Since the gauge transformation

vector ξµ can’t be built from any eigentensor combination, functions HT and τT are

directly gauge invariant and can be present in the motion equations[21]. One may

calculate the perturbed Ricci tensor δRµν resulting from the fluctuation hµν . Then,

Einstein equations require

−∇a∇aHT −
n

r
∇ar∇aHT +

k2 + 2K

r2
HT = 8πτT (3.14)

which is the only perturbation equation for the tensor sector[21].

Vector sector

The vector eigenfunctions of the harmonic operator must obey

(∆ + k2)Vi = 0, ∇iV
i = 0 (3.15)
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where, again, the extra vanishing divergence property is due to non divergent vectors

being part of the scalar sector, as we will see later. Linked to the vector eigenfunc-

tions we can define a new tensor quantity,

Vij = −1

k
∇(iVj) (3.16)

which is traceless but not divergence free, as opposed to the tensors from the tensor

sector. From 3.15 and 3.16 we can write

[∆ + k2 − (n+ 1)K]Vij = 0, ∇jV
j
i =

k2 − (n− 1)K

2k
Vi (3.17)

which is a harmonic equation too. Hence, tensors that are traceless but not diver-

gence free can be built from eigenfunctions Vij that, despite being 2-tensors, arise

from the vector sector of the decomposition. Again, boundary conditions on 3.15

guarantees k2 ≥ 0, with only k = 0 for a constant vector if space is flat. The

spectrum, again, is only quantised if K = +1, with eigenvalues

k2 = `(`+ n− 1)− 1; ` = 1, 2, ... (3.18)

Note, though, that k2 > 0 still doesn’t ensure positiveness on the eigenvalues of Vij

in 3.17. When this happens, i.e. 0 < k2 < (n+ 1)K, 3.17 can only hold if, trivially,

Vij = 0 and, thus, Vi is a Killing vector by construction, with eigenvalue k2 = (n−1)

as long as K = +1, so that the divergence condition in 3.17 holds.

Repeating the procedure from 3.12 and 3.13, let’s express hµν and δΘµν in terms

of the eigenfunctions from the vector sector:

hab = 0, hai = rfaVi, hij = 2r2HTVij (3.19)

δΘab = 0, δΘai = rτaVi, δΘij = τTVij (3.20)

As a reminder, summation over all the spectrum is assumed. Now, a gauge trans-

formation can be built with eigenfunctions from the vector sector, by setting ξa = 0,

ξi = rLVi, where L = L(ya). Substituting in 3.2 equations, we evaluate the gauge

transformation behaviour of τa, fa, HT and τT . τT and τa are directly gauge invari-

ant. The other two are not, but the linear combination Fa = fa + r
k
∇aHT is[21].

For the special case of the mode with eigenvalue k2 = (n − 1)K > 0, in which Vij

vanishes, HT and τT are not defined, and only the combination Fab = 2r∇[a
fb]
r

is

gauge invariant.
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Finally, the requirement of Einstein equations gives us the perturbation equations

for the vector sector:
2

rn+1
∇b

(
rn+2∇[b

Fa]

r

)
− k2 − (n− 1)K

r2
Fa = −16πτa if k2 6= (n− 1)K (3.21)

k

rn
∇a(r

n−1F a) = −8πτT if k2 6= (n− 1)K (3.22)

1

rn+1
∇b(rn+1Fab) = −16πτa if k2 = (n− 1)K (3.23)

These equations fully describe the vector sector of metric perturbations in terms of

up to three gauge invariant variables: Fab or τa, τT and Fa.

Scalar sector

The scalar eigenfunctions of the harmonic operator must obey

(∆ + k2)S = 0 (3.24)

from which we can build a vector

Si = −1

k
∇iS ⇒ ∇iS

i = kS, (∆ + k2 − (n− 1)K)Si = 0 (3.25)

and a tensor too,

Sij =
1

k2
∇i∇jS +

1

n
γijS ⇒ ∇jS

j
i =

n− 1

n

k2 − nK
k

Si, (∆ + k2 − 2nK)Sij = 0

(3.26)

which is still traceless but again not divergence free. Both Si and Sij are eigenfunc-

tions of the harmonic operator. Now k = 0 is in the spectrum for all K ≥ 0 (for

K < 0 it’s not normalizable)[21], corresponding to a constant function, while in the

vector and tensor sectors that happened only for K = 0. Note that for k = 0 both

Si and Sij don’t exist. Aside from that, boundary conditions in both 3.25 and 3.24

require k2 > (n − 1)K > 0. Si = 0 carries a degeneracy since it only requires S to

be constant. The spectrum only quantises for K = +1 and its eigenvalues are

k2 = `(`+ n− 1); ` = 0, 1, 2, ... (3.27)

The scalar section is the longest and most tedious to develop, since all metric and

stress tensor components of the fluctuation contribute[21]:

hab = fabS, hai = rfaSi, hij = 2r2(HTSij +HLγijS) (3.28)

δΘab = τabS, δΘai = rτaSi, δΘij = (τTSij + δPγijS) (3.29)
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in terms of 8 objects: fab, fa, HT , HL, τab, τa, τT and δP . Here’s why we had

assumed all our tensors from the three sectors to be traceless: we impose that all

the perturbations on the trace are controlled by functions HL, δP that multiply

the original metric tensor on the Einstein manifold γij, so that the behaviour on

the trace is clearly separated from the "shear" fluctuation. Note that no SiSj term

appears (neither does ViVj in the vector sector) because we are working with only

linear combinations of our constituents.

A gauge transformation can now be expressed as ξa = TaS, ξi = rLSi. Substitut-

ing the metric and stress tensor expressions back in 3.2 equations, we find the gauge

transformation properties of all our objects. From all, only τT is directly gauge

invariant. Using Xa = r
k

(
fa + r

k
∇aHT

)
, 5 more gauge invariant quantities may be

built[21]:

F = HL +
1

n
HT +

1

r
Xa∇ar (3.30)

Fab = fab + 2∇(aXb) (3.31)

Σab = τab + 2Θc
(a∇b)Xc +Xc∇cΘab (3.32)

Σa = τa −
k

r
(Θb

aXb − PXa) (3.33)

Σ = δP +Xa∇aP (3.34)

and, as function of these quantities, Einstein equations lead to the following vastly

long motion equations for perturbations in the scalar sector[21]. Using � = ∇a∇a:

−�Fab +∇a∇cF
c
b +∇b∇cF

c
a +

n

r
∇cr(−∇cFab +∇aFcb +∇bFca)+

+Rc
aFcb +Rc

bFca − 2RacbdF
cd +

(k2

r2
−R

)
Fab−

−∇a∇bF
c
c − 2n

(
∇a∇bF +

2

r
∇(ar∇b)F

)
−
[
∇c∇dF

cd +
2n

r
∇cr∇dFcd+

+
(
−Rcd +

2n

r
∇c∇dr +

n(n− 1)

r2
∇cr∇dr

)
Fcd−

−2n�F − 2n(n+ 1)

r
∇cr∇cF + 2(n− 1)

k2 − nK
r2

F−

−�F c
c −

n

r
∇dr∇dF

c
c +

k2

r2
F c
c

]
gab = 16πΣab (3.35)

k

r

[
− 1

rn−2
∇b(r

n−2F b
a) + r∇a

F b
b

r
+ 2(n− 1)∇aF

]
= 16πΣa if k2 6= 0 (3.36)
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−1

2
∇a∇bF

ab − n− 1

r
∇ar∇bFab +

1

2
�F a

a +
n− 1

2r
∇ar∇aF

b
b −

n− 1

2n

k2

r2
F a
a+

+
[1

2
Rab − (n− 1)(n− 2)

2rr
∇ar∇br − n− 1

r
∇a∇br

]
Fab + (n− 1)�F+

+
n(n− 1)

r
∇ar∇aF −

(n− 1)(n− 2)

n

k2 − nK
r2

F = 8πΣ (3.37)

− k2

2r2
[2(n− 2)F + F a

a ] = 8πτT if k2(k2 − nK) 6= 0 (3.38)

3.2.3 Master variables and master equations

A truly impressive achievement in the study of quasinormal modes for static asymp-

totically flat black holes is the construction of a master equation that characterises

them.[22, 23] A master equation is a rather simple differential operation that acts on

a concrete variable, the master variable, which has been constructed wisely so that

a mathematically complex problem simplifies into a single equation or a reduced

set of equations. This is notoriously done in the study of Schwarzschild-Tangherlini

quasinormal modes. Since all perturbations still occur in vacuum, the r.h.s. of all

the perturbation equations of all three sectors derived in the previous section will

vanish. From now on, implementing the large D limit into the previous perturbation

equations will always mean making n → ∞, i.e. the large D limit applies on the

Einstein submanifold.

Working with Schwarzschild-Tangherlini as the background spacetime, with met-

ric 2.4 (hence Θµν = 0) and f(r) = 1−
(
r0
r

)D−3, the master equation for Schwarzschild-

Tangherlini QNM in the large D limit takes the rather simple expression(
�− VA

1−
(
r0
r

)D−3

)
ΦA = 0 (3.39)

where ΦA is the master variable and VA is a potential like function; both take

different expressions for the scalar, vector and tensor sectors. The master equation

3.39 is, in essence, a wave equation modelled by an external potential VA. Our

job now is to determine the expressions of VA and ΦA for each sector. The split

of Schwarzschild-Tangherlini spacetime is done by identifying its D − 2 sphere as

the Einstein manifold. As consequence, in this particular case we’ll have K = 1,

n = D − 2, and (a, b, c...) = t, r in the usual Schwarzschild coordinates.
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Tensor sector

In this case the master equation is straightforward, since by just defining ΦT =

rn/2HT , then equation 3.14 takes the shape of a master equation 3.39, with potential[22]

VT =
f

r

[
k2 + 2 +

n(n− 2)

4
+
n2

4

(r0

r

)n−1]
(3.40)

where, recall, n is the dimension of the horizon submanifold, so n = D − 2.

Vector sector

Here, the master variable is also fast to reach. By defining ΦV = r−n/2Ω, with

Ω satisfying εab∇bΩ = rn−1Fa in terms of the Levi-Civita tensor on the radial 2-

submanifold, then equation 3.21 takes the shape of a master equation 3.39, with

potential[22]

VV =
f

r2

[
k2 + 1 +

n(n− 2)

4
+

3n2

4

(r0

r

)n−1]
(3.41)

where again n = D − 2 and as usual f = 1− ( r0
r

)D−3.

Scalar sector

For the scalar sector, as expected, the master equation is quite longer to derive.

Define first a set of three variables[22] X(t, r) = rn−2(F t
t − 2F ), Y (t, r) = rn−2(F r

r −

2F ), Z(t, r) = rn−2F r
t . Let X(ω, r), Y (ω, r), iωZ(ω, r) be their respective Fourier

transforms with respect to t. Define, then,

ΦS(ω, r) =
nZ(ω, r)− r(X(ω, r) + Y (ω, r)

rn/2−1
[
k2 − n+ 1

2
n(n+ 1)

(
r0
r

)n+1]
Scalar perturbation equations take, then, the shape of

−f d
dr

(
f
dΦS

dr

)
+ VSΦS = ω2ΦS

which, after a Fourier transformation back to the (t, r) space, takes the shape of a

master equation 3.39. Hence, ΦS(t, r) = ΦS(ω, r)|ω=i∂t , with a scalar potential of

expression:

VS =
f

16r2H2

{
n4(n+1)2x3 +n(n+1)[4(2n2−3n+4)m+n(n−2)(n−4)(n+1)]x2−
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− 12n[(n− 4)m+ n(n+ 1)(n− 2)K]mx+ 16m3 + 4n(n+ 2)m2
}

(3.42)

being m = k2 − n, x = (r0/r)
n−1 and H = m+ 1/2n(n+ 1)x.

3.2.4 QNM of static black holes

With as little as possible but as much as necessary detail on the mathematical res-

olution of the master equations, we aim now to determine the spectrum of QNM

frequencies for Schwarzschild-Tangherlini in the large D limit, and hence show that

they classify into two classes depending on their leading order dependence on D.

Since we are interested in the frequency spectrum, we’ll work with the master equa-

tion on the Fourier space for time. Then, in the large D limit, 3.39 is rewritten

as[24] ( d2

dr2
∗

+ ω2 − VA
)

ΦA = 0 (3.43)

being dr∗ = dr/f .

Potential analysis

We begin by doing a quick qualitative analysis on the potentials VA in 3.42, 3.41

and 3.40. In the large D limit, when r → r+
0 , all three potentials tend to small finite

values which are irrelevant since the potentials massively grow in other zones.

Written as a function of r∗, all potentials show a barrier that grows with the

mode number `, peaks and asymptotically decays when approaching infinity (see

figure 3.1). Furthermore, the vector and scalar potentials have an additional minor

but relevant minimum for r∗ slightly smaller than the peak position[20]. The tensor

potential, meanwhile, is monotonically increasing before the peak. The peaks are

located at r∗ ∼ 1, so they correspond to the near zone or r, by definition of r∗.

Further away the behaviour is simply asymptotically flat as expected. Evaluating

for a finite mode number ` while applying the large D limit n → ∞, the position

of the peak coincides for all three positions and tends to a finite value of r∗, hence
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Figure 3.1: This figure is taken from [20]. It illustrates the shape of V (r∗) for finite

n = 7 and `2. Solid, dashed and dot-dashed plots correspond to tensor, vector and

scalar potentials respectively. Note how the tensor potential has no minimum while

the others do. Decoupled modes will be localised left from the peak (the horizon is

at r∗ = −∞); non decoupled modes to the right of the peak.

in the near region, and the value of the maximum diverges at D → ∞, growing as

V = n2ωc, being ωc = 1
2r0

(
1 + 2`

n

)
[20].

Furthermore, the position of the minimum of the scalar and vector potentials also

shrinks onto the peak position. The direct consequence of this behaviour is that,

in the large D limit, an infinite barrier appears between the near and far regions,

so modes with finite ω will be confined in a narrow interval in the near zone (since

we assume no modes come from asymptotically flat infinity). That’s the qualitative

justification behind decoupled ω ∼ 1/r0 QNM being strongly localised in the near

zone and vanishing further away, with non decoupled modes behaving oppositely.

Both families are fully separated at large D precisely after this infinite barrier in the

potential.

Near and far zone solutions

We will, without great detail, summarize the discussion that leads to the frequency

spectrum of Schwarzschild-Tangherlini QNM, based on the development in [20]. The

master equation, despite being a huge simplification of the problem, is not fully ana-
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lytically solvable yet due to the VA term. Approximate expressions arise from solving

ΦA separately in the near and far zones with their respective boundary conditions;

we may then choose solutions from each region that can match in the overlapping

region. Explicit expressions of the approximate solutions are long and beyond our in-

terest, so we’ll skip them. Being 3.43 a second order ordinary homogeneous equation

in r (or r∗), the general solution is always a linear combination of two independent

solutions, Φ = A+Φ+ + A−Φ−. It can be proved[20] that normalizable solutions in

both regions cannot match for frequencies higher than ωc.

In the far zone, the master equation can be solved over flat space. Regularity

implies, if |ω| < nωc, that the coefficients are related by∣∣∣A+

A−

∣∣∣ = e2nr0Ref(ω/ωc)

being f(z) = log 1+
√

1−z2
z

−
√

1− z2 a complex function. In particular, for ω → nω−c

so that ωc − ω/n ∼ 1/n2/3, then solutions of take a simpler form Φ = A + B log r
r0

at leading order. The solution is only valid is the coefficients satisfy∣∣∣A
B

∣∣∣ ∼ 1

n

at leading order.

Meanwhile, in the near, zone, solutions for all the sectors are related to hyperge-

ometric functions (directly in the tensor and vector case, under an operator in the

scalar case). Checking their assymptotic behaviour for large r, i.e. in the overlapping

zone, we get relations for the coefficients in all the regimes of ω < nωc:∣∣∣A+

A−

∣∣∣ ∼ ∣∣∣A
B

∣∣∣ ∼ O(1)

with different dependence on D than the expressions for the far zone.

This radically different behaviour is what constrains and quantises the values of

ω.
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Non decoupled spectrum

We try to match the solutions for ωc − ω/n ∼ n−2/3. The different dependence

of A/B in each zone quantises the spectrum, since the only acceptable values of

ω will be those for which A = A(ω) = 0 in the far zone. Since it can be proved

that, there, A(ω) is of the type of an Airy function of the difference ωc − ω/n, the

multiplicity of its zeros and the expression B can be proved to be the appropriate

so that
∣∣∣A+

A−

∣∣∣ ∼ ∣∣∣AB ∣∣∣ ∼ O(1) in the far zone too. Hence, the spectrum of ωc − ω/n

will be the known zeros, −ak, of the Airy function. Taking in mind all the factors,

we have: (2n2r2
0

eiπωc

)1/3)(
ωc −

ωk
n

)
= ak ≈

[3π

8
(4k − 1)

]2/3

(3.44)

being k natural. Simplifying and isolating omega, we finally get the non decoupled

spectrum:

ω`,kr0 =
n

2
+ `− ak

(eiπ
2

(n
2

+ `
))1/3

∼ O(n) (3.45)

Lastly, we get information about how quickly these modes vanish (or grow) with

time by examining the imaginary part of the frequencies. In this case, the ratio

between imaginary and real part of 3.45 is

Imω

Reω
∼ n−2/3 (3.46)

which means that, in the large D limit, the dissipative term due to Imω is much

smaller in comparison, so non decoupled QNM will be long lived. The modes are

universal for many different black hole configurations, including all asymptotically

flat, static and spherically symmetric black holes[25].

Decoupled spectrum

The decoupled spectrum development diverges from the previous non decoupled

spectrum from the beginning. Now, we match the behaviours in near and far zone

in the most direct way possible: by setting A+ = 0, so that Φ ∝ Φ−, which is

normalizable. Since these solutions are then localised only into the near region, a

standard perturbative expansion will be enough to solve the equation by variation

of the constants. There will be no need to solve the far zone anymore. Decoupled
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QNM are static at leading order, so we need to specify one higher order in 1/n to

find the frequency spectrum.

According to our boundary conditions, Φ ∝ r−1/2 at r →∞ and regularity at the

horizon, no solution emerges from the tensor sector. Contrary, a solution exists from

the vector sector, and by comparing the higher order terms, we get its frequency,

ωr0 = −i(` − 1) purely imaginary at higher order, and expansion into even higher

orders will raise more corrections:

ωr0 = −i(`− 1)
(

1 +
1

n
(`− 1) +

2

n2
(`− 1)

(π2

6
− 1
))

+O(1/n3) (3.47)

where, as expected, ω is independent of n at leading order.

Repeating essentially the same steps for the scalar sector, we achieve frequencies

with expression

ωr0 = ±
√
`− 1

(
1 +

1

n

(3`

2
− 2
))
− i(`− 1)

(
1 +

1

n
(`− 2)

)
+O(1/n2) (3.48)

again independent on the dimensionality at leading order and no longer purely imag-

inary. This completes the spectrum of QNM in the large D limit of Schwarzschild-

Tangherlini black holes.

3.3 The Gregory-Laflamme instability

The second half of this chapter will be dedicated to the Gregory-Laflamme instabil-

ity, a major result regarding stability of black branes and black strings that we will

recover again afterwards with the use of effective theories.
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3.3.1 Mechanical justification

According to black hole mechanics, the stability of a state against a possible evo-

lution into a different state will depend on the sign of the area difference between

them, given the second law:

dA > 0 (3.49)

The area of a Schwarzschild-Tangherlini black hole is ABH = rD−2
0 ΩD−2, and its

mass MBH =
(D−2)rD−3

0 ΩD−2

16πG
. For a black string, its area per unit length (along

the free direction) is[5] ABS = rD−3
0 ΩD−3 and its mass per unit length, MBS =

(D−3)rD−4
0 ΩD−3

16πG
. We can compare then the rate of grow d logA

d logM
for each case, easily

finding

logA ∼ D − 2

D − 3
logM Hole (3.50)

logA ∼ D − 3

D − 4
logM String (3.51)

Since the growing rate is always larger for the black hole for finite D > 4, we may

then expect ABH > ABS, i.e. a stable black hole, at low energies, which is essentially

the Gregory-Laflamme instability, while ABH < ABS, i.e. a stable black string, at

high energies. The equilibrium point will lie, by explicit calculation, at

rBS0 =
D − 2

D − 3
rBH0 = L

(D − 2

D − 3

)D−2 Γ
(
D−1

2

)
√
πΓ
(
D
2
− 1
) (3.52)

where L is the length of the string. Hence, the radius of the black hole must be lower

or equal than L for all finite D > 4, and this constrains the values of D for which

the phase transition might happen to D ≤ 13. Otherwise, no stable black holes are

expected to be found near the transition point of the hole-string phase diagram[5].

3.3.2 Derivation

Consider the usual metric of a black p-brane

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩD−p−2 + dxidx

i, (3.53)
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where i runs over 1, ..., p, and f(r) = 1−
(
r0
r

)D−p−3. We want to study its stability

against metric perturbations. To this purpose, we will apply the gauge invariant

perturbation formalism developed in the previous section, by identifying the p flat

worldvolume directions as the Einstein manifold with respect to which we develop

the scalar, vector and tensor sectors. Hence, we’ll have a particular case of the

perturbation formalism where n = p, K = 0 and r(ya) = 1, since the unperturbed

metric over the worldvolume of the brane is flat; r(ya) follows the general notation

in 3.1. In order to preserve the notation, we’ve already used the Latin indices

accordingly in 3.53: (i, j, k...) = 1, ..., p.

We are interested in the study of possible unstable solutions. We’ll assume spher-

ical symmetry in the perturbations for further simplicity. Then, the metric fluctua-

tion must have the following expression:

hµν = eΩtHµν(r, x
i) (3.54)

with real Ω > 0 so that the perturbation grows with time and leads to an instabil-

ity. The next step will consist in particularising tensor, vector and scalar Einstein

equations for perturbations to the D−p dimension Schwarzschild-Tangherlini black

hole background metric with the mentioned ansatz for hµν .

Imposing continuity on r and regularity at both the horizon and infinity, we realise

that both tensor and vector components of hµν must vanish if the mentioned ansatz

is assumed, i.e. Hij = Hia = 0[26]. Hence, only the scalar sector is not trivial.

The general formalism is greatly reduced due to the mentioned simplifications: from

3.28, we see that Hij = 0 ⇒ HT = HL = 0, Hai = 0 ⇒ fa = Xa = F = 0, so

the only non vanishing gauge invariant quantity is Fab = fab, where hab = fabS(xi)

and S(xi) is a scalar harmonic eigenfunction, only dependent on the worldvolume

coordinates. Hence, comparing notations, we see that fab ∝ Hab. We further assume

the perturbation is transverse and traceless in the S-T space, i.e. ∇cf
c
a = f cc = 0.

Then, the vast Einstein scalar equation 3.35 in the S-T background dramatically

reduces to

�fab + 2Racbdf
cd − k2fab = 0 (3.55)
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which can also be written covariantly in the whole D-spacetime as

∇α∇αhµν + 2Rµναβh
αβ = ∆Lhµν = 0 (3.56)

which is a particular case of the more general Lichnerowicz equation[27] that governs

the fluctuation of the Ricci tensor in terms of the metric fluctuation.

In this pàrticular case where K = 0, the scalar harmonic eigenfunctions obey 3.24

with ∆ = ∂i∂i since gij = δij. Hence, the eigenfunctions are the trivial S(xi) = eikjx
j .

Relabelling that hab = fabS(xi) = eΩtFab(r)S(xi), Einstein equations are decoupled

with respect to Ftr[26]. Naming n = D − p− 3:{
− Ω2 − µ2f +

n2(1− f)2

4r2

}
F tr ′′ +

{
µ2[(n+ 1)− 2(1− f)− (n− 1)(1− f)2]+

+
Ω2[(n+ 1) + (2n− 1)(1− f)]

rf
+

3n2(1− f)2[(n+ 1)− (1− f)]

4r3f

}
F tr ′+

+
{

(µ2 + Ω2/f)2 +
Ω24(n+ 1)− 8(n+ 1)(1− f)− (5n2 − 4n− 4)(1− f)2

4r2f 2
+

+
µ2[4(n+ 1)− 4(3n+ 2)(1− f) + (n2 + 8n+ 4)(1− f)2]

4r2f
+

+
n2(1− f)2[(n+ 1)(2n+ 1)− (n+ 2)(n+ 1)(1− f) + (1− f)2

4r4f 2

}
F tr = 0 (3.57)

which, although long, is only a decoupled ODE for Ftr(r). As usual, f(r) = 1 −

( r0
r

)n. Notoriously, ther is a regular asymptotic solution at infinity of the form

e−
√

Ω2+k2r and also on the horizon, of the form (r − r0)−1±r0Ω/n. Apparently there’s

a divergence on the horizon, but that’s entirely a consequence of the limitations of

Schwarzschild coordinates. We will first need to transform the solution into Kruskal

coordinates (T,R)[26]. Then, the transformed components TT and RR tend to

hTT ≈ hRR ∝ ±(R ± T )Ωr0/n−2, and hTR ∝ (R ± T )Ωr0/n−2. Now it is immediate

that regularity on the future event horizon, at R = T , requires both the + sign and

Ω > 0 so that the exponent stays positive. We are done: recalling 3.54, a positive real

frequency Ω > 0 will make the perturbation to grow with time and, so, spacetime

will be unstable. The Gregory-Laflamme instability emerges as a particular unstable

solution to Einstein perturbation equations with a Schwarzschild-Tangherlini brane

background geometry.
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Chapter 4

Effective theories of large D black

holes

4.1 Motivation and generalities

As seen in the previous chapter, black hole metric perturbations in the form of

quasinormal modes can be split and classified into two groups: decoupled modes,

for which ω ∼ 1/r0, and non decoupled much faster modes, for which ω ∼ D/r0. In

particular, the ∼ 1/r0 slow modes are fully localized near the horizon, i.e. r−r0 <<

r0, being decoupled in the far zone at all orders in D[28]. The usefulness of an

effective theory arises then from the possibility of evaluating the dynamics of black

holes at long distances by integrating into some effective functions all the near zone

effects[5][28], achieving a theory which is now able to carry on a non linear study

of the decoupled dynamics in the far zone, deeper than the always linear previous

study of quasinormal modes.

Again, the large D limit plays a key role in the development of an effective theory.

As mentioned in previous chapters, black hole dynamics at finite D are impossible

to solve analytically due to the absence of characteristic length scales besides the

Schwarzschild radius r0, and the construction of an effective theory requires a sep-

arate treatment of a near zone, whose dynamics are integrated and hidden in the
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parameters of the theory, and a far zone where the theory applies. A possibility

would be to study the dynamics directly far from the black hole considering it, ef-

fectively, as a point particle, as the background curvature curvature radius is much

larger than the black hole size ∼ r0.[5] Nevertheless, this approach will omit all the

dynamics regarding the black hole horizon and its fluctuations, so it’s not useful in

order to study metric perturbations from a black hole spacetime. Fortunately, the

large D limit directly provides us with a second length scale r0/D that enables to

treat separately the near and far zone with respect to the horizon, giving rise to the

effective theory.

Mainly, two different effective theories have been developed in parallel being based

on the large D limit.[5] Below, we will discuss each of them in sections 4.2 and 4.3

respectively and we’ll follow their path to their final effective equations; despite

apparently very different, both theories remarkably coincide on, most importantly,

the values of quasinormal frequencies. The fact that two different effective theories

can emerge to describe the same phenomena is due to deeply different initial as-

sumptions on the metric ansatz that is used as the starting point for the derivation

of the equations. In concrete, both theories split spacetime in two submanifolds

and calculations are done with tensors in one of the those submanifolds. However,

the split is radically different between the theories, breaking direct parallelisms and

leading to different effective equations.

4.2 Membrane effective theory

4.2.1 Ansatz and motion equations

The first of the two effective theories that parallelly arise thanks to the large D limit

is the membrane theory. Consider a spacetime with D = p+ n+ 3 dimensions with

SO(n+ 1) symmetry. [29] Then the metric takes the form

ds2 = gµνdx
µdxν + eφdΩn = gµν(x

µ)dxµdxν + eφ(xµ)γij(x
i)dxidxj (4.1)
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where Greek indices run over 1, ..., p + 3, Latin indices over 1, ..., n, and dΩn =

γij(x
i)dxidxj is the metric of a unit radius n-sphere. Due to this splitting timelike,

radial and worldvolume dimensions will be treated separately from the n spherically

symmetric directions.

From now on, ∇µ will denote covariant derivatives on the p+ 3 submanifold, and

Greek indices will be raised and lowered with gµν . Einstein equations give rise to

motion equations for both the unknown metric gµν and the scalar field φ; it can be

easily proved that they are the following:

Rµν =
n

2
∇µ∇νφ+

n

4
∇µφ∇νφ (4.2)

(n− 1)e−φ =
1

2
∇2φ+

n

4
(∇φ)2

Here, Rµν is the Ricci tensor on the p + 3 submanifold, hence not necessarily zero

by Einstein equations.

We’ll look for solutions of 4.2 in the large D limit for fixed p, hence n → ∞

throughout the whole derivation[29]. The first equation in 4.2 relates the length

scale of metric variations and that of the scalar field. On the left hand side we have

only metric derivatives, each of them inversely proportional to the metric charac-

teristic length `g. The curvature tensor terms have the form of either ∂2g or (∂g)2.

Hence, Rµν ∼ `−2
g . For the right hand side, assume each field derivative is inversely

proportional to a field characteristic length `φ. Given that∇µ∇νφ = ∂µ∂νφ−Γρµν∂ρφ,

we’ll have terms escalating as ∼ n`−2
φ and terms as ∼ n`−1

φ `−1
g .

For equality to hold in 4.2, then, metric and field derivatives must escalate dif-

ferently: we need `g << `φ in the large D limit, so spacetime will be governed by

two different length scales, heuristically originated on the fact that φ encodes the

size of a n→∞ sphere, so its derivatives are more "expensive"[29] that the metric

ones. Reached that conclusion, it is evident that dominant terms in the right hand

side must be those that escalate as ∼ n`−1
φ `−1

g , i.e. only the Christoffel term. Con-

sequently, the large D limit reduces 4.2 to Rµν ≈ −n
2
Γρµν∂ρφ and we may now infer
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that, for equality to still hold, the length scales must be directly related;

Rµν ≈ −
n

2
Γρµν∂ρφ⇒ `g ∼

1

n
`φ << `φ (4.3)

We still have the freedom of choosing a coordinate chart. We require a chart

{xµ} for which both the metric and the field are order unit, and ∂g ∼ n, ∂φ ∼ 1. A

problem then arises from the fact that a metric with O(1) values and length scale 1/n

would become trivial, since this is a point particle limit and no interesting physical

results would emerge. We avoid the issue by applying a coordinate transformation

and working, afterwards, with a conformal metric[29]. Each chart will only have

a domain of order 1/n around a point, so we should repeat the process until the

overlaps cover the whole p+ 3 submanifold:

xµ = x0 +
1

n
αµay

a;α ∼ O(1) (4.4)

gµν = n2αaµα
b
νgab ≡ αaµα

b
νGab ∼ O(1)

χa ≡ n∇aφ = αµa∇µφ ∼ O(1)

Our next step is to apply these transformations to the equations of motion 4.2

so that all the dependence on n is isolated into explicit n factors and Christoffel

symbols. We achieve it by expressing everything in terms of the conformal metric

Gab for contractions and raising indices and the dilaton χa, both of order unit. By

applying the transformations, the equations are rewritten as:

Rab =
1

2
∇aχb +

1

4n
χaχb (4.5)

1

2
∇aχa =

n− 1

n
e−φ − 1

4
χ2

In the first equation and after applying the conformal change in both sides, the

second term on the r.h.s. and the dilaton derivative are order 1/n and hence vanish.

The same applies to the l.h.s. on the second equation. Thus, in the large D limit,

the previous equations 4.5 simplify to

Rab = −1

2
Γcabχc (4.6)

−GabΓcabχ
c = 4e−φ − χ2

at leading order. Thanks to this basis change, the coordinates are now suitable to

describe the worldvolume dynamics.
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4.2.2 Black brane and membrane solutions

A part from a trivial flat solution which only requires eφχ2 = 4, a black brane like

solution to 4.6 arises with the expression[29]

Gab =

(
ηab + e−ROaOb

)
dxadxb (4.7)

where R is one spacelike coordinate and O is a null one-form with respect to flat

space. 4.7 metric, characterising only the non spherical submanifold (indices run to

1, ..., p + 2), solves Einstein equations 4.6 at leading order provided that eφχ2 = 4,

(2dR− dχ)dR = (2dR− dχ)O = 0. We’ll use this result later.

Now we define a scalar SO(n + 1) invariant field B(xµ) with respect to a flat

metric whose zeros have topology of sphere times time[29], and whose positive region

includes infinity. We’ll then name as membrane the submanifold where B = 0. We

also require ∂µB∂µφ > 0. Consider also a null SO(n + 1) invariant one-form Oµ

which satisfies ηµνOµOν = 0, where ηµνdxµdxν is the metric of p+3 dimensional flat

space. We also define a second scalar

ψ = 1 +B
∂µB∂

µφ

2∂µB∂µB
(4.8)

whose definition is motivated by a simplification of the metric once we express it

in terms of ψ rather than B: as long as the mentioned properties and Oµ
(

1
2
∂µφ −

∂µψ
)

= 0 are satisfied, the black brane metric[29]

gµν = ηµν +
OµOν

ψD−3
(4.9)

will be a solution of 4.6 because, as we’ll shortly see, the expression and the required

properties mirror those of the known solution in 4.7. By inspection we see that the

membrane B = 0 corresponds to ψ = 1, and the outside (region including ∞) and

inside, to ψ > 1 and ψ < 1 respectively.
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At leading order in the large D limit, Einstein equations are solved trivially ev-

erywhere on the outside except the membrane region, described by

ψ − 1 ∼ 1/D ⇔ logψ ∼ ψ − 1⇔ ψD−3 ∼ e(D−3)(ψ−1) (4.10)

However, after a new coordinate chart that includes R = n(ψ − 1) as directly one

of the new coordinates and conveniently rescaled as in 4.4, in the membrane region

4.10 the metric 4.9 takes the form of 4.7, which is solution of Einstein equations 4.6

at leading order in 1/D.[29]

4.2.3 Equivalent metrics

The fact that 4.9 solves Einstein equations only at leading order indicates that we

may treat as equivalent several metrics which only differ at higher orders.[29] Since,

at leading order, ψD−3 vanishes everywhere outside the membrane, we shall treat as

equivalent the metrics with Oµ and Oµ+δOµ as long as the difference vanishes on the

membrane, δOµ|B=0 = 0. Similarly, a global rescaling of the scalar B leaves invariant

ψ by construction, which is the only place where B appears in the metric. Hence,

we shall also treat as equivalents B and αB, for some constant α. We may, then,

freely choose a representative of each equivalence class for both B and O and work

always with them. It’s convenient to pick them so that O is parallelly transported

along a the congruence of the gradient of B field and so that these congruence are

affinely parametrized geodesics:[29]

∇νB∇ν∇µB = ∇νB∇νOµ = 0 (4.11)

which easily implies dB to be constant in modulus, which we fix to unit after rescal-

ing.

As a last consideration before the correction, rewrite the metric 4.9 as

ds2 =

(
ηab +

OaOb

ψD−3

)
dxadxb +

(
1 +

OSOS

ψD−3

)
dS2 (4.12)

specifying as a coordinate the radial direction of the SO(n + 1) symmetry, i.e.

S2 = eφ. Here, then, Latin indices run over 1, ..., p + 2, including the timelike
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coordinate. In order to emphasize the special role of coordinate S, we’ll express

O = Oµdx
µ = e−h(dS − uadx

a), so that the metric depends, at the moment, on

{B, h, ua}, two scalars and one one-form in the p+ 2 (recall, not p+ 3) submanifold.

Moreover, O2 = 0 in p+ 3 flat space implies u2 = −1, constant, in p+ 2 flat space.

4.2.4 First order correction

Our objects, whose relations we aim to determine, are nµ = ∂µB, uµ and h. Define

Kµν = ∇µnν . In addition, one-forms {u, n, dS} define a 3-dimensional subspace on

the p + 3 tangent space consisting in the radial direction dS, the normal direction

to the membrane dB = n and the direction tangential to the worldvolume velocity

u. We may, then, classify all possible contractions between our objects depend-

ing on their tensor class in the remaining p dimensional subspace, orthogonal to

{u, n, dS}[29]:

• Scalars SA: Kss, uµKsµ, uµuνKµν , P µνKµν , ∂sh, uµ∂µh, P µν∇µuν .

• Vectors V µ
A : P

µα∇suα, P µαuν∇νuα, P µαKsα, P µαuνKνα, P µα∂αh.

• Symmetric tensors T µνA : P µαP νβ
(
Kαβ − ηαβ

p
P ρσKρσ

)
and P µαP νβ

(
u(αβ) −

ηαβ
p
P ρσKρσ

)
.

• Antisymmetric tensor Aµν = P µαP νβu[αβ].

We’ll use a convenient basis that directly separates the already mentioned 3 dimen-

sional subspace, by using dψ, dS − Sdψ and O as elements of the dual basis. The

remaining p basis elements will be given by P µ
ν dx

ν , being P µν a projector orthogonal

to dS, dψ and O. The metric will then be a linear combination of symmetrized ten-

sor products (expressed with ×) of those forms. In this basis, though, some elements

may immediately vanish after a gauge choice[29], so that dψ × (dS − Sdψ) is the

only non vanishing element containing dψ. The most general form the metric may

have up to first order will then be

(4.13)

ds2 = ηµνdx
µdxν+

O ×O
ψD−3

+
1

nψn

(
K1(x)O2+2K2(x)O×(dS−Sdψ)+K3(x)(dS−Sdψ)2+
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+2K4(x)dψ × (dS − Sdψ) + 2Qβ
1 (x)O × Pβµdxµ + 2Qβ

2 (x)(dS − Sdψ)× Pβµdxµ+

+Tαβ(x)PαµPβνdx
µdxν

)
+O

( 1

n2

)
in terms of four scalar functions Ka, two vectors Qa and one symmetric tensor T

whose expressions will be determined by solving Einstein equations at first order

in 1/n. Each of these functions can be expressed as linear combinations of the

previously mentioned tensors from their same class:

Ka =
7∑

A=1

KA
a (ψ)SA(x) (4.14)

Qµ
a =

5∑
A=1

QA
a (ψ)V µ

A (x) (4.15)

T µνa =
2∑

A=1

TAa (ψ)T µνA (x) (4.16)

The key fact will be that the coefficient functions of these linear combinations will

only be functions of ψ, i.e. functions of R = n(ψ−1) after making the 4.4 rescaling,

since their derivatives with respect to the rest of the membrane coordinates will be

order 1/n2, hence negligible.[29]

4.2.5 Effective equations

The final result of the membrane theory will be a pair of one scalar equation and

one p dimensional vector equation (living in the orthogonal p subspace). We will

not deeply follow every step of the solving process of Einstein equations but we’ll

briefly comment them. The first step is to express the metric and the Ricci tensor

in terms of exclusively rescaled coordinates around an arbitrary membrane point x0

following 4.4: R = n(ψ − 1), V = neh(x0)Oµ(x0)(xµ − xµ0), Y = n(S − s0ψ) and

yi = nP i
µ(x0)(xµ − xµ0), where s2

0 = eφ on the membrane at leading order. Working

the Ricci tensor in this same basis directly decouples the equations between the

scalar, vector and tensor functions.
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Looking at the scalar components of Einstein equations 4.2, a fortunate linear

combination of their terms leads to an ordinary and solvable equation for the coef-

ficient functions KA
2 (R). Its integration constant is determined requiring regularity

at large R. However, a simple pole at R = R0 on the integrand of KA
2 (R) raises a

multivalued component proportional to log(R − R0) which must vanish for the so-

lution to be physical. It is this last imposition that leads to the scalar membrane

equation:

Kµν(U
µ − Uρnρn

µ)(Uν − Uρnρn
ν) +

nS
S

(n2
S + 1) = 0 (4.17)

being U = dS + n2
S(dS − u).

Looking at the vector components of Einstein equations 4.2, again a fortunate

linear combination of the equations lead to an ordinary and solvable equation for

the coefficient functions QA
2 (R). Its solution, after integration, shows an unavoidable

logarithmic dependence in R, with no polynomial terms after developing. Hence,

it is required to have QA
2 (R) = 0, which after substitution, leads to the vector

membrane equation:

P b
a(U c − Uµnµn

c)∇cub = 0 (4.18)

being again U = dS+n2
S(dS−u). Latin indices run over 1, ..., p, since non orthogonal

components of 4.18 are trivial and irrelevant.

Together, the set of p+ 1 equations from 4.17 and 4.18 are differential equations

on also p + 1 variables: the membrane shape B(x), in the equations inside n = dB

and K = ∇n, hence up to second order, and the velocity u, first order, which has

only p degrees of freedom since uS = 1, uaua = −1 and uµnµ = nS − 1
nS
. Given an

initial shape B0, an initial change rate n0 and an initial velocity u0, the effective

membrane equations solve the non linear dynamics of the decoupled quasinormal

modes of a black hole in the large D limit.
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4.3 Effective theory for black branes

4.3.1 Approach

The following effective theory, despite lacking from part of the elegant covariant

expressions of the previously explained membrane theory, is equally efficient at de-

scribing the non linear dynamics of the slow decoupled quasinormal modes of black

holes and its effective equations are far more intuitive and easier to solve both ana-

lytically and numerically. It deeply relies on a fluid-like description of the black hole

horizon, again embedded on a black brane, so we will intercalate its development

with bits and details of relativistic hydrodynamics. Afterwards, in this Dissertation

we will focus on the applications of this effective theory. That is why the following

section will be detailed in its development, given the relevance of their results for

the following chapter.

This discussion will only contemplate asymptotically flat geometries, though a

parallel development can also be built in Anti-de Sitter spacetime.

4.3.2 (D-1)+1 decomposition

This introductory section briefly describes the formalism we will use to derive the ef-

fective equations, the (D−1)+1 decomposition; it is constantly used in Hamiltonian

formulation or Arnowitt-Deser-Misner (ADM) approach of General Relativity[30],

which is a parallel and analogous development of General Relativity to the La-

grangian formulation we have always been using, the latter based on minimizing

a given action and treating spacetime as a field theory with the metric tensor as

the dynamical object[30]. Like all Hamiltonian formulations in other areas, we re-

quire the setting of a preferred time variable, hence breaking the local SO(D− 1, 1)

symmetry, i.e. the diffeomorphism symmetry, that had been characterizing Einstein

gravity up until now. Similar tools are used in Kaluza-Klein metrics[31, 32, 33],

since Kaluza-Klein theory couples gravity with electromagnetism by adding a spe-
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cial extra dimension related to the electromagnetic field.

Hence we assume spacetime to be foliated as a manifold with metric [34]

ds2 = (−α2 + βiβjγij)dt
2 + βidtdx

i + γijdx
idxj (4.19)

where Latin indices run 1, ..., D − 1 and raised and lowered with γij and its inverse

γij. This notation is, obviously, not locally SO(D − 1, 1) covariant.

A foliation like the presented in 4.19 enables us to define a geometric extrinsic

curvature tensor as[30]

Kij =
1

α

(
∇(iβj) −

1

2
∂tγij

)
(4.20)

where ∇ is the covariant derivative on the D − 1 Riemannian subspace. An in-

tuitive explanation of this new object is neat: moving along a given submanifold

of spacetime, one may feel effects of curvature even if both the spacetime and the

isolated submanifold are completely flat, but just because of how the geometry of

the embedding spacetime affects the geometry on the submanifold. As an exam-

ple, the surface of a cylinder has zero intrinsic curvature since, naively, it can be

constructed from a flat piece of paper. Nevertheless, considering the same cylinder

now embedded in a 3 dimensional Euclidean space, an observer may note the effect

of curvature not because of the intrinsic properties of the cylinder but because how

the Euclidean geometry background affects it. Hence we would have Rij = R = 0

but some Kij 6= 0 and the scalar extrinsic curvature K = γijKij > 0.

All curvature tensors may be computed from 4.19, and Einstein equations Gµν =

8πTµν will be given by a set of one scalar equation from component tt, D − 1

vector equations from components ti and (D − 1)(D − 2)/2 tensor equations from

components ij. Note that, even in vacuum, the curvature tensor Rij in the D − 1

subspace doesn’t need to straightly vanish.

Note, finally, that despite the previous discussion has assumed a foliation in which

we treated separately the timelike coordinate, a totally analogous development is
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entirely possible by separating one spacelike coordinate and working in a (D− 2, 1)

Lorentzian manifold as the subspace. That is, in fact, what is going to be used in

the following section.

4.3.3 Ansatz and dynamic equations

Here we start the mathematical development which will eventually lead to the effec-

tive equations. The general path to follow is very similar to that of the membrane

equations deduction. We start by building an ansatz metric, we discuss the depen-

dence on D of the coordinate chart, we solve Einstein equations at leading order of

the large D limit in terms of some objects in the metric components and, finally,

we let them fluctuate and we reach their dynamical equations from solving again

Einstein equations, not up to a first order correction in 1/D.

We start with an ansatz of the shape[12]

ds2 = (N2 +NµNµ)dρ2 + 2Nµdρdx
µ + gµνdx

µdxν (4.21)

where Greek indices run over 1, ..., D − 1 and are raised and lowered with gµν . The

separated coordinate ρ will be related to the radial direction of the black hole. It is

important to state the dependence on D of each term at leading order. Note that

tis ADM like ansatz separates the radial direction from the beginning, leading to a

deeply different split from that in the previous membrane theory ansatz.

Consider a smooth D independent function. The effect of the large D limit will

be the infinite growing of the slope of the gradient along its radial direction, since all

geometrical effects are localized in a ∼ 1/D length scale region. Then we will have,

for its radial directional derivative, df
dsρ

= 1
N
∂f
∂ρ
∼ D. Recalling this effect holds for

D independent functions, we have ∂f
∂ρ
∼ 1, so N ∼ 1/D. A parallel reasoning may

be applied to the other radial related quantities in the metric, hence Nµ ∼ 1/D. As

stated previously, Einstein equations will consist on one scalar, one vector and one

tensor equation, after computing the Ricci tensor in 4.21. In vacuum and without
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a cosmological constant, Einstein equations are[12]:

1

N
∂ρK

µ
ν +KKµ

ν = Rµ
ν −

1

N
∇µ∇νN +

1

N
£NK

µ
ν (4.22)

∇µK
µ
ν = ∇νK (4.23)

K2 −KµνK
µν = R (4.24)

where all tensors, covariant and Lie derivatives are referred to theD−1 submanifold.

Here, though, the extrinsic curvature is defined as

Kµν =
1

N

(1

2
∂ρgµν −∇(µNν)

)
(4.25)

with a global sign difference from 4.20 due to stripping one spacelike dimension

instead of the timelike. K is its trace.

4.3.4 Gauge fixing and radial solutions

Recalling the leading order dependencies of N and Nµ, the large D limit simplifies

the trace of 4.22 into a solvable equation for the extrinsic curvature, since it reduces

to

∂ρK +NK2 = R (4.26)

Since the Ricci scalar on theD−1 submanifold does not depend on ρ at leading order,

the extrinsic curvature is forced to have the shape K = R(x)f(ρ) and the auxiliar

coefficient is forced to be N(x) = 1/R(x). Then the solution may be integrated on

ρ:

K =
f(ρ)

N(x)
⇒ f ′ + f 2 = 1⇒ K =

n

r0(x)
coth ρ+O(D0) (4.27)

after expressing N(x) = r0(x)/n, where r0 is a D independent curvature radius of

the submanifold and n = D − p − 3 ∼ D in the limit. We’ll use D indistintively

from n since the large D limit is being taken by fixing p and letting n→∞.

It is only now that we distinguish between the worldvolume and the SO(n + 2)

symmetric directions4.1: the D − 1 metric is rewritten as[12]

gµνdx
µdxν = −(A− uiui/D)dt2 − 2

ui
D
dxidt+ gijdx

idxj +R2
0e

2φ
n+1dΩn+1 (4.28)
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where Latin indices run over 1, ..., p and are raised and lowered with δij. Before

solving it at leading order we again need to discuss the D dependence of each term.

We can always choose an appropriate timelike coordinate so that A ∼ D0. We may

also choose a chart for which at leading order the brane is at rest, so the shift vector

will be u ∼ 1/D. Since quasinormal fluctuations along the brane occur in lapses of

distance ∼ 1/
√
D, we rescale the spacelike coordinates to the mentioned length, so

gij ∼ 1/D. Furthermore, we can choose the brane spacelike coordinates to be locally

Euclidean, so that gij =
r20(x)

n
δij + O(1/D2), proportional to the local curvature

radius[12]. The explicit dependence of the angular terms is already specified, so

φ ∼ D0.

Recalling theD dimensional spacetime, we impose it to have asymptotical Eddington-

Finkelstein shape[12]. Then, N2 = NµNµ, and since gtt = −A at leading order, then

NµN
µ = −AN t2 → N t = − N√

A
, N i = − N√

A
ui by covariance (hence ui ∼ O(D0))

and Nµ = 0 for all the SO(n + 2) components, since they don’t appear in the E-F

metric.

Now, the trace of Einstein equations 4.26 may be solved at leading order. The

Ricci scalar for this ansatz is R = D2/R2
0 + O(D). Then, using the leading order

solution for K found in 4.27, we have D2

r20(x)
= D2

R2
0
, so r0(x) = R0, constant along the

whole brane. From now on, we’ll assume r0 = R0 = 1 by simpicity[12].

4.3.5 Extrinsic curvature

We aim now to solve 4.22 in its angular components, which we will label in Latin

capitals. By explicit calculation from the definition in 4.25 for our ansatz 4.28,
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recalling N 6= N(xI) and substituting the Ricci tensor, at leading order we have

KI
J = ∂ρφδ

I
J ∼ O(D0) (4.29)

K = D coth ρ ∼ O(D) (4.30)

RI
J = DδIJ ∼ O(D) (4.31)

Again, only the l.h.s. of 4.22 and the Ricci tensor term survive at leading order,

simplifying the equation to the fully solvable

∂2
ρφ+ coth ρ∂ρφ = 1⇒ φ = logm(xi) + log

1

2
(1 + cosh ρ) +O(1/D) (4.32)

being m(x) an integration function only dependent on the brane worldvolume coor-

dinates.

The next step is a repetition of the latter[12]: solving the remaining components

of 4.22 at leading order. It’s easier, since for our ansatz 4.28 at leading order

Ri
t ∼ Rt

i ∼ Ri
t ∼ O(D0), so the equation is homogeneous for Kt

t and Ki
t . Hence we

have:

Kt
t =

D

sinh ρ
+O(D0) (4.33)

Ki
t =

D

sinh ρ
vi +O(D0) (4.34)

(4.35)

where the constant D/R0 is fixed in 4.33 after imposing the asymptotic behaviour

A→ −1 at ρ→∞. The leading order D dependence can be obtained by inspecting

the definition of the extrinsic curvature 4.25. The integration function in 4.41 is not

constrained beyond being O(D0), so there we carry an extra vector vi which may

still be dependent on the worldvolume coordinates. From 4.25 we can now extract

the value of the coefficient A = −gtt at leading order:

Kt
t =

D

2
gtt∂ρgtt =

D

2

∂ρA

A
=

D

sinh ρ
(4.36)

A(ρ) = tanh2 ρ

2
+O(1/D) (4.37)
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where the integration function is fixed by its asymptotic behaviour. For the {it}

component:

Ki
t =

D

2

(
git∂ρgtt + gij∂ρgtj

)
=
D

2

(ui∂ρA
A
− ∂ρui

)
=

Dvi

sinh ρ
⇒ (4.38)

⇒ 2vi
sinh ρ

= −∂ρui +
ui

sinh ρ
2

cosh ρ
2

(4.39)

ui =
vi

cosh2 ρ
2

(4.40)

where Latin indices in ui are raised and lowered with the Kronecker deltas. Note

that the final solution carries only a particular solution of the non homogeneous

linear equation 4.39. A term proportional to the homogeneous solution, ∝ tanh2 ρ
2
,

doesn’t appear because of asymptotic conditions at infinite radius.

We can try to find the remaining components of Kµ
ν . After having calculate the

connection coefficients for 4.28, simple inspection on the components Kt
i and Ki

j in

the definition 4.25 reveals that, contrary to Ki
t or Kt

t , Kt
i ∼ Ki

j ∼ O(D0). For Kt
i ,

equation 4.22 at leading order is again homogeneous, so the solution is

Kt
i =

−vi
sinh ρ

+O(1/D) (4.41)

where vi appears as an integration constant and is set to its value after comparing

Kt
i with the already known component Ki

t . For Ki
j, the Ricci tensor Ri

j contains

one term at order D, Ri
j ≈ −D∂i∂j logm, hence the r.h.s. of 4.22 doesn’t vanish

anymore at leading order. The solution, then, is only analytical in the asymptotic

behaviour for ρ→∞, e−2ρ→ 0; then the asymptotic behaviour is achieved with[12]

Ki
j = −∂i∂j logm+

1

sinh ρ

(
− vivj + ∂ivj + ∂jv

i + ∂i∂j logm
)

(4.42)

where the worldvolume function in the 1/ sinh ρ term emerges as an integration term

when solving the equation and is associated to the form in 4.42 after computing the

definition 4.25 and comparing with the other known components.

4.3.6 Higher order correction

We aim to take know the last and most important step in order to reach the effective

equations. If we pretend to describe non linear features of the dynamics of the brane,
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it is compulsory for us to study beyond the leading order in D. Hence, we’ll compute

now the first order correction on the value of K. Since K ∼ O(D), the correction

will be O(D0). Let’s examine term by term on trace of 4.22. The leading order

terms were O(D2), so we’ll now explicit terms at order and D to impose equality

at higher order. Writing K ≈ DK(0) +K1 with K(0) = coth ρ from 4.27, the O(D)

terms will be:

• Left hand side: 1
N
∂ρ(DK

(0) +K(1)) + (DK(0) +K(1))2 → 2DK(0)K(1).

• Right hand side: R− 1
N
∇2N + 1

N
Nµ∂µK → DR(1)

being R ≈ D2R(0) + DR(1). However, we are interested the asymptotic behaviour

in ρ. In this limit (always done after the large D in case of indeterminate expres-

sions), the Ricci scalar at O(D) then takes the expression R = D(−2∂i∂i logm −

∂i logm∂i logm− 2 logm, so the correction in the extrinsic curvature is, finally[12],

K(1) = −(∂i∂i logm+
1

2
∂i logm∂i logm+ logm) (4.43)

4.3.7 Effective equations

We finally have all the tools to build our effective equations. For the scalar effective

equation, taking the t component of equation 4.23 gives the equation

∂tm+ ∂i(mv
i) = 0 (4.44)

which is the standard non relativistic conservation law for m(xi, t). We have to

understand m as the horizon density at each worldvolume point[12], so this equation

shows energy conservation over the whole brane horizon. The equation contains

partial derivatives because it has been derived for cartesian worldvolume coordinates

(recall gij ∝ δij, so for a general chart one shall substitute ∂i with ∇i, covariant

derivatives over the spacelike coordinates of the brane, since the equation is non

relativistic.
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Aside, let’s compute now the spatial components of 4.23 in the asymptotic region

for ρ. With our knowledge of each Kµ
ν component, Einstein equations will come

out as a motion equation for the effective velocity vi[12]. At leading order plus first

order correction, we will have

∂tvi+v
j∂jvi = ∂j∂jvi+∂j∂iv

j+(∂ivj+∂jvi)∂
j logm+∂i

(∂j∂jm
m
− ∂

jm∂jm

2m2
+logm

)
(4.45)

The same generalization applies here for substituting partial with covariant deriva-

tives for an arbitrary chart. Together, 4.44 and 4.45 are already the effective equa-

tions. Nevertheless, they are more compactly expressed in terms of a new variable

pi = ∂im+mvi (4.46)

which has a clear interpretation of effective momentum of the mass distribution over

the worldvolume. In terms of pi, the final form of the effective equations for black

brane and probably the most important equations for this Dissertation, is

(∂t −∇2)m = −∇ip
i (4.47)

(∂t −∇2)pi = ∇im−∇j
(pipj
m

)
(4.48)

where all the non linear dynamics of the black brane is concentrated in the last non

linear term of 4.48.

As a final remark, the effective equations can also be interpreted as fluid equations.

As already discussed, 4.47 is nothing else but a continuity equation for the effective

mass distribution. Moreover, one may rewrite equation 4.45 as

∂t(mv
i) +∇j(mv

ivj + τ ij) = 0 (4.49)

being

τij = −mδij − 2m∇(ivj) −m∇j∇i logm

. Recalling the equation of state for a black brane in the large D limit, ρ ≈ −p, we

see that the first term in τij has the form of a pressure contribution, and the second

term is a viscosity contribution[13]. Hence, we may interpret 4.49 as a standard

fluid motion equation with the additional ∝ vivj non linear term that characterises

our theory.
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Related to the effective magnitudes, one may compute three relevant and very

natural integral magnitudes[35]: the effective total mass

M(t) =

∫
dpx
√
gm(t, x) (4.50)

the effective momentum vector

P i(t) =

∫
dpx
√
gpi(t, x) (4.51)

and the effective angular momentum tensor

J ij(t) =

∫
dpx
√
g(xipj(t, x)− xjpi(t, x)) (4.52)

where g is the determinant of the worldvolume metric, which includes all the space

dimensions of the brane but excludes time, since the effective theory is fully non

relativistic.

The effective equations can also be derived with the help of computational sym-

bolic calculations from the metric

ds2 = −
(

1−m(x, t)

rn

)
dt2+2dtdr+r2dΩn+1−

2

n

pi(x, t)

rn
dxidt+

1

n

(
δij+

1

n

pi(x, t)pj(x, t)

rnm(x, t)

)
dxidxj

(4.53)

Expressing m and pi as a power series in 1/n, solving Einstein up to the first higher

order will directly recover the effective equations 4.47 and 4.48. From this metric

we get an even better intuitive notion of m(x, t) acting as the worldvolume mass

density and pi its worldvolume momentum.
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Chapter 5

Applications

In this final chapter we provide several applications of the effective theory for black

brane dynamics that has been developed previously. Hence, all our results will

emerge from solving the effective equations, 4.47 and 4.48. Several results are ob-

tained with numerical analysis, which we have replicated here for confirmation and

clarity using the NDSolve module from Mathematica through self developed codes

than can be found in the Appendices.

5.1 Black holes as blobs on the membrane

One may ask how an effective theory entirely developed on a black brane spacetime

can provide further understanding of black holes. We prove now that the effective

equations 4.47, 4.48 contain different solutions all of the form of localised "blobs"

on the mass density field m(t, xi) that ultimately satisfy all the properties of each

type of black holes we’ve been talking about previously.
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5.1.1 Gaussian solutions

Let’s consider the simpler scenario of p = 2, the simplest brane aside from the black

string. We want first to find time independent axisymmetric solutions. We shall,

hence, use flat polar coordinates ds2 = −dt2 + dr2 + r2dφ2 on the brane. After a bit

of algebra, the effective equations become(
∂t − ∂2

r −
1

r2
∂2
φ −

1

r
∂r

)
m = −

(
∂r +

1

r

)
pr −

1

r2
∂φpφ (5.1)(

∂t − ∂2
r −

1

r2
∂2
φ −

1

r
∂r +

1

r2

)
pr +

2

r3
∂φpφ = ∂rm− ∂r

p2
r

m
− 1

r2
∂φ
prpφ
m

+
1

r3

p2
φ

m
− 1

r2

p2
r

m

(5.2)(
∂t − ∂2

r −
1

r2
∂2
φ +

1

r
∂r

)
pφ −

2

r
∂φpr = ∂φm− ∂r

prpφ
m
− 1

r2
∂2
φ

p2
φ

m
− prpφ

rm

(5.3)

We want to find an axisymmetric and static solution: hence nothing can depend on t

neither φ. Under this assumption 5.1 is solved by pr = ∂rm, which after substitution

in 5.3 gives pφ = mr2Ω being Ω an integration constant. Equation 5.2 then becomes

ordinary for m(r)[36]:( d2

dr2
+

1

r

d

dr
+ 1
)

logm+
1

2m2

(dm
dr

)2

= −Ωr2

2
(5.4)

After rewriting

Ω =
a

1 + a2
⇔ a =

1±
√

1− 4Ω2

2Ω
(5.5)

then 5.4 admits a gaussian family of solutions of the form[36]

m(r) = m0e
− r2

2(1+a2) (5.6)

written in this notation, a is directly related to the axial angular momentum per

unit mass: J = 2aM , being M,J the effective mass and angular momentum (its

only non vanishing component for p = 2) of the brane respectively, by explicit

calculation in 4.50 and 4.52. By returning to a cartesian coordinate chart, and

thanks to Galilean invariance of the system, we can boost and translate the frame

and write the gaussian solution in terms of its spatial velocity and initial position
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with respect to the new frame:

m(x, y, t) = m0e
− (xi − x0i − uit)(xi − x0

i − uit)
2(1 + a2)

(5.7)

pi(x, y, t) = m0e
− (xi − x0i − uit)(xi − x0

i − uit)
2(1 + a2)

(
ui +

1

1 + a2
(aεij − δij)(xj − x0

j − ujt)
)

(5.8)

being εij the spatial Levi-Civita tensor.

5.1.2 Equivalence with Myers-Perry black holes

Consider the Myers-Perry metric in D dimensions 2.23 in the particular case of a

singly rotating black hole: a1 = a > 0, all others ai = 0. The resulting metric

is identical in both even and odd D[10], more easily derivated from 2.22, and is

expressed as

ds2 = −
(

1− rD−3
0

rD−5Σ

)
dt2 +

2arD−3
0 sin2 θ

rD−5Σ
dtdφ+

(
r2 + a2 +

a2rD−3
0 sin2 θ

rD−5Σ

)
sin2 θdφ2+

+
Σ

r2 + a2 − rD−3
0 /rD−5

dr2 + Σdθ2 + r2 cos2 θdΩD−4 (5.9)

being Σ = r2 + a2 cos2 θ as in the standard notation of Kerr metric, and µ1 = sin θ.

Applying now the coordinate change ρ = r cos θ, followingly replacing r →

r
√

(D − 5)(r2 + a2) sin θ and labeling R = (1 + a2)ρD−5, then the metric 5.9 is

rewritten as[36]

ds2 ≈ −Adt2+
1

D − 5

2a

1 + a2

r2e
− r2

2(1+a2)

R
dtdφ+

r2

D − 5

(
1+

r2

D − 5

a2

(1 + a2)2

e− r2

2(1+a2)

R
+

+
1

(D − 5)2

)
dR2

AR2
+

1

D − 5

(
1 +

r2

(D − 5)(1 + a2)2

e
− r2

2(1+a2)

AR

)
dr2 + ρ2dΩD−4 (5.10)

A = 1− e
− r2

2(1+a2)

R

where terms at higher orders in 1/D have been omitted. Finally, we just need to

redefine two coordinates[36]: t → t + 1
D−5

log(AR) and φ → φ − 1
D−5

a
1+a2

log(AR).
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Then, the previous metric 5.10 has exactly the form of 4.53 as long as we identify

m(r) = e
− r2

2(1+a2) (5.11)

pr(r) = − r

1 + a2
e
− r2

2(1+a2) (5.12)

pφ(r) =
ar2

1 + a2
e
− r2

2(1+a2) (5.13)

which are exactly the expressions of the effective mass and momenta for the gaussian

blob solution as defined in 5.6. Hence, we have proved that gaussian blob solutions

with spin a may be perfectly interpreted as single spinning Myers-Perry black holes

in the large D limit.

5.1.3 Quasinormal modes

We will now extract the quasinormal spectrum of the slow modes in the Schwarzschild-

Tangherlini particular case, i.e. a = 0, since we discussed it in previous chapters.

Consider the non spinning case of 5.6 and consider an infinitesimal periodic pertur-

bation:

δm(t, r, φ) = δm(r)e−iωt+imφφ (5.14)

δpr(t, r, φ) = δr(r)e
−iωt+imφφ (5.15)

δpφ(t, r, φ) = δφ(r)e−iωt+imφφ (5.16)

where all δi << 1. Effective equations at linear order on the perturbations will

establish relations between the radial functions δi. In concrete, on can prove [36]

that a combination of them lead to
3∏
i=1

[ d2

dr2

(1

r
− r
) d
dr

+mφ + 2ki −
m2
φ

r2

]δm
m

= 0 (5.17)

where ki are the three solutions of a cubic equation,

k3 − γ

2
k2 +

γ(1 + γ)− 6 + 3mφ

12
k − (γ + 3)(9mφ− 9 + γ2)

216
= 0 (5.18)

which is, itself, dependent on the frequency ω via γ = 3(1 + iω−mφ). Nevertheless,

equation 5.17 only is regular at both r = 0 and asymptotic infinity under the con-

dition on ki to be natural[36], in which case the solutions are Laguerre polynomials.
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Using ` = 2k−mφ (obviously mφ must be integer by continuity of the perturbation),

the imposition of k being natural (hence ` being integer) gives in return the quan-

tisation condition of the frequency spectrum, which is nothing else than rewriting

5.18 in terms of ` and finding the solutions for ω:

ω3 − i(4− 3`)ω2 − (`− 1)(3`− 4)ω − i`(`− 2)(`− 1) = 0 (5.19)

which has, of course, three complex solutions for ω, only one being real:

ω± = −i(`− 1)±
√
`− 1, ω0 = −i(`− 2) (5.20)

The purely imaginary frequency corresponds to a stationary mode (non periodic)

that exponentially decays with time. The frequencies ω± are exactly of the form of

3.48, the scalar modes, up to order at leading order for large D, while ω0 is exactly

the leading order of 3.47, the vector modes, after a unit shift in ` due to different

definitions. Note that since Imω < 0 for all the mentioned modes, by inspection

in equations 5.14, 5.15 and 5.16, then the three of the modes are stable since their

module decays with time. Of course, the spectrum we’ve found corresponds to the

decoupled QNM, since only they are localised on the near zone of the black hole

and, hence, can be described with an effective theory.

More general and vastly longer calculations may be done in the general Myers-

Perry case a 6= 0 to end up obtaining the quasinormal spectrum of Myers-Perry

black holes[19, 36], which is a direct (and necessary!) consequence of being able to

interpret axisymmetric stationary black holes as gaussian blobs on a brane in our

effective theory.

5.1.4 Black bars

Effective equations also contain a solution that, though no longer axisymmetric, has

great physical importance for the following sections: the black bar solution (still

considering a 2-brane)[35], in which the the effective density takes the following

expression:

m(t, r, φ) = m0e

[
1− r

2

4

(
1−
√

1−4Ω2 cos[2(φ−Ωt)]
)]

(5.21)
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Figure 5.1: This simple graphic illustrates the very different dependence between Ω

and J/M for Myers-Perry black holes and black bars. Their functions intersect at

J/M = 2 with Ω = 1/2, which in addition is its critical value and upper bound for

a black bar.

The shape of 5.21 is actually that of a rotating bar with constant angular velocity

Ω. The bar behaviour is intuitive: given a concrete direction from the origin, i.e.

for an arbitrary value of φ, m will be a gaussian blob oscillating in width with time

over a period of 2π/Ω, and the term with a cosine will determine the maximum

and minimum width the bar may take, i.e. its longitudinal and transverse lengths,

respectively. Since a gaussian distribution takes the form of ∼ e−x
2/(2σ2) being σ its

standard deviation, we can identify the characteristic length scale of a gaussian blob

as its standard deviation. Hence, by inspection and comparison, the longitudinal

and transverse lengths corresponding to the maximum and minimum deviation will

be

`2
L =

2

1−
√

1− 4Ω2
, `2

T =
2

1 +
√

1− 4Ω2
(5.22)

By explicit integration through their definitions, one can check that Ω−1 = J/M .

Hence, angular momentum per unit mass is no longer proportional to the rotating

frequency as one would naively expect, but proportional to its inverse. Note that

the solution only exists for Ω ∈ [−1/2,+1/2] and the critical value Ω = ±1/2
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recovers axisymmetry: in fact, it is the exact solution of a singly spinning Myers-

Perry black hole as a gaussian blob 5.6 taking a = 1. Furthermore, note how the

angular momentum of unit mass, due to the restriction on the values of Ω, presents

a lower bound so that J/M ≥ 2 (see 5.1): infinitely slow black bars do not exist.

5.2 Black hole collisions

The black hole interpretation of gaussian blobs on the brane enables us to study

black hole phenomenology in the large D limit using our effective theory for black

branes. We’ll start by analysing collisions between two black holes. This must be

computed numerically.

5.2.1 Initial configuration

Our initial configuration will be two Myers-Perry black holes with equal or oppo-

site spin by simplicity and located far away from each other. Hence, the initial

configuration of the mass distribution m can be approximated as the direct sum of

two gaussian blobs 5.7 located around different points (x0, y0) with relative velocity

that makes them get closer with time. The direct sum approximation will be also

valid for building the initial configurations of pi. We can always choose a cartesian

2-dimensional chart so that the center of mass is at rest and set to the origin, and

align the relative velocity, say, to the x axis, following the same choices as [35].

Then, the initial system will the depend on five parameters: x0, y0 = ±b/2, u, a

and m0, the mass at the center of the blob which we require it to be equal for both

blobs. Under these assumptions, the initial configuration will be (see figure 5.2)

m = m(m0,−x0,−b/2,+u, 0, a) +m(m0,+x0,+b/2,−u, 0,±a) (5.23)

where m(m0, x0, y0, ux, uy, a) are the isolated gaussian blobs 5.7 with particular val-

ues on the parameters.
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Figure 5.2: Plot of the discussed initial state of m(x, y) with arbitrary parameters

x0 = 5, b = 10, m0 = 1, a = 2 and u = 3.

To numerically run the effective equations, we further need boundary conditions

for the worldvolume coordinates domain. Simply, by working in a square of length

L >> x0 ∼ b, one can require Dirichlet homogeneous conditions and the boundary

without any inconvenience. By consistency, we set m, pi to be very small constants

at the boundaries but not exactly zero to avoid numerical divergences: recall 4.48

contains a dividing m in the non linear term, so non of the effective functions can

vanish completely. It has been computed that collisions at large relative velocity u

results in the formation of ≥ 2 objects. We’ll therefore always use small velocities

to that a 2→ 1 or 2→ 2 scattering is guaranteed.

5.2.2 Numerical Results

Here we’ll discuss the results achieved in [35] and we will illustrate them with some

examples taken from our own numerical simulations, using the NDSolve module to

numerically solve PDE systems in Mathematica.

The results show both qualitative and quantitative interesting features. On one

hand, one could ask what objects and how many of them should we expect in the

final state and, if they exist, in intermediate states. As consequence, of course, we’d

want to know the values of our parameter set for which these features are modified,

and to finally draw some kind of phase diagram for black hole collision.
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Figure 5.3: This figure is taken from [35], representing three numerical sets of simu-

lations varying u (red), b (green) and a (blue), for two parallel spinning black holes.

The orange line marks the upper limit of black bar stability at longer time scales.

The first fundamental result is that the final resulting outcome from our discussed

initial configuration exclusively depends on the initial angular momentum, as defined

in 4.52. This can be proved by running several sets of simulations varying at each

set one single different parameter and plotting the results, for example the angular

velocity Ω of the final state if it contains a single object, as a function of the varying

angular momentum. One realizes that all sets of data are identical (Figure 5.3).

Note that, because of the lack of gravitational radiation emission in the large D

limit, total angular momentum is conserved throughout the evolution in all the

simulations[37].

The shape of 5.3 also replicates figure 5.1 and, for J/M > 2, we see that numerical

simulations predict a black bar type final state over a Myers-Perry black hole. Hence,

for J/M > 2 Myers-Perry black holes are unstable. Eventually, black bars become

unstable too for J/M = 4/
√

3 (the value of the orange dashed line in 5.3). As a brief

justification, when Ω keeps decreasing the longitudinal and transverse lengths 5.22

diverge and vanish respectively, so the black bar approaches the configuration of a
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Figure 5.4: Graphic plot of the final state of m(x, y) for u = 1.7, a = 0 and b = 1.

We clearly see that the final object is a perfectly round gaussian blob, i.e. a Myers-

Perry black hole. Note that despite having two Schwarzchild-Tangherlini black holes

initially, as a = 0, the final state must be Myers-Perry due to a total non vanishing

angular momentum caused by the impact parameter b 6= 0.

black string. Then J/M = 4/
√

3 corresponds to its first unstable mode[35] related

to the black string Gregory-Laflamme instability.

The two following figures 5.4 and 5.5 are the result of two example cases after

numerically computing the effective equations by ourselves. We can check that the

results match with those from published papers.

5.2.3 Violation of Cosmic Censorship

Up until now, all the results that have been discussed were computed with a reason-

ably low total angular momentum per unit mass in the initial configuration. Thanks

to this restriction, all the final outcomes consisted in one single object, either a M-P

black hole or a black bar. One may ask what happens if we keep increasing the total

angular momentum, were both M-P black holes and black bars are unstable.
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Figure 5.5: Graphic plot of the final state of m(x, y) for u = 1.7, a = 0 and b = 2.5.

We clearly see that the final object is no longer a circular blob but a distribution

with two orthogonal main axis: it is a black bar. Further figures over a small time

interval would show how the bar rotates.

Hence, we now run again simulations with two initial gaussian blobs but using a

set of parameters u, a and b so that J/M is larger that the threshold for black bar

stability: J/M > 4/
√

3 ≈ 2.31. For J/M slightly greater than the critical value, the

final state still contains a black bar. This is due to the long time scale of the black

bar instability when J/M is close enough to the threshold.

One needs to reach an angular momentum J/M > 2.43[37, 35] if, like in our sim-

ulations, we run t ∈ [0, 10]. When we run the equations under these conditions, the

result we obtain is an intermediate short lived black bar due to Gregory-Laflamme

type instabilities followed by a smooth split through its middle section and, even-

tually, a complete separation into two independent Myers-Perry gaussian blobs, in

general different from the incoming black holes (see figure 5.6.

The physical relevance of the black bar split is deeper that what it seems on the

surface since. The fact of the horizon density of the black decaying into zero implies,
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Figure 5.6: These figures show the shape of m(x, y) at t = 5 with an initial config-

uration with u = b = x0 = 3 and a = 2 with parallel spinning black holes. With

these parameters, the angular momentum satisfies J/M > 2.43 and, as expected,

the black bar ends up splitting into two black holes.

remarkably, a violation of Cosmic Censorship[37, 35, 38]. Weak Cosmic Censorship

is a conjecture which, roughly, states that all curvature singularities that arise from

gravitational collapse must be hidden within a black hole[2]. Consequently, Cosmic

Censorship (CC) forbids the existence of naked curvature singularities. Hence, CC

would forbid the horizon of the black bar to completely shrink to zero in its center,

where the singularity remains. We can never see it explicitly through an effective

theory (since the horizon density is never exactly zero), since a perturbative expan-

sion in 1/D no longer well defined around a singularity; we would need curvatures

smaller than 1/D[37]. However, the result matches with other studies [38], and its

natural interpretation itself suggest a complete shrink of the horizon at the origin,

violating CC.

This result through the effective theory is one more prove that suggests that

Cosmic Censorship may be violated in spacetimes with dimension higher than D =

4[38, 37].
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5.3 The black string instability

5.3.1 Equations and initial state

As we have explained in previous chapters, at D ≥ 5 and lower than some higher

value around D ≈ 13, black branes are Gregory-Laflamme unstable[7]. Here, we’ll

try to show this instability in a numerical simulation of the effective equations for a

black string and, furthermore, investigate the final state of this instability and give

some interpretation of it. Hence, throughout this section we’ll be following [39] with

our own simulations as a confirmation of the results.

For a black string the effective equations are simple: from 4.47 and 4.48, the black

string equations will be

(∂t − ∂2
z )m(t, z) = −∂zp(t, z) (5.24)

(∂t − ∂2
z )p(t, z) = ∂z

(
m(t, z)− p(t, z)2

m(t, z)

)
(5.25)

We assume the string is compactified, i.e. the solution is periodic in z. So, we

can simply restrict z ∈ [−L/2,+L/2], so that the solution will have an associated

wavenumber k = 2π/L.

For the initial state, we will take a perturbation from the static uniform string:

m(0, z) = 1 + δm(z), p(0, z) = δp(z) (5.26)

so that the center of mass is at rest and located at the origin, i.e. P = 0 as defined

in 4.51. We can start the simulation with, say, a periodic perturbation (see figure

5.7)

δm(z) = ε cos(kz), δp(z) =
d

dz
δm(z) = −1

k
ε sin(kz) (5.27)

with ε << 1. Since the perturbation is even in z, periodic boundary conditions

in ±L/2 will reduce to homogeneous Neumann conditions for the m(t,±L/2) and

Dirichlet conditions for p(t,±L/2).
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Figure 5.7: Initial profile of the mass density m(z). On the right, a zoom in of the

left graphic to appreciate the shape of the initial perturbation. We’ll always use

ε = 0.01 and, here, L = 1 arbitrarily.

5.3.2 Numerical results

The final outcome can be summarized in the following features:

• Final shape: For all values of k between 1/2 and 1, the final state is a non uni-

form black string with one single blob centered at z = 0 whose peak decreases

with k (see figures 5.8 and 5.9), since it can be reasonably well approximated

to gaussian, m ∼ Le−z
2/2, regardless of the initial shape of the perturbation.

For values of k below the previous range, i.e. longer strings, the final state

depends on out initial choice for δm(z) and may end un showing more than

one blob. For k > 1, instead, the perturbation is stable and the string quickly

returns to the uniform configuration[39] (see figure 5.7).

• Time scale: For the most relevant range 1/2 < k < 1, we see that the equilib-

rium final state, i.e. the endpoint, is reached faster as k decreases. This is a

general feature; however, the total time spent may still depend on the initial

shape of the perturbation.

Hence, our effective theory predicts that the endpoint of unstable compactified

black strings will be non uniform black strings, whose shape and evolution time will

depend on length.
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Figure 5.8: Final outcome of the perturbed black string at t = 25 for k = 0.9 ∈

(0.5, 1). We see that the infinitesimal perturbation grows into a moderately non

uniform black string with a peak at m ≈ 1.2.

Figure 5.9: Final outcome of the perturbed black string at t = 25 for k = 0.6 ∈

(0.5, 1). We see that the infinitesimal perturbation grows into a sharply non uniform

black string with a peak at m ≈ 4.0, much higher than the peak for higher values

of k. We also see that the mass density in the extremes tends to zero quicker than

in the other cases.
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Figure 5.10: Final outcome of the perturbed black string at t = 25 for k = 1.2 > 1.

We see that the perturbation hasn’t grown and the string remains uniform. Hence,

the uniform string is stable.
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Chapter 6

Conclusion

As a conclusion for this Dissertation, here we review and summarize the main results

of the project.

In chapter 2 we’ve seen than General Relativity is naturally extendable to a higher

number of space dimensions. In concrete, the generalization of black hole solutions

in vacuum expands to a great spectrum of geometries: some of them are straight

generalizations from D = 4 cases, such as the Schwarzschild-Tangherlini solution

for spherically symmetric and static black holes and the Myers-Perry solutions for

stationary rotating black holes. Other geometries such as brack strings, black branes

or black rings are completely novel. Uniquess theorems, hence, no longer hold. The

study of black hole dynamics in higher D gets drastically simplified using the large

D limit, which implies working at leading and first higher order in 1/D in all objects.

For a black hole, the large D limit restricts all gravitational effects into a thin layer

of width r0/D around the event horizon, leaving the outer spacetime flat at leading

order

In chapter 3 we have found how, at any D, perturbative dynamics of black holes

are described in terms of quasinormal modes, which are harmonic eigenfunctions that

transform as scalars, vectors or tensors in the maximally symmetric submanifold.

Given the absorptive nature of the black hole, their frequencies are not necessarily
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real, bringing the possibility of quickly dissipative or unstable modes. The allowed

frequencies may be quantised due to asymptotic and horizon boundary conditions.

In the large D limit, the frequency spectrum of quasinormal modes of black holes

can be disjointedly classified into universal fast non decoupled modes, with frequen-

cies proportional to D without extra information, and slow decoupled modes with

frequencies independent of D at leading order, localised around the horizon and with

rich physical information that makes them unique of each solution.

In chapter 4 we’ve followed the derivations where, for appropriate ansatzs, solving

Einstein equations up to the first higher order in 1/D gives rise to sets of effective

equations that operate on effective variables in terms of which non linear dynamics

of large D black branes can be described by means of an effective theory.

Finally, in chapter 5 we have studies how static gaussian type solutions of the

black brane effective equations may be interpreted as singly spinning Myers-Perry

black holes, making the effective theory of black branes able to describe dynamical

features such as collisions or fluctuations.

Regarding black hole collision we have confirmed that, depending only on the

total initial angular momentum per unit mass J/M , collisions between two singly

spinning Myers-Perry black holes evolve into a final single M-P black hole for low

J/M , a rotating black bar solution for higher J/M and, ultimately for even higher

J/M , a break out of the bar into two new and separate M-P black holes, violating

Cosmic Censorship in the process.

In parallel, due to the Gregory-Laflamme instability, we have checked that ini-

tially uniform compactified black strings with an infinitesimal perturbation may

have different endpoints depending on its compactified length. For short strings the

perturbation is stable and quickly vanishes. For longer lengths, the perturbation

grows into a final stable state where the black ring is no longer uniform, being the

deformation larger and faster to reach equilibrium as the length of the string grows.
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These are only two applications of one of the two effective theories in the large D

limit that have been studied here. Other problems may be dealt using the mentioned

tools such as the stability of ultraspinning Myers-Perry black holes[40] or the quasi-

normal spectrum of rotating black holes[19]. Hence, we end up this Dissertation by

acknowledging one last time how the classical study of black holes, in concrete their

study in the large D limit, has still a lot of topics to continue researching at, hence

being arguably a hot field in current physics investigation.
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Appendix A

Black hole collision code
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Appendix B

Black string instability code
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